WO2012081418A1 - 酢酸の製造方法 - Google Patents

酢酸の製造方法 Download PDF

Info

Publication number
WO2012081418A1
WO2012081418A1 PCT/JP2011/077846 JP2011077846W WO2012081418A1 WO 2012081418 A1 WO2012081418 A1 WO 2012081418A1 JP 2011077846 W JP2011077846 W JP 2011077846W WO 2012081418 A1 WO2012081418 A1 WO 2012081418A1
Authority
WO
WIPO (PCT)
Prior art keywords
overhead
acetaldehyde
acetic acid
weight
liquid
Prior art date
Application number
PCT/JP2011/077846
Other languages
English (en)
French (fr)
Inventor
清水 雅彦
隆二 斎藤
三浦 裕幸
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46244527&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012081418(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to US16/026,736 priority Critical patent/USRE47569E1/en
Priority to MX2013006884A priority patent/MX338849B/es
Priority to JP2012548728A priority patent/JP5914358B2/ja
Priority to US13/995,102 priority patent/US9162958B2/en
Priority to EP11848683.6A priority patent/EP2653458B2/en
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to CN201180067677.1A priority patent/CN103402964B/zh
Priority to US15/664,076 priority patent/USRE46999E1/en
Priority to SG2013042031A priority patent/SG190941A1/en
Priority to BR112013014808-0A priority patent/BR112013014808B1/pt
Priority to KR1020137018273A priority patent/KR101874661B1/ko
Priority to ES11848683T priority patent/ES2646749T5/es
Publication of WO2012081418A1 publication Critical patent/WO2012081418A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/10Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
    • C07C51/12Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide on an oxygen-containing group in organic compounds, e.g. alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/10Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • C07C51/44Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • C07C51/44Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation
    • C07C51/46Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation by azeotropic distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/50Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/08Acetic acid

