WO2012083536A1 - 超支化型聚羧酸类共聚物水泥分散剂的制备方法 - Google Patents

超支化型聚羧酸类共聚物水泥分散剂的制备方法 Download PDF

Info

Publication number
WO2012083536A1
WO2012083536A1 PCT/CN2010/080133 CN2010080133W WO2012083536A1 WO 2012083536 A1 WO2012083536 A1 WO 2012083536A1 CN 2010080133 W CN2010080133 W CN 2010080133W WO 2012083536 A1 WO2012083536 A1 WO 2012083536A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
reaction
compound
polycarboxylic acid
cement dispersant
Prior art date
Application number
PCT/CN2010/080133
Other languages
English (en)
French (fr)
Inventor
缪昌文
乔敏
冉千平
刘加平
周栋梁
杨勇
毛永琳
Original Assignee
江苏博特新材料有限公司
江苏苏博特新材料股份有限公司
江苏省建筑科学研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏博特新材料有限公司, 江苏苏博特新材料股份有限公司, 江苏省建筑科学研究院有限公司 filed Critical 江苏博特新材料有限公司
Priority to JP2013545001A priority Critical patent/JP5594708B2/ja
Priority to US13/807,723 priority patent/US9175122B2/en
Priority to PCT/CN2010/080133 priority patent/WO2012083536A1/zh
Priority to EP10861094.0A priority patent/EP2657264B1/en
Publication of WO2012083536A1 publication Critical patent/WO2012083536A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F228/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur
    • C08F228/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur by a bond to sulfur
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/16Sulfur-containing compounds
    • C04B24/161Macromolecular compounds comprising sulfonate or sulfate groups
    • C04B24/163Macromolecular compounds comprising sulfonate or sulfate groups obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/165Macromolecular compounds comprising sulfonate or sulfate groups obtained by reactions only involving carbon-to-carbon unsaturated bonds containing polyether side chains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2641Polyacrylates; Polymethacrylates
    • C04B24/2647Polyacrylates; Polymethacrylates containing polyether side chains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/40Surface-active agents, dispersants
    • C04B2103/408Dispersants

