WO2012081601A1 - カーボンナノチューブ集合体、3次元形状カーボンナノチューブ集合体、それを用いたカーボンナノチューブ成形体、組成物及びカーボンナノチューブ分散液 - Google Patents

カーボンナノチューブ集合体、3次元形状カーボンナノチューブ集合体、それを用いたカーボンナノチューブ成形体、組成物及びカーボンナノチューブ分散液 Download PDF

Info

Publication number
WO2012081601A1
WO2012081601A1 PCT/JP2011/078869 JP2011078869W WO2012081601A1 WO 2012081601 A1 WO2012081601 A1 WO 2012081601A1 JP 2011078869 W JP2011078869 W JP 2011078869W WO 2012081601 A1 WO2012081601 A1 WO 2012081601A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
cnt
aggregate
dimensional shape
nanotube aggregate
Prior art date
Application number
PCT/JP2011/078869
Other languages
English (en)
French (fr)
Inventor
賢治 畠
ドン エヌ. フタバ
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to EP11848877.4A priority Critical patent/EP2653444A4/en
Priority to CN201180060369.6A priority patent/CN103261091B/zh
Priority to JP2012548802A priority patent/JP5540341B2/ja
Publication of WO2012081601A1 publication Critical patent/WO2012081601A1/ja
Priority to US13/916,957 priority patent/US9809457B2/en
Priority to US15/716,555 priority patent/US10494262B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • C01P2006/13Surface area thermal stability thereof at high temperatures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/10Scrim [e.g., open net or mesh, gauze, loose or open weave or knit, etc.]