Definitions

  • the present invention relates to a method for producing acetic acid while efficiently suppressing an increase in the concentration of hydrogen iodide (particularly hydrogen iodide and acetic acid) in an acetaldehyde distillation column.
  • acetic acid in the presence of water, methanol and carbon monoxide are continuously reacted in the presence of acetic acid using a metal catalyst such as a rhodium catalyst and methyl iodide.
  • the method of producing is an industrially excellent method.
  • improvement of reaction conditions and catalysts has been studied.
  • a catalyst stabilizer such as iodide salt and reacting under a lower moisture condition than conventional conditions, industrial acetic acid with high productivity can be obtained.
  • a manufacturing method has been developed.
  • volatile components are separated when acetic acid is separated from the reaction solution by distillation.
  • a volatile component contains useful components such as methyl iodide, but since it is a liquid component containing acetaldehyde, the acetaldehyde is separated by distillation (or concentration) and then recovered or recycled to the reaction system.
  • the volatile components include acid components such as hydrogen iodide and acetic acid in addition to methyl iodide, acetaldehyde, water, and methyl acetate.
  • Patent Document 1 methanol and / or methyl acetate is carbonylated in a reaction medium containing a Group 8 metal catalyst and methyl iodide, and the product of the carbonylation is produced as the product.
  • the acetaldehyde produced in the form of hydride or metaaldehyde is dissolved in a mixed solution having a distillation column bottoms composition of methyl iodide / methanol weight ratio of 5/4 to 1/2 to separate and remove acetaldehyde, and is returned to the reactor.
  • a circulating method is disclosed.
  • methanol is used in the distillation column, but the purpose is to dissolve paraaldehyde or metaaldehyde, and it is not assumed to suppress the production of hydrogen iodide.
  • the method of this document requires 0.8 to 2 times as much methanol as methyl iodide contained in a very high proportion of overhead, and a large amount of liquid to be treated is required as the total amount of overhead and methanol. Since it needs to be treated, it is necessary to use a distillation column having a large column diameter, which is not economical.
  • Patent Document 2 an acetic acid stream containing an aldehyde impurity is reacted with a hydroxy compound (glycol, polyol, C 4-10 alcohol, etc.) to convert the aldehyde impurity into an acetal for separation.
  • a method for reducing aldehyde impurities from an acetic acid stream is obtained by liquefying an overhead containing methyl iodide, methyl acetate, acetic acid, water, and aldehyde impurities in a decanter, and 5 to 50 of a heavy phase (organic phase) containing methyl iodide and aldehyde impurities.
  • Techniques for recycling to the heavy phase or carbonylation reaction are disclosed. Further, it is described that methyl iodide used for the reaction can be produced by adding hydrogen iodide to a carbonyl reactor.
  • a hydroxy compound is used as a component for converting an aldehyde into an acetal, and is acetalized using an acidic ion exchange resin to reduce hydrogen iodide and acetic acid. I do not expect at all.
  • Patent Document 3 discloses (a) carbon monoxide, methanol, methyl acetate, methyl formate, dimethyl ether and mixtures thereof in a reaction medium containing water, methyl iodide and a catalyst. Reacting with at least one reactant selected from the group consisting of: a reaction product containing acetic acid; (b) performing gas-liquid separation on the reaction product to produce acetic acid, water and iodine; Providing a volatile phase comprising methyl iodide and a less volatile phase comprising catalyst; (c) distilling the volatile phase to produce purified acetic acid product and water, methyl acetate and iodine.
  • a process for the production of acetic acid comprises the step of removing acetaldehyde from one and adding the dimethyl ether to a stream associated with the acetaldehyde removal step.
  • dimethyl ether is used as a component for facilitating separation of the first liquid phase and the second liquid phase, and does not assume reduction of hydrogen iodide or acetic acid. There is no description of the amount added.
  • Patent Document 4 describes a first step and a first step in which carbon monoxide is reacted with methanol, dimethyl ether or methyl acetate in the presence of a rhodium catalyst, an iodide salt and methyl iodide.
  • the reaction solution obtained is distilled to separate the high volatile phase containing the carbonyl compound into the low volatile phase and the low volatile phase, and the high volatile phase containing the carbonyl compound obtained in the second step is distilled to produce acetic acid.
  • the third step of separating the product and the impurity containing the carbonyl compound, the impurity containing the carbonyl compound obtained in the third step is brought into contact with water to separate the organic phase containing the alkyl iodide and the aqueous phase containing the carbonyl compound.
  • the impurity containing the carbonyl compound and water are contacted at 30 to 60 ° C. Process for the production of acetic acid is disclosed.
  • the 3b process which distills the impurity containing the carbonyl compound obtained at the 3rd process with a multistage distillation column between the 3rd process and the 4th process is provided, and at the time of distillation, a multistage distillation tower
  • methanol in an amount of 0.1 to 55 mol times the amount of iodine ions present in the catalyst.
  • step 3b the presence of hydrogen iodide produced by the reaction of methyl iodide and water may cause corrosion of the metal forming the distillation tower, (ii) ) Since this reaction is an equilibrium reaction, it is possible to suppress the generation of hydrogen iodide and suppress metal corrosion by adding methanol to the distillation column.
  • Methanol is a low-boiling component, and is therefore iodinated. Since the azeotropic temperature of hydrogen and water is 127 ° C., it is described that it is preferable to add methanol from the vicinity of the bottom of the distillation column.
  • Step 3b 10 mol times the amount of iodine ion concentration present in the distillation column was added at 10 g / hr from the bottom gas phase part of the 80-stage distillation column,
  • the iodine ion concentration in the multistage distillation column was 1 ppm or less, and a predetermined amount of methanol was added to the liquid mixture as a model solution containing methyl iodide, water, and hydrogen iodide. It is described that the iodine ion concentration can be reduced.
  • an object of the present invention is to provide a method for producing acetic acid while efficiently suppressing an increase in the concentration of hydrogen iodide (particularly hydrogen iodide and acetic acid) in an acetaldehyde distillation column.
  • Another object of the present invention is to provide a method for producing acetic acid capable of suppressing corrosion of an acetaldehyde distillation column.
  • Still another object of the present invention is to provide a method for producing acetic acid, which can efficiently separate acetaldehyde even when an acetaldehyde distillation column made of an inexpensive material is used.
  • Another object of the present invention is to provide a method for stably producing acetic acid (high purity acetic acid) while efficiently removing acetaldehyde.
  • Still another object of the present invention is to provide a method for producing acetic acid while recycling methyl iodide as a catalyst with high efficiency.
  • the present inventors obtained after separating a fraction containing acetic acid as a product from a volatile component obtained by a carbonylation reaction of methanol using a catalyst system containing a metal catalyst, a halide salt and methyl iodide.
  • a catalyst system containing a metal catalyst, a halide salt and methyl iodide.
  • the present inventors have added a specific amount of methanol and / or dimethyl ether to the overhead containing acetic acid and methyl acetate in addition to methyl iodide, acetaldehyde, and hydrogen iodide.
  • the increase in hydrogen iodide concentration (and acetic acid concentration) in the acetaldehyde distillation column can be suppressed efficiently, and corrosion of the acetaldehyde distillation column can be suppressed or prevented.
  • the material can form an acetaldehyde distillation column, reduce the cost of the acetic acid production process, and efficiently reduce the acetaldehyde (and recover methyl iodide) while suppressing the increase in hydrogen iodide (and acetic acid) concentration. We have found that this can be done and have completed the present invention.
  • the method of the present invention comprises a reaction step in which methanol and carbon monoxide are continuously reacted in a carbonylation reactor in the presence of a catalyst system composed of a metal catalyst, a halide salt and methyl iodide;
  • the reaction mixture from the reactor is continuously fed to the flasher, and the resulting volatile component (2A) containing acetic acid, methyl acetate, methyl iodide and water, and the low volatile component containing metal catalyst and halide salt ( 2B), a flash evaporation step, and the volatile component (2A) is supplied to a distillation column, and includes overhead (3A) containing methyl iodide, acetic acid, methyl acetate, water, by-produced acetaldehyde and hydrogen iodide.
  • an acetic acid recovery step for recovering acetic acid by separating the acetic acid-containing fraction (3B), and the condensed overhead (3A) (one overhead (3A) Or all) are fed to an acetaldehyde distillation column (removal column or separation column), and the liquid to be treated containing the overhead (3A) (or the condensed component or condensate of the overhead (3A)) is reduced by distillation to a low concentration containing acetaldehyde.
  • a method for producing acetic acid comprising an acetaldehyde separation step for separating a boiling component (4A) and a high boiling component (4B),
  • acetic acid is produced by distilling a liquid to be treated containing at least one methanol source selected from methanol and dimethyl ether at a concentration of 0.1 to 50% by weight.
  • the proportion of methyl iodide in the liquid to be treated, may be about 1 to 98% by weight (for example, 1 to 95% by weight), and the proportion of methyl acetate is 0.5 to 50% by weight (for example, 0.5 to 30% by weight), the proportion of acetic acid may be about 0.2 to 50% by weight, and the proportion of water may be about 0.1 to 90% by weight.
  • the ratio of hydrogen iodide may be about 1 to 1000 ppm (for example, 1 to 300 ppm) on a weight basis.
  • the concentration of the methanol source in the liquid to be treated may be about 0.1 to 50% by weight (for example, 0.2 to 50% by weight), or 1 to 30% by weight (for example, 2 to 2%). About 25% by weight).
  • the concentration of acetic acid in the liquid to be treated is about 0.3 to 50% by weight, and the ratio of methanol source (methanol conversion) is 0 with respect to 1 mol of acetic acid and hydrogen iodide in total. It may be about 1 to 40 moles.
  • the ratio (methanol conversion) of the methanol source in a to-be-processed liquid may be 80 mol or more (for example, 200 mol or more) with respect to 1 mol of hydrogen iodide.
  • the concentration of acetic acid is about 0.5 to 50% by weight (for example, 0.5 to 40% by weight)
  • the concentration of hydrogen iodide is 5 to 1000 ppm
  • the ratio of the methanol source (methanol conversion) may be about 1 to 20 mol (for example, 1 to 5 mol) with respect to 1 mol of acetic acid and hydrogen iodide.
  • the concentration of the methanol source in the liquid to be treated may be adjusted in advance according to the reaction conditions and preparation. Usually, however, the methanol source and / or the overhead (3A) is added to the inside and outside of the acetaldehyde distillation column. Alternatively, it is often adjusted by adding or mixing methyl acetate (for example, the methanol source concentration in the liquid to be treated is 0.1 to 50% by weight). In addition, although methyl acetate is not a methanol source, since methanol can be produced
  • (A) A methanol source and / or methyl acetate is added or mixed in the overhead (3A) before being supplied to the acetaldehyde distillation column [i.e., before being supplied to the acetaldehyde distillation column, the methanol source is previously added to the overhead (3A). And / or adding or mixing methyl acetate]
  • Method (B) In the acetaldehyde distillation column, at or above the height (or position, eg, stage in the distillation column) to supply overhead (3A) (eg, above) In the above method (A), the temperature of the mixed solution containing the overhead (3A) and the methanol source and / or methyl acetate is 20 to 100.
  • the overhead (3A) and the methanol source and / or methyl acetate The combined time to be supplied to the acetaldehyde distillation column from well be more than 5 seconds, it may be adjusted to a concentration of methanol source by at least the method (A).
  • the temperature of the mixed solution containing the overhead (3A) and the methanol source and / or methyl acetate is set to 30 to 85 ° C.
  • the overhead (3A) the methanol source and / or acetic acid is used.
  • the time from when methyl is mixed to when it is supplied to the acetaldehyde distillation column may be 10 seconds or more, and the concentration of the methanol source may be adjusted at least by the method (A).
  • the overhead (3A) can be directly supplied to the acetaldehyde separation step (or acetaldehyde distillation column).
  • the discharged overhead (3A) is discharged.
  • the method of the present invention may further include a condensation step of temporarily holding the overhead (3A) in the decanter (or storage) while condensing the overhead (3A), and discharging the decanter from the decanter.
  • the overhead (3A) may be fed to an acetaldehyde distillation column.
  • the methanol source is usually added to the overhead (3A) after being discharged from the decanter and before being supplied to the acetaldehyde distillation column. Or it is often mixed.
  • the amount of overhead (3A) to be held may be adjusted or controlled based on fluctuations in the flow rate of overhead (3A) supplied to the decanter. That is, in such an acetic acid production process, the amount of overhead (3A) supplied to the decanter varies greatly throughout the entire process, but stable operation of the process can be efficiently performed by such flow rate control. Therefore, when such a process and the adjustment of the methanol source concentration are combined, stable operation and suppression of the increase in hydrogen iodide and acetic acid concentrations in the acetaldehyde distillation column can be made compatible efficiently.
  • the low-boiling point component (3A) supplied to the decanter may be 100 in terms of the volume of the liquid
  • the low-boiling point component (3A) supplied to the decanter throughout the process The flow rate fluctuation may be about 80 to 120.
  • the decanter holds it. Adjust the liquid level height (or average amount) and / or interface height of the overhead (3A) to be adjusted to about 95 to 105 throughout the process (specifically, discharge the overhead (3A) to adjust). May be.
  • the liquid level height indicates the height of the liquid in which the condensed overhead (3A) (the upper surface of the liquid) comes into contact with the gas in the decanter, and the interface height refers to two layers of the condensed overhead (3A) ( The separation surface height (or lower layer liquid surface height) when separated into an upper layer and a lower layer is shown. Therefore, the concept of interface height is used when the overhead (3A) undergoes layer separation (phase separation).
  • a decanter having a buffer function may be used as a decanter.
  • a decanter is used, and the residence time of the overhead (3A) in the decanter is set to 6 minutes or more. Also good.
  • the overhead (3A) can be efficiently reduced in the decanter.
  • the amount of overhead (3A) to be held is usually adjusted or controlled based on fluctuations in the flow rate of overhead (3A) supplied to the decanter in the condensation step. Furthermore, the amount of overhead (3A) supplied to the acetaldehyde separation step may be adjusted. Specifically, in the condensation step, the amount of overhead (3A) supplied to the acetaldehyde separation step is adjusted (or substantially fixed) to be constant or substantially constant [for example, the average flow rate of overhead (3A) , The overhead (3A) flow rate supplied to the acetaldehyde separation step may be adjusted to 95-105 throughout the process].
  • a part of overhead (3A) discharged from a decanter is used.
  • a step different from the acetaldehyde separation step for example, at least one selected from a reaction system (reactor or reaction step) and an acetic acid recovery step (or distillation column), in particular at least a reaction system (or reactor) or reaction step
  • the overhead (3A) discharged from the decanter through a reservoir equipped with a buffer function, and (c) the overhead (3A) discharged from the decanter.
  • a part of the overhead (3A) discharged from the decanter is circulated to a step different from the acetaldehyde separation step, whereby the amount of overhead (3A) supplied to the acetaldehyde separation step ( Alternatively, the flow rate) may be adjusted.
  • 20% or more (for example, about 20 to 90%) of the average flow rate of the overhead (3A) supplied to the decanter may be circulated, and particularly about 40 to 90% may be circulated.
  • the overhead (3A) may be separated into an upper layer and a lower layer in a decanter, and the upper layer and the lower layer may be circulated.
  • the residence time of the overhead (3A) in the reservoir equipped with the buffer function may be 1 minute or longer (for example, 2 minutes or longer).
  • the total residence time of the overhead (3A) in the decanter and the residence time of the overhead (3A) in the reservoir equipped with the buffer function may be 3 minutes or more (for example, 4 minutes or more).
  • a decanter having a buffer function is used as the decanter, and the residence time of the overhead (3A) in the decanter may be 3 minutes or more.
  • Methods (a) to (c) may be performed alone or in combination (for example, at least method (a) or method (b)).
  • a separation liquid for example, separation of acetaldehyde from a reaction system (or a reactor or a reaction step)
  • acetic acid recovery process or distillation tower
  • acetaldehyde removal tower particularly at least the reactor or reaction process
  • recycling may be performed while suppressing fluctuations in the flow rate of the separated liquid separated in the recycling process.
  • the separation liquid may be recycled through a reservoir having a buffer function.
  • the low boiling point component (4A) may contain methyl iodide that cannot be separated. Therefore, in the present invention, the low boiling point component (4A) contains methyl iodide, and in the recycling step, methyl iodide recovered from the low boiling point component (4A) is further recycled [from the reaction system to the separation of acetaldehyde. Recycling to the process, for example, recycling to at least one selected from a reaction system (reactor or reaction process), an acetic acid recovery process (or distillation column), and an acetaldehyde distillation column].
  • the material of the acetaldehyde distillation column may be an alloy (for example, nickel-based alloy, iron-based alloy (stainless steel, two-phase iron-based alloy (such as two-phase stainless steel))).
  • an alloy for example, nickel-based alloy, iron-based alloy (stainless steel, two-phase iron-based alloy (such as two-phase stainless steel)
  • corrosion can be suppressed, even an acetaldehyde distillation column made of such a material that is relatively easily corroded can be suitably used.
  • liquid to be treated means a process liquid before being distilled in an acetaldehyde distillation column unless otherwise specified.
  • the sum total of the ratio of the arbitrary components which exist in the same mixed system (to-be-processed liquid etc.) is 100 weight% or less, and it will be 100 weight% when the ratio of all the components is totaled.
  • acetic acid can be produced while efficiently suppressing an increase in the concentration of hydrogen iodide (particularly hydrogen iodide and acetic acid) in the acetaldehyde distillation column.
  • corrosion of the acetaldehyde distillation column can be suppressed.
  • acetaldehyde can be efficiently removed without forming an acetaldehyde distillation column with a high quality material that is highly corrosion resistant. Therefore, in the method of the present invention, acetaldehyde can be separated efficiently even if an acetaldehyde distillation column made of an inexpensive or low-grade material is used.
  • the acetaldehyde distillation column can be formed with an inexpensive or low-grade material, the production process of acetic acid can be efficiently reduced in cost.
  • the amount of hydrogen iodide and acetic acid in the acetaldehyde distillation column is adjusted by adjusting the amount of overhead stored in the decanter in response to fluctuations in the amount of overhead containing methyl iodide and acetaldehyde.
  • Acetic acid high-purity acetic acid
  • acetaldehyde in overhead can be efficiently and reliably separated, acetic acid can be produced while recycling methyl iodide as a catalyst separated from overhead with high efficiency.
  • FIG. 1 is a flowchart for explaining an example of a method (or a production apparatus) for producing acetic acid according to the present invention.
  • FIG. 2 is a flow diagram for explaining another example of the method (or device) for producing acetic acid according to the present invention.
  • FIG. 1 is a flow diagram for explaining an example of the method (or apparatus) for producing acetic acid according to the present invention.
  • a rhodium catalyst as a metal catalyst a catalyst system composed of cocatalysts [lithium iodide and methyl iodide as halide salts], and in the presence of acetic acid, methyl acetate and a finite amount of water.
  • a continuous process (or production apparatus) for producing acetic acid from a reaction mixture produced by a continuous carbonylation reaction of methanol and carbon monoxide is shown.
  • This process is composed of a reactor (reaction system) 1 for carrying out a carbonylation reaction of methanol and a reaction mixture (reaction solution) containing acetic acid produced by the reaction, from the produced acetic acid, methyl iodide, A flasher 2 for separating a volatile component or volatile phase (2A) containing methyl acetate and water and a low volatile component or low volatile phase (2B) containing a rhodium catalyst and lithium iodide, and the flasher 2 From the volatile component (2A) supplied from the overhead (first overhead) (3A) containing methyl iodide, acetic acid, methyl acetate, water, by-product acetaldehyde, hydrogen iodide, etc., as a side stream A split for separation into a stream or acetic acid phase (3B) containing acetic acid and a high boiling stream or high boiling component (3C) containing acetic acid, water, propionic acid, etc.
  • a reactor reaction system
  • the column 3, the decanter 4 for temporarily holding or storing the condensed overhead (3A), and the buffer for temporarily storing (or retaining) the overhead (3A) supplied or discharged from the decanter 4 Tank 5 and overhead (3A) supplied or discharged from decanter 4 or buffer tank 5 include low boiling point component (4A) containing acetaldehyde and methyl iodide, methyl iodide, methyl acetate, water, acetic acid and the like
  • the acetaldehyde distillation column (separation column or removal column) 6 for separating the high boiling point component (4B) and the high boiling point component (4B) separated in the distillation column 6 are temporarily stored (or retained).
  • An extraction device or extractor 8 for recycling chill, lines 51 and 52 for supplying methanol and / or dimethyl ether, and various lines for supplying or circulating each component to these devices are provided. .
  • the reactor 1 includes a catalyst mixture (catalyst solution) containing a carbonylation catalyst system (a catalyst system composed of a main metal catalyst component such as a rhodium catalyst and a promoter such as lithium iodide and methyl iodide). ) And water may be supplied. Further, the reactor 1 is supplied with a stream (for example, in a liquid form) containing a low-boiling component and a high-boiling component from the subsequent process to the reactor 1 through the line 13 and / or the line 40.
  • a catalyst mixture catalyst solution
  • a carbonylation catalyst system a catalyst system composed of a main metal catalyst component such as a rhodium catalyst and a promoter such as lithium iodide and methyl iodide.
  • water may be supplied.
  • the reactor 1 is supplied with a stream (for example, in a liquid form) containing a low-boiling component and a high-boiling component from
  • a liquid phase reaction system including a reaction component and a high boiling component such as a metal catalyst component (rhodium catalyst and lithium iodide), carbon monoxide and hydrogen, methane, carbon dioxide generated by the reaction.
  • a gas phase system composed of vaporized low-boiling components (methyl iodide, generated acetic acid, methyl acetate, etc.) and the like form an equilibrium state, and the carbonylation reaction of methanol proceeds.
  • reaction pressure, carbon monoxide partial pressure, hydrogen partial pressure, methane partial pressure, nitrogen partial pressure, etc. constant, steam is extracted from the top of the reactor 1 and discharged. Also good.
  • the vapor extracted from the reactor 1 is further cooled by a heat exchanger to remove liquid components (including acetic acid, methyl acetate, methyl iodide, acetaldehyde, water, etc.) and gas components (carbon monoxide, hydrogen, etc.).
  • liquid components including acetic acid, methyl acetate, methyl iodide, acetaldehyde, water, etc.
  • gas components carbon monoxide, hydrogen, etc.
  • hydrogen may be supplied to the reactor 1 as necessary in order to increase the catalytic activity. Hydrogen may be supplied together with carbon monoxide or may be supplied separately.
  • the reactor 1 may include a heat removal unit or a cooling unit (such as a jacket) for controlling the reaction temperature.
  • acetic acid a low-boiling component or a low-boiling impurity having a lower boiling point than acetic acid (a reaction product of methyl iodide, acetic acid and methanol as a promoter) Methyl acetate, water, side reaction products acetaldehyde, higher iodides such as hexyl iodide), and high-boiling or high-boiling impurities having higher boiling points than acetic acid [metal catalyst components (such as rhodium catalyst), Lithium iodide, propionic acid, water, etc.] as a catalyst.
  • metal catalyst components such as rhodium catalyst
  • Lithium iodide Lithium iodide, propionic acid, water, etc.
  • a flasher distillation tower or catalyst separation
  • Tower 2 is introduced or supplied.
  • the supply amount of the reaction mixture supplied from the reactor 1 to the flasher 2 fluctuates non-constantly in a continuous process due to pressure fluctuation caused by sparging of carbon monoxide supplied to the liquid phase.
  • the flow rate of the reaction mixture supplied to the flasher 2 (or flow rate, hereinafter the same in the description of the flow rate) is about 98 to 102 throughout the process. It is. As will be described later, such a fluctuation in the supply amount may cause a fluctuation in the supply amount of overhead supplied to the decanter in a manner of propagating to the subsequent steps in the closing process. .
  • a low volatile component (2B) (mainly including a metal catalyst component such as a rhodium catalyst and lithium iodide), a low boiling point stream or a volatile component from the reaction mixture.
  • Component (2A) mainly acetic acid, methyl acetate, methyl iodide, water, acetaldehyde, etc., which is a product and also functions as a reaction solvent
  • the volatile component (2A) acetic acid stream
  • the low volatile component (2B) includes metal catalyst (rhodium catalyst), halide salt (lithium iodide), methyl iodide remaining without evaporation, methyl acetate, water, and a small amount of acetic acid. Is also included.
  • the volume ratio of the volatile component (2A) separated in the flasher 2 is about 20 to 40% of the entire reaction mixture.
  • the low boiling point component (2A) may be partially reheated and recycled to the reactor.
  • a part (for example, about 10 to 30% by volume) of the volatilized low boiling point component (2A) is removed while being supplied to the storage (hold tank) and / or the heat exchanger 9 through the line 12a. It is condensed by heating and recycled to the reactor 1 through the line 12b.
  • a device such as a distillation column (splitter column or the like) even in a large plant. Therefore, high-purity acetic acid can be produced with a high yield with resource-saving and energy-saving equipment.
  • the supply amount of the volatile component (2A) supplied from the flasher 2 to the splitter column 3 also fluctuates in the continuous process as the supply amount of the reaction mixture supplied to the flasher 2 changes.
  • the flow rate of the volatile component (2A) supplied to the splitter column 3 is about 98 to 102 throughout the entire process when the average flow rate of the volatile component (2A) supplied to the splitter column 3 is 100. .
  • overhead (or low boiling point component) (3A) (including methyl iodide, methyl acetate, acetaldehyde, water, acetic acid, hydrogen iodide, etc.) is usually distilled from the top of the column or from the top of the column. 14, and a high-boiling stream or a high-boiling component (3C) (a component containing water, propionic acid, etc.) is separated (or removed) from the bottom of the column or the lower stage of the column through a can line 16.
  • the separated high boiling point component (3C) may be discharged through the line 16, or a part or all of it may be recycled to the reactor 1 through the line 40.
  • the side stream mainly containing acetic acid or the acetic acid phase stream (3B) (acetic acid stream) is recovered by side-cutting from the splitter column 3 through the supply line 15.
  • the stream (3B) containing acetic acid that has been side-cut may be supplied to another distillation column (not shown) through the line 15 to be distilled and purified (not shown).
  • the overhead (3A) separated in the splitter column 3 is about 35 to 50% by weight of the entire volatile component (2A).
  • the splitter column 3 determines the total amount of the components supplied from the flasher 2 and the components recycled from the subsequent process. It will be subjected to distillation and separated as overhead (3A).
  • the supply amount of the overhead (3A) supplied from the splitter column 3 to the decanter 4 includes the supply amount of the reaction mixture supplied to the flasher 2 and the volatile component (2A) supplied from the flasher 2 to the splitter column 3.