Definitions

  • the invention relates to a preparation method of a hyperbranched polycarboxylic acid copolymer cement dispersant, belonging to the technical field of concrete admixtures. Background technique
  • the cement dispersant (water reducing agent) has a function of adsorbing on the cement particles to suppress aggregation of the cement particles and to improve the dispersibility of the concrete during use.
  • cement dispersion There are many substances used for cement dispersion, including lignosulfonate, naphthalenesulfonate/formaldehyde polycondensate, phenol/p-aminobenzenesulfonic acid/formaldehyde polycondensate, melamine sulfonate/formaldehyde polycondensate, polycarboxylic acid. Comb-like copolymers and the like.
  • the former cement dispersants mainly use sulfonic acid groups as adsorption groups, lacking effective side chains providing steric hindrance, single molecular structure, poor adjustability, limited dispersion of cement, and blending. High volume and low water reduction rate.
  • the polycarboxylic acid comb copolymer has the adsorption provided by the main chain rich in carboxyl group adsorption groups, and has the steric hindrance provided by the hydrophilic side chain, which greatly improves the dispersion of cement. .
  • polycarboxylate comb copolymers have greatly improved the comonomer and copolymerization technology, but still can not meet the requirements of modern construction engineering for high-performance cement dispersants.
  • the development of new structure polycarboxylate copolymers has become a direction to improve the performance of polycarboxylate cement dispersants, such as star structures, hyperbranched structures, dendritic structures, etc. These new structures greatly increase the molecular structure of the polymer.
  • the number of adsorbing groups while taking into account the steric hindrance provided by the hydrophilic side chains in the comb structure, thus increasing the dispersion of cement.
  • Patent CN101580353 reports a hyperbranched polycarboxylate superplasticizer and a preparation method thereof.
  • the preparation method is divided into two steps: First step, using hydrazine, hydrazine-dimethylformamide as a solvent, acrylate, A Sodium propylene sulfonate and allyl polyoxyethylene ether are copolymerized into a polymer backbone.
  • azobiscyanovaleric acid is used as an initiator, and a carboxyl group is introduced at the end of the polymer chain.
  • the second step the second step is utilized.
  • the invention provides a preparation method of a hyperbranched polycarboxylic acid copolymer cement dispersant, which has the advantages of low dosage, good dispersibility, high water reduction rate and small slump loss. The advantages.
  • the researchers of the present invention have found through a large number of experiments that the macromonomer containing a mercapto group can act as a chain transfer agent while participating in the copolymerization, and the chain transfer effect causes cross-linking between different polycarboxylic acid comb-shaped chains, thereby forming Hyperbranched structure.
  • the hyperbranched structure of the polycarboxylic acid copolymer has a stronger adsorption capacity on the surface of the cement particles than the polycarboxylic acid comb copolymer, providing a better dispersion effect.
  • the inventors of the present invention have found that the use of an RCI species containing both an ester group and a mercapto group as a comonomer is formed.
  • the ester group in the hyperbranched structure is easily hydrolyzed under alkaline conditions and slowly released into the water-cement system.
  • the function of the lower molecular weight copolymer complements the dispersant consumed by the hydration of the cement, so that the dispersant in the system is always maintained in the critical micelle state, so that the slump does not lose or the loss is small.
  • the preparation method of the hyperbranched polycarboxylic acid copolymer cement dispersant of the present invention the radical copolymerization reaction of the monomers A, B and C in an aqueous medium, the monomer A, the monomer B and the monomer C
  • Monomer A is represented by the general formula (1): (1) where is a hydrogen atom or a methyl group; X CK CH 2 0, CH 2 CH 2 0 ; m is the average addition mole number of ethylene oxide, which is an integer from 5 to 200;
  • Monomer B is represented by the general formula (2):
  • R 2 represents H or COOM
  • R 3 represents H or CH 3
  • M represents H, Na, K or NH 4
  • monomer C is represented by the formula (3):
  • R4 is a hydrogen atom or a methyl group
  • X 2 0, CH 2 0, CH 2 CH 2 0
  • Y CH 2 , CH 2 CH 2 , CH (CH 3 ), CH 2 CH 2 CH 2 , CH (CH 3 ) CH 2 , C (CH 3 ) 2
  • n is the average addition mole number of ethylene oxide, which is 5 ⁇ An integer of 200.
  • Monomer c is a macromonomer containing a mercapto group. While participating in the polymerization, the mercapto group in the molecular structure acts as a chain transfer to the polymerization reaction, and the chain transfer causes the mercapto group side of a comb polymer chain. The chain is attached to the end of the main chain of another comb polymer chain, and this cross-linking occurs multiple times to form a hyperbranched structure.
  • the monomer A mainly provides a steric hindrance effect, thereby imparting excellent dispersibility and slump retention properties to the hyperbranched copolymer.
  • the unsaturated macromonomer represented by the formula (1) includes: vinyl polyethylene glycol ether, allyl polyethylene glycol ether, methallyl polyglycol ether, 3-methyl-3-butyl En-1-ol-based polyglycol ether. These monomers are either commercially available or can be prepared according to the methods disclosed in the published patents or literature. These monomers are used singly or in combination of one or more of them in any ratio.
  • monomer B mainly provides an adsorption group.
  • the monomer represented by the formula (2) includes: acrylic acid, methacrylic acid, maleic acid or acrylic acid, methacrylic acid, sodium salt, potassium salt or ammonium salt of maleic acid. These monomers are commercially available and used alone or in a mixture of one or more of any ratio.
  • the monomer C is a novel monomer compound, which is a macromonomer containing a mercapto group, and while participating in the polymerization, the mercapto group in the molecular structure acts as a chain transfer to the polymerization reaction. Chain transfer causes cross-linking between different polymer chains to form a hyperbranched structure.
  • the monomer C represented by the formula (3) can be produced by esterification of the compound D represented by the formula (4) and the compound E represented by the formula (5).
  • Compound D is represented by (4):
  • R4 is a hydrogen atom or a methyl group
  • X 2 0, CH 2 0, CH 2 CH 2 0
  • n is an average addition mole number of ethylene oxide, which is an integer of 5 to 200 ;
  • Compound E is represented by the general formula (5):
  • the compound D represented by the formula (4) is selected from the group consisting of vinyl polyethylene glycol ether, allyl polyethylene glycol ether, methallyl polyglycol ether, 3-methyl-3- One of the buten-1-ol based polyethylene glycol ethers. These compounds are either commercially available or can be prepared according to the methods disclosed in the published patents or literature. In the present invention, monomer C is obtained by esterification of compound D and compound E.
  • esterification reaction process has been reported in the prior art. Such esterification reactions are generally known to those skilled in the art.
  • the preparation method can be obtained by esterification reaction of the compound D and the compound E under a small amount of a solvent medium, an acid catalyst and a little polymerization inhibitor.
  • the polymerization inhibitor is p-hydroxyanisole, hydroquinone or phenothiazine, and the polymerization inhibitor is used in the reaction system in an amount of 0.02 to 0.1% by weight of the compound D; the catalyst is concentrated sulfuric acid or p-toluenesulfonic acid or solid super Strong acid, the amount of the catalyst in the reaction system is 2 to 5% of the total weight of the compound D and the compound E.
  • the esterification reaction temperature is controlled at 100 to 120 ° C for 12 to 30 hours.
  • the polymerization reaction of the present invention is carried out in an aqueous system using a redox system as a polymerization initiator, and the redox system oxidant is hydrogen peroxide, and the amount thereof is calculated as 100% concentration of hydrogen peroxide in the monomer A+B+C.
  • the total mole number is 1 ⁇ 4; the reducing agent of the redox system is selected from alkali metal sulfite, L-ascorbic acid or sodium formaldehyde sulfoxylate, and the amount is 0.5 ⁇ 2% of the total moles of monomer A+B+C.
  • an aqueous solution of the oxidizing agent in the monomer A and the redox initiating system is added to the reaction vessel before the start of the polymerization.
  • the aqueous solution of the reducing agent in the monomer B, the monomer C and the redox initiation system is added to the reaction vessel by dropwise addition after the start of the reaction.
  • the control is carried out at a higher polymerization concentration of 30 to 60% and a lower polymerization temperature of 30 to 60 ° C, and an aqueous solution of a reducing agent in the monomer B, the monomer C and the redox initiation system.
  • the drip time is controlled in 1 ⁇ 4 hours.
  • the reaction time was controlled for 2 to 4 hours.
  • a basic compound is added to the reactant to adjust the pH to 6.0 to 7.0 to improve the storage stability of the product.
  • the basic compound is selected from the group consisting of alkali metal hydroxides, ammonia water, organic amines or a mixture of one or more.
  • the weight average molecular weight of the hyperbranched polycarboxylic acid copolymer cement dispersant is controlled to 50,000 140,000. If the molecular weight is too small or too large, its ability to disperse or disperse the cement will decrease.