Definitions

  • the present invention relates to a carbon nanotube aggregate in which carbon nanotubes are aggregated.
  • the present invention relates to an aggregate of carbon nanotubes having a three-dimensional shape.
  • the present invention also relates to a carbon nanotube molded body, a composition, and a carbon nanotube dispersion using a three-dimensionally shaped carbon nanotube aggregate.
  • Carbon nanotubes composed of only carbon atoms are materials having excellent electrical characteristics, thermal conductivity, and mechanical properties.
  • CNT is a material that is very lightweight and extremely tough, and has excellent elasticity and resilience. CNTs having such excellent properties are extremely attractive and important substances as industrial materials.
  • CNT aggregates synthesized carbon nanotube aggregates
  • CNT aggregates synthesized carbon nanotube aggregates
  • Patent Document 1 discloses a solution part containing a lot of carbon nanotubes after immersing a composition containing carbon nanotubes in a liquid, and a solution part containing many components other than carbon nanotubes contained in a composition containing carbon nanotubes. It is disclosed that the purification efficiency of carbon nanotubes is improved by performing a stirring process, an ultrasonic process, and a centrifugal separation process before individually recovering the carbon nanotubes.
  • Patent Document 2 discloses that a mixture of 10 mg of a two-layer CNT aggregate, 30 mg of sodium polystyrene sulfonate and 10 mL of water is subjected to ultrasonic homogenization, followed by centrifugation at 20000 G.
  • the CNT aggregate in which the content of the CNT aggregate in the supernatant is 0.6 mg / mL or more is used as the material for the transparent conductive film.
  • Patent Document 3 uses aprotic organic dispersion media and wholly aromatic polyamides as aggregation inhibitors, so that single-walled CNTs do not form a bundle at all, or a bundle consisting of a very small number of bundles.
  • the present stable CNT dispersion is disclosed.
  • the present invention has been made in view of the background art described above, and an object thereof is not to develop a dispersion technique for loosening CNT as in the prior art, but to provide a CNT aggregate composed of CNTs that are easy to loosen.
  • the three-dimensional shape carbon nanotube aggregate according to an embodiment of the present invention is a three-dimensional shape carbon nanotube aggregate, and the three-dimensional shape carbon nanotube aggregate includes a first surface, a second surface, and a side surface,
  • the carbon nanotubes on the first surface have a Herman orientation coefficient greater than ⁇ 0.1 and smaller than 0.2
  • the carbon nanotubes on the second surface have a Herman orientation coefficient greater than ⁇ 0.1 and smaller than 0.2
  • the side carbon nanotubes have a Herman orientation coefficient of 0.2 or more and 0.99 or less
  • the first surface and the second surface are arranged in parallel to each other, and the side surfaces are It is perpendicular to the first surface and the second surface.
  • the carbon nanotube aggregate including the three-dimensional shape CNT aggregate has a differential pore volume in the range of 0.1 ⁇ m to 100 ⁇ m in pore diameter measured by a mercury intrusion porosimeter.
  • the maximum pore diameter is 1 ⁇ m or more and 50 ⁇ m or less.
  • the length of the side surface is 10 ⁇ m or more and 1 cm or less.
  • the pore volume at the pore diameter at which the differential pore volume of the carbon nanotube aggregate including the three-dimensionally shaped CNT aggregate is maximized is 5 mL / g or more.
  • the first surface and / or the second surface includes a network of carbon nanotubes.
  • Each of the first surface and the second surface of the three-dimensionally shaped carbon nanotube aggregate has at least three sides.
  • a plurality of carbon nanotube bundles are extended from the outermost surface of the side surface of the three-dimensionally shaped carbon nanotube aggregate.
  • the repose angle of the carbon nanotube aggregate including the three-dimensionally shaped carbon nanotube aggregate is 40 degrees or more and 85 degrees or less.
  • the bulk density of the carbon nanotube aggregate including the three-dimensionally shaped carbon nanotube aggregate is 0.001 g / cm 3 or more and 0.19 g / cm 3 or less.
  • the distribution maximum of the pore diameter determined by the BJH method from the adsorption isotherm of liquid nitrogen of the carbon nanotube aggregate including the three-dimensionally shaped carbon nanotube aggregate is 100 nm or less.
  • the three-dimensionally shaped carbon nanotube aggregate includes a fissure.
  • the outermost third surface includes a carbon nanotube partition piece formed of the carbon nanotube aggregate.
  • the outermost third surface is formed by arranging a plurality of carbon nanotube partition pieces including bundles.
  • the bundle is extended by being peeled off from the carbon nanotube partition piece constituting the side surface.
  • the carbon nanotube aggregate including the three-dimensional shape CNT aggregate has a carbon purity measured by fluorescent X-ray of 98% or more.
  • the carbon nanotube aggregate including the three-dimensional shape CNT aggregate includes a carbon nanotube having a specific surface area of 800 m 2 / g or more and 2500 m 2 / g or less.
  • the weight loss in thermogravimetry when the temperature of the carbon nanotube aggregate including the three-dimensionally shaped CNT aggregate is raised from 200 ° C. to 400 ° C. at 1 ° C./min is 10% or less.
  • the carbon nanotubes constituting the three-dimensional shape carbon nanotube aggregate are single-walled carbon nanotubes.
  • the bundle of carbon nanotubes extends to an adjacent three-dimensional shape carbon nanotube aggregate.
  • the length of the bundle of carbon nanotubes is 1 ⁇ m or more and 1 mm or less.
  • a carbon nanotube aggregate according to an embodiment of the present invention includes a plurality of the three-dimensional shape carbon nanotube aggregates.
  • a carbon nanotube aggregate according to an embodiment of the present invention includes a network body including a plurality of carbon nanotubes obtained by dispersing a carbon nanotube aggregate including the three-dimensional carbon nanotube aggregate.
  • the carbon nanotube molded object which concerns on one Embodiment of this invention is equipped with the carbon nanotube aggregate provided with the network body which consists of these CNT.
  • composition which concerns on one Embodiment of this invention is equipped with the carbon nanotube aggregate provided with the network which consists of said several carbon nanotube.
  • a carbon nanotube dispersion liquid according to an embodiment of the present invention disperses a carbon nanotube aggregate including a network composed of a plurality of carbon nanotubes obtained by dispersing the carbon nanotube aggregate including the three-dimensional carbon nanotube aggregate. Dispersed in liquid.
  • a CNT aggregate composed of CNTs that are easy to loosen is provided.
  • a CNT aggregate including a network composed of a plurality of CNTs while maintaining the excellent electrical characteristics, thermal conductivity, and mechanical properties of CNTs, a highly dispersible, stable CNT dispersion liquid or A CNT molded body is provided.
  • FIG. 1 It is a mimetic diagram of three-dimensional shape CNT aggregate 100 concerning one embodiment of the present invention. It is a scanning electron microscope (henceforth, SEM) image of the three-dimensional shape CNT aggregate 100 concerning one embodiment of the present invention.
  • 3 is an SEM image of a CNT aggregate including a three-dimensional shape CNT aggregate 100 according to an embodiment of the present invention.
  • (A) is a schematic diagram of the three-dimensional shape CNT aggregate
  • (b) is a schematic diagram of the conventional CNT aggregate
  • the three-dimensional shape carbon nanotube aggregate (hereinafter referred to as the three-dimensional shape CNT aggregate) according to the embodiment of the present invention is not a large bulk CNT aggregate, but flakes and powders as shown in FIG. 1 and FIG. It is preferably in the form of a body, granules, flakes, or blocks.
  • FIG. 1 is a schematic view of a three-dimensional shape CNT aggregate 100 according to an embodiment of the present invention.
  • FIG. 2 is an SEM image of the three-dimensional shape CNT aggregate 100 according to the embodiment of the present invention.
  • an aggregate including a plurality of three-dimensional CNT aggregates at least partially is referred to as a CNT aggregate (FIG. 3).
  • the three-dimensional shape CNT aggregate 100 is an aggregate formed of a plurality of CNTs, and includes a first surface 101, a second surface 103, and a side surface 105 that is a third surface.
  • the first surface 101 and the second surface 103 each preferably have a planar shape having at least three sides, and are preferably surfaces arranged in parallel to each other.
  • the side surface 105 is preferably a surface arranged perpendicular to the upper surface 101 and the lower surface 103.
  • the three-dimensional shape CNT aggregate 100 preferably has a CNT bundle 110 extending from the outermost surface of the side surface 105.
  • the three-dimensional shape CNT aggregate 100 may include a carbon nanotube partition piece (hereinafter referred to as CNT partition piece) 130 and a fissure 150 on the outermost surface of the side surface 105.
  • the length of the side surface 105 with respect to the direction of the upper surface 101 and the lower surface 103 is preferably 10 ⁇ m or more and 1 cm or less.
  • the three-dimensional shape CNT aggregate 100 has a size as described above, that is, a flake shape, a powder shape, a granule shape, a flake shape, and a block shape, so that the loosening treatment is performed. Easy to apply.
  • a piece or a three-dimensional shape CNT aggregate larger than the above-mentioned size has a high viscosity of a dispersion medium or the like when the loosening process is performed, and is difficult to loosen.
  • a three-dimensional shape CNT aggregate smaller than the above-mentioned size cannot easily be loosened because the three-dimensional shape CNT aggregates tend to aggregate.
  • the present invention by including the three-dimensional shape CNT aggregate 100 in the loosened CNT aggregate, good characteristics as a whole can be exhibited.
  • the first surface “upper surface” and the second surface “lower surface” are surfaces on which the end portions of the CNTs are mainly arranged, and the upper surface of the three-dimensional shape CNT aggregate 100 according to the embodiment of the present invention.
  • 101 and the lower surface 103 preferably include at least three sides. It is preferable that the upper surface 101 and the lower surface 103 face each other and are arranged in parallel.
  • the “side” is a portion where the upper surface 101 and the side surface 105 intersect.
  • the “circle” is regarded as a shape having an infinite “side”.
  • the upper surface and the lower surface are preferably arranged in a substantially parallel state.
  • substantially parallel means that the normal vector of the upper surface and the lower surface is 0 degree or more and 30 degrees or less.
  • the CNTs constituting the upper surface 101 and the lower surface 103 of the three-dimensional shape CNT aggregate 100 according to the embodiment of the present invention have no orientation, that is, the upper surface 101 and the lower surface 103 are not oriented.
  • non-orientation that is, no degree of orientation means that the degree of orientation evaluated by Hermann's orientation coefficient (hereinafter referred to as HOF) is larger than ⁇ 0.1 and smaller than 0.2, more preferably ⁇ 0. It means greater than 75 and less than 0.15.
  • HOF Hermann's orientation coefficient
  • the Herman orientation coefficient (HOF) (0: None) calculated using the intensity profile obtained from the FFT image obtained by fast Fourier transform of the SEM image or the like of the CNT aggregate (Orientation state, 1: orientation state) may be calculated.
  • the direction of orientation is the average of the direction vectors of individual CNTs constituting the CNT aggregate. Therefore, the orientation direction may be different depending on the location of the CNT aggregate and the size of the region for evaluating the orientation.
  • an SEM image obtained by observing the CNT aggregate from the vertical direction on the upper surface 101 or the lower surface 103 at any magnification of 10,000 times, 50,000 times, or 100,000 times is used.
  • the SEM image is subjected to 2-D fast Fourier calculation (FFT) to obtain an FFT image.
  • FFT 2-D fast Fourier calculation
  • the reference (standard) orientation is determined so that the HOF has the largest value.
  • the FFT image of the CNT aggregate having orientation has a flat elliptical shape, and the orientation is higher as the ellipse is flatter.
  • the major axis direction of the ellipse is the direction in which the periodicity of the CNT resulting from the orientation is maximized, and the minor axis direction of the ellipse is the orientation direction in the field of view of the original image of the FFT image.
  • the reference orientation for calculating the HOF is the major axis direction of the ellipse (or the direction in which the HOF is the largest).
  • the distance from the origin for calculating the diffraction intensity function is between the distance corresponding to 100 nm in the real space (10 ⁇ 10 6 (m ⁇ 1 )) and the frequency Hz corresponding to the distance in the real space of 50 nm.
  • the diffraction intensity function I ( ⁇ ) is obtained from at least 10 different distances in the range, with this diffraction intensity function as a variable.
  • the above equation is calculated from at least 10 different distances, and the average value of the calculated values from at least 6 distances excluding the two largest values and the two smallest values is defined as the HOF of the SEM image.
  • Such calculation is performed on five or more SEM images taken at least at different observation locations, and the average value is defined as the HOF of the CNT aggregate.
  • F is the HOF
  • I ( ⁇ ) is the diffraction intensity function.
  • the upper surface 101 and the lower surface 103 of the three-dimensionally shaped CNT aggregate 100 according to the embodiment of the present invention are in a range where the degree of orientation is greater than ⁇ 0.1 and smaller than 0.2, there is substantially no degree of orientation.
  • the CNT partition piece 130 is easily peeled from the dimensionally shaped CNT aggregate 100 and is easily loosened.
  • the CNT aggregate is easily peeled off and easily loosened.
  • the upper surface 101 and the lower surface 103 of the three-dimensional shape CNT aggregate 100 include a CNT network.
  • the “CNT network” indicates a form such as a non-woven fabric of CNT (or a bundle of CNTs) and CNT (or a bundle of CNTs) having fine pores (gap). It is preferable that the CNT network has a structure in which a plurality of CNTs “aggregate” in a CNT aggregate, and a tip portion of some CNTs is locally “discrete” and “aggregated”. Since the upper surface 101 and / or 103 includes a network of CNTs, the entire surface is not oriented.
  • the CNT network defined in this specification can be confirmed by SEM observation of the upper surface 101 of the three-dimensional shape CNT aggregate 100 at a magnification of 50,000 times. There may be a difference in the number density and length of CNTs in the CNT network on the first surface and the second surface facing each other.
  • a surface having a high number density of CNTs in the network and / or a long length is a first surface (upper surface), and a surface having a low number density of CNTs in the network and / or a short length is a second surface (lower surface).
  • the first surface, the second surface Either may be an upper surface or a lower surface.
  • the three-dimensional shape CNT aggregate 100 is provided with a network of CNTs on the upper surface 101 and / or the lower surface 103 so that the CNTs are not completely separated when loosened, and flake-shaped CNTs Can exist as an aggregate. Further, by providing a network of CNTs on the upper surface 101 and / or the lower surface 103, when the three-dimensionally shaped CNT aggregate 100 is dispersed in a solvent, a developed network described later can be provided.
  • the upper surface 101 and the lower surface 103 are preferably arranged in parallel to each other.
  • parallel means that the upper surface 101 and the lower surface 103 are substantially parallel.
  • substantially parallel means that the normal vector of the upper surface and the lower surface is 0 degree or more and 30 degrees or less.
  • the upper surface 101 and the lower surface 103 are arranged in parallel to each other, so that the lengths of the CNTs in the three-dimensional shape CNT aggregate are uniform. For this reason, when the three-dimensional shape CNT aggregate 100 is dispersed in a solvent, a network having a uniform structure can be provided.
  • the “side surface” is a surface that is disposed perpendicular to the upper surface 101 and the lower surface 103 and is preferably a surface that is disposed in parallel with the orientation direction of the CNT aggregate.
  • vertical and “substantially vertical” mean that the angle between the normal vector of the upper surface and / or the lower surface and the normal vector of the surface constituting the side surface is 60 degrees or more and 90 degrees or less. To do.
  • the side surface 105 is formed of the polygonal upper surface 101 and lower surface 103. There will be a number corresponding to the number of sides.
  • the three-dimensional shape CNT aggregate 100 is preferably provided with the CNT partitioning pieces 130 and the fissures 150 on the side surface 105, the side surface 105 is not necessarily a flat shape like the upper surface 101 and the lower surface 103. Absent.
  • the CNTs forming the side surface 105 of the three-dimensional shape CNT aggregate 100 according to the embodiment of the present invention are oriented. That is, the side surface 105 is oriented.
  • HOF is larger than 0.2, more preferably larger than 0.25, still more preferably larger than 0.3 and 0.99 or less, it is oriented or has orientation. Then stipulate.
  • the side surface 105 of the three-dimensional shape CNT aggregate 100 according to the embodiment of the present invention has a HOF of 0.2 or more.
  • the method of calculating HOF uses an SEM image obtained by observing the CNT aggregate from the direction of the side surface 105 (thickness direction) at any magnification of 10,000 times, 50,000 times, or 100,000 times. Since the orientation of the upper surface 101 and the lower surface 103 of the CNT aggregate is different from the overall orientation, observation by SEM is preferably performed at the center of the side surface 105 of the CNT aggregate. Specifically, observation is performed in a region within ⁇ 30% from the center of the side surface 105 of the CNT aggregate.
  • the SEM image is subjected to 2-D fast Fourier calculation (FFT) to obtain an FFT image. Since the calculation method after this has been described above, the description thereof will be omitted.
  • FFT 2-D fast Fourier calculation
  • the interaction between the CNTs constituting the three-dimensional shape CNT aggregate 100 is preferably weak and not aggregated, and the side surface 105 of the three-dimensional shape CNT aggregate 100 according to the embodiment of the present invention has an orientation degree.
  • the CNT partitioning pieces 130 are easily peeled from the three-dimensional shape CNT aggregate 100 and are easily loosened.
  • the CNT aggregate is easily peeled off and easily loosened.
  • the three-dimensional shape CNT aggregate 100 includes the upper surface 101, the lower surface 103, and the side surface 105, so that when the synthesized CNT aggregate is loosened, the mesh body has a uniform structure. Can be provided.
  • the network has a function of transmitting donated electrons, phonons, and mechanical stress efficiently and far away without being attenuated.
  • the three-dimensional shape CNT aggregate 100 preferably includes a plurality of CNT bundles 110 extending from the outermost surface of the side surface 105.
  • the “bundle” means a structure in which a part of one or more CNTs included in the three-dimensional shape CNT aggregate 100, in particular, a part of a bundle of CNTs is peeled off from the side surface 105 and extended.
  • “extending” means that a part of the CNT bundle 110 has an orientation and is included in the three-dimensional shape CNT aggregate 100, and another part of the CNT bundle 110 is included in the three-dimensional shape CNT aggregate 100. It means a state of protruding from non-oriented.
  • the “outermost surface” means a surface formed by CNTs arranged on the outermost side of the side surface 105.
  • the three-dimensional shape CNT aggregate 100 has a CNT bundle 110 extending from the outermost surface of the side surface 105, and the bundle 110 extends to an adjacent three-dimensional shape CNT aggregate. Therefore, adjacent three-dimensional shape CNT aggregates hardly aggregate. When the three-dimensional shape CNT aggregates aggregate, it becomes difficult to loosen the three-dimensional shape CNT aggregates.
  • FIG. 4A is a schematic diagram of a three-dimensional shape CNT aggregate 100 according to an embodiment of the present invention
  • FIG. 4B is a schematic diagram of a conventional CNT aggregate.
  • the three-dimensional shape CNT aggregate 100 since the bundle 110 extends to an adjacent three-dimensional shape CNT aggregate, the three-dimensional shape CNT aggregates aggregate without being in direct contact with each other. Hateful. On the other hand, since the conventional CNT aggregate 900 does not include a bundle extending to the side surface, the CNT aggregates are in direct contact with each other and aggregate.
  • the three-dimensional shape CNT aggregate 100 includes a plurality of bundles 110 on the outermost surface of the side surface 105, preferably three or more, more preferably five per one three-dimensional shape CNT aggregate. It is preferable to provide one or more, more preferably ten or more bundles. There is no particular upper limit for the number of bundles, but it is difficult to manufacture the three-dimensional shape CNT aggregate 100 having 1000 or more bundles for manufacturing reasons.
  • the bundle 110 may be of a length that ensures a distance that does not aggregate with the adjacent three-dimensional shape CNT aggregate, and preferably has a length of 1 ⁇ m or more, more preferably 5 ⁇ m or more, and even more preferably 100 ⁇ m or more. It is preferably extended. There is no upper limit to the preferred length, but it is preferably 1 mm or less in order to prevent the bulk density of the CNT aggregate from becoming too low.
  • CNTs are known as single-walled CNT (also indicated as SWNT), double-walled CNT (also indicated as DWNT), and multilayer CNT (also indicated as MWNT) depending on the number of graphene sheets constituting the CNT.
  • the three-dimensional shape CNT aggregate 100 according to the embodiment of the present invention is preferably a single-wall CNT or a CNT in which a single-wall CNT and two-layer and three-wall CNT are mixed. As long as the function is not impaired, CNTs having three or more layers may be contained.
  • the number ratio of the single-walled CNT is 50% or more with respect to the double-walled, triple-walled CNT, and other CNTs.
  • the number ratio of the double-walled CNT is preferably 50% or more with respect to the single-walled CNT, the three-walled CNT, and other CNTs.
  • Single-walled CNTs have a large specific surface area and can easily increase the length (or height), so that when a three-dimensional shape CNT aggregate 100 is dispersed in a solvent, a developed network can be constructed. It is easy to develop the inherent characteristics of CNT.
  • the “fissure” is a crack generated in the side surface 105 of the three-dimensional shape CNT aggregate 100.
  • the three-dimensional shape CNT aggregate 100 preferably has a fissure. The interaction between the CNTs facing each other via the fissure 150 is weak, and the fissure 150 is expanded by an external force, and the fissure 150 is expanded to become the CNT partition piece 130, and the CNT aggregate is easily separated. For this reason, the three-dimensional shape CNT aggregate 100 according to the embodiment of the present invention is easy to loosen.
  • the “section” is a protruding side surface 105 of the three-dimensional shape CNT aggregate 100 and a convex portion made of the CNT aggregate.
  • the “section” is a form before the CNT aggregate is split from the three-dimensional shape CNT aggregate 100.
  • the “CNT partition piece” is a CNT aggregate constituting the partition.
  • the dimensional aggregate CNT aggregate 100 preferably has compartments and / or CNT compartment pieces.
  • the bundle 110 is peeled off and extended from the CNT partition piece 130 that is formed on the side surface 105. Many bundles 110 extending from the CNT partition piece 130 are observed in the partition.
  • the CNT aggregate peels from the side surface 105, a part of the CNT contained in the CNT partitioning piece 130 on the side surface 105 is peeled off and extends to the outermost surface. Therefore, the three-dimensional shape CNT aggregate 100 according to the embodiment of the present invention has the CNT partition piece 130 on the outermost surface of the side surface 105, and a plurality of CNT partition pieces 130 including the bundle 110 may be arranged. Is preferred.
  • the three-dimensional shape CNT aggregate 100 includes the CNT partition pieces 130 on the outermost surface of the side surface 105, the CNT partition pieces 130 are easily separated from the three-dimensional shape CNT aggregate 100. For this reason, the three-dimensional shape CNT aggregate 100 is easy to loosen. Further, since the three-dimensional shape CNT aggregate 100 has a plurality of CNT partitioning pieces 130 including the bundles 110 arranged on the outermost surface of the side surface 105, the three-dimensional shape CNT aggregate is less likely to aggregate.
  • the conventional CNT aggregate 900 is not easily loosened because it does not have CNT partition pieces on the side surface, and is not a structure in which a plurality of CNT partition pieces having extended bundles are arranged. They come into direct contact and agglomerate.
  • a CNT aggregate 200 including a CNT aggregate having a three-dimensional shape according to an embodiment of the present invention (hereinafter referred to as CNT aggregate 200) has a pore size of 0.1 ⁇ m or more and 100 ⁇ m or less in a pore distribution measured with a mercury intrusion porosimeter.
  • the pore diameter that maximizes the differential pore volume in the range of 1 to 50 ⁇ m is more preferable to be 2 ⁇ m to 40 ⁇ m.
  • the pore volume at the pore diameter that maximizes the differential pore volume is preferably 5 mL / g or more, more preferably 7 mL / g or more.
  • the pores between the CNT aggregates can be evaluated.
  • the pore diameter is within the above numerical range, there is an appropriate gap between the CNT aggregates, and the CNT aggregates are easily agglomerated without being aggregated.
  • the pore diameter is smaller than the above numerical range, the CNT aggregates closely adhere to each other and are difficult to loosen.
  • the pore diameter is larger than the above numerical range, it is too bulky to handle.
  • the angle of repose is preferably 40 degrees to 85 degrees, more preferably 45 degrees to 85 degrees, and further preferably 50 degrees to 85 degrees.
  • the angle of repose is measured by the injection method.
  • the injection method is a method in which powder is deposited on a table having a disk-shaped upper surface, and is hardly affected by the material of the table.
  • the angle formed by the cone-shaped powder and the horizontal plane is a protractor. Etc. can be easily measured.
  • the angle of repose can also be measured using a commercially available measuring machine.
  • the bulk density is preferably 0.001 g / cm 3 or more and 0.19 g / cm 3 or less, more preferably 0.002 g / cm 3 or more and 0.1 g / cm 3. 3 or less, more preferably, preferably 0.005 g / cm 3 or more 0.08 g / cm 3 or less.
  • the bulk density measurement of the CNT aggregate can be evaluated by two methods, that is, the loose bulk density and the tap bulk density.
  • FIG. 5 is a diagram illustrating a method for measuring loose bulk density and tap bulk density.
  • the loose bulk density is the bulk density after the CNT aggregate is put in a container and shaken vigorously.
  • the tap bulk density is a bulk density after a CNT aggregate is put in a container and dropped 20 times from a height of 25 mm onto a hard surface. In this specification, the bulk density of the CNT aggregate was determined as the tap bulk density.
  • the interaction between the CNTs constituting the CNT aggregate 200 is weak and is not aggregated.
  • the CNT aggregate 200 has a mutual relationship between the CNTs constituting the CNT aggregate. The action is weak and it is easy to loosen the CNT aggregate.
  • the bulk density is larger than the above numerical range, the interaction of the CNTs constituting the CNT aggregate is too strong and the CNT aggregate is difficult to loosen.
  • the CNT aggregate 200 preferably has a carbon purity of 98 mass% or more and / or a metal impurity of 1 mass% or less.
  • the impurities prevent the formation of a developed network and inhibit the dispersion of CNTs.
  • CNTs having a carbon purity of 98 mass% or more and / or metal impurities of 1 mass% or less are suitable for preparing a stable CNT dispersion.
  • the purity of the CNT aggregate of the present invention can be obtained from the result of elemental analysis using fluorescent X-rays.
  • the impurities cause the CNTs to adhere to each other, so that the CNT aggregate is difficult to loosen.
  • the carbon purity is 98% or less and / or the metal impurity is 1 mass% or more, formation of a good network is prevented.
  • the purity is within the above numerical range, there are few impurities and the CNT aggregate is easily loosened.
  • the specific surface area is preferably 800 m 2 / g or more and 2500 m 2 / g or less.
  • the specific surface area can be measured by measuring the adsorption / desorption isotherm of liquid nitrogen at 77K, and by the method of Brunauer, Emmett, Teller from this adsorption / desorption isotherm.
  • the specific surface area of the CNT aggregate 200 is within the above numerical range, there is a gap in which nitrogen molecules diffuse and adsorb between the CNTs constituting the CNT aggregate, so that the interaction between the CNTs is not excessively strong. , Easy to loosen the CNT aggregate.
  • the distribution maximum of the pore diameter determined in (1) is preferably 1 nm or more and 100 nm or less, 50 nm or less, more preferably 30 nm or less, and further preferably 25 nm or less.
  • the BJH method is a theoretical formula for obtaining a pore diameter distribution on the assumption that the pores are cylindrical.
  • the CNT aggregate 200 has an appropriate gap between the CNTs constituting the CNT aggregate, so that the interaction between the CNTs is not excessively strong and the CNT aggregate is easily loosened. .
  • the weight loss from 200 ° C. to 400 ° C. in thermogravimetry when the CNT aggregate 200 according to the embodiment of the present invention is heated at 1 ° C./min is 10% or less, more preferably 5% or less. It is preferable that This weight reduction can be measured by thermally analyzing the CNT aggregate in an air atmosphere. About 1 mg of a sample is placed in a differential thermal analyzer, and the temperature is raised from room temperature to 900 ° C. in air at a rate of 1 ° C./min.
  • the weight loss from 200 ° C. to 400 ° C. is the ratio of the weight loss amount between 200 ° C. and 400 ° C. to the weight loss amount between room temperature and 900 ° C. at that time.
  • carbon impurities such as amorphous carbon other than CNT are decomposed at 400 ° C. or lower. Therefore, when thermogravimetric measurement of a CNT aggregate containing carbon impurities is performed, a weight decrease between 200 ° C. and 400 ° C. is observed. . The more the carbon impurities, the higher the weight reduction rate from 200 ° C. to 400 ° C.
  • the carbon impurities attach the CNTs to each other, making it difficult to loosen, and the dispersibility of the CNT aggregate decreases. Therefore, in order to obtain a stable CNT dispersion, a CNT aggregate with few carbon impurities is preferable.
  • the method for producing the CNT aggregate 200 is not limited as long as a CNT aggregate that satisfies the conditions defined in this specification can be obtained.
  • the following production method is exemplified.
  • the loosened CNT aggregate 200 including the three-dimensional shape CNT aggregate 100 according to the present invention is obtained by processing the CNT bulk aggregate 10.
  • An example of a synthesis apparatus for the CNT bulk aggregate 10 is shown in FIG.
  • This synthesis apparatus 2000 includes a synthesis furnace 2030 made of, for example, quartz glass that receives a base material 2010 having a catalyst layer 2020, a gas supply pipe 2040 that is provided on the upper wall of the synthesis furnace 2030 and communicates with the synthesis furnace 2030, and a downstream side.
  • a gas exhaust pipe 2050 provided on the lower wall or side wall of the side and communicating with the synthesis furnace 2030; a heating means 2060 comprising, for example, a resistance heating coil provided so as to surround the synthesis furnace 2030; And a heating area 2070 in the synthesis furnace 2030 heated to a predetermined temperature by the heating means 2060 and the heating temperature adjusting means.
  • a base material holder 2080 for holding the base material 2010 including the catalyst layer 2020 is provided in the heating region 2070 in the synthesis furnace 2030 so that the heating volume is larger than the exhaust volume.
  • Forming means 2210 is arranged.
  • the gas flow forming means 2210 forms the flow of the source gas in a plurality of directions substantially parallel to the surface of the base material 2010.
  • the gas flow forming means 2210 is provided with a plurality of gas ejection means 2200 for forming a raw material gas flow substantially perpendicular to the plane of the base material 2010.
  • the gas ejection means 2200 is disposed in the same plane substantially parallel to the surface of the base material 2010.
  • the source gas supplied from the gas supply pipe 2040 is developed and dispersed in a plane substantially parallel to the plane of the base 2010, and then substantially the same as the plane of the base 2010.
  • the catalyst can be contacted from the vertical direction. Therefore, the raw material gas can be brought into contact with the catalyst with a substantially uniform supply amount per unit area in the region where the catalyst is arranged on the base material 2010, so that the CNT bulk aggregate 10 having a uniform structure and characteristics is obtained. Therefore, it is suitable for manufacturing the CNT aggregate 200 that is easily loosened according to the present invention.
  • a residence time adjusting unit 2140 configured by a turbulent flow suppressing unit 2220 formed of a plate-like rectifying plate having a plurality of holes is provided.
  • the heating volume in which the source gas is heated in the heating region 2070 can be increased, and the residence time that has not been considered to be increased can be adjusted in a longer direction. Therefore, the decomposition of the raw material gas is promoted, the raw material gas in a suitable form is brought into contact with the catalyst by the growth of CNT, and the raw material gas is converted to CNT more efficiently than before, thereby suppressing the attachment of carbon impurities to the CNT. Therefore, it is suitable for obtaining the CNT aggregate 200 that is easily loosened according to the present invention.
  • the turbulent flow suppression unit 2220 suppresses the turbulent flow of the raw material gas in the residence time adjusting unit 2140 and makes the residence time of the raw material gas flowing in the residence time adjusting unit 2140 substantially equal.
  • the catalyst on the base 2010 There is a remarkable effect in making the residence time at the time of contact with approximately equal.
  • turbulent flow is likely to occur. If there is turbulent flow, the residence time of the source gas flowing in the residence time adjusting means 2140 becomes longer, but it is not equal. . Since equalizing the residence time is suitable for suppressing the generation of carbon impurities, it is suitable for obtaining the CNT aggregate 200.
  • the synthesizing apparatus includes a raw material gas cylinder 2090 that contains a carbon compound that is a raw material of CNT, a catalyst activation material cylinder 2100 that contains a catalyst activation material, an atmospheric gas cylinder 2110 that contains a raw material gas and a carrier gas of the catalyst activation material, and a catalyst reduction And a carbon weight flux adjusting means 2130 capable of controlling the supply amount of each gas from these cylinders with a gas flow device.
  • a catalyst layer is produced on the base material 2010, and a plurality of CNTs are chemically vapor-grown (synthesized) from the catalyst.
  • a catalyst layer 2020 for example, an alumina-iron thin film
  • a synthesis furnace 2030 filled with an atmospheric gas (for example, helium) supplied from a gas supply pipe 2040.
  • a base material 2010 for example, a silicon wafer
  • the base material 2010 is disposed so that the surface of the catalyst layer 2020 and the flow path of the raw material gas are generally perpendicular to each other so that the raw material gas is efficiently supplied to the catalyst.
  • the base material 2010 is placed in the heating region 2070 so that the exhaust volume 2160 is smaller than the heating volume 2150, so that the source gas in contact with the catalyst layer 2020 is quickly exhausted. Further, the residence time of the source gas in the synthesis furnace 2030 is adjusted in advance by the residence time adjusting means 2140 so as to be optimal for the growth of CNTs.
  • a formation process is performed in which the inside of the synthesis furnace 2030 is heated to a predetermined temperature (for example, 750 ° C.) while a reducing gas (for example, hydrogen) is supplied from the gas supply pipe 2040 to the synthesis furnace 2030 and the state is maintained for a desired time. Do. With this reducing gas, the catalyst layer 2020 is made into fine particles and adjusted to a state suitable as a catalyst for CNTs. In the formation step, a catalyst activator may be added as necessary.
  • a reducing gas for example, hydrogen
  • the carbon weight flux adjusting means 2130 is used to stop or reduce the supply of the reducing gas and the atmospheric gas from the gas supply pipe 2040 according to the desired (reaction conditions), the raw material gas (for example, ethylene), the atmospheric gas, A catalyst activation material (for example, water) is supplied from a gas supply pipe 2040.
  • gases supplied from the gas supply pipe 2040 form gas flows directed in a plurality of directions substantially parallel to the plane of the base material 2010, and then substantially from the ejection holes to the plane of the base material 2010. Sprayed on the surface of the catalyst layer 2020 on the substrate 2010 in a substantially uniform amount from the vertical direction;
  • These gases flow through the heating volume 2150 increased / adjusted by the residence time adjusting means 2140, and after passing through the optimized residence time, the catalyst is supplied in an amount optimized using the carbon weight flux adjusting means 2130.
  • the CNT grows efficiently from the catalyst fine particles that are in contact with the surface of the layer 2020 and deposited on the base material 2010 at high speed and in high yield (growth process).
  • these gases come into contact with the catalyst fine particles on the base material 2010 with substantially equal residence time.
  • these gases are quickly exhausted from the gas exhaust pipe 2050, and the generation of carbon impurities is minimized. Since carbon impurities cause CNTs to adhere to each other, if there are many carbon impurities, the three-dimensional shape CNT aggregate 100 is difficult to loosen.
  • the raw material gas, catalyst activation materials, decomposition products thereof, or carbon impurities existing in the synthesis furnace 2030 remaining in the synthesis furnace 2030 are prevented from adhering to the CNT bulk aggregate 10. Therefore, only atmospheric gas is flowed to suppress contact of impurities with the CNT bulk aggregate 10 (carbon impurity adhesion suppressing step).
  • a CNT bulk aggregate 10 is formed.
  • the aligned CNT bulk aggregate 10 synthesized by the above-described method has CNTs appropriately entangled with each other, and when peeled from the base material, the CNTs do not come apart and are easily peeled in the form of an appropriately sized aggregate. . Furthermore, since the generation and adhesion of carbon impurities is suppressed in the CNT bulk aggregate 10 and there is an appropriate gap between the CNTs, the CNTs are easy to unwind and have high dispersibility. Furthermore, CNT has a high specific surface area. Such a CNT bulk aggregate 10 is suitable for obtaining the CNT aggregate 200.
  • the CNT bulk aggregate 10 is peeled from the substrate using a physical, chemical or mechanical method.
  • a peeling method for example, a method of peeling using an electric field, a magnetic field, centrifugal force, and surface tension, a method of mechanically peeling directly from a substrate, a method of peeling from a substrate using pressure or heat, and the like are applicable.
  • a method of sucking the CNT bulk aggregate 10 using a vacuum pump and peeling it off from the substrate is preferable for obtaining a flake-shaped CNT aggregate 200 that can be easily loosened.
  • the CNT bulk aggregate 10 according to the embodiment of the present invention is classified by a classification process to obtain the CNT aggregate 200.
  • the classification step according to the present embodiment is a step of obtaining the CNT aggregate 200 having a uniform size by setting the size of the CNT aggregate 200 within a predetermined range.
  • the CNT bulk aggregate 10 peeled from the synthetic substrate includes a large-sized massive synthetic product. Since these large lumped CNT aggregates have low dispersibility, the production of a stable dispersion is hindered. Therefore, it is preferable to use a CNT aggregate 200 that has passed through a net, filter, mesh, etc., excluding a large block of CNT aggregates in the subsequent steps, in order to obtain a product excellent in dispersibility.
  • the loosened CNT aggregate 200 including the three-dimensionally shaped CNT aggregate 100 manufactured in this way can provide a CNT aggregate including a network body made of CNTs that are easy to loosen. Further, it is possible to provide a CNT dispersion or a CNT molded body having a high dispersibility and a stable CNT dispersion while maintaining the excellent electrical characteristics, thermal conductivity, and mechanical properties of CNT.
  • the CNT aggregate 300 including the mesh body 360 can be manufactured using the CNT aggregate including the three-dimensional shape CNT aggregate 100 according to the embodiment of the present invention.
  • the “CNT aggregate including a mesh body” is an aggregate of CNTs obtained by subjecting the CNT aggregate 200 to a dispersion treatment.
  • the CNT 300 including the network 360 is an aggregate that maintains the excellent electrical characteristics, thermal conductivity, and mechanical properties of the CNTs, and has high dispersibility and facilitates the production of a stable CNT dispersion or CNT molded body. It is.
  • “mesh” refers to CNTs (or bundles of CNTs) and CNTs (or bundles of CNTs) having fine pores (clearances) as shown in the SEM images of FIGS.
  • the CNT aggregate 300 having the network 360 has “a gap in which a dispersion medium can be easily impregnated between the CNTs, and this gap is present between the CNTs.
  • the CNT aggregate 300 has a trunk portion 370 made of a plurality of oriented CNTs.
  • the CNT aggregate 300 can be taken out from the CNT dispersion by the following procedure.
  • a CNT dispersion liquid containing a CNT aggregate 200 containing 100 mg of CNTs is prepared.
