WO2012081440A1 - 導電材料の接合体 - Google Patents

導電材料の接合体 Download PDF

Info

Publication number
WO2012081440A1
WO2012081440A1 PCT/JP2011/078081 JP2011078081W WO2012081440A1 WO 2012081440 A1 WO2012081440 A1 WO 2012081440A1 JP 2011078081 W JP2011078081 W JP 2011078081W WO 2012081440 A1 WO2012081440 A1 WO 2012081440A1
Authority
WO
WIPO (PCT)
Prior art keywords
joined
conductive material
members
intermediate member
bonded
Prior art date
Application number
PCT/JP2011/078081
Other languages
English (en)
French (fr)
Inventor
中川 成幸
南部 俊和
千花 山本
徹 深見
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US13/993,889 priority Critical patent/US20130323531A1/en
Priority to CN201180060406.3A priority patent/CN103260809B/zh
Priority to JP2012548740A priority patent/JP5786866B2/ja
Priority to EP11848178.7A priority patent/EP2653256A1/en
Publication of WO2012081440A1 publication Critical patent/WO2012081440A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • B23K20/021Isostatic pressure welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • B23K20/023Thermo-compression bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/016Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of aluminium or aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/017Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of aluminium or an aluminium alloy, another layer being formed of an alloy based on a non ferrous metal other than aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/15Magnesium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/20Ferrous alloys and aluminium or alloys thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12708Sn-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12708Sn-base component
    • Y10T428/12722Next to Group VIII metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12729Group IIA metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/12764Next to Al-base component