  • the comb copolymer cement dispersant of the present invention When used, the comb copolymer cement dispersant of the present invention is conventionally added in an amount of 0.08% to 0.50% of the total gum. If the amount added is less than 0.08%, the dispersion property is unsatisfactory. On the contrary, if the amount added exceeds 0.5%, the excessive addition proves to be only an economic waste because it does not bring about a corresponding increase in effect.
  • the comb copolymer cement dispersant of the present invention may also be combined with at least one selected from the group consisting of sulfamic acid-based water reducing agents, lignin-based ordinary water reducing agents, and existing polycarboxylates. The liquid phase is mixed.
  • an air entraining agent a swelling agent, a retarder, an early strength agent, a tackifier, a shrinkage reducing agent, an antifoaming agent and the like may be added.
  • the hyperbranched polycarboxylic acid copolymer cement dispersant prepared by the method of the invention has good dispersibility to cement at a lower dosage, high water reduction rate and good slump retention ability.
  • the molecular weight of all polymers was determined using aqueous gel permeation chromatography (GPC).
  • the experimental conditions are as follows:
  • the cement used is Onoda 52.5RR II cement
  • the stone is continuous gravel with particle size of 5 ⁇ 20 mm.
  • the cement paste fluidity test was carried out according to the GB/T8077-2000 standard. The water addition amount was 87 g. After stirring for 3 minutes, the cement paste fluidity was measured on the flat glass.
  • the slump and slump loss shall be implemented in accordance with the relevant provisions of JC473-2001 Concrete Pumping Agent.
  • esterification Example C-2 In order to remove the E-1 which is not esterified, the esterified material is first neutralized with a saturated sodium carbonate solution to pH ⁇ 8, E-1 is converted into a salt insoluble in ethyl acetate, and then the esterified product is extracted with ethyl acetate to collect organic After the phase, ethyl acetate was distilled off under reduced pressure, and the obtained solid was dried at 50 ° C for 10 hr in a vacuum oven to obtain a monomer. Esterification Example C-2
  • the esterified material is first neutralized with a saturated sodium carbonate solution to pH ⁇ 8, E-2 is converted into a salt insoluble in ethyl acetate, and then the esterified product is extracted with ethyl acetate to collect organic After the phases, ethyl acetate was distilled off under reduced pressure, and the obtained solid was dried at 50 ° C for 10 hr in a vacuum oven to obtain a monomer C-2.
  • the esterified material is first neutralized with a saturated sodium carbonate solution to pH ⁇ 8, E-3 is converted into a salt insoluble in ethyl acetate, and then the esterified product is extracted with ethyl acetate to collect organic After the phases, ethyl acetate was distilled off under reduced pressure, and the obtained solid was dried at 50 ° C for 10 hr in a vacuum oven to obtain a monomer C-3.
  • Table 2 Synthesis Example and Comparative Example Monomer Code Allyl polyglycol ether
  • the reaction was cooled to room temperature and the reaction was neutralized by adding 33.3 g of 30% NaOH solution to pH.
  • the polymer was composed of an aqueous polymer solution having a weight average molecular weight of 80,600 and a polymer weight concentration of 39.8%.
  • the reaction was cooled to room temperature and the reaction was neutralized by adding 58.4 g of 30% NaOH solution to pH.
  • the polymer was composed of an aqueous polymer solution having a weight average molecular weight of 90,500 and a polymer concentration of 49.8% by weight.
  • the reaction was cooled to room temperature and the reaction was neutralized with a solution of 13.0 g of 30% NaOH and 16.7 g of triethanolamine to pH.
  • the polymer was composed of an aqueous polymer solution having a weight average molecular weight of 108000 and a polymer concentration of 49.5% by weight.
  • the reaction was cooled to room temperature and the reaction was neutralized with a solution of 21.6 g of 30% NaOH to pH.
  • the polymer was composed of an aqueous polymer solution having a weight average molecular weight of 135,000 and a polymer concentration of 49.3% by weight. Comparative example 1
  • This comparative example is directed to Synthesis Example 2, replacing the monomer C with an equimolar amount of 3-mercaptopropionic acid: 100 g of A-2 (0.05 mol), 0.46 g of a glass flask equipped with a thermometer, a stirrer, and a nitrogen inlet tube. Hydrogen peroxide (0.004 mol) and 80.0 g of water were heated to 45 ° C under nitrogen, and dissolved by stirring. A mixture containing 10.8 g of Bl (0.15 mol), 0.77 g of 3-mercaptopropionic acid (0.0073 mol), 0.17 g of L-ascorbic acid (0.01 mol) and 40.0 g of water was added dropwise, and the dropwise addition time was 2 hours.
  • the reaction was kept at this temperature for 2 hours.
  • the reaction was cooled to room temperature and the reaction was neutralized with a solution of 18.0 g 30% NaOH to pH 7.
  • the polymer was composed of an aqueous polymer solution having a weight average molecular weight of 32,000 and a polymer concentration of 49.5% by weight. Comparative example 2
  • This comparative example is directed to Synthesis Example 2, changing the molar ratio of monomer C to all monomers to be 0.01 ( ⁇ 0.02): 100 g of A-2 (0.05 mol) was placed in a glass flask equipped with a thermometer, a stirrer, and a nitrogen inlet tube. ), 0.46 g of 30% hydrogen peroxide (0.004 mol) and 80.0 g of water were heated to 45 ° C under nitrogen, and stirred to dissolve. A mixture containing 10.8 g of Bl (0.15 mol), 4.2 g of C-2 (0.002 mol), 0.17 g of L-ascorbic acid (0.01 mol) and 40.0 g of water was added dropwise, and the dropping time was 2 hours.
  • the reaction was kept at this temperature for 2 hours.
  • the reaction was cooled to room temperature and the reaction was neutralized by adding 18.0 g of 30% NaOH solution to pH.
  • the polymer is water soluble td from a polymer having a weight average molecular weight of 58,000.
  • Liquid composition polymer weight concentration is 47.2%
  • the reaction was kept at this temperature for 2 hours.
  • the reaction was cooled to room temperature and the reaction was neutralized to pH 7 with 18.0 g of 30% NaOH.
  • the polymer consists of an aqueous polymer solution having a weight average molecular weight of 178,000 and a polymer concentration of 48.7% by weight.
  • Example 1 A-1 Bl Cl 2 0.026 47.5 51000 Example 2 A-2 Bl C-2 3 0.035 49.2 88000 Example 3 A-3 Bl C-3 3 0.020 34.7 101000 Example 4 A-2 B-2 C -2 5 0.020 39.8 80600 Example 5 A-2 B-2 Cl 10 0.020 49.8 90500 Example 6 A-2 B-3 C-3 3 0.020 57.9 82500 Example 7 A-1, A-2 Bl C-2 3 0.041 49.5 108000 Example 8 A-1, A-3 C-2 3 0.077 49.3 135000 Comparative Example 1 A-2 Bl 1 3 1 49.5 32000 Comparative Example 2 A-2 Bl C-2 3 0.010 47.2 58000 Comparative Example 3 A-2 Bl C-2 3 0.150 48.7 178000 Application Embodiment Application Example 1
  • the cement paste fluidity test was carried out according to the GB/T8077-2000 standard, 300 g of cement, 87 g of water added, and stirred.
  • the data in Table 4 shows that the hyperbranched polycarboxylic acid copolymer prepared by the present invention has a good dispersibility and dispersion retention ability for cement at a lower dosage.
  • Example 2 By comparing Example 2 and Comparative Examples 2 and 3, it can be seen that when the ratio of monomer C is too low, an effective hyperbranched structure cannot be formed, and at this time, the liquidity retention ability of the slurry is poor; when the ratio of monomer C is too high The molecular weight of the hyperbranched copolymer is too large, which affects its adsorption on the surface of the cement particles. Therefore, a higher dosage is required to achieve the same initial slurry fluidity as in Example 2, but it still has a good fluidity. Maintain ability. From the above comparison, it was found that the hyperbranched polycarboxylic acid copolymer cement dispersant prepared by the present invention can obtain better cement dispersibility at a lower dosage and has better dispersion retention properties.
  • Example 1 0.15 225 235
  • Example 2 0.15 255 275
  • Example 3 0.15 235 295
  • Example 4 0.15 240 260
  • Example 5 0.15 245 275
  • Example 6 0.15 235 290
  • Example 7 0.15 265 280
  • Example 8 0.15 230 250 Comparative Example 1 0.20 255 205 Comparative Example 2 0.18 250 215 Comparative Example 3 0.30 255 280
  • This application example selects the hyperbranched polymer synthesized in Example 2 as an example to investigate the high temperature retention properties of the hyperbranched polymer. It is relatively easy to maintain the slump of high fluidity concrete, while the medium and low flow concrete has high requirements for slump retention performance. Therefore, it is of great practical significance to investigate the preservation performance of medium and low flow concrete at high temperature. .
  • the test results are shown in Table 5.
  • Example 2 0.15 14.2 15.5 14.8 Comparative Example 1 0.20 14.5 9.2 6.5 Comparative Example 2 0.18 14.8 10.9 8.6 Comparative Example 3 0.30 14.2 15.5 16.0 Experimental results show that the polymer of the polymer prepared in Comparative Example 1 was prolonged with time. The slump loss is very high in high temperature environment, and it has lost more than 50% in 60 minutes. The concrete prepared by the polymer obtained in Comparative Example 2 had a large loss of slump in a high temperature environment with a prolonged time, and lost more than 40% in 60 minutes. The polymer of the polymer prepared in Comparative Example 3 has a higher slump retention ability in the high temperature environment over time, but the required amount of the concrete is higher.
  • the concrete prepared by using the polymer obtained in Example 2 has a good slump retention ability in a high temperature environment and a low blending amount. It can be seen that the hyperbranched polymer produced by the present invention allows the disposed concrete to have a longer slump retention capability at a lower dosage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