  • Place Millipore paper (Millipore's Filter Membrane: DURAPORE (registered trademark) (0.22 ⁇ m GV, 45mm diameter 45mm) in a container that can be evacuated, and filter the CNT dispersion with Millipore paper.
  • a thin CNT molded body having a thickness of about 70 ⁇ m is produced by sandwiching the CNT deposited on the Millipore paper between two filter papers and vacuum-dried at 70 ° C. for 12 hours.
  • the CNT compact 300 can be easily peeled off to obtain the CNT aggregate 300.
  • the network 360 is, so to speak, a highly developed network of CNTs stretched over a wide area, and gives a field where the CNT aggregate 300 efficiently interacts with a material different from CNTs such as a dispersion medium.
  • the CNT aggregate 300 includes the mesh body 360, and thus has a function of transmitting donated electrons, phonons, and mechanical stress to a distant place without being attenuated efficiently. That is, when a molded body and / or a composition is produced from a CNT dispersion liquid in which the CNT aggregate 200 is dispersed in a dispersion medium, electrons, phonons, mechanical stress, etc. are efficiently transmitted between the CNTs. In addition, there is an advantage that the characteristics inherent to CNT can be sufficiently exhibited.
  • CNT dispersion refers to a solution in which the CNT aggregate 200 is dispersed in a dispersion medium.
  • Dispersion refers to a state in which the CNT aggregates 200 are visually dispersed in a dispersion medium.
  • separation indicates a state where CNTs are scattered in the dispersion medium. Even if the CNTs are loosened one by one, in a bundled state, bundles of various thicknesses are mixed, and dispersed in the dispersion medium, the CNTs are expressed as dispersed. Further, it means a state in which the CNT aggregate is separated from the dispersion medium by visual observation. Even if the CNT dispersion liquid according to this example is left for 10 days, more preferably 20 days, the CNT aggregate 200 and the dispersion medium do not separate.
  • the interaction between the CNT and the dispersion medium increases, and the CNT aggregate is stably dispersed in the dispersion medium.
  • the CNT aggregate 300 according to the present embodiment has the above-described characteristics and structure, it has an excellent characteristic that it is very stably dispersed in the dispersion medium.
  • the CNT dispersion liquid 400 produced by the method of Example 1 retained dispersion without separation of the CNT aggregate 300 and the dispersion medium even in stationary storage for half a year.
  • the CNT dispersion 4000 of Comparative Example 1 was able to maintain dispersion only for about 1 to 2 days, and the CNT aggregate and the dispersion medium were separated.
  • the CNT dispersion 400 according to the present embodiment can be manufactured by dispersing the CNT aggregate 200 in a dispersion medium.
  • the CNT aggregate 200 described in the present embodiment can be manufactured and manufactured by the following dispersion process. It is preferable to perform the drying process of the CNT aggregate 200 before the dispersion process. In particular, when a hydrophobic solvent is used, performing the drying step is suitable for enhancing the dispersibility. Since the CNT constituting the CNT aggregate 200 according to the present embodiment has a large specific surface area and an appropriate pore diameter, moisture in the atmosphere is easily adsorbed during storage and transportation in the atmosphere. In such a state where moisture is adsorbed, CNTs are bonded to each other due to the surface tension of water.
  • the CNT aggregate 200 becomes very difficult to unwind, and the CNT aggregate 300 having the network 360 having excellent dispersibility. Prevents the formation of. Therefore, by performing the drying process of the CNT aggregate 200 before the dispersing process, it is possible to remove moisture contained in the CNT aggregate 200 and improve the dispersibility in the dispersion medium.
  • heat drying or vacuum drying can be used in the drying process according to the present embodiment, and heat vacuum drying is preferably used.
  • a dispersion device such as a stirrer, a homogenizer, a colloid mill, a flow jet mixer, a dissolver, a paint conditioner, a Menton emulsifier, a jet mill, an ultrasonic device or the like can be used.
  • grinding means such as ball milling (ball mill, vibration ball mill, planetary ball mill, bead mill, etc.), sand milling, colloid milling, jet milling, roller milling, and vertical or horizontal agitator mill, attritor Dispersers such as a colloid mill, a three-roll mill, a pearl mill, a super mill, an impeller, a disperser, a KD mill, a dynatron, and a pressure kneader can be used.
  • a method of dispersing CNTs by shear stress is preferable. It is preferable to use a jet mill for the dispersion process of the dispersion liquid of the CNT aggregate 300 according to the present embodiment.
  • a wet jet mill can be suitably used.
  • a mixture in a solvent is fed as a high-speed flow from a nozzle arranged in a sealed state in a pressure vessel.
  • the CNT aggregate 200 is dispersed by collision between opposing flows, collision with a vessel wall, turbulent flow generated by high-speed flow, shear flow, or the like.
  • the processing pressure in the dispersion step of the CNT dispersion 400 according to this embodiment is within the range of 10 MPa to 150 MPa. Is preferred.
  • the CNT dispersion liquid 400 according to this example manufactured in this way is a CNT assembly including a network body 360 having a stable and highly dispersible material while maintaining the excellent electrical characteristics, thermal conductivity, and mechanical properties of CNTs.
  • a dispersion of body 300 can be provided.
  • hydrophilic solvents include carbonates (ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, butylene carbonate, etc.), ethers (tetrahydrofuran, etc.), ketones (acetone, etc.), lower alcohols (methanol, Ethanol etc.), acetonitrile and the like.
  • Hydrophobic solvents include hydrocarbons (toluene, benzene, xylene, hexane, cyclohexane, etc.), chlorine-containing hydrocarbons (methylene chloride, chloroform, chlorobenzene, etc.), ethers (dioxane, tetrahydrofuran, methyl cellosolve, etc.) , Ether alcohol (ethoxyethanol, methoxyethoxyethanol, etc.), esters (methyl acetate, ethyl acetate, etc.), ketones (cyclohexanone, methyl ethyl ketone, 4-methylpentan-2-one, methyl isobutyl ketone, etc.), alcohols (isopropanol) Phenol, etc.), lower carboxylic acids (acetic acid, etc.), amines (triethylamine, trimethanolamine, etc.), nitrogen-containing polar solvents (N, N-dimethylformamide, nitrome
  • a surfactant As the dispersant, a surfactant, various polymer materials, and the like may be added to the CNT dispersion liquid 400.
  • the dispersant is useful for improving the dispersibility and dispersion stabilization capability of the CNT aggregate 200.
  • Surfactants are classified into ionic surfactants and nonionic surfactants, but any surfactant can be used in this embodiment. Examples of the surfactant include the following surfactants. Such surfactants can be used alone or in admixture of two or more.
  • the ionic surfactant is classified into a cationic surfactant, an amphoteric surfactant and an anionic surfactant.
  • the cationic surfactant include alkylamine salts and quaternary ammonium salts.
  • amphoteric surfactants include alkylbetaine surfactants and amine oxide surfactants.
  • anionic surfactants include alkylbenzene sulfonates such as dodecylbenzene sulfonic acid, aromatic sulfonic acid surfactants such as dodecyl phenyl ether sulfonate, monosoap anionic surfactants, ether sulfate-based interfaces
  • alkylbenzene sulfonates such as dodecylbenzene sulfonic acid
  • aromatic sulfonic acid surfactants such as dodecyl phenyl ether sulfonate, monosoap anionic surfactants, ether sulfate-based interfaces
  • examples thereof include an activator, a phosphate surfactant, and a carboxylic acid surfactant.
  • aromatic ionic surfactants are preferable because they are excellent in dispersibility, dispersion stability, and high concentration, and in particular, aromatics such as alkylbenzene sulfonate and dodecyl phenyl ether sulfonate.
  • aromatics such as alkylbenzene sulfonate and dodecyl phenyl ether sulfonate.
  • Group ionic surfactants are preferred.
  • nonionic surfactants include sugar ester surfactants such as sorbitan fatty acid esters and polyoxyethylene sorbitan fatty acid esters, fatty acid ester surfactants such as polyoxyethylene resin acid esters and polyoxyethylene fatty acid diethyl , Polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, ether surfactants such as polyoxyethylene / polypropylene glycol, polyoxyalkylene octyl phenyl ether, polyoxyalkylene nonyl phenyl ether, polyoxyalkyl dibutyl phenyl ether, poly Oxyalkyl styryl phenyl ether, polyoxyalkyl benzyl phenyl ether, polyoxyalkyl bisphenyl ether, polyoxyalkyl alkyl Aromatic anionic surfactants such as phenyl ether and the like. Of these, aromatic nonionic surfactants are preferred because of their excellent dispersibility, disper,
  • CNT molded body refers to all of the CNT aggregates having a network body taken out of the CNT dispersion liquid and shaped by processing or processing. “Molding or processing” refers to all operations that pass through operations and processes that change the shape of the CNT aggregate 300.
  • Examples of the CNT molded body 500 include yarns, chips, pellets, sheets, blocks, and the like made of the CNT aggregate 300. The resulting CNT molded body 500 is also a result obtained by combining these or further molding or processing.
  • a liquid containing the CNT aggregate 300 is removed by filtration, evaporation or the like, and formed into a film, film or sheet, or a liquid containing the CNT aggregate 300.
  • a method of evaporating the dispersion medium after putting the in a mold can be mentioned.
  • a method of compressing the CNT aggregate 300 with a press machine, a method of cutting or cutting with a blade, and the like can be used.
  • the CNT molded body 500 can be obtained as a sheet called a so-called bucky paper, which is deposited on the filter paper by filtering the CNT dispersion liquid 400.
  • a thin-film CNT molded body 500 has excellent conductivity, and can be suitably used, for example, as an electrode of a capacitor.
  • the CNT molded body 500 according to the present embodiment is a method such as spin coating, dip coating, spray-up, coating, printing, extrusion, casting, or injection of the CNT dispersion liquid 400 on a substrate such as a silicon wafer. It can also be used as a thin film-like CNT molded body 500.
  • the substrate is an object to which the CNT dispersion 400 is applied and / or an object to which the CNT aggregate 300 and / or a CNT molded body is attached, and is not affected by the shape, material, or attachment method.
  • the shape for example, the shape of the substrate may be a flat surface, a curved surface or a flexible one, and the thickness of the substrate is not limited. Examples of the material include various metals, ceramics, silicon substrates, and resins. Further, the entire surface of the substrate need not be covered with the CNT dispersion 400 and / or the CNT aggregate 300 and / or the CNT molded body 500.
  • the CNT dispersion 400 and / or the CNT aggregate 300 and / or the CNT molded body 500 are patterned, the substrate surface is partially exposed, the electronic circuit is formed, etc. Can be considered. Further, the CNT dispersion liquid 400 and / or the CNT aggregate 300 and / or the CNT molded body 500 do not have to be mounted in direct contact with the substrate, and heat conduction characteristics, adhesiveness, etc. between the substrate and the substrate. An intermediate layer may be provided for the purpose of improvement.
  • the “CNT composition” refers to all of the CNT dispersion liquid, the CNT aggregate taken out from the CNT dispersion liquid, and / or the CNT molded body in a state of being dispersed with other substances.
  • the composition including the CNT aggregate 300 and / or the CNT molded body 500 or the CNT dispersion liquid 400 according to the present example is very conductive, excellent in strength, or excellent in thermal conductivity. Alternatively, a composition having high conductivity and excellent strength can be obtained.
  • the “other substances” are, for example, resins, metals, glasses, ionic liquids, rubbers, and the like. Further, it may be an adhesive, cement, gypsum, ceramics or the like. These substances may be used alone or in combination of two or more.
  • the CNTs are scattered in the above substance even if they are loosened one by one, bundled, or bundles of various thicknesses are mixed. For example, it is expressed that CNTs are dispersed.
  • the content of CNT in the composition depends on the type of substance other than the above CNTs, but it can be suitably contained in the composition from 0.01% by weight to 20% by weight, and more preferably 0%. 0.01 wt% or more and 10 wt% or less, more preferably 0.01 wt% or more and 5 wt% or less, and more preferably 0.05 wt% or more and 1 wt% or less. Although it depends on the purpose, if too much CNT is added, the strength of the CNT composition may decrease.
  • the resin is not particularly limited as long as CNTs can be mixed or dispersed, and natural resins or synthetic resins can be used. Moreover, as a synthetic resin, a thermosetting resin and a thermoplastic resin can be used conveniently. A thermoplastic resin is preferable because the molded article obtained has excellent impact strength and can be subjected to press molding and injection molding with high molding efficiency.
  • thermosetting resin For example, unsaturated polyester resin, vinyl ester resin, epoxy resin, cyanate ester resin, benzoxazine resin, phenol (resole type) resin, urea melamine resin, thermosetting polyimide, etc.
  • unsaturated polyester resin vinyl ester resin, epoxy resin, cyanate ester resin, benzoxazine resin, phenol (resole type) resin, urea melamine resin, thermosetting polyimide, etc.
  • these copolymers, modified products, resins blended with two or more types, and the like can be used.
  • thermoplastic resin is not particularly limited.
  • Resin polystyrene, polyolefin, polyurethane, polyester, polyamide, polybutadiene, polyisoprene, Thermoplastic elastomers containing systems such as, copolymers thereof or modified product, and the like can be used those resins of two or more blended resins.
  • the metal is not particularly limited as long as CNT can be mixed or dispersed, and aluminum, copper, silver, gold, iron, nickel, zinc, lead, tin, cobalt, chromium, titanium, tungsten, and the like can be used alone or in combination.
  • the glass is not particularly limited as long as it can mix or disperse CNTs, and examples thereof include soda lime glass, lead glass, and borate glass.
  • the rubber component used in the CNT composition according to this example is not particularly limited, and may be either natural rubber or synthetic rubber.
  • synthetic rubber emulsion polymerization styrene-butadiene rubber, solution polymerization styrene-butadiene rubber, high cis-1,4-polybutadiene comb, low cis-1,4-polybutadiene rubber, high cis-1,4-poly
  • General purpose synthetic rubber such as isoprene rubber, diene special rubber such as nitrile rubber, hydrogenated nitrile rubber and chloroprene rubber, olefin special rubber such as ethylene-propylene rubber, butyl rubber, halogenated butyl rubber, acrylic rubber and chlorosulfonated polyethylene
  • other special rubbers such as hydrin rubber, fluorine rubber, polysulfide rubber and urethane rubber can be mentioned.
  • natural rubber and general-purpose synthetic rubber are preferable from the viewpoint of
  • Example 1 Examples of the CNT dispersion 400 and the CNT molded body 500 according to the present invention described above will be described in detail below. The following examples are merely examples, and the CNT dispersion 400 and the CNT molded body 500 of the present invention are not limited to these examples.
  • the CNT bulk aggregate 10 was manufactured by adopting the same method as that described in the embodiment. This will be described with reference to FIGS.
  • a quartz tube inner diameter: 80 mm
  • the length of the heating means 2060 and the heating area 2070 was 265 mm.
  • a substrate holder 2080 made of quartz was provided 20 mm downstream from the horizontal position of the center.
  • the base material holder 2080 is installed in the horizontal direction, and a flat base material 2010 can be placed thereon.
  • the upper wall of the synthesis furnace 2030 is provided with a gas supply pipe 2040 made of a heat-resistant alloy having a diameter of 22 mm (inner diameter of 20 mm) inserted in an opening provided in the center of the upper wall of the synthesis furnace 2030, and the lower wall.
  • the gas exhaust pipe 2050 inserted in the vertical direction was provided in an opening provided at the center of the lower wall of the synthesis furnace 2030.
  • a heating unit 2060, a heating unit 2060, and a heating temperature adjusting unit including resistance heating coils provided around the synthesis furnace 2030 are provided, and a heating region 2070 in the synthesis furnace 2030 heated to a predetermined temperature is defined (heating unit).
  • the total length of 2060 was 265 mm, and the length of the heating region 2070 was 265 mm).
  • a gas flow forming means 2210 made of a heat-resistant alloy Inconel 600 having a cylindrical and flat hollow structure with a diameter of 60 mm was provided so as to communicate with the end of the gas supply pipe 2040 in the synthesis furnace 2030.
  • the gas supply pipe 2040 was connected to and connected to the center of the gas flow forming means 2210.
  • the gas flow forming means 2210 was arranged in the same plane substantially parallel to the surface of the base material 2010, and the center of the base material 2010 was arranged to coincide with the center of the gas flow forming means 2210. Further, the gas flow forming means 2210 is provided with a gas jetting means 2200 comprising a plurality of jet holes having a jet hole diameter of 0.5 mm.
  • the gas flow forming means 2210 has a cylindrical shape having a hollow structure, and the dimensions are the surface size: 60.0 mm ⁇ 16.7 mm, the diameter of the gas ejection means 2200: 0.5 mm, and the number of the gas ejection means 2200: There were 82.
  • the ejection holes of the gas ejection means 2200 were provided at positions facing the catalyst layer 2020 of the base material 2010, and the source gas was discharged to the catalyst from a direction substantially perpendicular to the plane of the base material 2010.
  • the facing position refers to an arrangement in which the angle of the ejection hole formed by the ejection axis with the normal of the substrate is 0 ° or more and less than 90 °.
  • the distance between the gas ejection means 2200 and the opposing catalyst surface was 140 mm.
  • the raw material gas supplied to the synthesis furnace 2030 in the form of dots from the gas supply pipe 2040 is diffused and distributed, and the raw material gas flows in all directions over 360 degrees substantially parallel to the plane of the base material 2010. Then, the source gas contacts the surface of the catalyst layer 2020 on the base material 2010 from a direction substantially perpendicular to the plane of the base material 2010.
  • the residence time adjusting means 2140 is a turbulent flow preventing means 2200 connected to a gas flow forming means 2210 in which 8 holes of ⁇ 4 mm are formed in the first layer and 101 holes of ⁇ 0.5 mm are formed in the second layer.
  • the distance: 140 mm between the gas flow forming means 2210, the gas ejection means 2200 and the catalyst surface is defined as the length of the residence time adjusting means 2140. In this apparatus, the length of the residence time adjusting means 2140 coincides with the distance from the gas ejection means 2200 provided in the gas flow forming means 2210 provided facing the catalyst surface.
  • the carbon weight flux adjusting means 2130 reduces a raw material gas cylinder 2090 that is a carbon compound that is a raw material of CNT, a catalyst activation material cylinder 2100 as needed, an atmospheric gas cylinder 2110 that is a carrier gas of the raw material gas and the catalyst activation material, and a catalyst. Therefore, the supply amount of the source gas was controlled by supplying the reducing gas cylinders 2120 to the gas supply pipe 2040 while independently controlling the supply amounts.
  • a Si base material with a thermal oxide film having a thickness of 500 nm obtained by sputtering 30 nm of Al 2 O 3 as a catalyst and 1.8 nm of Fe (length 40 mm ⁇ width 40 mm) was used.
  • the base material 2010 was carried onto the substrate holder 2080 installed 20 mm downstream from the horizontal position at the center of the heating region 2070 of the synthesis furnace 2020 (carrying-in process).
  • the substrate was placed in a horizontal direction.
  • the flow path of the catalyst on the substrate and the source gas intersects generally vertically, and the source gas is efficiently supplied to the catalyst.
  • the inside of the synthesis furnace 2030 having a furnace pressure of 1.02 ⁇ 10 5 Pa is heated by the heating means 2060.
  • the temperature in the synthesis furnace 2030 was increased from room temperature to 810 ° C. over 15 minutes, and the substrate with catalyst was heated for 3 minutes while maintaining the temperature at 810 ° C.
  • the iron catalyst layer was reduced to promote the formation of fine particles in a state suitable for the growth of single-walled CNTs, and a large number of nanometer-sized catalyst fine particles were formed on the alumina layer.
  • the temperature of the synthesis furnace 2030 at an internal pressure of 1.02 ⁇ 10 5 Pa (atmospheric pressure) is 810 ° C., and the total flow rate is 2000 sccm and the atmospheric gas so that the carbon weight flux is 192 g / cm 2 / min.
  • He total flow ratio 84% (1680 sccm)
  • source gas C 2 H 4 total flow ratio 10% (200 sccm)
  • H 2 O-containing He as catalyst activator (relative humidity 23%): total flow ratio 6% (120 sccm) was fed for 10 minutes.
  • the residence time in the furnace was 7 seconds.
  • a plurality of CNTs grown simultaneously from the catalyst layer 2020 on the base material 2010 are grown and oriented in a direction orthogonal to the catalyst layer 2020, and have a high specific surface area and high purity CNT bulk aggregate 10 having almost the same height. Configure.
  • the aligned CNT aggregates synthesized by the method described above are appropriately entangled with each other, and when peeled from the base material 2010, the CNTs do not come apart and are easily peeled in the form of an appropriately sized aggregate. Furthermore, since the generation and adhesion of carbon impurities is suppressed in the CNT bulk aggregate 10 and there is an appropriate gap between the CNTs, the CNTs are easy to unwind and have high dispersibility. Furthermore, CNT has a high specific surface area. Such a CNT aggregate is suitable for obtaining the CNT aggregate 200 including the three-dimensional shape CNT aggregate 100 according to the present invention.
  • the CNT aggregate 200 is placed on one side of a mesh having a mesh opening of 0.8 mm, sucked with a vacuum cleaner through the mesh, and the passed material is collected. From the CNT aggregate 200, large lumped CNTs are collected. The aggregate was removed and classification was performed (classification process).
  • the CNT aggregate 200 was measured by the Karl Fischer reaction method (manufactured by Mitsubishi Chemical Analytech Co., Ltd., coulometric titration type trace moisture measuring device CA-200 type). After drying the CNT aggregate 200 under predetermined conditions (maintained at 200 ° C. for 1 hour under vacuum), the vacuum is released in a glove box in a dry nitrogen gas stream, and about 30 mg of CNT is taken out, and a glass boat of a moisture meter The CNT aggregate 200 is transferred to The glass boat moves to a vaporizer where it is heated at 150 ° C. for 2 minutes, during which the vaporized water is carried with nitrogen gas and reacts with iodine by the adjacent Karl Fischer reaction.
  • the amount of water is detected from the amount of electricity required to generate an amount of iodine equal to the iodine consumed at that time.
  • the CNT aggregate 200 before drying contained 0.8% by weight of water.
  • the dried CNT aggregate 200 was reduced to 0.3 wt% moisture.
  • CNT aggregate 200 including three-dimensional shape CNT aggregate 100 10 to 14 show SEM images of the CNT aggregate 200 including the three-dimensionally shaped CNT aggregate 100 according to the present example manufactured as described above.
  • 10A is an SEM image of the CNT aggregate 200 at a magnification of 30 times
  • FIG. 10B and FIG. 10C are a magnification of 50 times
  • FIG. 10D is a magnification of 180 times. Most CNT aggregates observed in FIG.
  • FIG. 10 (a) have a first surface (upper surface) with at least three sides, a second surface (lower surface) with at least three sides arranged in parallel therewith, and It was confirmed that the three-dimensional shape CNT aggregate 100 according to the present example was manufactured by the above-described manufacturing method by including the side surface and further including the bundle 110, the CNT partition piece 130, and the fissure 150. Further, FIG. 10B shows an example of observation of the CNT partition piece 130, FIG. 10C shows the fissure 150, and FIG. 10D shows the bundle 110. Further, in FIG. 10D, it is clear that the side surface 105 having the bundle 110 on the outermost surface is perpendicular to the upper surface 101 and the lower surface 103.
  • FIGS. 11A and 11B show that three-dimensional shape CNT aggregates 100 with various lengths of the side surface 105 can be manufactured.
  • the length of the three-dimensional shape CNT aggregate 100 in FIGS. 11A and 11B is 450 ⁇ m to 550 ⁇ m, and the length of the three-dimensional shape CNT aggregate 100 in FIGS. 11C and 11D is 250 ⁇ m. .
  • the arrows in the figure indicate the length and orientation direction of the side surface 105 of the three-dimensional shape CNT aggregate 100.
  • the three-dimensional shape CNT aggregate 100 according to the present embodiment can be manufactured in a range where the length of the side surface 105 is 10 ⁇ m or more and 1 cm or less by adjusting the synthesis time.
  • the three-dimensional shape CNT aggregate 100 having various shapes exists in the CNT aggregate 200 according to the present embodiment. It can be seen that the side surface 105 of the three-dimensional shape CNT aggregate 100 is rectangular, whereas the upper surface 101 and the lower surface 103 are various polygons (including a circle) having at least three sides.
  • FIGS. 13A to 13D show that the upper surface 101 and the lower surface 103 of the three-dimensional shape CNT aggregate 100 according to this embodiment are arranged in parallel to each other.
  • Line 1 in the figure represents a parallel line. This is because a plurality of CNTs grown simultaneously from the catalyst layer 2020 on the base material 2010 are grown and oriented in a direction perpendicular to the catalyst layer 2020 by using the manufacturing method described above, and the CNTs whose heights are generally uniform. This is because the bulk aggregate 10 can be configured and used as a raw material for the CNT aggregate 200.
  • FIG. 14A to 14D show that the side surface 105 of the three-dimensional shape CNT aggregate 100 according to the present embodiment is perpendicular to the upper surface 101 and the lower surface 103.
  • FIGS. 15A and 15B are SEM images of the top surface 101 of the three-dimensional shape CNT aggregate 100 observed from the vertical direction. A network of CNTs is observed on the upper surface 101 of the three-dimensional shape CNT aggregate 100 according to the present embodiment. On the upper surface 101, it has become clear that the tips of the CNTs are locally discrete and gathered to form a CNT network.
  • 16A and 16B are SEM images obtained by observing the upper surface 101 of the three-dimensional shape CNT aggregate 100 obliquely from above.
  • the upper surface 101 of the three-dimensional shape CNT aggregate 100 has a planar shape, it can be seen that there are irregularities microscopically because a network of CNTs is formed.
  • the three-dimensional shape CNT aggregate 100 according to the present embodiment does not completely separate when loosened, but exists as a flake-shaped CNT aggregate. It is speculated that you can.
  • 20 to 23 are SEM images of the lower surface 103 arranged in parallel to the upper surface 101 of the three-dimensional shape CNT aggregate 100 according to the present example.
  • 20A and 20B are SEM images obtained by observing the lower surface 103 of the three-dimensional shape CNT aggregate 100 from the vertical direction.
  • FIGS. 21A and 21B are SEM images obtained by magnifying the lower surface 103 of the three-dimensional shape CNT aggregate 100 from the vertical direction.
  • a network of CNTs is observed on the lower surface 103 of the three-dimensional shape CNT aggregate 100 according to the present embodiment.
  • On the lower surface 103 it became clear that the tip portions of the CNTs were locally discrete and gathered to form a CNT network.
  • any surface may be the upper surface (first surface) or the lower surface (second surface).
  • the Herman orientation coefficient of the upper surface 101 calculated by the method described in the specification was 0.05. Similarly, the Herman orientation coefficient of the lower surface 103 was 0.03.
  • the highly oriented three-dimensional shape CNT aggregate 100 is weak in the interaction of the CNTs constituting it, and the CNT partition pieces 130 are easily peeled off from the three-dimensional shape CNT aggregate 100 and are easily loosened. It is assumed that when a crack occurs in the three-dimensional shape CNT aggregate 100 starting from the above, the CNT aggregate easily peels and becomes easy to loosen.
  • FIG. 22A and 22B are SEM images obtained by observing the lower surface 103 of the three-dimensional shape CNT aggregate 100 obliquely from above.
  • the lower surface 103 of the three-dimensional shape CNT aggregate 100 has a planar shape, it can be seen that there is unevenness microscopically because a network of CNTs is formed.
  • FIG. 23A is an SEM image obtained by observing the side portion of the lower surface 103 of the three-dimensional shape CNT aggregate 100, and FIG.
  • the three-dimensional shape CNT aggregate 100 according to the present embodiment does not completely separate when loosened, but exists as a flake-shaped CNT aggregate. It is speculated that you can.
  • FIG. 24 is an SEM image of a bundle 110 of CNTs extending from the outermost surface of the side surface 105 of the three-dimensionally shaped CNT aggregate 100 according to this example.
  • FIG. 25 is an enlarged image of the bundle 110 extending from the side surface 105. It is observed that the bundle 110 exists only on the side surface 105 and peels only from the side surface 105. 26, one end of the bundle 110 exists on the outermost surface of the side surface 105, and it can be seen that the bundle 110 extends from the side surface 105.
  • the bundle 110 is formed of a plurality of CNTs. As is clear from FIG. 28, the size of the bundle 110 and the number of CNTs constituting the bundle 110 are various.
  • the bundle 110 is extended with a diameter (thickness) of several tens nm to several ⁇ m.
  • the arrow indicates the bundle 110.
  • the bundle 110 extends only from the side surface 105, and in particular, many bundles 110 extend from the CNT partition piece 130. Further, the bundle 110 varies from a length of several ⁇ m as shown in FIG. 30A to a length corresponding to the length in the orientation direction of the three-dimensional shape CNT aggregate 100 as shown in FIG. It is. Furthermore, as shown in FIG. 31, the length of the bundle 110 also varies in the range from 1 ⁇ m to several 500 ⁇ m.
  • the number of bundles 110 extending from one three-dimensional shape CNT aggregate 100 and one side surface 105 is various.
  • about 30 bundles 110 extending from one side surface 105 of the three-dimensional shape CNT aggregate 100 are bundles 110 extending from all the side surfaces 105 of the three-dimensional shape CNT aggregate 100.
  • 26 bundles 110 extending from one side surface 105 of the three-dimensional shape CNT aggregate 100 are 104 bundles 110 extending from all side surfaces 105 of the three-dimensional shape CNT aggregate 100. It was a book.
  • FIG. 32A about 30 bundles 110 extending from one side surface 105 of the three-dimensional shape CNT aggregate 100 are bundles 110 extending from all the side surfaces 105 of the three-dimensional shape CNT aggregate 100.
  • 26 bundles 110 extending from one side surface 105 of the three-dimensional shape CNT aggregate 100 are 104 bundles 110 extending from all side surfaces 105 of the three-dimensional shape CNT aggregate 100. It was a book.
  • FIG. 32A about 30 bundles 110
  • 21 bundles 110 extending from one side surface 105 of the three-dimensional shape CNT aggregate 100 are 84 bundles 110 extending from all side surfaces 105 of the three-dimensional shape CNT aggregate 100. It was a book.
  • 21 bundles 110 extending from one side surface 105 of the three-dimensional shape CNT aggregate 100 are 84 bundles 110 extending from all side surfaces 105 of the three-dimensional shape CNT aggregate 100. It was a book.
  • the bundle 110 extending from the side surface 105 of the three-dimensional shape CNT aggregate 100 according to the present embodiment is various and has a characteristic of being easily peeled off from the three-dimensional shape CNT aggregate 100.
  • the three-dimensional shape CNT aggregate 100 has a plurality of bundles 110 and thus has a characteristic that the three-dimensional shape CNT aggregates hardly aggregate.
  • the CNT aggregate 200 including the three-dimensional shape CNT aggregate according to this example was evaluated with a mercury intrusion porosimeter.
  • FIG. 33 shows the measurement results of pore diameter and pore volume.
  • the pore diameter at which the differential pore volume in the range of the pore diameter of 0.1 ⁇ m to 100 ⁇ m is maximized is 8 ⁇ m.
  • the pore volume at the pore diameter at which the differential pore volume is maximum is 17.5 mL / g.
  • This measurement result is much larger than the pore diameter of the CNT bulk aggregate 10 as a raw material. Therefore, it is surmised that the above numerical range evaluates a gap existing between CNT aggregates. In addition, it is assumed that such a gap between the CNT aggregates is generated by preventing the bundle 110 described above from aggregating the CNT aggregates.
  • the bulk density of the CNT aggregate 200 according to this example was measured.
  • the bulk density measured loose bulk density and tap bulk density.
  • a single-layer CNT commonly known as HiPco (High-pressure carbon monoxide process) manufactured by Unidim was used.
  • HiPco High-pressure carbon monoxide process
  • For the measurement of loose bulk density put a CNT aggregate with a known weight in a container with a known bottom area, shake it vigorously, let it settle, let the CNT aggregate settle, measure the height and calculate the volume. It was.
  • the container in which the loose bulk density was measured was repeatedly dropped 20 times from a height of 25 mm onto a hard surface, the height was measured, and the volume was determined by calculation.
  • FIG. 34 shows the measurement results of the bulk density. Loose bulk density 0.019 g / cm 2, tapped bulk density became 0.024 g / cm 2.
  • the bulk density of the CNT aggregate 200 according to this example is significantly smaller than that of the comparative example.
  • the CNT aggregate 200 includes the bundle 110 to prevent the CNT aggregates from aggregating due to a gap between the CNT aggregates.
  • the angle of repose of the CNT aggregate 200 according to this example was measured.
  • the angle of repose was measured by the injection method.
  • the angle of repose was measured with and without a straw. HiPco was used for the comparative example.
  • FIG. 35 shows the measurement result of the angle of repose.
  • FIG. 36 is a table showing the measurement results of the bulk density and repose angle of the CNT aggregate 200.
  • the CNT aggregate 200 according to this example has an angle of repose of 65 ⁇ 10 degrees, and it has become clear that the angle of repose is larger than that of the comparative example. Since the CNT aggregate 200 has moderate friction between the CNT aggregates, it is presumed that the CNT aggregates hardly aggregate when subjected to dispersion treatment.
  • the CNT aggregate 200 was observed with a TEM (JEM-2100 manufactured by JEOL Ltd.). The measurement magnification is 50,000 times to 500,000 times. The acceleration voltage is 120 kV. Single-walled CNTs with no carbon impurities attached were observed. In addition, single-walled CNT accounted for 98% or more (98) of 100 CNTs, and 2% were 2 layers. In addition, by setting the thickness of the iron catalyst to 2.5 nm, a CNT aggregate having 60% double-walled CNTs, 25% single-walled CNTs, 20% three-walled CNTs, and 5% three-layered CNTs can be produced. The effects of the present invention were also equivalent.
  • the adsorption and desorption isotherm of CNT aggregate 200, 50 mg was measured using liquid nitrogen at 77K using BELSORP-MINI (manufactured by Nippon Bell Co., Ltd.) (adsorption equilibrium time was 600 seconds).
  • the specific surface area was measured from this adsorption / desorption isotherm by the method of Brunauer, Emmett, Teller and found to be 1000 m 2 / g.
  • 200 mg and 50 mg of the CNT aggregate were equally arranged on an alumina tray and placed in a muffle furnace. When the temperature was raised to 550 ° C. at 1 ° C./minute and heat treatment was performed for 1 minute in an oxygen atmosphere (concentration 20%), the weight of the sample was 45 mg, and 5 mg was burned.
  • the specific surface area of the sample after the heat treatment was measured in the same manner as described above, the specific surface area was about 1900 m 2 / g.
  • MIBK dispersion medium methyl isobutyl ketone
  • a wet jet mill (Nanojet Pal (registered trademark) JN10 manufactured by Joko) was used, and the CNT aggregate 200 was dispersed in the dispersion medium MIBK by passing through a 200 ⁇ m flow path at a pressure of 60 MPa. A 0.033 wt% CNT dispersion 400 was obtained.
  • the dispersion was further stirred with a stirrer at room temperature for 24 hours. At this time, the dispersion medium MIBK was volatilized to about 150 ml without covering the beaker as the solvent. The weight concentration of CNTs at this time was about 0.075 wt% (dispersing step). In this way, a CNT dispersion 400 according to the present invention was obtained.
  • CNT aggregate with mesh body A CNT dispersion 400 having a weight concentration of 0.075% by weight treated at 60 MPa was applied very thinly on a silicon or glass substrate by spin coating (MIKASA SPINCOATER 1H-D7).
  • the CNT dispersion liquid 400 to be coated was prepared.
  • a substrate for coating the sample (silicon for SEM observation, slide glass for optical microscope) was prepared. The substrate was fixed by drawing a vacuum. The rotation conditions were 3000 RPM, 30 sec, and about 0.1 ml of solution was dropped on the center of the substrate and spin coated. When there was a problem with the CNT aggregate 200 on the substrate, fine adjustment was performed by changing the rotation speed.
  • the prepared sample was observed with a scanning electron microscope, an optical microscope, and a laser microscope.
  • the CNT aggregate 200 includes a network structure of CNT (or a bundle of CNTs) and CNT (or a bundle of CNTs) having fine pores (gap), that is, a mesh body 113. It can be seen that
  • the CNT dispersion liquid 400 kept dispersion without being separated from the CNT aggregate 200 and the solvent by visual observation even in stationary storage for 10 days or longer. It can be seen that the CNT dispersion 400 of this example has extremely high stability.
  • Millipore paper (Filter Membrane: DURAPORE (registered trademark) (0.22 ⁇ m GV, diameter 45 mm) manufactured by MILLIPORE) was set in a container that can be evacuated, and 0.075 wt% CNT dispersion liquid 400 was filtered through 150 ml Millipore paper.
  • the CNT aggregate 200 was deposited on Millipore paper to form a thin-walled CNT compact 250 having a thickness of about 70 ⁇ m, and the CNT deposited on Millipore paper was sandwiched between two filter papers and vacuum dried at 70 ° C. for 12 hours. After drying, the thin-walled CNT compact 250 was easily peeled from the Millipore paper to obtain the desired CNT compact.
  • the surface resistance value of the CNT molded body 250 was measured with a Loresta EP MCP-T360 (manufactured by Dia Instruments Co., Ltd.) using a four-terminal four-probe method according to JISK7149. After measuring the obtained surface resistance value by the four-terminal method, the volume resistance value was calculated by multiplying the surface resistance value and the film thickness of the molded body. The conductivity of the CNT compact was calculated from the volume resistance value. The conductivity was 83 S / cm.
  • CNT rubber composition Prepare a matrix solution in which fluororubber (Daikin Kogyo's Daiel-G912) is dissolved in MIBK, add it to the CNT dispersion with a wet jet mill treatment pressure of 60 MPa, and stir well. Was dispersed.
  • fluororubber Daikin Kogyo's Daiel-G912
  • MIBK Magnetic MIBK
  • 150 ml of the CNT dispersion liquid is added to 50 ml of the fluororubber solution so that the CNT content becomes 1%, and the mixture is stirred for 16 hours at room temperature using a stirrer at about 300 rpm. It stirred and concentrated until the whole quantity became about 50 ml.
  • the sufficiently mixed solution was poured into a mold such as a petri dish and dried at room temperature for 12 hours to solidify the CNT composite material.
  • the solidified CNT composite material was placed in a vacuum drying oven at 80 ° C. and dried to remove the solvent.
  • 1 wt% CNT rubber was obtained.
  • the conductivity of the obtained CNT rubber was 0.4 S / cm, and the conductivity was extremely high despite the small amount of CNT added.
  • HiPco High-pressure carbon monoxide process
  • Unidim Single-walled CNT 100 mg (commonly known as Hi-Pco (High-pressure carbon monoxide process)) HiPco manufactured by Unidim was put into a 100 ml flask, and after reaching 200 ° C. under vacuum, it was held for 1 hour and dried.
  • HiPco single-walled CNTs were observed with an SEM, it was in the form of a non-oriented aggregate of spherical CNTs.
  • the first surface, the second surface, the first surface, and / or the second surface composed of opposing parallel non-oriented carbon nanotubes. Side surfaces composed of carbon nanotubes oriented perpendicular to the plane were not observed. Aligned CNTs were not observed in any part.
  • a wet jet mill (Nanojet Pal (registered trademark) JN10 manufactured by Joko) was passed through a 200 ⁇ m channel at a pressure of 20 to 120 MPa to disperse the CNT aggregate in MIBK, and a weight concentration of 0 A 0.033 wt% CNT dispersion 1000 was obtained.
  • the CNT dispersion 1000 was further stirred with a stirrer at room temperature for 24 hours.
  • MIBK was volatilized to about 150 ml without covering the beaker as the solvent.
  • the weight concentration of CNTs at this time was about 0.075% by weight (dispersing step).
  • a thin-film CNT molded body 1050 was manufactured by the method of the example.
  • the CNT molded body 1050 was installed in a differential thermal analyzer (TA Instruments (model number Q5000IR)) and heated from room temperature to 900 ° C. at a heating rate of 1 ° C./min in the air by the method of Example. At that time, the weight loss between 200 ° C. and 400 ° C. was 14%, and the largest peak of the DTA curve at this time was 484 ° C.
  • TA Instruments model number Q5000IR
  • the CNT dispersion according to the present invention has high dispersibility and high stability while maintaining the excellent electrical characteristics of CNTs. Moreover, the CNT molded object which has the outstanding electrical property is provided by using the dispersion liquid of CNT which concerns on this invention with high dispersibility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本発明は、3次元形状カーボンナノチューブ集合体であり、この3次元形状カーボンナノチューブ集合体は、第1面、第2面及び側面を備え、第1面のカーボンナノチューブはヘルマンの配向係数が-0.1より大きく0.2より小さく、第2面のカーボンナノチューブはヘルマンの配向係数が-0.1より大きく0.2より小さく、側面のカーボンナノチューブはヘルマンの配向係数が0.2以上0.99以下の配向度を有し、かつ、第1面及び第2面は、それぞれ少なくとも3つの辺を備え、かつ、第1面及び第2面は、互いに平行に配置され、かつ側面は、第1面及び第2面に対して垂直である。

