WO2012088867A1 - 一种纳米催化电解絮凝装置 - Google Patents

一种纳米催化电解絮凝装置 Download PDF

Info

Publication number
WO2012088867A1
WO2012088867A1 PCT/CN2011/076791 CN2011076791W WO2012088867A1 WO 2012088867 A1 WO2012088867 A1 WO 2012088867A1 CN 2011076791 W CN2011076791 W CN 2011076791W WO 2012088867 A1 WO2012088867 A1 WO 2012088867A1
Authority
WO
WIPO (PCT)
Prior art keywords
casing
cathode
anode
water
electrolysis
Prior art date
Application number
PCT/CN2011/076791
Other languages
English (en)
French (fr)
Inventor
张世文
Original Assignee
波鹰(厦门)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 波鹰(厦门)科技有限公司 filed Critical 波鹰(厦门)科技有限公司
Priority to EP20110853570 priority Critical patent/EP2660206A4/en
Priority to US13/992,756 priority patent/US20130264197A1/en
Publication of WO2012088867A1 publication Critical patent/WO2012088867A1/zh
Priority to IN1220MUN2013 priority patent/IN2013MN01220A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/463Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrocoagulation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/465Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electroflotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • C02F1/4674Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46157Perforated or foraminous electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46171Cylindrical or tubular shaped
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/22Nature of the water, waste water, sewage or sludge to be treated from the processing of animals, e.g. poultry, fish, or parts thereof
    • C02F2103/24Nature of the water, waste water, sewage or sludge to be treated from the processing of animals, e.g. poultry, fish, or parts thereof from tanneries
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/46135Voltage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/4614Current
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/02Fluid flow conditions
    • C02F2301/028Tortuous
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/24Separation of coarse particles, e.g. by using sieves or screens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes

Definitions

  • the invention relates to an electrolytic flocculation device, in particular to a nano catalytic electrolytic flocculation device with a titanium electrode whose surface is covered with a nano catalytic material as an anode.
  • Environmental pollution mainly includes wastewater pollution, soil pollution, air pollution, noise pollution and electromagnetic pollution.
  • wastewater pollution mainly includes wastewater pollution, soil pollution, air pollution, noise pollution and electromagnetic pollution.
  • the pollution of wastewater is particularly serious, and it has reached the point where it is impossible to cure.
  • the technology for treating wastewater can be divided into three categories: physical treatment, physical and chemical treatment and biochemical treatment.
  • the physical treatment method mainly uses precipitation, filtration, flotation, evaporation and the like to remove impurities of larger particles, and the filtration includes conventional filtration, vacuum filtration, pressure filtration, centrifugal filtration, microfiltration, ultrafiltration, nanofiltration and reverse. Penetration filtration.
  • the physicochemical treatment method mainly uses redox, extraction, adsorption, ion exchange, coagulation precipitation, neutralization, electrodialysis and other methods to remove fine suspended solids, colloids and water-soluble substances, or to modify toxic substances into non-toxic substances.
  • the biochemical treatment method mainly separates and removes the colloidal and dissolved organic substances in the wastewater by biological action, mainly including anaerobic, aerobic and anaerobic fermentation.
  • electrochemical treatment is a more active wastewater treatment technology in the materialized treatment technology. It mainly uses the principle of primary battery or electrolysis to treat wastewater.
  • various types of micro-electrolytic devices and electrolyzers have been used in the treatment of domestic wastewater, industrial organic wastewater, electroplating wastewater, oil field wastewater, and the like.
  • the existing electrolysis device exposes some problems during the operation.
  • the filler is easy to agglomerate, and there is a phenomenon such as channel flow, which greatly reduces the treatment effect;
  • the chemical bed solves the agglomeration problem, in order to ensure the fluidized state, the filler needs to be continuously circulated, the power consumption is large, and the filler is easily lost.
  • the existing electrolyzers also expose some problems during the operation.
  • the electrode consumption is large, the electrode material pollutes the water body;
  • the electrode has small electric density, high overpotential, high working voltage, and low energy application efficiency. The consumption is large; the third is that after electrolysis, the solid-liquid separation effect is not satisfactory, and secondary solid-liquid separation is required, and the flow is long.
  • Chinese patent CN1283595 discloses a catalytic micro-electrolysis device which is composed of a cylinder, a bed of activated carbon casting activated carbon and a catalyst, a feeding port, a discharge port, an inlet and outlet pipe, a high-pressure air pipe and the like.
  • the device has various functions such as catalysis, redox, adsorption, decolorization, flocculation and microfiltration in the process of treating wastewater, can treat various industrial wastewaters, has good effect, low cost and operation cost of the device, convenient operation, safety and reliability.
  • Chinese patent CN101544415 discloses an expanded bed electrolysis apparatus and a treatment process for decomposition of aqueous organic matter.
  • the expanded bed electrolysis device comprises an electrolytic cell, a cathode electrode and a particle electrode disposed in the electrolytic cell, and a circulating water pump and a power source, the electrolytic cell is cylindrical, and the cathode is a cylindrical stainless steel mesh, along the The inner wall of the electrolytic cell is disposed coaxially with the electrolytic cell, and the anode is a rod-shaped Ti/SnO2+Sb2O4 composite electrode disposed at an axial center of the electrolytic cell, and the particle electrode is a spherical particle of ⁇ -Al2O3/SnO2+Sb2O4.
  • the circulating water pump forms a water circulation system through an outlet pipe and an inlet pipe disposed at the top and bottom of the electrolytic cell and an electrolysis reaction zone.
  • the object of the present invention is to provide a method for minimizing the operating voltage of the existing microelectrolytic device and the electrolysis device, providing a low operating voltage, high current density, low energy consumption, high electrical efficiency, and no electrode consumption for electrolysis.
  • Solid-liquid separation and gas-liquid separation function Nano-catalytic electrolytic flocculation device.
  • the invention is provided a casing is provided with a waste water inlet at the bottom of the casing, and the waste water inlet is connected with the water inlet pipe through a pipe, and a dross baffle and a water retaining plate are arranged in the casing, and the dross baffle and the inner side of the casing are formed.
  • the bottom of the dross baffle has a gap with the bottom of the casing
  • the drain chamber is provided with a drain port
  • the other side of the baffle and the casing constitute a slag discharge chamber, and a gap is left between the top of the baffle plate and the top of the casing.
  • the slag discharge chamber is provided with a slag discharge port; at the top of the casing, a hydrogen discharge port is arranged at one end of the slag discharge port, and at least between the scum baffle plate and the water baffle plate is provided 1 electrolyzer, electricity
  • the bottom of the unslot is fixed at the bottom of the casing, the top of the electrolytic cell is open and has a gap with the top of the casing, the electrode is equipped with an electrode, the electrode comprises an anode and a cathode, and the anode is connected with the anode of the direct current power source, the cathode
  • the cathode is coupled to the DC power source; a gas-liquid separation chamber is formed in the housing above the electrolytic cell.
  • the drain outlet is located at the bottom of the housing between the water stop and its adjacent electrolytic cell.
  • the casing may be provided with an inner layer and an outer layer, the inner layer may be an inner layer of engineering plastic, and the outer layer may be an outer layer of steel.
  • the electrolytic cell is a cylindrical electrolytic cell, a square electrolytic cell or a rectangular parallelepiped electrolytic cell.
  • the top of the cell is open and leaves a gap of 1/5 to 1/4 height to the top of the housing.
  • a gap of 30 to 50 mm is left at the top of the water baffle than the electrolytic cell.
  • the anode may be coated with a metal oxide coating having a grain size of 10 to 35 nm.
  • the anode of the titanium substrate may be a flat anode, an arc-shaped anode, a cylindrical anode or a mesh anode.
  • the anode may be surface covered with a grain metal oxide coating
  • the titanium substrate anode, the cathode may be a titanium cathode, an iron cathode, an aluminum cathode, a stainless steel cathode, a zinc cathode, a copper cathode, a nickel cathode, a lead cathode or a graphite cathode, etc.
  • the cathode may be an arc-shaped cathode, a cylinder Cathode or mesh cathode.
  • the water outlet may be disposed at 3/4 to 4/5 of the height of the drainage chamber.
  • the working voltage between the anode and the cathode may be 2 to 8 V, the current density may be 10 to 300 mA/cm 2 , the working voltage between the anode and the cathode is preferably 3 to 6 V, and the current density is preferably 150 to 230 mA/cm. 2 .
  • the electrocatalytic action of the nano-coating covering the surface layer of the anode reduces the overpotential of the electrolysis, so that the water is electrolyzed under a lower voltage condition, and the nascent oxygen, hydroxyl and initial ecology are generated. Hydrogen. And the following four roles occur:
  • Strong oxidizing substances such as nascent oxygen and nascent hydroxy groups produced by electrolysis kill microorganisms, bacteria, algae and plankton in water.
  • nascent oxygen and nascent hydroxy groups produced by electrolysis oxidize and decompose organic matter in water to reduce COD in water.
  • the new ecological hydrogen produced by the cathode can form a large number of bubbles. As the gas rises, it will bring out a large amount of solid suspended matter to achieve the effect of solid-liquid separation, thereby further reducing COD in the water. Pollution index such as color and turbidity.
  • the nascent chlorine [Cl] produced by electrolysis oxidizes organic matter in water and reduces COD in water.
  • the water body is destabilized, and the solid suspended matter existing in the water, the microorganisms killed in the water, the bacteria, the algae, the dead bodies of the plankton and the colloid dissolved in the water are flocculated and precipitated.
  • the electrocatalytic action of the coating covering the surface layer of the anode is used to reduce the overpotential of the electrolysis, thereby causing the wastewater to be electrolyzed under a lower voltage condition, thereby producing an eutectic strong oxidizing substance.
  • chloride ions When a large amount of chloride ions are present, the initial ecological chlorine is produced. [Cl] and nascent hydrogen [H]; in the absence of chloride ions, the nascent oxygen [O], hydroxyl [OH] and nascent hydrogen [H] are produced, and the following six effects occur:
  • Electrolytic priming strong oxidizing substances kill microorganisms, bacteria, algae and plankton in water.
  • the eutectic strong oxidizing substances produced by electrolysis rapidly oxidize and decompose organic matter in wastewater to reduce COD in wastewater.
  • OH produced during electrolysis - precipitation can settle to some metal ions (e.g., Fe 3+), these small particles can act as precipitation coagulant promote aggregation of suspended matter in the solution to settle.
  • the electric field can rapidly destroy the colloidal structure in the water body, destabilize the water body, and promote the solid suspended matter present in the wastewater, the microorganisms killed in the water, the bacteria, the algae and the plankton of the plankton, and the colloid dissolved in the water. Long flocculation and precipitation, greatly reducing the amount of flocculant added.
  • the new ecological hydrogen produced by the cathode can form a large number of bubbles. As the gas rises, it will bring out a large amount of solid suspended matter to achieve the effect of solid-liquid separation, thereby further reducing COD in the wastewater. Pollution index such as color and turbidity.
  • the present invention is a novel water treatment device integrating nanotechnology, catalytic technology and electrochemical technology.
  • the nanoelectrode has high electrocatalytic activity, and a large number of free radicals with strong oxidative properties are generated during electrolysis. It can quickly and efficiently oxidize and decompose reducing substances in water (including organic substances such as dyes). In addition, it has the following effects:
  • OH produced during electrolysis - precipitation can settle to some metal ions (e.g., Fe 3+), these small particles can act as precipitation coagulant promote aggregation of suspended matter in the solution to settle.