超支化型聚羧酸类共聚物水泥分散剂的制备方法 技术领域
本发明涉及一种超支化型聚羧酸类共聚物水泥分散剂的制备方法, 属混凝土外加剂 技术领域。 背景技术
水泥分散剂 (减水剂) 具有吸附在水泥粒子上从而抑制水泥粒子凝聚、 提高混凝土 在使用时的分散性的作用。 用作水泥分散作用的物质有很多, 包括木质素磺酸盐、 萘磺 酸盐 /甲醛縮聚物、 苯酚 /对氨基苯磺酸 /甲醛縮聚物、 三聚氰胺磺酸盐 /甲醛縮聚物、 聚羧 酸类梳形共聚物等等。 从结构特点上看, 前几种水泥分散剂主要以磺酸基为吸附基团, 缺乏有效的提供空间位阻作用的侧链, 分子结构单一, 可调性差, 对水泥的分散作用有 限, 掺量高并且减水率低。 聚羧酸类梳形共聚物具有富含羧基吸附基团的主链提供的吸 附作用, 又具有亲水性较好的侧链提供的空间位阻作用, 较大的提高了对水泥的分散作 用。 但是随着混凝土向高性能化的发展, 聚羧酸类梳形共聚物虽然在共聚单体和共聚技 术方面经过了很大的改良,但是仍然满足不了现代建筑工程对高性能水泥分散剂的要求。 开发新型结构的聚羧酸类共聚物成为提高聚羧酸类水泥分散剂性能的一个方向, 比如星 型结构、 超支化结构、 树枝型结构等等, 这些新型结构大大增加了聚合物分子结构中的 吸附基团数目, 同时兼顾了梳形结构中的亲水性侧链提供的位阻作用, 因此提高了对水 泥的分散作用。
专利 CN101580353报道了一种超支化聚羧酸盐高效减水剂及其制备方法, 该制备方 法分为两步: 第一步, 以 Ν,Ν-二甲基甲酰胺作为溶剂, 丙烯酸酯、 甲基丙烯磺酸钠和烯 丙基聚氧乙烯醚共聚成聚合物主链, 这里使用偶氮二氰基戊酸作为引发剂, 在聚合物链 末端引入了羧基; 第二步, 依次利用乙二胺与羧基的酰胺化反应和胺基与丙烯酸中双键 的迈克尔加成反应, 在聚合主链两段接枝超支化的聚酰胺结构, 并且超支化聚酰胺结构 的末端为羧基, 大大增加了聚合物分子结构中的吸附基团。 但是这种方法仅仅只能在聚 合物链两端引入超支化结构, 并且合成步骤繁琐, 需要大量有机溶剂 Ν,Ν-二甲基甲酰胺 对环境造成了污染, 部分原料及引发剂价格昂贵, 成本较高。 因此开发一种简单、 低成 本的具有优异性能的超支化型聚羧酸共聚物水泥分散剂及其制备方法势在必行。 发明内容
针对上述存在的不足, 本发明提供一种超支化型聚羧酸类共聚物水泥分散剂的制备 方法, 生产出的产品具有掺量低、 分散性好、 减水率高、 坍落度损失小的优点。
本发明的研究者经过大量的实验发现含巯基的大分子单体可以在参与共聚的同时起 到链转移剂的作用, 链转移作用使得不同聚羧酸梳形链之间产生交联, 进而形成超支化 型结构。 这种超支化型结构的聚羧酸共聚物相对聚羧酸梳形共聚物在水泥颗粒表面具有 更强的吸附能力, 提供更好的分散效果。
本发明的研究者发现使用一 RCI种既含酯基又含巯基的大分子单体作为共聚单体, 形成
2 H
的超支化型结构中的酯基易在碱性条件下逐渐水解, 缓慢向水 -水泥体系中释放出具有分
C RCOIII
散功能的较低分子量共聚物,补充由于水泥水化消耗的分散剂, 使体系中的分散剂始终维 持在临界胶束状态, 使坍落度不损失或损失很小。
本发明所述超支化型聚羧酸类共聚物水泥分散剂的制备方法, 由单体 A、 B和 C在 水性介质中发生自由基共聚反应,单体 A、单体 B和单体 C 的摩尔比例满足: B/A=2~10, C/ (A+B+C) =0.02-0.08, 其中
单体 A用通式 (1 ) 表示:
Figure imgf000004_0001
( 1 ); 式中 是氢原子或甲基; X CK CH20、 CH2CH20; m为环氧乙烷的平均加成摩尔 数, 其为 5〜200的整数;
单体 B用通式 (2) 表示:
=0
(2);
式中 R2代表 H或者 COOM; R3代表 H或者 CH3; M代表 H、 Na、 K或 NH4; 单体 C用通式 (3) 表示:
Figure imgf000004_0002
式中, R4是氢原子或甲基; X2=0、 CH20、 CH2CH20; Y= CH2、 CH2CH2、 CH (CH3)、 CH2CH2CH2、 CH (CH3) CH2、 C (CH3) 2; n为环氧乙烷的平均加成摩尔数, 其为 5〜 200的整数。
本发明所述超支化型聚羧酸类共聚物水泥分散剂可能的结构用图 1来表示。 单体 c 是一种含巯基的大分子单体, 它在参与聚合的同时, 其分子结构中的巯基对聚合反应起 链转移作用, 链转移作用使得一根梳形聚合物链的含巯基侧链同另一根梳形聚合物链的 主链末端相连, 这种交联多次发生就形成超支化结构。
本发明中, 单体 A主要提供空间位阻效应, 从而赋予超支化型共聚物优异的分散性 能以及坍落度保持性能。 通式 (1 )代表的不饱和大单体包括: 乙烯基聚乙二醇醚、 烯丙 基聚乙二醇醚、 甲代烯丙基聚乙二醇醚、 3-甲基 -3-丁烯 -1-醇基聚乙二醇醚。 这些单体既 可以商购, 也可以按照公开的专利或文献所述的方法制备。 这些单体单独使用或一种以 上成份以任意比例的混合物形式使用。
本发明中, 单体 B主要提供吸附基团。 通式(2)代表的单体包括: 丙烯酸、 甲基丙 烯酸、 马来酸或丙烯酸、 甲基丙烯酸、 马来酸的钠盐、 钾盐或铵盐。 这些单体通过商购 获得, 并单独使用或者以一种以上任意比例混合物形式使用。 本发明中, 单体 C是一种新型的单体化合物, 它是一种含巯基的大分子单体, 在参 与聚合的同时, 其分子结构中的巯基对聚合反应起链转移作用, 这种链转移作用使得不 同聚合物链之间发生交联而形成超支化结构。 通式 (3) 代表的单体 C可以由通式 (4) 代表的化合物 D和通式 (5) 代表的化合物 E通过酯化反应制得。
化合物 D用通 (4) 表示:
Figure imgf000005_0001
通式 (4) 中, R4是氢原子或甲基; X2=0、 CH20、 CH2CH20; n为环氧乙烷的平均 加成摩尔数, 其为 5〜200的整数;
化合物 E用通式 (5) 表示:
0
II
HO-C— Y— SH ( 5 ) 通式 (5) 中, Y= CH2、 CH2CH2、 CH (CH3)、 CH2CH2CH2、 CH2CH (CH3) 或者 C (CH3) 2。 本发明中, 通式 (4) 代表的化合物 D选自乙烯基聚乙二醇醚、 烯丙基聚乙二醇醚、 甲代烯丙基聚乙二醇醚、 3-甲基 -3-丁烯 -1-醇基聚乙二醇醚中的一种。 这些化合物既可以 商购, 也可以按照公开的专利或文献所述的方法制备。 本发明中, 单体 C通过化合物 D和化合物 E的酯化反应制得, 这种酯化反应工艺在 现有技术中已有报道。 本技术领域熟练的技术人员普遍知悉这种酯化反应。 其制备方法 可以通过化合物 D和化合物 E在少量溶剂介质、 酸催化剂和少许阻聚剂的条件下发生酯 化反应获得。 一般地, 由化合物 D和化合物 E在催化剂和阻聚剂存在的条件下进行酯化 反应, 其中化合物 E稍稍过量以提高酯化率, 摩尔比满足 E/D=1.2~1.5, 多余的化合物 E 可以通过萃取法除去, 也可以不除去直接用于下步反应以调节聚合物分子量。 阻聚剂为 对羟基苯甲醚、对苯二酚或吩噻嗪,阻聚剂在反应体系中的用量为化合物 D重量的 0.02〜 0.1 %; 催化剂为浓硫酸或对甲苯磺酸或固体超强酸, 催化剂在反应体系中的用量占化合 物 D和化合物 E总重量的 2~5%。 酯化反应温度控制在 100〜120°C, 时间为 12〜30h。
本发明所述的聚合反应在水体系中进行, 采用氧化还原体系作为聚合引发剂, 该氧 化还原体系氧化剂采用过氧化氢, 其用量按 100%浓度过氧化氢计算占单体 A+B+C总摩 尔数的 1~4 ; 氧化还原体系的还原剂选自亚硫酸碱金属盐、 L-抗坏血酸或甲醛次硫酸 氢钠, 用量占单体 A+B+C总摩尔数的 0.5~2 %。
在实施本发明时, 聚合反应开始之前, 单体 A和氧化还原引发体系中的氧化剂的水 溶液加入到反应容器中。 单体 B、 单体 C和氧化还原引发体系中的还原剂的水溶液在反 应开始后采用滴加的方式加入到反应容器中。
在实施本发明时, 控制在较高的聚合浓度为 30~60%和较低的聚合温度 30~60°C下进 行, 单体 B、 单体 C和氧化还原引发体系中的还原剂的水溶液的滴加时间控制在 1~4小 时。 滴加完成后继续反应时间控制在 2~4小时。 聚合反应结束后, 向反应物中加入碱性 化合物调整 pH值为 6.0~7.0, 以提高产品的储存稳定性。 所述的碱性化合物选自碱金属 的氢氧化物、 氨水、 有机胺类中的一种或者一种以上的混合物。
在本发明中, 超支化型聚羧酸类共聚物水泥分散剂的重均分子量控制在 50,000 140,000。 如果分子量太小或太大, 其对水泥的分散能力或分散保持能力会下降。
使用时,本发明所述梳形共聚物水泥分散剂常规掺量在总胶材的 0.08 %〜0.50 %。如 果添加量小于 0.08 %, 那么其分散性能是不能令人满意的。 相反如果添加量超过 0.5 %, 则过量添加证明仅仅是经济上的浪费, 因为并没有带来效果上的相应增长。 当然, 本发明所述梳形共聚物水泥分散剂也可以与至少一种选自现有技术中已知氨 基磺酸系减水剂、 木质素系普通减水剂以及现有聚羧酸盐减水剂相混合。 另外, 除上面 提到的已知混凝土减水剂外, 其中也可以加入引气剂、 膨胀剂、 缓凝剂、 早强剂、 增粘 剂、 减縮剂和消泡剂等。 采用本发明方法制备的超支化型聚羧酸类共聚物水泥分散剂在较低的掺量下对水泥 有良好的分散能力, 较高的减水率和良好的坍落度保持能力。 附图说明