Definitions

  • the present invention relates to a joined body of conductive materials.
  • the current that causes resistance heating is limited because the current concentrates on the high surface pressure portion of the contact surface (bonding surface) between the members to be bonded and does not flow evenly over the entire contact surface, so heating becomes uneven. Only area and shape can be joined. That is, there is a problem that it is difficult to obtain a joint interface structure having good joint strength and water tightness.
  • the present invention has been made in order to solve the problems associated with the above-described prior art, and an object thereof is to provide a joined body of conductive materials having a joint interface structure having good joint strength and water tightness.
  • the present invention is a joined body of conductive material having a joint interface structure in which a pair of members to be joined made of a conductive material are surface joined.
  • the bonding interface structure includes at least a diffusion bonding region in which the conductive materials are diffused to each other, and a plastic flow bonding region having a pressure welding due to plastic flow of the conductive material and a recrystallized structure.
  • the joining interface is physically joined by the plastic flow joining region in addition to the diffusion joining region, it has a strength close to the base material characteristics of the members to be joined, and the entire joining surface. It is possible to ensure good bonding strength across the board. That is, it is possible to provide a joined body of conductive material having a joint interface structure having good joint strength and water tightness.
  • FIG. 3 is a cross-sectional photograph for explaining a joint interface structure of the joined body according to Embodiment 1.
  • FIG. It is an enlarged photograph for demonstrating the diffusion junction area
  • region shown by FIG. It is an enlarged photograph for demonstrating the intermediate material interposition joining area
  • region shown by FIG. It is a cross-sectional photograph for demonstrating the joining interface structure concerning a comparative example. It is an enlarged photograph for demonstrating the diffusion joining area
  • FIG. 3 is a flowchart for explaining a joining method according to the first embodiment.
  • 5 is a cross-sectional photograph for explaining a joint interface structure of a joined body according to Embodiment 2. It is an enlarged photograph for demonstrating the diffusion junction area
  • FIG. 1 is a cross-sectional photograph for explaining a bonded interface structure of a bonded body according to Embodiment 1
  • FIGS. 2, 3 and 4 are a diffusion bonding region, a plastic flow bonding region and an intermediate material shown in FIG. 5 is an enlarged photograph for explaining the intervening junction region
  • FIG. 5 is a cross-sectional photograph for explaining the joint interface structure according to the comparative example
  • FIG. 6 is an enlarged photograph for explaining the diffusion joining region according to the comparative example.
  • 7 is an enlarged photograph for explaining the intermediate material intervening joining region shown in FIG.
  • the joint interface structure of the joined body according to Embodiment 1 is formed using, for example, resistance heating and frictional heat (plastic flow), and a pair of members to be joined 10 and 20 made of a conductive material are intermediate. It is configured to be surface-bonded with the member 30 interposed, and has a diffusion bonding region, a plastic flow bonding region, and an intermediate material-mediated bonding region.
  • the intermediate member 30 is made of a conductive material having a melting point lower than that of the conductive material constituting at least one of the members to be joined 10 and 20.
  • the diffusion bonding region is a region where the members to be bonded 10 and 20 are directly diffused to each other, and in this embodiment, there is an intermediate member 30 that is discharged or diffused. is doing.
  • the plastic flow bonding region is a region having a pressure welding due to plastic flow of a conductive material and a recrystallized structure.
  • the intermediate material intervening joining region includes the intermediate member 30 and a diffusion joining region in which the conductive material constituting the intermediate member 30 diffuses into the conductive material constituting the members to be joined 10 and 20. It is a territory.
  • the joining interface according to the first embodiment is physically joined by the plastic flow joining region in addition to the diffusion joining region and the intermediate material intervening joining region. , 20 having a strength close to the base material characteristics, it is possible to ensure a good bonding strength over the entire bonding surface. That is, it is possible to provide a joined body of conductive material having a joint interface structure having good joint strength and water tightness.
  • the intermediate member 30 interposed between the members to be bonded 10 and 20 has a lower melting point than the conductive material constituting at least one of the members to be bonded 10 and 20, and can be bonded at a low temperature. Thereby, when forming the joint interface structure concerning Embodiment 1, the thermal influence to the to-be-joined members 10 and 20 is reduced, and joining is easy.
  • the bonding interface structure according to the comparative example shown in FIG. 5 is formed using only resistance heating, and a pair of members to be bonded 110 and 120 made of a conductive material are interposed with an intermediate member 130 interposed therebetween. It is constituted by surface bonding and has a diffusion bonding region and an intermediate material intervening bonding region, but there is no plastic flow bonding region.
  • the diffusion bonding region includes the discharged or diffused intermediate member 130, but is extremely limited.
  • the intermediate member intervening joining region includes the intermediate member 130 and a diffusion joining region in which the conductive material constituting the intermediate member 130 is diffused into the conductive material constituting the members to be joined 110 and 120.
  • the oxide film is dispersed and most of them are gaps. That is, in the joint interface structure according to the comparative example, the joining becomes local, and the strength and water tightness due to the generation of voids are reduced, so that it is difficult to exhibit good joining strength and water tightness.
  • the to-be-joined members 10 and 20 are high-pressure die-casting (HPDC) castings, and an aluminum casting material (ADC12) is applied.
  • the intermediate member 30 is made of zinc (Zn), which is a eutectic reaction material that forms a low temperature eutectic with aluminum, and a 10 ⁇ m thick foil is applied.
  • the members to be joined 110 and 120 are a rolled aluminum material (A5052).
  • the intermediate member 130 is made of zinc, and a foil having a thickness of 10 ⁇ m is applied.
  • the joint interface structure according to Embodiment 1 is particularly effective for a part that requires a high degree of water tightness, a two-dimensional curved surface, or a large area part.
  • the thickness of the eutectic reaction material is, for example, 10 to 100 ⁇ m, but is not particularly limited thereto, and the thickness can be appropriately changed according to the site.
  • the eutectic reaction material that forms a low-temperature eutectic with aluminum is not limited to zinc, and copper (Cu), tin (Sn), or silver (Ag) can be applied.
  • the joined members 10 and 20 are not limited to the form made of the same material (the same kind of metal).
  • the joining interface according to the first embodiment is physically joined by the plastic flow joining region in addition to the diffusion joining region and the intermediate material intervening joining region, and different materials can be joined.
  • One can be made of aluminum, and the other of the members to be joined 10 and 20 can be made of an iron-based material or a magnesium-based material.
  • an Al—Fe or Al—Mg dissimilar material joined body is obtained, it can be easily applied as an automotive part such as an exhaust manifold.
  • the members to be joined 10 and 20 are not particularly limited to high-pressure die casting (HPDC) castings, but the joining interface structure according to Embodiment 1 is formed below the melting point, and the influence of inclusion gas is suppressed.
  • the degree of freedom of selection is large (the selection range of materials is wide).
  • the aluminum high pressure die casting is an inexpensive structural material, the manufacturing cost of the joined body can be reduced.
  • the intermediate member 30 can be made of a conductive material that forms a liquid phase other than the eutectic reaction material.
  • the degree of freedom of selection of the intermediate member is large (the material selection range is wide), and a liquid phase is formed by the intermediate member 30, so that the members to be bonded 10, 20 and the intermediate member 30 and the member to be bonded 10 are formed. , 20 is promoted, and good bonding strength is ensured.
  • interval is filled up with the liquid phase formed, it is easy to achieve favorable watertightness also in joining of a large area and a curved surface.
  • Examples of the conductive material that forms a liquid phase other than the eutectic reaction material include inexpensive and general brazing material and low-temperature solder as compared with the eutectic reaction material.
  • FIG. 8 is a schematic diagram for explaining an example of the bonding apparatus according to the first embodiment.
  • the joining device 40 is joining means using resistance heating and frictional heat (plastic flow), and includes a first electrode 42, a second electrode 44, a current supply device 50, a holding device 60, and a sliding device. (Sliding means) 70, a pressurizing device 80, and a control device 90 are provided.
  • the workpieces to be joined include a member to be joined 10 positioned above, a member to be joined 20 located below, and an intermediate member 30 that is a member to be joined disposed between the members to be joined 10 and 20.
  • the members to be joined 10 and 20 and the intermediate member 30 have a uniform shape with respect to the direction of vibration described later, and the extending direction of the contact surface is the horizontal direction H.
  • the intermediate member 30 is not limited to the form which consists of another body, but can also be comprised from the coating layer integrated with one of the to-be-joined members 10 and 20. FIG. In this case, it is possible to arrange the intermediate member 30 locally.
  • the coating can be formed by plating, cladding material, coating, or the like.
  • the first and second electrodes 42 and 44 are for heating and softening the members to be joined 10 and 20 and the intermediate member 30 (contact surfaces of the members 10 and 20 to which the intermediate member 30 is interposed) by resistance heating.
  • the first electrode 42 is electrically connected to the member to be bonded 10 positioned above, and the second electrode 44 is electrically connected to the member to be bonded 20 positioned below.
  • the 1st and 2nd electrodes 42 and 44 are not limited to the form which contacts the to-be-joined members 10 and 20 directly, For example, it is also possible to contact indirectly through the other member which has electroconductivity.
  • Each of the first and second electrodes 42 and 44 may be composed of a plurality of electrodes.
  • the current supply device 50 is current supply means for flowing current from the first electrode 42 to the second electrode 44 via the member to be bonded 10, the intermediate member 30, and the member 20 to be bonded.
  • the voltage value is adjustable.
  • the holding device 60 has a movable holding part 62 located above and a fixed holding part 64 located below.
  • the movable holding part 62 is used to hold the member 10 to be reciprocated in the horizontal direction H.
  • the fixed holding portion 64 is used to restrict the movement of the member to be bonded 20 in the horizontal direction H and maintain the member to be bonded 20 in a stationary state relative to the member to be bonded 10.
  • the sliding device 70 slides the member to be bonded 10 relative to the member to be bonded 20, and applies frictional heat (plastic flow) to the contact surfaces of the members to be bonded 10 and 20 with the intermediate member 30 interposed therebetween.
  • the shaft 72 is composed of vibration means used for generating the vibration, and vibrates (vibrates) the member to be bonded 10 held by the movable holding portion 62 in a horizontal direction H parallel to the extending direction of the contact surface.
  • a motor 74 that is a drive source of the shaft 72.
  • the excitation amplitude is adjustable in the range of 100 to 1000 ⁇ m
  • the excitation frequency is adjustable in the range of 10 to 100 Hz.
  • the vibration mechanism is not particularly limited, and for example, ultrasonic vibration, electromagnetic vibration, hydraulic vibration, and cam vibration can be applied.
  • the exciting direction is a reciprocating motion in one direction along the extending direction of the contact surface
  • the degree of freedom of the shape of the contact surface is improved.
  • the shape of the contact surface does not need to be a flat surface.
  • the sliding device 70 is not limited to a form using vibration (vibration mechanism), and it is also possible to appropriately apply a rotational motion or a revolving motion that swings around in a circular orbit without rotating. .
  • the relative motion between the contact surfaces does not stop, so only the dynamic friction coefficient acts to stabilize the friction coefficient, and it is possible to wear the contact surface uniformly. .
  • the pressurizing device 80 includes a pressurizing unit 82 positioned above and a support structure 84 positioned below.
  • the pressurizing part 82 is connected to the first electrode 42 and can move forward and backward in the vertical direction (pressing direction perpendicular to the contact surface) L, and is pressed against the member 10 to be joined via the first electrode 42. It is a surface pressure adjusting means that can apply pressure and adjust the pressing surface pressure of the member to be bonded 20 against the member to be bonded 20.