  • the electric field can rapidly destroy the colloidal structure in the water body, causing it to flocculate and settle, greatly reducing the amount of flocculant added.
  • the strong oxidizing free radicals produced by the electrolysis process can rapidly degrade the molecular structure of the dye in the water and reduce the influence of the colored substances on the color chromaticity.
  • the nascent strong oxidizing substances produced by electrolysis rapidly oxidize and decompose ammonia nitrogen in the wastewater.
  • the new ecological hydrogen produced by the cathode can form a large number of bubbles, and as the gas rises, it will bring out a large amount of solid suspended matter to achieve the effect of solid-liquid separation, thereby further reducing COD in the wastewater. Pollution index such as color and turbidity.
  • Nano-catalytic electrolysis can degrade macromolecular substances that are difficult to degrade by biochemicals, improve subsequent A/O conditions, and improve A/O effects.
  • FIG. 1 is a schematic structural view of an embodiment of the present invention.
  • Figure 2 is a schematic view showing the structure of the B-B cross-sectional structure of Figure 1.
  • Figure 3 is a schematic diagram showing the structure of the A-A cross-sectional structure of Figure 1.
  • the embodiment of the present invention is provided with a casing 1, a water inlet 2, an electrolytic cell 3, an electrode 4, a hydrogen discharge port 5, a dross baffle 6, a water baffle 7, a drainage chamber 8, and a gas.
  • a waste water inlet 2 is arranged at the bottom of the casing 1, and the waste water inlet is connected to the water pipe through the pipeline, and the dross baffle 6 and the water baffle 7 are arranged in the casing 1, and the dross baffle 6 and the inner side of the casing
  • the drain chamber 8 is formed, the bottom of the dross baffle 6 is separated from the bottom of the casing 1, and the drain chamber 8 is provided with a drain port 11, and the water baffle 7 and the other side of the casing constitute a draining chamber 10, and the water retaining plate 7
  • At least one electrolytic cell 3 is disposed between the bottom, and the bottom of the electrolytic cell 3 is fixed at the bottom of the
  • the top of the electrolytic cell 3 is open and has a gap with the top of the casing 1.
  • the electrode 4 is mounted with the electrode 4 and the electrode 4
  • An anode and a cathode are included, the anode being coupled to an anode of a direct current power source, the cathode being coupled to a cathode of a direct current power source; and a gas-liquid separation chamber 9 being formed in a housing above the electrolytic cell 3.
  • the sewage outlet is located at the bottom of the casing between the water baffle and its adjacent electrolytic cell.
  • the casing 1 is composed of two inner and outer layers, the outer layer is a steel plate, and the inner layer is processed by engineering plastics.
  • the water inlet 2 is provided at the bottom of the casing 1, and is connected to the water inlet pipe through a valve and a pipe.
  • the bottom of the electrolytic cell 3 is fixed at the bottom of the casing 1.
  • the top of the electrolytic cell 3 is open and has a gap of 1/5 to 1/4 of the height of the top of the casing 1.
  • the electrolytic cell 3 is provided with at least one electrolytic cell, and the electrolytic cell 3 is a cylinder.
  • the electrode 4 is mounted in the electrolytic cell 3, and the surface is covered with titanium as a substrate, and the surface is covered with a stable oxide anode with a metal oxide coating of 10 to 35 nm, and the anode is a flat plate, an arc shape, a cylindrical shape or a mesh. a shape of the shape; a cathode made of titanium, iron, aluminum, stainless steel, zinc, copper, nickel, lead, or graphite is mounted in the electrolytic cell 3, and the cathode is a circular arc, a cylinder, or a mesh.
  • the water inlet 2 and the slag discharge port 12 of the nano catalytic electrolytic flocculation device are disposed at the bottom of the nano catalytic electrolytic flocculation device, and the water outlet 11 is disposed at 3/4 to 4/5 of the height of the drainage chamber 8, and the pollution generated by the electrolysis
  • the mud is discharged through the sewage outlet 15;
  • the hydrogen discharge port 5 is disposed at the top of the slag discharge port 12, and the hydrogen generated by the electrolysis is discharged through the hydrogen discharge port 5;
  • the water baffle 7 is fixedly mounted at the bottom of the casing 1 and located at the length of the device 6/
  • the slag discharge chamber 10 is formed with the casing 1, and the upper portion and the top of the casing 1 have a gap of 1/5 to 1/4 and are compared with the electrolytic cell 2.
  • the scum baffle 6 is fixedly mounted on the top of the casing 1 and located at 1/7 of the length of the device.
  • the drainage chamber 8 is formed, and the lower portion has a gap of 1/5 to 1/4 with the bottom of the casing 1.
  • the electrolyzed wastewater enters the drainage chamber 8 through the gap of the lower portion of the dross baffle 6, and is discharged through the drain port 11;
  • the slag baffle 6 divides the upper part of the casing 1 into a gas-liquid separation chamber 9, and the hydrogen produced by the electrolysis is discharged from the hydrogen discharge port 5 after gas-liquid separation in the gas-liquid separation chamber 9; the anode terminal 13 and the anode of the DC power source
  • the cathode terminal 14 is coupled to the cathode of the direct current power source.
  • the working voltage between the anode and the cathode during the operation of the nano catalytic electrolytic flocculation device is 2-8 V, the current density is 10-300 mA/cm 2 , the optimal working voltage between the two electrodes is 3-6 V, and the optimal current density is 150. ⁇ 230mA/cm 2 .
  • the fresh water pump is electrolyzed into a nano-catalytic electrolytic flocculation device, the voltage between the two poles is 5-8 V, and the electrolytic density is 10-200 mA/cm 2 .
  • the residence time of the fresh water in the nano-catalytic electrolytic flocculation device is 0.5 to 1 min.
  • the electricity consumption of electrolysis of fresh water is controlled from 0.009 to 0.010 degrees/m 3 .
  • Table 1 untreated fresh water indicators
  • Table 2 fresh water indicators after treatment by nanocatalytic electrolytic flocculation unit.
  • Serial number project index Serial number project index 1 Stinky No smell or smell 5 COD ( mg/L ) 0 2 pH 6.9 6 Ammonia nitrogen (mg/L) not detected 3 SS ( mg/L ) ⁇ 1 7 Algae (/L) 135 4 Turbidity ( NTU ) ⁇ 1 8 Total number of bacteria ⁇ 30
  • the seawater pump is electrolyzed into a nano-catalytic electrolytic flocculation device, the voltage between the two electrodes is 3 to 5V, and the electrolytic density is 10 to 260 mA/cm 2 .
  • the residence time of the seawater in the nano-catalytic electrolytic flocculation device is 0.5 to 1 min.
  • the electricity consumption of electrolysis of seawater is controlled to be 0.003 to 0.004 degrees/m 3 .
  • Table 3 untreated seawater indicators
  • Table 4 sesawater indicators after purification and disinfection by nanocatalytic electrolysis devices.
  • Serial number project index Serial number project index 1 Stinky No smell or smell 5 COD ( mg/L ) 7 2 pH 8.1 6 Ammonia nitrogen (mg/L) 0.3 3 SS ( mg/L ) 19 7 Algae (/L) 1.5 ⁇ 10 2 4 Turbidity / NTU 3.5 8 Total number of bacteria (pieces / L) 1.9E+03
  • the A/O treated secondary sedimentation tank dyeing advanced treatment wastewater flows into the nano-catalytic electrolytic flocculation unit for electrolysis.
  • the voltage between the two poles is 3 to 6V, and the electrolytic density is 10 to 300 mA/cm 2 for catalytic electrolysis to keep the wastewater in the nano catalytic electrolysis.
  • the residence time in the flocculation device is 2 to 5 minutes, and the electricity consumption of the electrolysis of the wastewater is controlled to be 0.8 to 1.0 degree/m 3 .
  • Table 5 Integrated Dyeing and Dyeing Wastewater Indicators for Untreated Mixing Tanks
  • Table 6 Indices of Printing and Dyeing Wastewater after Nanocatalytic Electrolysis Treatment.
  • Serial number project unit measured value Serial number project unit measured value 1 COD Cr Mg/L 316 5 S 2- Mg/L 2 2 SS Mg/L 80 6 Chroma 200 3 Ammonia nitrogen Mg/L 3.5 7 pH 7.3 4 BOD 5 Mg/L 12 8 Sodium chloride ⁇ 2.3
  • Serial number project unit measured value Serial number project unit measured value 1 COD Cr Mg/L 253 5 S 2- Mg/L 2 2 SS Mg/L 211 6 Chroma 30 3 Ammonia nitrogen Mg/L 0 7 pH 7.3 4 BOD 5 Mg/L 78 8 Sodium chloride ⁇ 2.3
  • the tannery wastewater enters the coarse grid filter to remove large particles of solids and then flows into the conditioning tank for mixing.
  • the wastewater from the conditioning tank is pumped into the hydraulic screen to filter off impurities such as hair and then flows into the desulfurization reaction tank.
  • the desulfurization wastewater flows into the nano catalytic electrolytic flocculation device.
  • Electrolysis, electrolysis working voltage is 2 ⁇ 500V
  • the voltage between the two poles is 3 ⁇ 6 V
  • the electrolytic density is 10 ⁇ 300mA / cm 2
  • the residence time of the wastewater in the nano catalytic electrolysis flocculation device is 5 ⁇ 15min
  • the electricity consumption for electrolysis is controlled from 0.8 to 1.2 degrees/m 3 .
  • Table 7 indicators after desulfurization of tanning integrated wastewater
  • Table 8 indicators after nano-catalytic electrolysis of tanning integrated wastewater.
  • the A/O treated secondary sedimentation tank deep treated wastewater is poured into the nano catalytic electrolysis flocculation unit for electrolysis.
  • the working voltage of electrolysis is 2 to 500V
  • the voltage between the two electrodes is 3 to 6V
  • the electrolytic density is 10 to 300 mA/cm 2 .
  • the residence time of the wastewater in the nano catalytic electrolysis device is 5 to 15 minutes, and the electricity consumption of the electrolysis of the wastewater is controlled to 0.8 to 1.2 degrees/m 3 .
  • Table 9 indicators of secondary sedimentation wastewater in tanning biochemicals
  • Table 10 indicators after biochemical post-sinking wastewater treatment by nano-catalytic electrolysis.
  • Serial number project unit measured value Serial number project unit measured value 1 COD Cr Mg/l 165 4 BOD 5 Mg/l 10 2 SS Mg/l twenty two 5 Chroma 120 3 Ammonia nitrogen Mg/l 2.9 6 pH 9.3
  • Serial number project unit measured value Serial number project unit measured value 1 COD Cr Mg/l 108 4 BOD 5 Mg/l 93 2 SS Mg/l 55 5 Chroma 8 3 Ammonia nitrogen Mg/l 1.2 6 pH 9.3
  • the nano-catalytic electrolytic flocculation device of the invention is used for purifying water, and the chemical substances such as flocculating agent and air flotation agent are only one-third of the traditional process, which not only saves water treatment cost, but also greatly reduces material consumption and does not cause secondary pollution.
  • the addition of chemical substances such as flocculants and air floatants is only one-third of the traditional process.
  • the sludge is only one-third of the traditional technology, which greatly reduces sludge discharge and reduces the cost of solid waste treatment.
  • Nano-catalytic electrolysis can degrade biochemicals. Degraded macromolecular substances improve subsequent A/O conditions and improve A/O effects. Therefore, the present invention has good industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