本发明所述超支化型聚羧酸类共聚物水泥分散剂的分子结构示意图。 具体实施方式
以下实施例更详细的描述了根据本发明的方法制备聚合产物的过程, 并且这些实施 例以说明的方式给出, 其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以 实施, 但这些实施例绝不限制本发明的范围。 凡根据本发明精神实质所作的等效变化或 修饰, 都应涵盖在本发明的保护范围之内。
本发明实施例中, 所有聚合物的分子量使用水性凝胶渗透色谱 (GPC) 进行测定。 实验条件如下:
凝胶柱: Shodex SB806+803 两根色谱柱串联
洗提液: 0.1M NaNO3溶液
流动相速度: l.O ml/min
注射: 20 μΐ 0.5%水溶液
检测器: Shodex RI-71型示差折光检测器
标准物:聚乙二醇 GPC标样(Sigma- Aldrich,分子量 1010000, 478000, 263000, 118000 44700, 18600, 6690, 1960, 628, 232)
本发明应用实施例中, 除特别说明, 所采用的水泥均为小野田 52.5R.R II水泥, 砂为 细度模数 Mx=2.6的中砂, 石子为粒径为 5〜20mm连续级配的碎石。 水泥净浆流动度测 试参照 GB/T8077-2000标准进行, 加水量为 87g, 搅拌 3分钟后在平板玻璃上测定水泥 净浆流动度。 坍落度及坍落度损失参照 JC473-2001 《混凝土泵送剂》 相关规定执行。
在本发明单体 C的酯化实施例中用到表 1所述的化合物代号: 表 1 酯化实施例化合物代号
代号 化合物名称 代号 化合物名称
烯丙基聚乙二醇醚
D-1 巯基乙酸
(分子量 500, R4=H, X2=CH20, n=ll )
3-甲基 -3-丁烯 -1-醇基聚乙二醇醚
D-2 (分子量 2000, R4= CH3, X2= CH2CH20 3-巯基丙酸
n=44)
甲代烯丙基聚乙二醇醚
D-3 (分子量 5000, R4= CH3, X2= CH20, 4-巯基丁酸
n=112)
酯化实施例
酯化实施例 C-1
在装有搅拌器和分水器的玻璃烧瓶中加入 50g D-1 (0.1 mol)、 ll.lg E-l(0.12mol), 1.5g 对甲苯磺酸、 0.05g吩噻嗪、 25g 甲苯, 在搅拌条件下, 反应温度控制在 100°C, 反应 12 小时后, 油浴温度降至 110°C, 减压蒸馏除去甲苯。 最终分水量为 1.75g, 通过酸碱滴定 的方式测定的 D-1的酯化率为 98.1 %。 为除去未被酯化的 E-1 , 先用饱和碳酸钠溶液中 和酯化料至 pH~8, E-1转化成盐不溶于乙酸乙酯, 然后用乙酸乙酯萃取酯化物, 收集有 机相后, 再减压蒸馏除去乙酸乙酯, 所得固体在真空烘箱中 50°C干燥 10h得到单体 C-l。 酯化实施例 C-2
在装有搅拌器和分水器的玻璃烧瓶中加入 200g D-2 (0.1 mol)、 13.8g E-2(0.13 mol)、 8.6g 对甲苯磺酸、 0.10g吩噻嗪、 75g 甲苯, 在搅拌条件下, 反应温度控制在 110°C, 反 应 20小时后, 油浴温度降至 110°C, 减压蒸馏除去甲苯。最终分水量为 1.72g, 通过酸碱 滴定的方式测定的 D-2的酯化率为 97.2 %。 为除去未被酯化的 E-2, 先用饱和碳酸钠溶 液中和酯化料至 pH~8, E-2转化成盐不溶于乙酸乙酯, 然后用乙酸乙酯萃取酯化物, 收 集有机相后, 再减压蒸馏除去乙酸乙酯, 所得固体在真空烘箱中 50°C干燥 10h得到单体 C-2。
酯化实施例 C-3
在装有搅拌器和分水器的玻璃烧瓶中加入 500g D-3 (0.1 mol)、 18.1g E-3(0.15 mol)、 26.0g 对甲苯磺酸、 0.10g吩噻嗪、 150g 甲苯, 在搅拌条件下, 反应温度控制在 120°C, 「 、 、、、n „。 t , , ¾ 反 HJ /」、W , 温 110°C, 压 甲 。 直 i.7Ug, 通 碱滴定的方式测定的 D-2的酯化率为 96.3 %。 为除去未被酯化的 E-2, 先用饱和碳酸钠 溶液中和酯化料至 pH~8, E-3转化成盐不溶于乙酸乙酯, 然后用乙酸乙酯萃取酯化物, 收集有机相后, 再减压蒸馏除去乙酸乙酯, 所得固体在真空烘箱中 50°C干燥 10h得到单 体 C-3。 表 2合成实施例及比较例单体代号
Figure imgf000009_0001
烯丙基聚乙二醇醚
A-1
(分子量 1000, Ri=H, Xi=CH20, m=22)
3-甲基 -3-丁烯小醇基聚乙二醇醚
A-2
(分子量 2000, Ri=CH3, Xi= CH2CH20, m=44)
甲代烯丙基聚乙二醇醚
A-3
(分子量 5000, Ri= CH3, Xi=CH20, m=112)
B-1 丙烯酸
B-2 甲基丙烯酸
B-3 马来酸
巯基乙酸和烯丙基聚乙二醇醚的酯化产物
C-1
(分子量 600, R4=H, X2=CH20, Y= CH2, n=ll )
3-巯基丙酸和 3-甲基 -3-丁烯 -1-醇基聚乙二醇醚的酷
商商商商商商自
化产物 购购购购购购制
C-2 白制
(分子量 2100, R4= CH3, X2= CH2CH20, Y=
CH2CH2, n=44)
4-巯基丁酸和甲代烯丙基聚乙二醇醚的酯化产物
C-3 (分子量 5100, R4= CH3, X2= CH20, Y= 白制
CH2CH2CH2, η=112) 合成实施例
在合成实施例和比较例中用到表 2所列的单体代号, 合成实施例和比较例所采用的 原材料及比例、 分子量、 重量浓度列入表 3。
合成实施例 1
在装有温度计、搅拌器、氮气进口管的玻璃烧瓶中加入 lOO.Og A-1 (O.lmol), 0.68g 30% 过氧化氢 (0.006mol)和 70.0 g水, 在通有氮气的条件下加热到 45°C后, 搅拌溶解。滴加含 有 14.4g B-l(0.2mol), 4.8gC-l(0.008mol), 0.26g L-抗坏血酸 (0.0015mol)和 35.0 g水的混 合液, 滴加时间为 2小时, 滴加完毕后在此温度下保温反应 2小时。 反应物冷却至室温, 加入 24.0 g 30% NaOH溶液中和反应物到 pH等于 7。该聚合物由重均分子量为 51000的 聚合物水溶液组成, 聚合物重量浓度为 47.5%。
合成实施例 2
在装有温度计、搅拌器、氮气进口管的玻璃烧瓶中加入 100g A-2(0.05mol), 0.46g 30% 过氧化氢 (0.004mol)和 80.0g水, 在通有氮气的条件下加热到 45°C后, 搅拌溶解。 滴加含 有 10.8g B-l(0.15mol), 15.33g C-2(0.0073mol), 0.17g L-抗坏血酸 (O.OOlmol)和 40.0g水的 混合液, 滴加时间为 2小时, 滴加完毕后在此温度下保温反应 2小时。 反应物冷却至室 温,加入 18.0g 30% NaOH溶液中和反应物到 pH等于 7。该聚合物由重均分子量为 88000 的聚合物水溶液组成, 聚合物重量浓度为 49.2%。
合成实施例 3
在装有温度计、搅拌器、氮气进口管的玻璃烧瓶中加入 100gA-3(0.02mol), 0.38g 30% 过氧化氢 (0.0033mol)和 150.0g水, 在通有氮气的条件下加热到 45°C后, 搅拌溶解。 滴加 含有 4.3g B-l(0.06mol), 8.2g C-3(0.0016mol), 0.14g L-抗坏血酸 (0.0008mol)和 60.0g水的 混合液, 滴加时间为 2小时, 滴加完毕后在此温度下保温反应 2小时。 反应物冷却至室 温,加入 7.2g 30% NaOH溶液中和反应物到 pH等于 7。该聚合物由重均分子量为 101000 的聚合物水溶液组成, 聚合物重量浓度为 34.7%。
合成实施例 4
在装有温度计、搅拌器、氮气进口管的玻璃烧瓶中加入 100g A-2(0.05mol), 0.69g 30% 过氧化氢 (0.006mol)和 120.0g水, 在通有氮气的条件下加热到 30°C后, 搅拌溶解。 滴加 含有 21.5g B-2(0.25mol), 12.6g C-2(0.006mol), 0.26g L-抗坏血酸 (0.0015mol)和 80.0g水 的混合液, 滴加时间为 4小时, 滴加完毕后在此温度下保温反应 3小时。 反应物冷却至 室温,加入 33.3g 30% NaOH溶液中和反应物到 pH等于 7。该聚合物由重均分子量为 80600 的聚合物水溶液组成, 聚合物重量浓度为 39.8%。
合成实施例 5
在装有温度计、 搅拌器、 氮气进口管的玻璃烧瓶中加入 100gA-2(0.05mol), 1.24g 30% 过氧化氢 (O.Ollmol)和 100g水, 在通有氮气的条件下加热到 45°C后, 搅拌溶解。 滴加含 有 43.0g B-2(0.50mol), 6.6g C-l(O.Ollmol), 1.69g 甲醛次硫酸氢钠 (O.Ollmol)和 60g水的 混合液, 滴加时间为 4小时, 滴加完毕后在此温度下保温反应 3小时。 反应物冷却至室 温,加入 58.4g 30% NaOH溶液中和反应物到 pH等于 7。该聚合物由重均分子量为 90500 的聚合物水溶液组成, 聚合物重量浓度为 49.8%。 合成实施例 6