  • the flow rate of the overhead (3A) supplied to the decanter 4 is about 90 to 110 throughout the entire process when the average flow rate of the overhead (3A) supplied to the decanter 4 is 100 (that is, the overhead ( The flow rate of 3A) varies in the range of about 0 to ⁇ 10% by volume).
  • the overhead (3A) is supplied to the decanter 4 with a relatively large fluctuation amount.
  • the overhead (3A) separated through the line 14 is condensed and continuously supplied to the decanter (reservoir) 4 and temporarily held (stored).
  • the condensed overhead (3A) includes an upper layer (aqueous layer or aqueous phase) mainly containing water, acetic acid, methyl acetate and the like, and a lower layer (organic layer or water acetate) mainly containing methyl iodide, methyl acetate and the like.
  • Acetaldehyde, methyl iodide, and hydrogen iodide are contained in any layer.
  • acetaldehyde is contained in the upper layer (aqueous layer) more than the lower layer, and hydrogen iodide is mainly contained in the upper layer.
  • the overhead (3A) held in the decanter 4 is supplied to the acetaldehyde distillation column 6 through the supply line 17 and / or the supply line 18, but in the example of FIG. Based on the flow rate fluctuation of 3A), a part of the overhead (3A) is reacted via the line 17a (subline 17a) branched from the line 17 or the line 18a (subline 18a) branched from the line 18 By circulating (or recycling), the storage amount of the overhead (3A) held in the decanter 4 (or the fluctuation of the liquid level) is suppressed at a high level.
  • the amount of overhead (3A) continuously supplied to the decanter 4 (for example, the amount supplied per unit time) is not constant in the continuous reaction, and as described above, the carbonylation reaction and flash distillation are performed. Fluctuates through recycling of methyl iodide (for example, the amount of overhead (3A) supplied per unit time increases or decreases). For this reason, if the overhead (3A) is supplied to the decanter 4 as it is, the height of the liquid level of the overhead (3A) condensed and stored in the decanter 4 greatly fluctuates, and operation cannot be performed depending on the magnitude of this fluctuation. There is a case. In order to mitigate such fluctuations, it is conceivable to supply overhead (3A) from the decanter 4 to the acetaldehyde distillation column 6 at a flow rate sufficient to mitigate fluctuations in the flow rate. The treatment in the tower 6 cannot be performed sufficiently.
  • the overhead (3A) is discharged from the upper layer and the lower layer in the decanter 4 via the line 17 and the line 18, respectively, but the overhead (3A) supplied to the decanter 4 is Even if the flow rate fluctuates, the flow rate of the overhead (3A) discharged from the decanter 4 is adjusted so that the liquid level heights of the upper layer and the lower layer are constant (or substantially constant). That is, the decanter 4 includes a liquid level sensor (not shown) that corresponds to the upper layer and the lower layer, respectively, and detects a change in the liquid level.
  • the amount of overhead (3A) discharged from the upper and lower layers in the decanter 4 is adjusted so as to maintain a predetermined liquid level. . More specifically, based on the information of the liquid level sensor, when the flow rate supplied to the decanter is large, in order to prevent the liquid level from becoming high, the flow rate of the overhead (3A) to be discharged is increased, When the flow rate supplied to the decanter is small, by performing flow rate control such as reducing the flow rate of the overhead (3A) to be discharged throughout the process, the liquid level (or upper layer) of the overhead (3A) in the decanter 4 is achieved. The liquid level is kept constant or almost constant (for example, when the average liquid level is 100, the liquid level is 99 to 101 throughout the entire process. Level, that is, the fluctuation of the liquid level is about 1% at the maximum in the entire process).
  • the overhead (3A) discharged from the line 17 and the line 18 is supplied to the line 19 as a total amount of overhead (3A) supplied from the line 17b and the line 18b, but via the line 17a and / or the line 18a.
  • the flow rate of overhead (3A) supplied to the line 19 is controlled to be constant or substantially constant. That is, in the example of FIG. 1, the amount of overhead (3A) discharged from the upper layer and the lower layer in the decanter 4 varies so that the liquid level in the decanter 4 is constant or substantially constant as described above.
  • the flow rate of the overhead (3A) supplied to the line 19 does not change ( (For example, when the average flow rate of the overhead (3A) supplied to the line 19 is 100 in terms of liquid volume), the overhead (3A) flow rate is about 98 to 102 throughout the process, that is, The flow rate fluctuation is adjusted to a maximum of about 2% in the entire process).
  • the average flow rate of the overhead (3A) supplied to the line 19 is 100 in terms of liquid volume
  • the overhead (3A) flow rate is about 98 to 102 throughout the process, that is, The flow rate fluctuation is adjusted to a maximum of about 2% in the entire process.
  • the flow rate fluctuation of the low-boiling component (3A) supplied to the line 19 can be suppressed mainly by changing the amount of overhead (3A) to be circulated, but in the decanter 4
  • the flow rate fluctuation can be further suppressed by adjusting the residence time of the overhead (3A).
  • the flow rate of the overhead (3A) supplied to the line 19 may be adjusted by changing the flow rate of the overhead (3A) circulated through the line 17a and / or the line 18a. If the range does not cause a large fluctuation, the flow rate of the overhead (3A) circulating to the line 17a or 18a is fixed (that is, the flow rate of the overhead (3A) supplied to the line 17b or 18b is changed). Also good.
  • the overhead (3A) is discharged through the line 17 and the line 18, but the overhead (3A) is discharged from only one of the lines and a part thereof is circulated. Accordingly, the flow rate of the overhead (3A) supplied to the line 19 may be adjusted. Moreover, you may supply or discharge
  • the overhead (3A) supplied to the line 17a may be supplied to the line 30 via the line 17a1 and may be circulated to the splitter column 3, or supplied to the line 40 via the line 17a2 and supplied to the reactor 1. It may be recycled (returned) or may be recycled through both lines 17a1 and 17a2. Further, the overhead (3A) supplied to the line 18a is supplied to the line 40 and recycled to the reactor 1.
  • the overhead (3A) supplied to the line 19 may be supplied directly to the distillation column 6 because fluctuations in the flow rate are remarkably suppressed as described above, but in the example of FIG. Furthermore, in order to further reduce the fluctuation of the flow rate, it is supplied to the distillation column 6 via a reservoir (buffer tank) 5 having a buffer function. That is, the overhead (3A) supplied to the line 19 is supplied to the buffer tank 5 and then supplied to the distillation column 6 via the line 20. Thus, even if the amount supplied from the buffer tank 5 to the line 20 is made constant (or almost constant) by temporarily retaining the overhead (3A) in the buffer tank 5, it is supplied from the line 19 in the buffer tank 5. The flow rate fluctuation of the overhead (3A) can be efficiently reduced.
  • a predetermined amount of methanol source (methanol and / or dimethyl ether) is added or mixed to the overhead (3A) used for distillation in the distillation column 6 through the line 51 and / or the line 52. That is, a predetermined amount of methanol source (methanol and / or dimethyl ether) may be added or mixed to the line 19 through the line 51. That is, the overhead (3A) containing acetic acid, methyl acetate, water and hydrogen iodide in addition to methyl iodide and acetaldehyde is in the form of a mixed solution (processed liquid, process liquid) containing a methanol source, and the buffer tank 5 Through the line 20 to the distillation column 6.
  • the methanol source is mixed with the line 19 before being supplied to the buffer tank 5, but the methanol source is mixed with the line 20 immediately before being supplied to the distillation column 6 via the line 51. May be.
  • the methanol source is supplied via line 52 to a stage (or position) that is the same as or higher than the stage (or position) where overhead (3A) is supplied to distillation column 6 via line 20 and overhead ( It can also be subjected to distillation in the form of a mixture with 3A).
  • methyl acetate may be added to the line 51 and / or the line 52 instead of or together with the methanol source.
  • the amount of the methanol source (and / or methyl acetate, the same applies to others) mixed in each line 51 and / or the line 52 is determined in an appropriate ratio in consideration of the concentration of the methanol source in the distillation column 6. May be adjusted to a predetermined density.
  • the mixed liquid containing the overhead (3A) supplied to the distillation column 6 is subjected to distillation in the distillation column 6 by a low-boiling fraction or low-boiling component containing a trace of methyl iodide, carbon monoxide, hydrogen, etc. in addition to acetaldehyde.
  • a low-boiling fraction or low-boiling component containing a trace of methyl iodide, carbon monoxide, hydrogen, etc. in addition to acetaldehyde.
  • Second overhead (4A) and a high-boiling stream or high-boiling component (4B) containing methyl iodide, methyl acetate, water and the like in addition to methyl iodide.
  • the increase in the concentration of hydrogen iodide and acetic acid in the distillation column 6 is remarkably suppressed by the overhead (3A) being distilled together with the methanol source.
  • the separated low boiling point component (4A) is supplied to the acetaldehyde extraction device (water extraction column) 8 through the line (discharge line) 21 from the top or the upper column of the column, and acetaldehyde is converted from the low boiling point component (4A). Extracted with water and extracted acetaldehyde (aldehyde aqueous solution) is discharged through line 21b. A part of the low boiling point component (4A) may be returned to the distillation column 6 through the line 21a.
  • the extraction liquid containing a small amount of methyl iodide or the like may be discharged out of the system, but in the example of FIG. 1, the extraction liquid discharged from the line 24 is supplied to the distillation column 6 through the line 24a. And / or supplied to line 40 through line 24b and recycled to reactor 1.
  • the extraction rate of methyl iodide can be further improved by distilling or recycling the extracted residue.
  • the separated high boiling point component (4B) is supplied to the line 40 that leads to the reactor 1 and the splitter column 3 through the line 22 as a separated liquid (boiler liquid or tower bottom liquid).
  • a separated liquid such as a separated liquid or tower bottom liquid.
  • useful components including methyl iodide are circulated (recycled) into the reaction system and the like.
  • the high boiling point component (4B) may be supplied directly to the line 40 through the line 22, but in the example of FIG. 1, it is supplied to the line 40 through the line 23 through the buffer tank 7. Yes. That is, the flow rate fluctuation of the high boiling point component (4B) supplied through the line 22 is suppressed with the advanced flow rate control of the overhead (3A) supplied to the distillation column 6 as described above.
  • the high boiling point component (4B) supplied to the line 40 may be partly or wholly recycled to the splitter column 3 via the line 40a, or the high boiling point component (4B) supplied to the line 40a. If it is a range which can ensure the stable driving
  • FIG. 2 is a flowchart for explaining another example of the method (or production apparatus) for producing acetic acid according to the present invention.
  • the process (or apparatus) in FIG. 2 uses a decanter 4A having a buffer function instead of the decanter 4 in FIG. 1, and supplies overhead (3A) directly to the distillation column 6 via the line 17.
  • FIG. 2 it is the same process (or apparatus) of FIG.
  • the decanter cannot normally alleviate the flow rate fluctuation of the overhead (3A) supplied from the splitter column 3, but in the example of FIG.
  • the decanter 4A having a large capacity is used, and the flow rate discharged in the line 17 is made constant or almost constant (for example, the average flow rate of the overhead (3A) supplied through the line 14) by relaxing the flow rate fluctuation in the decanter 4A.
  • the flow rate of overhead (3A) discharged or supplied to the line 17 throughout the entire process is about 98.5 to 101.5, that is, the fluctuation of the flow rate is maximized in the entire process. About 1.5%).
  • the overhead (3A) is supplied to the distillation column 6 via the line 17 corresponding to the upper layer, but may be supplied via the line 18 corresponding to the lower layer in the example of FIG. Alternatively, it may be supplied via lines 17 and 18 (not shown). Moreover, you may supply via a single line irrespective of an upper layer and a lower layer.
  • reaction step carbonylation reaction step
  • methanol is carbonylated with carbon monoxide in the presence of a catalyst system.
  • methanol may supply fresh methanol directly or indirectly to the reaction system, or may be supplied to the reaction system by recycling methanol or its derivatives distilled from various distillation steps. Good.
  • the catalyst system can usually be composed of a metal catalyst, a cocatalyst, and a promoter.
  • the metal catalyst include transition metal catalysts, particularly metal catalysts containing a Group 8 metal of the periodic table, such as a cobalt catalyst, a rhodium catalyst, and an iridium catalyst.
  • the catalyst may be a single metal, or a metal oxide (including composite oxide), hydroxide, halide (chloride, bromide, iodide, etc.), carboxylate (acetate, etc.), It can also be used in the form of inorganic acid salts (sulfates, nitrates, phosphates, etc.) and complexes.
  • Such metal catalysts can be used singly or in combination of two or more.
  • Preferred metal catalysts are rhodium catalysts and iridium catalysts (particularly rhodium catalysts).
  • the metal catalyst is preferably used in a form that is soluble in the reaction solution.
  • rhodium usually exists as a complex in the reaction solution
  • the catalyst is not particularly limited as long as it can be converted into a complex in the reaction solution, and various forms are possible.
  • a rhodium catalyst a rhodium iodine complex (for example, RhI 3 , [RhI 2 (CO) 4 ] ⁇ , [Rh (CO) 2 I 2 ] ⁇ and the like), a rhodium carbonyl complex and the like are particularly preferable.
  • the catalyst can be stabilized in the reaction solution by adding a halide salt (such as an iodide salt) and / or water.
  • the concentration of the metal catalyst is, for example, 10 to 5000 ppm (weight basis, the same shall apply hereinafter), preferably 100 to 4000 ppm, more preferably 200 to 3000 ppm, particularly 300 to 2000 ppm (for example, 500 ppm) with respect to the entire liquid phase in the reactor. ⁇ 1500 ppm).
  • a halide salt (iodide salt or the like) is used as a co-catalyst or promoter constituting the catalyst system.
  • the iodide salt is added for the purpose of stabilizing the rhodium catalyst and suppressing side reactions, particularly under low moisture.
  • the iodide salt is not particularly limited as long as it generates iodine ions in the reaction solution.
  • a metal halide for example, an alkali metal salt of iodide (lithium iodide, sodium iodide, potassium iodide, etc.) , Rubidium iodide, cesium iodide, etc.), iodide alkaline earth metal salts (beryllium iodide, magnesium iodide, calcium iodide, etc.), iodide periodic table group 3B element salts (boron iodide, aluminum iodide, etc.)
  • Metal iodides such as bromides, chlorides, etc.]
  • organic halides eg, phosphonium salts of iodide (eg, salts with tributylphosphine, triphenylphosphine, etc.), ammonium salts of iodide, etc.] (Tertiary amines, pyridines, imidazoles, imides, etc.
  • Organic iodides, bromides corresponding to these, and the like chloride] is.
  • an alkali metal iodide salt such as lithium iodide
  • a carbonylation catalyst such as a rhodium catalyst
  • alkali metal iodide salts such as lithium iodide are preferred.
  • the concentration of halide salt (iodide salt, etc.) in the reaction system (reaction solution) of the reactor is, for example, 1 to 25% by weight, preferably 2 to 22% by weight, based on the entire liquid phase in the reactor. More preferably, it is about 3 to 20% by weight. Furthermore, the concentration of iodide ions in the reaction system may be, for example, 0.07 to 2.5 mol / liter, preferably 0.25 to 1.5 mol / liter.
  • alkyl iodide for example, C 1-4 alkyl iodide such as methyl iodide, ethyl iodide, propyl iodide, etc.
  • methyl iodide is used as the promoter constituting the catalyst system.
  • concentration of the accelerator the more the reaction is promoted. Therefore, considering the recovery of the accelerator, the equipment scale of the process for circulating the recovered accelerator to the reactor, the amount of energy required for recovery and circulation, etc. It is possible to select a concentration that is advantageous to the above.
  • the concentration of alkyl iodide (especially methyl iodide) in the reaction system is, for example, 1 to 20% by weight, preferably 5 to 20% by weight, more preferably 6 to 16% by weight, based on the entire liquid phase in the reactor. % (For example, 8 to 14% by weight).
  • the reaction solution contains methyl acetate.
  • the content ratio of methyl acetate is 0.1 to 30% by weight, preferably 0.3 to 20% by weight, more preferably 0.5 to 10% by weight (for example, 0.5 to 6% by weight) of the whole reaction solution. A proportion of the degree may be used.
  • Carbon monoxide supplied to the reaction system may be used as a pure gas, or may be diluted with an inert gas (for example, nitrogen, helium, carbon dioxide, etc.). Moreover, you may recycle the waste gas component containing the carbon monoxide obtained from a subsequent process to a reaction system.
  • the partial pressure of carbon monoxide in the reactor may be, for example, about 2 to 30 atm, preferably about 4 to 15 atm.
  • hydrogen may be supplied to the reaction system.
  • Hydrogen supplied to the reaction system can be supplied to the reaction system as a mixed gas together with carbon monoxide as a raw material.
  • hydrogen may be supplied by appropriately purifying gas components (including hydrogen and carbon monoxide) discharged in the subsequent distillation step (distillation tower) and recycling them to the reaction system as necessary.
  • the hydrogen partial pressure of the reaction system may be about 0.5 to 250 kPa, preferably 1 to 200 kPa, more preferably 5 to 150 kPa (for example, 10 to 100 kPa) in absolute pressure.
  • the carbon monoxide partial pressure and hydrogen partial pressure of the reaction system are, for example, the amount of carbon monoxide and hydrogen supplied to the reaction system or the amount of these components recycled to the reaction system, the raw material substrate (methanol) Etc.), the reaction temperature, the reaction pressure, etc. can be adjusted appropriately.
  • the reaction temperature may be, for example, about 150 to 250 ° C., preferably 160 to 230 ° C., more preferably about 180 to 220 ° C.
  • the reaction pressure total reactor pressure
  • the reaction temperature may be, for example, about 15 to 40 atmospheres including the partial pressure of by-products.
  • the reaction may be performed in the presence or absence of a solvent.
  • the reaction solvent is not particularly limited as long as the reactivity and separation or purification efficiency are not lowered, and various solvents can be used, but usually acetic acid as a product is often used. That is, the remaining main component in the reaction solution may be acetic acid which is a product and a reaction solvent.
  • the concentration of water contained in the reaction system is not particularly limited, but may be a low concentration.
  • the water concentration of the reaction system is, for example, 15% by weight or less (for example, 0.1 to 12% by weight), preferably 10% by weight or less (for example, 0.1 to 8% by weight) with respect to the entire liquid phase of the reaction system. %), More preferably about 0.1 to 5% by weight, and usually about 1 to 15% by weight (for example, 2 to 10% by weight).
  • each component, in particular, iodide salt (lithium iodide) and water concentration are reacted at a specific concentration to reduce the solubility of carbon monoxide in the liquid supplied to the evaporation tank. Carbon oxide loss can be reduced.
  • the acetaldehyde concentration in the reactor is kept relatively small although it is a continuous reaction.
  • the concentration of acetaldehyde in the reactor (or reaction system) is 1000 ppm or less (eg, 0 or detection limit to 700 ppm), preferably 400 ppm or less (eg, 0 to the detection limit to 700 ppm) of the entire liquid phase in the reactor, based on weight throughout the process. 5 to 300 ppm).
  • acetaldehyde eg, crotonaldehyde, a reducing substance produced by aldol condensation of acetaldehyde, 2-ethylcrotonaldehyde, acetaldehyde produced by aldol condensation of hydride of crotonaldehyde and acetaldehyde
  • crotonaldehyde a reducing substance produced by aldol condensation of acetaldehyde
  • 2-ethylcrotonaldehyde acetaldehyde produced by aldol condensation of hydride of crotonaldehyde and acetaldehyde
  • the generation of such acetaldehyde-derived byproducts can be remarkably suppressed in combination with the low acetaldehyde concentration. That is, these by-products are often by-produced in proportion to the second to third power of the acetaldehyde concentration, and by suppressing the concentration and fluctuation of acetaldehyde, the generation of by-products can be efficiently suppressed. .
  • the space-time yield of acetic acid in the reaction system may be, for example, about 5 to 50 mol / Lh, preferably about 8 to 40 mol / Lh, and more preferably about 10 to 30 mol / Lh.
  • the steam component may be extracted from the top of the reactor for the purpose of adjusting the pressure of the reactor, etc., and the extracted steam component is used in a condenser or heat to remove part of the reaction heat. It may be cooled by a converter or the like. The cooled vapor component is separated into a liquid component (including acetic acid, methyl acetate, methyl iodide, acetaldehyde, water, etc.) and a gas component (including carbon monoxide, hydrogen, etc.). May be recycled.
  • a liquid component including acetic acid, methyl acetate, methyl iodide, acetaldehyde, water, etc.
  • a gas component including carbon monoxide, hydrogen, etc.
  • Flash evaporation process In the flash evaporation step (evaporation tank), at least a high boiling point catalyst component (metal catalyst component such as rhodium catalyst and halogen) is supplied from the reaction step or the reaction mixture supplied from the reactor to the flasher (evaporation tank, flash distillation column).
  • the low volatile component or low volatile phase (2B) containing the chloride salt) is separated as a liquid, and the volatile component or volatile phase (2A) containing acetic acid and methyl iodide is separated as a vapor.
  • the supply amount of the reaction mixture supplied to the flasher varies.
  • the average flow rate of the reaction mixture supplied to the flasher is 100 (in terms of liquid volume, the same applies to other descriptions unless otherwise specified)
  • the fluctuation is supplied to the flasher throughout the process.
  • the flow rate of the reaction mixture is about 90 to 110 (eg 93 to 107), preferably 95 to 105 (eg 97 to 103), more preferably 98 to 102 (eg 98.5 to 101.5). is there.
  • the separation (flash distillation) of the metal catalyst component can be carried out by a conventional separation method or separation apparatus, but can usually be carried out using a flash distillation column. Moreover, you may isolate
  • the reaction mixture may be heated or the vapor component and the liquid component may be separated without heating.
  • a vapor component and a liquid component can be separated from a reaction mixture by reducing the pressure without heating
  • a vapor component and a liquid component can be separated from the reaction mixture by heating and depressurizing the reaction mixture.
  • These flash conditions may be combined to separate the reaction mixture.
  • These flash distillations are performed, for example, at a temperature of about 80 to 200 ° C. and a pressure (absolute pressure) of 50 to 1000 kPa (for example, 100 to 1000 kPa), preferably 100 to 500 kPa, more preferably about 100 to 300 kPa. be able to.
  • the catalyst separation step may be a single step or a combination of a plurality of steps.
  • the high boiling point catalyst component (metal catalyst component) thus separated may be usually recycled to the reaction system as in the example of the above figure.
  • a part of the volatile component (2A) may be recycled to the reactor or the reaction system as described above.
  • the volatile component (2A) to be recycled may be recycled to the reactor after heat removal and condensation by an appropriate method.
  • the ratio of the volatile component (2A) to be recycled is, for example, 1 to 50% by volume (for example, 5 to 45% by volume), preferably 10 to 40% by volume, and more preferably about 10 to 30% by volume. Good.
  • the separated volatile component (2A) includes acetic acid as a product, co-catalyst such as hydrogen iodide and methyl iodide, methyl acetate, water, and by-products (aldehyde such as acetaldehyde and propionic acid) And fed to a distillation column for recovering acetic acid.
  • the proportion of the volatile component (2A) supplied to the acetic acid recovery step is, for example, 5 to 50% by weight, preferably 8 to 40% by weight, more preferably based on the whole reaction mixture. It may be about 10 to 35% by weight (for example, 12 to 30% by weight).
  • the volatile component (2A) is supplied to a distillation column (splitter column), and includes overhead (3A) containing methyl iodide, acetic acid, methyl acetate, acetaldehyde and hydrogen iodide by-produced, and acetic acid.
  • Acetic acid is recovered by separating into a stream (3B).
  • the overhead (3A) containing methyl iodide, methyl acetate, acetic acid, acetaldehyde, hydrogen iodide, water, and the like is vaporized from the volatile component (2A) (acetic acid stream) supplied from the flasher.
  • a liquid stream (3B) containing acetic acid (side cut stream, side stream) is distilled off.
  • the liquid stream (3B) containing acetic acid may be distilled off by side cut or withdrawn from the bottom of the distillation column.
  • the high boiling point component (3C) containing water, propionic acid, a metal catalyst component mixed by splash entrainment, a halide salt, and the like may be separated.
  • Such a high boiling point component (3C) may be removed (canned) from the bottom of the distillation column, and contains a useful component such as a metal catalyst component and acetic acid remaining without evaporation.
  • acetic acid stream (crude acetic acid solution) is usually dehydrated in the next distillation column, and further introduced into an acetic acid product column for separating and distilling the high and low boiling points to produce product acetic acid.
  • the high boiling point component (3C) to be recycled may be recycled to a reaction system or the like via a reservoir having a buffer function, as will be described later.
  • the supply amount of the low boiling point component (2A) supplied to the distillation column also often fluctuates in such a way that the fluctuation of the supply amount from the reactor propagates.
  • the average flow rate of the volatile component (2A) supplied to the distillation column is 100
  • the flow rate of the volatile component (2A) supplied to the distillation column (2A) is throughout the process. It is about 90 to 110 (for example, 93 to 107), preferably about 95 to 105 (for example, 97 to 103), and more preferably about 98 to 102 (for example, 98.5 to 101.5).
  • the position of the supply port of the low-boiling component (2A) to be supplied is not particularly limited, and may be, for example, any of the upper stage, middle stage, and lower stage of the distillation tower. Good.
  • the acetic acid stream in the distillation column may be supplied from either the upper side or the lower side with respect to the side flow port for side cutting.
  • the position of the side flow outlet for side-cutting the acetic acid stream may be any of the upper stage, middle stage, and lower stage of the distillation tower, but is usually the middle stage or lower stage of the distillation tower. preferable.
  • distillation column a conventional distillation column such as a plate column, a packed column, or a flash distillation column can be used, but a rectifying column such as a plate column or a packed column may be usually used.
  • the material of the distillation column is not particularly limited, and glass, metal, ceramic, etc. can be used, but usually a metal distillation column is often used.
  • the distillation temperature and pressure in the distillation column can be appropriately selected according to conditions such as the type of the distillation column and which of the low-boiling component and the high-boiling component are removed intensively.
  • the temperature in the column usually the temperature at the top of the column
  • the pressure in the column for example, 20 to 180 ° C., preferably 50 to 150 ° C., more preferably 100 to 140 ° C. It may be a degree.
  • the theoretical plate is not particularly limited, and is 5 to 50 plates, preferably 7 to 35 plates, more preferably about 8 to 30 plates, depending on the type of separation component.
  • the theoretical plate may be 10 to 80 plates, preferably 12 to 60 plates, more preferably about 15 to 40 plates.
  • the reflux ratio may be selected, for example, from about 0.5 to 3000, preferably about 0.8 to 2000, depending on the number of the theoretical plates. It may be reduced.
  • the separated overhead (3A) often contains acetic acid, methyl acetate, water, etc. in addition to methyl iodide, acetaldehyde, hydrogen iodide.
  • the ratio of the overhead (3A) supplied to a condensation process (or decanter) or an acetaldehyde removal process (or an acetaldehyde removal tower) among volatile components (2A) is based on the entire volatile component (2A). For example, it may be about 5 to 70% by volume, preferably about 10 to 65% by volume, more preferably about 12 to 60% by volume (for example, 15 to 50% by volume).
  • the overhead (3A) can be directly supplied to the acetaldehyde separation step (4) (or the acetaldehyde distillation column), but usually after the overhead (3A) is condensed, the acetaldehyde separation step. May be supplied.
  • the method of the present invention further includes a condensation / discharge process (sometimes simply referred to as a condensation process) in which the overhead (3A) is temporarily held in a decanter (or a reservoir) and discharged from the decanter. May be included.