一种纳米催化电解絮凝装置 技术领域
本发明涉及一种电解絮凝装置,特别是涉及一种以表面覆盖有纳米催化材料的钛电极为阳极的纳米催化电解絮凝装置。
背景技术
目前,水和废水的杀菌消毒、沉淀净化多采用化学方法和生化方法,在处理过程中需要添加大量的化学药剂并产生大量的污泥。如在自来水生产中,大多采用氯气或次氯酸钠对水体消毒,再经絮凝沉淀和过滤。废水处理时,通常加入絮凝剂进行絮凝反应后,进行沉淀或气浮分离,再经生化处理。虽然这种处理方法可以起到一定的作用,但是都存在运行成本较高、产生污泥量大、存在对环境造成二次污染等不足。此外,随着工业的发展、人们活动的加剧,对环境的污染日益严重,已严重威胁到社会的发展和人类的安全。环境污染主要包括废水污染、土壤污染、大气污染、噪声污染和电磁污染等。其中,废水污染尤其严重,已到了非治不可的地步。目前,治理废水的技术可分为物理处理法、物化处理法和生化处理化三大类。物理处理法主要是采用沉淀、过滤、浮选、蒸发等方法去除较大颗粒的杂质等,其中过滤包括常规过滤、减压过滤、压滤、离心过滤、微滤、超滤、纳滤和反渗透过滤。物化处理法主要是采用氧化还原、萃取、吸附、离子交换、混凝沉淀、中和、电渗析等方法去除细小悬浮物、胶体和水溶解物质,或者将有毒物质改性成为无毒物质。生化处理法主要是通过生物作用将废水中胶体的和溶解的有机物质分解破坏而分离去除,主要有厌氧、好氧、兼氧发酵等。
近年来,电化学处理是物化处理技术中发展较为活跃的废水处理技术,它主要是利用原电池原理或电解原理对废水进行处理。当前,有各种类型的微电解装置和电解装置,已应用于生活废水、工业有机废水、电镀废水、油田废水等的处理中。但是,现有的电解装置在运行过程中暴露出一些问题,一是固定填料微电解处理装置经过一段时间的运行后,填料易结块,出现沟流等现象,大大降低处理效果;二是流化床虽然解决了结块问题,但为确保流化态,填料需要不断循环,动力消耗较大,并且填料容易流失。现有的电解装置在运行过程中同样暴露出一些问题,一是电极消耗大,电极材料污染水体;二是电极的电密度小,过电位高,工作电压较高,电能应用效率不高,能耗大;三是电解后,固液分离效果不理想,需要进行二次固液分离,流程长。
中国专利CN1283595公开一种催化微电解装置,由筒体、充填活化了的铸铁屑活性炭和催化剂的床层、加料口、卸料口、进出水管、高压空气管等所构成。该装置在处理废水过程中具有催化、氧化还原、吸附、脱色、絮凝以及微滤等多种功能,可处理多种工业废水,效果好,装置的造价和运行费用低,操作方便,安全可靠。
中国专利CN101544415公开一种用于水相有机物分解的膨化床电解装置及处理工艺。所述一种膨化床电解装置包括电解槽、设置于电解槽内的阴阳电极和颗粒电极,以及循环水泵和电源,所述电解槽为圆筒状,所述阴极为圆筒状不锈钢网、沿所述电解槽的内壁与电解槽同轴设置,所述阳极为棒状Ti/SnO2+Sb2O4复合电极、设置在所述电解槽轴心位置,所述颗粒电极为γ-Al2O3/SnO2+Sb2O4球形颗粒催化电极、位于所述阴极和阳极之间形成的电解反应区;所述循环水泵通过设置在电解槽顶端和底部的出水管和进水管与电解反应区组成水循环系统。
技术问题
本发明的目的是针对现有的微电解装置和电解装置存在的不足,提供一种相邻两极工作电压极低、电流密度大、能耗较小、电效率较高、没有电极消耗集电解、固液分离和气液分离功能为一体的 纳米催化电解絮凝装置 。
技术解决方案
本发明设有 壳体,在壳体底部设有废水进水口,所述废水进水口通过管道与进水管道连接,在壳体内设有浮渣挡板和挡水板,浮渣挡板与壳体内一侧构成排水室,浮渣挡板的底部与壳体底部留有间隙,排水室设有排水口,挡水板与壳体内另一侧构成排渣室,挡水板顶部与壳体顶部留有间隙,排渣室设排渣口;在壳体顶部靠排渣口一端设有排氢口,在浮渣挡板与挡水板之间设有至少 1 个电解槽,电 解槽的底部固定在壳体内底部,电解槽的顶部敞开并与壳体顶部留有间隙,电解槽内安装有电极,电极包括阳极和阴极,所述阳极与直流电源的阳极联接,所述阴极与直流电源的阴极联接;在电解槽上方的壳体内构成气液分离室。排污口设置在壳体底部,位于挡水板与其相邻电解槽之间。
所述壳体可设有内层和外层,内层可采用工程塑料内层,外层可采用钢板外层。
所述电解槽为圆柱体电解槽、正方体电解槽或长方体电解槽等。
所述电解槽顶部敞开并与壳体顶部留有 1/5 ~ 1/4 高度的间隙。
所述挡水板顶部留有比电解槽高出 30 ~ 50mm 的间隙。
所述阳极可采用表面覆盖有 晶粒为 10 ~ 35nm 的金属 氧化物涂层 的钛基板阳极,所述阳极可为平板状阳极、圆弧状阳极、圆筒状阳极或网状阳极等。
所述阳极可为表面覆盖有 晶粒 金属 氧化物涂层 的钛基板阳极,所述阴极可为钛阴极、铁阴极、铝阴极、不锈钢阴极、锌阴极、铜阴极、镍阴极、铅阴极或石墨阴极等,所述阴极可为圆弧状阴极、圆筒状阴极或网状阴极等。
所述出水口可设置在排水室的高度的 3/4 ~ 4/5 处。
所述阳极与阴极间的工作电压可为 2 ~ 8V ,电流密度可为 10 ~ 300mA/cm2 ,阳极与阴极间的工作电压最好为 3 ~ 6V ,电流密度最好为 150 ~ 230mA/cm2
在对水电解消毒净化时,通过覆盖于阳极表层的纳米涂层的电催化作用,降低电解的过电位,从而使水在较低的电压条件下电解,产生初生态的氧、羟基和初生态的氢。并发生以下四个作用:
1 、电解产生的初生态的氧和初生态的羟基等强氧化物质杀灭水中的微生物、细菌、藻类和浮游生物。
2 、电解产生的初生态的氧和初生态的羟基氧化分解水中的有机物 , 降低水中的 COD 。
3 、在电场作用下,使水体脱稳,促使存在于水中的固体悬浮物、水中杀灭的微生物、细菌、藻类、浮游生物尸体和溶解在水中的胶体产生絮凝沉淀。
4 、阴极产生的新生态氢能形成大量的气泡,随着气体的上浮,会带出大量的固体悬浮物,达到固液分离的效果,从而进一步降低水中的 COD 、色度、浊度等污染指数。
通过以上四个作用,从而实现水的消毒净化。
在对海水和苦咸水净化消毒时,是通过覆盖于阳极表层的涂层的电催化作用,降低电解的过电位,从而使海水、苦咸水在较低的电压条件下电解,产生初生态的氯 [Cl] 和初生态的氢 [H] ,并发生以下三个作用:
1 、电解产生的初生态的氯 [Cl] 杀灭水中的微生物、藻类和浮游生物,消除微生物、藻类和浮游生物对膜的污染。
2 、电解产生的初生态的氯 [Cl] 氧化水中的有机物 , 降低水中的 COD 。
3 、在电解的电场作用下,使水体脱稳,促使存在于水中的固体悬浮物、水中杀灭的微生物、细菌、藻类、浮游生物尸体和溶解在水中的胶体产生絮凝沉淀。