在装有温度计、搅拌器、氮气进口管的玻璃烧瓶中加入 100g A-2(0.05mol), 0.46g 30% 过氧化氢 (0.004mol)和 80.0g水, 在通有氮气的条件下加热到 60°C后, 搅拌溶解。 滴加含 有 17.4g B-3(0.15mol), 20.4g C-3(0.004mol), 0.17g L-抗坏血酸 (O.OOlmol)和 45.0g水的混 合液, 滴加时间为 1小时, 滴加完毕后在此温度下保温反应 4小时。 反应物冷却至室温, 加入 36.0g 30% NaOH溶液中和反应物到 pH等于 7。 该聚合物由重均分子量为 82500的 聚合物水溶液组成, 聚合物重量浓度为 57.9%。
合成实施例 7
在装有温度计、 搅拌器、 氮气进口管的玻璃烧瓶中加入 50g A-l(0.05mol), 50g A-2(0.025mol), 0.34g 30%过氧化氢 (0.003mol)和 80.0g 水, 在通有氮气的条件下加热到 45°C后, 搅拌溶解。 滴加含有 16.2g B-l(0.225mol), 25.2g C-2(0.012mol), 0.26g L-抗坏血 酸 (0.0015mol)和 60.0g水的混合液,滴加时间为 2小时,滴加完毕后在此温度下保温反应 3小时。 反应物冷却至室温, 加入 13.0g 30% NaOH溶液和 16.7g三乙醇胺中和反应物到 pH等于 7。 该聚合物由重均分子量为 108000的聚合物水溶液组成, 聚合物重量浓度为 49.5%。
合成实施例 8
在装有温度计、 搅拌器、 氮气进口管的玻璃烧瓶中加入 50.0g A-l(0.05mol), 50.0g A-3(0.01mol), 1.09g 30%过氧化氢 (O.Olmol)和 80.0g水, 在通有氮气的条件下加热到 45°C 后,搅拌溶解。滴加含有 6.5g B-l(0.09mol), 7.74g B-2(0.09mol), 43.8g C-2(0.02mol), 0.68g L-抗坏血酸 (0.004mol)和 60.0g水的混合液, 滴加时间为 2小时, 滴加完毕后在此温度下 保温反应 2小时。 反应物冷却至室温, 加入 21.6g 30% NaOH溶液中和反应物到 pH等于 7。 该聚合物由重均分子量为 135000的聚合物水溶液组成, 聚合物重量浓度为 49.3%。 比较例 1
本比较例针对合成实施例 2, 用 3-巯基丙酸等摩尔替代单体 C: 在装有温度计、 搅拌 器、 氮气进口管的玻璃烧瓶中加入 100g A-2(0.05mol), 0.46g 30%过氧化氢 (0.004mol)和 80.0g水, 在通有氮气的条件下加热到 45°C后, 搅拌溶解。 滴加含有 10.8g B-l(0.15mol), 0.77g 3-巯基丙酸 (0.0073mol), 0.17g L-抗坏血酸 (O.OOlmol)和 40.0g水的混合液, 滴加时 间为 2小时,滴加完毕后在此温度下保温反应 2小时。反应物冷却至室温,加入 18.0g 30% NaOH溶液中和反应物到 pH等于 7。 该聚合物由重均分子量为 32000的聚合物水溶液组 成, 聚合物重量浓度为 49.5%。 比较例 2
本比较例针对合成实施例 2, 改变单体 C占所有单体的摩尔比例为 0.01 (< 0.02): 在 装有温度计、 搅拌器、 氮气进口管的玻璃烧瓶中加入 100g A-2(0.05mol), 0.46g 30%过氧 化氢 (0.004mol)和 80.0g水,在通有氮气的条件下加热到 45 °C后,搅拌溶解。滴加含有 10.8g B-l(0.15mol), 4.2g C-2(0.002mol), 0.17g L-抗坏血酸 (O.OOlmol)和 40.0g水的混合液, 滴 加时间为 2小时,滴加完毕后在此温度下保温反应 2小时。反应物冷却至室温,加入 18.0g 30% NaOH溶液中和反应物到 pH等于 7。该聚合物由重均分子量为 58000的聚合物水溶 td
液组成, 聚合物重量浓度为 47.2%
比较例 3
本比较例针对合成实施例 2, 改变单体 C占所有单体的摩尔比例为 0.15 ( > 0.08): 在 装有温度计、 搅拌器、 氮气进口管的玻璃烧瓶中加入 100g A-2(0.05mol), 0.46g 30%过氧 化氢 (0.004mol)和 100.0g水, 在通有氮气的条件下加热到 45°C后, 搅拌溶解。 滴加含有 10.8g B-l(0.15mol), 74.11g C-2(0.035mol), 0.17g L-抗坏血酸 (O.OOlmol)和 80.0g水的混合 液, 滴加时间为 2小时, 滴加完毕后在此温度下保温反应 2小时。 反应物冷却至室温, 加入 18.0g 30% NaOH溶液中和反应物到 pH等于 7。 该聚合物由重均分子量为 178000 的聚合物水溶液组成, 聚合物重量浓度为 48.7%
表 3 聚合物合成条件及分子量 单体种类及其所占摩尔比
编号 "
1%:^ Μ
C/(A+B+
A B C B/A
C)
实施例 1 A-1 B-l C-l 2 0.026 47.5 51000 实施例 2 A-2 B-l C-2 3 0.035 49.2 88000 实施例 3 A-3 B-l C-3 3 0.020 34.7 101000 实施例 4 A-2 B-2 C-2 5 0.020 39.8 80600 实施例 5 A-2 B-2 C-l 10 0.020 49.8 90500 实施例 6 A-2 B-3 C-3 3 0.020 57.9 82500 实施例 7 A-1, A-2 B-l C-2 3 0.041 49.5 108000 实施例 8 A-1, A-3 C-2 3 0.077 49.3 135000 比较例 1 A-2 B-l 1 3 1 49.5 32000 比较例 2 A-2 B-l C-2 3 0.010 47.2 58000 比较例 3 A-2 B-l C-2 3 0.150 48.7 178000 应用实施例 应用实施例 1
为了评价本发明所制备的超支化型聚羧酸类水泥分散剂的分散性能和分散保持性能, 参照 GB/T8077-2000标准进行了水泥净浆流动度测试, 水泥 300g, 加水量为 87g, 搅拌
3分钟后在平板玻璃上测定水泥净浆流动度,并测试 1小时后的净浆流动度,实验结果见 表 4。
表 4数据说明本发明制备的超支化型聚羧酸类共聚物在较低的掺量下对水泥具有较 好的分散能力和分散保持能力。通过对比实施例 2和比较例 1,可见在达到相同的净浆初 始流动度的情况下,超支化型共聚物的掺量要比简单的梳形聚合物的掺量降低 25 %左右, 并且超支化型共聚物具有较好的流动度保持性能, 而梳形聚合物的净浆流动度在 1小时 后就开始下降。 通过对比实施例 2和比较例 2、 3, 可见当单体 C比例过低时, 不能形成 有效的超支化结构, 此时其净浆流动度保持能力较差; 当单体 C比例过高时, 超支化型 共聚物的分子量过大, 影响其在水泥颗粒表面的吸附, 因此需要较高的掺量才能达到同 实施例 2相同的净浆初始流动度, 但是其仍然具有较好的流动度保持能力。 通过上述对 比发现, 本发明制备的超支化型聚羧酸类共聚物水泥分散剂可以在较低掺量下获得较好 的水泥分散性能, 并且具有较好的分散保持性能。
表 4水泥净浆流动度
水泥净浆流动度 /mm
编号 掺量 /%
Omin 6 Omin
实施例 1 0.15 225 235 实施例 2 0.15 255 275 实施例 3 0.15 235 295 实施例 4 0.15 240 260 实施例 5 0.15 245 275 实施例 6 0.15 235 290 实施例 7 0.15 265 280 实施例 8 0.15 230 250 比较例 1 0.20 255 205 比较例 2 0.18 250 215 比较例 3 0.30 255 280 应用实施例 2 本应用实施例选用实施例 2合成的超支化聚合物为例, 考察超支化聚合物的高温保 坍性能。 对于大流动度混凝土坍落度保持相对容易, 而中、 低流动性混凝土对坍落度保 持性能要求很高, 因此考察中、 低流动性混凝土在高温下的保坍性能就具有重要的现实 意义。试验混凝土配合比为 C:F:S:G大: G小: W=290:60:756:680:453:175 (C:水泥, F:粉煤灰, S:砂子, G ±:大石子, G ,j、:小石子), 通过调整减水剂掺量, 控制初始坍落度为 13~15cm, 测定 30min和 60min后的坍落度损失情况, 试验结果见表 5。
表 5 低流动度混凝土坍落度经时变化 (试验温度 30°C )
坍落度经时损失 /cm
Om iinn 330Ommiinn 660Ommiinn
实施例 2 0.15 14.2 15.5 14.8 比较例 1 0.20 14.5 9.2 6.5 比较例 2 0.18 14.8 10.9 8.6 比较例 3 0.30 14.2 15.5 16.0 实验结果表明: 用比较例 1制得的聚合物配置的混凝土随时间的延长, 在高温环境 下坍落度损失很大, 60min就已经损失了 50%以上。用比较例 2制得的聚合物配置的混凝土 随时间的延长, 在高温环境下坍落度损失很大, 60min损失了 40%以上。 用比较例 3制得 的聚合物配置的混凝土在高温环境下随时间的延长, 虽然具有较好的坍落度保持能力, 但其所需的掺量较高。 相比之下用实施例 2制得的聚合物配制的混凝土, 在高温环境下坍 落度保持能力较好,并且掺量较低。可见,本发明制得的超支化聚合物可以在较低掺量下使得所 配置的混凝土具有较长时间的坍落度保持能力。