  • the separated low boiling point component (3A) is temporarily held (or stored) in a decanter (or storage) while condensing, and then discharged at least for use in the acetaldehyde separation step.
  • the amount of overhead (3A) to be held (or the amount of overhead (3A) to be discharged) is set to the flow rate of overhead (3A) supplied to the decanter throughout the process. You may adjust (or control) based on a fluctuation
  • the amount of overhead (3A) supplied to the decanter often fluctuates greatly through a series of steps. Therefore, the amount of overhead (3A) held in the decanter may be adjusted so as to reduce this flow rate fluctuation.
  • Specific methods for adjusting (or controlling) the amount of overhead (3A) to be held include (1) overhead (3A) so as to suppress fluctuations in the amount of overhead (3A) held in the decanter or the liquid level. ) (E.g., the method of FIG. 1), (2) Using a decanter having a buffer function as the decanter, and mitigating fluctuations in the supply amount of overhead (3A) within the decanter (e.g., the method of FIG. 2) ) And the like. Note that these methods may be combined.
  • the overhead (3A) discharged from the decanter is supplied to the acetaldehyde separation step (or acetaldehyde distillation column), but if it is supplied as it is without controlling the flow rate, the overhead (3A) supplied to the decanter varies with the fluctuation. In some cases, acetaldehyde cannot be stably separated. Therefore, in the present invention, the amount of overhead (3A) supplied to the acetaldehyde separation step (total amount of overhead (3A) and methanol source) may be further adjusted.
  • the total amount of the overhead (3A) and the methanol source may be adjusted. Since the supply amount of the methanol source can be easily fixed, if the fluctuation of the amount of overhead (3A) can be suppressed, the fluctuation of the liquid to be processed supplied to the acetaldehyde distillation column can be suppressed. Therefore, even in such a case, the amount of overhead (3A) may be adjusted. Even when the total amount of overhead (3A) and the methanol source is adjusted, these total amounts are simply referred to as overhead (3A). There is a case.
  • a method for adjusting or controlling the supply amount of overhead (3A) supplied to such an acetaldehyde separation step for example, (a) overhead (3A) discharged from a decanter (or the total amount of overhead (3A) and a methanol source) In which a part of is circulated to a process different from the acetaldehyde separation process (especially, at least a reactor or a reaction process), (b) overhead (3A) discharged from a decanter (or overhead (3A ) And the methanol source) through a reservoir equipped with a buffer function to the acetaldehyde separation step (such as the example in FIG.
  • the liquid to be treated containing the overhead (3A) is distilled (or rectified).
  • the liquid to be treated contains a methanol source at a concentration.
  • the liquid to be treated should contain at least the overhead (3A) (in the case where the overhead (3A) is circulated as described above, a part of the overhead (3A)). May be added, and liquid components that have been recycled or recycled after the acetaldehyde separation step (for example, low boiling point component (4A), low boiling point component after removal of acetaldehyde (4A), high boiling point component (4B), etc.) ) And the like.
  • the overhead (3A) in the case where the overhead (3A) is circulated as described above, a part of the overhead (3A)
  • liquid components that have been recycled or recycled after the acetaldehyde separation step for example, low boiling point component (4A), low boiling point component after removal of acetaldehyde (4A), high boiling point component (4B), etc.
  • Such a liquid to be treated is usually composed mainly of overhead (3A) and contains various components such as methyl iodide and methyl acetate in addition to acetaldehyde and acetic acid.
  • the concentration of methyl iodide is, for example, 1 to 98% by weight (for example, 1 to 95% by weight), preferably 1.5 to 95% by weight (for example, 10 to 90% by weight), and more preferably. May be about 20 to 80% by weight (for example, 30 to 70% by weight).
  • the concentration of methyl iodide is, for example, 60% by weight or more (for example, 70 to 98% by weight), preferably 70% by weight or more (for example, 80 to 97% by weight), and more preferably 85% by weight or more (for example, , 87 to 95% by weight).
  • such a methyl iodide concentration is mainly a concentration in the case where the lower layer portion of the overhead (3A) is used as a liquid to be processed.
  • the concentration of methyl iodide is, for example, 20% by weight or less (for example, 0.1 to 15% by weight), preferably 15% by weight or less (for example, 0.5 to 10% by weight), and more preferably 10% by weight. % Or less (for example, 1 to 6% by weight).
  • a methyl iodide concentration is mainly a concentration in the case where the upper layer portion of the overhead (3A) is a liquid to be treated.
  • the concentration of the component that generates hydrogen iodide by equilibrium such as methyl iodide is preferably small from the viewpoint of corrosion inhibition.
  • the concentration of methyl acetate can be selected from the range of 0.5 to 50% by weight, for example, 0.5 to 30% by weight (for example, 1 to 25% by weight), preferably 2 to 25% by weight. (For example, 3 to 20% by weight), more preferably about 3 to 15% by weight (for example, 4 to 10% by weight).
  • the concentration of methyl acetate is, for example, 30% by weight or less (for example, 0.1 to 25% by weight), preferably 20% by weight or less (for example, 0.5 to 18% by weight), and more preferably 15% by weight. It may be about the following (for example, 3 to 13% by weight).
  • such a methyl acetate concentration is mainly a concentration in the case where the lower layer portion of the overhead (3A) is a liquid to be treated.
  • the concentration of methyl acetate is, for example, 20% by weight or less (for example, 0.1 to 15% by weight), preferably 15% by weight or less (for example, 0.5 to 10% by weight), and more preferably 10% by weight. It may be about the following (for example, 1 to 8% by weight). In many cases, such a methyl acetate concentration is mainly a concentration when the upper layer portion of the overhead (3A) is a liquid to be treated.
  • the concentration of acetic acid can be selected from the range of 0.1 to 50% by weight (for example, 0.2 to 50% by weight, preferably 0.3 to 50% by weight). It may be about 40% by weight, preferably 0.5 to 30% by weight (eg 0.8 to 25% by weight), more preferably about 1 to 20% by weight (eg 3 to 15% by weight).
  • the concentration of acetic acid is, for example, 20% by weight or less (for example, 0.1 to 15% by weight), preferably 10% by weight or less (for example, 0.3 to 8% by weight), and more preferably 8% by weight or less. It may be about (for example, 0.5 to 5% by weight). In many cases, such an acetic acid concentration is mainly a concentration when the lower layer portion of the overhead (3A) is a liquid to be treated.
  • the concentration of acetic acid is, for example, 50% by weight or less (for example, 1 to 45% by weight), preferably 40% by weight or less (for example, 5 to 35% by weight), and more preferably 30% by weight or less (for example, 8% About 25 wt%).
  • such an acetic acid concentration is mainly a concentration when the upper layer portion of the overhead (3A) is a liquid to be treated.
  • the concentration of water can be selected from the range of 0.05 to 95% by weight, for example, 0.1 to 90% by weight (for example, 0.2 to 80% by weight), preferably 0.5 to It may be about 80% by weight (for example, 0.8 to 75% by weight), more preferably about 1 to 75% by weight (for example, 1.5 to 70% by weight).
  • the concentration of water is, for example, 5% by weight or less (eg, 0.01 to 3% by weight), preferably 3% by weight or less (eg, 0.05 to 2% by weight), and more preferably 2% by weight or less. It may be about (for example, 0.1 to 1% by weight). In many cases, such a water concentration is mainly a concentration in the case where the lower layer portion of the overhead (3A) is a liquid to be treated.
  • the concentration of water is, for example, 40% by weight or more (for example, 45 to 95% by weight), preferably 50% by weight or more (for example, 55 to 90% by weight), and more preferably 60% by weight or more (for example, 65% by weight). About 80% by weight). In many cases, such a water concentration is mainly a concentration when the upper layer portion of the overhead (3A) is a liquid to be treated.
  • the concentration of hydrogen iodide can be selected from a range of 1 to 2000 ppm (for example, 1 to 1000 ppm, preferably 5 to 1000 ppm) on a weight basis, for example, 3 to 1500 ppm, preferably 4 to 1000 ppm, Preferably, it may be about 5 to 800 ppm (eg 7 to 600 ppm), usually 1 to 500 ppm (eg 1 to 300 ppm, preferably 5 to 200 ppm (eg 5 to 150 ppm), more preferably 10 to 120 ppm, In particular, it may be about 15 to 100 ppm.
  • 1 to 2000 ppm for example, 1 to 1000 ppm, preferably 5 to 1000 ppm
  • it may be about 5 to 800 ppm (eg 7 to 600 ppm), usually 1 to 500 ppm (eg 1 to 300 ppm, preferably 5 to 200 ppm (eg 5 to 150 ppm), more preferably 10 to 120 ppm, In particular, it may be about 15 to 100
  • the concentration of hydrogen iodide in the liquid to be treated may be, for example, about 3 to 100 ppm, preferably about 5 to 80 ppm (for example, 5 to 50 ppm) on a weight basis.
  • the concentration of hydrogen iodide in the liquid to be treated may be, for example, about 30 to 150 ppm, preferably about 50 to 100 ppm, based on weight.
  • the former concentration is mainly used for the lower layer overhead (3A)
  • the latter concentration is mainly used for the upper layer overhead (3A). There are many cases.
  • the hydrogen iodide concentration may be measured directly or indirectly (or calculated).
  • the concentration of hydrogen iodide is determined based on the total iodine ion (I ⁇ ) concentration based on an iodide salt [for example, an iodide derived from a promoter such as LiI, or a corrosive metal (Fe, Ni, Cr) generated in the process of producing acetic acid. , Mo, Zn, etc.) may be calculated by reducing the concentration of iodine ions derived from a metal iodide such as iodide.
  • the concentration of acetaldehyde may be, for example, about 0.001 to 5% by weight, preferably about 0.005 to 3% by weight, and more preferably about 0.01 to 1% by weight. It may be about 02 to 0.7% by weight (for example, 0.03 to 0.6% by weight).
  • the concentration of acetaldehyde in the liquid to be treated may be, for example, about 200 to 6000 ppm, preferably about 400 to 4000 ppm on a weight basis.
  • the concentration of acetaldehyde in the liquid to be treated may be, for example, about 500 to 20000 ppm, preferably about 1000 to 16000 ppm on a weight basis.
  • the former concentration is mainly used for the lower layer overhead (3A)
  • the latter concentration is mainly used for the upper layer overhead (3A). There are many cases.
  • the liquid to be treated contains at least one methanol source selected from methanol and dimethyl ether.
  • the methanol source may be any of methanol alone, dimethyl ether alone, or a combination of methanol and dimethyl ether.
  • the methanol source includes methanol obtained by hydrolysis of methyl acetate.
  • the concentration of the methanol source can be selected from the range of 0.1 to 50% by weight (for example, 0.2 to 50% by weight), for example, 0.1 to 40% by weight (for example, 0.2 to 0.2% by weight).
  • 0.1 to 50% by weight for example, 0.2 to 50% by weight
  • 40% by weight for example, 0.2 to 0.2% by weight
  • To 30% by weight preferably 0.2 to 25% by weight, more preferably 0.2 to 20% by weight (eg 0.5 to 18% by weight), in particular 0.7 to 17% by weight (eg 1 About 15 to 15% by weight, preferably about 2 to 15% by weight), and usually about 1 to 30% by weight (for example, 2 to 25% by weight).
  • the concentration of the methanol source in the liquid to be treated is 0.1 to 35% by weight (for example, 0.1 to 28% by weight), preferably 0.15 to 21% by weight, and more preferably 0.2 to 17%. It may be about wt% (for example, 0.5 to 13 wt%), particularly about 0.6 to 12 wt% (for example, 0.7 to 10 wt%). Such a concentration is suitable particularly when the methanol source contains a large amount of dimethyl ether.
  • the concentration of the methanol source in the liquid to be treated may be, for example, about 0.1 to 20% by weight, preferably about 0.2 to 15% by weight (for example, 0.5 to 13% by weight).
  • the concentration of the methanol source in the liquid to be treated may be, for example, 0.3 to 50% by weight (for example, 0.5 to 40% by weight), preferably about 1 to 30% by weight.
  • the concentration of the former is mainly used for the lower layer overhead (3A)
  • the latter concentration is mainly used for the upper layer overhead (3A). It is good also as a range.
  • the ratio of methanol source is about 0.1 to 40 mol with respect to 1 mol of acetic acid and hydrogen iodide in the liquid to be treated (or overhead (3A)).
  • 0.1 to 20 mol eg, 0.3 to 15 mol
  • preferably 0.4 to 10 mol eg, 0.5 to 10 mol
  • more preferably 0.7 to It may be about 7 mol (eg 1 to 5 mol), particularly 1.1 to 4 mol (eg 1.2 to 3 mol), usually 1 to 20 mol (eg 1.5 to 5 mol). It may be a degree.
  • the said ratio is a methanol conversion ratio. That is, from 1 mol of dimethyl ether, 2 mol of methanol is generated by hydrolysis. Therefore, when dimethyl ether is used as the methanol source, it is calculated as 2 mol of methanol per 1 mol of dimethyl ether.
  • the ratio of the methanol source is 70 mol or more with respect to 1 mol of hydrogen iodide in the liquid to be treated [eg, 80 mol or more (eg, 100 to 300000 mol)], Preferably 200 mol or more (eg 300 to 200,000 mol), more preferably 500 mol or more (eg 700 to 100,000 mol), particularly 1000 mol or more (eg 1500 to 80000 mol), usually 300 to 100,000 mol (eg 500 to 70000 mol, preferably 1000 to 50000 mol).
  • the ratio of the methanol source can be selected from a range of about 0.1 to 40 moles with respect to 1 mole of acetic acid in the liquid to be treated.
  • Mol eg 0.3 to 15 mol
  • 0.4 to 10 mol eg 0.5 to 10 mol
  • more preferably 0.7 to 7 mol eg 1 to 5 mol
  • the amount may be about 1.1 to 4 mol (eg, 1.2 to 3 mol), and usually about 1 to 20 mol (eg, 1.5 to 5 mol).
  • the ratio of the methanol source is 0.1 to 40 mol (eg, 0.3 to 35 mol), preferably 0.4 to 30 mol (for example, 0.3 to 35 mol) per 1 mol of acetic acid in the liquid to be treated.
  • 0.1 to 40 mol eg, 0.3 to 35 mol
  • 0.4 to 30 mol for example, 0.3 to 35 mol
  • the ratio of the methanol source is 0.05 to 20 mol (for example, 0.1 to 15 mol), preferably 0.2 to 10 mol (for example, 0.1 mol to 1 mol of acetic acid in the liquid to be treated).
  • 0.3 to 8 mol more preferably 0.5 to 6 mol (for example, 1 to 5 mol), particularly 1.1 to 4 mol (for example, 1.2 to 3 mol).
  • the former concentration is mainly used for the lower layer overhead (3A)
  • the latter concentration is mainly used for the upper layer overhead (3A).
  • the concentration of the methanol source in the liquid to be treated may be adjusted depending on the reaction conditions and preparation.
  • the methanol source and / or methyl acetate is added to or mixed with the overhead (3A) inside and outside the acetaldehyde distillation column. Can be adjusted.
  • the method of the present invention includes a step of adding or mixing a methanol source (methanol and / or dimethyl ether) and / or methyl acetate to the overhead (3A) supplied to the acetaldehyde distillation column (addition step, mixing step). Etc.) may be included.
  • methyl acetate can also be added or mixed with respect to overhead (3A).
  • at least a methanol source may be added to the overhead (3A).
  • Such a methanol source can be mixed with the overhead (3A) at any stage of the reaction system as long as it can be distilled in the acetaldehyde distillation column together with the overhead (3A) after being separated in the acetic acid recovery step. You may mix in a distillation tower.
  • the methanol source and / or methyl acetate is reduced by the following method (A) and / or method (B). It may be added or mixed.
  • a method of adding or mixing a methanol source to the overhead (3A) before being supplied to the acetaldehyde distillation column (for example, the example of FIG. 1 above)
  • B In an acetaldehyde distillation column, a methanol source and / or a height or position [e.g., stage (or site)] to supply overhead (3A) above or above [e.g., upper stage (or upper part)] and / or
  • a method of adding or mixing methyl acetate for example, the example of FIG. 1 and the example of FIG.
  • the mixing position of the methanol source with respect to the overhead (3A) is not particularly limited as long as it is before being supplied to the acetaldehyde distillation column.
  • the methanol source and / or methyl acetate may be mixed at a plurality of positions.
  • it is often supplied after being discharged from the decanter (when part of the overhead (3A) is circulated, after part is circulated).
  • the methanol source and / or methyl acetate is discharged from the decanter and then supplied to the acetaldehyde distillation column [from the decanter (via a reservoir equipped with a buffer function if necessary) to the acetaldehyde removal column. It is preferable to mix with overhead (3A).
  • the time from the time when the overhead (3A) and the methanol source and / or methyl acetate are mixed to the time when the overhead (3A) is supplied to the acetaldehyde distillation column is 1 second or more (for example, 3 seconds to 40 minutes), for example, 5 seconds or more (eg, 7 seconds to 35 minutes), preferably 10 seconds or more (eg, 10 seconds to 30 minutes), more preferably 15 seconds to 20 minutes (For example, about 20 seconds to 10 minutes) or about 10 seconds to 5 minutes [for example, 10 seconds to 3 minutes (for example, 10 seconds to 1 minute)].
  • the residence time is easier to more efficiently suppress the increase in hydrogen iodide and acetic acid concentrations in the acetaldehyde distillation column.
  • the mixing position of the methanol source and / or methyl acetate may be the same as or higher than the stage supplying the overhead (3A), but is usually lower than the top of the column. (Non-tower top) in many cases.
  • the mixing amount at each mixing position should be adjusted so that the total amount of the methanol source and / or methyl acetate to be mixed is within the above range in the acetaldehyde distillation column. That's fine.
  • the temperature (liquid temperature) of the overhead (3A) supplied to the acetaldehyde distillation column (when a methanol source and / or methyl acetate is added to the overhead (3A), the liquid mixture of the overhead (3A) and the methanol source)
  • it may be about 10 to 100 ° C., preferably 15 to 95 ° C. (eg 20 to 90 ° C.), more preferably about 25 to 85 ° C. (eg 30 to 80 ° C.), and usually 20 to 100 ° C. It may be about (for example, 30 to 85 ° C.).
  • the liquid temperature that is, the liquid temperature of the mixed liquid of the overhead (3A) and the methanol source
  • the reaction between the methanol source and hydrogen iodide or acetic acid proceeds to some extent, or it is easier for such a reaction to proceed in the acetaldehyde distillation column. It is even more efficient to increase the concentration of hydrogen iodide or acetic acid in the acetaldehyde distillation column. It can be well suppressed.
  • the liquid to be treated containing the overhead (3A) supplied to the acetaldehyde distillation tower is distilled to obtain a low-boiling component (4A) containing acetaldehyde and a high-boiling component (4B). And to separate.
  • the liquid to be processed is subjected to distillation as a liquid to be processed containing a methanol source at a predetermined concentration. That is, in the acetaldehyde separation step, the liquid to be treated is distilled and separated into a low boiling point component (4A) and a high boiling point component (4B).
  • the off-gas component may be previously removed from the overhead (3A) by using a condenser, a cooler, or the like.
  • acetaldehyde distillation column for example, a conventional distillation column such as a plate column, a packed column, or a flash distillation column can be used, but a rectification column such as a plate column or a packed column may be usually used.
  • the material of the acetaldehyde distillation column is not particularly limited, and may be a metal, ceramic, or the like.
  • corrosion of the distillation column can also be suppressed at a high level.
  • an alloy for example, an iron-based alloy (or an iron-based alloy)
  • stainless steel including stainless steel including chromium, nickel, molybdenum, etc.
  • duplex iron-based alloy such as duplex stainless steel
  • nickel-based alloy or alloy based on nickel, such as Hastelloy (trade name)
  • a distillation column made of a relatively inexpensive material such as Inconel (trade name, etc.) and a transition metal-based alloy such as a cobalt-based alloy (or an alloy containing cobalt as a main component).
  • the temperature (top temperature) and pressure (top pressure) are determined by using the boiling point difference between acetaldehyde and other components (especially methyl iodide), overhead (3A) or liquid to be treated (or If the low boiling point component (4A) and the high boiling point component (4B) can be separated from at least acetaldehyde from the process liquid), it is not particularly limited and can be selected according to the type of distillation column.
  • the tower top pressure is 10 to 1000 kPa, preferably 10 to 700 kPa, and more preferably about 100 to 500 kPa in absolute pressure.
  • the temperature in the column may be, for example, about 10 to 150 ° C., preferably about 30 to 140 ° C., more preferably about 40 to 130 ° C., and is usually about 30 to 100 ° C. (eg, 50 to 90 ° C.). Also good.
  • the tower top temperature may be, for example, about 10 to 100 ° C., preferably about 30 to 120 ° C., more preferably about 40 to 100 ° C.
  • the column bottom temperature may be, for example, about 30 to 150 ° C., preferably 50 to 130 ° C., more preferably about 60 to 120 ° C.
  • the number of distillation columns may be, for example, 5 to 150, preferably 10 to 120, more preferably about 20 to 100, and usually 30 to 120 (eg 40 to 100). Step).
  • the reflux ratio is 1 to 1000, preferably 10 to 800, more preferably 50 to 600 (eg, 100 to 500), particularly 150 to 400 (eg, 200 to 350), depending on the number of theoretical plates. ) choose from the degree.
  • the hydrogen iodide concentration in the acetaldehyde distillation column (top and / or bottom) is 100 ppm or less (for example, 0 or detection limit to 70 ppm), preferably 50 ppm or less (for example, 0 or detection).
  • the limit is about 30 ppm), more preferably 10 ppm or less (for example, 0 or detection limit to 5 ppm), particularly about 3 ppm or less (for example, 0 or detection limit to 1 ppm).
  • the acetic acid concentration in the acetaldehyde distillation column is, for example, 50% by weight or less (for example, 0 (or below the detection limit, the same in other cases) to 30% by weight. ), Preferably 0 to 10% by weight (eg 0.001 to 5% by weight), more preferably 0 to 3% by weight (eg 0.01 to 2% by weight), especially about 0.005 to 1% by weight. It may be.
  • the acetic acid concentration in the acetaldehyde distillation column (top and / or bottom) is 10% by weight or less (for example, 0 to 7% by weight), preferably 7% by weight or less (for example, 0 to 6% by weight). More preferably, it may be about 5% by weight or less (for example, 0 to 4% by weight).
  • the acetic acid concentration in the acetaldehyde distillation column (top and / or bottom) is 30% by weight or less (for example, 0 to 25% by weight), preferably 15% by weight or less (for example, 0 to 10% by weight). More preferably, it may be about 8% by weight or less (for example, 0 to 5% by weight).
  • the former concentration is mainly used for the lower layer overhead (3A)
  • the latter concentration is mainly used for the upper layer overhead (3A). There are many cases.
  • the high boiling point component (4B) is separated from the acetaldehyde distillation column as a separation liquid (boiler liquid or tower bottom liquid) containing methyl iodide which is a useful component.
  • the high boiling point component (4B) often contains useful components such as methyl iodide, and may be recovered as it is after separation or may be recycled to the process from the reaction system to the separation of acetaldehyde. . That is, the method of the present invention may further include a recycling step of recycling the high boiling point component (4B) as a separation liquid to the steps from the reaction system to the separation of acetaldehyde.
  • the high boiling point component (4B) as the separation liquid is recycled.
  • the recycling of the separation liquid (or high boiling point component (4B)) from which acetaldehyde has been separated is not particularly limited as long as it is a process leading to the separation of acetaldehyde from the reaction system, and the reaction process (or reactor), flash distillation process. (Or flash distillation column), acetic acid recovery step (or distillation column), etc., and may be recycled to an acetaldehyde distillation column as shown in the above example, or may be combined and recycled. Good.
  • the separation liquid (or the high boiling point component (4B)) from which acetaldehyde is separated is often recycled to at least the reactor.
  • the separation liquid (or high boiling point component (4B)) may be directly recycled or may be recycled via a reservoir (buffer tank or the like) having a buffer function.
  • a reservoir buffer tank or the like
  • the separation liquid is recycled at a constant or almost constant flow rate. Therefore, it is possible to reduce the influence of flow rate fluctuations on the process to be recycled.
  • a reservoir equipped with a buffer function can be selected based on the degree of fluctuation of the flow rate as in the case of the condensation step, but may be selected based on the residence time of the separation liquid.
  • the residence time of the separation liquid is not particularly limited, but for example, 3 minutes or more (for example, 4 minutes to 3 hours), preferably 6 minutes or more (for example, 8 to 60 minutes), more preferably 12 minutes. It may be more than this (for example, about 15 to 40 minutes).
  • the low boiling point component (4A) containing the separated acetaldehyde may be discharged as it is, but may contain useful components such as methyl iodide. Therefore, methyl iodide (or a component containing methyl iodide, for example, a component containing methyl iodide, methyl acetate, etc.) recovered from the low boiling point component (4A) may be recycled.
  • the method for separating acetaldehyde and methyl iodide (or a component containing methyl iodide) from the low boiling point component (4A) is not particularly limited, and a conventional method (for example, extraction, distillation, etc.) should be used. Can do. Typically, (i) a method in which the low boiling point component (4A) is distilled to separate methyl iodide and acetaldehyde, and (ii) acetaldehyde is miscible with water and methyl iodide is immiscible with water. And a method using water extraction for separation of methyl iodide and acetaldehyde.
  • the method (ii) of water extraction is preferred. Since this method can suppress the formation of paraaldehyde and metaaldehyde due to the increase of the hydrogen ion concentration in the distillate due to decomposition of esters and the like, acetaldehyde can be efficiently concentrated and removed at a high concentration.
  • Extraction temperature and extraction time are not particularly limited, and for example, extraction may be performed at a temperature of 0 ° C. to 100 ° C. for about 1 second to 1 hour.
  • the extraction pressure is not particularly limited, and an advantageous condition can be selected from the cost aspect.
  • an extractor for example, a combination of a mixer and a settler, a combination of a static mixer and a decanter, RDC (rotated disk contactor), Karr tower, spray tower, packed tower, perforated plate tower, baffle plate tower, pulsating tower, etc. Can do.
  • methyl iodide (or a component containing methyl iodide) is not particularly limited as long as it is a process from the reaction system to the separation of acetaldehyde.
  • the reaction process or reactor
  • flash distillation process or flash distillation
  • acetic acid recovery step or distillation tower
  • You may recycle in combination.
  • the overhead (3A), the acetic acid-containing stream and the high-boiling stream (3C) are separated by distillation, and the acetic acid-containing stream (3B) is side-cut to produce a high-boiling stream ( 3C) was recycled to reactor 1 as it was.
  • the overhead (3A) was supplied to the decanter 4 and separated into an upper layer and a lower layer in the decanter 4.
  • the liquid level of decanter 4 was made constant by adjusting the amount of outflow to lines 17 and 18 and the residence time.
  • the to-be-processed liquid of the composition shown in Table 1 was obtained.
  • Comparative Examples 1-2 and Examples 1-2 were evaluated according to the following criteria, and specific corrosion amounts were measured for Comparative Examples 3-4 and Examples 3-6.
  • Table 1 The composition of the liquid to be treated is shown in Table 1, and the results are shown in Table 2.
  • Table 2 also shows the liquid composition of the liquid (processing liquid) after 100 hours (after cooling).
  • low-boiling components such as dimethyl ether and hydrocarbon components are included in the treatment liquid (so that the total composition of the table does not become 100% by weight)
  • concentration of dimethyl ether in the treatment liquid was increased by about 0.5 to 2% by weight than in the liquid to be treated.
  • ppm is a concentration based on weight
  • wt% is wt%
  • t is less than 0.1 wt%
  • ND is not detected (detected) Limit
  • Ac is acetic acid
  • MA is methyl acetate
  • MeOH is methanol
  • MeI is methyl iodide
  • AD is acetaldehyde
  • HC is a nickel-based alloy (Oda) Hastelloy C) manufactured by Koki Co., Ltd.
  • SUS is stainless steel (made by Umetok Co., Ltd., SUS316)
  • NAS64 is duplex stainless steel (made by Umetok Co., Ltd., NAS64), “NAS354N” And stainless steel (made by Umetoku Co., Ltd., NAS354N)
  • the unit “mm / Y” means that the corrosion rate (thickness reduction) of the test piece per year is converted to mm.
  • the hydrogen is acetic acid
  • MA is methyl
  • the production method of the present invention is extremely useful as a process for producing acetic acid while efficiently suppressing an increase in the concentration of hydrogen iodide (particularly hydrogen iodide and acetic acid) in an acetaldehyde distillation column.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 アセトアルデヒド蒸留塔内でのヨウ化水素および酢酸の濃度上昇を抑制しつつ酢酸を製造する。 メタノールと一酸化炭素とを反応させる工程と、反応混合物をフラッシャーに供給し、揮発性成分(2A)と、低揮発性成分(2B)とに分離する工程と、揮発性成分(2A)を蒸留塔に供給し、ヨウ化メチル、酢酸、酢酸メチル、水、アセトアルデヒドおよびヨウ化水素を含むオーバーヘッド(3A)と、酢酸を含む流分(3B)とに分離して、酢酸を回収する工程と、凝縮したオーバーヘッド(3A)をアセトアルデヒド蒸留塔に供給し、オーバーヘッド(3A)を含む被処理液を、アセトアルデヒドを含む低沸点成分(4A)と、高沸点成分(4B)とに分離する分離工程とを含むプロセスの前記分離工程において、メタノール及び/又はジメチルエーテルを0.1~50重量%の濃度で含む被処理液を蒸留する。