Description

カーボンナノチューブ集合体、3次元形状カーボンナノチューブ集合体、それを用いたカーボンナノチューブ成形体、組成物及びカーボンナノチューブ分散液
本発明は、カーボンナノチューブが集合したカーボンナノチューブ集合体に関する。特に、3次元形状を有するカーボンナノチューブ集合体に関する。また、本発明は、3次元形状カーボンナノチューブ集合体を用いたカーボンナノチューブ成形体、組成物及びカーボンナノチューブ分散液に関する。
炭素原子のみで構成されるカーボンナノチューブ(以下、CNTという)は、電気的特性や熱伝導性、機械的性質の優れた材料である。CNTは、非常に軽量、且つ、極めて強靱であり、また、優れた弾性・復元性を有する材料である。このように優れた性質を有するCNTは、工業材料として極めて魅力的、且つ重要な物質である。
一般にCNTは集合体として合成されるため、CNTを各種用途に用いるために、合成後のカーボンナノチューブ集合体(以下、CNT集合体)をほぐして、所望の形状に成形加工する必要がある。しかしながら、CNT同士は強いファンデルワールス力を有するため、相互に吸着しやすく、一旦吸着すると容易にはほぐれない。
このような強いファンデルワールス力を有するCNT集合体を、従来は超音波などでほぐしていた。特許文献1には、カーボンナノチューブを含有する組成物を液体に浸した後、カーボンナノチューブが多く含まれる溶液部と、カーボンナノチューブを含有する組成物に含まれるカーボンナノチューブ以外の成分を多く含む溶液部を個別に回収する前に、撹拌処理や、超音波処理、遠心分離処理を行うことで、カーボンナノチューブの精製効率を向上することが開示されている。
しかし、超音波などでCNT集合体をほぐした場合には、CNTが切断され、または損傷を受けるため、CNTが本来有する特性を十分に保持できないという問題があった。逆に、損傷しないようにCNT集合体をほぐすと、CNTが凝集し、安定した分散液を得ることができないという問題があった。
CNTをほぐす技術は他にも多数報告されている。例えば、CNTをより均一にほぐすために、特許文献2には、2層CNT集合体10mg、ポリスチレンスルホン酸ナトリウム30mgおよび水10mLの混合物を超音波ホモジナイザー処理し、続いて20000Gにて遠心処理した後、上清9mLをサンプリングしたときに、上清中のCNT集合体の含有量が0.6mg/mL以上となるCNT集合体を透明導電性フィルムの材料に用いることが開示されている。
また、特許文献3には、非プロトン系有機分散媒、および全芳香族ポリアミドを凝集抑制剤として用いることで、単層CNTがバンドルを全く形成していないか、あるいは極少数本からなるバンドルとなって存在している安定したCNT分散液が開示されている。
しかしながら、これらの方法を用いても、CNTに与える損傷を非常に少なくし、CNTの優れた電気的特性や熱伝導性、機械的性質を維持しつつ、分散性が高い、安定したCNT分散液や成形体が得られているとは言い難く、CNTの多様な用途への実用化を妨げている要因となっている。
特開2005-97029号公報 特開2009-149832号公報 特開2007-169120号公報
CNTに与える損傷が非常に少なく、安定したCNT分散液や成形体を得ることが困難な一因は、ほぐす前、すなわち合成後のCNT集合体を構成するCNTが、バンドル化していたり、凝集していたりすることにより、容易にほぐせないためである。
本発明は上記背景技術に鑑みてなされたものであり、従来技術のように、CNTをほぐす分散技術の開発ではなく、ほぐしやすいCNTから構成されるCNT集合体を与えることを目的とする。
さらに別の課題は、CNT集合体をほぐした際に、複数のCNTからなる網目体を備えるCNT集合体を与えることで、CNTの優れた電気的特性や熱伝導性、機械的性質を維持しつつ、分散性が高く、安定したCNT分散液やCNT成形体の製造を容易にすることである。
本発明の一実施形態に係る3次元形状カーボンナノチューブ集合体は、3次元形状カーボンナノチューブ集合体であり、前記3次元形状カーボンナノチューブ集合体は、第1面、第2面及び側面を備え、前記第1面のカーボンナノチューブはヘルマンの配向係数が-0.1より大きく0.2より小さく、前記第2面のカーボンナノチューブはヘルマンの配向係数が-0.1より大きく0.2より小さく、前記側面のカーボンナノチューブはヘルマンの配向係数が0.2以上0.99以下の配向度を有し、かつ、前記第1面及び前記第2面は、互いに平行に配置され、かつ前記側面は、前記第1面及び前記第2面に対して垂直である。
前記3次元形状カーボンナノチューブ集合体において、前記3次元形状CNT集合体を含むカーボンナノチューブ集合体が水銀圧入式のポロシメータにて測定した、細孔径0.1μm以上100μm以下の範囲の微分細孔容積が最大となる細孔径は、1μm以上50μm以下である。
前記3次元形状カーボンナノチューブ集合体において、前記側面の長さが10μm以上1cm以下である。
前記3次元形状カーボンナノチューブ集合体において、前記3次元形状CNT集合体を含むカーボンナノチューブ集合体の前記微分細孔容積が最大となる細孔径での細孔容積が、5mL/g以上である。
前記3次元形状カーボンナノチューブ集合体において、前記第1面、及び/または前記第2面は、カーボンナノチューブのネットワークを備える。
前記3次元形状カーボンナノチューブ集合体の前記第1面及び前記第2面は、それぞれ少なくとも3つの辺を備える。
前記3次元形状カーボンナノチューブ集合体の前記側面の最外側面からカーボンナノチューブのバンドルを複数延出する。
前記3次元形状カーボンナノチューブ集合体を含むカーボンナノチューブ集合体の安息角が40度以上85度以下である。
前記3次元形状カーボンナノチューブ集合体を含むカーボンナノチューブ集合体の嵩密度が0.001g/cm以上0.19g/cm以下である。
前記3次元形状カーボンナノチューブ集合体を含むカーボンナノチューブ集合体の液体窒素の吸着等温線からBJH法で求めた細孔径の分布極大が100nm以下である。
前記3次元形状カーボンナノチューブ集合体は、裂溝を備える。
前記3次元形状カーボンナノチューブ集合体において、前記最外第3面は、カーボンナノチューブ集合体からなるカーボンナノチューブ区画片を備える。
前記3次元形状カーボンナノチューブ集合体において、前記最外第3面は、バンドルを備えるカーボンナノチューブ区画片を複数配置してなる。
前記3次元形状カーボンナノチューブ集合体において、前記バンドルは、前記側面に構成する前記カーボンナノチューブ区画片から引き剥がされて延出している。
前記3次元形状CNT集合体を含むカーボンナノチューブ集合体が蛍光X線で測定した炭素純度が98%以上を備える。
前記3次元形状CNT集合体を含むカーボンナノチューブ集合体が800m/g以上2500m/g以下の比表面積を備えるカーボンナノチューブを含む。
前記3次元形状CNT集合体を含むカーボンナノチューブ集合体を1℃/分で200℃から400℃まで昇温した時の熱重量測定における重量減少が10%以下である。
前記3次元形状カーボンナノチューブ集合体を構成するカーボンナノチューブが単層カーボンナノチューブである。
前記3次元形状カーボンナノチューブ集合体において、前記カーボンナノチューブのバンドルは、隣接する3次元形状カーボンナノチューブ集合体まで延出している。
前記3次元形状カーボンナノチューブ集合体において、カーボンナノチューブのバンドルの長さは、1μm以上、1mm以下である。
本発明の一実施形態に係るカーボンナノチューブ集合体は、前記3次元形状カーボンナノチューブ集合体を複数備える。
本発明の一実施形態に係るカーボンナノチューブ集合体は、前記3次元カーボンナノチューブ集合体を含むカーボンナノチューブ集合体を分散処理させて得られる、複数のカーボンナノチューブからなる網目体を備える。
本発明の一実施形態に係るカーボンナノチューブ成形体は、前記複数のCNTからなる網目体を備えるカーボンナノチューブ集合体を備える。
本発明の一実施形態に係る組成物は、前記複数のカーボンナノチューブからなる網目体を備えるカーボンナノチューブ集合体を備える。
本発明の一実施形態に係るカーボンナノチューブ分散液は、前記3次元カーボンナノチューブ集合体を含むカーボンナノチューブ集合体を分散処理させて得られる複数のカーボンナノチューブからなる網目体を備えるカーボンナノチューブ集合体を分散液に分散させてなる。
本発明の方法によれば、ほぐしやすいCNTから構成されるCNT集合体が提供される。また、複数のCNTからなる網目体を備えるCNT集合体を与えることで、CNTの優れた電気的特性や熱伝導性、機械的性質を維持しつつ、分散性が高く、安定したCNT分散液やCNT成形体が提供される。
本発明の一実施形態に係る3次元形状CNT集合体100の模式図である。 本発明の一実施形態に係る3次元形状CNT集合体100の走査電子顕微鏡(以下、SEM)像である。 本発明の一実施形態に係る3次元形状CNT集合体100を含むCNT集合体のSEM画像である。 (a)は本発明の一実施形態に係る3次元形状CNT集合体100の模式図であり、(b)は従来のCNT集合体の模式図である。 本発明の一実施形態に係る3次元形状CNT集合体100を含むCNT集合体のルーズ嵩密度とタップ嵩密度の測定方法を示す図である。 本発明の一実施形態に係る合成装置2000の一例を示す模式図である。 本発明の一実施形態に係る合成装置2000の一例を示す模式図である。 本発明の一実施形態に係るCNT集合体300が備える網目体360のSEM画像である。 本発明の一実施形態に係るCNT集合体300が備える網目体360のSEM画像である。 本発明の一実施例に係る3次元形状CNT集合体100を含むCNT集合体200のSEM画像である。 本発明の一実施例に係る3次元形状CNT集合体100を含むCNT集合体200のSEM画像である。 本発明の一実施例に係る3次元形状CNT集合体100を含むCNT集合体200のSEM画像である。 本発明の一実施例に係る3次元形状CNT集合体100を含むCNT集合体200のSEM画像である。 本発明の一実施例に係る3次元形状CNT集合体100を含むCNT集合体200のSEM画像である。 本発明の一実施例に係る3次元形状CNT集合体100の上面101のSEM画像である。 本発明の一実施例に係る3次元形状CNT集合体100の上面101のSEM画像である。 本発明の一実施例に係る3次元形状CNT集合体100の側面105のSEM画像である。 本発明の一実施例に係る3次元形状CNT集合体100の側面105のSEM画像である。 本発明の一実施例に係る3次元形状CNT集合体100の側面105のSEM画像である。 本発明の一実施例に係る3次元形状CNT集合体100の下面103のSEM画像である。 本発明の一実施例に係る3次元形状CNT集合体100の下面103のSEM画像である。 本発明の一実施例に係る3次元形状CNT集合体100の下面103のSEM画像である。 本発明の一実施例に係る3次元形状CNT集合体100の下面103のSEM画像である。 本発明の一実施例に係る3次元形状CNT集合体100の側面105の最外側面から延出するCNTのバンドル110のSEM画像である。 本発明の一実施例に係る3次元形状CNT集合体100の側面105の最外側面から延出するCNTのバンドル110のSEM画像である。 本発明の一実施例に係る3次元形状CNT集合体100の側面105の最外側面から延出するCNTのバンドル110のSEM画像である。 本発明の一実施例に係る3次元形状CNT集合体100の側面105の最外側面から延出するCNTのバンドル110のSEM画像である。 本発明の一実施例に係る3次元形状CNT集合体100の側面105の最外側面から延出するCNTのバンドル110のSEM画像である。 本発明の一実施例に係る3次元形状CNT集合体100の側面105の最外側面から延出するCNTのバンドル110のSEM画像である。 本発明の一実施例に係る3次元形状CNT集合体100の側面105の最外側面から延出するCNTのバンドル110のSEM画像である。 本発明の一実施例に係る3次元形状CNT集合体100の側面105の最外側面から延出するCNTのバンドル110のSEM画像である。 本発明の一実施例に係る3次元形状CNT集合体100の側面105の最外側面から延出するCNTのバンドル110のSEM画像である。 水銀圧入式のポロシメータによる本発明の一実施例に係る3次元形状CNT集合体を含むCNT集合体200の細孔径、細孔容量の測定結果を示す図である。 本発明の一実施例に係る3次元形状CNT集合体を含むCNT集合体200の嵩密度の測定結果を示す表である。 本発明の一実施例に係る3次元形状CNT集合体を含むCNT集合体200の安息角の測定結果を示す図である。 本発明の一実施例に係る3次元形状CNT集合体を含むCNT集合体200の嵩密度及び安息角の測定結果を示す表である。
以下に本発明の3次元形状カーボンナノチューブ集合体、それを用いたカーボンナノチューブ成形体、組成物及びカーボンナノチューブ分散液について添付の図面を参照して詳細に説明する。本発明の3次元形状カーボンナノチューブ集合体、それを用いたカーボンナノチューブ成形体、組成物及びカーボンナノチューブ分散液は、以下に示す実施の形態及び実施例の記載内容に限定して解釈されるものではない。なお、本実施の形態及び後述する実施例で参照する図面において、同一部分又は同様な機能を有する部分には同一の符号を付し、その繰り返しの説明は省略する。
本発明の実施形態に係る3次元形状カーボンナノチューブ集合体(以下、3次元形状CNT集合体)は、大きなバルク状のCNT集合体ではなく、図1、及び図2に示すようなフレーク状、粉体状、顆粒状、薄片状、ブロック状の形態であることが好ましい。図1は、本発明の実施形態に係る3次元形状CNT集合体100の模式図である。また、図2は本発明の実施形態に係る3次元形状CNT集合体100のSEM像である。また、本発明においては、少なくとも一部に、複数の3次元形状CNT集合体を含む集合体をCNT集合体(図3)と呼ぶ。3次元形状CNT集合体100は、複数のCNTで形成された集合体であって、第1面101と第2面103と、第3面である側面105を備える。第1面101と第2面103は、それぞれ少なくとも3つの辺を備える平面形状を有することが好ましく、互いに平行に配置された面であることが好ましい。また、側面105は、上面101及び下面103に対して垂直に配置された面であることが好ましい。
3次元形状CNT集合体100は、側面105の最外側面から延出するCNTのバンドル110を有することが好ましい。また、3次元形状CNT集合体100は、側面105の最外側面に、カーボンナノチューブ区画片(以下、CNT区画片)130や裂溝150を備えても良い。
3次元形状CNT集合体100は、上面101及び下面103の方向に対する側面105の長さが10μm以上1cm以下であることが好ましい。
本発明の実施形態に係る3次元形状CNT集合体100は、上述のようなサイズを有する、いわばフレーク状、粉体状、顆粒状、薄片状、ブロック状の様態を有することで、ほぐす処理を施しやすい。片や、上述のサイズよりも大きい3次元形状CNT集合体は、ほぐす処理を施す際に分散媒等の粘性が高くなり、ほぐしにくくなる。また、上述のサイズよりも小さい3次元形状CNT集合体は、3次元形状CNT集合体同士が凝集しやすいため、容易にほぐせなくなる。本発明においては、ほぐしたCNT集合体に、3次元形状CNT集合体100を含むことで、全体として良好な特性を示すことができる。
(上面の特徴)
本明細書において、第一面「上面」と、第二面「下面」は、CNTの端部が主として配置する面であって、本発明の実施形態に係る3次元形状CNT集合体100の上面101、および下面103は、少なくとも3つの辺を備えることが好ましい。上面101と下面103は、お互いに対向し、平行に配置されることが好ましい。本明細書において、「辺」とは、上面101と側面105とが交差する部分である。なお、本明細書においては、「円」は無限の「辺」を有する形状とみなす。また、上面と下面は略平行な状態で配置されることが好ましい。ここで、略平行とは、上面と下面の法線ベクトルが0度以上30度以下のことを意味する。
また、本発明の実施形態に係る3次元形状CNT集合体100の上面101および下面103を構成するCNTは配向性を有さない、すなわち上面101および下面103は無配向であることが好ましい。本明細書において、無配向、すなわち、配向度がないとは、ヘルマンの配向係数(以下、HOF)で評価した配向度が-0.1より大きく0.2より小さい、より好ましくは-0.75より大きく0.15より小さいことを意味する。
定量的に配向の向きを決めるためにはCNT集合体のSEM画像等を高速フーリエ変換して得られたFFT画像から得た強度プロフィールを用いて計算したヘルマンの配向係数(HOF)(0:無配向状態、1:配向状態)を計算するとよい。配向の方向は、CNT集合体を構成する個々のCNTの方向ベクトルの平均となる。そのため、CNT集合体の場所、配向性を評価する領域のサイズにより、配向の方向は異なる可能性がある。
ここで、HOFを計算する方法は、CNT集合体を1万倍、5万倍、10万倍いずれかの倍率で上面101または下面103に垂直向から観察したSEM画像を用いる。SEM画像に2-D高速フーリエ計算(FFT)を施し、FFT画像を得る。
次いで、HOFを計算する参照方向(φ=0)を決定する。参照(基準)方位はHOFがもっとも大きな値となるように定める。配向性を有するCNT集合体のFFT画像は、扁平な楕円状をなし、楕円が扁平であるほど配向性が高い。楕円の長軸方向は、配向性に起因するCNTの周期性が最大となる方向であり、楕円の短軸方向は、FFT画像の元画像の視野における、配向の向きとなる。HOFを計算する参照方位は、楕円の長軸方向とする(もしくは、HOFがもっとも大きくなる方向)。上面101のように配向性が低い、もしくは実質的にない場合には、FFT画像が真円状となり、参照方向(φ=0)の決定が容易でない。そのため、ある任意の方向Xと、X+15度、X+30度、X+45、度、X+60度、X+75度で、ヘルマン係数を計算し、ヘルマン係数がもっとも大きくなる方向を参照方向とすることができる。
FFT画像の原点から等距離を保って動径方向に参照方向(φ=0)からφ=π/2までの変換強度を求め、これを回折強度関数I(φ)とする。回折強度関数を計算する原点からの距離は、実空間の距離は100nmに対応する距離(10×10(m-1)から実空間の距離は50nmに対応する周波数Hzの間とする。この範囲にある少なくとも異なる10の距離から、回折強度関数I(φ)を求める。この回折強度関数を変数として
Figure JPOXMLDOC01-appb-M000001
 