Claims

权 利 要 求 书
1、 一种超支化型聚羧酸类共聚物水泥分散剂的制备方法, 其特征在于, 由单体 A、 B和 C在水性介质中发生自由基共聚反应, 单体 A、 单体 B和单体 C
的摩尔比例满足: B/A=2~10, CI (A+B+C) =0.02-0.08 , 其中
单体 A用通式 (1 ) 表示:
式中 m为环氧乙烷的平均加成摩尔 数, 其为
单体
Figure imgf000015_0001
(2);
式中 R2代表 H或者 COOM; R3代表 H或者 CH3; M代表 H、 Na、 K或 NH4; 单体 C用通式 (3 ) 表示:
Figure imgf000015_0002
式中, R4是氢原子或甲基; X2=0、 CH20、 CH2CH20; Y= CH2、 CH2CH2、 CH (CH3)、 CH2CH2CH2、 CH (CH3) CH2、 C (CH3) 2; n为环氧乙烷的平均加成摩尔数, 其为 5〜 200的整数。
2、 如权利要求 1所述的超支化型聚羧酸类共聚物水泥分散剂的制备方法, 其特征在 于, 单体 A为乙烯基聚乙二醇醚、 烯丙基聚乙二醇醚、 甲代烯丙基聚乙二醇醚、 3-甲基 -3-丁烯 -1-醇基聚乙二醇醚中的至少一种。
3、 如权利要求 1所述的超支化型聚羧酸类共聚物水泥分散剂的制备方法, 其特征在 于, 单体 B为丙烯酸、 甲基丙烯酸、 马来酸或丙烯酸、 甲基丙烯酸、 马来酸的钠盐、 钾 盐或铵盐中的至少一种。
4、 如权利要求 1所述的超支化型聚羧酸类共聚物水泥分散剂的制备方法, 其特征在 于单体 C由化合物 D和化合物 E通过酯化反应制得;
化合物 D用通式 (4) 表示: CH2=
Figure imgf000016_0001
( 4 ). 化合物 E用通式 (5 ) 表示:
O II
HO-C— Y— SH ( 5)。
5、 如权利要求 4所述的超支化型聚羧酸类共聚物水泥分散剂的制备方法, 其特征在 于化合物 D选自乙烯基聚乙二醇醚、 烯丙基聚乙二醇醚、 甲代烯丙基聚乙二醇醚、 3-甲 基—3-丁烯 醇基聚乙二醇醚中的一种。
6、 如权利要求 4所述的超支化型聚羧酸类共聚物水泥分散剂的制备方法, 其特征在 于化合物 D和化合物 Ε在催化剂和阻聚剂存在的条件下进行酯化反应, 其中化合物 Ε和 D的摩尔比满足 e/d=1.2~1.5, 阻聚剂为对羟基苯甲醚、 对苯二酚或吩噻嗪, 阻聚剂在反 应体系中的用量为化合物 D重量的 0.02〜0.1 %; 催化剂为浓硫酸、 对甲苯磺酸或固体超 强酸, 催化剂在反应体系中的用量占化合物 D和化合物 E总重量的 2~5%; 酯化反应温 度控制在 100〜120°C, 时间为 12〜30h。
7、如权利要求 1-6中任一项所述的超支化型聚羧酸类共聚物水泥分散剂的制备方法, 其特征在于, 共聚反应采用氧化还原体系作为引发剂, 该氧化还原体系氧化剂采用过氧 化氢, 其用量按 100%浓度过氧化氢计算占单体 A+B+C总摩尔数的 1~4 %; 氧化还原体 系的还原剂选自亚硫酸碱金属盐、 L-抗坏血酸或甲醛次硫酸氢钠, 用量占单体 A+B+C总 摩尔数的 0.5~2 %。
8、 如权利要求 7所述的超支化型聚羧酸类共聚物水泥分散剂的制备方法, 其特征在 于, 聚合反应开始之前, 单体 A和氧化还原引发体系中的氧化剂的水溶液加入到反应容 器中; 单体 B、 单体 C和氧化还原引发体系中的还原剂的水溶液在反应开始后采用滴加 的方式加入到反应容器中, 滴加时间为 1~4小时。
9、 如权利要求 8所述的超支化型聚羧酸类共聚物水泥分散剂的制备方法, 其特征在 于, 聚合反应中, 单体的总质量浓度为 30~60%, 聚合温度为 30~60°C, 滴加完成后继续 反应 2~4小时。
10、 如权利要求 1-6 中任一项所述的超支化型聚羧酸类共聚物水泥分散剂的制备方 法, 其特征在于, 超支化型聚羧酸类共聚物水泥分散剂的重均分子量为 50,000~140,000。
PCT/CN2010/080133 2010-12-22 2010-12-22 超支化型聚羧酸类共聚物水泥分散剂的制备方法 WO2012083536A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013545001A JP5594708B2 (ja) 2010-12-22 2010-12-22 ハイパーブランチ型ポリカルボン酸系ポリマー・セメント分散剤の調製方法
US13/807,723 US9175122B2 (en) 2010-12-22 2010-12-22 Preparation method of hyperbranched polycarboxylic acid containing copolymer cement dispersant
PCT/CN2010/080133 WO2012083536A1 (zh) 2010-12-22 2010-12-22 超支化型聚羧酸类共聚物水泥分散剂的制备方法
EP10861094.0A EP2657264B1 (en) 2010-12-22 2010-12-22 Preparation method of hyperbranched polycarboxylic acid type copolymer cement dispersant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/080133 WO2012083536A1 (zh) 2010-12-22 2010-12-22 超支化型聚羧酸类共聚物水泥分散剂的制备方法