Description

酢酸の製造方法
 本発明は、アセトアルデヒド蒸留塔内でのヨウ化水素(特に、ヨウ化水素及び酢酸)の濃度上昇を効率よく抑制しつつ酢酸を製造する方法に関する。
 酢酸の工業的な製造方法は種々知られているが、中でも、水の存在下、ロジウム触媒などの金属触媒およびヨウ化メチルを用いて、メタノールと一酸化炭素とを連続的に反応させて酢酸を製造する方法が工業的には優れた方法である。また、近年、反応条件、触媒の改良が検討され、ヨウ化物塩などの触媒安定化剤を添加し、従来の条件よりも低水分条件下で反応させることにより、生産性の高い工業的な酢酸の製造方法が開発されている。
 この方法では、反応液から酢酸を蒸留により分離する際、揮発成分が分離される。このような揮発成分は、ヨウ化メチルなどの有用成分を含んでいるが、アセトアルデヒドを含む液状成分であるため、アセトアルデヒドを蒸留(又は濃縮)により分離した後、回収又は反応系にリサイクルされている。ここで、揮発成分には、ヨウ化メチル、アセトアルデヒド、水、酢酸メチルに加え、ヨウ化水素、酢酸などの酸成分を含むが、加圧や高温などの蒸留条件により、ヨウ化水素や酢酸がアセトアルデヒド蒸留塔内において濃縮される(又は生成する)と、アセトアルデヒド蒸留塔の腐食が促進される可能性がある。また、このようなヨウ化水素を含む溶液を蒸留した後の分離液を反応系にリサイクルすると、リサイクルする際のポンプ(リサイクルポンプ)やラインの腐食を進行させる可能性もある。そのため、アセトアルデヒドを分離する際の蒸留塔内におけるヨウ化水素や酢酸などの酸成分の濃度を低減するのが好ましい。
 特許第3581725号公報(特許文献1)には、メタノール及び/又は酢酸メチルを、第8族金属触媒とヨウ化メチルとを含む反応媒質中でカルボニル化し、前記カルボニル化の生成物を、前記生成物と未反応メタノール及び/又は酢酸メチルとヨウ化メチルを含む揮発性相と、前記第8族金属触媒を含む低揮発性相とに分離し、更に、前記揮発性相を蒸留して、生成物と、未反応メタノール及び/又は酢酸メチルとヨウ化メチルとを含むオーバーヘッドとを得、前記オーバーヘッドを前記カルボニル化反応器に再循環する方法であって、前記オーバーヘッドがアセトアルデヒド及びヨウ化メチルを含む混合液であり、前記オーバーヘッドを、塔頂温度55℃未満、還流タンク温度25℃未満で、メタノールの存在下に蒸留し、パラアルデヒドまたはメタアルデヒドの形で生成したアセトアルデヒドを、蒸留塔缶出液組成がヨウ化メチル/メタノール重量比5/4~1/2の混合溶液に溶解してアセトアルデヒドを分離除去し、反応器へ再循環する方法が開示されている。
 なお、この文献の方法では、蒸留塔でメタノールを使用しているが、パラアルデヒド又はメタアルデヒドを溶解させることを目的としており、ヨウ化水素の生成を抑制することを想定していない。また、この文献の方法では、オーバーヘッド中に非常に高い割合で含まれるヨウ化メチルに対して0.8~2重量倍ものメタノールが必要であり、オーバーヘッドとメタノールの総量として多量の被処理液を処理する必要があるため、塔径が大きい蒸留塔を使用する必要があり、経済的ではない。
 WO2008/016502号公報(特許文献2)には、アルデヒド不純物を含む酢酸流とヒドロキシ化合物(グリコール、ポリオール、C4-10アルコールなど)とを反応させ、アルデヒド不純物をアセタールに変換して分離することにより、酢酸流からアルデヒド不純物を低減する方法が開示されている。具体的には、ヨウ化メチル、酢酸メチル、酢酸、水、アルデヒド不純物を含むオーバーヘッドをデカンター内で液化して得られ、ヨウ化メチルおよびアルデヒド不純物を含む重質相(有機相)の5~50%を、アルデヒド不純物に対して1~10当量のヒドロキシ化合物で処理したのち蒸留することにより、アセタール分と、ヨウ化メチル分とを分離し、アセタール分を廃棄するとともに、ヨウ化メチルをデカンターの重質相又はカルボニル化反応にリサイクルする技術が開示されている。また、反応に使用するヨウ化メチルは、カルボニル反応器にヨウ化水素を添加することにより生成させることができると記載されている。このように、この文献では、ヒドロキシ化合物を、アルデヒドをアセタールに変換するための成分として使用し、また、酸性イオン交換樹脂を使用してアセタール化しており、ヨウ化水素や酢酸を低減することを全く想定していない。
 特表2007-526308号公報(特許文献3)には、(a)水、ヨウ化メチルおよび触媒を含む反応媒体中で、一酸化炭素を、メタノール、酢酸メチル、ギ酸メチル、ジメチルエーテルおよびそれらの混合物から成る群より選択される少なくとも1種の反応体と反応させて、酢酸を含む反応生成物を製造する工程;(b)該反応生成物に関して気・液分離を行って、酢酸、水およびヨウ化メチルを含む揮発性相と、触媒を含むより揮発性の低い相とを提供する工程;(c)該揮発性相を蒸留して、精製された酢酸生成物と、水、酢酸メチルおよびヨウ化メチルを含む第一オーバーヘッドとを製造する工程;(d)該第一オーバーヘッドを相分離させて、水を含む第一液相と、ヨウ化メチルを含む第二液相とを提供する工程;および(e)該第一オーバーヘッドの分離を高めるのに有効な量でプロセスにジメチルエーテルを加えて、第一液相および第二液相を形成させる工程、該第一液相および該第二液相のうちの少なくとも一つからアセトアルデヒドを除去する工程を含み、該ジメチルエーテルを、該アセトアルデヒド除去工程と関係のある流れに加える酢酸の製造方法が開示されている。なお、この文献では、ジメチルエーテルを第一液相と第二液相とを分離させやすくするための成分として使用しており、ヨウ化水素や酢酸の低減を想定しておらず、また、ジメチルエーテルの添加量についても何ら記載されていない。
 特開2000-72712号公報(特許文献4)には、ロジウム触媒、沃化物塩及び沃化メチルの存在下、一酸化炭素とメタノール、ジメチルエーテル又は酢酸メチルを反応させる第1工程、第1工程で得た反応液を蒸留し、カルボニル化合物を含む高揮発性相と低揮発性相に分離する第2工程、第2工程で得たカルボニル化合物を含む高揮発性相を蒸留し、酢酸を含む生成物とカルボニル化合物を含む不純物に分離する第3工程、第3工程で得たカルボニル化合物を含む不純物を水と接触させることにより、沃化アルキルを含む有機相とカルボニル化合物を含む水相に分離する第4工程並びに第4工程で得た有機相を反応工程に返送する第5工程、第4工程において、カルボニル化合物を含む不純物と水との接触を30~60℃で行うこと酢酸の製造方法が開示されている。そして、この文献には、第3工程と第4工程の間に、第3工程で得たカルボニル化合物を含む不純物を多段蒸留塔で蒸留する第3b工程を具備し、蒸留時において、多段蒸留塔に存在する沃素イオン量の0.1~55モル倍量のメタノールを供給してもよいことが記載されている。
 また、この文献には、(i)第3b工程において、ヨウ化メチルと水との反応により生成するヨウ化水素の存在により、蒸留塔を形成する金属に腐食が生じることがあること、(ii)この反応は平衡反応であるため、蒸留塔内にメタノールを添加することにより、ヨウ化水素の発生を抑え、金属腐食を抑えることができること、(iii)メタノールは低沸点成分であり、ヨウ化水素と水の共沸温度が127℃であることから、メタノールの添加は蒸留塔の底部付近から行うのが好ましいことが記載されている。さらに、この文献の実施例では、第3b工程において、80段蒸留塔のボトム気相部から、蒸留塔に存在する沃素イオン濃度の10モル倍量のメタノールを10g/hrで添加し、82℃で連続蒸留処理した結果、多段蒸留塔内における沃素イオン濃度が1ppm以下になったこと、ヨウ化メチル、水、ヨウ化水素を含むモデル液としての液状混合物に所定量のメタノールを添加することで、沃素イオン濃度を低減できたことが記載されている。
 しかし、この文献の方法は、モデル液として、ヨウ化メチル、水、ヨウ化水素のみを含む液状混合物を使用しており、酢酸、酢酸メチルを含むモデル液におけるメタノールの添加効果についての検討がなされていない。そして、沃素イオン量の0.1~55モル倍量程度のメタノールの供給量では、ヨウ化水素のみならず、酢酸や酢酸メチルなども含む実際の複雑な組成のプロセス液の酸濃度を十分に低減できない。また、この文献の方法では、ボトム気相部にメタノールを添加するため、蒸留塔全体での腐食を効率よく抑制することが困難であり、効率的ではない。
特許第3581725号公報(特許請求の範囲) WO2008/016502号公報(特許請求の範囲、第4頁22~28行、第5頁30行~第7頁12行、実施例) 特表2007-526308号公報(請求項1、4) 特開2000-72712号公報(特許請求の範囲、段落[0028]、[0029]、実施例)
 従って、本発明の目的は、アセトアルデヒド蒸留塔内でのヨウ化水素(特に、ヨウ化水素及び酢酸)の濃度上昇を効率よく抑制しつつ酢酸を製造する方法を提供することにある。
 本発明の他の目的は、アセトアルデヒド蒸留塔の腐食を抑制できる酢酸の製造方法を提供することにある。
 本発明のさらに他の目的は、安価な材質のアセトアルデヒド蒸留塔を使用しても、アセトアルデヒドを効率よく分離できる酢酸の製造方法を提供することにある。
 本発明の別の目的は、アセトアルデヒドを効率よく除去しつつ、安定して酢酸(高純度の酢酸)を製造する方法を提供することにある。
 本発明のさらに別の目的は、触媒としてのヨウ化メチルを高い効率でリサイクルしつつ、酢酸を製造する方法を提供することにある。
 本発明者らは、金属触媒、ハロゲン化物塩およびヨウ化メチルを含む触媒系を用いたメタノールのカルボニル化反応により得られる揮発性成分から生成物としての酢酸を含む流分を分離した後に得られ、ヨウ化メチルおよびアセトアルデヒドを含む低沸点成分(オーバーヘッド)からアセトアルデヒドを蒸留により除去する(さらに、ヨウ化メチルなどの有用成分を効率よく回収して反応系にリサイクルする)プロセスにおいて、アセトアルデヒド蒸留塔内のヨウ化水素濃度を低減する方法について検討した結果、特開2000-72712号公報に記載のように、単純に沃素イオン濃度のみに着目してアセトアルデヒド蒸留塔にメタノールを添加してもヨウ化水素濃度を十分に低減できないことを見出した。
 すなわち、特開2000-72712号公報によれば、ヨウ化水素が関与する下記平衡反応(1)
CHI+HO⇔CHOH+HI (1)
を考慮して、メタノールを添加することによりヨウ化水素を低減できると記載されている。しかし、オーバーヘッドには、ヨウ化メチル、ヨウ化水素以外にも、酢酸、酢酸メチル、水などが存在し、上記反応(1)以外にも、例えば、メタノールが関係する下記反応などを含む複数の平衡反応が生じており、反応系は非常に複雑化している。
CHCOOH+CHOH⇔CHCOOCH+H
CHI+CHCOOH⇔CHCOOCH+HI
 そのため、酢酸、酢酸メチルなどが存在する系では、単純に反応(1)にのみに着目してもヨウ化水素濃度を低減することは困難である。さらに、ヨウ化水素のみならず、酢酸もまた酸成分であり、アセトアルデヒド蒸留塔が腐食される要因となるため低減するのが好ましい。このようなヨウ化水素濃度の低減(さらには、酢酸濃度の低減)と、ヨウ化メチルの効率よい回収とを考慮すると、より一層、反応(1)のみを考慮できないことがわかる。さらにまた、大量のメタノールの使用は、アセトアルデヒド蒸留塔そのものを大きくする必要があるばかりか、蒸留に供する処理液が多くなり、プロセス効率を大きく低下させる。
 そこで、本発明者らは、前記課題を達成するため鋭意検討した結果、ヨウ化メチル、アセトアルデヒド、ヨウ化水素以外にも、酢酸、酢酸メチルを含むオーバーヘッドに特定量のメタノール及び/又はジメチルエーテルを添加した処理液をアセトアルデヒド蒸留塔で蒸留すると、効率よくアセトアルデヒド蒸留塔内でのヨウ化水素濃度(さらには酢酸濃度)の上昇を抑制できること、また、アセトアルデヒド蒸留塔の腐食を抑制又は防止でき、安価な材質でアセトアルデヒド蒸留塔を形成でき酢酸製造プロセスを低コスト化できること、さらにはこのようなヨウ化水素(および酢酸)濃度の上昇を抑えつつ、アセトアルデヒドの分離(およびヨウ化メチルの回収)を効率よく行うことができることを見出し、本発明を完成した。
 すなわち、本発明の方法は、金属触媒、ハロゲン化物塩及びヨウ化メチルで構成された触媒系の存在下、メタノールと一酸化炭素とをカルボニル化反応器で連続的に反応させる反応工程と、前記反応器からの反応混合物をフラッシャーに連続的に供給し、生成した酢酸、酢酸メチル、ヨウ化メチルおよび水を含む揮発性成分(2A)と、金属触媒およびハロゲン化物塩を含む低揮発性成分(2B)とに分離するフラッシュ蒸発工程と、前記揮発性成分(2A)を蒸留塔に供給し、ヨウ化メチル、酢酸、酢酸メチル、水、副生したアセトアルデヒドおよびヨウ化水素を含むオーバーヘッド(3A)と、酢酸を含む流分(3B)とに分離して、酢酸を回収する酢酸回収工程と、凝縮した前記オーバーヘッド(3A)(オーバーヘッド(3A)の一部又は全部)をアセトアルデヒド蒸留塔(除去塔又は分離塔)に供給し、前記オーバーヘッド(3A)(又はオーバーヘッド(3A)の凝縮成分又は凝縮液)を含む被処理液を、蒸留により、アセトアルデヒドを含む低沸点成分(4A)と、高沸点成分(4B)とに分離するアセトアルデヒド分離工程とを含む酢酸の製造方法であって、
前記アセトアルデヒド分離工程において、メタノール及びジメチルエーテルから選択された少なくとも1種のメタノール源を0.1~50重量%の濃度で含む被処理液を蒸留する酢酸の製造方法である。
 前記方法において、被処理液において、ヨウ化メチルの割合は1~98重量%(例えば、1~95重量%)程度であってもよく、酢酸メチルの割合は0.5~50重量%(例えば、0.5~30重量%)程度であってもよく、酢酸の割合は0.2~50重量%程度であってもよく、水の割合は0.1~90重量%程度であってもよく、ヨウ化水素の割合は重量基準で1~1000ppm(例えば、1~300ppm)程度であってもよい。
 前記方法において、被処理液中のメタノール源の濃度は、0.1~50重量%(例えば、0.2~50重量%)程度であってもよく、1~30重量%(例えば、2~25重量%)程度であってもよい。また、前記方法において、被処理液において、酢酸の濃度が0.3~50重量%程度であり、メタノール源の割合(メタノール換算)が、酢酸およびヨウ化水素の総量1モルに対して、0.1~40モル程度であってもよい。さらに、前記方法において、被処理液中のメタノール源の割合(メタノール換算)は、ヨウ化水素1モルに対して80モル以上(例えば、200モル以上)であってもよい。代表的には、前記方法において、被処理液において、酢酸の濃度が0.5~50重量%(例えば、0.5~40重量%)程度、ヨウ化水素の濃度が5~1000ppm(例えば、5~200ppm)程度、メタノール源の割合(メタノール換算)が、酢酸およびヨウ化水素の総量1モルに対して1~20モル(例えば、1~5モル)程度であってもよい。
 本発明の方法において、被処理液中のメタノール源の濃度は、予め反応条件や仕込みによって調整してもよいが、通常、アセトアルデヒド蒸留塔の内外において、オーバーヘッド(3A)に対してメタノール源及び/又は酢酸メチルを添加又は混合することにより調整する(例えば、被処理液中のメタノール源濃度を0.1~50重量%とする)場合が多い。なお、酢酸メチルは、メタノール源ではないが、化学平衡によりメタノールを生成可能であるため、酢酸メチルの添加により、被処理液中のメタノール源濃度を調整してもよい。代表的には、以下の方法(A)及び/又は方法(B)により、メタノール源及び/又は酢酸メチルを添加又は混合して被処理液中のメタノール源の濃度を調整してもよい。
 (A)オーバーヘッド(3A)にメタノール源及び/又は酢酸メチルをアセトアルデヒド蒸留塔に供給される前に添加又は混合する[すなわち、アセトアルデヒド蒸留塔に供給される前に、予めオーバーヘッド(3A)にメタノール源及び/又は酢酸メチルを添加又は混合する]方法
 (B)アセトアルデヒド蒸留塔において、オーバーヘッド(3A)を供給する高さ(又は位置、例えば、蒸留塔における段)と同じか又はそれよりも上方(例えば、蒸留塔における上段)にメタノール源及び/又は酢酸メチルを添加又は混合する方法
 前記方法(A)では、オーバーヘッド(3A)とメタノール源及び/又は酢酸メチルとを含む混合液の温度を20~100℃としてもよく、オーバーヘッド(3A)とメタノール源及び/又は酢酸メチルとが混合されてからアセトアルデヒド蒸留塔に供給されるまでの時間を5秒以上としてもよく、少なくとも前記方法(A)によりメタノール源の濃度を調整してもよい。代表的には、方法(A)において、オーバーヘッド(3A)とメタノール源及び/又は酢酸メチルとを含む混合液の温度を30~85℃とするとともに、オーバーヘッド(3A)とメタノール源及び/又は酢酸メチルとが混合されてからアセトアルデヒド蒸留塔に供給されるまでの時間を10秒以上とし、少なくとも方法(A)によりメタノール源の濃度を調整してもよい。このような条件でメタノール源及び/又は酢酸メチルが添加されたオーバーヘッド(3A)をアセトアルデヒド蒸留塔に供給すると、より一層、アセトアルデヒド蒸留塔内でのヨウ化水素や酢酸濃度の上昇を効率よく抑制することができる。
 本発明の方法では、オーバーヘッド(3A)を直接的にアセトアルデヒド分離工程(又はアセトアルデヒド蒸留塔)に供給することもできるが、通常、デカンターにホールド(又は保持)したのち、排出したオーバーヘッド(3A)をアセトアルデヒド分離工程に供給してもよい。すなわち、本発明の方法は、オーバーヘッド(3A)を凝縮させつつデカンター(又は貯蔵器)に一時的にホールドし、デカンターから排出する凝縮工程をさらに含んでいてもよく、この凝縮工程でデカンターから排出されたオーバーヘッド(3A)をアセトアルデヒド蒸留塔に供給してもよい。なお、このような凝縮工程を含む場合、前記方法(A)において、通常、メタノール源は、デカンターから排出された後であって、アセトアルデヒド蒸留塔に供給される前に、オーバーヘッド(3A)に添加又は混合する場合が多い。
 そして、このような凝縮工程において、ホールドするオーバーヘッド(3A)の量を、デカンターに供給されるオーバーヘッド(3A)の流量の変動に基づいて調整又は制御してもよい。すなわち、このような酢酸製造プロセスでは、デカンターに供給されるオーバーヘッド(3A)の量は、プロセス全体を通して大きく変動するが、このような流量制御により、プロセスの安定運転を効率よく行うことができる。そのため、このようなプロセスと前記メタノール源濃度の調整とを組み合わせると、安定運転とアセトアルデヒド蒸留塔でのヨウ化水素や酢酸濃度の上昇の抑制とを効率よく両立させることができる。なお、このような変動は、例えば、デカンターに供給される低沸点成分(3A)の平均流量を、液体の体積換算で100とするとき、プロセス全体を通して、デカンターに供給される低沸点成分(3A)の流量が80~120程度となる流量変動であってもよい。
 ホールドするオーバーヘッド(3A)の量を調整(又は制御)する具体的な方法としては、(1)デカンター内にホールドするオーバーヘッド(3A)の量又は液面高さの変動を抑える(又は実質的に固定化する)ようにオーバーヘッド(3A)を排出する方法、及び/又は(2)デカンターとしてバッファー機能を備えたデカンターを使用し、オーバーヘッド(3A)の供給量の変動をデカンター内で緩和する方法などが挙げられる。
 方法(1)では、例えば、前記凝縮工程において、デカンターにホールドされるオーバーヘッド(3A)の平均液面高さ(又は平均量)及び/又は界面高さを、それぞれ100とするとき、デカンターにホールドされるオーバーヘッド(3A)の液面高さ(又は平均量)及び/又は界面高さを、プロセス全体を通して95~105程度に調整(詳細には、調整するようにオーバーヘッド(3A)を排出)してもよい。なお、液面高さとは、デカンター内において、凝縮したオーバーヘッド(3A)(液の上面)が気体と接触する液の高さを示し、界面高さとは、凝縮したオーバーヘッド(3A)が二層(上層および下層)に分離した場合の分離面の高さ(又は下層の液面高さ)を示す。そのため、界面高さの概念は、オーバーヘッド(3A)が層分離(相分離)する場合において用いる。
 また、調整方法(2)では、凝縮工程において、デカンターとしてバッファー機能を備えたデカンターを用いてもよく、特に、このようなデカンターを用い、デカンターにおけるオーバーヘッド(3A)の滞留時間を6分以上としてもよい。このように十分な滞留時間を保持できるデカンターを用いることで、デカンター内でオーバーヘッド(3A)の変動を効率よく緩和することができる。
 本発明では、プロセス全体を安定的に行うため、通常、凝縮工程において、ホールドするオーバーヘッド(3A)の量を、デカンターに供給されるオーバーヘッド(3A)の流量の変動に基づいて調整又は制御するとともに、さらに、アセトアルデヒド分離工程に供給されるオーバーヘッド(3A)の量を調整してもよい。具体的には、凝縮工程において、アセトアルデヒド分離工程に供給されるオーバーヘッド(3A)の量を一定又はほぼ一定となるように調整(又は実質的に固定化)[例えば、オーバーヘッド(3A)の平均流量を100とするとき、アセトアルデヒド分離工程に供給されるオーバーヘッド(3A)の流量を、プロセス全体を通して95~105に調整]してもよい。
 このようなアセトアルデヒド分離工程(又はアセトアルデヒド蒸留塔)に供給するオーバーヘッド(3A)の供給量の調整又は制御方法としては、代表的には、(a)デカンターから排出したオーバーヘッド(3A)の一部を、アセトアルデヒド分離工程とは異なる工程[例えば、反応系(反応器又は反応工程)及び酢酸回収工程(又は蒸留塔)から選択された少なくとも1種、特に、少なくとも反応系(又は反応器)又は反応工程]に循環させる方法、(b)デカンターから排出したオーバーヘッド(3A)をバッファー機能を備えた貯蔵器を介して、アセトアルデヒド分離工程に供給する方法、及び(c)デカンターから排出するオーバーヘッド(3A)の量を一定(又はほぼ一定、例えば、デカンターから排出するオーバーヘッド(3A)の平均流量を100とするとき、プロセス全体を通してデカンターから排出する低沸点成分(3A)の量を95~105に調整する)とする方法から選択された少なくとも1種の方法などが挙げられる。
 方法(a)では、凝縮工程において、デカンターから排出したオーバーヘッド(3A)の一部を、アセトアルデヒド分離工程とは異なる工程に循環させることにより、アセトアルデヒド分離工程に供給されるオーバーヘッド(3A)の量(又は流量)を調整してもよい。この方法(a)では、デカンターに供給されるオーバーヘッド(3A)の平均流量の20%以上(例えば、20~90%程度)を循環させてもよく、特に40~90%程度を循環させてもよい。また、方法(a)では、オーバーヘッド(3A)を、デカンター内で上層と下層とに分離し、上層および下層を循環させてもよい。
 方法(b)では、バッファー機能を備えた貯蔵器におけるオーバーヘッド(3A)の滞留時間を1分以上(例えば、2分以上)としてもよい。また、方法(b)では、デカンターにおけるオーバーヘッド(3A)の滞留時間とバッファー機能を備えた貯蔵器におけるオーバーヘッド(3A)の滞留時間の総時間を3分以上(例えば、4分以上)としてもよい。
 方法(c)では、代表的には、デカンターとしてバッファー機能を備えたデカンターを用い、デカンターにおけるオーバーヘッド(3A)の滞留時間を3分以上としてもよい。
 方法(a)~(c)は、単独で行ってもよく、組み合わせて(例えば、少なくとも方法(a)又は方法(b)を)行ってもよい。
 本発明では、アセトアルデヒドの除去だけでなく、ヨウ化メチルの回収(リサイクル)も効率よく行うことができ、例えば、オーバーヘッド(3A)をアセトアルデヒド蒸留塔に供給し、蒸留により、アセトアルデヒドを含む低沸点成分(4A)と、ヨウ化メチルを含む高沸点成分(4B)とに分離し、分離液としての高沸点成分(4B)をリサイクル[例えば、反応系(又は反応器又は反応工程)からアセトアルデヒドの分離に至るまでの工程(例えば、反応系(反応器又は反応工程)、酢酸回収工程(又は蒸留塔)、およびアセトアルデヒド除去塔から選択された少なくとも1種、特に、少なくとも反応器又は反応工程)にリサイクル]するリサイクル工程をさらに含んでいてもよい。
 また、本発明では、リサイクル工程において分離された分離液の流量変動を抑えつつリサイクルしてもよい。具体的には、リサイクル工程において、バッファー機能を備えた貯蔵器を介して分離液をリサイクルしてもよい。
 前記低沸点成分(4A)には、分離しきれないヨウ化メチルを含む場合がある。そのため、本発明では、低沸点成分(4A)がヨウ化メチルを含み、リサイクル工程において、さらに、低沸点成分(4A)から回収したヨウ化メチルをリサイクル[反応系からアセトアルデヒドの分離に至るまでの工程にリサイクル、例えば、反応系(反応器又は反応工程)、酢酸回収工程(又は蒸留塔)、およびアセトアルデヒド蒸留塔から選択された少なくとも1種にリサイクル]してもよい。
 なお、本発明の方法において、アセトアルデヒド蒸留塔の材質は、合金(例えば、ニッケル基合金、鉄基合金(ステンレス、二相鉄基合金(二相ステンレスなど)など)など)であってもよい。本発明では、腐食を抑制できるので、このような比較的腐食されやすい材質のアセトアルデヒド蒸留塔であっても好適に使用できる。
 なお、本明細書において、「被処理液」とは、特に断りのない限り、アセトアルデヒド蒸留塔において蒸留される前のプロセス液を意味する。また、本明細書において、同じ混合系(被処理液など)に存在する任意の成分の割合の合計は100重量%以下であり、全成分の割合を合計すると100重量%となる。
 本発明の方法では、アセトアルデヒド蒸留塔内でのヨウ化水素(特に、ヨウ化水素及び酢酸)の濃度上昇を効率よく抑制しつつ酢酸を製造できる。また、本発明の方法では、アセトアルデヒド蒸留塔の腐食を抑制できる。さらに、本発明の方法では、高度に耐腐食性である高品質の材質でアセトアルデヒド蒸留塔を形成しなくても、アセトアルデヒドの除去を効率よく行うことができる。そのため、本発明の方法では、安価な又は低グレードの材質のアセトアルデヒド蒸留塔を使用しても、アセトアルデヒドを効率よく分離できる。このように本発明では、安価な又は低グレードの材質でアセトアルデヒド蒸留塔を形成することもできるため、酢酸の製造プロセスを効率よく低コスト化できる。
 また、本発明では、ヨウ化メチルおよびアセトアルデヒドを含むオーバーヘッドの供給量の変動に対応させて、デカンターに貯蔵するオーバーヘッドの量を調整することなどにより、アセトアルデヒド蒸留塔内でのヨウ化水素や酢酸の濃度上昇を抑えるとともに、アセトアルデヒドを効率よく除去しつつ、安定して酢酸(高純度の酢酸)を製造できる。
 さらに、本発明では、オーバーヘッド中のアセトアルデヒドを効率よく確実に分離できるので、オーバーヘッドから分離された触媒としてのヨウ化メチルを高い効率でリサイクルしつつ、酢酸を製造できる。
図1は、本発明の酢酸の製造方法(又は製造装置)の一例を説明するためのフロー図である。 図2は、本発明の酢酸の製造方法(又は製造装置)の他の例を説明するためのフロー図である。
 以下、必要により添付図面を参照しつつ、本発明をより詳細に説明する。図1は本発明の酢酸の製造方法(又は製造装置)の一例を説明するためのフロー図である。
 図1の例では、金属触媒としてのロジウム触媒、助触媒[ハロゲン化物塩としてのヨウ化リチウム、及びヨウ化メチル]で構成された触媒系、並びに酢酸、酢酸メチル、有限量の水の存在下、メタノールと一酸化炭素との連続的カルボニル化反応により生成した反応混合物から酢酸を製造する連続プロセス(又は製造装置)が示されている。
 このプロセス(又は製造装置)は、メタノールのカルボニル化反応を行うための反応器(反応系)1と、反応により生成した酢酸を含む反応混合物(反応液)から、生成した酢酸、ヨウ化メチル、酢酸メチル、および水を含む揮発性成分又は揮発相(2A)と、ロジウム触媒及びヨウ化リチウムを含む低揮発性成分又は低揮発相(2B)とを分離するためのフラッシャー2と、このフラッシャー2から供給された揮発性成分(2A)から、ヨウ化メチル、酢酸、酢酸メチル、水、副生したアセトアルデヒド、ヨウ化水素などを含むオーバーヘッド(第1のオーバーヘッド)(3A)と、側流としての酢酸を含む流分又は酢酸相(3B)と、酢酸、水、プロピオン酸などを含む高沸点流分又は高沸点成分(3C)とに分離するためのスプリッターカラム3と、凝縮したオーバーヘッド(3A)を一時的にホールド又は貯蔵するためのデカンター4と、デカンター4から供給又は排出されたオーバーヘッド(3A)を一時的に貯蔵する(又は滞留させる)ためのバッファータンク5と、デカンター4又はバッファータンク5から供給又は排出されたオーバーヘッド(3A)を、アセトアルデヒドおよびヨウ化メチルを含む低沸点成分(4A)と、ヨウ化メチル、酢酸メチル、水、酢酸などを含む高沸点成分(4B)とに分離するためのアセトアルデヒド蒸留塔(分離塔又は除去塔)6と、この蒸留塔6において分離された高沸点成分(4B)を一時的に貯蔵する(又は滞留させる)ためのバッファータンク7と、低沸点成分(4A)から抽出によりアセトアルデヒドを分離し、ヨウ化メチルをリサイクルするための抽出装置又は抽出器8と、メタノール及び/又はジメチルエーテルを供給するためのライン51および52と、これらの装置に各成分を供給又は循環させるための各種ラインとを備えている。
 以下、より詳細に、図1のプロセスを説明する。
 反応器1には、液体成分としてのメタノールが、所定速度で連続的に供給されるとともに、気体反応成分としての一酸化炭素が、連続的に供給される。また、前記反応器1には、カルボニル化触媒系(ロジウム触媒などの主たる金属触媒成分と、ヨウ化リチウム及びヨウ化メチルなどの助触媒とで構成された触媒系)を含む触媒混合物(触媒液)及び水を供給してもよい。また、反応器1には、後続の工程からの低沸点成分や高沸点成分を含む流分(例えば、液状の形態で)を、ライン13及び/又はライン40を通じて反応器1に供給される。
 そして、反応器1内では、反応成分と金属触媒成分(ロジウム触媒及びヨウ化リチウム)などの高沸成分とを含む液相反応系と、一酸化炭素及び反応により生成した水素、メタン、二酸化炭素、並びに気化した低沸成分(ヨウ化メチル、生成した酢酸、酢酸メチルなど)などで構成された気相系とが平衡状態を形成しており、メタノールのカルボニル化反応が進行する。反応器1内の圧力(反応圧、一酸化炭素分圧、水素分圧、メタン分圧、窒素分圧など)を一定に保つため、反応器1の塔頂から、蒸気を抜き出し、排出してもよい。なお、反応器1から抜き出した蒸気は、さらに熱交換器により冷却して、液体成分(酢酸、酢酸メチル、ヨウ化メチル、アセトアルデヒド、水などを含む)と気体成分(一酸化炭素、水素などを含む)とを生成させ、得られた前記液体成分を、反応器1にリサイクルしてもよく(図示せず)、前記気体成分(排ガス)を排出してもよい。
 なお、前記反応器1には、触媒活性を高めるため、必要により水素を供給してもよい。水素は、一酸化炭素とともに供給してもよく、別途供給してもよい。また、前記反応系は、発熱を伴う発熱反応系であるため、前記反応器1は、反応温度を制御するための除熱ユニット又は冷却ユニット(ジャケットなど)などを備えていてもよい。
 反応器1で生成した反応混合物(反応粗液)中には、酢酸、酢酸よりも沸点の低い低沸成分又は低沸不純物(助触媒としてのヨウ化メチル、酢酸とメタノールとの反応生成物である酢酸メチル、水、副反応生成物であるアセトアルデヒド、ヨウ化ヘキシルなどの高級ヨウ化物など)、及び酢酸よりも沸点の高い高沸成分又は高沸不純物[金属触媒成分(ロジウム触媒など)、助触媒としてのヨウ化リチウム、プロピオン酸、水など]などが含まれる。
 上記反応混合物から主に金属触媒成分などの高沸成分を分離するため、前記反応器1から反応混合物の一部を連続的に抜き取りつつ、供給ライン11を通じて反応混合物をフラッシャー(蒸留塔又は触媒分離塔)2に導入又は供給する。
 ここで、反応器1からフラッシャー2に供給される反応混合物の供給量は、液相に供給される一酸化炭素のスパージングによる圧力変動などにより、連続プロセスにおいて一定ではなく変動する。例えば、フラッシャー2に供給される反応混合物の流量(又は流速、以下、流量の記載において同じ)は、フラッシャー2に供給される反応混合物の平均流量を100とするとき、プロセス全体を通して98~102程度である。なお、後述するように、このような供給量の変動は、閉鎖プロセスにおいては、後続の工程に伝播する態様で、デカンターに供給されるオーバーヘッドの供給量の変動を生じさせる要因となる場合がある。
 そして、フラッシャー(フラッシュ蒸留塔)2では、反応混合物から、低揮発性成分(2B)(主に、ロジウム触媒及びヨウ化リチウムなどの金属触媒成分などを含む)と、低沸点流分又は揮発性成分(2A)(主に、生成物であり反応溶媒としても機能する酢酸、酢酸メチル、ヨウ化メチル、水、アセトアルデヒドなどを含む)とを分離し、前記低揮発性成分(2B)を塔底から缶出ライン13を通じて缶出するとともに反応器1にリサイクルし、前記揮発性成分(2A)(酢酸流)をフラッシャー2の塔頂部又は上段部から供給ライン12を通じて留出させ、スプリッターカラム(又は蒸留塔)3に供給又は導入する。なお、前記低揮発性成分(2B)には、金属触媒(ロジウム触媒)、ハロゲン化物塩(ヨウ化リチウム)の他、蒸発せずに残存したヨウ化メチル、酢酸メチル、水及び微量の酢酸なども含まれる。フラッシャー2において分離される揮発性成分(2A)の体積割合は、反応混合物全体の20~40%程度である。
 なお、低沸点成分(2A)は、その一部を除熱して反応器にリサイクルしてもよい。図1の例では、揮発した低沸点成分(2A)の一部(例えば、10~30体積%程度)を、ライン12aを通じて貯蔵器(ホールドタンク)及び/又は熱交換器9に供給しつつ除熱して凝縮させ、ライン12bを通じて反応器1にリサイクルしている。このように低沸点成分(2A)の一部を除熱して反応器に循環させることで、大型のプラントであっても、蒸留塔(スプリッターカラムなど)などの装置を小型化することができる。そのため、省資源省エネルギー型の設備で、高い収率で高純度の酢酸を製造できる。