  • the pressurizing unit 82 includes, for example, a hydraulic cylinder, and is configured to be capable of adjusting the pressing force.
  • the pressing force is, for example, 2 to 10 MPa.
  • the support structure 84 is used to support the second electrode 44 to which the pressing force of the pressure device 80 is transmitted via the member to be bonded 10, the intermediate member 30, and the member to be bonded 20.
  • the pressurizing unit 82 it is also possible to apply a form in which the pressing force by the pressurizing unit 82 is directly applied to the member to be bonded 10 without using the first electrode 42. It is also possible to dispose the pressurizing unit 82 and the support structure 84 in reverse. In this case, the second electrode 44 is pressed by the pressurizing portion 82 disposed below, and the first electrode 42 is supported by the support structure 84 disposed above. In addition, the degree of freedom in adjusting the surface pressure can be improved by providing the second pressure unit instead of the support structure 84.
  • the control device 90 is a control means including a computer having a calculation unit, a storage unit, an input unit, and an output unit, and is used for comprehensively controlling the current supply device 50, the sliding device 70, and the pressurizing device 80.
  • the Each function of the control device 90 is exhibited when the arithmetic unit executes a program stored in the storage device.
  • the intermediate member 30 is interposed by vibrating the member to be bonded 10 in the horizontal direction H by the sliding device 70.
  • the current supplied from the current supply device 50 is slid on the contact surfaces of the members to be joined 10 and 20 from the first electrode 42 via the member 10 to be joined, the intermediate member 30 and the member 20 to be joined.
  • the control device 90 In order to cause the control device 90 to execute a procedure for joining the members to be joined 10 and 20 with the intermediate member 30 interposed therebetween by flowing through the second electrode 44 and resistance heating.
  • FIG. 9 is a flowchart for explaining the joining method according to the first embodiment.
  • the algorithm shown in the flowchart shown in FIG. 9 is stored as a program in the storage unit of the control device 90, and is executed by the arithmetic unit of the control device 90.
  • this bonding method current is applied from the first electrode 42 to the bonded member 10, the intermediate member 30, and the sliding surface of the bonded members 10, 20 with the intermediate member 30 interposed under pressure. It has a joining step for joining the members to be joined 10 and 20 with the intermediate member 30 interposed by flowing to the second electrode 44 through the member to be joined 20 and resistance heating.
  • the joining process generally uses a preliminary sliding step (S11) for reducing variation in contact resistance, resistance heating and frictional heat (plastic flow), and the joining members 10 and 20 with the intermediate member 30 interposed therebetween.
  • the first joining step (S12) for starting the formation of the joining interface
  • the second joining step (S13) for promoting the integration of the joining interface
  • the joined bodies (joined members 10 and 20 joined via the intermediate member 30). ) Has a cooling step (S14).
  • the preliminary sliding step (S11) a work in which the intermediate member 30 is disposed between the member to be bonded 10 and the member to be bonded 20 is introduced, and the pressurizing unit 82 of the pressurizing device 80 is moved. Operation is performed, and a pressing force is applied to the member to be bonded 10, the intermediate member 30, and the member to be bonded 20 via the first electrode 42.
  • the sliding device 70 is driven, and this causes sliding (vibration) in the horizontal direction H of the member 10 to be joined.
  • the member 20 to be bonded is restricted from moving in the horizontal direction by the fixed holding portion 64 of the holding device 60, and the member to be bonded 10, the intermediate member 30, and the member to be bonded 20 are under pressure, Friction occurs on the contact surfaces of the members 10 and 20 to which the intermediate member 30 is interposed, and the aluminum oxide film on the contact surface is removed.
  • the current supply device 50 is operated, and the current supplied from the current supply device 50 passes from the first electrode 42 via the member 10 to be joined, the intermediate member 30 and the member 20 to be joined.
  • resistance heating is caused to flow to the second electrode 44.
  • the contact surface is subjected to wear, plastic flow, and material diffusion due to the combined use of both frictional heat and resistance heating, and the formation of the joint interface between the members to be joined 10 and 20 with the intermediate member 30 interposed therebetween is started. Is done.
  • the amount of heat generated by resistance heating is reduced by decreasing the supply of current by the current supply device 50, while the frictional heat is increased by increasing the pressing force by the pressure device 80. Be made.
  • the amount of heat generated by resistance heating is reduced, and the process proceeds to a process of promoting integration by stirring the softened material by sliding.
  • the increase in frictional heat can also be achieved by controlling the sliding device 70.
  • the current supply by the current supply device 50 is finally stopped. Then, immediately before entering the cooling step (S14), the operation of the sliding device 70 is stopped, and the member to be joined 10 is positioned at a predetermined stationary position (final joining position). At this time, in order to improve positioning accuracy and facilitate positioning, the pressing force by the pressurizing device 80 can be reduced.
  • Region (FIG. 2) plastic flow bonding region (FIG. 3) having a pressure contact and recrystallized structure due to plastic flow of the conductive material, intermediate member 30, and conductive material constituting intermediate member 30 are joined members 10,
  • a junction interface structure having an intermediate material intervening junction region (FIG. 4) including a diffusion junction region diffused in the conductive material constituting 20 is formed.
  • the pressing force by the pressurizing device 80 is increased, and when a predetermined time elapses, it is determined that the cooling is finished, and pressurization is stopped. And the pressurization part 82 (1st electrode 42) of the pressurization apparatus 80 is spaced apart from the to-be-joined member 10. FIG. The end of cooling can also be determined directly by detecting the temperature.
  • the preliminary sliding step (S11) the aluminum oxide film on the surface of the contact surface is removed, and the variation in contact resistance due to the difference in film thickness is reduced. Therefore, heat generation in the subsequent first joining step (S12). Variation in quantity is suppressed.
  • pre-treatment such as degreasing and removing the aluminum oxide film by brushing with a wire brush is not required, so that workability is improved.
  • pre-processing it is also possible to implement pre-processing as needed.
  • the current supply device 50 is operated in a state where the sliding device 70 is stopped, so that the contact surface is softened by resistance heating. It is also possible to provide a heating step. Further, the preliminary sliding step (S11) can be omitted as appropriate.
  • both frictional heat and resistance heating are used in combination, it is not necessary to apply a high surface pressure compared to joining using only one, so that even when the area of the contact surface is large, it can be easily joined. Is possible. In other words, even if a high pressing force (surface pressure) is not applied to the contact surface, the current-concentrated portion changes and is heated uniformly, so that even when the contact surface has a large area or a complicated shape, it is joined. And surface bonding with low distortion is possible.
  • the heating time can be shortened, and even in a cast product containing gas in the material, the gas in the material expands due to heating, It is difficult to eject and it is possible to achieve good bonding.
  • the area of the contact surface is set to be substantially the same, current concentration on one of the contact surfaces is suppressed, and uniform heating is easy. Even if there is a high surface pressure region where current is concentrated on the contact surface, resistance heating is greatly applied in the region, and the oxide film is forcibly peeled off and the pressing force (surface pressure) is increased. ) And a plastic flow is generated by the action of vibration, and the current concentration location changes every moment, so that the current flow is dispersed and the contact surface is heated uniformly.
  • the plastic flow bonding region tends to be formed more in the outer periphery than in the cross section. This is considered to be because the outer peripheral portion has a relatively low degree of restraint on plastic flow and has an effect of promoting plastic flow by rubbing with an edge.
  • intermediate material intervening joining regions tend to be generated more on the inner side than on the outer periphery of the cross section. This is considered to be because the intermediate material intervening joining region and the eutectic product are not easily discharged because they are far from the outer periphery, and the outer peripheral portion is joined by plastic flow, and thus cannot be discharged.
  • the bonded interface structure of the joined body according to the first embodiment includes a diffusion bonding region (a region where conductive materials are mutually diffused) and a plastic flow bonding region (pressure welding and re-bonding due to plastic flow of the conductive material).
  • Area the joining interface is physically joined by the plastic flow joining region in addition to the diffusion joining region, it has strength close to the base material characteristics of the members to be joined, and is good over the entire joining surface. It is possible to ensure the bonding strength.
  • the intermediate member is made of a conductive material having a low melting point and can be bonded at a low temperature, the thermal influence on the members to be bonded is reduced and the bonding becomes easy.
  • the low melting point conductive material is made of a conductive material that forms a liquid phase
  • the degree of freedom of selection of the intermediate member is large (the material selection range is wide)
  • the liquid phase is formed by the intermediate member,
  • the mutual diffusion between the intermediate member and the member to be joined is promoted, a good joining strength is ensured.
  • the gap is filled with the liquid phase to be formed, it is easy to achieve good water tightness even in joining a wide area or curved surface.
  • the conductive material that forms the liquid phase is composed of a eutectic reaction material that forms a low-temperature eutectic with a conductive material that forms at least one of a pair of members to be bonded, bonding at a lower temperature is possible. The thermal influence on the joining member is further reduced, and joining becomes easier.
  • one of the members to be joined is made of aluminum and the other of the members to be joined is made of an iron-based material or a magnesium-based material, an Al—Fe or Al—Mg dissimilar material joined body is obtained. Easy to apply as.
  • FIG. 10 is a cross-sectional photograph for explaining the joint interface structure of the joined body according to Embodiment 2, and FIGS. 11 and 12 are enlarged views for explaining the diffusion joining region and the plastic flow joining region shown in FIG. It is a photograph.
  • the joined body according to the second embodiment is generally different from the joined body according to the first embodiment in that no intermediate member is interposed between the pair of members to be joined 10 and 20, and the joint interface structure is As shown in FIG. 10, a pair of members to be joined 10 and 20 made of a conductive material is directly surface-bonded, and has a diffusion bonding region and a plastic flow bonding region.
  • the to-be-joined members 10 and 20 are high pressure die-casting (HPDC) casting, and the aluminum casting raw material (ADC12) is applied.
  • the members to be bonded 10 and 20 are diffused directly to each other, and unlike the case of the first embodiment, there is an intermediate member that is discharged or diffused. Not. As shown in FIG. 12, the plastic flow bonding region has pressure welding due to plastic flow of the conductive material and a recrystallized structure.
  • the joining interface according to the second embodiment is physically joined by the plastic flow joining region in addition to the diffusion joining region, as shown in FIGS. It is possible to ensure a good bonding strength over the entire bonding surface. That is, it is possible to provide a joined body of conductive material having a joint interface structure having good joint strength and water tightness.
  • the bonding interface structure according to the second embodiment is used in applications where high strength is required in a portion where high watertightness is not required or a planar small area portion compared to the bonding interface structure according to the first embodiment. It is particularly effective.
  • the joining apparatus and joining method according to the second embodiment are substantially the same as the joining apparatus and joining method according to the first embodiment except that no intermediate member is arranged between the members to be joined 10 and 20. The description is omitted to avoid duplication.
  • the heating means for heating and softening the member to be joined is not limited to resistance heating by an electrode, and may be appropriately selected from high-frequency induction heating, infrared heating, and heating using a laser beam. It is also possible to apply.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Road Paving Structures (AREA)