Publications (1)

Publication Number Publication Date
WO2012083536A1 true WO2012083536A1 (zh) 2012-06-28

Family

ID=46313036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/080133 WO2012083536A1 (zh) 2010-12-22 2010-12-22 超支化型聚羧酸类共聚物水泥分散剂的制备方法

Country Status (4)

Country Link
US (1) US9175122B2 (zh)
EP (1) EP2657264B1 (zh)
JP (1) JP5594708B2 (zh)
WO (1) WO2012083536A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2937321A4 (en) * 2012-12-05 2016-11-16 Sobute New Materials Co Ltd SUPERPLASTIFIANT POLY (CARBOXYLIC ACID) NOW BREAKING
CN112175148A (zh) * 2020-09-22 2021-01-05 德州中科新材料有限公司 一种交联型早强羧酸减水剂、其制备方法及其应用

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5759088B1 (ja) * 2013-09-24 2015-08-05 株式会社日本触媒 (メタ)アクリル酸系共重合体とその製造方法
CN104628967B (zh) * 2013-11-11 2017-07-28 辽宁奥克化学股份有限公司 一种早强型聚羧酸减水剂及其制备方法
CN103865007A (zh) * 2014-03-17 2014-06-18 南京瑞迪高新技术有限公司 一种降粘型聚羧酸系减水剂制备方法
JP6541952B2 (ja) * 2014-09-26 2019-07-10 株式会社日本触媒 マクロモノマー及びその製造方法
CN106543321B (zh) * 2015-09-21 2018-11-09 上海东升新材料有限公司 一种四臂星形结构高效重钙研磨分散剂的制备方法及其产物和应用
CN105646871A (zh) * 2015-12-31 2016-06-08 江苏苏博特新材料股份有限公司 一种聚合物的制备方法及其应用
CN107033301B (zh) * 2016-11-18 2019-08-20 中科院广州化学有限公司南雄材料生产基地 一种高保坍超支化聚羧酸减水剂及其制备方法
CN106905493B (zh) * 2017-03-20 2019-12-27 江苏苏博特新材料股份有限公司 一种消泡型聚羧酸水泥分散剂及其制备方法
CN107312132B (zh) * 2017-07-19 2019-10-15 中交二航武汉港湾新材料有限公司 改性糖侧链结构的聚羧酸减水剂及其制备方法
CN111378079B (zh) * 2018-12-31 2022-04-22 江苏苏博特新材料股份有限公司 一种分子结构可控的星形聚羧酸减水剂及其制备方法
CN114180933B (zh) * 2021-12-02 2022-07-19 福州创先工程材料有限公司 路面快速修复材料
CN114316155B (zh) * 2022-01-24 2023-09-12 武汉三源特种建材有限责任公司 一种树枝状早强型聚羧酸减水剂及其制备方法
CN115010933B (zh) * 2022-06-14 2023-09-12 武汉三源特种建材有限责任公司 一种六碳稳泡型减水剂及其制备方法
CN116333231B (zh) * 2023-05-25 2023-08-18 中建材中岩科技有限公司 一种超高分散型减水剂及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101580353A (zh) 2009-06-01 2009-11-18 济南大学 一种超支化型聚羧酸盐高效减水剂及其制备方法
CN101602834A (zh) * 2009-06-08 2009-12-16 江苏博特新材料有限公司 一种聚羧酸类混凝土分散剂的制备方法
US20100105810A1 (en) * 2007-03-23 2010-04-29 Nippon Shokubai Co., Ltd. Polyalkylene glycol chain-containing thiol polymer, thiol-modified monomer, mixture thereof, and admixture for cement

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5630946B2 (ja) * 2007-03-23 2014-11-26 株式会社日本触媒 チオール変性単量体及びその製造方法
JP5630945B2 (ja) * 2007-03-23 2014-11-26 株式会社日本触媒 チオール変性単量体混合物
JP5479688B2 (ja) * 2007-03-23 2014-04-23 株式会社日本触媒 ポリアルキレングリコール鎖含有チオール重合体及びその製造方法
JP2012116951A (ja) * 2010-11-30 2012-06-21 Nippon Shokubai Co Ltd ポリアルキレングリコール系重合体及びセメント混和剤並びにセメント組成物
JP2012116950A (ja) * 2010-11-30 2012-06-21 Nippon Shokubai Co Ltd ポリアルキレングリコール系重合体、セメント混和剤およびセメント組成物
JP5637827B2 (ja) * 2010-11-30 2014-12-10 株式会社日本触媒 重合体含有組成物、セメント混和剤およびセメント組成物
JP2012116949A (ja) * 2010-11-30 2012-06-21 Nippon Shokubai Co Ltd ポリアルキレングリコール系重合体、セメント混和剤及びセメント組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100105810A1 (en) * 2007-03-23 2010-04-29 Nippon Shokubai Co., Ltd. Polyalkylene glycol chain-containing thiol polymer, thiol-modified monomer, mixture thereof, and admixture for cement
CN101580353A (zh) 2009-06-01 2009-11-18 济南大学 一种超支化型聚羧酸盐高效减水剂及其制备方法
CN101602834A (zh) * 2009-06-08 2009-12-16 江苏博特新材料有限公司 一种聚羧酸类混凝土分散剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2657264A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2937321A4 (en) * 2012-12-05 2016-11-16 Sobute New Materials Co Ltd SUPERPLASTIFIANT POLY (CARBOXYLIC ACID) NOW BREAKING
CN112175148A (zh) * 2020-09-22 2021-01-05 德州中科新材料有限公司 一种交联型早强羧酸减水剂、其制备方法及其应用

Also Published As

Publication number Publication date
US9175122B2 (en) 2015-11-03
US20130102749A1 (en) 2013-04-25
JP5594708B2 (ja) 2014-09-24
EP2657264A1 (en) 2013-10-30
JP2014501690A (ja) 2014-01-23
EP2657264A4 (en) 2014-10-08
EP2657264B1 (en) 2016-03-02

Similar Documents

Publication Publication Date Title
WO2012083536A1 (zh) 超支化型聚羧酸类共聚物水泥分散剂的制备方法
JP6074517B2 (ja) スランプ保持型ポリカルボン酸塩系高性能流動化剤の製造方法
EP0884290B1 (en) Process for producing a polycarboxylic acid
KR100855533B1 (ko) 폴리카르복실산 콘크리트 혼화제
JP5349402B2 (ja) セメント混和剤
CN102093520B (zh) 超支化型聚羧酸类共聚物水泥分散剂的制备方法
WO2014059674A1 (zh) 一种减水剂中间体、其制备方法及由其制备的减水剂
JP3285820B2 (ja) ポリカルボン酸の製造方法
JP4107957B2 (ja) セメント混和剤及びその製造方法
JP4079589B2 (ja) ポリカルボン酸系共重合体の製造方法
CN115215972B (zh) 一种快速分散型聚羧酸减水剂的制备方法
CN104961868A (zh) 一种改善水泥浆体流变特性的减水剂
JP4666344B2 (ja) セメント混和剤
JP2003327459A (ja) セメント混和剤
JP4042851B2 (ja) セメント混和剤及びその製造方法
CN109251279B (zh) 一种减缩型聚羧酸减水剂及其制备方法
CN109956697B (zh) 一种多吸附基团中间体,其聚合物的制备方法和应用
JP2000319054A (ja) セメント添加剤
JP3221399B2 (ja) セメント混和剤用ポリカルボン酸の製造方法
JP5030333B2 (ja) セメント混和剤
JP4017913B2 (ja) 不飽和アルコールアルキレンオキシド付加物系重合体
JP4094341B2 (ja) セメント混和剤
JP2001192250A (ja) セメント添加剤
KR100462452B1 (ko) 콘크리트 혼화제의 제조 방법
JP2012511062A (ja) コポリマーを製造するための半連続的操作法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10861094

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013545001

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13807723

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010861094

Country of ref document: EP