 ここで、フラッシャー2からスプリッターカラム3に供給される揮発性成分(2A)の供給量もまた、フラッシャー2に供給される反応混合物の供給量の変動に伴って、連続プロセスにおいて変動する。例えば、スプリッターカラム3に供給される揮発性成分(2A)の流量は、スプリッターカラム3に供給される揮発性成分(2A)の平均流量を100とするとき、プロセス全体を通して98~102程度である。
 スプリッターカラム3では、通常、オーバーヘッド(又は低沸点成分)(3A)(ヨウ化メチル、酢酸メチル、アセトアルデヒド、水、酢酸、ヨウ化水素などを含む)を塔頂又は塔の上段部から留出ライン14を通じて分離するとともに、高沸点流分又は高沸点成分(3C)(水、プロピオン酸などを含む成分)を、塔底又は塔の下段部から缶出ライン16を通じて分離(又は除去)する。なお、分離された高沸点成分(3C)は、ライン16を通じて排出してもよく、その一部又は全部をライン40を通じて反応器1にリサイクルしてもよい。そして、主に酢酸を含む側流又は酢酸相流(3B)(酢酸流)は、スプリッターカラム3から供給ライン15を通じてサイドカットさせることにより回収される。なお、サイドカットさせた酢酸を含む流分(3B)は、通常、ライン15を通じて、さらに別の蒸留塔(図示せず)に供給して蒸留し、精製してもよい(図示せず)。なお、スプリッターカラム3において分離されるオーバーヘッド(3A)の割合は、揮発性成分(2A)全体の35~50重量%程度である。なお、後述のように、スプリッターカラム3に後続の工程からのプロセス液を循環又はリサイクルする場合、スプリッターカラム3では、フラッシャー2から供給される成分と後続の工程からリサイクルされる成分との総量を蒸留に供し、オーバーヘッド(3A)として分離することとなる。
 ここで、スプリッターカラム3からデカンター4に供給されるオーバーヘッド(3A)の供給量は、フラッシャー2に供給される反応混合物の供給量およびフラッシャー2からスプリッターカラム3に供給される揮発性成分(2A)の供給量の変動が伝播する形態で、連続プロセスにおいて変動する。例えば、デカンター4に供給されるオーバーヘッド(3A)の流量は、デカンター4に供給されるオーバーヘッド(3A)の平均流量を100とするとき、プロセス全体を通して、90~110程度である(すなわち、オーバーヘッド(3A)の流量が0~±10体積%程度の範囲で変動する)。このように比較的大きな変動量でデカンター4にオーバーヘッド(3A)が供給される。
 ライン14を通じて分離されたオーバーヘッド(3A)は、凝縮されてデカンター(貯蔵器)4に連続的に供給され、一時的にホールド(貯蔵)される。デカンター4内では、凝縮したオーバーヘッド(3A)が、主に水、酢酸、酢酸メチルなどを含む上層(水層又は水相)と、主にヨウ化メチル、酢酸メチルなどを含む下層(有機層又は有機相)とに分離しており、アセトアルデヒド、ヨウ化メチル、ヨウ化水素はいずれの層にも含まれている。なお、アセトアルデヒドは下層よりも上層(水層)に多く含まれ、ヨウ化水素は主に上層に含まれる場合が多い。なお、デカンター4に供給されるオーバーヘッド(3A)において、上層(又は上層成分)と、下層(下層成分)との体積割合は、例えば、前者/後者=0.5/1~1.5/1(例えば、0.7/1~1.3/1)程度であり、上層および下層において、供給量の変動は、前記と同様の範囲にある。
 そして、デカンター4内にホールドされたオーバーヘッド(3A)は、供給ライン17及び/又は供給ライン18を通じて、アセトアルデヒド蒸留塔6に供給されるが、図1の例では、デカンター4に供給されるオーバーヘッド(3A)の流量変動に基づいて、オーバーヘッド(3A)の一部を、ライン17から分岐したライン17a(副ライン17a)又はライン18から分岐したライン18a(副ライン18a)を介して、反応系などに循環させる(又はリサイクルする)ことにより、デカンター4にホールドされるオーバーヘッド(3A)の貯蔵量の変動(又は液面の高さの変動)が高いレベルで抑えられている。
 すなわち、デカンター4に連続的に供給されるオーバーヘッド(3A)の量(例えば、単位時間あたりに供給される量)は、連続反応において、一定ではなく、前記のように、カルボニル化反応、フラッシュ蒸留、ヨウ化メチルのリサイクルを経て変動する(例えば、単位時間に供給されるオーバーヘッド(3A)の量が大きくなったり小さくなったりする)。そのため、デカンター4にオーバーヘッド(3A)をそのまま供給すると、デカンター4内に凝縮されて貯蔵されるオーバーヘッド(3A)の液面の高さが大きく変動し、この変動の大きさによっては運転ができなくなる場合がある。このような変動を緩和するため、デカンター4から、アセトアルデヒド蒸留塔6に流量の変動を緩和できるだけの十分な流量でオーバーヘッド(3A)を供給することも考えられるが、このような供給では、アルデヒド蒸留塔6での処理が十分に行えなくなる。
 そこで、図1の例では、デカンター4に供給されるオーバーヘッド(3A)の流量変動に基づいて、オーバーヘッド(3A)の一部を、デカンター4から蒸留塔6に供給することなくアセトアルデヒド分離工程とは異なる工程(図1の例では反応器1及び/又はスプリッターカラム3)にリサイクルすることで、デカンター4にホールドされるオーバーヘッド(3A)の量を調整又は制御している。
 詳細には、図1の例では、オーバーヘッド(3A)は、デカンター4内の上層および下層から、それぞれ、ライン17およびライン18を介して排出するが、デカンター4に供給されるオーバーヘッド(3A)の流量が変動しても、上層および下層の液面高さがそれぞれ一定(又はほぼ一定)となるように、デカンター4から排出するオーバーヘッド(3A)の流量を調整している。すなわち、デカンター4は、上層および下層にそれぞれ対応し、液面の変動を検知する液面レベルセンサー(図示せず)を備えている。そして、このセンサーにより検知された液面レベルの情報に基づいて、所定の液面高さを保持するように、デカンター4内の上層および下層から排出するオーバーヘッド(3A)の量を調整している。より具体的には、液面レベルセンサーの情報に基づき、デカンターに供給される流量が大きい場合には、液面レベルが高くなるのを防ぐため、排出するオーバーヘッド(3A)の流量を大きくし、デカンターに供給される流量が小さい場合には、排出するオーバーヘッド(3A)の流量を小さくするなどの流量制御をプロセス全体を通じて行うことにより、デカンター4内のオーバーヘッド(3A)の液面(又は上層の液面)の高さ(上層および下層の液面の高さ)を一定又はほぼ一定に保持(例えば、平均液面高さを100とするとき、液面高さをプロセス全体を通してそれぞれ99~101程度、すなわち、液面の変動をプロセス全体で最大で1%程度に)している。
 さらに、ライン17およびライン18から排出されたオーバーヘッド(3A)は、ライン17bおよびライン18bから供給されるオーバーヘッド(3A)の総量としてライン19に供給されるが、ライン17a及び/又はライン18aを介して循環させるオーバーヘッド(3A)の量を調整することにより、ライン19に供給されるオーバーヘッド(3A)の流量が一定又はほぼ一定となるように制御されている。すなわち、図1の例では、デカンター4内の上層および下層から排出するオーバーヘッド(3A)の量は、それぞれ、前記のように、デカンター4内の液面が一定又はほぼ一定となるように変動するが、その変動に対応させてオーバーヘッド(3A)をライン17a及び/又はライン18aを介して循環させる量を変動させることにより、ライン19に供給されるオーバーヘッド(3A)の流量の変動を生じさせない(又はほとんど生じさせない)ように(例えば、ライン19に供給されるオーバーヘッド(3A)の平均流量を液体の体積換算で100とするとき、プロセス全体を通してオーバーヘッド(3A)の流量を98~102程度、すなわち、流量の変動をプロセス全体で最大で2%程度に)調整している。なお、図1の例では、ライン19に供給される低沸点成分(3A)の流量変動は、主に、循環させるオーバーヘッド(3A)の量を変動させることにより抑制できるが、デカンター4内でのオーバーヘッド(3A)の滞留時間の調整によっても流量変動をより一層抑制することができる。
 なお、ライン19に供給されるオーバーヘッド(3A)の流量の調整は、ライン17a及び/又はライン18aに循環させるオーバーヘッド(3A)の流量を変動させて行えばよく、ライン19に供給される流量に大きな変動を生じさせない範囲であれば、ライン17a又はライン18aに循環させるオーバーヘッド(3A)の流量を固定化して(すなわち、ライン17b又はライン18bに供給するオーバーヘッド(3A)の流量を変動させて)もよい。
 また、図1の例では、ライン17およびライン18を介して、オーバーヘッド(3A)を排出しているが、いずれか一方のラインのみからオーバーヘッド(3A)を排出し、その一部を循環させることにより、ライン19に供給されるオーバーヘッド(3A)の流量を調整してもよい。また、上層、下層に関係なく、単一のラインを介して、供給又は排出してもよい。
 なお、ライン17aに供給されるオーバーヘッド(3A)は、ライン17a1を介してライン30に供給され、スプリッターカラム3に循環させてもよく、ライン17a2を介してライン40に供給され、反応器1にリサイクルして(戻して)もよく、これらの両ライン17a1および17a2を介してリサイクルしてもよい。また、ライン18aに供給されるオーバーヘッド(3A)は、ライン40に供給され、反応器1にリサイクルされる。
 そして、ライン19に供給されるオーバーヘッド(3A)は、前記のように、流量の変動が著しく抑制されているため、直接的に、蒸留塔6に供給してもよいが、図1の例では、さらに、より一層流量の変動を緩和するため、バッファー機能を備えた貯蔵器(バッファータンク)5を介して蒸留塔6に供給される。すなわち、ライン19に供給されたオーバーヘッド(3A)は、バッファータンク5に供給されたのち、ライン20を介して蒸留塔6に供給される。このようにバッファータンク5に一時的にオーバーヘッド(3A)を滞留させることにより、バッファータンク5からライン20に供給する量を一定(又はほぼ一定)としても、バッファータンク5においてライン19から供給されたオーバーヘッド(3A)の流量変動を効率よく緩和できる。
 ここで、蒸留塔6において蒸留に供されるオーバーヘッド(3A)には、ライン51及び/又はライン52を通じて、所定量のメタノール源(メタノール及び/又はジメチルエーテル)が添加又は混合される。すなわち、ライン19には、ライン51を通じて、所定量のメタノール源(メタノール及び/又はジメチルエーテル)を添加又は混合してもよい。すなわち、ヨウ化メチル、アセトアルデヒドに加えて、酢酸、酢酸メチル、水およびヨウ化水素を含むオーバーヘッド(3A)は、メタノール源を含む混合液(被処理液、プロセス液)の形態で、バッファータンク5を介して、ライン20を通じて蒸留塔6に供給される。なお、図1の例では、バッファータンク5に供給される前のライン19にメタノール源を混合しているが、蒸留塔6に供給する直前のライン20に、ライン51を介してメタノール源を混合してもよい。
 また、メタノール源は、ライン20によりオーバーヘッド(3A)が蒸留塔6に供給される段(又は位置)と同じか、それよりも高い段(又は位置)にライン52を介して供給され、オーバーヘッド(3A)との混合液の形態で蒸留に供することもできる。蒸留塔6におけるこのような位置関係でメタノール源を供給することで、オーバーヘッド(3A)の供給位置と同じか、それよりも上段におけるヨウ化水素(および酢酸)濃度の上昇も確実に抑えることができ、そのため、蒸留塔6全体の腐食を効率よく抑えることができる。
 なお、ライン51及び/又はライン52には、メタノール源に代えて又はメタノール源とともに、酢酸メチルを添加してもよい。
 なお、各ライン51及び/又はライン52に混合するメタノール源(及び/又は酢酸メチル、他においても同じ)の量は、蒸留塔6内におけるメタノール源の濃度を考慮し、適当な割合でその量を所定の濃度となるように調整すればよい。
 蒸留塔6に供給されたオーバーヘッド(3A)を含む混合液は、蒸留塔6において蒸留により、アセトアルデヒドの他、微量のヨウ化メチル、一酸化炭素、水素などを含む低沸点流分又は低沸点成分(又は第2のオーバーヘッド)(4A)と、ヨウ化メチルの他、酢酸メチル、水などを含む高沸点流分又は高沸点成分(4B)とに分離される。ここで、蒸留塔6内でのヨウ化水素および酢酸の濃度上昇は、オーバーヘッド(3A)がメタノール源とともに蒸留されることにより、著しく抑制されている。なお、ジメチルエーテルの添加によるヨウ化水素濃度は、下記反応などを含む複数の反応が関連して、その上昇が抑えられているようである。
CHOCH+2HI⇔2CHI+H
 そして、分離された低沸点成分(4A)は、塔頂又は塔上段部からライン(排出ライン)21を通じて、アセトアルデヒド抽出装置(水抽出カラム)8に供給され、低沸点成分(4A)からアセトアルデヒドが水抽出され、抽出されたアセトアルデヒド(アルデヒド水溶液)はライン21bを通じて排出される。なお、低沸点成分(4A)は、その一部をライン21aを通じて蒸留塔6に戻してもよい。また、微量のヨウ化メチルなどを含む抽残液は、系外に排出してもよいが、図1の例では、ライン24から排出された抽残液は、ライン24aを通じて蒸留塔6に供給されるか、及び/又はライン24bを通じてライン40に供給されて反応器1にリサイクルされる。このように抽残液を蒸留したり、リサイクルすることにより、より一層、ヨウ化メチルの回収率を向上させることができる。
 また、分離された高沸点成分(4B)は、ライン22を通じて、分離液(缶出液又は塔底液)として、反応器1やスプリッターカラム3に通じるライン40に供給される。このように、ヨウ化メチルを含む有用成分が、反応系などに循環(リサイクル)される。ここで、高沸点成分(4B)は、ライン22を通じて、直接的にライン40に供給してもよいが、図1の例では、バッファータンク7を介してライン23を通じて、ライン40に供給している。すなわち、ライン22を通じて供給される高沸点成分(4B)の流量変動は、前記のように、蒸留塔6に供給されるオーバーヘッド(3A)の高度な流量制御に伴い抑制されているが、前記アセトアルデヒドの抽出後の抽残液のリサイクルなどによりやや変動する場合がある。しかし、ライン22から供給される高沸点成分(4B)をバッファータンク7に一時的に滞留させることにより、高沸点成分(4B)の流量が変動しても、バッファータンク7内でその変動を緩和でき、ライン23に供給する高沸点成分(4B)の流量を一定(又はほぼ一定)として、ライン40に供給することができ、そのため、リサイクルする高沸点成分(4B)の流量変動を抑えることができる。
 なお、ライン40に供給された高沸点成分(4B)は、その一部又は全部をライン40aを介して、スプリッターカラム3にリサイクルしてもよく、ライン40aに供給された高沸点成分(4B)は、蒸留塔6における安定運転を担保できる範囲であれば、その一部又は全部をライン40a1を介して、蒸留塔6に供給してもよい。
 図2は、本発明の酢酸の製造方法(又は製造装置)の他の例を説明するためのフロー図である。図2のプロセス(又は装置)は、図1におけるデカンター4に代わりに、バッファー機能を備えたデカンター4Aを使用し、オーバーヘッド(3A)をライン17を介して直接的に蒸留塔6に供給すること以外は、図1の同様のプロセス(又は装置)である。
 すなわち、図1の例のように、通常、デカンターでは、スプリッターカラム3から供給されるオーバーヘッド(3A)の流量変動を緩和しきれないが、図2の例では、流量変動を緩和できるほどの十分に大きな容量を有するデカンター4Aを用い、このデカンター4A内で流量変動を緩和することで、ライン17に排出する流量を一定又はほぼ一定(例えば、ライン14を通じて供給されるオーバーヘッド(3A)の平均流量を液体の体積換算で100とするとき、プロセス全体を通してライン17にそれぞれ排出又は供給されるオーバーヘッド(3A)の流量を98.5~101.5程度、すなわち、流量の変動をプロセス全体で最大で1.5%程度に)とすることができる。
 なお、図2の例では、オーバーヘッド(3A)を上層に対応するライン17を介して蒸留塔6に供給しているが、図1の例における下層に対応するライン18を介して供給してもよく、ライン17およびライン18を介して供給してもよい(図示せず)。また、上層、下層に関係なく、単一のラインを介して、供給してもよい。
 (反応工程)
 反応工程(カルボニル化反応工程)では、触媒系の存在下、メタノールを一酸化炭素でカルボニル化する。なお、メタノールは、新鮮なメタノールを直接又は間接的に反応系へ供給してもよく、また、各種蒸留工程から留出するメタノール又はその誘導体を、リサイクルすることにより、反応系に供給してもよい。
 触媒系は、通常、金属触媒と、助触媒と、促進剤とで構成することができる。金属触媒としては、遷移金属触媒、特に、周期表第8族金属を含む金属触媒、例えば、コバルト触媒、ロジウム触媒、イリジウム触媒などが例示できる。触媒は、金属単体であってもよく、また、金属酸化物(複合酸化物を含む)、水酸化物、ハロゲン化物(塩化物、臭化物、ヨウ化物など)、カルボン酸塩(酢酸塩など)、無機酸塩(硫酸塩、硝酸塩、リン酸塩など)、錯体などの形態でも使用できる。このような金属触媒は、一種で又は二種以上組み合わせて使用できる。好ましい金属触媒は、ロジウム触媒及びイリジウム触媒(特に、ロジウム触媒)である。
 また、金属触媒は反応液中で可溶な形態で使用するのが好ましい。なお、ロジウムは、通常、反応液中で錯体として存在しているため、ロジウム触媒を用いる場合には、触媒は、反応液中で錯体に変化可能である限り、特に制限されず、種々の形態で使用できる。このようなロジウム触媒としては、特に、ロジウムヨウ素錯体(例えば、RhI、[RhI(CO)、[Rh(CO)など)、ロジウムカルボニル錯体などが好ましい。また、触媒は、ハロゲン化物塩(ヨウ化物塩など)及び/又は水を添加することにより反応液中で安定化させることができる。
 金属触媒の濃度は、例えば、反応器内の液相全体に対して10~5000ppm(重量基準、以下同じ)、好ましくは100~4000ppm、さらに好ましくは200~3000ppm、特に300~2000ppm(例えば、500~1500ppm)程度である。
 触媒系を構成する助触媒又は促進剤としては、ハロゲン化物塩(ヨウ化物塩など)が使用される。ヨウ化物塩は、特に低水分下でのロジウム触媒の安定化と副反応抑制等のために添加される。ヨウ化物塩としては、反応液中で、ヨウ素イオンを発生するものであれば特に限定されず、例えば、金属ハロゲン化物[例えば、ヨウ化物アルカリ金属塩(ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化ルビジウム、ヨウ化セシウムなど)、ヨウ化物アルカリ土類金属塩(ヨウ化ベリリウム、ヨウ化マグネシウム、ヨウ化カルシウムなど)、ヨウ化物の周期表3B属元素塩(ヨウ化ホウ素、ヨウ化アルミニウムなど)などの金属ヨウ化物、これらに対応する臭化物、塩化物など]、有機ハロゲン化物[例えば、ヨウ化物のホスホニウム塩(例えば、トリブチルホスフィン、トリフェニルホスフィンなどとの塩)、ヨウ化物のアンモニウム塩(三級アミン、ピリジン類、イミダゾール類、イミド類などとヨウ化物との塩など)などの有機ヨウ化物、これらに対応する臭化物、塩化物など]が挙げられる。なお、ヨウ化物アルカリ金属塩(ヨウ化リチウムなど)は、カルボニル化触媒(例えば、ロジウム触媒など)の安定剤としても機能する。これらのハロゲン化物塩は、単独で又は二種以上組み合わせて使用できる。これらのハロゲン化物塩のうち、ヨウ化リチウムなどのヨウ化物アルカリ金属塩が好ましい。
 ハロゲン化物塩(ヨウ化物塩など)の反応器の反応系(反応液)における濃度は、反応器内の液相全体に対して、例えば、1~25重量%、好ましくは2~22重量%、さらに好ましくは3~20重量%程度である。さらに、反応系におけるヨウ化物イオンの濃度は、例えば、0.07~2.5モル/リットル、好ましくは0.25~1.5モル/リットルであってもよい。
 前記触媒系を構成する促進剤としては、ヨウ化アルキル(例えば、ヨウ化メチル、ヨウ化エチル、ヨウ化プロピルなどのヨウ化C1-4アルキルなど)、特にヨウ化メチルが利用される。促進剤の濃度は、高いほど反応が促進されるため、促進剤の回収、回収した促進剤を反応器へ循環する工程の設備規模、回収や循環に必要なエネルギー量などを考慮し、経済的に有利な濃度を適宜選択できる。ヨウ化アルキル(特にヨウ化メチル)の反応系における濃度は、反応器内の液相全体に対して、例えば、1~20重量%、好ましくは5~20重量%、さらに好ましくは6~16重量%(例えば、8~14重量%)程度である。
 連続反応であるため、反応液は、酢酸メチルを含んでいる。酢酸メチルの含有割合は、反応液全体の0.1~30重量%、好ましくは0.3~20重量%、さらに好ましくは0.5~10重量%(例えば、0.5~6重量%)程度の割合であってもよい。
 反応系に供給する一酸化炭素は、純粋なガスとして使用してもよく、不活性ガス(例えば、窒素、ヘリウム、二酸化炭素など)で希釈して使用してもよい。また、後続の工程から得られる一酸化炭素を含む排ガス成分を反応系にリサイクルしてもよい。反応器中の一酸化炭素分圧は、例えば、2~30気圧、好ましくは4~15気圧程度であってもよい。
 前記カルボニル化反応では、一酸化炭素と水との反応によりシフト反応が起こり、水素が発生するが、反応系に水素を供給してもよい。反応系に供給する水素は、原料となる一酸化炭素と共に混合ガスとして反応系に供給することもできる。また、後続の蒸留工程(蒸留塔)で排出された気体成分(水素、一酸化炭素などを含む)を、必要により適宜精製して反応系にリサイクルすることにより、水素を供給してもよい。反応系の水素分圧は、絶対圧力で、例えば、0.5~250kPa、好ましくは1~200kPa、さらに好ましくは5~150kPa(例えば、10~100kPa)程度であってもよい。
 なお、反応系の一酸化炭素分圧や水素分圧は、例えば、反応系への一酸化炭素及び水素の供給量又はこれらの成分の反応系へのリサイクル量、反応系への原料基質(メタノールなど)の供給量、反応温度や反応圧力などを適宜調整することにより調整することができる。
 カルボニル化反応において、反応温度は、例えば、150~250℃、好ましくは160~230℃、さらに好ましくは180~220℃程度であってもよい。また、反応圧力(全反応器圧)は、副生成物の分圧を含めて、例えば、15~40気圧程度であってもよい。
 反応は溶媒の存在下又は非存在下で行ってもよい。反応溶媒としては、反応性や、分離又は精製効率を低下させない限り特に制限されず、種々の溶媒を使用できるが、通常、生成物である酢酸を用いる場合が多い。すなわち、反応液中、残りの主成分は、生成物でありかつ反応溶媒でもある酢酸であってもよい。
 反応系に含まれる水濃度は、特に制限されないが、低濃度であってもよい。反応系の水濃度は、反応系の液相全体に対して、例えば、15重量%以下(例えば、0.1~12重量%)、好ましくは10重量%以下(例えば、0.1~8重量%)、さらに好ましくは0.1~5重量%程度であり、通常1~15重量%(例えば、2~10重量%)程度であってもよい。反応系において、各成分、特にヨウ化物塩(ヨウ化リチウム)及び水濃度を特定の濃度に保持して反応させることにより、蒸発槽に供給する液中の一酸化炭素の溶解度を低下させ、一酸化炭素のロスを低減できる。
 前記カルボニル化反応では、酢酸が生成するとともに、生成した酢酸とメタノールとのエステル(酢酸メチル)、エステル化反応に伴って、水、さらにはアセトアルデヒド、プロピオン酸などが生成する。
 なお、アセトアルデヒドは、後述のアセトアルデヒド分離工程により分離されるため、連続反応ではあるが、反応器におけるアセトアルデヒドの濃度は比較的小さく抑えられている。例えば、反応器(又は反応系)におけるアセトアルデヒド濃度は、プロセス全体を通して、重量基準で、反応器内の液相全体の1000ppm以下(例えば、0又は検出限界~700ppm)、好ましくは400ppm以下(例えば、5~300ppm)であってもよい。
 また、反応器内では、アセトアルデヒド由来の副生成物(例えば、アセトアルデヒドのアルドール縮合で生成する還元性物質のクロトンアルデヒド、クロトンアルデヒドの水素化物とアセトアルデヒドのアルドール縮合で生成する2-エチルクロトンアルデヒド、アセトアルデヒド3分子がアルドール縮合し、水素化、ヨウ素化を経て生成するヨウ化ヘキシルなど)も生成する。本発明では、反応器内におけるアセトアルデヒドの濃度の変動も抑えられているため、上記低濃度のアセトアルデヒド濃度と相まって、このようなアセトアルデヒド由来の副生成物の生成も著しく抑制することができる。すなわち、これらの副生成物は、アセトアルデヒド濃度の2~3乗に比例して副生する場合が多く、アセトアルデヒドの濃度および変動を抑えることで、効率よく副生成物の発生を抑制することができる。
 反応系における酢酸の空時収量は、例えば、5~50mol/Lh、好ましくは8~40mol/Lh、さらに好ましくは10~30mol/Lh程度であってもよい。
 なお、反応器の圧力の調整などを目的とし、反応器の塔頂から蒸気成分を抜き出してもよく、抜き出された蒸気成分は、反応熱の一部を除熱するために、コンデンサーや熱変換器などにより冷却してもよい。冷却された蒸気成分は、液体成分(酢酸、酢酸メチル、ヨウ化メチル、アセトアルデヒド、水などを含む)と気体成分(一酸化炭素、水素などを含む)とに分離し、液体成分を反応器にリサイクルしてもよい。
 (フラッシュ蒸発工程)
 フラッシュ蒸発工程(蒸発槽)では、前記反応工程又は前記反応器からフラッシャー(蒸発槽、フラッシュ蒸留塔)に供給された反応混合物から、少なくとも高沸点触媒成分(金属触媒成分、例えば、ロジウム触媒及びハロゲン化物塩)を含む低揮発性成分又は低揮発相(2B)を液体として分離するとともに、酢酸およびヨウ化メチルを含む揮発性成分又は揮発相(2A)を蒸気として分離する。
 前記のように、フラッシャーに供給される反応混合物の供給量は変動する。その変動の程度は、例えば、フラッシャーに供給される反応混合物の平均流量(液体の体積換算、特に断りのない限り、他の記載においても同じ)を100とするとき、プロセス全体を通して、フラッシャーに供給される反応混合物の流量が90~110(例えば、93~107)、好ましくは95~105(例えば、97~103)、さらに好ましくは98~102(例えば、98.5~101.5)程度である。
 金属触媒成分の分離(フラッシュ蒸留)は、慣用の分離方法又は分離装置により行うことができるが、通常、フラッシュ蒸留塔を利用して行うことができる。また、フラッシュ蒸留と、工業的に汎用されるミストや固体の捕集方法とを併用して、金属触媒成分を分離してもよい。
 フラッシュ蒸発工程では、反応混合物を加熱してもよく、加熱することなく蒸気成分と液体成分とを分離してもよい。例えば、断熱フラッシュにおいては、加熱することなく減圧することにより反応混合物から蒸気成分と液体成分とに分離でき、恒温フラッシュでは、反応混合物を加熱し減圧することにより反応混合物から蒸気成分と液体成分とに分離でき、これらのフラッシュ条件を組み合わせて、反応混合物を分離してもよい。これらのフラッシュ蒸留は、例えば、反応混合物を80~200℃程度の温度で圧力(絶対圧力)50~1000kPa(例えば、100~1000kPa)、好ましくは100~500kPa、さらに好ましくは100~300kPa程度で行うことができる。
 触媒の分離工程は、単一の工程で構成してもよく、複数の工程を組み合わせて構成してもよい。このようにして分離された高沸点触媒成分(金属触媒成分)は、前記図の例のように、通常、反応系にリサイクルしてもよい。
 また、揮発性成分(2A)の一部は、前記のように、反応器又は反応系にリサイクルしてもよい。リサイクルする揮発性成分(2A)は、適当な方法で除熱、凝縮させて反応器にリサイクルしてもよい。リサイクルする揮発性成分(2A)の割合は、例えば、1~50体積%(例えば、5~45体積%)、好ましくは10~40体積%、さらに好ましくは10~30体積%程度であってもよい。
 分離された揮発性成分(2A)は、生成物である酢酸の他に、ヨウ化水素、ヨウ化メチルなどの助触媒、酢酸メチル、水、副生成物(アセトアルデヒドなどのアルデヒドやプロピオン酸など)を含んでおり、酢酸を回収するための蒸留塔に供給される。なお、反応混合物のうち、酢酸回収工程に供給される揮発性成分(2A)の割合は、反応混合物全体に対して、例えば、5~50重量%、好ましくは8~40重量%、さらに好ましくは10~35重量%(例えば、12~30重量%)程度であってもよい。
 (酢酸回収工程)
 酢酸回収工程では、揮発性成分(2A)を蒸留塔(スプリッターカラム)に供給し、ヨウ化メチル、酢酸、酢酸メチル、副生したアセトアルデヒドおよびヨウ化水素を含むオーバーヘッド(3A)と、酢酸を含む流分(3B)とに分離して、酢酸を回収する。詳細には、蒸留塔では、フラッシャーから供給された揮発性成分(2A)(酢酸流)から、ヨウ化メチル、酢酸メチル、酢酸、アセトアルデヒド、ヨウ化水素、水などを含むオーバーヘッド(3A)を蒸気として分離し、酢酸を含む液状流分(3B)(サイドカット流分、側流)を留出させる。酢酸を含む液状流分(3B)は、サイドカットにより留出させてもよく、蒸留塔の塔底から抜き出してもよい。なお、蒸留塔では、水、プロピオン酸、飛沫同伴により混入した金属触媒成分、ハロゲン化物塩などを含む高沸点成分(3C)を分離してもよい。このような高沸点成分(3C)は、蒸留塔の塔底から除去(缶出)してもよく、金属触媒成分、蒸発せずに残存した酢酸などの有用成分を含んでいるため、前記図の例のように、反応器(又は反応工程)やフラッシュ蒸発工程(又は蒸留塔)などにリサイクルしてもよい。なお、リサイクルに先立って、製品酢酸の品質を低下させるプロピオン酸などを除去してもよい。なお、酢酸流(粗酢酸液)は、通常、次の蒸留塔で脱水され、さらに高沸分と低沸分を分離蒸留するための酢酸製品塔に導入され、製品酢酸となる。
 また、リサイクルする高沸点成分(3C)は、後述のように、バッファー機能を有する貯蔵器を介して反応系などにリサイクルしてもよい。
 前記のように、蒸留塔に供給される低沸点成分(2A)の供給量もまた、反応器からの供給量の変動が伝播する形で変動する場合が多い。変動の程度は、例えば、蒸留塔に供給される揮発性成分(2A)の平均流量を100とするとき、プロセス全体を通して、蒸留塔(2A)に供給される揮発性成分(2A)の流量が90~110(例えば、93~107)、好ましくは95~105(例えば、97~103)、さらに好ましくは98~102(例えば、98.5~101.5)程度である。
 なお、蒸留塔(スプリッターカラム)において、供給される低沸点成分(2A)の供給口の位置は、特に制限されず、例えば、蒸留塔の上段部、中段部、下段部のいずれであってもよい。また、蒸留塔において酢酸流をサイドカットする側流口に対して、上方及び下方のいずれから供給してもよい。さらに、酢酸流をサイドカットする側流口の位置は、蒸留塔の上段部、中段部、及び下段部のいずれであってもよいが、通常、蒸留塔の中段部又は下段部であるのが好ましい。
 蒸留塔としては、慣用の蒸留塔、例えば、棚段塔、充填塔、フラッシュ蒸留塔などが使用できるが、通常、棚段塔、充填塔などの精留塔を使用してもよい。なお、蒸留塔の材質は特に制限されず、ガラス製、金属製、セラミック製などが使用できるが、通常、金属製の蒸留塔を用いる場合が多い。
 蒸留塔における蒸留温度及び圧力は、蒸留塔の種類や、低沸点成分及び高沸点成分のいずれを重点的に除去するかなどの条件に応じて適宜選択できる。例えば、蒸留塔において、塔内温度(通常、塔頂温度)は、塔内圧力を調整することにより調整でき、例えば、20~180℃、好ましくは50~150℃、さらに好ましくは100~140℃程度であってもよい。
 また、棚段塔の場合、理論段は、特に制限されず、分離成分の種類に応じて、5~50段、好ましくは7~35段、さらに好ましくは8~30段程度である。また、蒸留塔で、アセトアルデヒドを高度に(又は精度よく)分離するため、理論段を、10~80段、好ましくは12~60段、さらに好ましくは15~40段程度にしてもよい。さらに、蒸留塔において、還流比は、前記理論段数に応じて、例えば、0.5~3000、好ましくは0.8~2000程度から選択してもよく、理論段数を多くして、還流比を低減してもよい。
 分離されたオーバーヘッド(3A)は、ヨウ化メチル、アセトアルデヒド、ヨウ化水素の他、酢酸、酢酸メチル、水などを含んでいる場合が多い。なお、揮発性成分(2A)のうち、凝縮工程(又はデカンター)又はアセトアルデヒド除去工程(又はアセトアルデヒド除去塔)に供給されるオーバーヘッド(3A)の割合は、揮発性成分(2A)全体に対して、例えば、5~70体積%、好ましくは10~65体積%、さらに好ましくは12~60体積%(例えば、15~50体積%)程度であってもよい。
 (凝縮・排出工程)
 本発明の方法において、オーバーヘッド(3A)は、直接的にアセトアルデヒド分離工程(4)(又はアセトアルデヒド蒸留塔)に供給することもできるが、通常、オーバーヘッド(3A)を凝縮させたのち、アセトアルデヒド分離工程に供給してもよい。代表的には、本発明の方法は、オーバーヘッド(3A)をデカンター(又は貯蔵器)に一時的にホールドし、デカンターから排出する凝縮・排出工程(単に、凝縮工程などということがある)をさらに含んでいてもよい。
 凝縮工程では、分離された低沸点成分(3A)を、凝縮させつつデカンター(又は貯蔵器)に一時的にホールド(又は貯蔵)し、その後、少なくともアセトアルデヒド分離工程に供するために排出する。特に、本発明では、この凝縮・排出工程において、ホールドするオーバーヘッド(3A)の量(又は排出するオーバーヘッド(3A)の量)を、プロセス全体を通じて、デカンターに供給されるオーバーヘッド(3A)の流量の変動に基づいて調整(又は制御)してもよい。
 すなわち、前記のように、デカンターに供給されるオーバーヘッド(3A)の供給量は、一連の工程を経て、大きく変動する場合が多い。そこで、この流量変動を緩和するようにデカンターにホールドするオーバーヘッド(3A)の量を調整してもよい。