通过以上三个作用,从而实现海水、苦咸水的消毒净化消毒。
在对废水进行处理时,是通过覆盖于阳极表层的涂层的电催化作用,降低电解的过电位,从而使废水在较低的电压条件下电解,产生初生态的强氧化性物质,在有大量氯离子存在时,产生的是初生态的氯 [Cl] 和初生态的氢 [H] ;在没有氯离子存在时,产生的是初生态的氧 [O] 、羟基 [OH] 和初生态的氢 [H] , 并发生以下六个作用:
1 、电解产生的初生态的强氧化性物质杀灭水中的微生物、细菌、藻类和浮游生物。
2 、电解产生的初生态的强氧化性物质快速氧化分解废水中的有机物,降低废水中的 COD 。
3 、电解产生的初生态的强氧化性物质快速氧化分解废水中的有色物质的发色基团发生断链或开环,使废水脱色。
4 、电解产生的初生态的强氧化性物质快速氧化分解废水中的氨氮。
5 、电解过程中产生的 OH- 可以与一些金属离子作用(如 Fe3+ )产生沉淀沉降下来,这些沉淀小颗粒可起助凝剂的作用,促进溶液中的悬浮物质聚集沉降。另外电解过程中,电场可以迅速破坏水体中的胶体结构, 使水体脱稳,促使存在于废水中的固体悬浮物、水中杀灭的微生物、细菌、藻类和浮游生物尸体、被溶解在水中的胶体长产生絮凝沉淀,极大限度降低投加的絮凝剂的用量。
6 、阴极产生的新生态氢能形成大量的气泡,随着气体的上浮,会带出大量的固体悬浮物,达到固液分离的效果,从而进一步降低废水中的 COD 、色度、浊度等污染指数。
通过以上六个作用,从而实现废水的净化处理。
综上所述,本发明是集纳米技术、催化技术和电化学技术为一体的新型水处理装置,其纳米电极具有较高的电催化活性,电解过程中会产生大量具有强氧化性的自由基,能快速有效氧化分解水中的还原性物质(包括染料等有机物),此外,还有以下作用:
1 、 絮凝作用
电解过程中产生的 OH- 可以与一些金属离子作用(如 Fe3+ )产生沉淀沉降下来,这些沉淀小颗粒可起助凝剂的作用,促进溶液中的悬浮物质聚集沉降。另外电解过程中,电场可以迅速破坏水体中的胶体结构,使其絮凝沉降,极大限度降低投加的絮凝剂的用量。
2 、脱色作用
电解过程产生的具有强氧化性的自由基可以快速降解水中的染料的分子结构,减少有色物质对水质色度的影响。
3 、降低氨氮作用
电解产生的初生态的强氧化性物质快速氧化分解废水中的氨氮。
4 、杀菌消毒作用
电解过程中会产生大量具有强氧化性的自由基,能快速杀灭水中的细菌等微生物和病毒,具有强大的 杀菌消毒作用。
5 、抑制水中藻类生长作用
电解过程中会产生大量具有强氧化性的自由基,能快速氧化分解细胞壁,破坏藻类的细胞结构,阻断藻类的 DNA 复制, 抑制水中藻类生长。
6 、气浮作用
阴极产生的新生态氢能形成大量的气泡,随着气体的上浮,会带出大量的固体悬浮物,达到固液分离的效果,从而进一步降低废水中的 COD 、色度、浊度等污染指数。
有益效果
采用纳米催化电解絮凝装置 对水进行净化处理,具有如下显著优点:
1 、加入絮凝剂和气浮剂等化学物质只有传统工艺的三分之一,不仅节省水处理成本,而且大幅度降低物料消耗并且不产生二次污染;
2 、加入絮凝剂和气浮剂等化学物质只有传统工艺的三分之一,污泥只有传统技术的三分之一,大幅度降低污泥排放,减少固体废物处理成本;
3 、纳米催化电解可以降解生化难以降解的大分子物质,改善后续的A/O条件,提高A/O效果。
附图说明
图 1 为本发明实施例的结构组成示意图。
图 2 为图 1 的 B-B 剖视结构组成示意图。
图 3 为图 1 的 A-A 剖视结构组成示意图。
本发明的最佳实施方式
下面结合附图对本发明的作进一步的说明。
如图1~3所示,本发明实施例设有壳体1、进水口2、电解槽3、电极4、排氢口5、浮渣挡板6、挡水板7、排水室8、气液分离室9、排渣室10、出水口11、排渣口12、阳极接线柱13、阴极接线柱14和排污口15。
在壳体1底部设有废水进水口2,废水进水口经管道接进水管道,在壳体1内设有浮渣挡板6和挡水板7,浮渣挡板6与壳体内一侧构成排水室8,浮渣挡板6的底部与壳体1底部留有间隙,排水室8设有排水口11,挡水板7与壳体内另一侧构成排渣室10,挡水板7顶部与壳体1顶部留有间隙,排渣室10设排渣口12;在壳体1顶部靠排渣口12一端设有排氢口5,在浮渣挡板6与挡水板7之间设有至少1个电解槽3,电解槽3的底部固定在壳体1内底部,电解槽3的顶部敞开并与壳体1顶部留有间隙,电解槽3内安装有电极4,电极4包括阳极和阴极,所述阳极与直流电源的阳极联接,所述阴极与直流电源的阴极联接;在电解槽3上方的壳体内构成气液分离室9。排污口设在壳体底部,位于挡水板与其相邻电解槽之间。
壳体1由内外两层构成,外层为钢板,内层为工程塑料加工而成。进水口2设在壳体1底部,通过阀门和管道与进水管道联接。电解槽3的底部固定在壳体1底部,电解槽3顶部为敞开并与壳体1顶部有1/5~1/4高度的间隙,电解槽3设至少一个电解槽,电解槽3为圆柱形;电解槽3内安装有电极4,以钛为基板,表面覆盖有晶粒为10~35nm的金属氧化物涂层的形稳阳极,阳极为平板状、圆弧状、圆筒状或网状的一种形状;电解槽3内安装有以钛、铁、铝、不锈钢、锌、铜、镍、铅、石墨为材料的阴极,阴极为圆弧状、圆筒状或网状的一种形状;纳米催化电解絮凝装置的进水口2和排渣口12设置在纳米催化电解絮凝装置的底部,出水口11设置在排水室8的高度的3/4~4/5处,电解产生的污泥经过排污口15排出;排氢口5设置在顶部靠排渣口12一端,电解产生的氢气经排氢口5排出;挡水板7固定安装在壳体1底部并位于装置长度的6/7处,与壳体1构成排渣室10,上部与壳体1顶部有1/5~1/4的间隙并比电解槽2高出30~50mm,电解产生的气泡、浮渣越过挡水板进入排渣室10,经排渣口12排出;浮渣挡板6固定安装在壳体1顶部并位于装置长度的1/7处,构成排水室8,下部与壳体1底部有1/5~1/4的间隙,电解后的废水经过浮渣挡板6的下部的间隙进入排水室8,经排水口11排出;浮渣挡板6将壳体1内上部分隔成气液分离室9,电解产生的氢气在气液分离室9进行气液分离后从经排氢口5排出;阳极接线柱13与直流电源的阳极联接,阴极接线柱14与直流电源的阴极联接。
所述纳米催化电解絮凝装置工作时的阳极与阴极间的工作电压为2~8V,电流密度为10~300mA/cm2 ,两极间的最佳工作电压为3~6V,最佳电流密度为150~230mA/cm2
本发明的实施方式
以下给出所述纳米催化电解絮凝装置的具体实施例。
实施例 1
对淡水的净化消毒的处理效果