 
上式を少なくとも異なる10の距離から計算し、もっとも値の大きな2値と、もっとも小さな値の2値を除いた、少なくとも6の距離からの計算値の平均値をSEM画像のHOFとする。このような計算を少なくとも異なる観察箇所でとった、5枚以上のSEM画像でおこない、平均値をCNT集合体のHOFと規定する。但し、FはHOF、φはφ=0を参照(基準)方位とした方位角(azimuthal angle)であり、I(φ)は回折強度関数である。HOFにおいては、φ=0方向について完全配向ならばF=1となり、無配向ならばF=0となる。HOFが負数になった場合には、φ=0方向に直角方向を参照(基準)方位として、HOFを計算しなおし、HOFが正数になるようにするのが好ましい。
本発明の実施形態に係る3次元形状CNT集合体100の上面101および下面103は、配向度が-0.1より大きく0.2より小さい範囲にあり、実質的に配向度がないため、3次元形状CNT集合体100からCNT区画片130が容易に剥離し、ほぐしやすくなる。また、裂溝150を起点として3次元形状CNT集合体100に亀裂が生じると、容易にCNT集合体が剥離し、ほぐしやすくなる。
さらに、本発明の実施形態に係る3次元形状CNT集合体100の上面101および下面103は、CNTのネットワークを備える。本明細書において、「CNTのネットワーク」とは、微細な細孔(隙間)を有するCNT(もしくはCNTのバンドル)とCNT(もしくはCNTのバンドル)の不織布のような形態を示す。CNTのネットワークは複数のCNTが「集合」したCNT集合体において、一部のCNTの先端部が局所的に「離散」した状態と「集合」した状態とを有する構造を持つことが好ましい。上面101および/または103はCNTのネットワークを備えるため、全体として無配向となる。
なお、本明細書に規定するCNTのネットワークは、3次元形状CNT集合体100の上面101を倍率5万倍でSEM観察したときに確認することができる。お互いに対向する第一面と、第二面のCNTのネットワークのCNTの本数密度、及び長さに違いがあることがある。ネットワークのCNTの本数密度が高く、および/または長さが長い面を第一面(上面)、ネットワークのCNTの本数密度が低く、および/または長さが短い面を第二面(下面)と規定する。第一面および第二面にCNTのネットワークが観察されない場合、および/またはCNTのネットワークの本数密度、および/または長さに明確な違いが見られない場合には、第一面、第二面どちらを上面、下面としてもよい。
本発明の実施形態に係る3次元形状CNT集合体100は、上面101および/または下面103にCNTのネットワークを備えることで、ほぐしたときにCNTが完全にばらばらにはならず、フレーク状のCNT集合体として存在することができる。また、上面101および/または下面103にCNTのネットワークを備えることで、3次元形状CNT集合体100を溶媒に分散させたときに、後述する発達した網目体を提供することができる。
上面101と下面103とは、互いに平行に配置されることが好ましい。本明細書において、「平行」とは、上面101と下面103とが略平行な状態を意味する。ここで、略平行とは、上面と下面の法線ベクトルが0度以上30度以下のことを意味する。
本発明の実施形態に係る3次元形状CNT集合体100は、上面101と下面103とが互いに平行に配置されることにより、3次元形状CNT集合体中のCNTの長さが揃っている。このため、3次元形状CNT集合体100を溶媒に分散させたときに、均一な構造を有する網目体を提供することができる。
(側面の特徴)
本明細書において、「側面」とは、上面101及び下面103に対して垂直に配置される面であって、CNT集合体の配向方向と平行に配置される面であることが好ましい。本明細書において、「垂直」、「略垂直」とは、上面および/または下面の法線ベクトルと、側面を構成する面の法線ベクトルの角度が60度以上90度以下となることを意味する。
上述したように、上面101及び下面103が少なくとも3つの辺を備える平面状の形状を有することが好ましいため、3次元形状CNT集合体100においては、側面105は多角形の上面101及び下面103の辺の数に相当する数で存在することとなる。ただし、3次元形状CNT集合体100は、側面105にCNT区画片130や裂溝150を備えることが好ましいため、側面105は上面101や下面103のように平面状の形状を有するものとは限らない。
また、本発明の実施形態に係る3次元形状CNT集合体100の側面105を形成するCNTは配向している。すなわち側面105は配向している。本明細書において、HOFが0.2より大きく、より好ましくは0.25より大きく、さらに好ましくは0.3より大きく、0.99以下であるときに、配向している、または配向性を有すると規定する。本発明の実施形態に係る3次元形状CNT集合体100の側面105は、HOFが0.2以上である。
ここで、HOFを計算する方法は、CNT集合体を1万倍、5万倍、10万倍のいずれかの倍率で側面105の方向(厚み方向)から観察したSEM画像を用いる。CNT集合体の上面101及び下面103の配向性は、全体の配向性とは異なるため、SEMによる観察は、CNT集合体の側面105の中心部で行うのが好ましい。具体的には、CNT集合体の側面105の中心から、±30%内の領域で観察を行う。SEM画像に2-D高速フーリエ計算(FFT)を施し、FFT画像を得る。これ以降の計算方法は上述したため、説明は省略する。
本発明において、3次元形状CNT集合体100を構成するCNTの相互作用が弱く、凝集していないことが好ましく、本発明の実施形態に係る3次元形状CNT集合体100の側面105は、配向度が0.2以上で配向しており、3次元形状CNT集合体100からCNT区画片130が容易に剥離し、ほぐしやすくなる。また、裂溝150を起点として3次元形状CNT集合体100に亀裂が生じると、容易にCNT集合体が剥離し、ほぐしやすくなる。
本発明の実施形態に係る3次元形状CNT集合体100は、このような上面101、下面103、及び側面105を有することで、合成したCNT集合体がほぐされると、均一な構造を有する網目体を提供することができる。網目体は、供与された電子や、フォノン、力学的ストレスを効率良く、かつ、減衰させることなく遠方に伝達する機能を有する。
(CNTのバンドル)
上述したように、本発明の実施形態に係る3次元形状CNT集合体100は、側面105の最外側面から延出するCNTのバンドル110を複数有することが好ましい。本明細書において、「バンドル」とは、3次元形状CNT集合体100に含まれる1本以上のCNTの一部分、特にCNTの束の一部分が側面105から剥離し、延出した構造を意味する。また、「延出する」とは、CNTのバンドル110の一部分は配向性を有して3次元形状CNT集合体100に含まれ、CNTのバンドル110の他の一部分が3次元形状CNT集合体100から無配向に飛び出した状態を意味する。また、「最外側面」とは、側面105の最も外側に配置されたCNTにより形成された面を意味する。
本発明の実施形態に係る3次元形状CNT集合体100は、側面105の最外側面から延出するCNTのバンドル110を有し、バンドル110が隣接する3次元形状CNT集合体まで延出することにより、隣接する3次元形状CNT集合体同士が凝集しにくい。3次元形状CNT集合体が凝集すると、3次元形状CNT集合体同士をほぐすことが困難になる。図4(a)は本発明の実施形態に係る3次元形状CNT集合体100の模式図であり、図4(b)は従来のCNT集合体の模式図である。本発明の実施形態に係る3次元形状CNT集合体100は、隣接する3次元形状CNT集合体までバンドル110が延出しているため、3次元形状CNT集合体同士が直接接触することがなく凝集しにくい。片や、従来のCNT集合体900は側面に延出するバンドルを備えないため、CNT集合体同士が直接接触して凝集してしまう。
本発明の実施形態に係る3次元形状CNT集合体100は、側面105の最外側面にバンドル110を複数備え、好ましくは、3次元形状CNT集合体一つ当たり、3個以上、より好ましくは5個以上、さらに好ましくは10個以上のバンドルを備えることが好ましい。バンドルの個数の好ましい上限は、特にないが、製造上の理由で、1000個以上のバンドルを有する3次元形状CNT集合体100を製造することは難しい。また、バンドル110は、隣接する3次元形状CNT集合体と凝集しない距離が確保される長さであればよく、好ましくは、1μm以上、より好ましくは5μm以上、さらに好ましくは100μm以上の長さで延出されることが好ましい。好ましい長さに上限はないが、1mm以下であることがCNT集合体の嵩密度を低くしすぎないために好ましい。
ところで、CNTには、CNTを構成するグラフェンシートの枚数により単層CNT(SWNTとも表示する)、二層CNT(DWNTとも表示する)及び多層CNT(MWNTとも表示する)が知られている。本発明の実施形態に係る3次元形状CNT集合体100には、単層CNT、または、単層CNTと二層及び三層CNTが混在したCNTが好ましい。機能を損なわない範囲であれば、三層以上の層数を有するCNTを含有していてもよい。ここで、単層CNTを主とする場合には、単層CNTの本数割合が、二層及び三層CNTおよびその他のCNTに対して50%以上であることが好ましい。二層CNTを主とする場合には、二層CNTの本数割合が、単層CNT及び三層CNTおよびその他のCNTに対して50%以上であることが好ましい。単層CNTは、比表面積が大きく、長さも(又は高さ)を長くしやすいため、3次元形状CNT集合体100を溶媒に分散させたときに、発達した網目体を構築することができ、CNTの本来持つ特性を発現しやすい。
(裂溝)
本明細書において、「裂溝」とは、3次元形状CNT集合体100の側面105に生じた亀裂である。3次元形状CNT集合体100は、裂溝を有することが好ましい。裂溝150を介して対向するCNT同士は相互作用が弱く、外部からの力により裂溝150が広がり、裂溝150が広がってCNT区画片130になって、容易にCNT集合体が剥離する。このため、本発明の実施形態に係る3次元形状CNT集合体100はほぐしやすい。
(CNT区画片)
本明細書において、「区画」とは、3次元形状CNT集合体100の突出した側面105で、CNT集合体からなる凸部である。「区画」は、3次元形状CNT集合体100からCNT集合体が割れる以前の形態である。「CNT区画片」とは、区画を構成するCNT集合体である。次元形状CNT集合体100は、区画およびまたはCNT区画片を有することが好ましい。
バンドル110は、側面105に構成するCNT区画片130から引き剥がされて延出している。区画には、CNT区画片130から延出するバンドル110が多く観察される。側面105からCNT集合体が剥離するときに、側面105のCNT区画片130に含まれるCNTの一部分が引き剥がされ最外側面に延出する。したがって、本発明の実施形態に係る3次元形状CNT集合体100は側面105の最外側面にCNT区画片130を有し、また、バンドル110を備えるCNT区画片130を複数配置することもあることが好ましい。
本発明の実施形態に係る3次元形状CNT集合体100は、側面105の最外側面にCNT区画片130を備えるため、CNT区画片130が3次元形状CNT集合体100から容易に剥離する。このため、3次元形状CNT集合体100はほぐしやすい。また、3次元形状CNT集合体100は、バンドル110を備えるCNT区画片130を側面105の最外側面に複数配置するため、3次元形状CNT集合体士が凝集しにくい。片や、従来のCNT集合体900は、側面にCNT区画片を備えないため容易にはほぐれず、また、延出するバンドルを備えたCNT区画片を複数配置した構造ではないため、CNT集合体同士が直接接触して凝集してしまう。
(水銀圧入式のポロシメータによるCNT集合体の細孔径、細孔容量の測定)
本発明の実施形態に係る3次元形状CNT集合体を含むCNT集合体200(以下、CNT集合体200)は、水銀圧入式のポロシメータで測定した細孔分布において、細孔径0.1μm以上100μm以下の範囲の微分細孔容積が最大となる細孔径が、1μm以上50μm以下、より好ましくは2μm以上40μm以下であることが好ましい。また、本発明の実施形態に係るCNT集合体200において、微分細孔容積が最大となる細孔径での細孔容積は、5mL/g以上、より好ましくは、7mL/g以上が好ましい。
CNT集合体200は、水銀圧入式のポロシメータを用いて細孔径を測定すると、CNT集合体間の細孔が評価できる。細孔径が上記数値範囲内にあると、CNT集合体の間に適切な隙間があり、CNT集合体が凝集することなく、ほぐしやすくなる。一方、細孔径が上記数値範囲より小さいと、CNT集合体が密着して凝集し、ほぐしにくくなる。また、細孔径が上記数値範囲より大きいと、嵩高くなりすぎて扱い難い。
(安息角)
本発明の実施形態に係るCNT集合体200において、安息角は好ましくは40度以上85度以下、さらに好ましくは45度以上85度以下、さらに好ましくは50度以上85度以下が好ましい。本明細書においては、安息角は注入法で測定したものとする。注入法は、円盤状の上面を有する台の上に粉体を堆積させて測定する方法で、台の材質の影響を受け難く、円錐状に堆積した粉体と水平面とのなす角は、分度器等を用いて容易に測定できる。また、市販の測定機を用いて安息角を測定することもできる。
CNT集合体200は、安息角が上記の数値範囲内にあると、CNT集合体の間に適度の摩擦が存在するため、分散処理をほどこした際に、CNT集合体同士が凝集し難い。
(嵩密度)
本発明の実施形態に係るCNT集合体200において、嵩密度は、好ましくは0.001g/cm以上0.19g/cm以下、さらに好ましくは、0.002g/cm以上0.1g/cm以下、さらに好ましくは、0.005g/cm以上0.08g/cm以下が好ましい。CNT集合体の嵩密度測定は、2つの方法、即ち、ルーズ嵩密度とタップ嵩密度とで評価することができる。図5は、ルーズ嵩密度とタップ嵩密度の測定方法を示す図である。ルーズ嵩密度とは、CNT集合体を容器に入れ、激しく揺り動かした後の嵩密度である。タップ嵩密度とは、CNT集合体を容器に入れ、これを25mmの高さから固い表面に20回繰り返して落下させた後の嵩密度である。本明細書においては、CNT集合体の嵩密度をタップ嵩密度として求めた。
CNT集合体200を構成するCNTの相互作用が弱く、凝集していないことが好ましいが、CNT集合体200は、嵩密度が上記の数値範囲内にあると、CNT集合体を構成するCNTの相互作用が弱く、CNT集合体をほぐしやすい。一方、嵩密度が上記の数値範囲より大きいと、CNT集合体を構成するCNTの相互作用が強すぎ、CNT集合体はほぐし難くなる。
(炭素純度)
本発明の実施形態に係るCNT集合体200は、炭素純度98mass%以上、および/または、金属不純物が1mass%以下であることが好ましい。不純物は、3次元形状CNT集合体100を含むCNT集合体を溶媒に分散させたときに、発達した網目体の形成を妨げ、CNTの分散を阻害する。炭素純度98mass%以上、および/または、金属不純物が1mass%以下のCNTは、安定したCNT分散液を作成する上で好適である。本発明のCNT集合体の純度は、蛍光X線を用いた元素分析結果から得られる。炭素純度に上限はないが、製造上の都合から、99.9999%以上の炭素純度を得ることは困難である。金属不純物の下限はないが、製造上の都合から金属不純物を0.0001%以下にすることは困難である。
CNT集合体200は、金属などの不純物が存在すると、不純物がCNT同士を癒着させるため、CNT集合体がほぐしにくくなる。炭素純度が98%以下、および/または、金属不純物が1mass%以上であると、良好な網目体の形成が妨げられる。純度が上記の数値範囲内にあると、不純物が少なく、CNT集合体がほぐしやすい。
(比表面積)
本発明の実施形態に係るCNT集合体200において、比表面積は800m/g以上2500m/g以下の比表面積が好ましい。比表面積は、77Kで液体窒素の吸脱着等温線を計測し、この吸脱着等温線からBrunauer, Emmett, Tellerの方法で計測することができる。
CNT集合体200は、比表面積が上記の数値範囲内にあると、CNT集合体を構成するCNT間に窒素分子が拡散し、吸着する隙間があるため、CNT間の相互作用が過度に強くなく、CNT集合体をほぐしやすい。
(BJH法による細孔径の測定)
本発明の実施形態に係るCNT集合体200において、液体窒素の77Kでの吸着等温線からBJH法(J. Amer. Chem. Soc.誌、第73巻(1951年)、第373頁を参照)で求めた細孔径の分布極大が、好ましくは1nm以上で100nm以下、50nm以下、さらに好ましくは30nm以下、さらに好ましくは25nm以下であることが好ましい。BJH法は、細孔がシリンダ状であると仮定して細孔径分布を求める理論式である。
CNT集合体200は、細孔径が上記数値範囲内にあると、CNT集合体を構成するCNT間に適切な隙間があるため、CNT間の相互作用が過度に強くなく、CNT集合体をほぐしやすい。
(熱重量測定)
本発明の実施形態に係るCNT集合体200を1℃/分で昇温した時の熱重量測定(Thermogravimetry)での200℃から400℃の重量減少が、10%以下、さらに好ましくは5%以下であることが好ましい。この重量減少は、CNT集合体を空気雰囲気下、熱分析することで測定が可能である。約1mgの試料を示差熱分析装置に設置し、空気中、1℃/分の昇温速度にて室温から900℃まで昇温する。200℃から400℃の重量減少とは、その時の200℃から400℃の間での重量減少量の、室温から900℃の間での重量減少量に対する割合のことである。
一般に、CNT以外のアモルファスカーボンなどの炭素不純物は400℃以下で分解するため、炭素不純物を含むCNT集合体の熱重量測定をおこなうと、200℃から400℃の間での重量減少が観測される。炭素不純物が多いほど200℃から400℃での重量減少率が高くなる。
CNT集合体200が炭素不純物を含むと、炭素不純物がCNT同士をくっつけてしまうため、ほぐし難くなり、CNT集合体の分散性が低下する。そこで、安定なCNT分散液を得るためには、炭素不純物が少ないCNT集合体が好ましい。
(製造方法)
以下に、本発明の実施形態に係るCNT集合体200の製造方法を説明する。CNT集合体200の製造方法としては、本明細書で規定した条件を満たすCNT集合体が得られる限り限定はないが、例えば以下の製造方法が例示される。
本発明に係る3次元形状CNT集合体100を含むほぐしたCNT集合体200は、CNTバルク集合体10を処理することにより得られる。CNTバルク集合体10の合成装置の一例を図6に示す。この合成装置2000は触媒層2020を備える基材2010を受容する例えば石英ガラス等からなる合成炉2030と、合成炉2030の上壁に設けられ、合成炉2030と連通するガス供給管2040と、下流側の下壁もしくは側壁に設けられ、合成炉2030と連通するガス排気管2050と、合成炉2030を外囲して設けられた例えば抵抗発熱コイルなどからなる加熱手段2060と、炉内温度を所定の温度に調整するための加熱温度調整手段と、加熱手段2060と加熱温度調整手段により、所定温度に加熱された合成炉2030内の加熱領域2070と、を備える。また、加熱体積が排気体積より大きくなるように、合成炉2030内の加熱領域2070に、触媒層2020を備える基材2010を保持するための基材ホルダ2080が設けられている。
基材ホルダ2080および/または、触媒層2020の上方の加熱領域2070内には、ガス供給管2040から供給される原料ガスを分配・分散させ、複数の方向へ流れる原料ガス流を形成させるガス流形成手段2210が配置されている。ガス流形成手段2210は、基材2010の表面に対して略平行の複数の方向に原料ガスの流れを形成する。またガス流形成手段2210には、基材2010の平面に対して略垂直方向の原料ガス流を形成する複数のガス噴出手段2200が設けられている。ガス噴出手段2200は、基材2010の表面に対して、略平行な同一面内に配設されている。
このようなガス流形成手段2210を用いることにより、ガス供給管2040から供給された原料ガスを、基材2010の平面と略平行な平面に展開・分散してから、基材2010の平面と略垂直方向から触媒と接触させることができる。そのため原料ガスを、基材2010上の触媒を配置した領域に単位面積あたりの供給量を略均一にして触媒に接触させることができるため、均一な構造と特性を有するCNTバルク集合体10を得ることができ、本発明に係るほぐれやすいCNT集合体200を製造する上で好適である。
ガス噴出手段2200と触媒層2020の間には、滞留時間を増加およびまたは調整するために、意図的に増加およびまたは調整された加熱体積と、ガス流形成手段2210と接続かつ連通された、複数枚の複数の孔を備える板状の整流板からなる乱流抑制手段2220から構成される滞留時間調整手段2140が設けられている。
このようにすれば、原料ガスが加熱領域2070内で加熱される加熱体積を増加させ、従来は長くすることを検討されなかった滞留時間が長くなる方向に調整できる。そのため、原料ガスの分解が促進し、CNTの成長により好適な形態の原料ガスを触媒に接触させ、従来よりも効率良く原料ガスをCNTに転化することで、CNTへの炭素不純物の付着を抑制することができるため、本発明に係わるほぐれやすいCNT集合体200を得る上で好適である。
乱流抑制手段2220は滞留時間調整手段2140内の原料ガスの乱流を抑制し、滞留時間調整手段2140内を流れる原料ガスの滞留時間を、略等しくし、結果として、基材2010上の触媒に接触する際の滞留時間を、略等しくすることに格段の効果を奏する。意図的に増加させた加熱体積を有する加熱領域2070内では、乱流が発生しやすく、乱流があると、滞留時間調整手段2140内を流れる原料ガスの滞留時間が長くはなるものの、等しくならない。滞留時間を等しくすると、炭素不純物の発生を抑制することに好適であるため、CNT集合体200を得る上で好適である。
合成装置は、CNTの原料となる炭素化合物を収容する原料ガスボンベ2090、触媒賦活物質を収容する触媒賦活物質ボンベ2100、原料ガスや触媒賦活物質のキャリアガスを収容する雰囲気ガスボンベ2110、および触媒を還元するための還元ガスボンベ2120を備えており、これらのボンベからのそれぞれのガスの供給量をガスフロー装置で制御可能な炭素重量フラックス調整手段2130を備えている。
本発明に係るCNTバルク集合体10の製造は、基材2010上に触媒層を製造し、その触媒から複数のCNTを化学気相成長(合成)させるものである。
図6および図7を参照しながら説明すると、先ず、ガス供給管2040から供給された雰囲気ガス(例えばヘリウム)が満たされた合成炉2030内に、触媒層2020(例えばアルミナ-鉄薄膜)を別工程で予め成膜した基材2010(例えばシリコンウエハ)を搬入し、基材ホルダ2080に載置する。このとき、触媒層2020表面と原料ガスの流路とが概して垂直に交わるように基材2010を配設し、原料ガスが効率良く触媒に供給されるようにする。
また、基材2010を排気体積2160は加熱体積2150よりも小さくなるように、加熱領域2070内に設置することで、触媒層2020と接触した原料ガスが速やかに排気されるようにする。さらに、合成炉2030内の原料ガスの滞留時間は滞留時間調整手段2140によって予め、CNTの成長に最適になるように調整されている。
次いでガス供給管2040から合成炉2030内に還元ガス(例えば水素)を供給しながら、合成炉2030内を所定の温度(例えば750℃)に加熱し、その状態を所望の時間保持するフォーメーション工程を行う。この還元ガスにより、触媒層2020が微粒子化され、CNTの触媒として好適な状態に調整される。フォーメーション工程においては、必要に応じて触媒賦活物質を添加してもよい。
次いで炭素重量フラックス調整手段2130を用いてガス供給管2040からの還元ガスおよび雰囲気ガスの供給を所望(反応条件)に応じて停止あるいは低減すると共に、原料ガス(例えばエチレン)と、雰囲気ガスと、触媒賦活物質(例えば水)とを、ガス供給管2040から供給する。ガス供給管2040から供給されたこれらのガスは、基材2010の平面に対して略平行方向の複数の方向に向いたガス流を形成した後に、噴出孔から基材2010の平面に対して略垂直方向から略均一の量で、基材2010上の触媒層2020の表面に吹きかけられる、
また、これらのガスは滞留時間調整手段2140によって、増加・調整された加熱体積2150を流れ、最適化された滞留時間を経た後に、炭素重量フラックス調整手段2130を用いて最適化された量で触媒層2020の表面に接触し、基材2010に被着した触媒微粒子から高速にかつ高収量で効率良くCNTが成長する(成長工程)。さらには、乱流抑制手段2220を用いることで、これらのガスは、略等しい滞留時間で、基材2010上の触媒微粒子に接触する。また、触媒層2020に接触した後には、これらのガスは速やかにガス排気管2050より排気され、炭素不純物の発生は最小限に抑えられる。炭素不純物はCNT同士を密着させるため、炭素不純物が多いと3次元形状CNT集合体100がほぐしづらくなる。
CNTの生産終了後、合成炉2030内に残余する、原料ガス、触媒賦活物質、それらの分解物、または合成炉2030内に存在する炭素不純物等がCNTバルク集合体10へ付着することを抑制するために、雰囲気ガスのみを流し、CNTバルク集合体10への不純物の接触を抑制する(炭素不純物付着抑制工程)。
このようにして、基材2010上の触媒層2020から同時に成長した複数のCNTは、触媒層2020に直交する向きに成長して、配向し、高さが概ねそろった高比表面積、高純度のCNTバルク集合体10を構成する。上記した方法で合成した、配向したCNTバルク集合体10はCNT同士が適切に絡み合っていて、基材から剥離した際に、CNTがばらばらにならず、適切なサイズの集合体状で剥離しやすい。さらには、CNTバルク集合体10は炭素不純物の発生と付着が抑制されていて、CNT間に適切な隙間があるため、CNTがほどけやすく、分散性が高い。さらには、CNTが高比表面積である。このようなCNTバルク集合体10は、CNT集合体200を得るために好適である。
次に、CNTバルク集合体10を基板から物理的、化学的あるいは機械的な方法を用いて剥離する。剥離方法としては、例えば電場、磁場、遠心力、および表面張力を用いて剥離する方法、基板から機械的に直接剥ぎ取る方法、圧力や熱を用いて基板から剥離する方法などが適用可能である。真空ポンプを用いてCNTバルク集合体10を吸引し、基板から剥ぎ取る方法がほぐしやすい、フレーク形状のCNT集合体200を得る上で好ましい。
本発明の実施形態に係るCNTバルク集合体10を分級工程により分級してCNT集合体200を得る。本実施形態に係る分級工程は、CNT集合体200の大きさを所定の範囲にすることで、均一なサイズのCNT集合体200を得る工程である。合成基板から剥離したCNTバルク集合体10は、サイズの大きな塊状の合成品も含まれる。これらのサイズの大きな塊状のCNT集合体は分散性が低いため、安定した分散液の作成を阻害する。そこで、網、フィルター、メッシュ等を通過した、大きな塊状のCNT集合体を除外したCNT集合体200だけを以後の工程に用いると、分散性に優れた製造物を得る上で好適である。
このように製造された3次元形状CNT集合体100を含むほぐしたCNT集合体200は、ほぐしやすいCNTから構成された網目体を備えるCNT集合体を与えることができる。また、CNTの優れた電気的特性や熱伝導性、機械的性質を維持しつつ、分散性が高く、安定したCNT分散液やCNT成形体を提供することができる。
(3次元形状CNT集合体を用いた製造物)
本発明の実施形態に係る3次元形状CNT集合体100を含むCNT集合体を用いることで、優れたCNTの特性を有する様々な製造物を製造することが可能である。以下に製造物の例を説明する。なお、本発明の実施形態に係る3次元形状CNT集合体100を含むCNT集合体は、以下の製造物以外の製造にも利用可能である。
(網目体を備えるCNT集合体)
本発明の実施形態に係る3次元形状CNT集合体100を含むCNT集合体を用い、網目体360を備えるCNT集合体300を製造することができる。「網目体を備えるCNT集合体」とは、CNT集合体200に分散処理を施して得られるCNTの集合体である。網目体360を備えるCNT300は、CNTの優れた電気的特性や熱伝導性、機械的性質を維持しつつ、分散性が高く、安定したCNT分散液やCNT成形体の製造を容易にする集合体である。
本明細書において、「網目体」とは、図8、図9のSEM画像に示すような、微細な細孔(隙間)を有するCNT(もしくはCNTのバンドル)とCNT(もしくはCNTのバンドル)の不織布のような形態のネットワーク構造のことを示す。網目体360を有するCNT集合体300は、「CNT間に分散媒が容易に含浸できる隙間を有しており、この隙間がCNT間に存在するために、分散能に優れていると考えられる。また、CNT集合体300は、配向した複数のCNTからなる幹部370を有することが好ましい。
CNT集合体300は以下の手順でCNT分散液より取り出すことができる。CNTを100mg含むCNT集合体200を含むCNT分散液を準備する。真空引きの出来る容器にミリポア紙(MILLIPORE社製Filter Membrane:DURAPORE(登録商標)(0.22μm GV, 直径45mm)をセットし、CNTの分散液をミリポア紙で濾過する。CNT集合体300をミリポア紙上に堆積させ、70μm程度の厚みの薄膜状のCNT成形体を作成する。ミリポア紙の上に堆積したCNTを2枚のろ紙で挟み、70℃で12時間真空乾燥する。乾燥後は、ミリポア紙から薄膜状のCNT成形体は容易に剥離し、CNT集合体300を得ることができる。
網目体360は、いわば、非常に発達した、広い領域の細部まで張り巡らされたCNTのネットワークであり、分散媒等のCNTと異なる材料とCNT集合体300とが効率良く相互作用する場を与える。CNT集合体300は、網目体360を備えることで、供与された電子や、フォノン、力学的ストレスを効率良く減衰させることなく遠方に伝達する機能を持つ。すなわち、CNT集合体200を分散媒に分散させたCNT分散液から成形体、および/または、組成物を製造した際に、電子や、フォノン、力学的ストレスなどが効率良くCNT間を伝達するために、CNTが本来持つ特性を十分に発揮できるという利点がある。
(CNT分散液)
本明細書において、「CNT分散液」とは、CNT集合体200を分散媒に分散させた溶液を示す。「分散」とは、目視でCNT集合体200が分散媒中に散らばっている状態をいう。また、「分離」とは、CNTが、分散媒中に散らばっている状態を示す。CNTが一本ずつほぐれている状態でも、バンドルを組んだ状態でも、様々な太さのバンドルが混ざっていても、分散媒中に散らばっていれば、CNTが分散していると表現する。また、目視でCNT集合体が分散媒と分かれて離れている状態のことをいう。本実施例に係るCNT分散液は、10日、より好ましくは20日、放置してもCNT集合体200と分散媒とが分離しない。
本実施例に係るCNT分散液においては、CNTと分散媒の相互作用が増加し、CNT集合体が安定に分散媒中に分散する。本実施例に係るCNT集合体300は、上述した特性と構造を有するために、極めて安定に分散媒中に分散するという優れた特徴を有する。後述するように、実施例1の方法で製造したCNT分散液400は、半年間の静置保管においてもCNT集合体300と分散媒とは分離することなく、分散を保持した。これに対して、比較例1のCNT分散液4000は、1~2日程度の間しか分散を保持できず、CNT集合体と分散媒が分離してしまった。
(分散液の製造方法)
本実施例に係るCNT分散液400は、CNT集合体200を分散媒に分散させることにより製造することができる。本実施例で説明したCNT集合体200を製造し、以下の分散工程により製造することができる。分散工程の前にCNT集合体200の乾燥工程を実施するのが好ましい。特に、疎水性溶媒を用いる場合は乾燥工程を実施することは、分散性を高めるのに好適である。本実施例に係るCNT集合体200を構成するCNTは大きな比表面積と、適宜な細孔径を有するために、大気中に保存、搬送時に、容易に大気中の水分を吸着する。このように水分が吸着した状態では、水の表面張力により、CNT同士がくっついているため、CNT集合体200が非常にほどけにくくなり、優れた分散性を有する網目体360を有するCNT集合体300の形成を妨げる。そこで、分散工程の前にCNT集合体200の乾燥工程を実施することで、CNT集合体200に含まれる水分を除去し、分散媒への分散性を高めることができる。本実施例に係る乾燥工程には、例えば、加熱乾燥や真空乾燥を用いることができ、加熱真空乾燥を好適に用いる。
CNT集合体200の分散には、攪拌器、ホモジナイザー、コロイドミル、フロージェットミキサー、ディゾルバー、ペイントコンディショナー、マントン乳化装置、ジェットミル、超音波装置等の分散装置を用いることができる。また、公知の粉砕化手段、例えば、ボールミリング(ボールミル、振動ボールミル、遊星ボールミル、ビーズミル、等)、サンドミリング、コロイドミリング、ジェットミリング、ローラーミリング、更に、縦型あるいは横型のアジテーターミル、アトライター、コロイドミル、3本ロールミル、パールミル、スーパーミル、インペラー、デスパーサー、KDミル、ダイナトロン、加圧ニーダー等の分散機を用いることができる。特に、剪断応力によりCNTを分散させる方法は好ましい。本実施例に係るCNT集合体300の分散液の分散工程には、ジェットミルを用いるのが好ましい。特に、湿式ジェットミルを好適に用いることができる。湿式ジェットミルは、溶媒中の混合物を高速流として、耐圧容器内に密閉状態で配置されたノズルから圧送するものである。耐圧容器内で対向流同士の衝突、容器壁との衝突、高速流によって生じる乱流、剪断流などによりCNT集合体200を分散させる。湿式ジェットミルとして、例えば、株式会社常光のナノジェットパル(JN10、JN100、JN1000)を用いた場合、本実施例に係るCNT分散液400の分散工程における処理圧力は、10MPa以上150MPa以下の範囲内の値が好ましい。
このように製造した本実施例に係るCNT分散液400は、CNTの優れた電気的特性や熱伝導性、機械的性質を維持しつつ、分散性が高く、安定した網目体360を備えるCNT集合体300の分散液を提供することができる。
本実施例に係るCNTの分散媒に用いる溶媒として、親水性溶媒、疎水性溶媒の何れも用いることができる。親水性溶媒としては、カーボネート類(エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、ブチレンカーボネート等)、エーテル類(テトラヒドロフラン等)、ケトン類(アセトン等)、低級アルコール類(メタノール、エタノール等)、アセトニトリルなどが挙げられる。また、疎水性溶媒としては、炭化水素類(トルエン、ベンゼン、キシレン、ヘキサン、シクロヘキサン等)、塩素含有炭化水素類(メチレンクロリド、クロロホルム、クロロベンゼン等)、エーテル類(ジオキサン、テトラヒドロフラン、メチルセロソルブ等)、エーテルアルコール(エトキシエタノール、メトキシエトキシエタノール等)、エステル類(酢酸メチル、酢酸エチル等)、ケトン類(シクロヘキサノン、メチルエチルケトン、4-メチルペンタン-2-オン、メチルイソブチルケトン等)、アルコール類(イソプロパノール、フェノール等)、低級カルボン酸(酢酸等)、アミン類(トリエチルアミン、トリメタノールアミン等)、窒素含有極性溶媒(N、N-ジメチルホルムアミド、ニトロメタン、N-メチルピロリドン等)、硫黄化合物類(ジメチルスルホキシド等)などを用いることができる。本実施例CNT分散液400に用いる溶媒として、CNTの良溶媒であるメチルイソブチルケトン(以下、MIBKという)が好ましい。
分散剤としては、界面活性剤、各種高分子材料等をCNT分散液400に添加してもよい。分散剤は、CNT集合体200の分散能や分散安定化能等を向上させるのに役立つ。界面活性剤は、イオン性界面活性剤と非イオン性界面活性剤に分けられるが、本実施例ではいずれの界面活性剤を用いることも可能である。界面活性剤としては、例えば以下のような界面活性剤があげられる。かかる界面活性剤は単独でもしくは2種以上を混合して用いることができる。
イオン性界面活性剤は、陽イオン性界面活性剤、両イオン性界面活性剤および陰イオ性界面活性剤にわけられる。陽イオン性界面活性剤としては、アルキルアミン塩、第四級アンモニウム塩などがあげられる。両イオン性界面活性剤としては、アルキルベタイン系界面活性剤、アミンオキサイド系界面活性剤がある。陰イオン性界面活性剤としては、ドデシルベンゼンスルホン酸等のアルキルベンゼンスルホン酸塩、ドデシルフェニルエーテルスルホン酸塩等の芳香族スルホン酸系界面活性剤、モノソープ系アニオン性界面活性剤、エーテルサルフェート系界面活性剤、フォスフェート系界面活性剤およびカルボン酸系界面活性剤などがあげられる。中でも、分散能、分散安定能、高濃度化に優れることから、芳香環を含むもの、すなわち芳香族系イオン性界面活性剤が好ましく、特にアルキルベンゼンスルホン酸塩、ドデシルフェニルエーテルスルホン酸塩等の芳香族系イオン性界面活性剤が好ましい。
非イオン性界面活性剤の例としては、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステルなどの糖エステル系界面活性剤、ポリオキシエチレン樹脂酸エステル、ポリオキシエチレン脂肪酸ジエチルなどの脂肪酸エステル系界面活性剤、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン・ポリプロピレングリコールなどのエーテル系界面活性剤、ポリオキシアルキレンオクチルフェニルエーテル、ポリオキシアルキレンノニルフェニルエーテル、ポリオキシアルキルジブチルフェニルエーテル、ポリオキシアルキルスチリルフェニルエーテル、ポリオキシアルキルベンジルフェニルエーテル、ポリオキシアルキルビスフェニルエーテル、ポリオキシアルキルクミルフェニルエーテル等の芳香族系非イオン性界面活性剤があげられる。中でも、分散能、分散安定能、高濃度化に優れることから、芳香族系非イオン性界面活性剤が好ましく、中でもポリオキシエチレンフェニルエーテルが好ましい。