 ホールドするオーバーヘッド(3A)の量を調整(又は制御)する具体的な方法としては、(1)デカンター内にホールドするオーバーヘッド(3A)の量又は液面高さの変動を抑えるようにオーバーヘッド(3A)を排出する方法(図1の方法など)、(2)デカンターとしてバッファー機能を備えたデカンターを使用し、オーバーヘッド(3A)の供給量の変動をデカンター内で緩和する方法(図2の方法など)などが挙げられる。なお、これらの方法は、組み合わせてもよい。
 デカンターから排出したオーバーヘッド(3A)は、アセトアルデヒド分離工程(又はアセトアルデヒド蒸留塔)に供給されるが、流量制御することなくそのまま供給すると、デカンターに供給されるオーバーヘッド(3A)の量の変動に伴って、安定してアセトアルデヒドの分離を行うことができなくなる場合がある。そのため、本発明では、さらに、アセトアルデヒド分離工程に供給されるオーバーヘッド(3A)の量(オーバーヘッド(3A)とメタノール源との総量)を調整してもよい。なお、後述するように、予めオーバーヘッド(3A)にメタノール源を混合してアセトアルデヒド分離工程に供給する場合には、厳密には、オーバーヘッド(3A)とメタノール源との総量を調整する場合があるが、メタノール源の供給量は容易に固定化できるため、オーバーヘッド(3A)の量の変動を抑えることができれば、アセトアルデヒド蒸留塔に供給される被処理液の変動を抑えることができる。そのため、このような場合においても、オーバーヘッド(3A)の量を調整すればよく、オーバーヘッド(3A)とメタノール源との総量を調整する場合においても、単に、これらの総量を、オーバーヘッド(3A)という場合がある。
 このようなアセトアルデヒド分離工程に供給するオーバーヘッド(3A)の供給量の調整又は制御方法としては、例えば、(a)デカンターから排出したオーバーヘッド(3A)(又はオーバーヘッド(3A)とメタノール源との総量)の一部を、アセトアルデヒド分離工程とは異なる工程(特に、少なくとも反応器又は反応工程)に循環させる方法(図1の例など)、(b)デカンターから排出したオーバーヘッド(3A)(又はオーバーヘッド(3A)とメタノール源との総量)をバッファー機能を備えた貯蔵器を介して、アセトアルデヒド分離工程に供給する方法(図1の例など)、(c)デカンターから排出するオーバーヘッド(3A)の量(又はオーバーヘッド(3A)とメタノール源との総量)を一定(又はほぼ一定)とする方法(図2の例など)などが挙げられ、これらの方法を組み合わせてもよい。
 (アセトアルデヒド分離工程に供する被処理液)
 後述のように、アセトアルデヒド分離工程(又はアセトアルデヒド蒸留塔)において、前記オーバーヘッド(3A)を含む被処理液を蒸留(又は精留)するが、本発明では、この蒸留に供する被処理液を所定の濃度でメタノール源を含む被処理液とする。このような条件下で被処理液を蒸留することにより、効率よく、アセトアルデヒド蒸留塔内でのヨウ化水素(および酢酸)濃度の上昇を抑制できる。
 なお、被処理液は、少なくともオーバーヘッド(3A)(前記のようにオーバーヘッド(3A)を循環させる場合には、オーバーヘッド(3A)の一部)を含んでいればよく、後述のように、メタノール源が添加されていてもよく、アセトアルデヒド分離工程を経た後の循環又はリサイクルされた液状成分(例えば、低沸点成分(4A)、アセトアルデヒド除去後の低沸点成分(4A)、高沸点成分(4B)など)などを含んでいてもよい。
 このような被処理液は、通常、主にオーバーヘッド(3A)で構成されており、アセトアルデヒド、酢酸の他、ヨウ化メチル、酢酸メチルなどの各種成分も含まれている。
 被処理液において、ヨウ化メチルの濃度は、例えば、1~98重量%(例えば、1~95重量%)、好ましくは1.5~95重量%(例えば、10~90重量%)、さらに好ましくは20~80重量%(例えば、30~70重量%)程度であってもよい。また、ヨウ化メチルの濃度は、例えば、60重量%以上(例えば、70~98重量%)、好ましくは70重量%以上(例えば、80~97重量%)、さらに好ましくは85重量%以上(例えば、87~95重量%)程度であってもよい。このようなヨウ化メチル濃度は、主に、前記オーバーヘッド(3A)のうち下層部分を被処理液とする場合の濃度である場合が多い。
 さらに、ヨウ化メチルの濃度は、例えば、20重量%以下(例えば、0.1~15重量%)、好ましくは15重量%以下(例えば、0.5~10重量%)、さらに好ましくは10重量%以下(例えば、1~6重量%)程度であってもよい。このようなヨウ化メチル濃度は、主に、前記オーバーヘッド(3A)のうち上層部分を被処理液とする場合の濃度である場合が多い。
 なお、アセトアルデヒド蒸留塔内において、ヨウ化メチルなどの平衡によりヨウ化水素を発生させる成分の濃度は、腐食抑制の観点から小さいのが好ましい。
 被処理液において、酢酸メチルの濃度は、0.5~50重量%の範囲から選択でき、例えば、0.5~30重量%(例えば、1~25重量%)、好ましくは2~25重量%(例えば、3~20重量%)、さらに好ましくは3~15重量%(例えば、4~10重量%)程度であってもよい。また、酢酸メチルの濃度は、例えば、30重量%以下(例えば、0.1~25重量%)、好ましくは20重量%以下(例えば、0.5~18重量%)、さらに好ましくは15重量%以下(例えば、3~13重量%)程度であってもよい。このような酢酸メチル濃度は、主に、前記オーバーヘッド(3A)のうち下層部分を被処理液とする場合の濃度である場合が多い。
 さらに、酢酸メチルの濃度は、例えば、20重量%以下(例えば、0.1~15重量%)、好ましくは15重量%以下(例えば、0.5~10重量%)、さらに好ましくは10重量%以下(例えば、1~8重量%)程度であってもよい。このような酢酸メチル濃度は、主に、前記オーバーヘッド(3A)のうち上層部分を被処理液とする場合の濃度である場合が多い。
 被処理液において、酢酸の濃度は、0.1~50重量%(例えば、0.2~50重量%、好ましくは0.3~50重量%)の範囲から選択でき、例えば、0.2~40重量%、好ましくは0.5~30重量%(例えば、0.8~25重量%)、さらに好ましくは1~20重量%(例えば、3~15重量%)程度であってもよい。また、酢酸の濃度は、例えば、20重量%以下(例えば、0.1~15重量%)、好ましくは10重量%以下(例えば、0.3~8重量%)、さらに好ましくは8重量%以下(例えば、0.5~5重量%)程度であってもよい。このような酢酸濃度は、主に、前記オーバーヘッド(3A)のうち下層部分を被処理液とする場合の濃度である場合が多い。
 さらに、酢酸の濃度は、例えば、50重量%以下(例えば、1~45重量%)、好ましくは40重量%以下(例えば、5~35重量%)、さらに好ましくは30重量%以下(例えば、8~25重量%)程度であってもよい。このような酢酸濃度は、主に、前記オーバーヘッド(3A)のうち上層部分を被処理液とする場合の濃度である場合が多い。
 被処理液において、水の濃度は、0.05~95重量%の範囲から選択でき、例えば、0.1~90重量%(例えば、0.2~80重量%)、好ましくは0.5~80重量%(例えば、0.8~75重量%)、さらに好ましくは1~75重量%(例えば、1.5~70重量%)程度であってもよい。また、水の濃度は、例えば、5重量%以下(例えば、0.01~3重量%)、好ましくは3重量%以下(例えば、0.05~2重量%)、さらに好ましくは2重量%以下(例えば、0.1~1重量%)程度であってもよい。このような水濃度は、主に、前記オーバーヘッド(3A)のうち下層部分を被処理液とする場合の濃度である場合が多い。
 さらに、水の濃度は、例えば、40重量%以上(例えば、45~95重量%)、好ましくは50重量%以上(例えば、55~90重量%)、さらに好ましくは60重量%以上(例えば、65~80重量%)程度であってもよい。このような水濃度は、主に、前記オーバーヘッド(3A)のうち上層部分を被処理液とする場合の濃度である場合が多い。
 被処理液において、ヨウ化水素の濃度は、重量基準で1~2000ppm(例えば、1~1000ppm、好ましくは5~1000ppm)の範囲から選択でき、例えば、3~1500ppm、好ましくは4~1000ppm、さらに好ましくは5~800ppm(例えば、7~600ppm)程度であってもよく、通常1~500ppm(例えば、1~300ppm、好ましくは5~200ppm(例えば、5~150ppm)、さらに好ましくは10~120ppm、特に15~100ppm)程度であってもよい。なお、被処理液中のヨウ化水素の濃度は、重量基準で、例えば、3~100ppm、好ましくは5~80ppm(例えば、5~50ppm)程度であってもよい。また、被処理液中のヨウ化水素の濃度は、例えば、重量基準で、30~150ppm、好ましくは50~100ppm程度であってもよい。凝縮したオーバーヘッド(3A)のうち、前者の濃度は主に下層のオーバーヘッド(3A)を、後者の濃度は主に上層のオーバーヘッド(3A)を、アセトアルデヒド分離工程に供する場合、このような濃度範囲となる場合が多い。
 なお、ヨウ化水素濃度は、直接的に測定してもよく、間接的に測定(又は算出)することもできる。例えば、ヨウ化水素濃度は、全ヨウ素イオン(I)濃度からヨウ化物塩[例えば、LiIなどの助触媒由来のヨウ化物の他、酢酸の製造過程において生成する腐食金属(Fe,Ni,Cr,Mo,Znなど)のヨウ化物などの金属ヨウ化物]由来のヨウ素イオン濃度を減じることにより算出してもよい。
 被処理液において、アセトアルデヒドの濃度は、例えば、0.001~5重量%、好ましくは0.005~3重量%、さらに好ましくは0.01~1重量%程度であってもよく、通常0.02~0.7重量%(例えば、0.03~0.6重量%)程度であってもよい。なお、被処理液中のアセトアルデヒドの濃度は、重量基準で、例えば、200~6000ppm、好ましくは400~4000ppm程度であってもよい。また、被処理液中のアセトアルデヒドの濃度は、例えば、重量基準で、500~20000ppm、好ましくは1000~16000ppm程度であってもよい。凝縮したオーバーヘッド(3A)のうち、前者の濃度は主に下層のオーバーヘッド(3A)を、後者の濃度は主に上層のオーバーヘッド(3A)を、アセトアルデヒド分離工程に供する場合、このような濃度範囲となる場合が多い。
 被処理液には、メタノール及びジメチルエーテルから選択された少なくとも1種のメタノール源が含まれる。メタノール源は、メタノール単独、ジメチルエーテル単独、メタノールとジメチルエーテルとの組み合わせのいずれであってもよい。なお、メタノール源には、酢酸メチルの加水分解により得られるメタノールも含まれる。メタノールとジメチルエーテルとを組み合わせる場合、メタノールとジメチルエーテルの割合は、前者/後者(重量比)=99.9/0.1~0.1/99.9(例えば、99/1~1/99)、好ましくは95/5~5/95、さらに好ましくは90/10~10/90(例えば、85/15~15/85)程度であってもよい。なお、メタノール源が、一方の成分(メタノール又はジメチルエーテル)を比較的多く含む場合、一方の成分と他方の成分との割合は、前者/後者(重量比)=99.9/0.1~30/70(例えば、99.5/0.5~40/60)、好ましくは99/1~45/55(例えば、98.5/1.5~50/50)、さらに好ましくは98/2~55/45(例えば、97/3~60/40)、特に96/4~65/35(例えば、95/5~70/30)程度であってもよい。
 被処理液において、メタノール源の濃度は、0.1~50重量%(例えば、0.2~50重量%)の範囲から選択でき、例えば、0.1~40重量%(例えば、0.2~30重量%)、好ましくは0.2~25重量%、さらに好ましくは0.2~20重量%(例えば、0.5~18重量%)、特に0.7~17重量%(例えば、1~15重量%、好ましくは2~15重量%)程度であってもよく、通常1~30重量%(例えば、2~25重量%)程度であってもよい。
 なお、被処理液中のメタノール源の濃度は、0.1~35重量%(例えば、0.1~28重量%)、好ましくは0.15~21重量%、さらに好ましくは0.2~17重量%(例えば、0.5~13重量%)、特に0.6~12重量%(例えば、0.7~10重量%)程度であってもよい。このような濃度は、特に、メタノール源がジメチルエーテルを多く含む場合などにおいて、好適である。
 なお、被処理液中のメタノール源の濃度は、例えば、0.1~20重量%、好ましくは0.2~15重量%(例えば、0.5~13重量%)程度であってもよい。また、被処理液中のメタノール源の濃度は、例えば、0.3~50重量%(例えば、0.5~40重量%)、好ましくは1~30重量%程度であってもよい。凝縮したオーバーヘッド(3A)のうち、特に、前者の濃度は主に下層のオーバーヘッド(3A)を、後者の濃度は主に上層のオーバーヘッド(3A)を、アセトアルデヒド分離工程に供する場合、このような濃度範囲としてもよい。
 また、被処理液において、メタノール源の割合(メタノール換算)は、被処理液(又はオーバーヘッド(3A))中の酢酸およびヨウ化水素の総量1モルに対して、0.1~40モル程度の範囲から選択でき、例えば、0.1~20モル(例えば、0.3~15モル)、好ましくは0.4~10モル(例えば、0.5~10モル)、さらに好ましくは0.7~7モル(例えば、1~5モル)、特に1.1~4モル(例えば、1.2~3モル)程度であってもよく、通常1~20モル(例えば、1.5~5モル)程度であってもよい。なお、上記割合は、メタノール換算の割合である。すなわち、ジメチルエーテル1モルからは、加水分解により2モルのメタノールが生成するため、メタノール源としてジメチルエーテルを使用する場合には、ジメチルエーテル1モルあたりメタノール2モルとして算出する。
 さらに、被処理液において、メタノール源の割合(メタノール換算)は、被処理液中のヨウ化水素1モルに対して、70モル以上[例えば、80モル以上(例えば、100~300000モル)]、好ましくは200モル以上(例えば、300~200000モル)、さらに好ましくは500モル以上(例えば、700~100000モル)、特に1000モル以上(例えば、1500~80000モル)、通常300~100000モル(例えば、500~70000モル、好ましくは1000~50000モル)程度であってもよい。
 さらにまた、被処理液において、メタノール源の割合(メタノール換算)は、被処理液中の酢酸1モルに対して、0.1~40モル程度の範囲から選択でき、例えば、0.1~20モル(例えば、0.3~15モル)、好ましくは0.4~10モル(例えば、0.5~10モル)、さらに好ましくは0.7~7モル(例えば、1~5モル)、特に1.1~4モル(例えば、1.2~3モル)程度であってもよく、通常1~20モル(例えば、1.5~5モル)程度であってもよい。
 また、メタノール源(メタノール換算)の割合は、被処理液中の酢酸1モルに対して、0.1~40モル(例えば、0.3~35モル)、好ましくは0.4~30モル(例えば、0.5~25モル)、さらに好ましくは0.7~20モル(例えば、1~15モル)、特に1.1~10モル(例えば、1.2~7モル)程度であってもよい。さらに、メタノール源(メタノール換算)の割合は、被処理液中の酢酸1モルに対して、0.05~20モル(例えば、0.1~15モル)、好ましくは0.2~10モル(例えば、0.3~8モル)、さらに好ましくは0.5~6モル(例えば、1~5モル)、特に1.1~4モル(例えば、1.2~3モル)程度であってもよい。凝縮したオーバーヘッド(3A)のうち、前者の濃度は主に下層のオーバーヘッド(3A)を、後者の濃度は主に上層のオーバーヘッド(3A)を、アセトアルデヒド分離工程に供する場合、このような濃度範囲となる場合が多い。
 被処理液中のメタノール源濃度は、反応条件や仕込みによって調整してもよいが、通常、アセトアルデヒド蒸留塔の内外において、オーバーヘッド(3A)に対してメタノール源及び/又は酢酸メチルを添加又は混合することにより調整することができる。代表的には、本発明の方法は、アセトアルデヒド蒸留塔に供給される前記オーバーヘッド(3A)にメタノール源(メタノール及び/又はジメチルエーテル)及び/又は酢酸メチルを添加又は混合する工程(添加工程、混合工程などということがある)を含んでいてもよい。なお、前記のように、酢酸メチルからメタノールを生成させることもできるため、アセトアルデヒド蒸留塔におけるメタノール源濃度を調整できれば、オーバーヘッド(3A)に対して酢酸メチルを添加又は混合することもできる。特に、少なくともメタノール源をオーバーヘッド(3A)に対して添加してもよい。
 このようなメタノール源は、酢酸回収工程において分離された後のオーバーヘッド(3A)とともに、アセトアルデヒド蒸留塔内で蒸留できれば、反応系のいずれの段階において、オーバーヘッド(3A)と混合することができ、アセトアルデヒド蒸留塔内で混合してもよい。特に、アセトアルデヒド蒸留塔内でのヨウ化水素濃度(および酢酸濃度)上昇を効率よく抑えるという観点からは、下記の方法(A)及び/又は方法(B)により、メタノール源及び/又は酢酸メチルを添加又は混合してもよい。
 (A)オーバーヘッド(3A)にメタノール源をアセトアルデヒド蒸留塔に供給される前に添加又は混合する方法(例えば、前記図1の例など)
 (B)アセトアルデヒド蒸留塔において、オーバーヘッド(3A)を供給する高さ又は位置[例えば、段(又は部位)]と同じか又はそれよりも上方[例えば、上段(又は上部)]にメタノール源及び/又は酢酸メチルを添加又は混合する方法(例えば、前記図1の例、図2の例など)
 方法(A)において、オーバーヘッド(3A)に対するメタノール源の混合位置は、アセトアルデヒド蒸留塔に供給される前であれば特に限定されず、例えば、デカンターに供給される前、デカンターから排出された後、バッファータンクから排出された後(前記図1、図2の例など)などのいずれであってもよく、複数の位置でメタノール源及び/又は酢酸メチルを混合してもよい。代表的には、デカンターから排出された後(オーバーヘッド(3A)の一部を循環させる場合には、一部を循環させた後)に供給する場合が多い。特に、メタノール源及び/又は酢酸メチルは、デカンターから排出された後、アセトアルデヒド蒸留塔に供給されるまでのライン[デカンターから(必要に応じてバッファー機能を備えた貯蔵器を介して)アセトアルデヒド除去塔に至るライン)]中において、オーバーヘッド(3A)と混合するのが好ましい。
 なお、オーバーヘッド(3A)とメタノール源及び/又は酢酸メチルとが混合されてからアセトアルデヒド蒸留塔に供給されるまでの時間(メタノール源及び/又は酢酸メチルの滞留時間)は、1秒以上(例えば、3秒~40分)の範囲から選択でき、例えば、5秒以上(例えば、7秒~35分)、好ましくは10秒以上(例えば、10秒~30分)、さらに好ましくは15秒~20分(例えば、20秒~10分)程度であってもよく、通常10秒~5分[例えば、10秒~3分(例えば、10秒~1分)]程度であってもよい。このような滞留時間とする(特に後述の液温度と組み合わせる)ことにより、アセトアルデヒド蒸留塔内におけるヨウ化水素や酢酸濃度の上昇をより一層効率よく抑制しやすい。
 また、方法(B)では、メタノール源及び/又は酢酸メチルの混合位置は、オーバーヘッド(3A)を供給する段と同じか、それよりも上段であればよいが、通常、塔頂部よりも低い位置(非塔頂部)である場合が多い。
 なお、方法(A)と方法(B)とを組み合わせる場合、混合するメタノール源及び/又は酢酸メチルの総量を、アセトアルデヒド蒸留塔において前記範囲となるように、各混合位置での混合量を調整すればよい。
 なお、アセトアルデヒド蒸留塔に供給するオーバーヘッド(3A)(オーバーヘッド(3A)にメタノール源及び/又は酢酸メチルを添加する場合には、オーバーヘッド(3A)およびメタノール源の混合液)の温度(液温度)は、例えば、10~100℃、好ましくは15~95℃(例えば、20~90℃)、さらに好ましくは25~85℃(例えば、30~80℃)程度であってもよく、通常20~100℃(例えば、30~85℃)程度であってもよい。
 特に、前記方法(A)と組み合わせて液温度(すなわち、オーバーヘッド(3A)およびメタノール源の混合液の液温度)を上記範囲とすると、オーバーヘッド(3A)がアセトアルデヒド蒸留塔に供給される前に、ある程度メタノール源とヨウ化水素や酢酸との反応が進行したりこのような反応がアセトアルデヒド蒸留塔内で進行しやすくなるためか、アセトアルデヒド蒸留塔内におけるヨウ化水素や酢酸濃度の上昇をより一層効率よく抑制することができる。
 (アセトアルデヒド分離工程)
 アセトアルデヒド分離工程では、アセトアルデヒド蒸留塔(除去塔又は分離塔)に供給されたオーバーヘッド(3A)を含む被処理液を、蒸留により、アセトアルデヒドを含む低沸点成分(4A)と、高沸点成分(4B)とに分離する。ここで、被処理液は、前記のように、所定の濃度でメタノール源を含む被処理液として蒸留に供される。すなわち、アセトアルデヒド分離工程では、被処理液を蒸留し、低沸点成分(4A)と高沸点成分(4B)とに分離する。なお、アセトアルデヒドの分離に先立って、コンデンサーや冷却器などを利用することにより、オーバーヘッド(3A)からオフガス成分を予め除去してもよい。
 アセトアルデヒド蒸留塔としては、例えば、慣用の蒸留塔、例えば、棚段塔、充填塔、フラッシュ蒸留塔などが使用できるが、通常、棚段塔、充填塔などの精留塔を使用してもよい。アセトアルデヒド蒸留塔の材質は、特に限定されず、金属、セラミックなどであってもよい。特に、本発明では、蒸留塔内におけるヨウ化水素(および酢酸)濃度の上昇が著しく抑えられているため、蒸留塔の腐食も高いレベルで抑制することができる。そのため、本発明では、アセトアルデヒド蒸留塔として、ジルコニウム製のような高度に耐腐食性ではあるが高価な材質の蒸留塔以外にも、合金[例えば、鉄基合金(又は鉄を主成分とする合金、例えば、ステンレス(クロム、ニッケル、モリブデンなどを含むステンレスを含む)、二相鉄基合金(二相ステンレスなど)、ニッケル基合金(又はニッケルを主成分とする合金、例えば、ハステロイ(商標名)、インコネル(商標名)など)、コバルト基合金(又はコバルトを主成分とする合金)などの遷移金属基合金]などの比較的安価な材質の蒸留塔を使用することもできる。
 アセトアルデヒド蒸留塔において、温度(塔頂温度)及び圧力(塔頂圧力)は、アセトアルデヒドと他の成分(特にヨウ化メチル)との沸点差を利用して、オーバーヘッド(3A)又は被処理液(又はプロセス液)から、少なくともアセトアルデヒドを低沸点成分(4A)と、高沸点成分(4B)とを分離可能であれば特に制限されず、蒸留塔の種類などに応じて選択できる。
 例えば、塔頂圧力は、絶対圧力で、10~1000kPa、好ましくは10~700kPa、さらに好ましくは100~500kPa程度である。
 塔内温度は、例えば、10~150℃、好ましくは30~140℃、さらに好ましくは40~130℃程度であってもよく、通常30~100℃(例えば、50~90℃)程度であってもよい。また、塔頂温度は、例えば、10~100℃、好ましくは30~120℃、さらに好ましくは40~100℃程度であってもよい。さらに、塔底温度は、例えば、30~150℃、好ましくは50~130℃、さらに好ましくは60~120℃程度であってもよい。
 蒸留塔の段数(理論段)は、例えば、5~150段、好ましくは10~120段、さらに好ましくは20~100段程度であってもよく、通常、30~120段(例えば、40~100段)程度であってもよい。
 アセトアルデヒド蒸留塔において、還流比は、前記理論段数に応じて、1~1000、好ましくは10~800、さらに好ましくは50~600(例えば、100~500)、特に150~400(例えば、200~350)程度から選択できる。
 このようにメタノール源の存在下で蒸留することにより、アセトアルデヒド蒸留塔内でのヨウ化水素濃度や酢酸濃度の上昇を抑えることができる。例えば、連続反応において、アセトアルデヒド蒸留塔内(塔頂及び/又は塔底)でのヨウ化水素濃度は、100ppm以下(例えば、0又は検出限界~70ppm)、好ましくは50ppm以下(例えば、0又は検出限界~30ppm)、さらに好ましくは10ppm以下(例えば、0又は検出限界~5ppm)、特に3ppm以下(例えば、0又は検出限界~1ppm)程度である。
 また、連続反応において、アセトアルデヒド蒸留塔内(塔頂及び/又は塔底)での酢酸濃度は、例えば、50重量%以下(例えば、0(又は検出限界以下、他においても同じ)~30重量%)、好ましくは0~10重量%(例えば、0.001~5重量%)、さらに好ましくは0~3重量%(例えば、0.01~2重量%)、特に0.005~1重量%程度であってもよい。
 なお、アセトアルデヒド蒸留塔内(塔頂及び/又は塔底)での酢酸濃度は、10重量%以下(例えば、0~7重量%)、好ましくは7重量%以下(例えば、0~6重量%)、さらに好ましくは5重量%以下(例えば、0~4重量%)程度であってもよい。また、アセトアルデヒド蒸留塔内(塔頂及び/又は塔底)での酢酸濃度は、30重量%以下(例えば、0~25重量%)、好ましくは15重量%以下(例えば、0~10重量%)、さらに好ましくは8重量%以下(例えば、0~5重量%)程度であってもよい。凝縮したオーバーヘッド(3A)のうち、前者の濃度は主に下層のオーバーヘッド(3A)を、後者の濃度は主に上層のオーバーヘッド(3A)を、アセトアルデヒド分離工程に供する場合、このような濃度範囲となる場合が多い。
 そして、高沸点成分(4B)は、アセトアルデヒド蒸留塔から、有用成分であるヨウ化メチルを含む分離液(缶出液又は塔底液)として分離される。
 (リサイクル工程)
 高沸点成分(4B)は、ヨウ化メチルなどの有用成分を含んでいる場合が多く、分離後、そのまま回収してもよく、反応系からアセトアルデヒドの分離に至るまでの工程にリサイクルしてもよい。すなわち、本発明の方法は、さらに、分離液としての前記高沸点成分(4B)を反応系からアセトアルデヒドの分離に至るまでの工程にリサイクルするリサイクル工程を含んでいてもよい。
 リサイクル工程では、分離液としての前記高沸点成分(4B)をリサイクルする。アセトアルデヒドが分離された分離液(又は高沸点成分(4B))のリサイクルは、反応系からアセトアルデヒドの分離に至るまでの工程であれば特に限定されず、反応工程(又は反応器)、フラッシュ蒸留工程(又はフラッシュ蒸留塔)、酢酸回収工程(又は蒸留塔)などのいずれであってもよく、前記図の例のように、アセトアルデヒド蒸留塔にリサイクルしてもよく、これらを組み合わせてリサイクルしてもよい。通常、アセトアルデヒドが分離された分離液(又は高沸点成分(4B))は、少なくとも反応器にリサイクルする場合が多い。
 分離液(又は高沸点成分(4B))は、直接的にリサイクルしてもよく、バッファー機能を備えた貯蔵器(バッファータンクなど)を介してリサイクルしてもよい。このようなバッファー機能を備えた貯蔵器を用いることにより、分離液の流量が変動する場合であっても、貯蔵器内で流量変動を緩和して、一定又はほぼ一定の流量で分離液をリサイクルしやすく、そのため、リサイクルに供する工程に及ぼす流量変動の影響を低減することができる。
 バッファー機能を備えた貯蔵器は、前記凝縮工程の場合と同様に、流量の変動の程度などに基づいて選択できるが、分離液の滞留時間を目安に選択してもよい。貯蔵器において、分離液の滞留時間は、特に制限されないが、例えば、3分以上(例えば、4分~3時間)、好ましくは6分以上(例えば、8~60分)、さらに好ましくは12分以上(例えば、15~40分程度)であってもよい。
 バッファー機能を備えた貯蔵器を介して分離液をリサイクルする場合、分離液(高沸点成分(4B))の流量の変動を小さくすることができる。
 なお、分離されたアセトアルデヒドを含む低沸点成分(4A)は、そのまま排出してもよいが、ヨウ化メチルなどの有用成分を含む場合がある。そのため、さらに、低沸点成分(4A)から回収したヨウ化メチル(又はヨウ化メチルを含む成分、例えば、ヨウ化メチル、酢酸メチルなどを含む成分)をリサイクルしてもよい。
 低沸点成分(4A)から、アセトアルデヒドと、ヨウ化メチル(又はヨウ化メチルを含む成分)とを分離する方法としては、特に限定されず、慣用の方法(例えば、抽出、蒸留など)を用いることができる。代表的には、(i)低沸点成分(4A)を蒸留し、ヨウ化メチルとアセトアルデヒドを分離する方法、(ii)アセトアルデヒドが水と混和し、ヨウ化メチルが水と混和しない性質を利用し、ヨウ化メチルとアセトアルデヒドの分離に水抽出を用いる方法などが挙げられる。メタアルデヒドなどの生成を抑制するという観点からは、水抽出する方法(ii)が好ましい。この方法は、エステルなどの分解などによる蒸留液中の水素イオン濃度の上昇により、パラアルデヒド、メタアルデヒドの生成を抑制できるため、効率よくアセトアルデヒドを高濃度に濃縮、除去できる。
 抽出温度および抽出時間は、特に限定されず、例えば、温度0℃~100℃で、1秒~1時間程度抽出してもよい。抽出圧力は、特に限定されず、コスト的側面などから有利な条件を選ぶことができる。抽出器としては、例えば、ミキサーとセトラーの組み合わせ、スタティックミキサーとデカンターの組み合わせ、RDC(rotated disk contactor)、Karr塔、スプレー塔、充填塔、多孔板塔、邪魔板塔、脈動塔などを用いることができる。
 ヨウ化メチル(又はヨウ化メチルを含む成分)のリサイクルは、反応系からアセトアルデヒドの分離に至るまでの工程であれば特に限定されず、反応工程(又は反応器)、フラッシュ蒸留工程(又はフラッシュ蒸留塔)、酢酸回収工程(又は蒸留塔)などのいずれであってもよく、前記図の例のように、アセトアルデヒド分離塔にリサイクル(高沸点成分(4B)としてリサイクル)してもよく、これらを組み合わせてリサイクルしてもよい。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。
 (比較例1~4および実施例1~6)
 図1に記載の酢酸の製造方法を適用した場合におけるメタノールの存在による腐食状況の変化について観察した。すなわち、反応器1に、ヨウ化メチル、水、酢酸メチル、酢酸、ヨウ化リチウム、ロジウムを仕込んでメタノールと一酸化炭素とを反応させ、反応液を反応器1から引き出してフラッシャーに供給し、フラッシャー2において、揮発性成分(2A)をスプリッターカラム3に供給し、低揮発性成分(2B)は反応器1にそのままリサイクルした。スプリッターカラム3では、蒸留により、オーバーヘッド(3A)と、酢酸を含む流分と高沸点流分(3C)とに分離し、酢酸を含む流分(3B)はサイドカットされ、高沸点流分(3C)はそのまま反応器1にリサイクルした。前記オーバーヘッド(3A)はデカンター4に供給され、デカンター4において上層と下層に分離した。デカンター4においては、ライン17、18への流出量、滞留時間を調整してデカンター4の液面を一定にした。そして、デカンター4から排出され、アセトアルデヒド除去塔6に供給される液として、表1に示す組成の被処理液を得た。なお、比較例1、3、実施例1、3および5ではデカンター4における下層液を、比較例2、4、実施例2、4および6ではデカンター4における上層液を用い、実施例1および2では、さらに、ライン51からメタノールを供給することにより、被処理液中のメタノール濃度を調整した。
 そして、500mlのオートクレーブ[小田鋼機(株)製のハステロイB2(HB2)製]に、表1に示す被処理液と、各種材質のテストピース(サイズ:36mm×25mm×2.5mm)を入れ密閉した。その後、常温でNを0.05MPaまで昇圧後、温度を85℃に昇温した。その際、オートクレーブの圧力は0.14MPaまで上昇した。その状態で、100時間保持することにより、酢酸の連続製造プロセスにおける擬似的なアセトアルデヒド分離工程(アセトアルデヒド除去塔6内の状態)を再現した。その後、各テストピースの腐食を確認した。なお、腐食テストは、比較例1~2および実施例1~2については、以下の基準で評価し、比較例3~4および実施例3~6については、具体的な腐食量を測定した。
◎:テストピースに全く腐食がみられない。
○:テストピースにはほとんど腐食がみられない。
△:テストピースがやや腐食している。
×:テストピースが著しく腐食している。
 被処理液の組成を表1に、結果を表2に示す。表2では、100時間経過後(冷却後)の液(処理液)の液組成も合わせて示す。なお、メタノールを添加した場合には、処理液に、ジメチルエーテルや炭化水素成分などの低沸点成分が含まれている(そのため、表の組成を合計しても100重量%とならない)場合があり、処理液中のジメチルエーテルの濃度は被処理液中よりも0.5~2重量%程度増加していた。なお、表1および表2において、「ppm」とは重量基準での濃度、「wt%」とは重量%、「t」とは0.1重量%未満、「ND」とは非検出(検出限界)、「Ac」とは酢酸、「MA」とは酢酸メチル、「MeOH」とはメタノール、「MeI」とはヨウ化メチル、「AD」とはアセトアルデヒド、「HC」はニッケル基合金(小田鋼機(株)製のハステロイC)、「SUS」とはステンレス鋼(ウメトク(株)製、SUS316)、「NAS64」とは二相ステンレス鋼(ウメトク(株)製、NAS64)、「NAS354N」とはステンレス鋼(ウメトク(株)製、NAS354N)を示し、単位「mm/Y」とは一年間あたりのテストピースの腐食速度(厚みの減肉量)をmmに換算したものを意味する。また、ヨウ化水素濃度は、全ヨウ素イオン(I)濃度からヨウ化物塩由来のヨウ素イオン濃度を減じることにより算出した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表から明らかなように、アセトアルデヒド除去塔内の液組成を特定の成分および割合とすることで、HIの生成又は濃度上昇を抑え、テストピースの腐食を抑えることができた。
 本発明の製造方法は、アセトアルデヒド蒸留塔内でのヨウ化水素(特に、ヨウ化水素及び酢酸)の濃度上昇を効率よく抑制しつつ酢酸を製造するプロセスとして極めて有用である。
 1…反応器
 2…フラッシャー(蒸発槽)
 3…スプリッターカラム
 4…デカンター
 4A…バッファー機能を備えたデカンター
 5,7…バッファータンク
 6…アセトアルデヒド除去塔
 8…抽出装置
 9…ホールドタンク
 51,52…メタノール源(メタノール及び/又はジメチルエーテル)供給ライン

Claims (12)

  1.  金属触媒、ハロゲン化物塩及びヨウ化メチルで構成された触媒系の存在下、メタノールと一酸化炭素とをカルボニル化反応器で連続的に反応させる反応工程と、前記反応器からの反応混合物をフラッシャーに連続的に供給し、生成した酢酸、酢酸メチル、ヨウ化メチルおよび水を含む揮発性成分(2A)と、金属触媒およびハロゲン化物塩を含む低揮発性成分(2B)とに分離するフラッシュ蒸発工程と、前記揮発性成分(2A)を蒸留塔に供給し、ヨウ化メチル、酢酸、酢酸メチル、水、副生したアセトアルデヒドおよびヨウ化水素を含むオーバーヘッド(3A)と、酢酸を含む流分(3B)とに分離して、酢酸を回収する酢酸回収工程と、凝縮した前記オーバーヘッド(3A)をアセトアルデヒド蒸留塔に供給し、前記オーバーヘッド(3A)を含む被処理液を、蒸留により、アセトアルデヒドを含む低沸点成分(4A)と、高沸点成分(4B)とに分離するアセトアルデヒド分離工程とを含む酢酸の製造方法であって、
    前記アセトアルデヒド分離工程において、メタノール及びジメチルエーテルから選択された少なくとも1種のメタノール源を0.1~50重量%の濃度で含む被処理液を蒸留する酢酸の製造方法。
  2.  被処理液において、ヨウ化メチルの割合が1~98重量%以上、酢酸メチルの割合が0.5~50重量%、酢酸の割合が0.2~50重量%、水の割合が0.05~95重量%、ヨウ化水素の割合が重量基準で1~1000ppmである請求項1記載の製造方法。
  3.  被処理液中のメタノール源の濃度が0.2~50重量%である請求項1又は2記載の製造方法。
  4.  被処理液中のメタノール源の濃度が2~25重量%である請求項1~3のいずれかに記載の製造方法。
  5.  被処理液において、酢酸の濃度が0.3~50重量%であり、メタノール源の割合(メタノール換算)が、酢酸およびヨウ化水素の総量1モルに対して、0.1~40モルである請求項1~4のいずれかに記載の製造方法。
  6.  被処理液中のメタノール源の割合(メタノール換算)が、ヨウ化水素1モルに対して80モル以上である請求項1~5のいずれかに記載の製造方法。
  7.  被処理液において、酢酸の濃度が0.5~50重量%、ヨウ化水素の濃度が5~1000ppm、メタノール源の割合(メタノール換算)が、酢酸およびヨウ化水素の総量1モルに対して1~20モルである請求項1~6のいずれかに記載の製造方法。
  8.  以下の方法(A)及び/又は方法(B)により、メタノール源及び/又は酢酸メチルを添加又は混合して被処理液中のメタノール源の濃度を調整する請求項1~7のいずれかに記載の製造方法。
     (A)オーバーヘッド(3A)にメタノール源及び/又は酢酸メチルをアセトアルデヒド蒸留塔に供給される前に添加又は混合する
     (B)アセトアルデヒド蒸留塔において、オーバーヘッド(3A)を供給する高さと同じか又はそれよりも上方にメタノール源及び/又は酢酸メチルを添加又は混合する
  9.  方法(A)において、オーバーヘッド(3A)とメタノール源及び/又は酢酸メチルとを含む混合液の温度を20~100℃とするとともに、オーバーヘッド(3A)とメタノール源及び/又は酢酸メチルとが混合されてからアセトアルデヒド蒸留塔に供給されるまでの時間を5秒以上とし、少なくとも方法(A)によりメタノール源の濃度を調整する請求項8記載の製造方法。
  10.  方法(A)において、オーバーヘッド(3A)とメタノール源及び/又は酢酸メチルとを含む混合液の温度を30~85℃とするとともに、オーバーヘッド(3A)とメタノール源及び/又は酢酸メチルとが混合されてからアセトアルデヒド蒸留塔に供給されるまでの時間を10秒以上とし、少なくとも方法(A)によりメタノール源の濃度を調整する請求項8記載の製造方法。
  11.  アセトアルデヒド蒸留塔の材質が、鉄基合金である請求項1~10のいずれかに記載の方法。
  12.  アセトアルデヒド蒸留塔の材質が、ステンレス又は二相ステンレスである請求項1~11のいずれかに記載の方法。
PCT/JP2011/077846 2010-12-15 2011-12-01 酢酸の製造方法 WO2012081418A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
ES11848683T ES2646749T5 (es) 2010-12-15 2011-12-01 Procedimiento para producir ácido acético
MX2013006884A MX338849B (es) 2010-12-15 2011-12-01 Procedimiento para producir acido acetico.
JP2012548728A JP5914358B2 (ja) 2010-12-15 2011-12-01 酢酸の製造方法
US13/995,102 US9162958B2 (en) 2010-12-15 2011-12-01 Process for producing acetic acid
EP11848683.6A EP2653458B2 (en) 2010-12-15 2011-12-01 Process for producing acetic acid
US16/026,736 USRE47569E1 (en) 2010-12-15 2011-12-01 Process for producing acetic acid
CN201180067677.1A CN103402964B (zh) 2010-12-15 2011-12-01 乙酸的制备方法
US15/664,076 USRE46999E1 (en) 2010-12-15 2011-12-01 Process for producing acetic acid
SG2013042031A SG190941A1 (en) 2010-12-15 2011-12-01 Process for producing acetic acid
BR112013014808-0A BR112013014808B1 (pt) 2010-12-15 2011-12-01 processo para produzir ácido acético
KR1020137018273A KR101874661B1 (ko) 2010-12-15 2011-12-01 아세트산의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010279799 2010-12-15
JP2010-279799 2010-12-15

Publications (1)

Publication Number Publication Date
WO2012081418A1 true WO2012081418A1 (ja) 2012-06-21

Family

ID=46244527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077846 WO2012081418A1 (ja) 2010-12-15 2011-12-01 酢酸の製造方法

Country Status (13)

Country Link
US (3) USRE46999E1 (ja)
EP (1) EP2653458B2 (ja)
JP (1) JP5914358B2 (ja)
KR (1) KR101874661B1 (ja)
CN (1) CN103402964B (ja)
BR (1) BR112013014808B1 (ja)
ES (1) ES2646749T5 (ja)
MX (1) MX338849B (ja)
MY (1) MY161174A (ja)
SA (1) SA111330055B1 (ja)
SG (1) SG190941A1 (ja)
TW (1) TWI511950B (ja)
WO (1) WO2012081418A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115826A1 (ja) * 2013-01-25 2014-07-31 株式会社ダイセル カルボン酸の製造方法
JP2017048199A (ja) * 2014-11-14 2017-03-09 セラニーズ・インターナショナル・コーポレーション デカンター制御を伴う酢酸の製造方法
EP2653458B1 (en) 2010-12-15 2017-09-13 Daicel Corporation Process for producing acetic acid
JP2018521954A (ja) * 2016-07-07 2018-08-09 株式会社ダイセル 酢酸の製造方法
WO2018179457A1 (ja) * 2017-03-28 2018-10-04 株式会社ダイセル 酢酸の製造方法
US10308581B2 (en) 2017-03-28 2019-06-04 Daicel Corporation Method for producing acetic acid

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046593A1 (ja) 2010-10-06 2012-04-12 ダイセル化学工業株式会社 酢酸の製造方法
MY161203A (en) 2010-12-15 2017-04-14 Daicel Corp Process for producing acetic acid
TWI547477B (zh) 2012-03-14 2016-09-01 大賽璐股份有限公司 醋酸之製造方法
US9505691B2 (en) 2014-10-02 2016-11-29 Celanese International Corporation Process for producing acetic acid
US9340481B1 (en) 2014-11-14 2016-05-17 Celanese International Corporation Process for flashing a reaction medium comprising lithium acetate
US9233907B1 (en) 2014-11-14 2016-01-12 Celanese International Corporation Reducing hydrogen iodide content in carbonylation processes
CN107001222B (zh) 2014-11-14 2021-05-11 国际人造丝公司 用于从具有低乙基碘含量的反应介质生产乙酸的方法
US9458077B2 (en) 2014-11-14 2016-10-04 Celanese International Corporation Reducing hydrogen iodide content in carbonylation processes
ES2740773T3 (es) 2014-11-14 2020-02-06 Celanese Int Corp Procedimiento de producción de ácido acético mediante la introducción de un compuesto de litio
EP3218105B1 (en) 2014-11-14 2020-10-14 Celanese International Corporation Processes for improving acetic acid yield by removing iron
US9260369B1 (en) 2014-11-14 2016-02-16 Celanese International Corporation Processes for producing acetic acid product having low butyl acetate content
US9302975B1 (en) 2015-07-01 2016-04-05 Celanese International Corporation Process for flashing a reaction medium
US9540304B2 (en) 2014-11-14 2017-01-10 Celanese International Corporation Processes for producing an acetic acid product having low butyl acetate content
US9561994B2 (en) 2015-01-30 2017-02-07 Celanese International Corporation Processes for producing acetic acid
US9540302B2 (en) 2015-04-01 2017-01-10 Celanese International Corporation Processes for producing acetic acid
SG11201706008YA (en) 2015-01-30 2017-08-30 Celanese Int Corp Processes for producing acetic acid
WO2016122727A1 (en) 2015-01-30 2016-08-04 Celanese International Corporation Processes for producing acetic acid
US9487464B2 (en) 2015-01-30 2016-11-08 Celanese International Corporation Processes for producing acetic acid
US9505696B2 (en) 2015-02-04 2016-11-29 Celanese International Corporation Process to control HI concentration in residuum stream
US9512056B2 (en) 2015-02-04 2016-12-06 Celanese International Corporation Process to control HI concentration in residuum stream
US10413840B2 (en) 2015-02-04 2019-09-17 Celanese International Coporation Process to control HI concentration in residuum stream
US9540303B2 (en) 2015-04-01 2017-01-10 Celanese International Corporation Processes for producing acetic acid
US9382186B1 (en) 2015-07-01 2016-07-05 Celanese International Corporation Process for producing acetic acid
US9382183B1 (en) 2015-07-01 2016-07-05 Celanese International Corporation Process for flashing a reaction medium
US9302974B1 (en) 2015-07-01 2016-04-05 Celanese International Corporation Process for producing acetic acid
US9416088B1 (en) 2015-10-02 2016-08-16 Celanese International Corporation Process to produce acetic acid with recycle of water
US9957216B2 (en) 2015-11-13 2018-05-01 Celanese International Corporation Processes for producing acetic acid
US9908835B2 (en) 2015-11-13 2018-03-06 Celanese International Corporation Processes for purifying acetic and hydrating anhydride
CN110248920B (zh) 2017-01-18 2022-12-09 株式会社大赛璐 乙酸的制备方法
CN110049963B (zh) * 2017-01-18 2022-02-18 株式会社大赛璐 乙酸的制备方法
EP3802126B1 (en) 2018-05-24 2023-06-14 VKR Holding A/S Vig unit lamination
WO2020008504A1 (ja) * 2018-07-02 2020-01-09 株式会社ダイセル 酢酸の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0867650A (ja) * 1994-06-15 1996-03-12 Daicel Chem Ind Ltd 高純度酢酸の製造方法
JP2000072712A (ja) * 1998-08-31 2000-03-07 Daicel Chem Ind Ltd 酢酸の製造方法
JP2005515227A (ja) * 2002-01-11 2005-05-26 セラニーズ・インターナショナル・コーポレーション 酢酸メチル副生成物ストリームを用いるカルボニル化により酢酸、無水酢酸を製造、またはこれらを同時に製造するための統合プロセス
JP2005289936A (ja) * 2004-04-02 2005-10-20 Daicel Chem Ind Ltd ヨウ化水素の分離方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3335179A (en) 1964-02-12 1967-08-08 Monsanto Co Production of acetic acid and recovery by plural stage distillation
US3769329A (en) 1970-03-12 1973-10-30 Monsanto Co Production of carboxylic acids and esters
US5144068A (en) 1984-05-03 1992-09-01 Hoechst Celanese Corporation Methanol carbonylation process
US5001259A (en) 1984-05-03 1991-03-19 Hoechst Celanese Corporation Methanol carbonylation process
JP3581725B2 (ja) 1994-06-30 2004-10-27 ダイセル化学工業株式会社 アセトアルデヒドとヨウ化メチルの分離方法
US5625095A (en) 1994-06-15 1997-04-29 Daicel Chemical Industries, Ltd. Process for producing high purity acetic acid
US6339171B1 (en) 1996-10-18 2002-01-15 Celanese International Corporation Removal or reduction of permanganate reducing compounds and alkyl iodides from a carbonylation process stream
IN192600B (ja) 1996-10-18 2004-05-08 Hoechst Celanese Corp
US7271293B2 (en) 2004-03-02 2007-09-18 Celanese International Corporation Control method for process of removing permanganate reducing compounds from methanol carbonylation process
US7208624B2 (en) 2004-03-02 2007-04-24 Celanese International Corporation Process for producing acetic acid
US7855306B2 (en) 2005-04-28 2010-12-21 Celanese International Corporation Process for the production of acetic acid
EP1912926A2 (en) 2005-07-14 2008-04-23 Daicel Chemical Industries, Ltd. Process for producing carboxylic acid
US7524988B2 (en) 2006-08-01 2009-04-28 Lyondell Chemical Technology, L.P. Preparation of acetic acid
US7820855B2 (en) 2008-04-29 2010-10-26 Celanese International Corporation Method and apparatus for carbonylating methanol with acetic acid enriched flash stream
JP5933168B2 (ja) 2010-09-24 2016-06-08 株式会社三共 遊技機
WO2012046593A1 (ja) * 2010-10-06 2012-04-12 ダイセル化学工業株式会社 酢酸の製造方法
MY161174A (en) 2010-12-15 2017-04-14 Daicel Corp Process for producing acetic acid
EP2653459B2 (en) * 2010-12-15 2021-12-08 Daicel Corporation Acetic acid production method
MY161203A (en) * 2010-12-15 2017-04-14 Daicel Corp Process for producing acetic acid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0867650A (ja) * 1994-06-15 1996-03-12 Daicel Chem Ind Ltd 高純度酢酸の製造方法
JP2000072712A (ja) * 1998-08-31 2000-03-07 Daicel Chem Ind Ltd 酢酸の製造方法
JP2005515227A (ja) * 2002-01-11 2005-05-26 セラニーズ・インターナショナル・コーポレーション 酢酸メチル副生成物ストリームを用いるカルボニル化により酢酸、無水酢酸を製造、またはこれらを同時に製造するための統合プロセス
JP2005289936A (ja) * 2004-04-02 2005-10-20 Daicel Chem Ind Ltd ヨウ化水素の分離方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2653458A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2653458B1 (en) 2010-12-15 2017-09-13 Daicel Corporation Process for producing acetic acid
WO2014115826A1 (ja) * 2013-01-25 2014-07-31 株式会社ダイセル カルボン酸の製造方法
CN105189436A (zh) * 2013-01-25 2015-12-23 株式会社大赛璐 羧酸的制造方法
JPWO2014115826A1 (ja) * 2013-01-25 2017-01-26 株式会社ダイセル カルボン酸の製造方法
JP2017048199A (ja) * 2014-11-14 2017-03-09 セラニーズ・インターナショナル・コーポレーション デカンター制御を伴う酢酸の製造方法
JP2018521954A (ja) * 2016-07-07 2018-08-09 株式会社ダイセル 酢酸の製造方法
WO2018179457A1 (ja) * 2017-03-28 2018-10-04 株式会社ダイセル 酢酸の製造方法
JP6481043B1 (ja) * 2017-03-28 2019-03-13 株式会社ダイセル 酢酸の製造方法
US10308581B2 (en) 2017-03-28 2019-06-04 Daicel Corporation Method for producing acetic acid
KR20190127857A (ko) * 2017-03-28 2019-11-13 주식회사 다이셀 아세트산의 제조 방법
KR102328843B1 (ko) 2017-03-28 2021-11-19 주식회사 다이셀 아세트산의 제조 방법

Also Published As

Publication number Publication date
US20130281735A1 (en) 2013-10-24
KR101874661B1 (ko) 2018-07-04
EP2653458A4 (en) 2015-12-09
CN103402964B (zh) 2015-09-02
EP2653458A1 (en) 2013-10-23
USRE46999E1 (en) 2018-08-21
KR20140032367A (ko) 2014-03-14
MX338849B (es) 2016-05-02
ES2646749T5 (es) 2021-10-21
MX2013006884A (es) 2013-07-05
CN103402964A (zh) 2013-11-20
TWI511950B (zh) 2015-12-11
SA111330055B1 (ar) 2015-03-31
EP2653458B1 (en) 2017-09-13
MY161174A (en) 2017-04-14
ES2646749T3 (es) 2017-12-15
BR112013014808B1 (pt) 2021-03-02
TW201231450A (en) 2012-08-01
EP2653458B2 (en) 2021-03-17
USRE47569E1 (en) 2019-08-13
JPWO2012081418A1 (ja) 2014-05-22
SG190941A1 (en) 2013-08-30
BR112013014808A2 (pt) 2020-08-11
JP5914358B2 (ja) 2016-05-11
US9162958B2 (en) 2015-10-20

Similar Documents

Publication Publication Date Title
JP5914358B2 (ja) 酢酸の製造方法
JP5823981B2 (ja) 酢酸の製造方法
JP6166043B2 (ja) 酢酸の製造方法
JP6007108B2 (ja) 酢酸の製造方法
US7678940B2 (en) Process for producing carboxylic acid
JP5872477B2 (ja) 酢酸の製造方法
EP2598467B1 (en) Process for producing acetic acid
KR102255683B1 (ko) 아세트산의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11848683

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012548728

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011848683

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011848683

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/006884

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13995102

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137018273

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013014808

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013014808

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130613