将淡水泵入纳米催化电解絮凝装置电解,两极间的电压为 5 ~ 8V ,电解密度为 10 ~ 200mA/cm2 的催化电解机,保持淡水在纳米催化电解絮凝装置中的停留时间为 0.5 ~ 1min ,淡水的电解的用电量控制为 0.009 ~ 0.010 度 / m 3 。处理前后的效果见表 1 (未经处理的淡水指标)和表 2 (经过纳米催化电解絮凝装置处理后的淡水指标)。
表 1
序号 项 目 指 标 序号 项 目 指 标
1 臭和味 无异臭异味 5 COD ( mg/L ) 9
2 pH 6.9 6 氨氮( mg/L ) 0.5
3 SS ( mg/L ) 15 7 藻类(个 /L ) 5.5×106
4 浑浊度 /NTU 4 8 细菌总数 2.4E+05
表 2
序号 项 目 指 标 序号 项 目 指 标
1 臭和味 无异臭异味 5 COD ( mg/L ) 0
2 pH 6.9 6 氨氮( mg/L ) 未检出
3 SS ( mg/L ) ≤ 1 7 藻类(个 /L ) 135
4 浑浊度( NTU ) ≤ 1 8 细菌总数 ≤ 30
实施例 2
对海水的净化消毒的处理效果
将海水泵入纳米催化电解絮凝装置电解,两极间的电压为 3 ~ 5V ,电解密度为 10 ~ 260mA/cm2 的催化电解机,保持海水在纳米催化电解絮凝装置中的停留时间为 0.5 ~ 1min ,海水的电解的用电量控制为 0.003 ~ 0.004 度 / m 3 。处理前后的效果见表 3 (未经处理的海水指标)和表 4 (经纳米催化电解装置净化消毒处理后的海水指标)。
表 3
序号 项 目 指 标 序号 项 目 指 标
1 臭和味 无异臭异味 5 COD ( mg/L ) 7
2 pH 8.1 6 氨氮( mg/L ) 0.3
3 SS ( mg/L ) 19 7 藻类(个 /L ) 1.5×102
4 浑浊度 /NTU 3.5 8 细菌总数(个 /L ) 1.9E+03
表 4
序号 项 目 指 标 序号 项 目 指 标
1 臭和味 无异臭异味 5 COD ( mg/L ) ≤ 1
2 pH 8.1 6 氨氮( mg/L ) ≤ 未检出
3 SS ( mg/L ) ≤ 1 7 藻类(个 /L ) 未检出
4 浑浊度 /NTU≤ 1 8 细菌总数(个 /L ) ≤ 1
实施例 3
对印染深度处理废水的处理效果
将经过 A/O 处理的二沉池印染深度处理废水流入纳米催化电解絮凝装置电解,两极间的电压为 3 ~ 6V ,电解密度为 10 ~ 300mA/cm2 的催化电解,保持废水在纳米催化电解絮凝装置中的停留时间为 2 ~ 5min ,废水的电解的用电量控制为 0.8 ~ 1.0 度 / m 3 。处理前后的效果见表 5 (未经处理的混合池的印染综合废水指标)和表 6 (经过纳米催化电解处理后印染废水指标)。
表 5
序号 项目 单位 测定值 序号 项目 单位 测定值
1 CODCr mg/L 316 5 S2- mg/L 2
2 SS mg/L 80 6 色度 200
3 氨氮 mg/L 3.5 7 pH 7.3
4 BOD5 mg/L 12 8 氯化钠 2.3
表 6
序号 项目 单位 测定值 序号 项目 单位 测定值
1 CODCr mg/L 253 5 S2- mg/L 2
2 SS mg/L 211 6 色度 30
3 氨氮 mg/L 0 7 pH 7.3
4 BOD5 mg/L 78 8 氯化钠 2.3
实施例 4
对制革废水的处理效果
制革废水进入粗格栅过滤机过滤除去大颗粒固体物后流入调节池混合,再将调节池的废水泵入水力筛过滤脱毛发等杂质后流入脱硫反应池,脱硫废水流入纳米催化电解絮凝装置电解,电解的工作电压为 2 ~ 500V ,两极间的电压为 3 ~ 6 V ,电解密度为 10 ~ 300mA/cm2 ,保持废水在纳米催化电解絮凝装置中的停留时间为 5 ~ 15min ,废水的电解的用电量控制为 0.8 ~ 1.2 度 / m 3 。处理前后的效果见表 7 (制革综合废水经过脱硫后的指标)和表 8 (制革综合废水经过纳米催化电解后的指标)。
表 7
序号 项目 单位 测定值 序号 项目 单位 测定值
1 CODCr mg/ L 3560 6 S2- mg/ L 2
2 SS mg/ L 3110 7 色度 3200
3 氨氮 mg/ L 265 8 pH 9.3
4 Cr mg/ L 120 9 电导率 µS/cm 3200
5 BOD5 mg/ L 1730 10 氯化钠 1.6
表 8
序号 项目 单位 测定值 序号 项目 单位 测定值
1 CODCr mg/ L 820 6 S2- mg/ L 2
2 SS mg/ L 1310 7 色度 30
3 NH3-N mg/ L 95 8 pH 9.3
4 Cr mg/ L 93 9 电导率 µS/cm 3200
5 BOD5 mg/ L 790 10 氯化钠 1.3
实施例 5
对制革废水生化后二沉池的制革深度处理废水的处理效果
将经过 A/O 处理的二沉池制革深度处理废水流入纳米催化电解絮凝装置电解,电解的工作电压为 2 ~ 500V ,两极间的电压为 3 ~ 6V ,电解密度为 10 ~ 300mA/cm2 ,保持废水在纳米催化电解装置中的停留时间为 5 ~ 15min ,废水的电解的用电量控制为 0.8 ~ 1.2 度 / m 3 。处理前后的效果见表 9 (制革生化后二沉池废水指标)和表 10 (生化后二沉池废水经过纳米催化电解处理后的指标)。
表 9
序号 项目 单位 测定值 序号 项目 单位 测定值
1 CODCr mg/l 165 4 BOD5 mg/l 10
2 SS mg/l 22 5 色度 120
3 氨氮 mg/l 2.9 6 pH 9.3
表 10
序号 项目 单位 测定值 序号 项目 单位 测定值
1 CODCr mg/l 108 4 BOD5 mg/l 93
2 SS mg/l 55 5 色度 8
3 氨氮 mg/l 1.2 6 pH 9.3
工业实用性
采用本发明纳米催化电解絮凝装置对水进行净化处理,加入絮凝剂和气浮剂等化学物质只有传统工艺的三分之一,不仅节省水处理成本,而且大幅度降低物料消耗并且不产生二次污染;加入絮凝剂和气浮剂等化学物质只有传统工艺的三分之一,污泥只有传统技术的三分之一,大幅度降低污泥排放,减少固体废物处理成本;纳米催化电解可以降解生化难以降解的大分子物质,改善后续的A/O条件,提高A/O效果。因此本发明具备良好的工业实用性。
序列表自由内容