(CNT成形体)
本明細書において、「CNT成形体」とは、CNT分散液から網目体を有するCNT集合体を取り出して、成形または加工により、賦形された状態にあるものすべてを示す。「成形または加工」とは、CNT集合体300の形状が変わる操作や工程を経過するすべての操作を示す。CNT成形体500の例としては、CNT集合体300からなる糸、チップ、ペレット、シート、ブロック等があげられる。これらを組み合わせたり、さらに成形または加工を施したりした結果物もCNT成形体500とする。上述した分散性が高く、安定した本実施例に係るCNT分散液400からCNT集合体300を取り出すことにより、優れた電気的特性や熱伝導性、機械的性質を有するCNT成形体500を製造することができる。
(成形方法)
本実施例に係る成形方法としては、CNT集合体300を含む液をろ過、蒸発等の方法で脱液し、フィルム状、膜状あるいはシート状に成形する方法や、CNT集合体300を含む液を型に入れた後、分散媒を蒸発させる方法を挙げることができる。また、CNT集合体300をプレス機によって圧縮する方法や、刃物で削るあるいは切る等の方法も用いることができる。
また、CNT分散液400をろ過することによって濾紙上に堆積させた、いわゆるバッキーペーパー(Bucky paper)と呼ばれるようなシートとしてCNT成形体500を得ることができる。このような薄膜状のCNT成形体500は、優れた導電性を有し、例えばキャパシタの電極として好適に用いることができる。また、本実施例に係るCNT成形体500は、CNT分散液400を、例えばシリコンウェーハのような基材にスピンコート、ディップコート、スプレーアップ、塗布、印刷、押し出し、キャスト、または射出などの方法により形成し薄膜状のCNT成形体500として利用することもできる。
基板とは、CNT分散液400が塗布された物、および/または、CNT集合体300、および/または、CNT成形体が装着された物であり、形状、材質、装着方法に左右されない。形状として、例えば基板の形状は平面のほか、曲面やフレキシブルなものが考えられ、基板の厚みは問わない。材質は、例えば各種金属、セラミックス、シリコン基板、樹脂などが考えられる。また基板の全面がCNT分散液400、および/または、CNT集合体300、および/または、CNT成形体500で被覆されている必要はない。例えばCNT分散液400、および/または、CNT集合体300、および/または、CNT成形体500がパターニングされているもの、部分的に基板表面が露出しているもの、電子回路が形成されたものなどが考えられる。またCNT分散液400、および/または、CNT集合体300、および/または、CNT成形体500が基板に直接接触して装着されている必要はなく、基板との間に熱伝導特性、接着性などの向上を目的として中間層を設けてもよい。
(CNT組成物)
本明細書において、「CNT組成物」とは、CNT分散液、およびCNT分散液から取り出したCNT集合体、および/または、CNT成形体を他の物質と分散した状態にあるものすべてを示す。本実施例に係るCNT集合体300、および/または、CNT成形体500、もしくはCNT分散液400を含む組成物は、非常に導電性の高い、または強度に優れた、または熱伝導性に優れた、または導電性が高く強度に優れた組成物とすることができる。ここで、「他の物質」とは、例えば樹脂、金属、ガラス、イオン液体、ゴムなどのことである。また、接着剤やセメント、石膏、セラミックスのようなものでもよい。また、これらの物質は、単独で使用しても、2種類以上組み合わせて使用してもよい。
また、本実施例に係るCNT組成物においては、CNTが一本ずつほぐれている状態でも、バンドルを組んだ状態でも、様々な太さのバンドルが混ざっていても、上記物質中に散らばっていれば、CNTが分散していると表現する。
組成物中のCNTの含有量については、上記CNT以外の物質の種類にもよるが、好適には組成物中に0.01重量%以上20重量%以下含有させることができ、より好ましくは0.01重量%以上10重量%以下であり、さらに好ましくは0.01重量%以上5重量%以下であり、なかでも0.05重量%以上1重量%以下がより好適である。目的にもよるが、CNTを多く入れすぎるとCNT組成物の強度が低下する場合がある。
樹脂としては、CNTを混合または分散できれば特に制限はなく、天然樹脂でも合成樹脂でも使用することができる。また、合成樹脂としては、熱硬化性樹脂も、熱可塑性樹脂も好適に使用できる。熱可塑性樹脂は、得られた成形体の衝撃強度に優れ、かつ成形効率の高いプレス成形や射出成形が可能であるため好ましい。
熱硬化性樹脂としては、特に限定されないが、例えば不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、シアネートエステル樹脂、ベンゾオキサジン樹脂、フェノール(レゾール型)樹脂、ユリア・メラミン樹脂、熱硬化性ポリイミド等や、これらの共重合体、変性体、および、2種類以上ブレンドした樹脂などを使用することができる。
熱可塑性樹脂としては、特に限定されないが、例えば、ポリエステル、ポリオレフィン、スチレン系樹脂、ポリオキシメチレン、ポリアミド、ポリカーボネート、ポリメチレンメタクリレート、ポリ塩化ビニル、ポリフェニレンスルフィド、ポリフェニレンエーテル、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリスルホン、ポリエーテルスルホン、ポリケトン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、ポリアリレート、ポリエーテルニトリル、フェノール(ノボラック型など)樹脂、フェノキシ樹脂、ポリテトラフルオロエチレンなどのフッ素系樹脂、ポリスチレン系、ポリオレフィン系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、ポリイソプレン系、フッ素系等の熱可塑エラストマー、これらの共重合体または変性体、およびこれらの樹脂を2種類以上ブレンドした樹脂などを用いることができる。
金属としては、CNTを混合または分散できれば特に制限はなく、アルミニウム、銅、銀、金、鉄、ニッケル、亜鉛、鉛、スズ、コバルト、クロム、チタン、タングステンなどを単独または複合して使用できる。ガラスとしては、CNTを混合または分散できれば特に制限はなく、ソーダ石灰ガラス、鉛ガラス、ほう酸ガラスなどが挙げられる。
本実施例に係るCNT組成物に用いられるゴム成分は、特に限定されず、天然ゴム及び合成ゴムのいずれでもよい。ここで、合成ゴムとしては、乳化重合スチレン-ブタジエンゴム、溶液重合スチレン-ブタジエンゴム、高シス-1,4-ポリブタジエンコム、低シス-1,4-ポリブタジエンゴム、高シス-1,4-ポリイソプレンゴム等の汎用合成ゴム、ニトリルゴム、水添ニトリルゴム、クロロプレンゴム等のジエン系特殊ゴム、エチレン-プロピレンゴム、ブチルゴム、ハロゲン化ブチルゴム、アクリルゴム、クロロスルホン化ポリエチレン等のオレフィン系特殊ゴムの他、ヒドリンゴム、フッ素ゴム、多硫化ゴム、ウレタンゴム等の他の特殊ゴムを挙げることができる。これらゴム成分の中でも、コストと性能のバランスの観点から、天然ゴム及び汎用合成ゴムが好ましい。また、これらゴム成分は、1種単独で用いてもよいし、2種以上のブレンドとしてもよい。
(実施例1)
上述した本発明に係るCNT分散液400、CNT成形体500の例について、以下に詳細に説明する。なお、以下の実施例は、一例であって本発明のCNT分散液400、CNT成形体500はこれらに限定されるものではない。
(CNTバルク集合体10の製造)
図6および図7に示したCNT製造装置2000を用いて、実施形態において説明した方法と同様の方法を採用して、CNTバルク集合体10を製造した。図6、図7を参照しながら説明する。縦型合成炉2030としては、円筒等の石英管(内径80mm)を用いた。加熱手段2060、および加熱領域2070の長さは265mmであった。中心部の水平位置から20mm下流に石英からなる基材ホルダ2080を設けた。基材ホルダ2080は、水平方向に設置され、平面状の基材2010を載置することが可能である。
合成炉2030の上壁には、合成炉2030上壁中心に設けられた開口に鉛直方向に挿入された直径22mm(内径20mm)の耐熱合金からなるガス供給管2040を設け、また下壁には、合成炉2030の下壁中心に設けられた開口に鉛直方向に挿入されたガス排気管2050を設けた。合成炉2030を外囲して設けられた抵抗発熱コイルからなる加熱手段2060と加熱手段2060と加熱温度調整手段を設け、所定温度に加熱された合成炉2030内の加熱領域2070を規定(加熱手段2060の全長は265mm、加熱領域2070の長さは265mm)した。
直径60mmの円筒状で扁平な中空構造をなす耐熱合金インコネル600からなるガス流形成手段2210を、ガス供給管2040の合成炉2030内の端部に連通して接続するように設けた。ガス供給管2040はガス流形成手段2210の中心に連通・接続された。
ガス流形成手段2210は基材2010の表面に対して、略平行な同一面内に配設し、基材2010の中心が、ガス流形成手段2210の中心と一致するように配設された。また、ガス流形成手段2210には噴出孔径:0.5mmの複数の噴出孔からなるガス噴出手段2200を設けた。ガス流形成手段2210は中空構造を有する円柱状の形状で、寸法は、表面サイズ:60.0mm×16.7mmであり、ガス噴出手段2200の径:0.5mm、ガス噴出手段2200の数:82個であった。
ガス噴出手段2200の噴出孔は基材2010の触媒層2020を臨む位置に設けられ、基材2010の平面に対して略垂直方向から原料ガスを触媒に吐出させた。臨む位置とは、噴出孔の、噴射軸線が基材の法線と成す角が0°以上90°未満となるような配置を示す。ガス噴出手段2200と対向する触媒表面との距離は140mmとした。
このようにして、ガス供給管2040から点状に合成炉2030に供給される原料ガスは、拡散・分配され基材2010の平面に対して略平行面の360度に渡る全方向に原料ガス流を形成した後に、該原料ガスは基材2010の平面に対して略垂直方向から基材2010上の触媒層2020表面に接触する。
ここで、意図的にガス流形成手段2210とガス噴出手段2200と触媒表面の間に140mmの距離を設け、加熱体積2150を増加させ、その加熱体積2150の空間に滞留時間調整手段2140を設けた。滞留時間調整手段2140は1層目にφ4mmの8個の穴が、2層目にφ0.5mmの101個の穴が開けられているガス流形成手段2210と接続された乱流防止手段2200である、耐熱合金インコネル600からなる二枚の整流板を備える。ガス流形成手段2210とガス噴出手段2200と触媒表面の間に距離:140mmを滞留時間調整手段2140の長さと定義する。本装置では、滞留時間調整手段2140の長さは触媒表面に対向して設けられたガス流形成手段2210に設けられたガス噴出手段2200との距離と一致する。
炭素重量フラックス調整手段2130はCNTの原料となる炭素化合物となる原料ガスボンベ2090、必要に応じて触媒賦活物質ボンベ2100、原料ガスや触媒賦活物質のキャリアガスである雰囲気ガスボンベ2110、ならびに触媒を還元するための還元ガスボンベ2120をそれぞれガスフロー装置に接続して構成し、それぞれ供給量を独立に制御しながら、ガス供給管2040に供給することで、原料ガスの供給量を制御した。
基材2010としては、触媒であるAlを30nm、Feを1.8nmスパッタリングした厚さ500nmの熱酸化膜付きSi基材(縦40mm×横40mm)を用いた。
基材2010を合成炉2020の加熱領域2070の中心の水平位置から20mm下流に設置された基板ホルダ2080上に搬入した(搬入工程)。基板は水平方向になるように設置した。これにより、基板上の触媒と原料ガスの流路が概して垂直に交わり、原料ガスが効率良く触媒に供給される。
次いで、還元ガスとしてHe:200sccm、H:1800sccmの混合ガス(全流量:2000sccm)を導入しながら、炉内圧力を1.02×10Paとした合成炉2030内を、加熱手段2060を用いて合成炉2030内の温度を室温から15分かけて810℃まで上昇させて、さらに810℃に保持した状態で3分間触媒付き基材を熱した。これにより、鉄触媒層は還元されて単層CNTの成長に適合した状態の微粒子化が促進され、ナノメートルサイズの触媒微粒子がアルミナ層上に多数形成された。
次いで、炉内圧力を1.02×10Pa(大気圧)とした合成炉2030の温度を810℃とし、炭素重量フラックスが192g/cm/minとなるように、総流量2000sccm、雰囲気ガスHe:総流量比84%(1680sccm)、原料ガスであるC:総流量比10%(200sccm)、触媒賦活物質としてHO含有He(相対湿度23%):総流量比6%(120sccm)を10分間供給した。炉内滞留時間は7秒であった。
これにより、単層CNTが各触媒微粒子から成長し、配向したCNT集合体が得られた。このようにして、触媒賦活物質含有かつ高炭素環境下で、CNTを基材2010上より成長させた。
成長工程の後、3分間、雰囲気ガス(総流量4000sccm)のみを供給し、残余の原料ガス、発生した炭素不純物、触媒賦活剤を排除した(炭素不純物付着抑制工程・フラッシュ工程)。
その後、基板を400℃以下に冷却した後、合成炉2030内から基板を取り出す(冷却・基板取り出し工程)ことにより、一連のCNTバルク集合体10の製造工程を完了させた。
(配向したCNT集合体)
基材2010上の触媒層2020から同時に成長した複数のCNTは、触媒層2020に直交する向きに成長して、配向し、高さが概ねそろった高比表面積、高純度のCNTバルク集合体10を構成する。
上記した方法で合成した配向したCNT集合体は、CNT同士が適切に絡み合っていて、基材2010から剥離した際に、CNTがばらばらにならず、適切なサイズの集合体状で剥離しやすい。さらには、CNTバルク集合体10は炭素不純物の発生と付着が抑制されていて、CNT間に適切な隙間があるため、CNTがほどけやすく、分散性が高い。さらには、CNTが高比表面積である。このようなCNT集合体は、本発明に係る3次元形状CNT集合体100を含むCNT集合体200を得るために好適である。
(3次元形状CNT集合体100を含むCNT集合体200の製造)
真空ポンプを用いて配向したCNT集合体を吸引し基板から剥離して、フィルターに付着したCNT集合体を回収した。その際、配向したCNT集合体は分散して、塊状の3次元形状CNT集合体100を含むCNT集合体200を得た。
次に、目開き0.8mmの網の一方にCNT集合体200を置き、網を介して掃除機で吸引し、通過したものを回収して、CNT集合体200から、サイズの大きな塊状のCNT集合体を取り除き、分級を行った(分級工程)。
CNT集合体200はカール・フィッシャー反応法(三菱化学アナリテック製 電量滴定方式微量水分測定装置CA-200型)で測定した。CNT集合体200を所定の条件(真空下、200℃に1時間保持)で乾燥後、乾燥窒素ガス気流中のグローブボックス内で、真空を解除してCNTを約30mg取り出し、水分計のガラスボートにCNT集合体200を移す。ガラスボートは、気化装置に移動し、そこで150℃で2分間加熱され、その間に気化した水分は窒素ガスで運ばれて隣のカール・フィッシャー反応によりヨウ素と反応する。その時消費されたヨウ素と等しい量のヨウ素を発生させるために要した電気量により、水分量を検知する。この方法により、乾燥前のCNT集合体200は、0.8重量%の水分を含有していた。乾燥後のCNT集合体200は、0.3重量%の水分に減少した。
(3次元形状CNT集合体100を含むCNT集合体200)
このようにして製造された本実施例に係る3次元形状CNT集合体100を含むCNT集合体200のSEM画像を図10~図14に示す。図10(a)は倍率30倍、図10(b)及び図10(c)は倍率50倍、図10(d)は倍率180倍におけるCNT集合体200のSEM画像である。図10(a)において観察されたほとんどのCNT集合体は、少なくとも3つの辺を備える第一面(上面)、それに平行に配置された、少なくとも3つの辺を備える第二面(下面)、また側面を備え、さらにはバンドル110、CNT区画片130や裂溝150を備えており、上述の製造方法により、本実施例に係る3次元形状CNT集合体100が製造されたことが確認された。また、図10(b)においてはCNT区画片130、図10(c)においては裂溝150、図10(d)においてはバンドル110の観察例をそれぞれ示した。さらに、図10(d)においては、最外側面にバンドル110を備えた側面105が、上面101及び下面103に対して垂直であることが明らかとなった。
図11(a)~図11(d)は、側面105の長さが様々な3次元形状CNT集合体100が製造可能であることを示す。図11(a)、(b)の3次元形状CNT集合体100の長さは450μm~550μm、図11(c)、(d)の3次元形状CNT集合体100の長さは、250μmである。図中の矢印は3次元形状CNT集合体100の側面105の長さ及び配向方向を示す。本実施例に係る3次元形状CNT集合体100は、合成時間を調整することで、側面105の長さが10μm以上1cm以下の範囲で製造することができる。
図12(a)~図12(d)は、本実施例に係るCNT集合体200において、様々な形状の3次元形状CNT集合体100が存在することを示す。3次元形状CNT集合体100の側面105が矩形であるのに対して、上面101及び下面103は少なくとも3つの辺を備える、様々な多角形(円形も含む)であることが分かる。
図13(a)~図13(d)は、本実施例に係る3次元形状CNT集合体100の上面101と下面103とが互いに平行に配置されることを示す。図中の線1は平行線を示す。これは、上述した製造方法を用いることで、基材2010上の触媒層2020から同時に成長した複数のCNTが、触媒層2020に直交する向きに成長して配向し、高さが概ねそろったCNTバルク集合体10を構成することができ、CNT集合体200の原料として用いることができるためである。
図14(a)~図14(d)は、本実施例に係る3次元形状CNT集合体100の側面105が、上面101及び下面103に対して垂直であることを示す。また、上面101及び下面103はCNT集合体の配向方向に対しても垂直であることが分かる。以上の観察結果から、3次元形状CNT集合体100は、配向方向に対して平行にCNT集合体が剥離しやすい構造を有し、この結果、ほぐしやすくなっていると推察される。
(3次元形状CNT集合体100の上面の特徴)
図15(a)及び図15(b)は、3次元形状CNT集合体100の上面101を垂直方向から観察したSEM画像である。本実施例に係る3次元形状CNT集合体100の上面101には、CNTのネットワークが観察される。上面101においては、CNTの先端部が局所的に離散、集合してCNTのネットワークが形成されることが明らかとなった。
また、図16(a)及び図16(b)は、3次元形状CNT集合体100の上面101を斜め上方から観察したSEM画像である。3次元形状CNT集合体100の上面101は、平面状の形状を有するが、CNTのネットワークが形成されるため、微視的には凹凸が存在することが分かる。このようなCNTのネットワークを上面101に備えることで、本実施例に係る3次元形状CNT集合体100は、ほぐしたときにCNTが完全にばらばらにはならず、フレーク状のCNT集合体として存在することができると推察される。
(3次元形状CNT集合体100の下面の特徴)
図20~図23は、本実施例に係る3次元形状CNT集合体100の上面101に平行に配置された下面103のSEM画像である。図20(a)及び図20(b)は、3次元形状CNT集合体100の下面103を垂直方向から観察したSEM画像である。また、図21(a)及び図21(b)は、3次元形状CNT集合体100の下面103を垂直方向から拡大して観察したSEM画像である。本実施例に係る3次元形状CNT集合体100の下面103には、CNTのネットワークが観察される。下面103においては、CNTの先端部が局所的に離散、集合してCNTのネットワークが形成されることが明らかとなった。本実施例においては、上面101および下面103の間において、CNTのネットワークに大きな違いは観察されないため、いずれの面を上面(第一面)、下面(第二面)としてもよい。
明細書に記載の方法で計算した、上面101のヘルマン配向係数は0.05であった。また同様に下面103のヘルマンの配向係数は0.03であった。
(3次元形状CNT集合体100の側面の特徴)
図17~図19は、本実施例に係る3次元形状CNT集合体100の側面105のSEM画像である。側面105において、3次元形状CNT集合体100は配向性を有することが分かる。明細書に記載の方法で計算した、側面105のヘルマン配向係数は0.63であった。
このように配向性の高い3次元形状CNT集合体100は、構成するCNTの相互作用が弱く、3次元形状CNT集合体100からCNT区画片130が容易に剥離し、ほぐしやすくなり、裂溝150を起点として3次元形状CNT集合体100に亀裂が生じると、容易にCNT集合体が剥離し、ほぐしやすくなると推察される。
また、図22(a)及び図22(b)は、3次元形状CNT集合体100の下面103を斜め上方から観察したSEM画像である。3次元形状CNT集合体100の下面103は、平面状の形状を有するが、CNTのネットワークが形成されるため、微視的には凹凸が存在することが分かる。さらに、図23(a)は3次元形状CNT集合体100の下面103の辺部を、図23(b)は下面103の裂溝150を斜め上方から観察したSEM画像である。このようなCNTのネットワークを下面103に備えることで、本実施例に係る3次元形状CNT集合体100は、ほぐしたときにCNTが完全にばらばらにはならず、フレーク状のCNT集合体として存在することができると推察される。
(バンドル)
図24は、本実施例に係る3次元形状CNT集合体100の側面105の最外側面から延出するCNTのバンドル110のSEM画像である。図25は、側面105から延出するバンドル110の拡大画像である。バンドル110は、側面105のみに存在し、側面105のみから剥離することが観察される。また、図26から明らかなように、バンドル110一端は、側面105の最外側面に存在しており、バンドル110が側面105から延出していることが分かる。
図27において、バンドル110は複数のCNTにより形成されることが分かる。また、図28から明らかなように、バンドル110の大きさ、バンドル110を構成するCNTの数は多様である。バンドル110は、数十nmから数μmの径(太さ)で延出される。
図29において、矢印はバンドル110を示す。バンドル110は側面105からのみ延出しており、特に、CNT区画片130からはバンドル110が多数延出する。また、バンドル110は、図30(a)に示すような数μmの長さから、図30(d)に示すような3次元形状CNT集合体100の配向方向の長さに相当する長さまで様々である。さらに、図31に示すように、バンドル110の長さも1μmから数500μmまでの範囲で様々である。
一方、図32に示すように、1つの3次元形状CNT集合体100、1つの側面105から延出するバンドル110の数も様々である。図32(a)においては、3次元形状CNT集合体100の1つの側面105から延出するバンドル110は約30本、3次元形状CNT集合体100の全ての側面105から延出するバンドル110は約120本であった。図32(b)においては、3次元形状CNT集合体100の1つの側面105から延出するバンドル110は26本、3次元形状CNT集合体100の全ての側面105から延出するバンドル110は104本であった。図32(c)においては、3次元形状CNT集合体100の1つの側面105から延出するバンドル110は21本、3次元形状CNT集合体100の全ての側面105から延出するバンドル110は84本であった。図32(d)においては、3次元形状CNT集合体100の1つの側面105から延出するバンドル110は21本、3次元形状CNT集合体100の全ての側面105から延出するバンドル110は84本であった。
以上説明したように、本実施例に係る3次元形状CNT集合体100の側面105から延出するバンドル110は多様であり、3次元形状CNT集合体100から剥離しやすい特性を有することが分る。また、実施形態において説明したように、3次元形状CNT集合体100は、複数のバンドル110を有することで、3次元形状CNT集合体士が凝集しにくい特性を有すると推察される。
(水銀圧入式のポロシメータによるCNT集合体の細孔径、細孔容量の測定)
本実施例に係る3次元形状CNT集合体を含むCNT集合体200を水銀圧入式のポロシメータで評価した。図33に細孔径、細孔容量の測定結果を示す。3次元形状CNT集合体を含むCNT集合体200においては、細孔径0.1μm以上100μm以下の範囲の微分細孔容積が最大となる細孔径は、8μmとなることが分かる。また、微分細孔容積が最大となる細孔径での細孔容積が、17.5mL/gである。この測定結果は、原料であるCNTバルク集合体10の細孔径に比してはるかに大きい。したがって、上記の数値範囲は、CNT集合体の間に存在する隙間を評価するものと推察される。また、このようなCNT集合体の間の隙間は、上述したバンドル110が、CNT集合体同士が凝集するのを防ぐことにより生じるものと推察される。
(嵩密度)
本実施例に係るCNT集合体200について、嵩密度を測定した。本実施例においては、嵩密度は、ルーズ嵩密度とタップ嵩密度を測定した。比較例としてユニダイム社製の単層CNT(通称HiPco(High-pressure carbon monoxide process))を用いた。ルーズ嵩密度の測定には、既知の重量のCNT集合体を既知の底面積の容器に入れて激しく揺り動かし、静置してCNT集合体を沈降させ、高さを測定して計算により体積を求めた。タップ嵩密度の測定には、ルーズ嵩密度を測定した容器を25mmの高さから固い表面に20回繰り返して落下させ、高さを測定して計算により体積を求めた。図34は、嵩密度の測定結果を示す。ルーズ嵩密度は0.019g/cm、タップ嵩密度は0.024g/cmとなった。
本実施例に係るCNT集合体200は、比較例に比して有意に嵩密度が小さいことが分かる。上述したように、CNT集合体200はバンドル110を備えることにより、CNT集合体の間に隙間が存在し、CNT集合体同士が凝集するのを防ぐと推察される。
(安息角)
本実施例に係るCNT集合体200について、安息角を測定した。本実施例においては、安息角は注入法により測定した。また、安息角はストロー有り、無しの両方を測定した。比較例にはHiPcoを用いた。図35は、安息角の測定結果を示す。
図36は、CNT集合体200の嵩密度及び安息角の測定結果を示す表である。本実施例に係るCNT集合体200は、安息角が65±10度であり、比較例に比して大きな安息角を有することが明らかとなった。CNT集合体200は、CNT集合体の間に適度の摩擦が存在するため、分散処理をほどこした際に、CNT集合体同士が凝集し難くなると推察される。
(単層CNT)
CNT集合体200をTEM(日本電子社製 JEM-2100)で観察を行った。測定倍率は5万倍から50万倍である。加速電圧は120kVである。炭素不純物の付着のない単層CNTが観察された。またCNT100本中の98%以上(98本)を単層CNTが占め、二層が2%であった。また鉄触媒の厚みを2.5nmとすることで、二層CNTが60%、単層CNTが25%、三層CNTが20%、三層以上のCNTが5%のCNT集合体も製造でき、本発明の効果も、同等であった。
(CNT集合体の細孔径、細孔容量)
CNT集合体200、約1mgを、示差熱分析装置(TAインスツルメント製(型番Q5000IR)に設置し、空気中、1℃/分の昇温速度にて室温から900℃まで昇温した。その時の200℃から400℃の間での重量減少は0.7%であった。また、この時のDTA曲線の最も大きなピークは669℃であった。
CNT集合体200、50mgの吸脱着等温線をBELSORP-MINI(株式会社日本ベル製)を用いて77Kで液体窒素を用いて計測した(吸着平衡時間は600秒とした)。この吸脱着等温線からBrunauer, Emmett, Tellerの方法で比表面積を計測したところ、1000m/gであった。また、CNT集合体200、50mgをアルミナ製のトレイに均等配置し、マッフル炉に入れた。そして1℃/分で550℃まで昇温させ、酸素雰囲気下(濃度20%)で1分間の熱処理を行ったところ、試料の重量は45mgとなり、5mgが燃焼していた。熱処理後の試料について上記と同様にして比表面積を計測したところ、比表面積はおよそ1900m/gであった。
CNT集合体200を蛍光X線によって元素分析したところ、炭素が99.96%であった。BJH法で求めた細孔径の分布極大は19nmであった。
(CNT分散液の製造)
分級したCNT集合体200を100mg正確に計量し、100mlフラスコ(3つ口:真空用、温度調節用)に投入して、真空下で200℃に達してから1時間保持し、乾燥させた。乾燥が終了後、加熱・真空処理状態のまま、分散媒メチルイソブチルケトン(MIBK)(シグマアルドリッチジャパン社製)を20ml注入しCNT集合体200が大気に触れることを防いだ(乾燥工程)。
さらに、分散媒メチルイソブチルケトン(MIBK)(シグマアルドリッチジャパン社製)を追加して300mlとする。そのビーカーに8角回転子を入れて、ビーカーをアルミ箔で封印し、MIBKが揮発しないようにして、800RPMで、24時間スターラーで常温撹拌した。
分散工程には、湿式ジェットミル(常光社製ナノジェットパル(登録商標)JN10)を用い、200μmの流路を60MPaの圧力で通過させてCNT集合体200を分散媒MIBKに分散させ、重量濃度0.033wt%のCNT分散液400を得た。
その分散液を更に常温で24時間、スターラーで撹拌した。この時、溶媒であるビーカーに蓋をしないで、分散媒MIBKを揮発させ150ml程度とした。この時のCNTの重量濃度は、0.075wt%程度となった(分散工程)。このようにして、本発明に係わるCNT分散液400を得た。
(網目体を有するCNT集合体)
60MPaで処理した、重量濃度0.075重量%のCNT分散液400をスピンコート(MIKASA SPINCOATER 1H-D7)により、非常に薄くシリコンもしくはガラス基板上に塗布した。
はじめに、コートするCNT分散液400を約1ml準備した。試料をコートする基板(SEM観察の場合はシリコン、光学顕微鏡の場合はスライドグラス)を準備した。基板を真空で引いて固定した。回転条件は、3000RPM、30secで約0.1mlの溶液を基板中央に垂らして、スピンコートした。基板上のCNT集合体200等に問題がある場合は、回転数を変えて微調整した。
次に作成した試料を走査型電子顕微鏡、光学顕微鏡、およびレーザー顕微鏡で観察した。図8および図9に示したように、CNT集合体200は、微細な細孔(隙間)を有するCNT(もしくはCNTのバンドル)とCNT(もしくはCNTのバンドル)のネットワーク構造、すなわち、網目体113を有することが分かる。
(CNT分散液の分散安定性)
CNT分散液400は、10日以上の静置保管においても、目視で、CNT集合体200と溶媒とは分離することなく、分散を保持した。本実施例のCNT分散液400が極めて高い安定性を有することが分かる。
(CNT集合体の評価とCNT成形体)
上述したCNT分散液400からCNT集合体200を取り出して特性を評価するために、薄膜状のCNT成形体250を製造した。真空引きの出来る容器にミリポア紙(MILLIPORE社製Filter Membrane:DURAPORE(登録商標)(0.22μm GV, 直径45mm)をセットし、0.075重量%のCNT分散液400を150mlミリポア紙で濾過した。CNT集合体200をミリポア紙上に堆積させ、70μm程度の厚みの薄膜状のCNT成形体250を作成した。ミリポア紙の上に堆積したCNTを2枚のろ紙で挟み、70℃で12時間真空乾燥した。乾燥後は、ミリポア紙から薄膜状のCNT成形体250は容易に剥離し、目的のCNT成形体を得た。
(CNT成形体の導電性)
CNT成形体250の表面抵抗値はJISK7149準処の4端子4探針法を用い、ロレスタEP MCP-T360((株)ダイアインスツルメンツ社製)にて測定した。得られた表面抵抗値を4端子法によって測定後、表面抵抗値と成形体の膜厚を掛けて、体積抵抗値を算出した。体積抵抗値からCNT成形体の導電性を計算した。導電性は、83S/cmであった。
(CNTゴム組成物)
フッ素ゴム(ダイキン工業社製Daiel-G912)をMIBKに溶解させたマトリックス溶液を準備し、湿式ジェットミルでの処理圧力を60MPaとしたCNT分散液に添加して十分に撹拌し、マトリックス中にCNTを分散させた。CNT複合材料全体の質量を100質量%とした場合、CNT含量が1%になるように、CNT分散液150mlをフッ素ゴム溶液50mlに添加し、スターラーを用い約300rpmの条件下、室温で16時間撹拌し全量が50ml程度になるまで濃縮した。十分に混合したこの溶液をシャーレ等の型に流し込み、室温で12時間乾燥させることにより、CNT複合材料を固化させた。固化したCNT複合材料を80℃の真空乾燥炉に入れて乾燥させ溶媒を除去した。このようにして、1wt%CNTゴムを得た。得られたCNTゴムの導電性は、0.4S/cmであり、少ないCNTの添加量にも係わらず、導電性は極めて高かった。
(比較例)
ユニダイム社製の、単層CNT100mg(通称HiPco(High-pressure carbon monoxide process))HiPcoを100mlフラスコに投入して、真空下で200℃に達してから1時間保持し、乾燥させた。HiPco単層CNTをSEMで観察したところ、球状のCNTの無配向集合体の様態であり、対向する平行な無配向なカーボンナノチューブからなる第一面、第二面、第一面およびまたは第二面と垂直な配向したカーボンナノチューブからなる側面は観察されなかった。いずれの部位においても配向したCNTは観察されなかった。同様に、最外側面から延出するバンドルは観察されなかった。乾燥が終了後、加熱・真空処理状態のまま、分散媒メチルイソブチルケトンMIBK(シグマアルドリッチジャパン社製)を20ml注入しCNT集合体が大気に触れることを防いだ(乾燥工程)。さらに、分散媒MIBK(シグマアルドリッチジャパン社製)を追加して300mlとする。そのビーカーに8角回転子を入れて、ビーカーをアルミ箔で封印し、MIBKが揮発しないようにして、800RPMで、24時間スターラーで常温撹拌した。分散工程には、湿式ジェットミル(常光社製ナノジェットパル(登録商標)JN10)を用い、200μmの流路を20~120MPaの圧力で通過させてCNT集合体をMIBKに分散させ、重量濃度0.033重量%のCNT分散液1000を得た。CNT分散液1000を更に常温で24時間、スターラーで撹拌した。この時、溶媒であるビーカーに蓋をしないで、MIBKを揮発させ150ml程度とした。この時のCNTの重量濃度は、0.075重量%程度となった(分散工程)。
10日間静置すると、CNT集合体と溶媒が分離し、本実施例のCNT分散液400に比して分散安定性が低かった。
上述した比較例のCNT分散液1000を用いてCNT集合体の特性を評価するために、実施例の方法で薄膜状のCNT成形体1050を製造した。
実施例の方法で、示差熱分析装置(TAインスツルメント製(型番Q5000IR)にCNT成形体1050を設置し、空気中、1℃/分の昇温速度にて室温から900℃まで昇温した。その時の200℃から400℃の間での重量減少は14%であった。また、この時のDTA曲線の最も大きなピークは484℃であった。
実施例の方法で比表面積を計測したところ、600m/gであった。
(CNT成形体の導電性)
実施例の方法で、CNT成形体1050の導電性を求めたところ、25S/cmであり、実施例と比較するとその電気特性は劣るものであった。実施例の方法で製造したCNTゴム組成物の導電性は、10-3S/cmであり、実施例と比較するとその電気特性は劣るものであった。
以上説明したように、本発明に係るCNT分散液は、CNTの優れた電気的特性を維持しつつ、分散性が高く、安定も高い。また、分散性が高く、安定した本発明に係るCNTの分散液を用いることで、優れた電気的特性を有するCNT成形体が提供される。
1:平行線、10:本発明に係るCNTバルク集合体、100:本発明に係る3次元形状CNT集合体、101:上面、103:下面、105:側面、110:バンドル、130:区画片、150:裂溝、200:本発明に係るCNT集合体、300:本発明に係るCNT集合体、360:網目体、370:幹部、400:本発明に係るCNT分散液、500:本発明に係るCNT成形体、900:従来のCNT集合体、1000:比較例のCNT分散液、1050:比較例の実施例に係るCNT成形体、2000:本発明に係る合成装置、2010:基材、2020:触媒層、2030:合成炉、2040:ガス供給管、2050:ガス排気管、2060:加熱手段、2070:加熱領域、2080:基材ホルダ、2090:原料ガスボンベ、2100:触媒賦活物質ボンベ、2110:雰囲気ガスボンベ、2120:還元ガスボンベ、2130:炭素重量フラックス調整手段、2140:滞留時間調整手段、2150:加熱体積、2160:排気体積、2200:ガス噴出手段、2210:ガス流形成手段、2220:乱流抑制手段