Abstract

導電材料からなる1対の被接合部材(10,20)が面接合されている接合界面構造を有する導電材料の接合体である。前記接合界面構造は、導電材料が相互に拡散している拡散接合領域と、導電材料の塑性流動による圧接と再結晶組織とを有する塑性流動接合領域と、を少なくとも有する。

Description

導電材料の接合体
 本発明は、導電材料の接合体に関する。
 抵抗溶接における被接合部材形状の自由度を高め、溶接条件設定を容易化し、電流効率を向上させるため、1対の被接合部材を接触させた状態で摺動させ、表面の絶縁被覆を剥離した後に摺動を停止させ、抵抗加熱により溶融接合している(例えば、特許文献1参照。)。
特開平11―138275号公報
 しかし、抵抗加熱を引き起こす電流は、被接合部材間の接触面(接合面)における高面圧部に電流が集中し、接触面全体に均等に流れないため、加熱が不均等となり、限定された面積および形状しか接合できない。つまり、良好な接合強度および水密性を有する接合界面構造を得ることが困難である問題を有している。
 本発明は、上記従来技術に伴う課題を解決するためになされたものであり、良好な接合強度および水密性を有する接合界面構造を備える導電材料の接合体を提供することを目的とする。
 上記目的を達成するための本発明は、導電材料からなる1対の被接合部材が面接合されている接合界面構造を備える導電材料の接合体である。前記接合界面構造は、前記導電材料が相互に拡散している拡散接合領域と、前記導電材料の塑性流動による圧接と再結晶組織とを有する塑性流動接合領域と、を少なくとも有する。
 本発明によれば、接合界面が、拡散接合領域に加えて塑性流動接合領域によって物理的に接合されているため、被接合部材の母材特性に近い強度を備えており、接合面の全体に渡って良好な接合強度を確保することが可能である。つまり、良好な接合強度および水密性を有する接合界面構造を備える導電材料の接合体を提供することが可能である。
 本発明のさらに他の目的、特徴および特質は、以後の説明および添付図面に例示される好ましい実施の形態を参照することによって、明らかになるであろう。
実施の形態1に係る接合体の接合界面構造を説明するための断面写真である。 図1に示される拡散接合領域を説明するための拡大写真である。 図1に示される塑性流動接合領域を説明するための拡大写真である。 図1に示される中間材介在接合領域を説明するための拡大写真である。 比較例に係る接合界面構造を説明するための断面写真である。 比較例に係る拡散接合領域を説明するための拡大写真である。 図5に示される中間材介在接合領域を説明するための拡大写真である。 実施の形態1に係る接合装置の一例を説明するための概略図である。 実施の形態1に係る接合方法を説明するためのフローチャートである。 実施の形態2に係る接合体の接合界面構造を説明するための断面写真である。 図10に示される拡散接合領域を説明するための拡大写真である。 図10に示される塑性流動接合領域を説明するための拡大写真である。
 以下、本発明の実施の形態を、図面を参照しつつ説明する。
 図1は、実施の形態1に係る接合体の接合界面構造を説明するための断面写真、図2、図3および図4は、図1に示される拡散接合領域、塑性流動接合領域および中間材介在接合領域を説明するための拡大写真、図5は、比較例に係る接合界面構造を説明するための断面写真、図6は、比較例に係る拡散接合領域を説明するための拡大写真、図7は、図5に示される中間材介在接合領域を説明するための拡大写真である。
 実施の形態1に係る接合体の接合界面構造は、例えば、抵抗加熱および摩擦熱(塑性流動)を利用して形成されており、導電材料からなる1対の被接合部材10,20が、中間部材30を介在させて面接合されて構成されており、拡散接合領域、塑性流動接合領域および中間材介在接合領域を有する。中間部材30は、被接合部材10,20の少なくとも一方を構成する導電材料より低融点の導電材料からなる。
 拡散接合領域は、図2に示されるように、被接合部材10,20が相互に直接的に拡散している領域であり、本実施の形態においては、排出あるいは拡散された中間部材30が存在している。塑性流動接合領域は、図3に示されるように、導電材料の塑性流動による圧接と再結晶組織とを有する領域である。中間材介在接合領域は、図4に示されるように、中間部材30と、中間部材30を構成する導電材料が被接合部材10,20を構成する導電材料に拡散した拡散接合領域と、を含んでいる領域である。
 実施の形態1に係る接合界面は、図1~4に示されるように、拡散接合領域および中間材介在接合領域に加えて塑性流動接合領域によって物理的に接合されているため、被接合部材10,20の母材特性に近い強度を備えており、接合面の全体に渡って良好な接合強度を確保することが可能である。つまり、良好な接合強度および水密性を有する接合界面構造を備える導電材料の接合体を提供することが可能である。
 被接合部材10,20の間に介在する中間部材30は、被接合部材10,20の少なくとも一方を構成する導電材料より低融点であり、低温での接合が可能となっている。これにより、実施の形態1に係る接合界面構造を形成する際において、被接合部材10,20への熱影響が低減され、かつ、接合が容易となっている。
 一方、図5に示される比較例に係る接合界面構造は、抵抗加熱のみを利用して形成されており、導電材料からなる1対の被接合部材110,120が、中間部材130を介在させて面接合されて構成されており、拡散接合領域および中間材介在接合領域を有するが、塑性流動接合領域が存在していない。
 拡散接合領域は、図6に示されるように、排出あるいは拡散された中間部材130が含まれるが、極めて限定的である。中間材介在接合領域は、図6に示されるように、中間部材130と、中間部材130を構成する導電材料が被接合部材110,120を構成する導電材料に拡散した拡散接合領域が見られるが、酸化皮膜が分散し、ほとんどは間隙となっている。つまり、比較例に係る接合界面構造においては、接合が局部的となり、空隙発生による強度や水密性が低下するため、良好な接合強度および水密性を発揮させることが困難である。
 なお、被接合部材10,20は、高圧ダイカスト(HPDC)鋳物であり、アルミニウム鋳物素材(ADC12)が適用されている。中間部材30は、アルミニウムと低温共晶を形成する共晶反応材料である亜鉛(Zn)からなり、厚さ10μmの箔が適用されている。被接合部材110,120は、アルミニウム圧延材(A5052)である。中間部材130は、亜鉛からなり、厚さ10μmの箔が適用されている。
 共晶反応材料は、液相を形成し、被接合部材同士および共晶反応材料と被接合部材との間における相互拡散を促進するため、良好な接合強度を確保することが可能であり、かつ、形成される液相によって間隙が埋められるため、広い面積や曲面の接合においても良好な水密性を達成することが容易である。したがって、実施の形態1に係る接合界面構造は、高度な水密性が要求される部位や、2次元的な曲面や大面積部位に、特に有効である。共晶反応材料の厚みは、例えば、10~100μmであるが、特にこれに限定されず、また、厚さを部位に応じ適宜変化させることも可能である。
 中間部材30の共晶反応により低融点で液相化し、酸素を遮断して再酸化を抑制する役割を果たすため、真空雰囲気と長時間が必要であった真空ろう付けに対し、大気中における短時間、低入熱での接合が可能となり、量産化が容易となる点でも好ましい。アルミニウムと低温共晶を形成する共晶反応材料は、亜鉛に限定されず、銅(Cu)、錫(Sn)あるいは銀(Ag)を適用することが可能である。
 被接合部材10,20は、同材(同種金属)からなる形態に限定されない。実施の形態1に係る接合界面は、拡散接合領域および中間材介在接合領域に加えて塑性流動接合領域によって物理的に接合されており、異材接合が可能であるため、被接合部材10,20の一方を、アルミニウムから構成し、被接合部材10,20の他方を、鉄系材料あるいはマグネシウム系材料から構成することが可能である。この場合、Al-FeやAl-Mgの異材接合体が得られるため、エキゾーストマニホールド等の自動車用部品として適用することが容易である。
 被接合部材10,20は、特に、高圧ダイカスト(HPDC)鋳物に限定されないが、実施の形態1に係る接合界面構造は、融点以下で形成され、内包ガスの影響が抑制されるため、鋳造素材の選択の自由度が大きい(材料の選択範囲が広い)。また、アルミニウム高圧ダイカスト鋳物は安価な構造材であるため、接合体の製造コストを低減することができる。
 中間部材30は、共晶反応材料以外の液相を形成する導電材料から構成することも可能である。この場合は、中間部材の選択の自由度が大きく(材料の選択範囲が広い)、また、中間部材30によって液相が形成され、被接合部材10,20同士および中間部材30と被接合部材10,20との間における相互拡散が促進されるため、良好な接合強度が確保される。そして、形成される液相によって間隙が埋められるため、広い面積や曲面の接合においても良好な水密性を達成することが容易である。
 共晶反応材料以外の液相を形成する導電材料としては、共晶反応材料に比較して安価で一般的なろう材や低温はんだが挙げられる。
 次に、実施の形態1に係る接合体の接合界面構造を得るための接合装置を説明する。
 図8は、実施の形態1に係る接合装置の一例を説明するための概略図である。
 実施の形態1に係る接合装置40は、抵抗加熱および摩擦熱(塑性流動)を利用する接合手段であり、第1電極42、第2電極44、電流供給装置50、保持装置60、摺動装置(摺動手段)70、加圧装置80および制御装置90を有する。
 接合されるワークは、上方に位置する被接合部材10と、下方に位置する被接合部材20と、被接合部材10,20の間に配置される被接合部材である中間部材30とからなる。被接合部材10,20および中間部材30は、後述される振動の方向に対して一様形状を有し、接触面の延長方向は、水平方向Hとなっている。中間部材30は、別体からなる形態に限定されず、被接合部材10,20の一方と一体化された被覆層から構成することも可能である。この場合、中間部材30を局所的に配置することが可能である。被覆は、めっき、クラッド材、塗布等により形成することが可能である。
 第1および第2電極42,44は、抵抗加熱によって被接合部材10,20および中間部材30(中間部材30が介在している被接合部材10,20の接触面)を昇温し軟化させるための加熱手段であり、第1電極42は、上方に位置する被接合部材10に電気的に接続され、第2電極44は、下方に位置する被接合部材20に電気的に接続される。第1および第2電極42,44は、被接合部材10,20に直接接触する形態に限定されず、例えば、導電性を有する他の部材を介して間接的に接触させることも可能である。第1および第2電極42,44は、それぞれ複数の電極によって構成することも可能である。
 電流供給装置50は、電流を、第1電極42から、被接合部材10、中間部材30および被接合部材20を経由して第2電極44に流すための電流供給手段であり、例えば、電流値および電圧値が調整自在に構成されている。
 保持装置60は、上方に位置する可動保持部62と下方に位置する固定保持部64とを有する。可動保持部62は、被接合部材10を水平方向Hに往復動自在に保持するために使用される。固定保持部64は、被接合部材20の水平方向Hへの移動を規制し、被接合部材10に対し被接合部材20を相対的に静止した状態で維持するために使用される。
 摺動装置70は、被接合部材10を被接合部材20に対して相対的に摺動させ、中間部材30が介在している被接合部材10,20の接触面に摩擦熱(塑性流動)を発生させるために使用される加振手段からなり、可動保持部62に保持された被接合部材10を、接触面の延長方向に対して平行である水平方向Hに振動(加振)させるシャフト72と、シャフト72の駆動源であるモータ74と、を有する。例えば、加振振幅は100~1000μmの範囲、加振周波数は10~100Hzの範囲で調整可能に構成されている。加振機構は、特に限定されず、例えば、超音波振動、電磁式振動、油圧式加振、カム式振動を適用することが可能である。
 加振方向は、接触面の延長方向に沿う1方向への往復運動であるため、接触面の形状の自由度が向上することとなる。すなわち、1方向にさえ変位可能であれば加振できるため、接触面の形状が平面である必要はなく、例えば、一方向に延びる溝に凸部が嵌合する形態とすることも可能である。また、摺動装置70は、振動(加振機構)を利用する形態に限定されず、回転運動や、自転せずに円軌道を描くように振れ回る公転運動を適宜適用することも可能である。なお、公転運動の場合、振動と異なり、接触面同士の相対的な運動が停止しないことから、動摩擦係数のみが作用して摩擦係数が安定し、接触面を均一に磨耗させることが可能である。
 加圧装置80は、上方に位置する加圧部82と下方に位置する支持構造体84とを有する。加圧部82は、第1電極42に連結され、かつ、上下方向(接触面と直交する押圧方向)Lに進退動可能となっており、第1電極42を介して被接合部材10に押圧力を付与可能であり、被接合部材20に対する被接合部材10の押し付け面圧を調整するため面圧調整手段である。加圧部82は、例えば、油圧シリンダが組み込まれており、押圧力を調整自在に構成されている。押圧力は、例えば、2~10MPaである。支持構造体84は、被接合部材10、中間部材30および被接合部材20を介して加圧装置80の押圧力が伝達される第2電極44を、支持するために使用される。
 加圧部82による押圧力は、第1電極42を介することなく、被接合部材10に直接付与する形態を適用することも可能である。加圧部82と支持構造体84とを逆に配置することも可能である。この場合、下方に配置される加圧部82によって第2電極44が押圧され、上方に配置される支持構造体84よって第1電極42が支持されることになる。また、支持構造体84の代わりに、第2の加圧部を設けることによって、面圧調整の自由度を向上さることも可能である。
 制御装置90は、演算部、記憶部、入力部および出力部を有するコンピュータからなる制御手段であり、電流供給装置50、摺動装置70および加圧装置80を統括的に制御するために使用される。制御装置90の各機能は、記憶装置に格納されているプログラムを演算部が実行することにより発揮される。
 プログラムは、例えば、加圧装置80によって被接合部材10の押し付け面圧を調整した状態で、摺動装置70によって被接合部材10を水平方向Hに振動させることによって、中間部材30が介在している被接合部材10,20の接触面を摺動させつつ、電流供給装置50から供給される電流を、第1電極42から、被接合部材10、中間部材30および被接合部材20を経由して、第2電極44へ流して抵抗加熱することによって、中間部材30を介在させて被接合部材10,20を接合するための手順を、制御装置90に実行させるためものである。
 次に、実施の形態1に係る接合体の接合界面構造を得るための接合方法を説明する。
 図9は、実施の形態1に係る接合方法を説明するためのフローチャートである。図9に示されるフローチャートにより示されるアルゴリズムは、制御装置90の記憶部にプログラムとして記憶されており、制御装置90の演算部によって実行される。
 本接合方法は、加圧下で、中間部材30が介在している被接合部材10,20の接触面を摺動させつつ、電流を、第1電極42から、被接合部材10、中間部材30および被接合部材20を経由して、第2電極44へ流して抵抗加熱することによって、中間部材30を介在させて被接合部材10,20を接合するための接合工程を有する。
 前記接合工程は、概して、接触抵抗のばらつきを低減するための予備摺動ステップ(S11)、抵抗加熱および摩擦熱(塑性流動)を利用し、中間部材30が介在する被接合部材10,20の接合界面の形成を開始する第1接合ステップ(S12)、接合界面の一体化を促進する第2接合ステップ(S13)、接合体(中間部材30が介在して接合された被接合部材10,20)を冷却する冷却ステップ(S14)を有する。
 詳述すると、予備摺動ステップ(S11)においては、中間部材30が被接合部材10と被接合部材20との間に配置されてなるワークが投入され、加圧装置80の加圧部82が稼働され、第1電極42を介して、被接合部材10,中間部材30および被接合部材20に押圧力が付与される。
 その後、摺動装置70が駆動され、これにより、被接合部材10の水平方向Hの摺動(振動)が引き起こされる。このとき、被接合部材20は、保持装置60の固定保持部64によって水平方向への移動が規制され、かつ、被接合部材10,中間部材30および被接合部材20は、加圧下にあるため、中間部材30が介在している被接合部材10,20の接触面に摩擦が生じ、接触面表面のアルミニウム酸化皮膜が除去される。
 第1接合ステップ(S12)においては、電流供給装置50が稼働され、電流供給装置50から供給される電流が、第1電極42から、被接合部材10、中間部材30および被接合部材20を経由して、第2電極44へ流され、抵抗加熱が生じる。これにより、これにより、接触面は、摩擦熱および抵抗加熱の両方の併用によって、摩耗,塑性流動および材料拡散が生じ、中間部材30が介在する被接合部材10,20の接合界面の形成が開始される。
 第2接合ステップ(S13)においては、電流供給装置50による電流の供給を減少させることよって抵抗加熱による発熱量が低下させられる一方、加圧装置80による押圧力を増加させることによって摩擦熱が増加させられる。これにより、抵抗加熱による発熱量が減少し、軟化された材料を摺動によって掻き混ぜるようにして一体化を促進する過程へ移行することになる。摩擦熱の増加は、摺動装置70を制御することによっても達成することが可能である。
 電流供給装置50による電流の供給は、最終的には停止される。そして、冷却工程(S14)に入る直前において、摺動装置70の稼動が停止され、被接合部材10が所定の静止位置(最終的な接合位置)に位置決めされる。この際、位置決め精度を向上させ、かつ、位置決めを容易にするため、加圧装置80による押圧力を低下させることも可能である。
 第1接合ステップ(S12)および第2接合ステップ(S13)の結果、被接合部材10,20が相互に直接的に拡散し、かつ、排出あるいは拡散された中間部材30が存在している拡散接合領域(図2)、導電材料の塑性流動による圧接と再結晶組織とを有する塑性流動接合領域(図3)、および、中間部材30と、中間部材30を構成する導電材料が被接合部材10,20を構成する導電材料に拡散した拡散接合領域と、を含んでいる中間材介在接合領域(図4)を有する接合界面構造が形成されることとなる。
 冷却工程(S14)においては、加圧装置80による押圧力が上昇させられ、所定の時間が経過すると、冷却が終了したと判断され、加圧が停止される。そして、加圧装置80の加圧部82(第1電極42)が、被接合部材10から離間させられる。冷却の終了は、温度を検出することによって直接的に判断することも可能である。
 その後、中間部材30が介在して接合された被接合部材10,20が取り外される。
 なお、予備摺動ステップ(S11)においては、接触面表面のアルミニウム酸化皮膜が除去され、皮膜厚さの違いによる接触抵抗のばらつきが低減されるため、後続の第1接合ステップ(S12)における発熱量のばらつきが抑制される。また、予備摺動ステップ(S11)の前において、脱脂や、ワイヤブラシによるブラッシングによってアルミニウム酸化皮膜を除去する等の前処理が不要となるため、作業性が向上する。なお、必要に応じて、前処理を実施することも可能である。
 予備摺動ステップ(S11)の前あるいは予備摺動ステップ(S11)の代わりとして、摺動装置70を停止させた状態で電流供給装置50を稼働させることによって、接触面を抵抗加熱により軟化させる予備加熱ステップを設けることも可能である。また、予備摺動ステップ(S11)は、適宜省略することも可能である。
 電流の供給を減少させず、かつ、加圧力を増加させないことにより、第2接合ステップ(S13)を第1接合ステップ(S12)に一体化させることも可能である。また、冷却工程(S14)は、適宜省略することも可能である。
 また、摩擦熱および抵抗加熱の両方を併用するため、一方のみを利用する接合に比較し、高い面圧を付与する必要がないため、接触面の面積が、大きい場合でも容易に接合することが可能である。つまり、接触面に高い押圧力(面圧)を付与せずとも電流集中箇所が変化して均一に加熱されるため、接触面が大面積の場合や複雑な形状の場合であっても接合することができ、かつ低歪みの面接合が可能である。
 接触面の表層のみが塑性流動(溶融)して接合するため、加熱時間を短縮でき、更に、材料内に気体を含有している鋳造品であっても、加熱により材料内の気体が膨張、噴出し難く、良好な接合を実現することが可能である。
 なお、接触面の面積を、略同一に設定する場合、接触面の一方に電流が集中することが抑制され、均一に加熱することが容易である。また、接触面に電流が集中する高面圧領域が存在する場合であっても、当該領域においては、抵抗加熱が大きく作用して加熱され酸化膜が強制的に剥離され、押圧力(面圧)と加振が作用して塑性流動が生じて磨耗することで、刻々と電流集中箇所が変化するため、電流の流れが分散し、接触面は、均一に加熱される。
 また、塑性流動接合領域は、断面の内部に比べて外周部に多く形成される傾向にある。これは、外周部の方が、塑性流動に対する拘束度が相対的に低いこと、エッジで擦ることで塑性流動を促進させる効果があることによると考えられる。一方、中間材介在接合領域は、断面の外周部に比べて内部側に多く生成される傾向がある。これは、中間材介在接合領域および共晶生成物が外周から距離的に遠いため排出されにくいこと、外周部が塑性流動により接合されるため、排出ができなくなること等が理由と考えられる。
 以上のように、実施の形態1に係る接合体の接合界面構造は、拡散接合領域(導電材料が相互に拡散している領域)と、塑性流動接合領域(導電材料の塑性流動による圧接と再結晶組織とを有する領域)と、中間材介在接合領域(中間部材と、中間部材を構成する導電材料が1対の被接合部材を構成する導電材料に拡散した拡散接合領域と、を含んでいる領域)と、を有している。つまり、接合界面が、拡散接合領域に加えて塑性流動接合領域によって物理的に接合されているため、被接合部材の母材特性に近い強度を備えており、接合面の全体に渡って良好な接合強度を確保することが可能である。したがって、良好な接合強度および水密性を有する接合界面構造を備える導電材料の接合体を提供することが可能である。また、中間部材は低融点の導電材料からなり、低温での接合が可能となるため、被接合部材への熱影響が低減され、かつ、接合が容易となる。
 低融点の導電材料が液相を形成する導電材料からなる場合、中間部材の選択の自由度が大きく(材料の選択範囲が広く)、また、中間部材によって液相が形成され、被接合部材同士および中間部材と被接合部材との間における相互拡散が促進されるため、良好な接合強度が確保される。また、形成される液相によって間隙が埋められるため、広い面積や曲面の接合においても良好な水密性を達成することが容易である。
 液相を形成する導電材料が、1対の被接合部材の少なくとも一方を構成する導電材料と低温共晶を形成する共晶反応材料からなる場合、より低温での接合が可能となるため、被接合部材への熱影響がさらに低減され、かつ、接合がより容易となる。
 共晶反応材料以外の液相を形成する導電材料として、共晶反応材料に比較して安価で一般的なろう材や低温はんだを適用することが可能である。
 被接合部材として鋳物の適用においては、融点以下での接合であり、内包ガスの影響が抑制されるため、鋳造素材の選択の自由度が大きい(材料の選択範囲が広い)。
 アルミニウム高圧ダイカスト鋳物は、安価な構造材であるため、アルミニウム高圧ダイカスト鋳物の適用は好ましい。
 被接合部材としてアルミニウムが適用される場合、中間部材として、亜鉛、銅、錫あるいは銀からなる共晶反応材料を適用する場合、より低温での接合が可能となるため、アルミニウムからなる被接合部材への熱影響がさらに低減され、かつ、接合がより容易となる。
 被接合部材の一方を、アルミニウムから構成し、被接合部材の他方を、鉄系材料あるいはマグネシウム系材料から構成する場合、Al-FeやAl-Mgの異材接合体が得られるため、自動車用部品として適用することが容易である。
 次に、実施の形態2を説明する。
 図10は、実施の形態2に係る接合体の接合界面構造を説明するための断面写真、図11および図12は、図10に示される拡散接合領域および塑性流動接合領域を説明するための拡大写真である。
 実施の形態2に係る接合体は、1対の被接合部材10,20の間に中間部材が介在していない点で、実施の形態1に係る接合体と概して異なり、その接合界面構造は、図10に示されるように、導電材料からなる1対の被接合部材10,20が直接面接合されて構成されており、拡散接合領域および塑性流動接合領域を有する。なお、被接合部材10,20は、高圧ダイカスト(HPDC)鋳物であり、アルミニウム鋳物素材(ADC12)が適用されている。
 拡散接合領域においては、図11に示されるように、被接合部材10,20が相互に直接的に拡散しており、実施の形態1の場合と異なり、排出あるいは拡散された中間部材は存在していない。塑性流動接合領域には、図12に示されるように、導電材料の塑性流動による圧接と再結晶組織とを有している。
 実施の形態2に係る接合界面は、図10~13に示されるように、拡散接合領域に加えて塑性流動接合領域によって物理的に接合されているため、被接合部材10,20の母材特性に近い強度を備えており、接合面の全体に渡って良好な接合強度を確保することが可能である。つまり、良好な接合強度および水密性を有する接合界面構造を備える導電材料の接合体を提供することが可能である。
 また、共晶反応材料からなる中間部材を有しておらず、中間材介在接合領域が存在しないため、被接合部材10,20の母材特性により近い強度を備えるようにすることが容易である。つまり、実施の形態2に係る接合界面構造は、実施の形態1に係る接合界面構造に比較し、高度な水密性が不要である部位や平面的な小面積部位において高強度が要求される用途に、特に有効である。
 なお、実施の形態2に係る接合装置および接合方法は、被接合部材10,20の間に中間部材が配置されていないこと以外に関し、実施の形態1に係る接合装置および接合方法と略一致しており、重複を避けるため、その説明を省略する。
 以上のように、実施の形態2においては、共晶反応材料からなる中間部材を有しておらず、中間材介在接合領域が存在しないため、高度な水密性が不要である部位や平面的な小面積部位において高強度が要求される用途に、特に有効に適用することが可能である。
 本発明は、上述した実施の形態に限定されるものではなく、特許請求の範囲で種々改変することができる。
 例えば、被接合部材(および中間部材)を昇温し軟化させるための加熱手段は、電極による抵抗加熱に限定されず、高周波誘導加熱や赤外線加熱、レーザビームを用いた加熱など、適宜選択して適用することも可能である。
 本出願は、2010年12月14日に出願された日本特許出願番号2010-278264号に基づいており、それらの開示内容は、参照され、全体として、組み入れられている。
10,20 被接合部材、
30 中間部材、
40 接合装置、
42 第1電極、
44 第2電極、
50 電流供給装置、
60 保持装置、
62 可動保持部、
64 固定保持部、
70 摺動装置、
72 シャフト、
74 モータ、
80 加圧装置、
82 加圧部、
84 支持構造体、
90 制御装置、
H 水平方向、
L 上下方向。

Claims (9)

  1.  導電材料からなる1対の被接合部材が面接合されている接合界面構造を有し、
     前記接合界面構造は、
     前記導電材料が相互に拡散している拡散接合領域と、
     前記導電材料の塑性流動による圧接と再結晶組織とを有する塑性流動接合領域と、を少なくとも有する導電材料の接合体。
  2.  前記1対の被接合部材の少なくとも一方を構成する導電材料より低融点の導電材料からなる中間部材が、前記1対の被接合部材の間に介在しており、
     前記拡散接合領域には、排出あるいは拡散された前記中間部材が存在しており、
     前記接合界面構造は、
     前記中間部材と、前記中間部材を構成する導電材料が前記1対の被接合部材を構成する導電材料に拡散した拡散接合領域と、を含んでいる中間材介在接合領域を、さらに有する請求項1に記載の導電材料の接合体。
  3.  前記低融点の導電材料は、液相を形成する導電材料からなる請求項2に記載の導電材料の接合体。
  4.  前記液相を形成する導電材料は、前記1対の被接合部材の少なくとも一方を構成する導電材料と低温共晶を形成する共晶反応材料からなる請求項3に記載の導電材料の接合体。
  5.  前記液相を形成する導電材料は、ろう材あるいは低温はんだ材からなる請求項3に記載の導電材料の接合体。
  6.  前記1対の被接合部材の少なくとも一方は、鋳物である請求項2に記載の導電材料の接合体。
  7.  前記鋳物は、アルミニウム高圧ダイカスト鋳物からなる請求項6に記載の導電材料の接合体。
  8.  前記1対の被接合部材は、アルミニウムからなり、
     前記中間部材は、アルミニウムと低温共晶を形成する共晶反応材料からなり、
     前記共晶反応材料は、亜鉛、銅、錫あるいは銀である請求項7に記載の導電材料の接合体。
  9.  前記1対の被接合部材の一方は、アルミニウムからなり、
     前記1対の被接合部材の他方は、鉄系材料あるいはマグネシウム系材料からなる請求項7に記載の導電材料の接合体。
PCT/JP2011/078081 2010-12-14 2011-12-05 導電材料の接合体 WO2012081440A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/993,889 US20130323531A1 (en) 2010-12-14 2011-12-05 Bonded body of electrically conductive materials
CN201180060406.3A CN103260809B (zh) 2010-12-14 2011-12-05 导电材料的接合体
JP2012548740A JP5786866B2 (ja) 2010-12-14 2011-12-05 導電材料の接合体
EP11848178.7A EP2653256A1 (en) 2010-12-14 2011-12-05 Bonded object of electroconductive materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-278264 2010-12-14
JP2010278264 2010-12-14

Publications (1)

Publication Number Publication Date
WO2012081440A1 true WO2012081440A1 (ja) 2012-06-21

Family

ID=46244548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078081 WO2012081440A1 (ja) 2010-12-14 2011-12-05 導電材料の接合体

Country Status (5)

Country Link
US (1) US20130323531A1 (ja)
EP (1) EP2653256A1 (ja)
JP (1) JP5786866B2 (ja)
CN (1) CN103260809B (ja)
WO (1) WO2012081440A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248817A1 (ja) * 2022-06-22 2023-12-28 株式会社Mole′S Act 金属接合体の製造方法及びダイカスト部材の接合方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012109782A1 (de) * 2012-10-15 2014-04-17 Karlsruher Institut für Technologie Schichtverbund
KR20160023782A (ko) * 2013-06-26 2016-03-03 콩스텔리움 이수와르 선형 마찰 용접에 의해 얻어진 개선된 구조적 요소
US9847313B2 (en) * 2015-04-24 2017-12-19 Kulicke And Soffa Industries, Inc. Thermocompression bonders, methods of operating thermocompression bonders, and horizontal scrub motions in thermocompression bonding
US9731378B2 (en) * 2015-05-22 2017-08-15 Kulicke And Soffa Industries, Inc. Thermocompression bonders, methods of operating thermocompression bonders, and horizontal correction motions using lateral force measurement in thermocompression bonding
US20170297137A1 (en) * 2016-04-19 2017-10-19 GM Global Technology Operations LLC Method of joining aluminum and steel workpieces
CN109187187B (zh) * 2018-09-26 2020-03-10 山东大学 一种定量评估金属材料固态焊接性能的方法
CN111482686A (zh) * 2020-04-23 2020-08-04 西安工业大学 一种金属焊接方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07116868A (ja) * 1993-10-22 1995-05-09 Masafumi Sakuranaka 金属材料の接合方法及び装置
JPH09239566A (ja) * 1996-03-05 1997-09-16 Yamaha Motor Co Ltd 異種金属材料の接合方法
JPH11138275A (ja) 1997-11-06 1999-05-25 Toyota Motor Corp 被覆導電部材の接合方法
JP2000102885A (ja) * 1998-09-29 2000-04-11 Mazda Motor Corp 接合金属部材及び該部材の接合方法
JP2004174546A (ja) * 2002-11-27 2004-06-24 Toyota Motor Corp 金属部材の接合方法
JP2007118059A (ja) * 2005-10-31 2007-05-17 Nissan Motor Co Ltd 異種金属材料の接合方法及び異種金属材料の接合構造
JP2008142739A (ja) * 2006-12-08 2008-06-26 Nissan Motor Co Ltd 超音波接合装置およびその制御方法、並びに超音波接合の接合検査装置およびその接合検査方法
JP2009000700A (ja) * 2007-06-20 2009-01-08 Nissan Motor Co Ltd 異種金属の接合方法及び接合構造
JP2010184260A (ja) * 2009-02-12 2010-08-26 Nag System Co Ltd アルミニウム箔の接合方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4104778B2 (ja) * 1999-04-28 2008-06-18 剛 篠田 円柱内面のコーティング方法
JP4540392B2 (ja) * 2003-06-02 2010-09-08 新日本製鐵株式会社 金属機械部品の液相拡散接合方法
US7850059B2 (en) * 2004-12-24 2010-12-14 Nissan Motor Co., Ltd. Dissimilar metal joining method
JP5037102B2 (ja) * 2006-12-04 2012-09-26 オリジン電気株式会社 高導電性被接合物の拡散接合方法
US8058584B2 (en) * 2007-03-30 2011-11-15 Nissan Motor Co., Ltd. Bonding method of dissimilar materials made from metals and bonding structure thereof
JP2009061500A (ja) * 2007-08-10 2009-03-26 Nissan Motor Co Ltd 異種金属接合部材及び異種金属接合方法
JP5263923B2 (ja) * 2007-11-29 2013-08-14 国立大学法人 新潟大学 拡散接合方法及びその装置
JP5495093B2 (ja) * 2008-01-17 2014-05-21 日産自動車株式会社 異種金属の接合方法及び接合構造

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07116868A (ja) * 1993-10-22 1995-05-09 Masafumi Sakuranaka 金属材料の接合方法及び装置
JPH09239566A (ja) * 1996-03-05 1997-09-16 Yamaha Motor Co Ltd 異種金属材料の接合方法
JPH11138275A (ja) 1997-11-06 1999-05-25 Toyota Motor Corp 被覆導電部材の接合方法
JP2000102885A (ja) * 1998-09-29 2000-04-11 Mazda Motor Corp 接合金属部材及び該部材の接合方法
JP2004174546A (ja) * 2002-11-27 2004-06-24 Toyota Motor Corp 金属部材の接合方法
JP2007118059A (ja) * 2005-10-31 2007-05-17 Nissan Motor Co Ltd 異種金属材料の接合方法及び異種金属材料の接合構造
JP2008142739A (ja) * 2006-12-08 2008-06-26 Nissan Motor Co Ltd 超音波接合装置およびその制御方法、並びに超音波接合の接合検査装置およびその接合検査方法
JP2009000700A (ja) * 2007-06-20 2009-01-08 Nissan Motor Co Ltd 異種金属の接合方法及び接合構造
JP2010184260A (ja) * 2009-02-12 2010-08-26 Nag System Co Ltd アルミニウム箔の接合方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248817A1 (ja) * 2022-06-22 2023-12-28 株式会社Mole′S Act 金属接合体の製造方法及びダイカスト部材の接合方法

Also Published As

Publication number Publication date
EP2653256A1 (en) 2013-10-23
JPWO2012081440A1 (ja) 2014-05-22
CN103260809B (zh) 2016-01-06
CN103260809A (zh) 2013-08-21
US20130323531A1 (en) 2013-12-05
JP5786866B2 (ja) 2015-09-30

Similar Documents

Publication Publication Date Title
JP5786866B2 (ja) 導電材料の接合体
WO2012081521A1 (ja) 接合方法および被接合部材
EP1563941A1 (en) Liquid phase diffusion bonding method for dissimilar metal sheets and liquid phase diffusion bonding apparatus for the same
JP4780526B2 (ja) 異種材料の接合方法、接合装置及び接合構造
CN102792052A (zh) 利用超声波焊接的库伦阻尼特性
CN102275023B (zh) 一种半固态振动辅助钎焊设备
JP2004122171A (ja) 異種金属薄板の固相接合装置および固相接合方法
JPH09122924A (ja) 異種材間の抵抗接合法
US20080041922A1 (en) Hybrid Resistance/Ultrasonic Welding System and Method
JP2013078795A (ja) 接合方法及び接合部品
JP5771974B2 (ja) 接合方法
JP5786328B2 (ja) 導電材料の接合方法
JP3797853B2 (ja) 通電接合によるアルミニウム合金複合部材の製造方法
JP5740960B2 (ja) 接合方法および接合装置
JP5740958B2 (ja) 接合方法および被接合部材
JP5740959B2 (ja) 接合方法および接合装置
CN112317947A (zh) 一种铝棒与外锥形端面钢棒连续驱动摩擦焊接方法
JP5760421B2 (ja) 接合方法および接合装置
JP7433663B2 (ja) 異材固相接合方法、異材固相接合構造物及び異材固相接合装置
JP5853364B2 (ja) 接合方法、接合装置
JP5853365B2 (ja) 接合装置および接合方法
JP7114029B2 (ja) 金属接合方法
JP2014166646A (ja) 金属製ワークの固相接合方法
JP6868885B2 (ja) 接合装置並びにそれを用いた接合方法及び接合体の製造方法
JP5206465B2 (ja) 金属部材の接合方法及び金属部材の接合装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11848178

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012548740

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011848178

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13993889

Country of ref document: US