Claims (10)

  1. 一种纳米催化电解絮凝装置,其特征在于设有壳体,在壳体底部设有废水进水口,所述废水进水口通过管道与进水管道连接,在壳体内设有浮渣挡板和挡水板,浮渣挡板与壳体内一侧构成排水室,浮渣挡板的底部与壳体底部留有间隙,排水室设有排水口,挡水板与壳体内另一侧构成排渣室,挡水板顶部与壳体顶部留有间隙,排渣室设排渣口;在壳体顶部靠排渣口一端设有排氢口,在浮渣挡板与挡水板之间设有至少1个电解槽,电解槽的底部固定在壳体内底部,电解槽的顶部敞开并与壳体顶部留有间隙,电解槽内安装有电极,电极包括阳极和阴极,所述阳极与直流电源的阳极联接,所述阴极与直流电源的阴极联接;在电解槽上方的壳体内构成气液分离室,排污口设置在壳体底部,位于挡水板与其相邻电解槽之间。
  2. 如权利要求1所述的一种纳米催化电解絮凝装置,其特征在于所述壳体设有内层和外层,内层为工程塑料内层,外层为钢板外层。
  3. 如权利要求1所述的一种纳米催化电解絮凝装置,其特征在于所述电解槽为圆柱体电解槽、正方体电解槽或长方体电解槽。
  4. 如权利要求1所述的一种纳米催化电解絮凝装置,其特征在于所述电解槽顶部敞开并与壳体顶部留有1/5~1/4高度的间隙。
  5. 如权利要求1所述的一种纳米催化电解絮凝装置,其特征在于所述挡水板顶部与壳体顶部留有比电解槽高出30~50mm的间隙。
  6. 如权利要求1所述的一种纳米催化电解絮凝装置,其特征在于所述阳极采用表面覆盖有晶粒为10~35nm的金属氧化物涂层的钛基板阳极,所述阳极为平板状阳极、圆弧状阳极、圆筒状阳极或网状阳极。
  7. 如权利要求1所述的一种纳米催化电解絮凝装置,其特征在于所述阳极为表面覆盖有晶粒金属氧化物涂层的钛基板阳极,所述阴极为钛阴极、铁阴极、铝阴极、不锈钢阴极、锌阴极、铜阴极、镍阴极、铅阴极或石墨阴极,所述阴极为圆弧状阴极、圆筒状阴极或网状阴极。
  8. 如权利要求1所述的一种纳米催化电解絮凝装置,其特征在于所述出水口设置在排水室的高度的3/4~4/5处。
  9. 如权利要求1所述的一种纳米催化电解絮凝装置,其特征在于所述阳极与阴极间的工作电压为2~8V,电流密度为10~300mA/cm2
  10. 如权利要求9所述的一种纳米催化电解絮凝装置,其特征在于阳极与阴极间的工作电压为3~6V,电流密度为150~230mA/cm2
PCT/CN2011/076791 2010-12-30 2011-07-03 一种纳米催化电解絮凝装置 WO2012088867A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20110853570 EP2660206A4 (en) 2010-12-30 2011-07-03 NANOCATALYTIC ELECTROLYSIS AND FLOCCULATION APPARATUS
US13/992,756 US20130264197A1 (en) 2010-12-30 2011-07-03 Nanocatalytic electrolysis and flocculation apparatus
IN1220MUN2013 IN2013MN01220A (zh) 2010-12-30 2013-06-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010614864.4 2010-12-30
CN2010106148644A CN102010038B (zh) 2010-12-30 2010-12-30 一种纳米催化电解絮凝装置