Claims (25)

  1. 3次元形状カーボンナノチューブ集合体であり、
    前記3次元形状カーボンナノチューブ集合体は、
    第1面、第2面及び側面を備え、
    前記第1面のカーボンナノチューブはヘルマンの配向係数が-0.1より大きく0.2より小さく、
    前記第2面のカーボンナノチューブはヘルマンの配向係数が-0.1より大きく0.2より小さく、
    前記側面のカーボンナノチューブはヘルマンの配向係数が0.2以上0.99以下の配向度を有し、
    かつ、前記第1面及び前記第2面は、互いに平行に配置され、かつ前記側面は、前記第1面及び前記第2面に対して垂直である3次元形状カーボンナノチューブ集合体。
  2. 前記3次元形状カーボンナノチューブ集合体を含むカーボンナノチューブ集合体が水銀圧入式のポロシメータにて測定した、細孔径0.1μm以上100μm以下の範囲の微分細孔容積が最大となる細孔径は、1μm以上50μm以下であることを特徴とする請求項1に記載の3次元形状カーボンナノチューブ集合体。
  3. 前記側面の長さが10μm以上1cm以下であることを特徴とする請求項1に記載の3次元形状カーボンナノチューブ集合体。
  4. 前記3次元形状カーボンナノチューブ集合体を含むカーボンナノチューブ集合体の前記微分細孔容積が最大となる細孔径での細孔容積が、5mL/g以上であることを特徴とする請求項3に記載の3次元形状カーボンナノチューブ集合体。
  5. 前記第1面、及び/または前記第2面は、カーボンナノチューブのネットワークを備えることを特徴とする請求項1に記載の3次元形状カーボンナノチューブ集合体。
  6. 前記3次元形状カーボンナノチューブ集合体の前記第1面及び前記第2面は、それぞれ少なくとも3つの辺を備えることを特徴とする請求項1に記載の3次元形状カーボンナノチューブ集合体。
  7. 前記3次元形状カーボンナノチューブ集合体の前記側面の最外側面からカーボンナノチューブのバンドルを複数延出することを特徴とする請求項1に記載の3次元形状カーボンナノチューブ集合体。
  8. 前記3次元形状カーボンナノチューブ集合体を含むカーボンナノチューブ集合体の安息角が40度以上85度以下であることを特徴とする請求項1に記載の3次元形状カーボンナノチューブ集合体。
  9. 前記3次元形状カーボンナノチューブ集合体を含むカーボンナノチューブ集合体の嵩密度が0.001g/cm以上0.19g/cm以下であることを特徴とする請求項1に記載の3次元形状カーボンナノチューブ集合体。
  10. 前記3次元形状カーボンナノチューブ集合体を含むカーボンナノチューブ集合体の液体窒素の吸着等温線からBJH法で求めた細孔径の分布極大が100nm以下であることを特徴とする請求項1に記載の3次元形状カーボンナノチューブ集合体。
  11. 前記3次元形状カーボンナノチューブ集合体は、裂溝を備えることを特徴とする請求項1乃至8の何れか一に記載の3次元形状カーボンナノチューブ集合体。
  12. 前記最外側面は、カーボンナノチューブ集合体からなるカーボンナノチューブ区画片を備えることを特徴とする請求項1に記載の3次元形状カーボンナノチューブ集合体。
  13. 前記最外側面は、バンドルを備えるカーボンナノチューブ区画片を複数配置してなることを特徴とする請求項1に記載の3次元形状カーボンナノチューブ集合体。
  14. 前記バンドルは、前記側面に構成する前記カーボンナノチューブ区画片から引き剥がされて延出していることを特徴とする請求項13に記載の3次元形状カーボンナノチューブ集合体。
  15. 前記3次元形状カーボンナノチューブ集合体を含むカーボンナノチューブ集合体が蛍光X線で測定した炭素純度が98%以上を備えることを特徴とする請求項1に記載の3次元形状カーボンナノチューブ集合体。
  16. 前記3次元形状カーボンナノチューブ集合体を含むカーボンナノチューブ集合体が800m/g以上2500m/g以下の比表面積を備えるカーボンナノチューブを含むことを特徴とする請求項1に記載の3次元形状カーボンナノチューブ集合体。
  17. 前記3次元形状カーボンナノチューブ集合体を含むカーボンナノチューブ集合体を1℃/分で200℃から400℃まで昇温した時の熱重量測定における重量減少が10%以下であることを特徴とする請求項1に記載の3次元形状カーボンナノチューブ集合体。
  18. 前記3次元形状カーボンナノチューブ集合体を構成するカーボンナノチューブが単層カーボンナノチューブであることを特徴とする請求項1に記載の3次元形状カーボンナノチューブ集合体。
  19. 前記カーボンナノチューブのバンドルは、隣接する3次元形状カーボンナノチューブ集合体まで延出していることを特徴とする請求項1に記載の3次元形状カーボンナノチューブ集合体。
  20. カーボンナノチューブのバンドルの長さは、1μm以上、1mm以下であることを特徴とする請求項1に記載の3次元形状カーボンナノチューブ集合体。
  21. 請求項1に記載の3次元形状カーボンナノチューブ集合体を複数備えるカーボンナノチューブ集合体。
  22. 請求項1に記載の3次元カーボンナノチューブ集合体を含むカーボンナノチューブ集合体を分散処理させて得られる、複数のカーボンナノチューブからなる網目体を備えるカーボンナノチューブ集合体。
  23. 請求項22に記載の複数のカーボンナノチューブからなる網目体を備えるカーボンナノチューブ集合体を備えるカーボンナノチューブ成形体。
  24. 請求項22に記載の複数のカーボンナノチューブからなる網目体を備えるカーボンナノチューブ集合体を備える組成物。
  25. 請求項1に記載の3次元カーボンナノチューブ集合体を含むカーボンナノチューブ集合体を分散処理させて得られる複数のカーボンナノチューブからなる網目体を備えるカーボンナノチューブ集合体を分散液に分散させたカーボンナノチューブ分散液。
PCT/JP2011/078869 2010-12-15 2011-12-14 カーボンナノチューブ集合体、3次元形状カーボンナノチューブ集合体、それを用いたカーボンナノチューブ成形体、組成物及びカーボンナノチューブ分散液 WO2012081601A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11848877.4A EP2653444A4 (en) 2010-12-15 2011-12-14 Carbon nanotube assembly, carbon nanotube assembly having three-dimensional shape, carbon nanotube molding produced using the carbon nanotube assembly, composition, and carbon nanotube dispersion
CN201180060369.6A CN103261091B (zh) 2010-12-15 2011-12-14 三维形状碳纳米管集合体
JP2012548802A JP5540341B2 (ja) 2010-12-15 2011-12-14 カーボンナノチューブ集合体、3次元形状カーボンナノチューブ集合体、それを用いたカーボンナノチューブ成形体、組成物及びカーボンナノチューブ分散液
US13/916,957 US9809457B2 (en) 2010-12-15 2013-06-13 Carbon nanotube aggregate, carbon nanotube aggregate having a three-dimensional shape, carbon nanotube molded product using the carbon nanotube aggregate, composition, and carbon nanotube dispersion liquid
US15/716,555 US10494262B2 (en) 2010-12-15 2017-09-27 Carbon nanotube aggregate, carbon nanotube aggregate having a three-dimensional shape, carbon nanotube molded product using the carbon nanotube aggregate, composition, and carbon nanotube dispersion liquid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-279147 2010-12-15
JP2010279147 2010-12-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/916,957 Continuation US9809457B2 (en) 2010-12-15 2013-06-13 Carbon nanotube aggregate, carbon nanotube aggregate having a three-dimensional shape, carbon nanotube molded product using the carbon nanotube aggregate, composition, and carbon nanotube dispersion liquid