Publications (1)

Publication Number Publication Date
WO2012088867A1 true WO2012088867A1 (zh) 2012-07-05

Family

ID=43840397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076791 WO2012088867A1 (zh) 2010-12-30 2011-07-03 一种纳米催化电解絮凝装置

Country Status (5)

Country Link
US (1) US20130264197A1 (zh)
EP (1) EP2660206A4 (zh)
CN (1) CN102010038B (zh)
IN (1) IN2013MN01220A (zh)
WO (1) WO2012088867A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107129082A (zh) * 2017-07-09 2017-09-05 北京航天环境工程有限公司 一种船舶湿法烟气脱硫洗涤水处理系统及方法
US10294130B2 (en) 2015-10-27 2019-05-21 Oy Elflot Ltd Construction of devices for purification and disinfection of waste water with electrical current
CN110844980A (zh) * 2019-12-19 2020-02-28 锦科绿色科技(苏州)有限公司 蓝藻、黑臭水体与工农业污水的铁碳纳米电催化治理方法和设备

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102010038B (zh) * 2010-12-30 2012-07-04 波鹰(厦门)科技有限公司 一种纳米催化电解絮凝装置
CN102260013A (zh) * 2011-05-19 2011-11-30 波鹰(厦门)科技有限公司 一种基于电解和双膜技术的再生水制造装置及其方法
CN102276117A (zh) * 2011-07-21 2011-12-14 波鹰(厦门)科技有限公司 垃圾渗滤液的处理装置及其处理方法
CN102344227B (zh) * 2011-08-05 2013-06-12 波鹰(厦门)科技有限公司 一种发制品废水循环利用装置及其处理方法
CN102633391A (zh) * 2012-04-18 2012-08-15 波鹰(厦门)科技有限公司 一种富营养化河流净化方法及其净化装置
CN102633395B (zh) * 2012-04-18 2014-11-19 波鹰(厦门)科技有限公司 富营养化河流水质净化方法
CN102627377B (zh) * 2012-04-18 2014-08-06 波鹰(厦门)科技有限公司 重度富营养化河水净化方法及其净化装置
CN102633324B (zh) * 2012-04-19 2013-10-16 波鹰(厦门)科技有限公司 具有膜过滤功能的电解装置
CN102633325B (zh) * 2012-04-19 2013-06-26 波鹰(厦门)科技有限公司 一种新型纳米催化电解装置
CN104355368A (zh) * 2014-11-05 2015-02-18 山东安志优水环保工程有限公司 一种油田回注水处理装置
CN105417644A (zh) * 2015-12-16 2016-03-23 无锡吉进环保科技有限公司 一种改进型电离式污水处理池
CN105565552A (zh) * 2015-12-16 2016-05-11 无锡吉进环保科技有限公司 一种电离式污水处理池
CN106800356A (zh) * 2016-12-22 2017-06-06 波鹰(厦门)科技有限公司 一种基于生化与电解技术的污水深度处理再生利用装置
CN106915802B (zh) * 2017-04-12 2020-03-10 哈尔滨工业大学 难降解有机废水处理的一体式电化学反应装置及处理方法
CN108686838B (zh) * 2018-05-16 2020-01-10 西南科技大学 一种纳米气泡发生器
CN109019788A (zh) * 2018-08-30 2018-12-18 福建安冠环境科技有限公司 一种混合电化学废水处理装置
CN109607708A (zh) * 2018-11-30 2019-04-12 江门市邑凯环保服务有限公司 一种含重金属废水的电絮凝处理方法及电絮凝装置
NL2022919B1 (en) * 2019-04-10 2020-10-20 Stichting Wetsus European Centre Of Excellence For Sustainable Water Tech Method, device and wastewater treatment system for phosphorus, such as phosphate, removal from a feed solution
CN113045143A (zh) * 2021-04-20 2021-06-29 厦门和健卫生技术服务有限公司 一种废水的处理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10151466A (ja) * 1996-11-26 1998-06-09 Matsushita Electric Ind Co Ltd 排水の浄化方法および洗濯排水処理装置
CN1283595A (zh) 2000-07-10 2001-02-14 陈启松 催化微电解装置
JP2004237273A (ja) * 2003-02-06 2004-08-26 Getsukou Takahashi 電気分解式汚水処理装置
CN2848834Y (zh) * 2005-05-24 2006-12-20 武汉大学 一种处理有机废水的装置
CN201309849Y (zh) * 2008-11-12 2009-09-16 东莞市沃杰森水处理科技有限公司 处理废水用电凝装置
CN101544415A (zh) 2009-03-20 2009-09-30 浙江工业大学 膨化床电解装置及其用于水相有机物分解的处理工艺
CN102010038A (zh) * 2010-12-30 2011-04-13 波鹰(厦门)科技有限公司 一种纳米催化电解絮凝装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA863926A (en) * 1967-10-13 1971-02-16 Chemech Engineering Ltd. Cell construction
US3756933A (en) * 1971-08-25 1973-09-04 B Greenberg Method of purifying sewage efluent and apparatus therefor
AT333674B (de) * 1975-02-18 1976-12-10 Voest Ag Verfahren und vorrichtung zum reinigen von abwassern durch elektrolyse
WO2004050562A1 (fr) * 2002-11-29 2004-06-17 Les Technologies Elcotech Inc. Appareil et procédé de traitement des eaux usées par electroflottation et/ou electrocoagulation
ITMI20040408A1 (it) * 2004-03-04 2004-06-04 De Nora Elettrodi Spa Cella per processi elettrochimici
SI1945576T1 (sl) * 2005-10-28 2013-02-28 Apr Nanotechnologies S.A. Naprava, ki obsega elektrodo z nanooblogo, za pripravo visoko stabilne vodne raztopine in postopki za izdelavo te vodne raztopine
CN101147854B (zh) * 2007-07-23 2010-06-16 南京工业大学 连续铁碳微电解流化床设备
US8449737B2 (en) * 2008-09-13 2013-05-28 David Thomas Richardson Hydrogen and oxygen generator having semi-isolated series cell construction
CN201990524U (zh) * 2010-12-30 2011-09-28 波鹰(厦门)科技有限公司 纳米催化电解絮凝装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10151466A (ja) * 1996-11-26 1998-06-09 Matsushita Electric Ind Co Ltd 排水の浄化方法および洗濯排水処理装置
CN1283595A (zh) 2000-07-10 2001-02-14 陈启松 催化微电解装置
JP2004237273A (ja) * 2003-02-06 2004-08-26 Getsukou Takahashi 電気分解式汚水処理装置
CN2848834Y (zh) * 2005-05-24 2006-12-20 武汉大学 一种处理有机废水的装置
CN201309849Y (zh) * 2008-11-12 2009-09-16 东莞市沃杰森水处理科技有限公司 处理废水用电凝装置
CN101544415A (zh) 2009-03-20 2009-09-30 浙江工业大学 膨化床电解装置及其用于水相有机物分解的处理工艺
CN102010038A (zh) * 2010-12-30 2011-04-13 波鹰(厦门)科技有限公司 一种纳米催化电解絮凝装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2660206A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10294130B2 (en) 2015-10-27 2019-05-21 Oy Elflot Ltd Construction of devices for purification and disinfection of waste water with electrical current
CN107129082A (zh) * 2017-07-09 2017-09-05 北京航天环境工程有限公司 一种船舶湿法烟气脱硫洗涤水处理系统及方法
CN110844980A (zh) * 2019-12-19 2020-02-28 锦科绿色科技(苏州)有限公司 蓝藻、黑臭水体与工农业污水的铁碳纳米电催化治理方法和设备

Also Published As

Publication number Publication date
EP2660206A4 (en) 2015-04-22
CN102010038B (zh) 2012-07-04
IN2013MN01220A (zh) 2015-06-05
EP2660206A1 (en) 2013-11-06
CN102010038A (zh) 2011-04-13
US20130264197A1 (en) 2013-10-10

Similar Documents

Publication Publication Date Title
WO2012088867A1 (zh) 一种纳米催化电解絮凝装置
WO2013156002A1 (zh) 一种纳米催化电解絮凝气浮装置
WO2013163963A1 (zh) 一种污水处理及再生循环利用装置及其方法
WO2013010388A1 (zh) 垃圾渗滤液的处理装置及其处理方法
CN102701496B (zh) 一种用于处理高浓度难降解有机废水的工艺
WO2012083674A1 (zh) 一种制革废水处理循环利用装置及其方法
WO2012055263A1 (zh) 基于纳米催化电解技术和膜技术的制革废水处理回用装置及方法
CN106186456B (zh) 一种高浓度、难降解有机废水的电化学综合处理工艺
WO2013156003A1 (zh) 一种新型纳米催化电解装置
WO2012083673A1 (zh) 一种印染废水处理循环利用装置及其方法
CN106554126B (zh) 一种反渗透浓水深度达标处理方法及系统
WO2012126316A2 (zh) 基于电解和mbr技术的污水循环利用装置及其方法
WO2012155607A1 (zh) 一种基于电解和双膜技术的再生水制造装置及其方法
WO2012171365A1 (zh) 基于电化学和电渗析技术的造纸废水循环利用装置及方法
KR20020059767A (ko) 물정화장치 및 물정화방법
CN102249501B (zh) 一种发制品废水的处理装置及其处理方法
CN110894125A (zh) N-甲基吡咯烷酮回收的污水处理工艺
KR101221565B1 (ko) 전기응집을 이용한 폐수처리장치
CN108409003B (zh) Pcb废水铜回收后含盐有机废水的处理方法及系统
CN113371895A (zh) 油气田采出水资源化处理的工艺方法及系统
KR100372849B1 (ko) 응집 및 전해원리를 이용한 고도 폐수처리장치
CN111646604A (zh) 一种难降解有机废水的处理方法和装置
CN107216006B (zh) 一种皮革废水处理系统及方法
KR20020018572A (ko) 순환와류방식을 이용한 하폐수 고도 처리 장치
KR20010068172A (ko) 전기 분해를 이용한 펜턴 산화 처리의 폐수 처리 장치 및공법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853570

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13992756

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011853570

Country of ref document: EP