Publications (1)

Publication Number Publication Date
WO2012081601A1 true WO2012081601A1 (ja) 2012-06-21

Family

ID=46244698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078869 WO2012081601A1 (ja) 2010-12-15 2011-12-14 カーボンナノチューブ集合体、3次元形状カーボンナノチューブ集合体、それを用いたカーボンナノチューブ成形体、組成物及びカーボンナノチューブ分散液

Country Status (5)

Country Link
US (2) US9809457B2 (ja)
EP (1) EP2653444A4 (ja)
JP (2) JP5540341B2 (ja)
CN (1) CN103261091B (ja)
WO (1) WO2012081601A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130207051A1 (en) * 2012-02-13 2013-08-15 Korea Kumho Petrochemical Co., Ltd. Carbon nano-material pellets and a method for preparing the pellets from powder of carbon nano-material
WO2015015758A1 (ja) * 2013-07-31 2015-02-05 日本ゼオン株式会社 カーボンナノチューブ分散液の製造方法、複合材料用組成物の製造方法および複合材料の製造方法、並びに、複合材料および複合材料成形体
KR20150091482A (ko) * 2012-12-04 2015-08-11 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. 탄소 나노구조물-코팅된 섬유를 제조하기 위한 방법
KR101620194B1 (ko) * 2013-09-30 2016-05-12 주식회사 엘지화학 탄소나노튜브 집합체의 벌크 밀도 조절 방법
WO2016143299A1 (ja) * 2015-03-06 2016-09-15 日本ゼオン株式会社 複合材料の製造方法および複合材料
US20170107416A1 (en) * 2011-10-05 2017-04-20 National Institute Of Advanced Industrial Science And Technology Carbon nanotube composite material and thermal conductor
JP2018024540A (ja) * 2016-08-08 2018-02-15 国立研究開発法人産業技術総合研究所 カーボンナノチューブを含む膜構造体
WO2018169366A1 (ko) * 2017-03-17 2018-09-20 주식회사 엘지화학 번들형 탄소나노튜브 및 이의 제조방법
CN113226985A (zh) * 2018-12-27 2021-08-06 住友电气工业株式会社 碳纳米管集合线、碳纳米管集合线集束以及碳纳米管结构体
US11352260B2 (en) 2017-03-17 2022-06-07 Lg Chem, Ltd Bundle-type carbon nanotubes and method for preparing the same
KR20220148807A (ko) 2020-02-28 2022-11-07 니폰 제온 가부시키가이샤 카본 나노튜브 집합체 및 그 제조 방법
JP7556060B2 (ja) 2020-11-25 2024-09-25 エルジー エナジー ソリューション リミテッド 活性炭素及びこの製造方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013039156A1 (ja) * 2011-09-14 2013-03-21 株式会社フジクラ カーボンナノファイバ形成用構造体、カーボンナノファイバ構造体及びその製造方法並びにカーボンナノファイバ電極
CN106458599B (zh) 2014-05-30 2019-10-18 日本瑞翁株式会社 碳纳米管分散液及制造方法、复合材料用组合物制造方法、复合材料及其制造方法及成型体
CN104860293B (zh) * 2015-03-31 2017-01-25 大连理工大学 碳纳米管三维网络宏观体、其聚合物复合材料及其制备方法
JP2018026914A (ja) * 2016-08-08 2018-02-15 国立研究開発法人産業技術総合研究所 膜構造体を備えるアクチュエータ
US11267710B2 (en) 2017-01-05 2022-03-08 Lg Chem, Ltd. Method for producing carbon nanotube dispersion with improved workability
CN107055511B (zh) * 2017-04-13 2019-04-16 常州纳欧新材料科技有限公司 一种三维交联碳纳米管及其制备方法
JP7233835B2 (ja) * 2017-10-30 2023-03-07 ニッタ株式会社 カーボンナノチューブ分散液、およびその製造方法
WO2019124026A1 (ja) * 2017-12-19 2019-06-27 日本ゼオン株式会社 繊維状炭素ナノ構造体、繊維状炭素ナノ構造体の評価方法および表面改質繊維状炭素ナノ構造体の製造方法
CN107986261B (zh) * 2018-01-09 2021-01-05 郑州大学 制备超大尺寸碳纳米管三维多孔块体的装置和方法
CN112004775B (zh) * 2018-03-30 2023-10-24 古河电气工业株式会社 碳纳米管线材
JP7042191B2 (ja) * 2018-08-10 2022-03-25 大陽日酸株式会社 薄膜の製造方法、光電子増倍管の製造方法
US20220238886A1 (en) * 2019-08-01 2022-07-28 Lg Energy Solution, Ltd. Negative Electrode, Secondary Battery Including the Negative Electrode, and Method of Preparing the Negative Electrode
CN114341262B (zh) * 2019-09-03 2024-10-15 住友电气工业株式会社 碳纳米管-树脂复合体以及碳纳米管-树脂复合体的制造方法
JP6841318B2 (ja) * 2019-12-16 2021-03-10 日本ゼオン株式会社 炭素膜およびその製造方法
KR20220148812A (ko) * 2020-02-28 2022-11-07 니폰 제온 가부시키가이샤 탄소막
KR102699218B1 (ko) * 2020-09-16 2024-08-26 린텍 오브 아메리카, 인크. Euv 리소그래피용 초박형, 초저밀도 필름
WO2022086289A1 (ko) * 2020-10-23 2022-04-28 주식회사 엘지에너지솔루션 음극 및 이를 포함하는 이차 전지
US20240010498A1 (en) * 2022-07-06 2024-01-11 Technology Innovation Institute – Sole Proprietorship LLC Method for producing superhydrophobic carbon nanotube sheets

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011655A1 (ja) * 2004-07-27 2006-02-02 National Institute Of Advanced Industrial Scienceand Technology 単層カーボンナノチューブおよび配向単層カーボンナノチューブ・バルク構造体ならびにそれらの製造方法・装置および用途
WO2007078005A1 (ja) * 2006-01-06 2007-07-12 National Institute Of Advanced Industrial Science And Technology 配向カーボンナノチューブ・バルク集合体ならびにその製造方法および用途
JP2009149832A (ja) * 2007-02-20 2009-07-09 Toray Ind Inc カーボンナノチューブ集合体および導電性フィルム
WO2010076885A1 (ja) * 2008-12-30 2010-07-08 独立行政法人産業技術総合研究所 単層カーボンナノチューブ配向集合体、バルク状単層カーボンナノチューブ配向集合体、粉体状単層カーボンナノチューブ配向集合体、およびその製造方法
JP2010248073A (ja) * 2008-04-16 2010-11-04 Nippon Zeon Co Ltd カーボンナノチューブ配向集合体の製造装置及び製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4556409B2 (ja) * 2003-09-24 2010-10-06 東レ株式会社 カーボンナノチューブを含有する組成物の精製方法およびカーボンナノチューブ組成物
US20100062229A1 (en) * 2004-07-27 2010-03-11 Kenji Hata Aligned single-walled carbon nanotube aggregate, bulk aligned single-walled carbon nanotube aggregate, powdered aligned single-walled carbon nanotube aggregate, and production method thereof
JP2007012325A (ja) 2005-06-28 2007-01-18 Nissan Motor Co Ltd 固体高分子型燃料電池用電極及びこれを用いた固体高分子型燃料電池
JP4752376B2 (ja) 2005-07-28 2011-08-17 パナソニック株式会社 リチウム二次電池、リチウム二次電池用負極材料および負極ならびにその製造方法
JP2007169120A (ja) * 2005-12-22 2007-07-05 The Inctec Inc カーボンナノチューブの分散方法
US8202505B2 (en) * 2006-01-06 2012-06-19 National Institute Of Advanced Industrial Science And Technology Aligned carbon nanotube bulk aggregate, process for producing the same and uses thereof
TW200801225A (en) 2006-03-13 2008-01-01 Nikon Corp Process for production of carbon nanotube aggregates, carbon nanotube aggregates, catalyst particle dispersion membrane, electron emitters, and field emission displays
CN101663714B (zh) 2007-02-20 2012-06-06 东丽株式会社 碳纳米管集合体和导电性膜
EP2307311A1 (en) 2008-06-30 2011-04-13 Showa Denko K.K. Process for producing carbon nanomaterial and system for producing carbon nanomaterial
CN102159499B (zh) 2008-09-18 2013-07-24 日东电工株式会社 碳纳米管集合体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011655A1 (ja) * 2004-07-27 2006-02-02 National Institute Of Advanced Industrial Scienceand Technology 単層カーボンナノチューブおよび配向単層カーボンナノチューブ・バルク構造体ならびにそれらの製造方法・装置および用途
WO2007078005A1 (ja) * 2006-01-06 2007-07-12 National Institute Of Advanced Industrial Science And Technology 配向カーボンナノチューブ・バルク集合体ならびにその製造方法および用途
JP2009149832A (ja) * 2007-02-20 2009-07-09 Toray Ind Inc カーボンナノチューブ集合体および導電性フィルム
JP2010248073A (ja) * 2008-04-16 2010-11-04 Nippon Zeon Co Ltd カーボンナノチューブ配向集合体の製造装置及び製造方法
WO2010076885A1 (ja) * 2008-12-30 2010-07-08 独立行政法人産業技術総合研究所 単層カーボンナノチューブ配向集合体、バルク状単層カーボンナノチューブ配向集合体、粉体状単層カーボンナノチューブ配向集合体、およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2653444A4 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170107416A1 (en) * 2011-10-05 2017-04-20 National Institute Of Advanced Industrial Science And Technology Carbon nanotube composite material and thermal conductor
US9688897B2 (en) * 2011-10-05 2017-06-27 National Institute Of Advanced Industrial Science And Technology Carbon nanotube composite material and thermal conductor
US20130207051A1 (en) * 2012-02-13 2013-08-15 Korea Kumho Petrochemical Co., Ltd. Carbon nano-material pellets and a method for preparing the pellets from powder of carbon nano-material
US9837180B2 (en) * 2012-02-13 2017-12-05 Korea Kumho Petrochemical Co., Ltd. Carbon nano-material pellets and a method for preparing the pellets from powder of carbon nano-material
KR102104841B1 (ko) * 2012-12-04 2020-04-27 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. 탄소 나노구조물-코팅된 섬유를 제조하기 위한 방법
KR20150091482A (ko) * 2012-12-04 2015-08-11 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. 탄소 나노구조물-코팅된 섬유를 제조하기 위한 방법
US10189713B2 (en) 2013-07-31 2019-01-29 Zeon Corporation Method for producing carbon nanotube dispersion liquid, method for producing composite material composition, method for producing composite material, composite material, and composite-material shaped product
CN105408246A (zh) * 2013-07-31 2016-03-16 日本瑞翁株式会社 碳纳米管分散液的制造方法、复合材料用组合物的制造方法及复合材料的制造方法、以及复合材料及复合材料成型体
KR102345024B1 (ko) 2013-07-31 2021-12-28 니폰 제온 가부시키가이샤 카본 나노튜브 분산액의 제조 방법, 복합 재료용 조성물의 제조 방법 및 복합 재료의 제조 방법, 및 복합 재료 및 복합 재료 성형체
EP3028992A4 (en) * 2013-07-31 2017-05-24 Zeon Corporation Method for producing carbon nanotube dispersion, method for producing composite material composition, method for producing composite material, composite material, and composite-material molded product
WO2015015758A1 (ja) * 2013-07-31 2015-02-05 日本ゼオン株式会社 カーボンナノチューブ分散液の製造方法、複合材料用組成物の製造方法および複合材料の製造方法、並びに、複合材料および複合材料成形体
KR20160037905A (ko) * 2013-07-31 2016-04-06 니폰 제온 가부시키가이샤 카본 나노튜브 분산액의 제조 방법, 복합 재료용 조성물의 제조 방법 및 복합 재료의 제조 방법, 및 복합 재료 및 복합 재료 성형체
JPWO2015015758A1 (ja) * 2013-07-31 2017-03-02 日本ゼオン株式会社 カーボンナノチューブ分散液の製造方法、複合材料用組成物の製造方法および複合材料の製造方法、並びに、複合材料および複合材料成形体
CN105408246B (zh) * 2013-07-31 2019-01-01 日本瑞翁株式会社 碳纳米管分散液、复合材料用组合物及复合材料的制造方法及其制备的复合材料、成型体
KR101620194B1 (ko) * 2013-09-30 2016-05-12 주식회사 엘지화학 탄소나노튜브 집합체의 벌크 밀도 조절 방법
WO2016143299A1 (ja) * 2015-03-06 2016-09-15 日本ゼオン株式会社 複合材料の製造方法および複合材料
JP2018024540A (ja) * 2016-08-08 2018-02-15 国立研究開発法人産業技術総合研究所 カーボンナノチューブを含む膜構造体
WO2018169366A1 (ko) * 2017-03-17 2018-09-20 주식회사 엘지화학 번들형 탄소나노튜브 및 이의 제조방법
US11352260B2 (en) 2017-03-17 2022-06-07 Lg Chem, Ltd Bundle-type carbon nanotubes and method for preparing the same
CN113226985A (zh) * 2018-12-27 2021-08-06 住友电气工业株式会社 碳纳米管集合线、碳纳米管集合线集束以及碳纳米管结构体
CN113226985B (zh) * 2018-12-27 2024-03-29 住友电气工业株式会社 碳纳米管集合线、碳纳米管集合线集束以及碳纳米管结构体
KR20220148807A (ko) 2020-02-28 2022-11-07 니폰 제온 가부시키가이샤 카본 나노튜브 집합체 및 그 제조 방법
JP7556060B2 (ja) 2020-11-25 2024-09-25 エルジー エナジー ソリューション リミテッド 活性炭素及びこの製造方法

Also Published As

Publication number Publication date
JP2014131960A (ja) 2014-07-17
US20130337707A1 (en) 2013-12-19
EP2653444A1 (en) 2013-10-23
CN103261091B (zh) 2017-06-27
EP2653444A4 (en) 2018-01-24
US20180016146A1 (en) 2018-01-18
JP5540341B2 (ja) 2014-07-02
JPWO2012081601A1 (ja) 2014-05-22
US10494262B2 (en) 2019-12-03
US9809457B2 (en) 2017-11-07
JP5783517B2 (ja) 2015-09-24
CN103261091A (zh) 2013-08-21

Similar Documents

Publication Publication Date Title
JP5783517B2 (ja) カーボンナノチューブ集合体
JP6475302B2 (ja) Cntゴム組成物及びcnt成形体
CN103764556B (zh) 碳纳米管复合材料及导电材料
KR101414560B1 (ko) 전도성 필름의 제조방법
WO2013047796A1 (ja) カーボンナノチューブ複合材料
JP5585325B2 (ja) カーボンナノチューブ水分散液
JP5780546B2 (ja) カーボンナノチューブ複合材料および導電材料
CN110770387A (zh) 一种片材及其制造方法
JP2018059057A (ja) 複合材料とその製造方法及び熱伝導性材料
US9688897B2 (en) Carbon nanotube composite material and thermal conductor
CN115052833B (zh) 碳膜
Zhao et al. Fabrication and adsorption properties of multiwall carbon nanotubes-coated/filled by various Fe 3 O 4 nanoparticles
US10752506B2 (en) Nanostructure dispersion liquid-containing container, method of storing and method of transporting nanostructure dispersion liquid, and methods of producing composite material composition and aggregate using nanostructure dispersion liquid
Kobashi et al. Designing neat and composite carbon nanotube materials by porosimetric characterization
US20240166519A1 (en) Carbon nanotube sheets for infrared shielding and method of making the same
JPWO2015045417A1 (ja) カーボンナノチューブ分散液の製造方法
JP7556170B1 (ja) カーボンナノチューブ集合体、カーボンナノチューブ分散液、導電材料、電極、二次電池、平面状集合体、フィルター、電磁波シールド及び極端紫外線用ペリクル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11848877

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012548802

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011848877

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE