WO2018179457A1 - 酢酸の製造方法 - Google Patents

酢酸の製造方法 Download PDF

Info

Publication number
WO2018179457A1
WO2018179457A1 PCT/JP2017/019579 JP2017019579W WO2018179457A1 WO 2018179457 A1 WO2018179457 A1 WO 2018179457A1 JP 2017019579 W JP2017019579 W JP 2017019579W WO 2018179457 A1 WO2018179457 A1 WO 2018179457A1
Authority
WO
WIPO (PCT)
Prior art keywords
acetic acid
less
mass
stream
concentration
Prior art date
Application number
PCT/JP2017/019579
Other languages
English (en)
French (fr)
Inventor
清水雅彦
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES17737197T priority Critical patent/ES2779805T3/es
Priority to JP2017536046A priority patent/JP6481043B1/ja
Priority to KR1020197030525A priority patent/KR102328843B1/ko
Priority to CN201780083025.4A priority patent/CN110191874A/zh
Priority to MYPI2019005733A priority patent/MY189357A/en
Priority to SG11201908151V priority patent/SG11201908151VA/en
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to US15/542,855 priority patent/US10308581B2/en
Priority to BR112019018754A priority patent/BR112019018754A2/pt
Priority to EP17737197.8A priority patent/EP3401303B1/en
Priority to MX2019011612A priority patent/MX2019011612A/es
Publication of WO2018179457A1 publication Critical patent/WO2018179457A1/ja
Priority to PH12019550201A priority patent/PH12019550201A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/08Acetic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/10Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
    • C07C51/12Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide on an oxygen-containing group in organic compounds, e.g. alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • C07C51/44Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation

Definitions

  • the present invention relates to a method for producing acetic acid.
  • This application claims the priority of Japanese Patent Application No. 2017-062764 for which it applied to Japan on March 28, 2017, and uses the content here.
  • Methanol method carbonylation process (methanol method acetic acid process) is known as an industrial production method of acetic acid.
  • methanol and carbon monoxide are reacted in the presence of a catalyst in a reaction vessel to produce acetic acid, the reaction mixture is evaporated in an evaporation vessel, and the vapor phase is removed from a low boiling tower followed by dehydration.
  • Acetic acid is commercialized by purification in the column, or acetic acid is commercialized through the dehydration column and further through the dehigh boiling column and further through the product column.
  • acetaldehyde generated by reduction of methyl iodide in the reaction system is converted to crotonaldehyde or 2-ethylcrotonaldehyde by aldol condensation, and the potassium permanganate test value of product acetic acid (permanganate) Time).
  • product acetic acid permanganate
  • crotonaldehyde and acetaldehyde react with each other and then hydrogenated and iodinated, hexyl iodide is obtained. If hexyl iodide is contained in the product acetic acid, the palladium catalyst used is deactivated when vinyl acetate is produced using this acetic acid.
  • a semi-empirical simulator is used to introduce a reaction mixture having an assumed composition into an evaporation tank and heat the flash temperature, and the vapor and liquid composition discharged from the flasher.
  • the relationship with is being studied.
  • the concentration of acetaldehyde and methyl acetate in the aqueous phase of the overhead condensate obtained by supplying the vapor discharged from the flasher to the deboiling tower is controlled, or the methyl acetate concentration in the organic phase is controlled.
  • concentration of acetaldehyde, 2-ethylcrotonaldehyde and hexyl iodide in the reaction vessel There is no disclosure or suggestion about reducing the concentration of acetaldehyde, 2-ethylcrotonaldehyde and hexyl iodide in the reaction vessel.
  • an object of the present invention is to provide a method capable of industrially and efficiently producing high-quality acetic acid having a good potassium permanganate test value and a low impurity content without incurring a great cost.
  • the present inventors have heated the evaporation tank to reduce the concentration of acetaldehyde in the bottom of the evaporation tank in the methanol carbonylation process,
  • the acetic acid concentration is increased, the acetaldehyde distribution coefficient when the overhead condensate of the deboiling tower is separated into the aqueous phase and the organic phase can be controlled, the amount of acetaldehyde distribution to the aqueous phase side is increased, and the aqueous phase is It has been found that the deacetaldehyde efficiency can be greatly improved by subjecting to deacetaldehyde removal treatment.
  • the cause of the increase in the acetaldehyde distribution coefficient is that the methyl acetate concentration in the distillation tower overhead decreases due to changes in the distillation conditions due to the change in the composition of the deboiling tower, and this reduction in the methyl acetate concentration affects the acetaldehyde distribution coefficient. It is a thing. By improving the efficiency of deacetaldehyde, the concentration of acetaldehyde in the reaction mixture in the reaction vessel is reduced, and the amount of crotonaldehyde, 2-ethylcrotonaldehyde and hexyl iodide produced is suppressed.
  • the present invention relates to a catalyst system comprising a metal catalyst and methyl iodide, and a carbonylation reaction step in which acetic acid is produced by reacting methanol and carbon monoxide in a reaction vessel in the presence of acetic acid, methyl acetate and water.
  • An evaporation step in which the reaction mixture obtained in the carbonylation reaction step is introduced into an evaporation tank and heated to separate the reaction mixture into a vapor stream and a residual stream;
  • a residual liquid stream recycling step for recycling the residual liquid stream to a reaction vessel;
  • the vapor stream is separated by a first distillation column into a first overhead stream rich in methyl iodide and acetaldehyde and a first acetic acid stream rich in acetic acid, and the first overhead stream is condensed and separated into an aqueous phase and an organic phase.
  • a low boiling step to obtain a phase A first overhead flow recycling step of recycling at least a portion of the aqueous phase and / or organic phase to a reaction vessel; An acetaldehyde separation and removal step for separating and removing acetaldehyde in the process stream;
  • a method for producing acetic acid comprising: By heating the evaporation tank, (i) the acetaldehyde concentration in the aqueous phase is 2340 mass ppm or more, and / or (ii) the methyl acetate concentration in the aqueous phase is less than 19.0 mass%, and / or (Iii) Controlling the methyl acetate concentration in the organic phase to less than 38.0% by mass, treating at least a part of the aqueous phase in the acetaldehyde separation and removal step, and reacting the remaining liquid after the acetaldehyde separation and removal Provided is a method for producing acetic acid (hereinafter sometimes referred to as “first method for producing
  • the catalyst system may further contain ionic iodide.
  • the reflux ratio of the aqueous phase when only the aqueous phase is refluxed to the first distillation column, the reflux ratio of the aqueous phase is 2 or more, and when only the organic phase is refluxed, the reflux ratio of the organic phase is 1 or more.
  • the total reflux ratio of the aqueous phase and the organic phase may be 1.5 or more.
  • the method for producing the first acetic acid further includes a dehydration step of separating the first acetic acid stream into a second overhead stream rich in water and a second acetic acid stream richer in acetic acid than the first acetic acid stream by the second distillation column.
  • the crotonaldehyde concentration in the second acetic acid stream is 1.10 mass ppm or less and / or the 2-ethylcrotonaldehyde concentration is 0.80 mass ppm or less and / or the propionic acid concentration is 130 mass ppm or less. preferable.
  • the concentration of acetaldehyde in the residual liquid stream in the evaporation tank may be 70 ppm by mass or less.
  • the crotonaldehyde concentration in the reaction mixture in the reaction vessel may be 1.7 mass ppm or less and / or the 2-ethylcrotonaldehyde concentration may be 1.8 mass ppm or less and / or the propionic acid concentration may be 240 mass ppm or less.
  • the crotonaldehyde concentration is 2.4 mass ppm or less and / or the 2-ethylcrotonaldehyde concentration is 0.45 mass ppm or less and / or the propionic acid concentration is 106 mass ppm or less. May be.
  • the crotonaldehyde concentration in the first acetic acid stream may be 1.34 mass ppm or less and / or the 2-ethylcrotonaldehyde concentration may be 0.60 mass ppm or less and / or the propionic acid concentration may be 106 mass ppm or less.
  • the present invention also provides a catalyst system comprising a metal catalyst and methyl iodide, and a carbonylation reaction step in which acetic acid is produced by reacting methanol and carbon monoxide in a reaction vessel in the presence of acetic acid, methyl acetate and water.
  • An evaporation step in which the reaction mixture obtained in the carbonylation reaction step is introduced into an evaporation tank and heated to separate the reaction mixture into a vapor stream and a residual stream;
  • a residual liquid stream recycling step for recycling the residual liquid stream to a reaction vessel;
  • the vapor stream is separated by a first distillation column into a first overhead stream rich in methyl iodide and acetaldehyde and a first acetic acid stream rich in acetic acid, and the first overhead stream is condensed and separated into an aqueous phase and an organic phase.
  • a low boiling step to obtain a phase A first overhead flow recycling step of recycling at least a portion of the aqueous phase and / or organic phase to a reaction vessel; An acetaldehyde separation and removal step for separating and removing acetaldehyde in the process stream;
  • a method for producing acetic acid comprising: By heating the evaporation tank, (i) the acetaldehyde concentration in the aqueous phase is 2340 mass ppm or more, and / or (ii) the methyl acetate concentration in the aqueous phase is less than 19.0 mass%, and / or (Iii) The methyl acetate concentration in the organic phase is controlled to be less than 38.0% by mass, the acetaldehyde concentration in the residual liquid stream is controlled to 70 mass ppm or less, and at least a part of the aqueous phase is the acetaldehyde.
  • the separation and removal step the residual liquid after separation and removal of acetaldehyde is recycled to the reaction tank and / or the acetaldehyde separation and removal step and / or other processes, and the reflux ratio of the aqueous phase of the first distillation column is 2 or more.
  • a method for producing acetic acid (hereinafter sometimes referred to as “second method for producing acetic acid”) is provided.
  • the catalyst system may further contain ionic iodide.
  • the aqueous phase and the organic phase obtained by heating the evaporation tank and separating the overhead condensate of the deboiling tower, the acetaldehyde concentration in the aqueous phase and / or the methyl acetate in the aqueous phase Since the concentration and / or methyl acetate concentration in the organic phase is controlled within a specific range, the amount of acetaldehyde distributed to the aqueous phase increases, and this aqueous phase is subjected to the acetaldehyde separation and removal step, thereby efficiently separating acetaldehyde. Can be removed.
  • the concentration of acetaldehyde in the reaction tank decreases, and the amount of crotonaldehyde, 2-ethylcrotonaldehyde, hexyl iodide, and propionic acid generated is suppressed. Therefore, a high-quality product acetic acid having a good potassium permanganate test value and a low impurity content can be obtained without providing a large-scale deacetaldehyde facility or ozone treatment facility.
  • a catalyst system containing a metal catalyst and methyl iodide, and methanol and carbon monoxide are reacted in a reaction vessel in the presence of acetic acid, methyl acetate and water to produce acetic acid.
  • a de-low boiling step for condensing and separating one overhead stream to obtain an aqueous phase and an organic phase, and a first overhead for recycling at least a part of the aqueous phase and / or organic phase to a reaction vessel
  • a recycling step and an acetaldehyde separation and removal step for separating and removing acetaldehyde in the process stream, and by heating the evaporation tank, (i) the concentration of acetaldehyde in the aqueous phase is 2340 mass ppm or more and / or (I
  • the distribution coefficient of acetaldehyde [ ⁇ acetaldehyde concentration in the aqueous phase (% by mass) ⁇ / ⁇ organic Phase acetaldehyde concentration (mass%) ⁇ ] increases. That is, the amount of acetaldehyde distributed to the aqueous phase side increases. Therefore, the separation and removal efficiency of acetaldehyde can be greatly improved by subjecting this aqueous phase to the acetaldehyde separation and removal step.
  • the second method for producing acetic acid according to the present invention comprises the carbonylation reaction step, the evaporation step, the residual liquid flow recycling step, the delow boiling step, the first overhead flow recycling step, and the acetaldehyde separation and removal step,
  • the acetaldehyde concentration in the aqueous phase is 2340 mass ppm or more, and / or (ii) the methyl acetate concentration in the aqueous phase is less than 19.0 mass%, and / or ( iii)
  • the methyl acetate concentration in the organic phase is controlled to be less than 38.0% by mass
  • the acetaldehyde concentration in the residual liquid stream is controlled to 70 mass ppm or less
  • at least a part of the aqueous phase is separated from the acetaldehyde.
  • the second method for producing acetic acid of the present invention is one of the preferred embodiments of the first method for producing acetic acid of the present invention.
  • the concentration of acetaldehyde in the aqueous phase is preferably 2400 mass ppm or more, more preferably 2500 mass ppm or more, and further preferably 2600 mass ppm or more.
  • the upper limit of the acetaldehyde concentration in the aqueous phase may be, for example, 1.0 mass% or 5000 mass ppm.
  • the methyl acetate concentration in an aqueous phase becomes like this. Preferably it is 18.5 mass% or less, More preferably, it is 17.5 mass% or less, More preferably, it is 17.0 mass% or less.
  • the lower limit of the methyl acetate concentration in the aqueous phase may be, for example, 1.0% by mass, or 5.0% by mass (or 8.0% by mass or 10.0% by mass).
  • the methyl acetate concentration in the organic phase is preferably 37.5% by mass or less, more preferably 37.0% by mass or less, still more preferably 35.0% by mass or less, particularly preferably 30.0%.
  • the mass% or less (for example, 25.0 mass% or less).
  • the lower limit of the methyl acetate concentration in the organic phase may be, for example, 1.0% by mass or 2.0% by mass, or 5.0% by mass (or 10.0% by mass or 15.0% by mass, in particular 20.0% by mass).
  • the catalyst system may further contain an ionic iodide.
  • Ionic iodide functions as a cocatalyst.
  • At least a part of the aqueous phase is treated in the acetaldehyde separation and removal step, and the residual liquid after the separation and removal of the acetaldehyde is recycled to a reaction tank or the like. May be treated in the acetaldehyde separation and removal step, and the residual liquid after the separation and removal of the acetaldehyde may be recycled to a reaction tank or the like.
  • the method for producing acetic acid according to the present invention further comprises a dehydration step of separating the first acetic acid stream into a second overhead stream rich in water and a second acetic acid stream richer in acetic acid than the first acetic acid stream by the second distillation column. You may have.
  • a second acetic acid stream having a low water content can be obtained as a bottoms or side cut liquid from the bottom of the tower or an intermediate portion of the tower.
  • the second acetic acid stream can be made into product acetic acid as it is or by further purification as required.
  • the reflux ratio of the aqueous phase (the reflux amount of the aqueous phase / the distillate amount of the aqueous phase) Is, for example, preferably 2 or more, preferably 3 or more, more preferably 5 or more, still more preferably 8 or more, particularly preferably 10 or more, especially 12 or more.
  • the reflux ratio of the organic phase is, for example, 1 or more.
  • the reflux ratio of the sum of the aqueous phase and the organic phase (the sum of the reflux amounts of the aqueous phase and the organic phase / water
  • the total amount of distillate of the phase and the organic phase) is desirably 1.5 or more, for example, preferably 2.3 or more, more preferably 3.5 or more, still more preferably 6 or more, and particularly preferably 8. 5 or more.
  • the reflux ratio of the aqueous phase (the reflux amount of the aqueous phase / the distillate amount of the aqueous phase) is preferably 2 or more, more preferably 3 or more, More preferably, it is 5 or more, particularly preferably 8 or more, especially 12 or more.
  • the upper limit of the reflux ratio of the first distillation column may be, for example, 3000 (particularly 1000) or 100 (particularly 30).
  • acetaldehyde By increasing the reflux ratio of the first distillation column, acetaldehyde can be concentrated at the top of the column, so that the deacetaldehyde efficiency can be further improved by subjecting the condensed liquid at the top to the acetaldehyde separation and removal step.
  • the heating of the evaporation tank so that the acetaldehyde concentration in the residual liquid stream (bottom liquid) in the evaporation tank is 70 ppm by mass or less.
  • the concentration of acetaldehyde in the residual liquid stream is more preferably 60 ppm by mass or less, further preferably 50 ppm by mass or less, and particularly preferably 40 ppm by mass or less (for example, 30 ppm by mass or less).
  • the residual stream is recycled as a catalyst solution to the reaction vessel, so that the amount of acetaldehyde recycled to the reaction vessel is reduced, and thereby crotonaldehyde and 2-ethyl in the reaction vessel are reduced. Production of by-products such as crotonaldehyde, hexyl iodide and propionic acid can be suppressed.
  • the efficiency of separation and removal of acetaldehyde can be increased as described above, so the amount of acetaldehyde returning to the reaction system is reduced.
  • crotonaldehyde and 2-ethylcrotonaldehyde in the reaction mixture in the reaction vessel The concentration of propionic acid and hexyl iodide can be reduced.
  • the crotonaldehyde concentration in the reaction mixture in the reaction vessel is, for example, 1.7 mass ppm or less, preferably 1.4 mass ppm or less, more preferably 1.2 mass ppm or less, and particularly preferably 1.0 mass ppm or less ( For example, 0.8 mass ppm or less, especially 0.6 mass ppm or less).
  • the lower limit value of the crotonaldehyde concentration in the reaction mixture in the reaction vessel may be, for example, 0.01 mass ppm (or 0.1 mass ppm).
  • the concentration of 2-ethylcrotonaldehyde in the reaction mixture in the reaction vessel is, for example, 1.8 mass ppm or less, preferably 1.6 mass ppm or less, more preferably 1.4 mass ppm or less, particularly preferably 1.2 mass. ppm or less (for example, 1.0 mass ppm or less, especially 0.8 mass ppm or less).
  • the lower limit value of the 2-ethylcrotonaldehyde concentration in the reaction mixture in the reaction vessel may be, for example, 0.01 mass ppm (or 0.1 mass ppm).
  • the propionic acid concentration in the reaction mixture in the reaction vessel is, for example, 240 ppm by mass or less, preferably 230 ppm by mass or less, more preferably 220 ppm by mass or less, and particularly preferably 200 ppm by mass or less (for example, 180 ppm by mass or less).
  • the lower limit value of the propionic acid concentration in the reaction mixture in the reaction vessel may be, for example, 10 mass ppm (or 50 mass ppm).
  • the concentrations of crotonaldehyde, 2-ethylcrotonaldehyde, propionic acid, and hexyl iodide in the reaction mixture in the reaction vessel decrease, the concentration of these impurities in the vapor stream supplied to the first distillation column decreases, Furthermore, the concentration of these impurities in the first acetic acid stream obtained from the first distillation column is reduced, so that a high quality product acetic acid having a good potassium permanganate test value and a low impurity content can be obtained. For this reason, the deacetaldehyde facility and the ozone treatment facility that have been conventionally used for improving the potassium permanganate test value can be reduced in size or omitted. In addition, acetic acid having a high potassium permanganate test value can be obtained simply by going through a delow boiling tower or further a dehydration tower. It becomes possible.
  • the crotonaldehyde concentration in the steam stream supplied to the first distillation column is, for example, 2.4 ppm by mass or less, preferably 2.2 ppm by mass or less, more preferably 2.0 ppm by mass or less, and particularly preferably 1.6 ppm. It is mass ppm or less (for example, 1.2 mass ppm or less).
  • the lower limit value of the crotonaldehyde concentration in the steam stream supplied to the first distillation column may be, for example, 0.01 mass ppm (or 0.1 mass ppm).
  • the concentration of 2-ethylcrotonaldehyde in the vapor stream supplied to the first distillation column is, for example, 0.45 mass ppm or less, preferably 0.40 mass ppm or less, more preferably 0.30 mass ppm or less.
  • the lower limit value of the 2-ethylcrotonaldehyde concentration in the steam stream supplied to the first distillation column may be, for example, 0.01 mass ppm (or 0.1 mass ppm).
  • the concentration of propionic acid in the vapor stream supplied to the first distillation column is, for example, 106 mass ppm or less, preferably 74.0 mass ppm or less, more preferably 65.0 mass ppm or less, and further preferably 55.0 mass ppm. It is as follows.
  • the lower limit value of the propionic acid concentration in the steam stream supplied to the first distillation column may be, for example, 1.0 mass ppm, 5.0 mass ppm, or 10.0 mass ppm.
  • the crotonaldehyde concentration in the first acetic acid stream is, for example, 1.34 mass ppm or less, preferably 1.20 mass ppm or less, more preferably 1.00 mass ppm or less, still more preferably 0.80 mass ppm or less, particularly preferably. Is 0.60 ppm by mass or less.
  • the lower limit value of the crotonaldehyde concentration in the first acetic acid stream may be, for example, 0.01 mass ppm (or 0.05 mass ppm).
  • the concentration of 2-ethylcrotonaldehyde in the first acetic acid stream is, for example, 0.60 mass ppm or less, preferably 0.50 mass ppm or less, more preferably 0.40 mass ppm or less.
  • the lower limit value of the 2-ethylcrotonaldehyde concentration in the first acetic acid stream may be, for example, 0.01 mass ppm (or 0.05 mass ppm).
  • the propionic acid concentration in the first acetic acid stream is, for example, 106 mass ppm or less, preferably 100 mass ppm or less, more preferably 90.0 mass ppm or less, and further preferably 80.0 mass ppm or less.
  • the lower limit value of the propionic acid concentration in the first acetic acid stream may be, for example, 1.0 mass ppm, 5.0 mass ppm, or 10.0 mass ppm.
  • the crotonaldehyde concentration in the second acetic acid stream obtained from the dehydration tower is, for example, 1.10 mass ppm or less, preferably 1.00 mass ppm or less, more preferably 0.90 mass ppm or less, and even more preferably 0.80 mass. ppm or less, particularly preferably 0.70 mass ppm or less (for example, 0.60 mass ppm or less).
  • the lower limit value of the crotonaldehyde concentration in the second acetic acid stream may be, for example, 0.01 mass ppm (or 0.05 mass ppm).
  • the concentration of 2-ethylcrotonaldehyde in the second acetic acid stream is, for example, 0.80 mass ppm or less, preferably 0.70 mass ppm or less, more preferably 0.60 mass ppm or less, and even more preferably 0.50 mass ppm or less. Especially preferably, it is 0.40 mass ppm or less.
  • the lower limit of the 2-ethylcrotonaldehyde concentration in the second acetic acid stream may be, for example, 0.01 mass ppm (or 0.05 mass ppm).
  • the propionic acid concentration in the second acetic acid stream is, for example, 130 mass ppm or less, preferably 120 mass ppm or less, more preferably 110 mass ppm or less, and even more preferably 80.0 mass ppm or less.
  • the lower limit value of the propionic acid concentration in the second acetic acid stream may be, for example, 1.0 mass ppm, 5.0 mass ppm, or 10.0 mass ppm.
  • the concentration of hexyl iodide in the second acetic acid stream is, for example, 30 mass ppb or less, preferably 25 mass ppb or less, more preferably 20 mass ppb or less, still more preferably 17 mass ppb or less, and particularly preferably 10 mass ppb or less.
  • the lower limit value of the hexyl iodide concentration in the second acetic acid stream may be, for example, 0.1 mass ppb (or 1.0 mass ppb).
  • FIG. 1 is an example of an acetic acid production flow diagram (methanol carbonylation process) showing an embodiment of the present invention.
  • the acetic acid production apparatus includes a reaction tank 1, an evaporation tank 2, a distillation tower 3, a decanter 4, a distillation tower 5, a distillation tower 6, an ion exchange resin tower 7, and a scrubber system 8. And acetaldehyde separation and removal system 9, condensers 1a, 2a, 3a, 5a and 6a, heat exchanger 2b, reboilers 3b, 5b and 6b, lines 11 to 56, and pump 57, and acetic acid is continuously added.
  • reaction tank 1 the reaction tank 1, the evaporation tank 2, the distillation tower 3, the distillation tower 5, the distillation tower 6, and the ion exchange resin tower 7, respectively.
  • a reaction process an evaporation process (flash process), A 1st distillation process, a 2nd distillation process, a 3rd distillation process, and an adsorption removal process are performed.
  • the first distillation step is also called a delow boiling step
  • the second distillation step is also called a dehydration step
  • the third distillation step is also called a dehigh boiling step.
  • a process is not restricted above,
  • the equipment of the distillation tower 5, the distillation tower 6, the ion exchange resin tower 7, and the acetaldehyde separation removal system 9 may not be attached.
  • a product tower may be provided downstream of the ion exchange resin tower 7.
  • the reaction tank 1 is a unit for performing a reaction process.
  • This reaction step is a step for continuously generating acetic acid by a reaction (methanol carbonylation reaction) represented by the following chemical formula (1).
  • a reaction mixture that is stirred by, for example, a stirrer exists in the reaction tank 1.
  • the reaction mixture contains methanol and carbon monoxide as raw materials, a metal catalyst, a cocatalyst, water, acetic acid for production purposes, and various by-products, and the liquid phase and the gas phase are in an equilibrium state. It is in. CH 3 OH + CO ⁇ CH 3 COOH (1)
  • the raw materials in the reaction mixture are liquid methanol and gaseous carbon monoxide.
  • Methanol is continuously supplied at a predetermined flow rate from the methanol reservoir (not shown) to the reaction tank 1 through the line 11.
  • Carbon monoxide is continuously supplied from the carbon monoxide reservoir (not shown) through the line 12 to the reaction tank 1 at a predetermined flow rate.
  • Carbon monoxide does not necessarily have to be pure carbon monoxide.
  • it contains a small amount of other gases such as nitrogen, hydrogen, carbon dioxide and oxygen (for example, 5% by mass or less, preferably 1% by mass or less). Also good.
  • the metal catalyst in the reaction mixture is for accelerating the carbonylation reaction of methanol.
  • a rhodium catalyst or an iridium catalyst can be used.
  • the rhodium catalyst for example, the formula [Rh (CO) 2 I 2 ] - rhodium complex represented by the can be used.
  • the iridium catalyst such as chemical formulas [Ir (CO) 2 I 2 ] - iridium complex represented by the can be used.
  • a metal complex catalyst is preferable as the metal catalyst.
  • the concentration of the catalyst in the reaction mixture (in metal conversion) is, for example, 100 to 10000 mass ppm, preferably 200 to 5000 mass ppm, more preferably 400 to 2000 mass ppm, with respect to the entire liquid phase of the reaction mixture.
  • the cocatalyst is an iodide for assisting the action of the above-described catalyst, and for example, methyl iodide or ionic iodide is used.
  • Methyl iodide can exhibit an action of promoting the catalytic action of the above-described catalyst.
  • the concentration of methyl iodide is, for example, 1 to 20% by mass with respect to the entire liquid phase of the reaction mixture.
  • the ionic iodide is an iodide (in particular, an ionic metal iodide) that generates iodide ions in the reaction solution, and can exhibit an effect of stabilizing the above-described catalyst and an effect of suppressing side reactions.
  • ionic iodide examples include alkali metal iodides such as lithium iodide, sodium iodide, and potassium iodide.
  • concentration of ionic iodide in the reaction mixture is, for example, 1 to 25% by mass, preferably 5 to 20% by mass, based on the entire liquid phase of the reaction mixture.
  • a ruthenium compound or an osmium compound can also be used as a promoter.
  • the total amount of these compounds used is, for example, 0.1 to 30 mol (metal conversion), preferably 0.5 to 15 mol (metal conversion) with respect to 1 mol of iridium (metal conversion).
  • Water in the reaction mixture is a component necessary for generating acetic acid in the reaction mechanism of the carbonylation reaction of methanol, and is also a component necessary for solubilization of water-soluble components in the reaction system.
  • the concentration of water in the reaction mixture is, for example, from 0.1 to 15% by mass, preferably from 0.8 to 10% by mass, more preferably from 1 to 6% by mass, with respect to the entire liquid phase of the reaction mixture.
  • the amount is preferably 1.5 to 4% by mass.
  • the water concentration is preferably 15% by mass or less in order to suppress the energy required for water removal during the purification process of acetic acid and promote the efficiency of acetic acid production.
  • a predetermined flow rate of water may be continuously supplied to the reaction tank 1.
  • Acetic acid in the reaction mixture contains acetic acid that is charged in advance in the reaction tank 1 before the operation of the acetic acid production apparatus, and acetic acid generated as a main product of methanol carbonylation reaction. Such acetic acid can function as a solvent in the reaction system.
  • the concentration of acetic acid in the reaction mixture is, for example, 50 to 90% by mass, preferably 60 to 80% by mass, based on the entire liquid phase of the reaction mixture.
  • Examples of main by-products contained in the reaction mixture include methyl acetate. This methyl acetate can be generated by the reaction of acetic acid and methanol.
  • the concentration of methyl acetate in the reaction mixture is, for example, 0.1 to 30% by mass, preferably 1 to 10% by mass, with respect to the entire liquid phase of the reaction mixture.
  • Examples of by-products contained in the reaction mixture include hydrogen iodide. This hydrogen iodide is inevitably generated due to the reaction mechanism of the carbonylation reaction of methanol when the above-described catalyst or promoter is used.
  • the concentration of hydrogen iodide in the reaction mixture is, for example, 0.01 to 2% by mass with respect to the entire liquid phase of the reaction mixture.
  • Examples of by-products include hydrogen, methane, carbon dioxide, acetaldehyde, crotonaldehyde, 2-ethylcrotonaldehyde, butyl acetate, dimethyl ether, alkanes, formic acid and propionic acid, and ethyl iodide and propyl iodide.
  • alkyl iodides such as butyl iodide, hexyl iodide and decyl iodide.
  • the concentration of acetaldehyde in the reaction mixture is, for example, 500 ppm by mass or less, preferably 450 ppm by mass or less, more preferably 400 ppm by mass or less, further preferably 350 ppm by mass or less, particularly preferably. Is 300 mass ppm or less [for example, 250 mass ppm or less (or 210 mass ppm or less)].
  • the lower limit of the acetaldehyde concentration in the reaction mixture is, for example, 1 mass ppm (or 10 mass ppm).
  • the crotonaldehyde concentration in the reaction mixture is, for example, 1.7 mass ppm or less, preferably 1.4 mass ppm or less, more preferably 1.2 mass ppm or less, and particularly preferably 1.0 mass ppm or less (for example, 0.8 mass ppm or less). 8 mass ppm or less, especially 0.6 mass ppm or less).
  • the lower limit of the crotonaldehyde concentration in the reaction mixture is 0 ppm, but may be, for example, 0.01 mass ppm, 0.1 mass ppm, or 0.2 mass ppm.
  • the concentration of 2-ethylcrotonaldehyde in the reaction mixture is, for example, 1.8 mass ppm or less, preferably 1.6 mass ppm or less, more preferably 1.4 mass ppm or less, particularly preferably 1.2 mass ppm or less ( For example, 1.0 mass ppm or less, particularly 0.8 mass ppm or less).
  • the lower limit of the 2-ethylcrotonaldehyde concentration in the reaction mixture is 0 ppm, but may be, for example, 0.01 mass ppm, 0.1 mass ppm, or 0.2 mass ppm.
  • the propionic acid concentration in the reaction mixture is, for example, 240 mass ppm or less, preferably 230 mass ppm or less, more preferably 220 mass ppm or less, and particularly preferably 200 mass ppm or less (for example, 180 mass ppm or less).
  • the lower limit of the propionic acid concentration in the reaction mixture is 0 ppm, but may be, for example, 10 mass ppm (or 50 mass ppm).
  • the reaction mixture contains metals such as iron, nickel, chromium, manganese and molybdenum [corrosive metals (also called corrosive metals)] generated by corrosion of the equipment, and other metals such as cobalt, zinc and copper. obtain.
  • the corrosive metal and other metals may be collectively referred to as “corrosive metal or the like”.
  • the reaction temperature is set to 150 to 250 ° C., for example, and the reaction pressure as the total pressure is set to 2.0 to 3.5 MPa (absolute pressure), for example.
  • the carbon monoxide partial pressure is set to, for example, 0.4 to 1.8 MPa (absolute pressure), preferably 0.6 to 1.6 MPa (absolute pressure), more preferably 0.9 to 1.4 MPa (absolute pressure). Is done.
  • carbon monoxide, hydrogen, methane, carbon dioxide, nitrogen, oxygen, methyl iodide, hydrogen iodide, water, methyl acetate, acetic acid, dimethyl ether can be used as the vapor in the gas phase in the reaction tank 1 when the apparatus is in operation.
  • Methanol, acetaldehyde, formic acid and propionic acid In addition to being contained in carbon monoxide used as a raw material, hydrogen is generated by a shift reaction (CO + H 2 O ⁇ H 2 + CO 2 ) occurring in the reaction vessel 1.
  • the hydrogen partial pressure in the reaction tank 1 is, for example, 0.01 MPa (absolute pressure) or more, preferably 0.015 MPa (absolute pressure) or more, more preferably 0.02 MPa (absolute pressure) or more, and further preferably 0.04 MPa (absolute). Pressure) or more, particularly preferably 0.06 MPa (absolute pressure) or more [for example, 0.07 MPa (absolute pressure) or more].
  • the upper limit of the hydrogen partial pressure in the reaction tank is, for example, 0.5 MPa (absolute pressure) [particularly 0.2 MPa (absolute pressure)].
  • the vapor in the gas phase in the reaction vessel 1 can be extracted from the reaction vessel 1 through the line 13. It is possible to control the pressure in the reaction tank 1 by adjusting the amount of steam extracted. For example, the pressure in the reaction tank 1 is maintained constant. The steam extracted from the reaction tank 1 is introduced into the condenser 1a.
  • the condenser 1a divides the vapor from the reaction tank 1 into a condensed component and a gas component by cooling and partially condensing.
  • the condensate contains, for example, methyl iodide, hydrogen iodide, water, methyl acetate, acetic acid, dimethyl ether, methanol, acetaldehyde, formic acid, propionic acid, etc., and is introduced into the reaction tank 1 from the condenser 1a through the line 14 and recycled. Is done.
  • the gas component includes, for example, carbon monoxide, hydrogen, methane, carbon dioxide, nitrogen, oxygen, methyl iodide, hydrogen iodide, water, methyl acetate, acetic acid, dimethyl ether, methanol, acetaldehyde, formic acid, and the like. It is supplied to the scrubber system 8 through a line 15.
  • useful components for example, methyl iodide, water, methyl acetate, acetic acid, etc.
  • a wet method is used for the separation and recovery, which is performed using an absorption liquid for collecting useful components in the gas component.
  • an absorbing solvent containing at least acetic acid and / or methanol is preferable.
  • the absorbing solution may contain methyl acetate.
  • a condensate of vapor from the later-described distillation column 6 can be used as the absorbing liquid.
  • a pressure fluctuation adsorption method may be used.
  • Separated and recovered useful components are introduced from the scrubber system 8 into the reaction tank 1 through the recycling line 48 and recycled.
  • the gas after collecting useful components is discarded through line 49.
  • the gas discharged from the line 49 can be used as a CO source to be introduced into the bottom of the evaporation tank 2 described later or the residual liquid flow recycling lines 18 and 19.
  • the processing in the scrubber system 8 and the subsequent recycling and disposal to the reaction vessel 1 are the same for the gas components described later supplied to the scrubber system 8 from other capacitors.
  • acetic acid is continuously produced in the reaction tank 1 when the apparatus is in operation.
  • a reaction mixture containing such acetic acid is continuously withdrawn from the reaction tank 1 at a predetermined flow rate and introduced into the next evaporation tank 2 through a line 16.
  • the evaporation tank 2 is a unit for performing an evaporation process (flash process).
  • a vapor stream (volatile phase) and a residual liquid stream (low volatile phase) are obtained by partially evaporating the reaction mixture continuously introduced into the evaporation tank 2 through the line 16 (reaction mixture supply line). It is a process for dividing into.
  • evaporation is caused by reducing the pressure while heating the evaporation tank.
  • the temperature of the vapor stream is, for example, 100 to 260 ° C, preferably 120 to 200 ° C
  • the temperature of the residual liquid stream is, for example, 100 to 260 ° C, preferably 120 to 200 ° C
  • the pressure in the tank is, for example, 50 to 1000 kPa (absolute pressure).
  • the mass ratio is, for example, 10/90 to 60/40 (evaporation rate: 10 to 60 mass%).
  • the vapor generated in this step is, for example, methyl iodide, hydrogen iodide, water, methyl acetate, acetic acid, dimethyl ether, methanol, acetaldehyde, crotonaldehyde, 2-ethylcrotonaldehyde, butyl acetate, propionic acid, and iodide.
  • It contains alkyl iodide such as ethyl, propyl iodide, butyl iodide, hexyl iodide and decyl iodide, and is continuously extracted from the evaporation tank 2 to a line 17 (vapor flow discharge line).
  • a part of the vapor flow extracted from the evaporation tank 2 is continuously introduced into the condenser 2 a, and the other part of the vapor flow is continuously introduced into the next distillation column 3 through the line 21.
  • the concentration of acetic acid in the vapor stream is, for example, 50.0 to 90.0% by mass, preferably 55.0 to 85.0% by mass.
  • the lower limit of the acetic acid concentration is more preferably 57.0% by mass, still more preferably 58.0% by mass (or 60.0% by mass, or 63.0% by mass, especially 65.0% by mass), and the upper limit is More preferably, it is 80.0 mass%, More preferably, it is 75.0 mass%, Most preferably, it is 72.0 mass% (or 68.0 mass%, or 65.5 mass%).
  • the acetic acid concentration range is more preferably 57.0 to 68.0% by mass (for example, 58.0 to 65.5% by mass).
  • the methyl iodide concentration in the vapor stream is, for example, 2.0 to 50.0% by mass, preferably 5.0 to 40.0% by mass.
  • the lower limit of the methyl iodide concentration is more preferably 10.0% by mass, further preferably 15.0% by mass, and particularly preferably 18.0% by mass (or 20.0% by mass, or 22.5% by mass).
  • the upper limit is more preferably 35.0% by mass, still more preferably 30.0% by mass, and particularly preferably 28.0% by mass.
  • the range of the methyl iodide concentration is more preferably 20.0 to 35.0% by mass (for example, 22.5 to 30.0% by mass).
  • the water concentration in the steam flow is, for example, 0.2 to 20.0% by mass, preferably 0.5 to 15.0% by mass, and more preferably 0.8 to 5.0% by mass.
  • the lower limit of the water concentration is more preferably 1.0% by mass, still more preferably 1.2% by mass, and the upper limit is more preferably 4.0% by mass, and particularly preferably 3.0% by mass.
  • the range of the water concentration is more preferably 1.2 to 5.0% by mass (for example, 1.2 to 4.0% by mass, or 1.2 to 3.0% by mass).
  • the concentration of methyl acetate in the vapor stream is, for example, 0.2 to 50.0% by mass, preferably 2.0 to 30.0% by mass.
  • the lower limit of the methyl acetate concentration is more preferably 3.0% by mass, still more preferably 5.0% by mass, particularly preferably 6.0% by mass (or 7.0% by mass, or 8.0% by mass).
  • the upper limit is more preferably 25.0% by mass, further preferably 20.0% by mass, and particularly preferably 15.0% by mass (or 10.0% by mass).
  • the methyl acetate concentration range is more preferably 7.0 to 25.0% by mass (for example, 8.0 to 20.0% by mass).
  • the concentration of crotonaldehyde in the vapor stream is, for example, 2.4 mass ppm or less, preferably 2.2 mass ppm or less, more preferably 2.0 mass ppm or less, and particularly preferably 1.6 mass ppm or less (for example, 1. 2 mass ppm or less).
  • the lower limit value of the crotonaldehyde concentration in the vapor flow may be, for example, 0.01 mass ppm (or 0.1 mass ppm).
  • the concentration of 2-ethylcrotonaldehyde in the vapor stream is, for example, 0.45 mass ppm or less, preferably 0.40 mass ppm or less, more preferably 0.30 mass ppm or less.
  • the lower limit value of the 2-ethylcrotonaldehyde concentration in the vapor stream may be, for example, 0.01 mass ppm (or 0.1 mass ppm).
  • the propionic acid concentration in the steam flow is, for example, 106 mass ppm or less, preferably 74.0 mass ppm or less, more preferably 60.0 mass ppm or less, and further preferably 55.0 mass ppm or less.
  • the lower limit value of the propionic acid concentration in the vapor stream may be, for example, 1.0 mass ppm, 5.0 mass ppm, or 10.0 mass ppm.
  • the residual liquid stream generated in this step is the catalyst and cocatalyst (methyl iodide, lithium iodide, etc.) contained in the reaction mixture, water remaining without volatilization in this step, acetaldehyde, methyl acetate, acetic acid, It contains crotonaldehyde, 2-ethylcrotonaldehyde, butyl acetate, formic acid, propionic acid, etc., and is continuously introduced from the evaporation tank 2 to the heat exchanger 2b through the line 18 using the pump 57.
  • cocatalyst methyl iodide, lithium iodide, etc.
  • the acetaldehyde concentration in the residual liquid stream is preferably 70 ppm by mass or less, more preferably 60 ppm by mass or less, still more preferably 50 ppm by mass or less, and particularly preferably 40 ppm by mass or less (for example, 30 ppm by mass or less). is there.
  • concentration of acetaldehyde in the residual stream it is possible to suppress the formation of by-products such as crotonaldehyde, 2-ethylcrotonaldehyde, hexyl iodide and propionic acid in the reaction tank 1.
  • the heat exchanger 2b cools the remaining liquid stream from the evaporation tank 2.
  • the cooled residual liquid stream is continuously introduced from the heat exchanger 2b to the reaction tank 1 through the line 19 and recycled.
  • the line 18 and the line 19 are collectively referred to as a residual liquid recycle line.
  • the concentration of acetic acid in the residual stream is, for example, 55 to 90% by mass, preferably 60 to 85% by mass.
  • the condenser 2a divides the vapor flow from the evaporation tank 2 into a condensed component and a gas component by cooling and partially condensing.
  • Condensed components include, for example, methyl iodide, hydrogen iodide, water, methyl acetate, acetic acid, dimethyl ether, methanol, acetaldehyde, crotonaldehyde, 2-ethylcrotonaldehyde, butyl acetate, formic acid, propionic acid, and the like from capacitor 2a. It is introduced into the reaction vessel 1 through the lines 22 and 23 and recycled.
  • the gas component includes, for example, carbon monoxide, hydrogen, methane, carbon dioxide, nitrogen, oxygen, methyl iodide, hydrogen iodide, water, methyl acetate, acetic acid, dimethyl ether, methanol, acetaldehyde, formic acid, and the like. It is supplied to the scrubber system 8 through lines 20 and 15.
  • the acetic acid production reaction in the above reaction step is an exothermic reaction, and part of the heat accumulated in the reaction mixture is transferred to the vapor generated from the reaction mixture in the evaporation step (flash step).
  • the condensed matter generated by the cooling of the steam in the condenser 2 a is recycled to the reaction tank 1. That is, in this acetic acid production apparatus, heat generated by the carbonylation reaction of methanol is efficiently removed by the capacitor 2a.
  • the distillation column 3 is a unit for performing the first distillation step, and is positioned as a so-called deboiling tower in this embodiment.
  • the first distillation step is a step of separating and removing low boiling components by distillation treatment of the steam stream continuously introduced into the distillation column 3. More specifically, in the first distillation step, the vapor stream is distilled and separated into an overhead stream rich in at least one low-boiling component selected from methyl iodide and acetaldehyde and an acetic acid stream rich in acetic acid. .
  • the distillation column 3 is composed of, for example, a rectification column such as a plate column and a packed column. When a plate column is employed as the distillation column 3, the theoretical plate is, for example, 5 to 50 plates.
  • the column top pressure is set to, for example, 80 to 160 kPa (gauge pressure), and the column bottom pressure is higher than the column top pressure, for example, 85 to 180 kPa (gauge pressure).
  • the column top temperature is set to 90 to 130 ° C., for example, lower than the boiling point of acetic acid at the set column top pressure
  • the column bottom temperature is set to, for example, the set column bottom pressure.
  • the temperature is equal to or higher than the boiling point of acetic acid and is set to 120 to 165 ° C. (preferably 125 to 160 ° C.).
  • the vapor flow from the evaporation tank 2 is continuously introduced through the line 21, and the vapor as an overhead flow is continuously extracted from the top of the distillation column 3 to the line 24. From the bottom of the distillation column 3, the bottoms are continuously extracted into the line 25.
  • 3b is a reboiler.
  • An acetic acid stream (first acetic acid stream; liquid) as a side stream is continuously extracted from the line 27 from a height position between the top and bottom of the distillation column 3.
  • the vapor extracted from the top of the distillation column 3 contains a larger amount of components having a lower boiling point than that of acetic acid (low-boiling components) compared to the bottoms and side stream from the distillation column 3, for example, methyl iodide, Including hydrogen iodide, water, methyl acetate, dimethyl ether, methanol, acetaldehyde, crotonaldehyde and formic acid.
  • This vapor also contains acetic acid.
  • Such steam is continuously introduced into the condenser 3a through the line 24.
  • the condenser 3a divides the vapor from the distillation tower 3 into a condensed component and a gas component by cooling and partially condensing.
  • the condensate includes, for example, methyl iodide, hydrogen iodide, water, methyl acetate, acetic acid, dimethyl ether, methanol, acetaldehyde, crotonaldehyde, formic acid and the like, and is continuously introduced from the capacitor 3a to the decanter 4 through the line 28.
  • the condensed matter introduced into the decanter 4 is separated into an aqueous phase (upper phase) and an organic phase (methyl iodide phase; lower phase).
  • the aqueous phase includes water and, for example, methyl iodide, hydrogen iodide, methyl acetate, acetic acid, dimethyl ether, methanol, acetaldehyde, crotonaldehyde, and formic acid.
  • the organic phase includes, for example, methyl iodide and, for example, hydrogen iodide, water, methyl acetate, acetic acid, dimethyl ether, methanol, acetaldehyde, crotonaldehyde, and formic acid.
  • the evaporation tank is heated, and (i) the acetaldehyde concentration in the aqueous phase is 2340 mass ppm or more, and / or (ii) the methyl acetate concentration in the aqueous phase. And / or (iii) the methyl acetate concentration in the organic phase is controlled to be less than 38.0% by mass, and at least a part of the aqueous phase is separated and removed in the acetaldehyde separation and removal step. Treat and recycle the remaining liquid after separation and removal of acetaldehyde to the reaction vessel.
  • the concentration of acetaldehyde in the aqueous phase is preferably 2400 mass ppm or more, more preferably 2500 mass ppm or more, and further preferably 2600 mass ppm or more.
  • the upper limit of the acetaldehyde concentration in the aqueous phase may be, for example, 1.0 mass% or 5000 mass ppm.
  • the methyl acetate concentration in an aqueous phase becomes like this. Preferably it is 18.5 mass% or less, More preferably, it is 17.5 mass% or less, More preferably, it is 17.0 mass% or less.
  • the lower limit of the methyl acetate concentration in the aqueous phase may be, for example, 1.0% by mass, or 5.0% by mass, or 8.0% by mass or 10.0% by mass.
  • the methyl acetate concentration in the organic phase is preferably 37.5% by mass or less, more preferably 37.0% by mass or less, still more preferably 35.0% by mass or less, particularly preferably 30.0%.
  • the mass% or less (for example, 25.0 mass% or less).
  • the lower limit of the methyl acetate concentration in the organic phase may be, for example, 1.0% by mass or 2.0% by mass, or 5.0% by mass or 10.0% by mass, or 15.0% by mass (for example, 20.0% by mass).
  • the acetaldehyde concentration in the aqueous phase, the methyl acetate concentration in the aqueous phase, or the methyl acetate concentration in the organic phase is within the above range, the distribution amount of acetaldehyde to the aqueous phase side increases. Therefore, the separation and removal efficiency of acetaldehyde can be greatly improved by subjecting this aqueous phase to the acetaldehyde separation and removal step.
  • a part of the aqueous phase is refluxed to the distillation column 3 through the line 29, the other part of the aqueous phase is introduced into the acetaldehyde separation and removal system 9 through the lines 29, 30, 51, and the acetaldehyde is introduced from the line 53. Separated and removed from the system. The residual liquid after separation and removal of acetaldehyde is recycled to the reaction tank 1 through lines 52 and 23. Still another part of the aqueous phase may be recycled to the reaction tank 1 through the lines 29, 30 and 23 without going through the acetaldehyde separation and removal system 9. The organic phase is introduced into the reaction vessel 1 through lines 31 and 23 and recycled.
  • a part of the organic phase may be introduced into the acetaldehyde separation and removal system 9 through the lines 31 and 50 as necessary.
  • the organic phase may be refluxed to the distillation column 3.
  • the reflux ratio of the distillation column 3 will be described below.
  • the reflux ratio of the aqueous phase (the reflux amount of the aqueous phase / the distillate amount of the aqueous phase) is, for example, 2 or more.
  • the number is preferably 3 or more, more preferably 5 or more, still more preferably 8 or more, and particularly preferably 10 or more (for example, 12 or more).
  • the reflux ratio of the organic phase is, for example, 1 or more. Is preferably 1.5 or more, more preferably 2 or more, still more preferably 4 or more, and particularly preferably 5 or more.
  • the reflux ratio of the sum of the aqueous phase and the organic phase (the sum of the reflux amounts of the aqueous phase and the organic phase / the aqueous phase) And the total amount of distillates of the organic phase) is desirably 1.5 or more, for example, preferably 2.3 or more, more preferably 3.5 or more, still more preferably 6 or more, and particularly preferably 8.5. That's it.
  • the reflux ratio of the aqueous phase (the reflux amount of the aqueous phase / the distillate amount of the aqueous phase) is preferably 2 or more, more preferably 3 or more, even more preferably. Is 5 or more, particularly preferably 8 or more, especially 12 or more.
  • the upper limit of the reflux ratio of the first distillation column may be, for example, 3000 (particularly 1000) or 100 (particularly 30).
  • acetaldehyde By increasing the reflux ratio of the first distillation column, acetaldehyde can be concentrated at the top of the column, so that the deacetaldehyde efficiency can be further improved by subjecting the condensed liquid at the top to the acetaldehyde separation and removal step.
  • acetaldehyde contained in the organic phase and / or the aqueous phase is separated and removed by a known method, for example, distillation, extraction, or a combination thereof.
  • the separated acetaldehyde is discharged out of the apparatus through a line 53.
  • useful components such as methyl iodide contained in the organic phase and / or the aqueous phase are recycled to the reaction tank 1 through the lines 52 and 23 and reused.
  • FIG. 2 is a schematic flow diagram showing an example of an acetaldehyde separation and removal system.
  • the organic phase is fed to the distillation column (first deacetaldehyde column) 91 through the line 101 and distilled, and an overhead stream rich in acetaldehyde is obtained. (Line 102) and a residual stream rich in methyl iodide (line 103).
  • the overhead stream is condensed in the condenser 91a, a part of the condensate is refluxed to the top of the distillation column 91 (line 104), and the other part of the condensate is supplied to the extraction tower 92 (line 105).
  • the condensate supplied to the extraction tower 92 is extracted with water introduced from the line 109.
  • the extract obtained by the extraction process is supplied to a distillation tower (second deacetaldehyde tower) 93 through a line 107 and distilled, and an overhead stream rich in acetaldehyde (line 112) and a residual liquid stream rich in water (line 113) To separate.
  • the overhead stream rich in acetaldehyde is condensed by the condenser 93a, a part of the condensate is refluxed to the top of the distillation column 93 (line 114), and the other part of the condensate is discharged out of the system (line 115). ).
  • a methyl iodide-rich residual liquid stream that is the bottoms of the first deacetaldehyde column 91, a methyl iodide-rich raffinate obtained in the extraction column 92 (line 108), and a second deacetaldehyde column 93 can
  • the water-rich residual liquid stream that is the effluent is recycled to the reaction vessel 1 through lines 103, 111, and 113, respectively, or recycled to an appropriate location in the process and reused.
  • the methyl iodide rich raffinate obtained in extraction column 92 can be recycled to distillation column 91 through line 110.
  • the liquid 113 is usually discharged to the outside as waste water. Gases (lines 106, 116) that have not been condensed by the condensers 91a, 93a are absorbed by the scrubber system 8 or disposed of.
  • the aqueous phase is supplied to the distillation column (first deacetaldehyde column) 91 through the line 101 and distilled to enrich the acetaldehyde.
  • the overhead stream (line 102) is separated into a water-rich residual liquid stream (line 103).
  • the overhead stream is condensed in the condenser 91a, a part of the condensate is refluxed to the top of the distillation column 91 (line 104), and the other part of the condensate is supplied to the extraction tower 92 (line 105).
  • the condensate supplied to the extraction tower 92 is extracted with water introduced from the line 109.
  • the extract obtained by the extraction process is supplied to a distillation tower (second deacetaldehyde tower) 93 through a line 107 and distilled, and an overhead stream rich in acetaldehyde (line 112) and a residual liquid stream rich in water (line 113) To separate.
  • the overhead stream rich in acetaldehyde is condensed by the condenser 93a, a part of the condensate is refluxed to the top of the distillation column 93 (line 114), and the other part of the condensate is discharged out of the system (line 115). ).
  • a water-rich residual stream that is the bottoms of the first deacetaldehyde tower 91, a methyl iodide-rich raffinate obtained from the extraction tower 92 (line 108), and a bottoms of the second deacetaldehyde tower 93
  • the water-rich residual liquid stream is recycled to the reaction tank 1 through the lines 103, 111, and 113, or recycled to an appropriate part of the process and reused.
  • the methyl iodide rich raffinate obtained in extraction column 92 can be recycled to distillation column 91 through line 110.
  • the liquid 113 is usually discharged to the outside as waste water. Gases (lines 106, 116) that have not been condensed by the condensers 91a, 93a are absorbed by the scrubber system 8 or disposed of.
  • Acetaldehyde derived from a process stream containing at least water, acetic acid (AC), methyl iodide (MeI) and acetaldehyde (AD) can be separated and removed using extractive distillation in addition to the above method.
  • the organic phase and / or the aqueous phase (feed solution) obtained by separating the process stream is supplied to a distillation column (extraction distillation column), and methyl iodide and acetaldehyde in the distillation column are concentrated.
  • An extraction solvent usually water
  • is introduced into the concentration area for example, the space from the top of the column to the feed liquid supply position
  • the liquid descending from the concentration area extraction liquid is extracted as a side flow (side cut flow).
  • Acetaldehyde can be discharged out of the system by separating the side stream into an aqueous phase and an organic phase and distilling the aqueous phase. If a relatively large amount of water is present in the distillation column, the liquid descending from the concentration zone may be withdrawn as a side stream without introducing the extraction solvent into the distillation column.
  • a unit such as a chimney tray
  • the extraction solvent introduction position is preferably above the feed liquid supply position, and more preferably near the top of the column.
  • the side stream extraction position is preferably lower than the extraction solvent introduction position and higher than the feed liquid supply position in the height direction of the column.
  • a high concentration of acetaldehyde can be extracted from the concentrate of methyl iodide and acetaldehyde with an extraction solvent (usually water), and the area between the extraction solvent introduction site and the side cut site is used as an extraction zone. Therefore, acetaldehyde can be extracted efficiently with a small amount of extraction solvent. Therefore, for example, the number of stages of the distillation column can be greatly reduced and the steam load can be reduced as compared with a method of extracting the extract by extraction distillation from the bottom of the distillation column (extraction distillation column).
  • the ratio (MeI / AD ratio) of methyl iodide with respect to acetaldehyde in a water extract can be made smaller than the method of combining the dealdehyde distillation and water extraction of the said FIG. 2 using a small amount of extraction solvent, Acetaldehyde can be removed under conditions that can prevent loss of methyl iodide to the outside of the system.
  • the concentration of acetaldehyde in the side stream is much higher than the concentration of acetaldehyde in the charged solution and bottoms (bottom solution).
  • the ratio of the acetaldehyde with respect to the methyl iodide in the said side stream is larger than the ratio of the acetaldehyde with respect to the methyl iodide in the preparation liquid and the bottom liquid.
  • the organic phase (methyl iodide phase) obtained by separating the side stream may be recycled to this distillation column.
  • the recycling position of the organic phase obtained by separating the side flow is preferably lower than the side flow extraction position in the height direction of the tower, and preferably higher than the feed liquid supply position.
  • a miscible solvent for components (for example, methyl acetate) constituting the organic phase obtained by separating the process stream may be introduced into this distillation column (extraction distillation column).
  • miscible solvent examples include acetic acid and ethyl acetate.
  • the introduction position of the miscible solvent is preferably lower than the side flow extraction position and higher than the feed liquid supply position in the height direction of the tower.
  • the position where the miscible solvent is introduced is preferably lower than the recycling position when the organic phase obtained by separating the side stream is recycled to the distillation column. Recycling the organic phase obtained by separating the side stream into a distillation column or introducing the miscible solvent into the distillation column can reduce the methyl acetate concentration in the extract extracted as a side stream.
  • the concentration of methyl acetate in the aqueous phase obtained by separating the extract can be reduced, so that the mixing of methyl iodide into the aqueous phase can be suppressed.
  • the theoretical column of the distillation column is, for example, 1 to 100 plate, preferably 2 to 50 plate, more preferably 3 to 30 plate, particularly preferably 5 to 20 plate, and is used for conventional deacetaldehyde.
  • acetaldehyde can be separated and removed efficiently with a small number of stages.
  • the mass ratio (the former / the latter) of the flow rate of the extraction solvent and the flow rate of the feed liquid (the organic phase and / or the aqueous phase obtained by separating the process stream) is in the range of 0.0001 / 100 to 100/100.
  • the top temperature of the distillation column is, for example, 15 to 120 ° C., preferably 20 to 90 ° C., more preferably 20 to 80 ° C., and further preferably 25 to 70 ° C.
  • the tower top pressure is an absolute pressure, for example, about 0.1 to 0.5 MPa.
  • Other conditions for the distillation column may be the same as those for the conventional distillation column and extraction distillation column used for deacetaldehyde.
  • FIG. 3 is a schematic flow diagram showing an example of an acetaldehyde separation and removal system using the above extractive distillation.
  • the organic phase and / or the aqueous phase (feed solution) obtained by separating the process stream is supplied to the middle stage of the distillation column 94 (position between the top and the bottom) through the supply line 201.
  • water is introduced from the vicinity of the top of the column through the line 202, and extractive distillation is performed in the distillation column 94 (extraction distillation column).
  • a chimney tray 200 for receiving a liquid (extracted liquid) descending from a concentration area where methyl iodide and acetaldehyde in the tower are concentrated is disposed above the supply position of the charged liquid in the distillation column 94. .
  • the entire amount of the liquid on the chimney tray 200 is preferably withdrawn and introduced into the decanter 95 through the line 208 for liquid separation.
  • the aqueous phase (including acetaldehyde) in the decanter 95 is introduced into the cooling cooler 95 a through the line 212 and cooled, and the two phases of methyl iodide dissolved in the aqueous phase are separated and separated in the decanter 96.
  • the aqueous phase in the decanter 96 is fed to the distillation column 97 (deacetaldehyde column) through the line 216 and distilled, and the vapor at the top of the column is led to the condenser 97a through the line 217 to be condensed and condensed (mainly acetaldehyde and methyl iodide). ) Is refluxed to the top of the distillation column 97 and the rest is discarded or supplied to the distillation column 98 (extraction distillation column) through the line 220. Water is introduced from the vicinity of the top of the distillation column 98 through the line 222, and extractive distillation is performed.
  • the vapor at the top of the column is led to the condenser 98a through the line 223 to be condensed, a part of the condensate (mainly methyl iodide) is refluxed to the top of the column, and the rest is recycled to the reaction system through the line 226.
  • the entire amount of the organic phase (methyl iodide phase) in the decanter 95 is preferably recycled below the position of the chimney tray 200 in the distillation column 94 through lines 209 and 210.
  • a part of the aqueous phase of the decanter 95 and the organic phase of the decanter 96 are recycled to the distillation column 94 through lines 213 and 210 and lines 214 and 210, respectively, but may not be recycled.
  • a part of the aqueous phase of the decanter 95 may be used as an extraction solvent (water) in the distillation column 94.
  • a portion of the aqueous phase of the decanter 96 may be recycled to the distillation column 94 through line 210.
  • a miscible solvent acetic acid, etc.
  • components for example, methyl acetate constituting the organic phase obtained by separating the process stream.
  • Ethyl acetate, etc. can be charged into the distillation column 94 through the line 215 to improve the distillation efficiency.
  • the supply position of the miscible solvent to the distillation column 94 is above the feed liquid supply unit (connection part of the line 201) and below the connection part of the recycle line 210.
  • the bottoms of the distillation column 94 is recycled to the reaction system.
  • the vapor at the top of the distillation column 94 is led to the condenser 94a through the line 203 to be condensed, the condensate is separated by the decanter 99, the organic phase is refluxed to the top of the distillation column 94 through the line 206, and the aqueous phase is line.
  • the bottoms of the distillation tower 97 (water is the main component) and the bottoms of the distillation tower 98 (extraction distillation tower) (water containing a small amount of acetaldehyde) are removed from the system through lines 218 and 224, respectively, or the reaction system. Recycle to. Gases (lines 211, 2221 and 227) which have not been condensed by the condensers 94a, 97a and 98a are absorbed by the scrubber system 8 or disposed of.
  • FIG. 4 is a schematic flow diagram showing another example of an acetaldehyde separation / removal system using the above extractive distillation.
  • the vapor condensate at the top of the distillation column 94 is led to the hold tank 100, and the entire amount is refluxed to the top of the distillation column 94 through the line 206.
  • the rest is the same as the example of FIG.
  • FIG. 5 is a schematic flowchart showing still another example of the acetaldehyde separation and removal system using the above-described extractive distillation.
  • the entire amount of the liquid on the chimney tray 200 is extracted, and is directly introduced into the cooling cooler 95 a through the line 208 without passing through the decanter 95, and is supplied to the decanter 96.
  • the rest is the same as the example of FIG.
  • the gas generated in the capacitor 3a is, for example, carbon monoxide, hydrogen, methane, carbon dioxide, nitrogen, oxygen, methyl iodide, hydrogen iodide, water, methyl acetate, acetic acid, dimethyl ether, methanol, acetaldehyde. And formic acid, etc., are supplied from the condenser 3a to the scrubber system 8 through lines 32 and 15. Methyl iodide, hydrogen iodide, water, methyl acetate, acetic acid, dimethyl ether, methanol, acetaldehyde, formic acid, and the like in the gas component that has reached the scrubber system 8 are absorbed by the absorbent in the scrubber system 8.
  • Hydrogen iodide is produced by reaction with methanol or methyl acetate in the absorbing solution. Then, the liquid containing useful components such as methyl iodide is recycled from the scrubber system 8 to the reaction tank 1 through the recycling lines 48 and 23 and reused.
  • the bottoms extracted from the bottom of the distillation column 3 contains a larger amount of components having higher boiling points than acetic acid (high-boiling components) as compared to the overhead flow and side flow from the distillation column 3 such as propionic acid.
  • acetic acid high-boiling components
  • the above-mentioned catalyst and cocatalyst accompanied by droplets are included.
  • the bottoms also include acetic acid, methyl iodide, methyl acetate, 2-ethylcrotonaldehyde, butyl acetate and water.
  • a part of such bottoms is continuously introduced into the evaporation tank 2 through the lines 25 and 26 and recycled, and the other part of the bottoms is passed through the lines 25 and 23. It is continuously introduced into the reaction tank 1 and recycled.
  • the first acetic acid stream continuously withdrawn from the distillation column 3 as a side stream is richer in acetic acid than the vapor stream continuously introduced into the distillation column 3. That is, the acetic acid concentration of the first acetic acid stream is higher than the acetic acid concentration of the vapor stream.
  • the concentration of acetic acid in the first acetic acid stream is, for example, 90.0 to 99.9% by mass, preferably 93.0 to 99.0% by mass.
  • the first acetic acid stream may be, for example, methyl iodide, hydrogen iodide, water, methyl acetate, dimethyl ether, methanol, acetaldehyde, crotonaldehyde, 2-ethylcrotonaldehyde, butyl acetate, formic acid and propionic acid.
  • alkyl iodides such as ethyl iodide, propyl iodide, butyl iodide, hexyl iodide and decyl iodide.
  • the methyl iodide concentration is, for example, 0.1 to 18% by mass (for example, 0.1 to 8% by mass), preferably 0.2 to 13% by mass (for example, 0.2 to 5% by mass).
  • the water concentration is, for example, 0.1 to 8% by mass, preferably 0.2 to 5% by mass
  • the methyl acetate concentration is, for example, 0.1 to 8% by mass, preferably 0.2 to 5% by mass.
  • the crotonaldehyde concentration in the first acetic acid stream is, for example, 1.34 mass ppm or less, preferably 1.20 mass ppm or less, more preferably 1.00 mass ppm or less, still more preferably 0.80 mass ppm or less, Especially preferably, it is 0.60 mass ppm or less.
  • the lower limit value of the crotonaldehyde concentration in the first acetic acid stream may be, for example, 0.01 mass ppm or 0.05 mass ppm.
  • the concentration of 2-ethylcrotonaldehyde in the first acetic acid stream is, for example, 0.60 mass ppm or less, preferably 0.50 mass ppm or less, more preferably 0.40 mass ppm or less.
  • the lower limit of the 2-ethylcrotonaldehyde concentration in the first acetic acid stream may be, for example, 0.01 ppm by mass, or 0.05 ppm by mass.
  • the propionic acid concentration in the first acetic acid stream is, for example, 106 mass ppm or less, preferably 100 mass ppm or less, more preferably 90.0 mass ppm or less, and further preferably 80.0 mass ppm or less.
  • the lower limit value of the propionic acid concentration in the first acetic acid stream may be, for example, 1.0 mass ppm, 5.0 mass ppm, or 10.0 mass ppm.
  • connection position of the line 27 to the distillation column 3 may be higher than the connection position of the line 21 to the distillation column 3 in the height direction of the distillation column 3 as shown in the figure. It may be lower than the connection position of 21 or may be the same as the connection position of the line 21 to the distillation column 3.
  • the first acetic acid stream from the distillation column 3 is continuously introduced into the next distillation column 5 through the line 27 at a predetermined flow rate.
  • bottoms extracted from the bottom of the distillation column 3 or the first acetic acid flow extracted as a side stream from the distillation column 3 can be directly used as product acetic acid if the quality is acceptable.
  • Potassium hydroxide can be supplied or added to the first acetic acid stream flowing through the line 27 through a line 55 (potassium hydroxide introduction line). Potassium hydroxide can be supplied or added as a solution such as an aqueous solution. Hydrogen iodide in the first acetic acid stream can be reduced by supplying or adding potassium hydroxide to the first acetic acid stream. Specifically, hydrogen iodide reacts with potassium hydroxide to produce potassium iodide and water. As a result, corrosion of a device such as a distillation tower caused by hydrogen iodide can be reduced. In addition, potassium hydroxide can be supplied or added to an appropriate place where hydrogen iodide is present in this process. Note that potassium hydroxide added during the process also reacts with acetic acid to produce potassium acetate.
  • the distillation column 5 is a unit for performing the second distillation step, and is positioned as a so-called dehydration column in this embodiment.
  • the second distillation step is a step for further purifying acetic acid by subjecting the first acetic acid stream continuously introduced into the distillation column 5 to a distillation treatment.
  • the material of the distillation column 5 (at least the material in contact with the liquid and the gas contact part) is preferably a nickel-based alloy or zirconium. By using such a material, corrosion inside the distillation column due to hydrogen iodide or acetic acid can be suppressed, and elution of corrosive metal ions can be suppressed.
  • the feed liquid of the distillation column 5 includes at least a part of the first acetic acid stream (line 27), and a stream other than the first acetic acid stream [for example, a recycle stream from a downstream process (for example, line 42)] is added. Also good.
  • the distillation column 5 is composed of, for example, a rectification column such as a plate column and a packed column.
  • a plate column When a plate column is employed as the distillation column 5, the theoretical plate has, for example, 5 to 50 plates.
  • the reflux ratio is appropriately selected from 0.2 or more according to the number of theoretical plates, but is preferably 0.3 or more, more preferably 0.35 or more, and further preferably 0.4 or more.
  • the upper limit of the reflux ratio of the distillation column 5 is, for example, 3000 (particularly 1000), and may be about 100 or 10.
  • the top pressure is, for example, 0.10 to 0.28 MPa (gauge pressure), preferably 0.15 to 0.23 MPa (gauge pressure), and more preferably 0. 17 to 0.21 MPa (gauge pressure).
  • the tower bottom pressure is higher than the tower top pressure, for example, 0.13 to 0.31 MPa (gauge pressure), preferably 0.18 to 0.26 MPa (gauge pressure), more preferably 0.20 to 0.24 MPa (gauge). Pressure).
  • the column top temperature is less than 165 ° C and the column bottom temperature is less than 175 ° C.
  • the column top temperature is more preferably less than 163 ° C, even more preferably less than 161 ° C, particularly preferably less than 160 ° C, and particularly preferably less than 155 ° C.
  • the lower limit of the tower top temperature is, for example, 110 ° C.
  • the column bottom temperature is more preferably less than 173 ° C, further preferably less than 171 ° C, and particularly preferably less than 166 ° C.
  • the lower limit of the tower bottom temperature is, for example, 120 ° C.
  • the vapor extracted from the top of the distillation column 5 contains more components having a lower boiling point than that of acetic acid (low-boiling components) compared to the above-mentioned bottoms from the distillation column 5, such as methyl iodide and iodide.
  • acetic acid low-boiling components
  • iodide iodide
  • iodide iodide
  • Such steam is continuously introduced into the condenser 5a through the line 33.
  • the condenser 5a cools and partially condenses the steam from the distillation column 5 to separate it into a condensed component and a gas component.
  • the condensate includes, for example, water and acetic acid.
  • a part of the condensate is continuously refluxed from the condenser 5a through the line 35 to the distillation column 5.
  • the other part of the condensate is continuously introduced from the condenser 5a into the reaction tank 1 through the lines 35, 36 and 23 and recycled.
  • the gas generated in the capacitor 5a includes, for example, carbon monoxide, hydrogen, methane, carbon dioxide, nitrogen, oxygen, methyl iodide, hydrogen iodide, water, methyl acetate, acetic acid, dimethyl ether, methanol, acetaldehyde and formic acid. And supplied from the capacitor 5a to the scrubber system 8 through lines 37 and 15.
  • Hydrogen iodide in the gas component that has reached the scrubber system 8 is absorbed by the absorption liquid in the scrubber system 8, and methyl iodide is generated by the reaction of hydrogen iodide in the absorption liquid with methanol or methyl acetate, and The liquid containing useful components such as methyl iodide is recycled from the scrubber system 8 to the reaction tank 1 through the recycling lines 48 and 23 and reused.
  • the bottoms extracted from the bottom of the distillation column 5 or the side stream (second acetic acid stream) extracted from the middle position of the column is enriched with acetic acid than the first acetic acid stream continuously introduced into the distillation column 5. ing. That is, the acetic acid concentration in the second acetic acid stream is higher than the acetic acid concentration in the first acetic acid stream.
  • the acetic acid concentration of the second acetic acid stream is, for example, 99.10 to 99.99% by mass as long as it is higher than the acetic acid concentration of the first acetic acid stream.
  • the side stream extraction position from the distillation column 5 is lower than the introduction position of the first acetic acid stream into the distillation column 5 in the height direction of the distillation column 5.
  • the second acetic acid stream since the second acetic acid stream has a high potassium permanganate test value, it can be used as the product acetic acid as it is.
  • trace amounts of impurities for example, crotonaldehyde, 2-ethylcrotonaldehyde, butyl acetate, propionic acid, potassium acetate (when potassium hydroxide is supplied to line 27 etc.), hydrogen iodide, Catalyst, cocatalyst, etc.]. Therefore, the bottoms or side stream may be continuously introduced into the distillation column 6 through the line 34 and distilled.
  • the crotonaldehyde concentration in the second acetic acid stream is, for example, 1.10 mass ppm or less, preferably 1.00 mass ppm or less, more preferably 0.90 mass ppm or less, still more preferably 0.80 mass ppm or less, particularly preferably. Is 0.70 mass ppm or less (for example, 0.60 mass ppm or less).
  • the lower limit value of the crotonaldehyde concentration in the second acetic acid stream may be, for example, 0.01 mass ppm or 0.05 mass ppm.
  • the concentration of 2-ethylcrotonaldehyde in the second acetic acid stream is, for example, 0.80 mass ppm or less, preferably 0.70 mass ppm or less, more preferably 0.60 mass ppm or less, and even more preferably 0.50 mass ppm or less. Especially preferably, it is 0.40 mass ppm or less.
  • the lower limit value of the 2-ethylcrotonaldehyde concentration in the second acetic acid stream may be, for example, 0.01 mass ppm or 0.05 mass ppm.
  • the propionic acid concentration in the second acetic acid stream is, for example, 130 mass ppm or less, preferably 120 mass ppm or less, more preferably 110 mass ppm or less, and even more preferably 80.0 mass ppm or less.
  • the lower limit value of the propionic acid concentration in the second acetic acid stream may be, for example, 1.0 mass ppm, 5.0 mass ppm, or 10.0 mass ppm.
  • the concentration of hexyl iodide in the second acetic acid stream is, for example, 30 mass ppb or less, preferably 25 mass ppb or less, more preferably 20 mass ppb or less, still more preferably 17 mass ppb or less, and particularly preferably 10 mass ppb or less.
  • the lower limit value of the hexyl iodide concentration in the second acetic acid stream may be, for example, 0.1 mass ppb (or 1.0 mass ppb).
  • Potassium hydroxide can be supplied or added to the second acetic acid stream flowing through the line 34 through a line 56 (potassium hydroxide introduction line). Potassium hydroxide can be supplied or added as a solution such as an aqueous solution. Hydrogen iodide in the second acetic acid stream can be reduced by supplying or adding potassium hydroxide to the second acetic acid stream. Specifically, hydrogen iodide reacts with potassium hydroxide to produce potassium iodide and water. As a result, corrosion of a device such as a distillation tower caused by hydrogen iodide can be reduced.
  • the distillation column 6 is a unit for performing the third distillation step, and is positioned as a so-called dehigh boiling tower in this embodiment.
  • the third distillation step is a step for further purifying acetic acid by purifying the second acetic acid stream continuously introduced into the distillation column 6. In the present embodiment, this is not necessarily a necessary process.
  • the distillation column 6 includes a rectifying column such as a plate column and a packed column. When a plate column is employed as the distillation column 6, the theoretical plate has, for example, 5 to 50 plates, and the reflux ratio is, for example, 0.2 to 3000 depending on the number of theoretical plates.
  • the column top pressure is set to, for example, ⁇ 100 to 150 kPa (gauge pressure), and the column bottom pressure is higher than the column top pressure, for example, ⁇ 90 to 180 kPa (gauge pressure).
  • the column top temperature is set to 50 to 150 ° C., for example, higher than the boiling point of water and lower than the boiling point of acetic acid at the set column top pressure.
  • the bottom temperature is, for example, a temperature higher than the boiling point of acetic acid at the set tower bottom pressure and is set to 70 to 160 ° C.
  • connection position of the line 46 to the distillation column 6 may be higher than the connection position of the line 34 to the distillation column 6, as shown in the figure. The position may be lower than the connection position of 34, or may be the same as the connection position of the line 34 to the distillation column 6.
  • the vapor extracted from the top of the distillation column 6 contains more components having a lower boiling point than that of acetic acid (low-boiling components) compared to the above-mentioned bottoms from the distillation column 6, and in addition to acetic acid, for example, iodination Including methyl, hydrogen iodide, water, methyl acetate, dimethyl ether, methanol and formic acid.
  • acetic acid for example, iodination Including methyl, hydrogen iodide, water, methyl acetate, dimethyl ether, methanol and formic acid.
  • Such steam is continuously introduced into the condenser 6a through the line 38.
  • the condenser 6a divides the vapor from the distillation column 6 into a condensed component and a gas component by cooling and partially condensing.
  • the condensate contains, for example, methyl iodide, hydrogen iodide, water, methyl acetate, dimethyl ether, methanol and formic acid in addition to acetic acid.
  • At least a part of the condensate is continuously refluxed from the condenser 6 a to the distillation column 6 through the line 40.
  • a part of the condensate (distillate) can be recycled from the condenser 6a through the lines 40, 41 and 42 to the first acetic acid stream in the line 27 before being introduced into the distillation column 5. is there.
  • a part of the condensate is transferred from the condenser 6a through the lines 40, 41, 43 to the steam flow in the line 21 before being introduced into the distillation column 3. And can be recycled. Further, a part of the condensed portion (distilled portion) may be recycled to the reaction tank 1 from the condenser 6a through the lines 40, 44, and 23. Further, as described above, a part of the distillate from the condenser 6a can be supplied to the scrubber system 8 and used as an absorbing liquid in the system.
  • the gas component after absorbing the useful component is discharged out of the apparatus, and the liquid component containing the useful component is introduced or recycled from the scrubber system 8 to the reaction tank 1 through the recycle lines 48 and 23. Reused.
  • a part of the distillate from the condenser 6a may be led to various pumps (not shown) operating in the apparatus through a line outside the figure and used as a sealing liquid for the pump.
  • a part of the distillate from the condenser 6a may be regularly extracted out of the apparatus through an extraction line attached to the line 40, or unsteadily extracted out of the apparatus when necessary. May be.
  • the amount of distillate (distillation) is 0.01 to 30 of the condensate produced in the condenser 6a, for example. % By mass, preferably 0.1 to 10% by mass, more preferably 0.3 to 5% by mass, and more preferably 0.5 to 3% by mass.
  • the gas generated in the capacitor 6a is, for example, carbon monoxide, hydrogen, methane, carbon dioxide, nitrogen, oxygen, methyl iodide, hydrogen iodide, water, methyl acetate, acetic acid, dimethyl ether, methanol, acetaldehyde, formic acid, and the like. And is supplied from the capacitor 6a to the scrubber system 8 through lines 45 and 15.
  • the bottoms extracted from the bottom of the distillation column 6 through the line 39 contains a component having a boiling point higher than that of acetic acid (high boiling point component) in comparison with the overhead stream from the distillation column 6 such as propionic acid, An acetate salt such as potassium acetate (when an alkali such as potassium hydroxide is supplied to the line 34 or the like) is included.
  • the bottoms extracted from the bottom of the distillation column 6 through the line 39 are corrosive metals such as free metal generated on the inner walls of the components of the acetic acid production apparatus, iodine derived from corrosive iodine, Also includes compounds with corrosive metals. Such bottoms are discharged out of the acetic acid production apparatus in this embodiment.
  • the side stream continuously extracted from the distillation column 6 to the line 46 is continuously introduced into the next ion exchange resin column 7 as a third acetic acid stream.
  • This third acetic acid stream is richer in acetic acid than the second acetic acid stream continuously introduced into the distillation column 6. That is, the acetic acid concentration in the third acetic acid stream is higher than the acetic acid concentration in the second acetic acid stream.
  • the acetic acid concentration of the third acetic acid stream is, for example, 99.800 to 99.999% by mass as long as it is higher than the acetic acid concentration of the second acetic acid stream.
  • the position for extracting the side stream from the distillation column 6 is higher than the position for introducing the second acetic acid stream into the distillation column 6 in the height direction of the distillation column 6.
  • the side stream extraction position from the distillation column 6 is the same as or lower than the introduction position of the second acetic acid stream into the distillation column 6 in the height direction of the distillation column 6.
  • the distillation column 6 can be replaced by a single distiller (evaporator).
  • the distillation column 6 can be omitted because acetic acid having a very high potassium permanganate test value is obtained by the distillation treatment in the distillation column 5.
  • the ion exchange resin tower 7 is a purification unit for performing an adsorption removal process.
  • This adsorption and removal step is mainly performed by alkyl iodide (for example, ethyl iodide, propyl iodide, butyl iodide, hexyl iodide, etc.) contained in a trace amount in the third acetic acid stream continuously introduced into the ion exchange resin column 7.
  • This is a process for further purifying acetic acid by adsorbing and removing decyl iodide and the like.
  • the distillation column 6 may be omitted, and the second acetic acid stream from the distillation column 5 may be supplied to the ion exchange resin column 7.
  • the adsorption removal process using the ion exchange resin tower 7 does not necessarily need to be provided.
  • an ion exchange resin having an adsorption ability for alkyl iodide is filled in the tower to form an ion exchange resin bed.
  • an ion exchange resin for example, a cation exchange resin in which a part of the detachable protons in the sulfonic acid group, carboxyl group, phosphonic acid group or the like as an exchange group is substituted with a metal such as silver or copper. Can be mentioned.
  • a third acetic acid stream flows through the inside of the ion exchange resin tower 7 filled with such an ion exchange resin, and in the flow process, the alkyl iodide in the third acetic acid stream is passed. And the like are adsorbed on the ion exchange resin and removed from the third acetic acid stream.
  • the internal temperature is, for example, 18 to 100 ° C.
  • the acetic acid flow rate [acetic acid treatment amount per m 3 of resin volume (m 3 / h)] is, for example, 3 ⁇ 15 m 3 / h ⁇ m 3 (resin volume).
  • the fourth acetic acid flow is continuously led out from the lower end of the ion exchange resin tower 7 to the line 47.
  • the acetic acid concentration in the fourth acetic acid stream is higher than the acetic acid concentration in the third acetic acid stream. That is, the fourth acetic acid stream is richer in acetic acid than the third acetic acid stream that is continuously introduced into the ion exchange resin tower 7.
  • the acetic acid concentration of the fourth acetic acid stream is, for example, 99.900 to 99.999% by mass or more as long as it is higher than the acetic acid concentration of the third acetic acid stream.
  • this fourth acetic acid stream can be stored in a product tank (not shown).
  • a so-called product tower or finishing tower which is a distillation tower, may be provided as a purification unit for further purifying the fourth acetic acid stream from the ion exchange resin tower 7.
  • the product column is composed of a rectification column such as a plate column and a packed column.
  • the theoretical plate has, for example, 5 to 50 plates, and the reflux ratio is, for example, 0.5 to 3000 depending on the number of theoretical plates.
  • the column top pressure is set to, for example, -195 to 150 kPa (gauge pressure)
  • the column bottom pressure is set to be higher than the column top pressure, for example, -190 to 180 kPa (gauge pressure).
  • the inside the product column the column top temperature is set to, for example, 50 to 150 ° C. higher than the boiling point of water and lower than the boiling point of acetic acid at the set column top pressure
  • the column bottom temperature is set to, for example, The temperature is higher than the boiling point of acetic acid at the bottom pressure and is set to 70 to 160 ° C.
  • the product tower or finishing tower can be replaced by a simple distiller (evaporator).
  • all or part of the fourth acetic acid stream (liquid) from the ion exchange resin tower 7 is continuously introduced into the product tower.
  • steam as an overhead stream containing trace amounts of low-boiling components eg methyl iodide, water, methyl acetate, dimethyl ether, crotonaldehyde, acetaldehyde and formic acid
  • This steam is divided into a condensate and a gas by a predetermined condenser. A part of the condensate may be continuously refluxed to the product column and the other part of the condensate may be recycled to the reactor 1 and / or discarded outside the system.
  • the gas component is supplied to the scrubber system 8. From the bottom of the product column, bottoms containing a trace amount of high-boiling components are continuously withdrawn, and this bottoms, for example, into the second acetic acid stream in the line 34 before being introduced into the distillation column 6. And recycled.
  • a side stream (liquid) is continuously withdrawn as a fifth acetic acid stream from a height position between the tower top and the tower bottom in the product tower. The extraction position of the side stream from the product tower is lower in the height direction of the product tower, for example, than the introduction position of the fourth acetic acid stream into the product tower.
  • the fifth acetic acid stream is richer in acetic acid than the fourth acetic acid stream that is continuously introduced into the product column.
  • the acetic acid concentration in the fifth acetic acid stream is higher than the acetic acid concentration in the fourth acetic acid stream.
  • the acetic acid concentration of the fifth acetic acid stream is, for example, 99.900 to 99.999% by mass or more as long as it is higher than the acetic acid concentration of the fourth acetic acid stream.
  • This fifth acetic acid stream is stored, for example, in a product tank (not shown).
  • the ion exchange resin tower 7 may be installed downstream of the product tower to treat the acetic acid stream discharged from the product tower.
  • Comparative Example 1 The following experiment was conducted in a methanol acetic acid pilot plant (see FIG. 1). Reaction mixture obtained in reaction tank [total pressure 2.8 MPa (absolute pressure), carbon monoxide partial pressure 1.4 MPa (absolute pressure), hydrogen partial pressure 0.5 MPa (absolute pressure), reaction temperature 187 ° C.] Composition: methyl iodide (MeI) 7.6%, methyl acetate (MA) 4.5%, water (H 2 O) 2.5%, rhodium complex 910 ppm (in terms of Rh), lithium iodide (LiI) 14.
  • Reaction mixture obtained in reaction tank [total pressure 2.8 MPa (absolute pressure), carbon monoxide partial pressure 1.4 MPa (absolute pressure), hydrogen partial pressure 0.5 MPa (absolute pressure), reaction temperature 187 ° C.] Composition: methyl iodide (MeI) 7.6%, methyl acetate (MA) 4.5%, water (H 2 O) 2.5%, r
  • the tank was charged and the evaporation tank was heated to evaporate 25% (evaporation rate 25%).
  • the acetaldehyde concentration in the evaporating tank bottom was 73 ppm.
  • Evaporator vapor [composition: methyl iodide 27.2%, methyl acetate 14.7%, water 2.0%, acetaldehyde 689 ppm, crotonaldehyde 2.8 ppm, 2-ethylcrotonaldehyde 0.60 ppm, propionic acid 84.
  • acetaldehyde is separated and removed from the system, and the aqueous solution (1.6 parts) after acetaldehyde removal is recycled to the reaction system as a distillate.
  • the remainder of the aqueous phase was refluxed to the deboiling tower.
  • the reflux amount / distillation amount of the aqueous phase was the reflux ratio, and the reflux ratio was 2.
  • the organic phase (41 parts) was recycled directly to the reaction system. Three parts were extracted from the bottom of the deboiling tower as bottoms and recycled to the reaction system. 65.7 parts are extracted as a side-cut (SC) stream from the middle part (four stages from the bottom) of the low-boiling tower, and the dehydration tower [actual stage number 50, 34 stages from the bottom of the feed position, top pressure 295 kPa (absolute pressure) ), Tower top temperature 150 ° C.].
  • SC side-cut
  • a part of the vapor condensate at the top of the dehydration tower was refluxed (recycled) to the dehydration tower, and the remainder (19 parts) was recycled as a distillate to the reaction system.
  • the dehydration tower reflux ratio (reflux / distillation) was 0.5.
  • 46.7 parts of acetic acid product was obtained as bottoms from the bottom of the dehydration tower.
  • the amount of acetaldehyde removed (de-AD amount) was 0.0141 parts, and the ratio of the de-AD amount to the dehydrated tower bottom liquid amount (product production amount) was 3.02 ⁇ 10 ⁇ 4 .
  • the product acetic acid had a crotonaldehyde content of 1.28 ppm, a 2-ethylcrotonaldehyde content of 0.95 ppm, a propionic acid content of 150 ppm, and a hexyl iodide content of 36 ppb.
  • the permanganate time (chameleon time) of the product acetic acid was measured and found to be 40 minutes. The results are shown in Table 1.
  • Comparative Example 2 The same experiment as Comparative Example 1 was performed except that the reflux ratio of the deboiling tower was 10. This change changed the composition of the reaction mixture and the vapor composition of the evaporation tank. The results are shown in Table 1.
  • Example 1 The same experiment as Comparative Example 2 was performed except that the evaporation rate in the evaporation tank was 28%. This change changed the composition of the reaction mixture and the vapor composition of the evaporation tank. The results are shown in Table 1.
  • Example 2 The same experiment as Comparative Example 2 was performed except that the evaporation rate in the evaporation tank was 31%. This change changed the composition of the reaction mixture and the vapor composition of the evaporation tank. The results are shown in Table 1.
  • Example 3 The same experiment as Comparative Example 2 was performed except that the evaporation rate in the evaporation tank was set to 35%. This change changed the composition of the reaction mixture and the vapor composition of the evaporation tank. The results are shown in Table 1.
  • Example 4 The same experiment as Comparative Example 2 was performed except that the evaporation rate in the evaporation tank was 31% and the reflux ratio of the deboiling tower was 15. This change changed the composition of the reaction mixture and the vapor composition of the evaporation tank. The results are shown in Table 1.
  • AD is acetaldehyde
  • MeI is methyl iodide
  • MA is methyl acetate
  • AC is acetic acid
  • CR is crotonaldehyde
  • 2ECR is 2-ethylcrotonaldehyde
  • PA is propionic acid
  • HexI is hexyl iodide.
  • the numerical value in the column of each component represents the concentration.
  • a catalyst system including a metal catalyst and methyl iodide, and a carbonylation reaction step of reacting methanol and carbon monoxide in a reaction vessel in the presence of acetic acid, methyl acetate and water to produce acetic acid;
  • An evaporation step in which the reaction mixture obtained in the carbonylation reaction step is introduced into an evaporation tank and heated to separate the reaction mixture into a vapor stream and a residual stream;
  • a residual liquid stream recycling step for recycling the residual liquid stream to a reaction vessel;
  • the vapor stream is separated by a first distillation column into a first overhead stream rich in methyl iodide and acetaldehyde and a first acetic acid stream rich in acetic acid, and the first overhead stream is condensed and separated into an aqueous phase and an organic phase.
  • a low boiling step to obtain a phase A first overhead flow recycling step of recycling at least a portion of the aqueous phase and / or organic phase to a reaction vessel; An acetaldehyde separation and removal step for separating and removing acetaldehyde in the process stream;
  • a method for producing acetic acid comprising: By heating the evaporation tank, (i) the acetaldehyde concentration in the aqueous phase is 2340 mass ppm or more, and / or (ii) the methyl acetate concentration in the aqueous phase is less than 19.0 mass%, and / or (Iii) Controlling the methyl acetate concentration in the organic phase to less than 38.0% by mass, treating at least a part of the aqueous phase in the acetaldehyde separation and removal step, and reacting the remaining liquid after the acetaldehyde separation and removal
  • a method for producing acetic acid, comprising recycling to a tank and / or acetalde
  • the reflux ratio of the aqueous phase is 2 or more (preferably 3 or more, more preferably 5 or more, and still more preferably 8 Above, particularly preferably 10 or more, especially 12 or more), when only the organic phase is refluxed, the reflux ratio of the organic phase is 1 or more (preferably 1.5 or more, more preferably 2 or more, more preferably 4 or more, Particularly preferably 5 or more), when both the aqueous phase and the organic phase are refluxed, the total reflux ratio of the aqueous phase and the organic phase is 1.5 or more (preferably 2.3 or more, more preferably 3.5 or more, More preferably, it is 6 or more, and particularly preferably 8.5 or more.) The method for producing acetic acid according to [1] or [2].
  • the method further comprises a dehydration step of separating the first acetic acid stream into a second overhead stream rich in water and a second acetic acid stream richer in acetic acid than the first acetic acid stream by the second distillation column.
  • a dehydration step of separating the first acetic acid stream into a second overhead stream rich in water and a second acetic acid stream richer in acetic acid than the first acetic acid stream by the second distillation column.
  • the crotonaldehyde concentration in the second acetic acid stream is 1.10 mass ppm or less (preferably 1.00 mass ppm or less, more preferably 0.90 mass ppm or less, even more preferably 0.80 mass ppm or less, particularly Preferably 0.70 mass ppm or less, especially 0.60 mass ppm or less, and / or 2-ethylcrotonaldehyde concentration is 0.80 mass ppm or less (preferably 0.70 mass ppm or less, more preferably 0.60 mass).
  • ppm or less more preferably 0.50 mass ppm or less, particularly preferably 0.40 mass ppm or less
  • / or propionic acid concentration is 130 mass ppm or less (preferably 120 mass ppm or less, more preferably 110 mass ppm or less, The process for producing acetic acid according to [4], more preferably 80.0 ppm by mass or less) .
  • concentration of hexyl iodide in the second acetic acid stream is 30 mass ppb or less (preferably 25 mass ppb or less, more preferably 20 mass ppb or less, still more preferably 17 mass ppb or less, particularly preferably 10 mass ppb or less).
  • the concentration of acetaldehyde in the residual liquid stream in the evaporation tank is 70 ppm by mass or less (preferably 60 ppm by mass or less, more preferably 50 ppm by mass or less, further preferably 40 ppm by mass or less, and particularly preferably 30 ppm by mass or less.
  • the method for producing acetic acid according to any one of [1] to [6].
  • the crotonaldehyde concentration in the reaction mixture in the reaction tank is 1.7 mass ppm or less (preferably 1.4 mass ppm or less, more preferably 1.2 mass ppm or less, and even more preferably 1.0 mass ppm or less, Particularly preferably 0.8 mass ppm or less, especially 0.6 mass ppm or less) and / or 2-ethylcrotonaldehyde concentration is 1.8 mass ppm or less (preferably 1.6 mass ppm or less, more preferably 1.4 mass ppm or less).
  • Mass ppm or less more preferably 1.2 mass ppm or less, particularly preferably 1.0 mass ppm or less, especially 0.8 mass ppm or less) and / or propionic acid concentration of 240 mass ppm or less (preferably 230 mass ppm or less) More preferably, it is 220 mass ppm or less, More preferably, it is 200 mass ppm or less, Most preferably, it is 180 quality A ppm or less) [1] to process for the production of acetic acid according to any one of [7].
  • the crotonaldehyde concentration in the steam stream supplied to the first distillation column is 2.4 mass ppm or less (preferably 2.2 mass ppm or less, more preferably 2.0 mass ppm or less, and even more preferably 1.6 mass ppm).
  • Mass ppm or less, particularly preferably 1.2 mass ppm or less) and / or 2-ethylcrotonaldehyde concentration is 0.45 mass ppm or less (preferably 0.40 mass ppm or less, more preferably 0.30 mass ppm or less).
  • / or the propionic acid concentration is 106 mass ppm or less (preferably 74.0 mass ppm or less, more preferably 65.0 mass ppm or less, and even more preferably 55.0 mass ppm or less) [1] to [8]
  • the crotonaldehyde concentration in the first acetic acid stream is 1.34 mass ppm or less (preferably 1.20 mass ppm or less, more preferably 1.00 mass ppm or less, further preferably 0.80 mass ppm or less, particularly Preferably 0.60 mass ppm or less) and / or 2-ethylcrotonaldehyde concentration of 0.60 mass ppm or less (preferably 0.50 mass ppm or less, more preferably 0.40 mass ppm or less) and / or propionic acid.
  • the concentration is 106 mass ppm or less (preferably 100 mass ppm or less, more preferably 90.0 mass ppm or less, and still more preferably 80.0 mass ppm or less).
  • a method for producing acetic acid [11] A catalyst system including a metal catalyst and methyl iodide, and a carbonylation reaction step in which methanol and carbon monoxide are reacted in a reaction vessel in the presence of acetic acid, methyl acetate, and water to generate acetic acid; An evaporation step in which the reaction mixture obtained in the carbonylation reaction step is introduced into an evaporation tank and heated to separate the reaction mixture into a vapor stream and a residual stream; A residual liquid stream recycling step for recycling the residual liquid stream to a reaction vessel; The vapor stream is separated by a first distillation column into a first overhead stream rich in methyl iodide and acetaldehyde and a first acetic acid stream rich in acetic acid, and the first overhead stream is condensed and separated into an aqueous phase and an organic phase.
  • a low boiling step to obtain a phase A first overhead flow recycling step of recycling at least a portion of the aqueous phase and / or organic phase to a reaction vessel; An acetaldehyde separation and removal step for separating and removing acetaldehyde in the process stream;
  • a method for producing acetic acid comprising: By heating the evaporation tank, (i) the acetaldehyde concentration in the aqueous phase is 2340 mass ppm or more, and / or (ii) the methyl acetate concentration in the aqueous phase is less than 19.0 mass%, and / or (Iii) The methyl acetate concentration in the organic phase is controlled to be less than 38.0% by mass, the acetaldehyde concentration in the residual liquid stream is controlled to 70 mass ppm or less, and at least a part of the aqueous phase is the acetaldehyde.
  • the separation and removal step the residual liquid after separation and removal of acetaldehyde is recycled to the reaction tank and / or the acetaldehyde separation and removal step and / or other processes, and the reflux ratio of the aqueous phase of the first distillation column is 2 or more.
  • a method for producing acetic acid [12] The method for producing acetic acid according to [11], wherein the catalyst system further contains an ionic iodide. [13] Production of acetic acid according to [11] or [12], wherein the reflux ratio of the aqueous phase is 3 or more (preferably 5 or more, more preferably 8 or more, more preferably 10 or more, particularly preferably 12 or more). Method.
  • the method further includes a dehydration step of separating the first acetic acid stream into a second overhead stream rich in water and a second acetic acid stream richer in acetic acid than the first acetic acid stream by the second distillation column.
  • the method for producing acetic acid according to any one of [13].
  • the crotonaldehyde concentration in the second acetic acid stream is 1.10 mass ppm or less (preferably 1.00 mass ppm or less, more preferably 0.90 mass ppm or less, further preferably 0.80 mass ppm or less, particularly Preferably 0.70 mass ppm or less, especially 0.60 mass ppm or less, and / or 2-ethylcrotonaldehyde concentration is 0.80 mass ppm or less (preferably 0.70 mass ppm or less, more preferably 0.60 mass).
  • ppm or less more preferably 0.50 mass ppm or less, particularly preferably 0.40 mass ppm or less
  • / or propionic acid concentration is 130 mass ppm or less (preferably 120 mass ppm or less, more preferably 110 mass ppm or less
  • the concentration of hexyl iodide in the second acetic acid stream is 30 mass ppb or less (preferably 25 mass ppb or less, more preferably 20 mass ppb or less, more preferably 17 mass ppb or less, particularly preferably 10 mass ppb or less).
  • the concentration of acetaldehyde in the residual liquid stream in the evaporation tank is set to 60 ppm by mass or less (preferably 50 ppm by mass or less, more preferably 40 ppm by mass or less, and further preferably 30 ppm by mass or less). 16].
  • the crotonaldehyde concentration in the reaction mixture in the reaction tank is 1.7 mass ppm or less (preferably 1.4 mass ppm or less, more preferably 1.2 mass ppm or less, and even more preferably 1.0 mass ppm or less, Particularly preferably 0.8 mass ppm or less, especially 0.6 mass ppm or less) and / or 2-ethylcrotonaldehyde concentration is 1.8 mass ppm or less (preferably 1.6 mass ppm or less, more preferably 1.4 mass ppm or less).
  • Mass ppm or less more preferably 1.2 mass ppm or less, particularly preferably 1.0 mass ppm or less, especially 0.8 mass ppm or less) and / or propionic acid concentration of 240 mass ppm or less (preferably 230 mass ppm or less) More preferably, it is 220 mass ppm or less, More preferably, it is 200 mass ppm or less, Most preferably, it is 180 mass ppm. Is the amount ppm or less) [11] to process for the production of acetic acid according to any one of [17].
  • the crotonaldehyde concentration in the steam stream supplied to the first distillation column is 2.4 mass ppm or less (preferably 2.2 mass ppm or less, more preferably 2.0 mass ppm or less, and still more preferably 1.6 mass ppm).
  • Mass ppm or less, particularly preferably 1.2 mass ppm or less) and / or 2-ethylcrotonaldehyde concentration is 0.45 mass ppm or less (preferably 0.40 mass ppm or less, more preferably 0.30 mass ppm or less).
  • the crotonaldehyde concentration in the first acetic acid stream is 1.34 mass ppm or less (preferably 1.20 mass ppm or less, more preferably 1.00 mass ppm or less, further preferably 0.80 mass ppm or less, particularly Preferably 0.60 mass ppm or less) and / or 2-ethylcrotonaldehyde concentration of 0.60 mass ppm or less (preferably 0.50 mass ppm or less, more preferably 0.40 mass ppm or less) and / or propionic acid.
  • the concentration is 106 mass ppm or less (preferably 100 mass ppm or less, more preferably 90.0 mass ppm or less, still more preferably 80.0 mass ppm or less), and any one of [11] to [19] Process for the production of acetic acid.
  • the concentration of acetaldehyde in the aqueous phase is 2400 mass ppm or more (preferably 2500 mass ppm or more, more preferably 2600 mass ppm or more).
  • the concentration of methyl acetate in the aqueous phase is 18.5% by mass or less (preferably 17.5% by mass or less, more preferably 17.0% by mass or less). 21].
  • the methyl acetate concentration in the organic phase is 37.5% by mass or less (preferably 37.0% by mass or less, more preferably 35.0% by mass or less, and further preferably 30.0% by mass). % Or less, particularly preferably 25.0% by mass or less).
  • the lower limit of the methyl acetate concentration in the organic phase is 1.0% by mass (preferably 2.0% by mass, more preferably 5.0% by mass, still more preferably 10.0% by mass).
  • the concentration of acetaldehyde in the reaction mixture in the reaction tank is 500 ppm by mass or less (preferably 450 ppm by mass or less, more preferably 400 ppm by mass or less, more preferably 350 ppm by mass or less, particularly preferably 300 ppm by mass or less,
  • the method for producing acetic acid according to the present invention can be used as an industrial method for producing acetic acid by a methanol carbonylation process (methanol acetic acid process).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

過マンガン酸カリウム試験値が良好で且つ不純物含量の少ない高品質の酢酸を多大なコストをかけることなく、工業的に効率よく製造できる方法を提供する。 本発明の酢酸の製造方法は、カルボニル化反応工程、蒸発工程、脱低沸工程を有し、蒸発槽の加熱により、(i)脱低沸塔オーバーヘッド凝縮液の水相中のアセトアルデヒド濃度を2340質量ppm以上、及び/又は、(ii)前記水相中の酢酸メチル濃度を19.0質量%未満、及び/又は、(iii)脱低沸塔オーバーヘッド凝縮液の有機相中の酢酸メチル濃度を38.0質量%未満に制御するとともに、当該水相の少なくとも一部を前記アセトアルデヒド分離除去工程にて処理し、アセトアルデヒド分離除去後の残液を反応槽及び/又はアセトアルデヒド分離除去工程及び/又はその他のプロセスにリサイクルする。

Description

酢酸の製造方法
 本発明は、酢酸を製造する方法に関する。本願は、2017年3月28日に、日本に出願した特願2017-062764号の優先権を主張し、その内容をここに援用する。
 酢酸の工業的製造法としてメタノール法カルボニル化プロセス(メタノール法酢酸プロセス)が知られている。このプロセスでは、例えば、反応槽でメタノールと一酸化炭素とを触媒の存在下で反応させて酢酸を生成させ、反応混合物を蒸発槽で蒸発させ、その蒸気相を脱低沸塔、続いて脱水塔で精製して酢酸が製品化されるか、あるいは脱水塔に引き続いて脱高沸塔やさらには製品塔を経由して酢酸が製品化される。
 このような酢酸製造プロセスでは、反応系でヨウ化メチルが還元されて生成するアセトアルデヒドはアルドール縮合によってクロトンアルデヒドや2-エチルクロトンアルデヒドに転化され、製品酢酸の過マンガン酸カリウム試験値(過マンガン酸タイム)を悪化させる。また、クロトンアルデヒドとアセトアルデヒドが反応した後、水素還元されヨウ素化されるとヨウ化ヘキシルとなる。製品酢酸中にヨウ化ヘキシルが含まれていると、この酢酸を用いて酢酸ビニルを製造する際、使用するパラジウム触媒が失活する。
 従来、クロトンアルデヒドや2-エチルクロトンアルデヒドの低減には、(i)反応系で副生したアセトアルデヒドを精製工程でヨウ化メチルから分離除去し、反応系にリサイクルするヨウ化メチル中のアセトアルデヒドを低減することにより、反応系でのクロトンアルデヒドの生成を抑制する方法と、(ii)精製工程の途中で得られる粗酢酸中に含まれるクロトンアルデヒドを直接オゾンを用いて酸化分解する方法の大きく2通りの方法が工業的に採用されてきた(特許文献1及び2)。しかしながら、アセトアルデヒドの分離除去設備やオゾン処理設備はともに高価である。従来は、製品酢酸の過マンガン酸カリウム試験値を向上させるのにこれらの方法に全面的に依存しており、設備費の増大につながっていた。一方、ヨウ化ヘキシルの除去法として、銀イオンで交換した陽イオン交換樹脂で処理する方法が知られている。しかし、このような銀置換イオン交換樹脂を用いた処理方法は、銀置換交換樹脂が劣化しやすく、比例費の上昇につながる。なお、特表2011-518880号公報には、半経験的シミュレーターを用いて、想定された組成の反応混合物を蒸発槽に導入し加熱した場合のフラッシュ温度と、フラッシャーから排出される蒸気及び液体組成との関係が検討されている。しかしながら、この文献には、フラッシャーから排出される蒸気を脱低沸塔に供して得られるオーバーヘッド凝縮液の水相中のアセトアルデヒド濃度や酢酸メチル濃度、或いは有機相中の酢酸メチル濃度を制御して、反応槽中のアセトアルデヒド、2-エチルクロトンアルデヒド及びヨウ化ヘキシルの濃度を低減させることについては何ら開示も示唆もない。
特開平07-25813号公報 特表2001-508405号公報 特表2011-518880号公報
 したがって、本発明の目的は、過マンガン酸カリウム試験値が良好で且つ不純物含量の少ない高品質の酢酸を多大なコストをかけることなく、工業的に効率よく製造できる方法を提供することにある。
 本発明者らは、上記目的を達成するため鋭意検討した結果、メタノール法カルボニル化プロセスにおいて、蒸発槽を加熱して蒸発槽缶出液中のアセトアルデヒド濃度を低減させるとともに、脱低沸塔への仕込み酢酸濃度を上げると、脱低沸塔のオーバーヘッド凝縮液を水相及び有機相に分液させる際のアセトアルデヒド分配係数を制御でき、水相側へのアセトアルデヒド分配量を増加させ、その水相を脱アセトアルデヒド除去処理に付すことで、脱アセトアルデヒド効率を大きく向上できることを見出した。アセトアルデヒド分配係数が増加する原因は、脱低沸塔仕込み液組成の変更による蒸留条件の変化により、蒸留塔オーバーヘッドの酢酸メチル濃度が低減し、この酢酸メチル濃度の低減がアセトアルデヒド分配係数に影響を与えたものである。脱アセトアルデヒド効率の向上により、反応槽の反応混合液中のアセトアルデヒド濃度は低下し、クロトンアルデヒド、2-エチルクロトンアルデヒド及びヨウ化ヘキシルの生成量が抑制される。反応槽の反応混合液中のアセトアルデヒド濃度が低下すると、アセトアルデヒド+H2+CO→プロピオン酸の反応によるプロピオン酸の生成も低減される。さらに脱低沸塔の還流比を増加させると、アセトアルデヒドが塔頂にさらに濃縮され、脱アセトアルデヒド効率がより一層向上することが分かった。本発明はこれらの知見に基づき、さらに検討を加えて完成させたものである。
 すなわち、本発明は、金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水の存在下、メタノールと一酸化炭素とを反応槽で反応させて酢酸を生成させるカルボニル化反応工程と、
 前記カルボニル化反応工程で得られた反応混合物を蒸発槽に導入して加熱し、前記反応混合物を蒸気流と残液流とに分離する蒸発工程と、
 前記残液流を反応槽にリサイクルする残液流リサイクル工程と、
 前記蒸気流を第1蒸留塔によりヨウ化メチル及びアセトアルデヒドに富む第1オーバーヘッド流と酢酸に富む第1酢酸流とに分離するとともに、前記第1オーバーヘッド流を凝縮、分液させて水相と有機相とを得る脱低沸工程と、
 前記水相及び/又は有機相の少なくとも一部を反応槽にリサイクルする第1オーバーヘッド流リサイクル工程と、
 プロセス流中のアセトアルデヒドを分離除去するためのアセトアルデヒド分離除去工程と、
 を備えた酢酸の製造方法であって、
 前記蒸発槽の加熱により、(i)前記水相中のアセトアルデヒド濃度を2340質量ppm以上、及び/又は、(ii)前記水相中の酢酸メチル濃度を19.0質量%未満、及び/又は、(iii)前記有機相中の酢酸メチル濃度を38.0質量%未満に制御するとともに、当該水相の少なくとも一部を前記アセトアルデヒド分離除去工程にて処理し、アセトアルデヒド分離除去後の残液を反応槽及び/又はアセトアルデヒド分離除去工程及び/又はその他のプロセスにリサイクルすることを特徴とする酢酸の製造方法(以下、「第1の酢酸の製造方法」と称する場合がある)を提供する。
 第1の酢酸の製造方法において、触媒系はさらにイオン性ヨウ化物を含んでいてもよい。
 第1蒸留塔の運転条件につき、当該第1蒸留塔に水相のみを還流させる場合は水相の還流比を2以上とし、有機相のみを還流させる場合は有機相の還流比を1以上とし、水相及び有機相をともに還流させる場合は水相及び有機相の総和の還流比を1.5以上としてもよい。
 第1の酢酸の製造方法は、さらに、前記第1酢酸流を第2蒸留塔により水に富む第2オーバーヘッド流と第1酢酸流よりも酢酸に富む第2酢酸流とに分離する脱水工程を有していてもよい。この場合、前記第2酢酸流におけるクロトンアルデヒド濃度が1.10質量ppm以下及び/又は2-エチルクロトンアルデヒド濃度が0.80質量ppm以下及び/又はプロピオン酸濃度が130質量ppm以下であることが好ましい。
 第1の酢酸の製造方法においては、前記蒸発槽における残液流中のアセトアルデヒド濃度を70質量ppm以下にしてもよい。
 反応槽の反応混合液におけるクロトンアルデヒド濃度が1.7質量ppm以下及び/又は2-エチルクロトンアルデヒド濃度が1.8質量ppm以下及び/又はプロピオン酸濃度が240質量ppm以下であってもよい。
 第1蒸留塔に供給する前記蒸気流におけるクロトンアルデヒド濃度が2.4質量ppm以下及び/又は2-エチルクロトンアルデヒド濃度が0.45質量ppm以下及び/又はプロピオン酸濃度が106質量ppm以下であってもよい。
 前記第1酢酸流におけるクロトンアルデヒド濃度が1.34質量ppm以下及び/又は2-エチルクロトンアルデヒド濃度が0.60質量ppm以下及び/又はプロピオン酸濃度が106質量ppm以下であってもよい。
 本発明は、また、金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水の存在下、メタノールと一酸化炭素とを反応槽で反応させて酢酸を生成させるカルボニル化反応工程と、
 前記カルボニル化反応工程で得られた反応混合物を蒸発槽に導入して加熱し、前記反応混合物を蒸気流と残液流とに分離する蒸発工程と、
 前記残液流を反応槽にリサイクルする残液流リサイクル工程と、
 前記蒸気流を第1蒸留塔によりヨウ化メチル及びアセトアルデヒドに富む第1オーバーヘッド流と酢酸に富む第1酢酸流とに分離するとともに、前記第1オーバーヘッド流を凝縮、分液させて水相と有機相とを得る脱低沸工程と、
 前記水相及び/又は有機相の少なくとも一部を反応槽にリサイクルする第1オーバーヘッド流リサイクル工程と、
 プロセス流中のアセトアルデヒドを分離除去するためのアセトアルデヒド分離除去工程と、
 を備えた酢酸の製造方法であって、
 前記蒸発槽の加熱により、(i)前記水相中のアセトアルデヒド濃度を2340質量ppm以上、及び/又は、(ii)前記水相中の酢酸メチル濃度を19.0質量%未満、及び/又は、(iii)前記有機相中の酢酸メチル濃度を38.0質量%未満に制御し、且つ前記残液流中のアセトアルデヒド濃度を70質量ppm以下に制御し、前記水相の少なくとも一部を前記アセトアルデヒド分離除去工程にて処理し、アセトアルデヒド分離除去後の残液を反応槽及び/又はアセトアルデヒド分離除去工程及び/又はその他のプロセスにリサイクルするとともに、第1蒸留塔の水相の還流比を2以上とすることを特徴とする酢酸の製造方法(以下、「第2の酢酸の製造方法」と称する場合がある)を提供する。
 第2の酢酸の製造方法において、触媒系はさらにイオン性ヨウ化物を含んでいてもよい。
 本発明によれば、蒸発槽を加熱して、脱低沸塔のオーバーヘッド凝縮液を分液して得られる水相及び有機相について、水相のアセトアルデヒド濃度、及び/又は、水相の酢酸メチル濃度、及び/又は、有機相の酢酸メチル濃度を特定範囲に制御するので、水相側へのアセトアルデヒド分配量が増加し、この水相をアセトアルデヒド分離除去工程に付すことにより、アセトアルデヒドを効率よく分離除去できる。このため、反応槽中のアセトアルデヒド濃度が低下し、クロトンアルデヒド、2-エチルクロトンアルデヒド、ヨウ化ヘキシル、さらにはプロピオン酸の生成量が抑制される。よって、大規模な脱アセトアルデヒド設備やオゾン処理設備を設けなくても、過マンガン酸カリウム試験値が良好で且つ不純物含量の低い高品質の製品酢酸を得ることができる。蒸発槽の加熱を調整して蒸発槽残液流(缶出液)中のアセトアルデヒド濃度を特定値以下にしたり、脱低沸塔の還流比を特定値以上にすることにより、上記効果はさらに顕著なものとなる。
本発明の一実施形態を示す酢酸製造フロー図である。 アセトアルデヒド分離除去システムの一例を示す概略フロー図である。 アセトアルデヒド分離除去システムの他の例を示す概略フロー図である。 アセトアルデヒド分離除去システムのさらに他の例を示す概略フロー図である。 アセトアルデヒド分離除去システムのさらに他の例を示す概略フロー図である。
 本発明の第1の酢酸の製造方法では、金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水の存在下、メタノールと一酸化炭素とを反応槽で反応させて酢酸を生成させるカルボニル化反応工程と、前記カルボニル化反応工程で得られた反応混合物を蒸発槽に導入して加熱し、前記反応混合物を蒸気流と残液流とに分離する蒸発工程と、前記残液流を反応槽にリサイクルする残液流リサイクル工程と、前記蒸気流を第1蒸留塔によりヨウ化メチル及びアセトアルデヒドに富む第1オーバーヘッド流と酢酸に富む第1酢酸流とに分離するとともに、前記第1オーバーヘッド流を凝縮、分液させて水相と有機相とを得る脱低沸工程と、前記水相及び/又は有機相の少なくとも一部を反応槽にリサイクルする第1オーバーヘッド流リサイクル工程と、プロセス流中のアセトアルデヒドを分離除去するためのアセトアルデヒド分離除去工程とを備え、前記蒸発槽の加熱により、(i)前記水相中のアセトアルデヒド濃度を2340質量ppm以上、及び/又は、(ii)前記水相中の酢酸メチル濃度を19.0質量%未満、及び/又は、(iii)前記有機相中の酢酸メチル濃度を38.0質量%未満に制御するとともに、当該水相の少なくとも一部を前記アセトアルデヒド分離除去工程にて処理し、アセトアルデヒド分離除去後の残液を反応槽及び/又はアセトアルデヒド分離除去工程及び/又はその他のプロセスに(好ましくは、少なくとも反応槽に)リサイクルする。水相中のアセトアルデヒド濃度、水相中の酢酸メチル濃度、或いは有機相中の酢酸メチル濃度を上記の範囲に制御すると、アセトアルデヒドの分配係数[{水相のアセトアルデヒド濃度(質量%)}/{有機相のアセトアルデヒド濃度(質量%)}]が増大する。すなわち、水相側へのアセトアルデヒド分配量が増大する。そのため、この水相をアセトアルデヒド分離除去工程に供することでアセトアルデヒドの分離除去効率を大幅に向上できる。
 本発明の第2の酢酸の製造方法では、前記のカルボニル化反応工程、蒸発工程、残液流リサイクル工程と、脱低沸工程、第1オーバーヘッド流リサイクル工程、アセトアルデヒド分離除去工程とを備え、前記蒸発槽の加熱により、(i)前記水相中のアセトアルデヒド濃度を2340質量ppm以上、及び/又は、(ii)前記水相中の酢酸メチル濃度を19.0質量%未満、及び/又は、(iii)前記有機相中の酢酸メチル濃度を38.0質量%未満に制御し、且つ前記残液流中のアセトアルデヒド濃度を70質量ppm以下に制御し、前記水相の少なくとも一部を前記アセトアルデヒド分離除去工程にて処理し、アセトアルデヒド分離除去後の残液を反応槽及び/又はアセトアルデヒド分離除去工程及び/又はその他のプロセスに(好ましくは、少なくとも反応槽に)リサイクルするとともに、第1蒸留塔の水相の還流比を2以上とする。本発明の第2の酢酸の製造方法は、前記本発明の第1の酢酸の製造方法の好ましい態様の一つである。
 前記(i)において、水相中のアセトアルデヒド濃度は、好ましくは2400質量ppm以上、より好ましくは2500質量ppm以上、さらに好ましくは2600質量ppm以上である。水相中のアセトアルデヒド濃度の上限は、例えば1.0質量%、又は5000質量ppmであってもよい。前記(ii)において、水相中の酢酸メチル濃度は、好ましくは18.5質量%以下、より好ましくは17.5質量%以下、さらに好ましくは17.0質量%以下である。水相中の酢酸メチル濃度の下限は、例えば1.0質量%、又は5.0質量%(或いは8.0質量%又は10.0質量%)であってもよい。前記(iii)において、有機相中の酢酸メチル濃度は、好ましくは37.5質量%以下、より好ましくは37.0質量%以下、さらに好ましくは35.0質量%以下、特に好ましくは30.0質量%以下(例えば25.0質量%以下)である。有機相中の酢酸メチル濃度の下限は、例えば1.0質量%若しくは2.0質量%であってもよく、又は5.0質量%(或いは10.0質量%若しくは15.0質量%、特に20.0質量%)であってもよい。
 前記第1及び第2の酢酸の製造方法(以下、これらを「本発明の酢酸の製造方法」と総称する場合がある)において、前記触媒系は、さらにイオン性ヨウ化物を含んでいてもよい。イオン性ヨウ化物は助触媒として機能する。
 本発明の酢酸の製造方法では、前記水相の少なくとも一部をアセトアルデヒド分離除去工程にて処理し、アセトアルデヒド分離除去後の残液を反応槽等にリサイクルするが、これに加えて、前記有機相の少なくとも一部をアセトアルデヒド分離除去工程にて処理し、アセトアルデヒド分離除去後の残液を反応槽等にリサイクルしてもよい。
 本発明の酢酸の製造方法では、さらに、前記第1酢酸流を第2蒸留塔により水に富む第2オーバーヘッド流と第1酢酸流よりも酢酸に富む第2酢酸流とに分離する脱水工程を有していてもよい。第1酢酸流を第2蒸留塔にて脱水することにより、塔底又は塔の中間部位から缶出液又はサイドカット液として水含有量の少ない第2酢酸流を得ることができる。第2酢酸流はそのまま、或いは必要に応じてさらに精製することにより製品酢酸とすることができる。
 本発明の酢酸の製造方法では、第1蒸留塔に第1オーバーヘッド流の凝縮液の水相のみを還流させる場合は、水相の還流比(水相の還流量/水相の留出量)を、例えば2以上とすることが望ましく、好ましくは3以上、より好ましくは5以上、さらに好ましくは8以上、特に好ましくは10以上、とりわけ12以上である。また、第1蒸留塔に第1オーバーヘッド流の凝縮液の有機相のみを還流させる場合は、有機相の還流比(有機相の還流量/有機相の留出量)を、例えば1以上とすることが望ましく、好ましくは1.5以上、より好ましくは2以上、さらに好ましくは4以上、特に好ましくは5以上である。さらに、第1蒸留塔に第1オーバーヘッド流の凝縮液の水相及び有機相をともに還流させる場合は、水相及び有機相の総和の還流比(水相及び有機相の還流量の総和/水相及び有機相の留出量の総和)を、例えば1.5以上とすることが望ましく、好ましくは2.3以上、より好ましくは3.5以上、さらに好ましくは6以上、特に好ましくは8.5以上である。また、第1蒸留塔に前記水相を還流させる場合は、水相の還流比(水相の還流量/水相の留出量)は2以上であることが好ましく、より好ましくは3以上、さらに好ましくは5以上、特に好ましくは8以上、とりわけ12以上である。第1蒸留塔の還流比の上限は、いずれの場合も、例えば3000(特に1000)であってもよく、或いは100(特に30)であってもよい。第1蒸留塔の還流比を上げることにより、アセトアルデヒドを塔頂に濃縮できるので、塔頂の凝縮液をアセトアルデヒド分離除去工程に供することにより、脱アセトアルデヒド効率をより向上できる。
 本発明の酢酸の製造方法では、蒸発槽の加熱を調整して、蒸発槽における残液流(缶出液)中のアセトアルデヒド濃度を70質量ppm以下にすることが好ましい。残液流中のアセトアルデヒド濃度は、より好ましくは60質量ppm以下、さらに好ましくは50質量ppm以下、特に好ましくは40質量ppm以下(例えば30質量ppm以下)である。このような操作を行う場合には、前記残液流は触媒液として反応槽にリサイクルされるので、反応槽にリサイクルされるアセトアルデヒド量が低減し、それによって反応槽でのクロトンアルデヒド、2-エチルクロトンアルデヒド、ヨウ化ヘキシル、プロピオン酸などの副生物の生成を抑制できる。
 本発明の製造方法では、上記のようにアセトアルデヒド分離除去効率を高くできるため、反応系に戻るアセトアルデヒド量が低減され、その結果として、反応槽の反応混合液中のクロトンアルデヒド、2-エチルクロトンアルデヒド、プロピオン酸、ヨウ化ヘキシルの濃度を低下させることができる。
 反応槽の反応混合液中のクロトンアルデヒド濃度は、例えば1.7質量ppm以下、好ましくは1.4質量ppm以下、より好ましくは1.2質量ppm以下、特に好ましくは1.0質量ppm以下(例えば0.8質量ppm以下、とりわけ0.6質量ppm以下)である。反応槽の反応混合液中のクロトンアルデヒド濃度の下限値は、例えば0.01質量ppm(或いは0.1質量ppm)であってもよい。反応槽の反応混合液中の2-エチルクロトンアルデヒド濃度は、例えば1.8質量ppm以下、好ましくは1.6質量ppm以下、より好ましくは1.4質量ppm以下、特に好ましくは1.2質量ppm以下(例えば1.0質量ppm以下、とりわけ0.8質量ppm以下)である。反応槽の反応混合液中の2-エチルクロトンアルデヒド濃度の下限値は、例えば0.01質量ppm(或いは0.1質量ppm)であってもよい。反応槽の反応混合液中のプロピオン酸濃度は、例えば240質量ppm以下、好ましくは230質量ppm以下、より好ましくは220質量ppm以下、特に好ましくは200質量ppm以下(例えば180質量ppm以下)である。反応槽の反応混合液中のプロピオン酸濃度の下限値は、例えば10質量ppm(或いは50質量ppm)であってもよい。
 反応槽の反応混合液中のクロトンアルデヒド、2-エチルクロトンアルデヒド、プロピオン酸、ヨウ化ヘキシルの各濃度が低下すると、第1蒸留塔に供給する蒸気流中のこれらの不純物の濃度が低下し、さらには第1蒸留塔から得られる第1酢酸流中のこれらの不純物の濃度が低下し、よって過マンガン酸カリウム試験値が良好で且つ不純物含量の少ない高品質の製品酢酸を得ることができる。このため、過マンガン酸カリウム試験値の向上のために従来用いられてきた脱アセトアルデヒド設備やオゾン処理設備を小規模化したり省略化できる。また、脱低沸塔或いはさらに脱水塔を経るだけで過マンガン酸カリウム試験値の高い酢酸を得ることができるので、その後の脱高沸塔や製品塔(仕上塔)を小規模化乃至省略が可能となる。
 第1蒸留塔に供給する前記蒸気流中のクロトンアルデヒド濃度は、例えば2.4質量ppm以下、好ましくは2.2質量ppm以下、より好ましくは2.0質量ppm以下、特に好ましくは1.6質量ppm以下(例えば1.2質量ppm以下)である。第1蒸留塔に供給する前記蒸気流中のクロトンアルデヒド濃度の下限値は、例えば0.01質量ppm(或いは0.1質量ppm)であってもよい。第1蒸留塔に供給する前記蒸気流中の2-エチルクロトンアルデヒド濃度は、例えば0.45質量ppm以下、好ましくは0.40質量ppm以下、より好ましくは0.30質量ppm以下である。第1蒸留塔に供給する前記蒸気流中の2-エチルクロトンアルデヒド濃度の下限値は、例えば0.01質量ppm(或いは0.1質量ppm)であってもよい。第1蒸留塔に供給する前記蒸気流中のプロピオン酸濃度は、例えば106質量ppm以下、好ましくは74.0質量ppm以下、より好ましくは65.0質量ppm以下、さらに好ましくは55.0質量ppm以下である。第1蒸留塔に供給する前記蒸気流中のプロピオン酸濃度の下限値は、例えば1.0質量ppm、或いは5.0質量ppm又は10.0質量ppmであってもよい。
 第1酢酸流中のクロトンアルデヒド濃度は、例えば1.34質量ppm以下、好ましくは1.20質量ppm以下、より好ましくは1.00質量ppm以下、さらに好ましくは0.80質量ppm以下、特に好ましくは0.60質量ppm以下である。第1酢酸流中のクロトンアルデヒド濃度の下限値は、例えば0.01質量ppm(或いは0.05質量ppm)であってもよい。第1酢酸流中の2-エチルクロトンアルデヒド濃度は、例えば0.60質量ppm以下、好ましくは0.50質量ppm以下、より好ましくは0.40質量ppm以下である。第1酢酸流中の2-エチルクロトンアルデヒド濃度の下限値は、例えば0.01質量ppm(或いは0.05質量ppm)であってもよい。第1酢酸流中のプロピオン酸濃度は、例えば106質量ppm以下、好ましくは100質量ppm以下、より好ましくは90.0質量ppm以下、さらに好ましくは80.0質量ppm以下である。第1酢酸流中のプロピオン酸濃度の下限値は、例えば1.0質量ppm、或いは5.0質量ppm又は10.0質量ppmであってもよい。
 脱水塔から得られる第2酢酸流中のクロトンアルデヒド濃度は、例えば1.10質量ppm以下、好ましくは1.00質量ppm以下、より好ましくは0.90質量ppm以下、さらに好ましくは0.80質量ppm以下、特に好ましくは0.70質量ppm以下(例えば0.60質量ppm以下)である。第2酢酸流中のクロトンアルデヒド濃度の下限値は、例えば0.01質量ppm(或いは0.05質量ppm)であってもよい。第2酢酸流中の2-エチルクロトンアルデヒド濃度は、例えば0.80質量ppm以下、好ましくは0.70質量ppm以下、より好ましくは0.60質量ppm以下、さらに好ましくは0.50質量ppm以下、特に好ましくは0.40質量ppm以下である。第2酢酸流中の2-エチルクロトンアルデヒド濃度の下限値は、例えば0.01質量ppm(或いは0.05質量ppm)であってもよい。第2酢酸流中のプロピオン酸濃度は、例えば130質量ppm以下、好ましくは120質量ppm以下、より好ましくは110質量ppm以下、さらに好ましくは80.0質量ppm以下である。第2酢酸流中のプロピオン酸濃度の下限値は、例えば1.0質量ppm、或いは5.0質量ppm又は10.0質量ppmであってもよい。第2酢酸流中のヨウ化ヘキシル濃度は、例えば30質量ppb以下、好ましくは25質量ppb以下、より好ましくは20質量ppb以下、さらに好ましくは17質量ppb以下、特に好ましくは10質量ppb以下である。第2酢酸流中のヨウ化ヘキシル濃度の下限値は、例えば0.1質量ppb(或いは1.0質量ppb)であってもよい。
 以下、本発明の一実施形態について説明する。図1は、本発明の一実施形態を示す酢酸製造フロー図(メタノール法カルボニル化プロセス)の一例である。この酢酸製造フローに係る酢酸製造装置は、反応槽1と、蒸発槽2と、蒸留塔3と、デカンタ4と、蒸留塔5と、蒸留塔6と、イオン交換樹脂塔7と、スクラバーシステム8と、アセトアルデヒド分離除去システム9、コンデンサ1a,2a,3a,5a,6aと、熱交換器2bと、リボイラー3b,5b,6bと、ライン11~56、ポンプ57とを備え、酢酸を連続的に製造可能に構成されている。本実施形態の酢酸の製造方法では、反応槽1、蒸発槽2、蒸留塔3、蒸留塔5、蒸留塔6、及びイオン交換樹脂塔7において、それぞれ、反応工程、蒸発工程(フラッシュ工程)、第1蒸留工程、第2蒸留工程、第3蒸留工程、及び吸着除去工程が行われる。第1蒸留工程は脱低沸工程、第2蒸留工程は脱水工程、第3蒸留工程は脱高沸工程ともいう。なお、本発明において、工程は上記に限らず、例えば、蒸留塔5、蒸留塔6、イオン交換樹脂塔7、アセトアルデヒド分離除去システム9(脱アセトアルデヒド塔など)の設備は付帯しない場合がある。また、後述するように、イオン交換樹脂塔7の下流に製品塔を設けてもよい。
 反応槽1は、反応工程を行うためのユニットである。この反応工程は、下記の化学式(1)で示される反応(メタノールのカルボニル化反応)によって酢酸を連続的に生成させるための工程である。酢酸製造装置の定常稼働状態において、反応槽1内には、例えば撹拌機によって撹拌されている反応混合物が存在する。反応混合物は、原料であるメタノール及び一酸化炭素と、金属触媒と、助触媒と、水と、製造目的である酢酸と、各種の副生成物とを含み、液相と気相とが平衡状態にある。
   CH3OH + CO → CH3COOH       (1)
 反応混合物中の原料は、液体状のメタノール及び気体状の一酸化炭素である。メタノールは、メタノール貯留部(図示略)からライン11を通じて反応槽1に所定の流量で連続的に供給される。
 一酸化炭素は、一酸化炭素貯留部(図示略)からライン12を通じて反応槽1に所定の流量で連続的に供給される。一酸化炭素は必ずしも純粋な一酸化炭素でなくてもよく、例えば窒素、水素、二酸化炭素、酸素等の他のガスが少量(例えば5質量%以下、好ましくは1質量%以下)含まれていてもよい。
 反応混合物中の金属触媒は、メタノールのカルボニル化反応を促進するためのものであり、例えばロジウム触媒やイリジウム触媒を使用することができる。ロジウム触媒としては、例えば、化学式[Rh(CO)22]-で表されるロジウム錯体を使用することができる。イリジウム触媒としては、例えば化学式[Ir(CO)22]-で表されるイリジウム錯体を使用することができる。金属触媒としては金属錯体触媒が好ましい。反応混合物中の触媒の濃度(金属換算)は、反応混合物の液相全体に対して、例えば100~10000質量ppm、好ましくは200~5000質量ppm、さらに好ましくは400~2000質量ppmである。
 助触媒は、上述の触媒の作用を補助するためのヨウ化物であり、例えば、ヨウ化メチルやイオン性ヨウ化物が使用される。ヨウ化メチルは、上述の触媒の触媒作用を促進する作用を示し得る。ヨウ化メチルの濃度は、反応混合物の液相全体に対して例えば1~20質量%である。イオン性ヨウ化物は、反応液中でヨウ化物イオンを生じさせるヨウ化物(特に、イオン性金属ヨウ化物)であり、上述の触媒を安定化させる作用や、副反応を抑制する作用を示し得る。イオン性ヨウ化物としては、例えば、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウムなどのアルカリ金属ヨウ化物などが挙げられる。反応混合物中のイオン性ヨウ化物の濃度は、反応混合物の液相全体に対して、例えば1~25質量%であり、好ましくは5~20質量%である。また、例えばイリジウム触媒などを用いる場合は、助触媒として、ルテニウム化合物やオスミウム化合物を用いることもできる。これらの化合物の使用量は総和で、例えばイリジウム1モル(金属換算)に対して、0.1~30モル(金属換算)、好ましくは0.5~15モル(金属換算)である。
 反応混合物中の水は、メタノールのカルボニル化反応の反応機構上、酢酸を生じさせるのに必要な成分であり、また、反応系の水溶性成分の可溶化のためにも必要な成分である。反応混合物中の水の濃度は、反応混合物の液相全体に対して、例えば0.1~15質量%であり、好ましくは0.8~10質量%、さらに好ましくは1~6質量%、特に好ましくは1.5~4質量%である。水濃度は、酢酸の精製過程での水の除去に要するエネルギーを抑制して酢酸製造の効率化を進めるうえでは15質量%以下が好ましい。水濃度を制御するために、反応槽1に対して所定流量の水を連続的に供給してもよい。
 反応混合物中の酢酸は、酢酸製造装置の稼働前に反応槽1内に予め仕込まれた酢酸、及び、メタノールのカルボニル化反応の主生成物として生じる酢酸を含む。このような酢酸は、反応系では溶媒として機能し得る。反応混合物中の酢酸の濃度は、反応混合物の液相全体に対して、例えば50~90質量%であり、好ましくは60~80質量%である。
 反応混合物に含まれる主な副生成物としては、例えば酢酸メチルが挙げられる。この酢酸メチルは、酢酸とメタノールとの反応によって生じ得る。反応混合物中の酢酸メチルの濃度は、反応混合物の液相全体に対して、例えば0.1~30質量%であり、好ましくは1~10質量%である。反応混合物に含まれる副生成物としては、ヨウ化水素も挙げられる。このヨウ化水素は、上述のような触媒や助触媒が使用される場合、メタノールのカルボニル化反応の反応機構上、不可避的に生じることとなる。反応混合物中のヨウ化水素の濃度は、反応混合物の液相全体に対して、例えば0.01~2質量%である。
 また、副生成物としては、例えば、水素、メタン、二酸化炭素、アセトアルデヒド、クロトンアルデヒド、2-エチルクロトンアルデヒド、酢酸ブチル、ジメチルエーテル、アルカン類、ギ酸及びプロピオン酸、並びに、ヨウ化エチル、ヨウ化プロピル、ヨウ化ブチル、ヨウ化ヘキシル及びヨウ化デシルなどのヨウ化アルキル等が挙げられる。
 反応混合液(反応混合物の液相;反応媒体)中のアセトアルデヒド濃度は、例えば500質量ppm以下、好ましくは450質量ppm以下、より好ましくは400質量ppm以下、さらに好ましくは350質量ppm以下、特に好ましくは300質量ppm以下[例えば250質量ppm以下(或いは210質量ppm以下)]である。反応混合液中のアセトアルデヒド濃度の下限は、例えば1質量ppm(或いは10質量ppm)である。
 反応混合液中のクロトンアルデヒド濃度は、例えば1.7質量ppm以下、好ましくは1.4質量ppm以下、より好ましくは1.2質量ppm以下、特に好ましくは1.0質量ppm以下(例えば0.8質量ppm以下、とりわけ0.6質量ppm以下)である。反応混合液中のクロトンアルデヒド濃度の下限値は0ppmであるが、例えば0.01質量ppm、或いは0.1質量ppm又は0.2質量ppmであってもよい。反応混合液中の2-エチルクロトンアルデヒド濃度は、例えば1.8質量ppm以下、好ましくは1.6質量ppm以下、より好ましくは1.4質量ppm以下、特に好ましくは1.2質量ppm以下(例えば1.0質量ppm以下、とりわけ0.8質量ppm以下)である。反応混合液中の2-エチルクロトンアルデヒド濃度の下限値は0ppmであるが、例えば0.01質量ppm、或いは0.1質量ppm又は0.2質量ppmであってもよい。反応混合液中のプロピオン酸濃度は、例えば240質量ppm以下、好ましくは230質量ppm以下、さらに好ましくは220質量ppm以下、特に好ましくは200質量ppm以下(例えば180質量ppm以下)である。反応混合液中のプロピオン酸濃度の下限値は0ppmであるが、例えば10質量ppm(或いは50質量ppm)であってもよい。
 また、反応混合物には、装置の腐食により生じる鉄、ニッケル、クロム、マンガン、モリブデンなどの金属[腐食金属(腐食性金属ともいう)]、及びその他の金属としてコバルトや亜鉛、銅などが含まれ得る。上記腐食金属とその他の金属とを併せて「腐食金属等」と称する場合がある。
 以上のような反応混合物が存在する反応槽1内において、反応温度は例えば150~250℃に設定され、全体圧力としての反応圧力は例えば2.0~3.5MPa(絶対圧)に設定され、一酸化炭素分圧は、例えば0.4~1.8MPa(絶対圧)、好ましくは0.6~1.6MPa(絶対圧)、さらに好ましくは0.9~1.4MPa(絶対圧)に設定される。
 装置稼働時の反応槽1内の気相部の蒸気には、例えば、一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、ギ酸及びプロピオン酸などが含まれる。水素は原料として用いられる一酸化炭素中に含まれているほか、反応槽1中で起きるシフト反応(CO + H2O → H2 + CO2)により生成する。反応槽1における水素分圧は、例えば0.01MPa(絶対圧)以上、好ましくは0.015MPa(絶対圧)以上、より好ましくは0.02MPa(絶対圧)以上、さらに好ましくは0.04MPa(絶対圧)以上、特に好ましくは0.06MPa(絶対圧)以上[例えば0.07MPa(絶対圧)以上]である。なお、反応槽の水素分圧の上限は、例えば0.5MPa(絶対圧)[特に0.2MPa(絶対圧)]である。反応槽1内の気相部の蒸気は、反応槽1内からライン13を通じて抜き取ることが可能である。蒸気の抜き取り量の調節によって、反応槽1内の圧力を制御することが可能であり、例えば、反応槽1内の圧力は一定に維持される。反応槽1内から抜き取られた蒸気は、コンデンサ1aへと導入される。
 コンデンサ1aは、反応槽1からの蒸気を、冷却して部分的に凝縮させることによって凝縮分とガス分とに分ける。凝縮分は、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、ギ酸及びプロピオン酸などを含み、コンデンサ1aからライン14を通じて反応槽1へと導入され、リサイクルされる。ガス分は、例えば、一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などを含み、コンデンサ1aからライン15を通じてスクラバーシステム8へと供給される。スクラバーシステム8では、コンデンサ1aからのガス分から有用成分(例えばヨウ化メチル、水、酢酸メチル、酢酸など)が分離回収される。この分離回収には、本実施形態では、ガス分中の有用成分を捕集するための吸収液を使用して行う湿式法が利用される。吸収液としては、少なくとも酢酸及び/又はメタノールを含む吸収溶媒が好ましい。吸収液には酢酸メチルが含まれていてもよい。例えば、吸収液として後述の蒸留塔6からの蒸気の凝縮分を使用できる。分離回収には、圧力変動吸着法を利用してもよい。分離回収された有用成分(例えばヨウ化メチルなど)は、スクラバーシステム8からリサイクルライン48を通じて反応槽1へと導入され、リサイクルされる。有用成分を捕集した後のガスはライン49を通じて廃棄される。なお、ライン49から排出されるガスは、後述する蒸発槽2の底部あるいは残液流リサイクルライン18,19へ導入するCO源として利用することができる。スクラバーシステム8での処理及びその後の反応槽1へのリサイクル及び廃棄については、他のコンデンサからスクラバーシステム8へと供給される後記のガス分についても同様である。本発明の製造方法においては、プロセスからのオフガスを、少なくとも酢酸を含む吸収溶媒で吸収処理して、一酸化炭素に富むストリームと酢酸に富むストリームとを分離するスクラバー工程を有することが好ましい。
 装置稼働時の反応槽1内では、上述のように、酢酸が連続的に生成する。そのような酢酸を含む反応混合物が、連続的に、反応槽1内から所定の流量で抜き取られてライン16を通じて次の蒸発槽2へと導入される。
 蒸発槽2は、蒸発工程(フラッシュ工程)を行うためのユニットである。この蒸発工程は、ライン16(反応混合物供給ライン)を通じて蒸発槽2に連続的に導入される反応混合物を、部分的に蒸発させることによって蒸気流(揮発相)と残液流(低揮発相)とに分けるための工程である。本発明では蒸発槽を加熱しつつ圧力を減じることによって蒸発を生じさせる。蒸発工程において、蒸気流の温度は例えば100~260℃、好ましくは120~200℃であり、残液流の温度は例えば100~260℃、好ましくは120~200℃であり、槽内圧力は例えば50~1000kPa(絶対圧)である。また、蒸発工程にて分離される蒸気流及び残液流の割合(蒸気流/残液流)に関しては、質量比で、例えば10/90~60/40(蒸発率:10~60質量%)、好ましくは26/74~45/55(蒸発率:26~45質量%)、より好ましくは27/73~42/58(蒸発率:27~42質量%)、さらに好ましくは30/70~40/60(蒸発率:30~40質量%)である。   
 本工程で生じる蒸気は、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、クロトンアルデヒド、2-エチルクロトンアルデヒド、酢酸ブチル、ギ酸プロピオン酸、並びに、ヨウ化エチル、ヨウ化プロピル、ヨウ化ブチル、ヨウ化ヘキシル及びヨウ化デシルなどのヨウ化アルキルなどを含み、蒸発槽2内からライン17(蒸気流排出ライン)に連続的に抜き取られる。蒸発槽2内から抜き取られた蒸気流の一部はコンデンサ2aへと連続的に導入され、当該蒸気流の他の一部はライン21を通じて次の蒸留塔3へと連続的に導入される。
 前記蒸気流中の酢酸濃度は、例えば50.0~90.0質量%、好ましくは55.0~85.0質量%である。酢酸濃度の下限は、より好ましくは57.0質量%、さらに好ましくは58.0質量%(又は60.0質量%、或いは63.0質量%、特に65.0質量%)であり、上限は、より好ましくは80.0質量%、さらに好ましくは75.0質量%、特に好ましくは72.0質量%(又は68.0質量%、或いは65.5質量%)である。前記酢酸濃度の範囲としては、より好ましくは57.0~68.0質量%(例えば58.0~65.5質量%)である。前記蒸気流中のヨウ化メチル濃度は、例えば2.0~50.0質量%、好ましくは5.0~40.0質量%である。ヨウ化メチル濃度の下限は、より好ましくは10.0質量%、さらに好ましくは15.0質量%、特に好ましくは18.0質量%(又は20.0質量%、或いは22.5質量%)であり、上限は、より好ましくは35.0質量%、さらに好ましくは30.0質量%、特に好ましくは28.0質量%である。前記ヨウ化メチル濃度の範囲としては、より好ましくは20.0~35.0質量%(例えば22.5~30.0質量%)である。前記蒸気流中の水濃度は、例えば0.2~20.0質量%、好ましくは0.5~15.0質量%、より好ましくは0.8~5.0質量%である。水濃度の下限は、より好ましくは1.0質量%、さらに好ましくは1.2質量%であり、上限は、より好ましくは4.0質量%、特に好ましくは3.0質量%である。前記水濃度の範囲としては、より好ましくは1.2~5.0質量%(例えば1.2~4.0質量%、或いは1.2~3.0質量%)である。前記蒸気流中の酢酸メチル濃度は、例えば0.2~50.0質量%、好ましくは2.0~30.0質量%である。酢酸メチル濃度の下限は、より好ましくは3.0質量%、さらに好ましくは5.0質量%、特に好ましくは6.0質量%(又は7.0質量%、或いは8.0質量%)であり、上限は、より好ましくは25.0質量%、さらに好ましくは20.0質量%、特に好ましくは15.0質量%(又は10.0質量%)である。前記酢酸メチル濃度の範囲としては、より好ましくは7.0~25.0質量%(例えば8.0~20.0質量%)である。
 前記蒸気流中のクロトンアルデヒド濃度は、例えば2.4質量ppm以下、好ましくは2.2質量ppm以下、より好ましくは2.0質量ppm以下、特に好ましくは1.6質量ppm以下(例えば1.2質量ppm以下)である。前記蒸気流中のクロトンアルデヒド濃度の下限値は、例えば0.01質量ppm(或いは0.1質量ppm)であってもよい。前記蒸気流中の2-エチルクロトンアルデヒド濃度は、例えば0.45質量ppm以下、好ましくは0.40質量ppm以下、より好ましくは0.30質量ppm以下である。前記蒸気流中の2-エチルクロトンアルデヒド濃度の下限値は、例えば0.01質量ppm(或いは0.1質量ppm)であってもよい。前記蒸気流中のプロピオン酸濃度は、例えば106質量ppm以下、好ましくは74.0質量ppm以下、より好ましくは60.0質量ppm以下、さらに好ましくは55.0質量ppm以下である。前記蒸気流中のプロピオン酸濃度の下限値は、例えば1.0質量ppm、或いは5.0質量ppm又は10.0質量ppmであってもよい。
 本工程で生ずる残液流は、反応混合物に含まれていた触媒及び助触媒(ヨウ化メチル、ヨウ化リチウムなど)や、本工程では揮発せずに残存する水、アセトアルデヒド、酢酸メチル、酢酸、クロトンアルデヒド、2-エチルクロトンアルデヒド、酢酸ブチル、ギ酸及びプロピオン酸などを含み、ポンプ57を用い、連続的に蒸発槽2からライン18を通じて熱交換器2bへと導入される。残液流中のアセトアルデヒド濃度は、70質量ppm以下にすることが好ましく、より好ましくは60質量ppm以下、さらに好ましくは50質量ppm以下、特に好ましくは40質量ppm以下(例えば30質量ppm以下)である。前記残液流中のアセトアルデヒド濃度を低下させることにより、反応槽1でのクロトンアルデヒド、2-エチルクロトンアルデヒド、ヨウ化ヘキシル、プロピオン酸などの副生物の生成を抑制できる。
 熱交換器2bは、蒸発槽2からの残液流を冷却する。降温した残液流は、連続的に熱交換器2bからライン19を通じて反応槽1へと導入され、リサイクルされる。なお、ライン18とライン19とを併せて残液流リサイクルラインと称する。前記残液流の酢酸濃度は、例えば55~90質量%、好ましくは60~85質量%である。
 コンデンサ2aは、蒸発槽2からの蒸気流を、冷却して部分的に凝縮させることによって凝縮分とガス分とに分ける。凝縮分は、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、クロトンアルデヒド、2-エチルクロトンアルデヒド、酢酸ブチル、ギ酸及びプロピオン酸などを含み、コンデンサ2aからライン22,23を通じて反応槽1へと導入され、リサイクルされる。ガス分は、例えば、一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などを含み、コンデンサ2aからライン20,15を通じてスクラバーシステム8へと供給される。上述の反応工程での酢酸の生成反応は発熱反応であるところ、反応混合物に蓄積する熱の一部は、蒸発工程(フラッシュ工程)において、反応混合物から生じた蒸気に移行する。この蒸気のコンデンサ2aでの冷却によって生じた凝縮分が反応槽1へとリサイクルされる。すなわち、この酢酸製造装置においては、メタノールのカルボニル化反応で生じる熱がコンデンサ2aにて効率よく除去されることとなる。
 蒸留塔3は、第1蒸留工程を行うためのユニットであり、本実施形態ではいわゆる脱低沸塔に位置付けられる。第1蒸留工程は、蒸留塔3に連続的に導入される蒸気流を蒸留処理して低沸成分を分離除去する工程である。より具体的には、第1蒸留工程では、前記蒸気流を蒸留して、ヨウ化メチル及びアセトアルデヒドから選択された少なくとも一種の低沸成分に富むオーバーヘッド流と、酢酸に富む酢酸流とに分離する。蒸留塔3は、例えば、棚段塔及び充填塔などの精留塔よりなる。蒸留塔3として棚段塔を採用する場合、その理論段は例えば5~50段である。
 蒸留塔3の内部において、塔頂圧力は、例えば80~160kPa(ゲージ圧)に設定され、塔底圧力は、塔頂圧力より高く、例えば85~180kPa(ゲージ圧)に設定される。蒸留塔3の内部において、塔頂温度は、例えば、設定塔頂圧力での酢酸の沸点より低い温度であって90~130℃に設定され、塔底温度は、例えば、設定塔底圧力での酢酸の沸点以上の温度であって120~165℃(好ましくは125~160℃)に設定される。
 蒸留塔3に対しては、蒸発槽2からの蒸気流がライン21を通じて連続的に導入され、蒸留塔3の塔頂部からは、オーバーヘッド流としての蒸気がライン24に連続的に抜き取られる。蒸留塔3の塔底部からは、缶出液がライン25に連続的に抜き取られる。3bはリボイラーである。蒸留塔3における塔頂部と塔底部との間の高さ位置からは、側流としての酢酸流(第1酢酸流;液体)がライン27より連続的に抜き取られる。
 蒸留塔3の塔頂部から抜き取られる蒸気は、酢酸よりも沸点の低い成分(低沸点成分)を蒸留塔3からの上記缶出液及び側流と比較して多く含み、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、ジメチルエーテル、メタノール、アセトアルデヒド、クロトンアルデヒド及びギ酸などを含む。この蒸気には酢酸も含まれる。このような蒸気は、ライン24を通じてコンデンサ3aへと連続的に導入される。
 コンデンサ3aは、蒸留塔3からの蒸気を、冷却して部分的に凝縮させることによって凝縮分とガス分とに分ける。凝縮分は、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、クロトンアルデヒド及びギ酸などを含み、コンデンサ3aからライン28を通じてデカンタ4へと連続的に導入される。デカンタ4に導入された凝縮分は水相(上相)と有機相(ヨウ化メチル相;下相)とに分液される。水相には、水と、例えば、ヨウ化メチル、ヨウ化水素、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、クロトンアルデヒド及びギ酸などが含まれる。有機相には、例えば、ヨウ化メチルと、例えば、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、クロトンアルデヒド及びギ酸などが含まれる。
 本発明の製造方法では、前記のように、蒸発槽を加熱して、(i)前記水相中のアセトアルデヒド濃度を2340質量ppm以上、及び/又は、(ii)前記水相中の酢酸メチル濃度を19.0質量%未満、及び/又は、(iii)前記有機相中の酢酸メチル濃度を38.0質量%未満に制御するとともに、当該水相の少なくとも一部を前記アセトアルデヒド分離除去工程にて処理し、アセトアルデヒド分離除去後の残液を反応槽にリサイクルする。
 前記(i)において、水相中のアセトアルデヒド濃度は、好ましくは2400質量ppm以上、より好ましくは2500質量ppm以上、さらに好ましくは2600質量ppm以上である。水相中のアセトアルデヒド濃度の上限は、例えば1.0質量%、或いは5000質量ppmであってもよい。前記(ii)において、水相中の酢酸メチル濃度は、好ましくは18.5質量%以下、より好ましくは17.5質量%以下、さらに好ましくは17.0質量%以下である。水相中の酢酸メチル濃度の下限は、例えば1.0質量%、或いは5.0質量%であってもよく、又は8.0質量%若しくは10.0質量%であってもよい。前記(iii)において、有機相中の酢酸メチル濃度は、好ましくは37.5質量%以下、より好ましくは37.0質量%以下、さらに好ましくは35.0質量%以下、特に好ましくは30.0質量%以下(例えば25.0質量%以下)である。有機相中の酢酸メチル濃度の下限は、例えば1.0質量%若しくは2.0質量%、或いは5.0質量%若しくは10.0質量%であってもよく、又は15.0質量%(例えば20.0質量%)であってもよい。
 水相中のアセトアルデヒド濃度、水相中の酢酸メチル濃度、又は有機相中の酢酸メチル濃度が上記範囲内にあると、アセトアルデヒドの水相側への分配量が増大する。そのため、この水相をアセトアルデヒド分離除去工程に供することにより、アセトアルデヒドの分離除去効率を大幅に向上できる。
 本実施形態では、水相の一部はライン29を通じて蒸留塔3に還流され、水相の他の一部はライン29,30,51を通じてアセトアルデヒド分離除去システム9に導入され、アセトアルデヒドがライン53から系外に分離除去される。アセトアルデヒド分離除去後の残液はライン52,23を通じて反応槽1にリサイクルされる。水相のさらに他の一部は、アセトアルデヒド分離除去システム9を経ることなく、ライン29,30,23を通じて反応槽1にリサイクルされてもよい。有機相はライン31,23を通じて反応槽1に導入されてリサイクルされる。有機相の一部は、必要に応じて、ライン31,50を通じてアセトアルデヒド分離除去システム9に導入してもよい。なお、水相の蒸留塔3への還流に加えて、又はそれに代えて、有機相を蒸留塔3に還流してもよい。
 蒸留塔3の還流比について以下に説明する。蒸留塔3に第1オーバーヘッド流の凝縮液の水相のみを還流させる場合は、水相の還流比(水相の還流量/水相の留出量)を、例えば2以上とすることが望ましく、好ましくは3以上、より好ましくは5以上、さらに好ましくは8以上、特に好ましくは10以上(例えば12以上)である。また、蒸留塔3に第1オーバーヘッド流の凝縮液の有機相のみを還流させる場合は、有機相の還流比(有機相の還流量/有機相の留出量)を、例えば1以上とすることが望ましく、好ましくは1.5以上、より好ましくは2以上、さらに好ましくは4以上、特に好ましくは5以上である。さらに、蒸留塔3に第1オーバーヘッド流の凝縮液の水相及び有機相をともに還流させる場合は、水相及び有機相の総和の還流比(水相及び有機相の還流量の総和/水相及び有機相の留出量の総和)を、例えば1.5以上とすることが望ましく、好ましくは2.3以上、より好ましくは3.5以上、さらに好ましくは6以上、特に好ましくは8.5以上である。また、蒸留塔3に水相を還流させる場合は、水相の還流比(水相の還流量/水相の留出量)は2以上であることが好ましく、より好ましくは3以上、さらに好ましくは5以上、特に好ましくは8以上、とりわけ12以上である。第1蒸留塔の還流比の上限は、いずれの場合も、例えば3000(特に1000)であってもよく、あるいは100(特に30)であってもよい。第1蒸留塔の還流比を上げることにより、アセトアルデヒドを塔頂に濃縮できるので、塔頂の凝縮液をアセトアルデヒド分離除去工程に供することにより、脱アセトアルデヒド効率をより向上できる。
 アセトアルデヒド分離除去システム9を用いたアセトアルデヒド分離除去工程では、有機相及び/又は水相に含まれるアセトアルデヒドを公知の方法、例えば、蒸留、抽出又はこれらの組み合わせにより分離除去する。分離されたアセトアルデヒドはライン53を通じて装置外へ排出される。また、有機相及び/又は水相に含まれる有用成分(例えばヨウ化メチルなど)は、ライン52,23を通じて反応槽1へとリサイクルされて再利用される。
 図2はアセトアルデヒド分離除去システムの一例を示す概略フロー図である。このフローによれば、例えば前記有機相をアセトアルデヒド分離除去工程にて処理する場合は、有機相をライン101を通じて蒸留塔(第1脱アセトアルデヒド塔)91に供給して蒸留し、アセトアルデヒドに富むオーバーヘッド流(ライン102)と、ヨウ化メチルに富む残液流(ライン103)とに分離する。前記オーバーヘッド流をコンデンサ91aにて凝縮させ、凝縮液の一部を蒸留塔91の塔頂部に還流させ(ライン104)、凝縮液の他の部分を抽出塔92に供給する(ライン105)。前記抽出塔92に供給された凝縮液はライン109から導入された水によって抽出処理される。抽出処理により得られた抽出液はライン107を通じて蒸留塔(第2脱アセトアルデヒド塔)93に供給して蒸留し、アセトアルデヒドに富むオーバーヘッド流(ライン112)と水に富む残液流(ライン113)とに分離する。そして、アセトアルデヒドに富むオーバーヘッド流をコンデンサ93aにて凝縮させ、凝縮液の一部を蒸留塔93の塔頂部に還流させ(ライン114)、凝縮液の他の部分は系外に排出する(ライン115)。また、第1脱アセトアルデヒド塔91の缶出液であるヨウ化メチルに富む残液流、抽出塔92で得られたヨウ化メチルに富むラフィネート(ライン108)、及び第2脱アセトアルデヒド塔93の缶出液である水に富む残液流は、それぞれ、ライン103,111,113を通じて反応槽1へリサイクルされるか、あるいはプロセスの適宜な箇所にリサイクルされ、再利用される。例えば、抽出塔92で得られたヨウ化メチルに富むラフィネートはライン110を通じて蒸留塔91にリサイクルすることができる。113の液は、通常、排水として外部に排出される。コンデンサ91a、93aで凝縮しなかったガス(ライン106,116)はスクラバーシステム8で吸収処理されるか、あるいは廃棄処分される。
 また、図2のフローにより前記水相をアセトアルデヒド分離除去工程にて処理する場合は、例えば、水相をライン101を通じて蒸留塔(第1脱アセトアルデヒド塔)91に供給して蒸留し、アセトアルデヒドに富むオーバーヘッド流(ライン102)と、水に富む残液流(ライン103)とに分離する。前記オーバーヘッド流をコンデンサ91aにて凝縮させ、凝縮液の一部を蒸留塔91の塔頂部に還流させ(ライン104)、凝縮液の他の部分を抽出塔92に供給する(ライン105)。前記抽出塔92に供給された凝縮液はライン109から導入された水によって抽出処理される。抽出処理により得られた抽出液はライン107を通じて蒸留塔(第2脱アセトアルデヒド塔)93に供給して蒸留し、アセトアルデヒドに富むオーバーヘッド流(ライン112)と水に富む残液流(ライン113)とに分離する。そして、アセトアルデヒドに富むオーバーヘッド流をコンデンサ93aにて凝縮させ、凝縮液の一部を蒸留塔93の塔頂部に還流させ(ライン114)、凝縮液の他の部分は系外に排出する(ライン115)。また、第1脱アセトアルデヒド塔91の缶出液である水に富む残液流、抽出塔92で得られたヨウ化メチルに富むラフィネート(ライン108)、及び第2脱アセトアルデヒド塔93の缶出液である水に富む残液流は、それぞれ、ライン103,111,113を通じて反応槽1へリサイクルされるか、あるいはプロセスの適宜な箇所にリサイクルされ、再利用される。例えば、抽出塔92で得られたヨウ化メチルに富むラフィネートはライン110を通じて蒸留塔91にリサイクルすることができる。113の液は、通常、排水として外部に排出される。コンデンサ91a、93aで凝縮しなかったガス(ライン106,116)はスクラバーシステム8で吸収処理されるか、あるいは廃棄処分される。
 前記の水、酢酸(AC)、ヨウ化メチル(MeI)及びアセトアルデヒド(AD)を少なくとも含むプロセス流に由来するアセトアルデヒドは、上記方法のほか、抽出蒸留を利用して分離除去することもできる。例えば、前記プロセス流を分液させて得られた有機相及び/又は水相(仕込液)を蒸留塔(抽出蒸留塔)に供給するとともに、蒸留塔内のヨウ化メチル及びアセトアルデヒドが濃縮される濃縮域(例えば、塔頂から仕込液供給位置までの空間)に抽出溶媒(通常、水)を導入し、前記濃縮域から降下する液(抽出液)を側流(サイドカット流)として抜き取り、この側流を水相と有機相とに分液させ、前記水相を蒸留することによりアセトアルデヒドを系外に排出することができる。なお、蒸留塔内に比較的多くの水が存在する場合は、前記抽出溶媒を蒸留塔に導入することなく、前記濃縮域から降下する液を側流として抜き取ってもよい。例えば、この蒸留塔に前記濃縮域から降下する液(抽出液)を受けることのできるユニット(チムニートレイなど)を配設し、このユニットで受けた液(抽出液)を側流として抜き取ることができる。抽出溶媒の導入位置は前記仕込液の供給位置よりも上方が好ましく、より好ましくは塔頂付近である。側流の抜き取り位置は、塔の高さ方向において、抽出溶媒の導入位置よりも下方であって、前記仕込液の供給位置よりも上方が好ましい。この方法によれば、抽出溶媒(通常、水)によって、ヨウ化メチルとアセトアルデヒドの濃縮物からアセトアルデヒドを高濃度に抽出できるとともに、抽出溶媒の導入部位とサイドカット部位との間を抽出域として利用するので、少量の抽出溶媒によりアセトアルデヒドを効率よく抽出できる。そのため、例えば、抽出蒸留による抽出液を蒸留塔(抽出蒸留塔)の塔底部から抜き取る方法と比較して蒸留塔の段数を大幅に低減できるとともに、蒸気負荷も低減できる。また、少量の抽出溶媒を用いて、上記図2の脱アルデヒド蒸留と水抽出とを組み合わせる方法よりも、水抽出液中のアセトアルデヒドに対するヨウ化メチルの割合(MeI/AD比)を小さくできるので、ヨウ化メチルの系外へのロスを抑制できる条件でアセトアルデヒドを除去可能である。前記側流中のアセトアルデヒド濃度は、前記仕込液及び缶出液(塔底液)中のアセトアルデヒド濃度よりも格段に高い。また、前記側流中のヨウ化メチルに対するアセトアルデヒドの割合は、仕込液及び缶出液中のヨウ化メチルに対するアセトアルデヒドの割合よりも大きい。なお、前記側流を分液させて得られる有機相(ヨウ化メチル相)をこの蒸留塔にリサイクルしてもよい。この場合、前記側流を分液させて得られる有機相のリサイクル位置は、塔の高さ方向において前記側流抜き取り位置よりも下方が好ましく、前記仕込液の供給位置よりも上方が好ましい。また、前記プロセス流を分液させて得られた有機相を構成する成分(例えば酢酸メチルなど)に対する混和性溶媒をこの蒸留塔(抽出蒸留塔)に導入してもよい。前記混和性溶媒として、例えば、酢酸、酢酸エチルなどが挙げられる。前記混和性溶媒の導入位置は、塔の高さ方向において、前記側流抜き取り位置よりも下方が好ましく、前記仕込液の供給位置よりも上方が好ましい。また、前記混和性溶媒の導入位置は、上記側流を分液させて得られる有機相をこの蒸留塔にリサイクル場合はそのリサイクル位置よりも下方が好ましい。前記側流を分液させて得られる有機相を蒸留塔へリサイクルしたり、前記混和性溶媒を蒸留塔へ導入することにより、側流として抜き取られる抽出液中の酢酸メチル濃度を低下させることができ、前記抽出液を分液させて得られる水相中の酢酸メチル濃度を低減でき、もって水相へのヨウ化メチルの混入を抑制できる。
 前記蒸留塔(抽出蒸留塔)の理論段は、例えば1~100段、好ましくは2~50段、さらに好ましくは3~30段、特に好ましくは5~20段であり、従来の脱アセトアルデヒドに用いる蒸留塔や抽出蒸留塔の80~100段と比較して、少ない段数で効率よくアセトアルデヒドを分離除去できる。抽出溶媒の流量と仕込液(プロセス流を分液させて得られた有機相及び/又は水相)の流量との質量割合(前者/後者)は、0.0001/100~100/100の範囲から選択してもよいが、通常、0.0001/100~20/100、好ましくは0.001/100~10/100、より好ましくは0.01/100~8/100、さらに好ましくは0.1/100~5/100である。前記蒸留塔(抽出蒸留塔)の塔頂温度は、例えば、15~120℃、好ましくは20~90℃、より好ましくは20~80℃、さらに好ましくは25~70℃である。塔頂圧力は、絶対圧力で、例えば0.1~0.5MPa程度である。前記蒸留塔(抽出蒸留塔)の他の条件は、従来の脱アセトアルデヒドに用いる蒸留塔や抽出蒸留塔と同様であってもよい。
 図3は上記の抽出蒸留を利用したアセトアルデヒド分離除去システムの一例を示す概略フロー図である。この例では、前記プロセス流を分液させて得られた有機相及び/又は水相(仕込液)を供給ライン201を通じて蒸留塔94の中段(塔頂と塔底との間の位置)に供給するとともに、塔頂付近より水をライン202を通じて導入し、蒸留塔94(抽出蒸留塔)内で抽出蒸留を行う。蒸留塔94の前記仕込液の供給位置より上方には、塔内のヨウ化メチル及びアセトアルデヒドが濃縮される濃縮域から降下する液(抽出液)を受けるためのチムニートレイ200が配設されている。この抽出蒸留においては、チムニートレイ200上の液を好ましくは全量抜き取り、ライン208を通じてデカンタ95に導入して分液させる。デカンタ95における水相(アセトアルデヒドを含む)をライン212を通じて冷却クーラー95aに導入して冷却し、水相に溶解していたヨウ化メチルを2相分離させ、デカンタ96にて分液させる。デカンタ96における水相をライン216を通じて蒸留塔97(脱アセトアルデヒド塔)に供給して蒸留し、塔頂の蒸気をライン217を通じてコンデンサ97aに導いて凝縮させ、凝縮液(主にアセトアルデヒド及びヨウ化メチル)の一部は蒸留塔97の塔頂に還流させ、残りは廃棄するか、あるいはライン220を通じて蒸留塔98(抽出蒸留塔)に供給する。蒸留塔98の塔頂付近から水をライン222を通じて導入し、抽出蒸留する。塔頂の蒸気はライン223を通じてコンデンサ98aに導いて凝縮させ、凝縮液(主にヨウ化メチル)の一部は塔頂部に還流させ、残りはライン226を通じて反応系にリサイクルするが、系外除去する場合もある。デカンタ95における有機相(ヨウ化メチル相)は、好ましくは全量をライン209,210を通じて蒸留塔94のチムニートレイ200の位置より下方にリサイクルする。デカンタ95の水相の一部、及びデカンタ96の有機相は、それぞれ、ライン213,210、ライン214,210を通じて蒸留塔94にリサイクルするが、リサイクルしない場合もある。デカンタ95の水相の一部は蒸留塔94における抽出溶媒(水)として利用してもよい。デカンタ96の水相の一部はライン210を通じて蒸留塔94にリサイクルしてもよい。場合により(例えば、前記仕込液中に酢酸メチルが含まれている場合など)、前記プロセス流を分液させて得られた有機相を構成する成分(例えば酢酸メチルなど)に対する混和性溶媒(酢酸、酢酸エチル等)をライン215を通じて蒸留塔94に仕込み、蒸留効率を向上させることもできる。混和性溶媒の蒸留塔94への供給位置は前記仕込液供給部(ライン201の接続部)よりも上方で且つリサイクルライン210の接続部よりも下方である。蒸留塔94の缶出液は反応系にリサイクルする。蒸留塔94の塔頂の蒸気はライン203を通じてコンデンサ94aに導いて凝縮させ、凝縮液をデカンタ99で分液させ、有機相はライン206を通じて蒸留塔94の塔頂部に還流させ、水相はライン207を通じてデカンタ95に導く。蒸留塔97の缶出液(水が主成分)や蒸留塔98(抽出蒸留塔)の缶出液(少量のアセトアルデヒドを含む水)は、それぞれライン218,224を通じて系外除去するか、反応系にリサイクルする。コンデンサ94a、97a,98aで凝縮しなかったガス(ライン211,221,227)はスクラバーシステム8で吸収処理されるか、あるいは廃棄処分される。
 図4は上記の抽出蒸留を利用したアセトアルデヒド分離除去システムの他の例を示す概略フロー図である。この例では、蒸留塔94の塔頂の蒸気の凝縮液をホールドタンク100に導き、その全量をライン206を通じて蒸留塔94の塔頂部に還流する。これ以外は図3の例と同様である。
 図5は上記の抽出蒸留を利用したアセトアルデヒド分離除去システムのさらに他の例を示す概略フロー図である。この例では、チムニートレイ200上の液を全量抜き取り、ライン208を通じて、デカンタ95を経ることなく、直接冷却クーラー95aに導入して冷却し、デカンタ96に供給する。これ以外は図4の例と同様である。
 前記図1において、コンデンサ3aで生じるガス分は、例えば、一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などを含み、コンデンサ3aからライン32,15を通じてスクラバーシステム8へと供給される。スクラバーシステム8に至ったガス分中のヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などは、スクラバーシステム8にて吸収液に吸収される。ヨウ化水素は吸収液中のメタノールまたは酢酸メチルとの反応によってヨウ化メチルが生じる。そして、当該ヨウ化メチル等の有用成分を含有する液分がスクラバーシステム8からリサイクルライン48,23を通じて反応槽1へとリサイクルされて再利用される。
 蒸留塔3の塔底部から抜き取られる缶出液は、酢酸よりも沸点の高い成分(高沸点成分)を蒸留塔3からの上記のオーバーヘッド流及び側流と比較して多く含み、例えば、プロピオン酸、並びに、飛沫同伴の上述の触媒や助触媒を含む。この缶出液には、酢酸、ヨウ化メチル、酢酸メチル、2-エチルクロトンアルデヒド、酢酸ブチル及び水なども含まれる。本実施形態では、このような缶出液の一部は、ライン25,26を通じて蒸発槽2へと連続的に導入されてリサイクルされ、缶出液の他の一部は、ライン25,23を通じて反応槽1へと連続的に導入されてリサイクルされる。
 蒸留塔3から側流として連続的に抜き取られる第1酢酸流は、蒸留塔3に連続的に導入される蒸気流よりも酢酸が富化されている。すなわち、第1酢酸流の酢酸濃度は前記蒸気流の酢酸濃度よりも高い。第1酢酸流の酢酸濃度は、例えば90.0~99.9質量%、好ましくは93.0~99.0質量%である。また、第1酢酸流は、酢酸に加えて、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、ジメチルエーテル、メタノール、アセトアルデヒド、クロトンアルデヒド、2-エチルクロトンアルデヒド、酢酸ブチル、ギ酸及びプロピオン酸、並びに、ヨウ化エチル、ヨウ化プロピル、ヨウ化ブチル、ヨウ化ヘキシル及びヨウ化デシルなどのヨウ化アルキル等を含む。
 第1酢酸流において、ヨウ化メチル濃度は、例えば0.1~18質量%(例えば0.1~8質量%)、好ましくは0.2~13質量%(例えば0.2~5質量%)、水濃度は、例えば0.1~8質量%、好ましくは0.2~5質量%、酢酸メチル濃度は、例えば0.1~8質量%、好ましくは0.2~5質量%である。また、第1酢酸流中のクロトンアルデヒド濃度は、例えば1.34質量ppm以下、好ましくは1.20質量ppm以下、より好ましくは1.00質量ppm以下、さらに好ましくは0.80質量ppm以下、特に好ましくは0.60質量ppm以下である。第1酢酸流中のクロトンアルデヒド濃度の下限値は、例えば0.01質量ppm、或いは0.05質量ppmであってもよい。第1酢酸流中の2-エチルクロトンアルデヒド濃度は、例えば0.60質量ppm以下、好ましくは0.50質量ppm以下、より好ましくは0.40質量ppm以下である。第1酢酸流中の2-エチルクロトンアルデヒド濃度の下限値は、例えば0.01質量ppm、或いは0.05質量ppmであってもよい。第1酢酸流中のプロピオン酸濃度は、例えば106質量ppm以下、好ましくは100質量ppm以下、より好ましくは90.0質量ppm以下、さらに好ましくは80.0質量ppm以下である。第1酢酸流中のプロピオン酸濃度の下限値は、例えば1.0質量ppm、或いは5.0質量ppm又は10.0質量ppmであってもよい。
 蒸留塔3に対するライン27の連結位置は、蒸留塔3の高さ方向において、図示されているように、蒸留塔3に対するライン21の連結位置より上方であってもよいが、蒸留塔3に対するライン21の連結位置より下方であってもよいし、蒸留塔3に対するライン21の連結位置と同じであってもよい。蒸留塔3からの第1酢酸流は、所定の流量で連続的に、ライン27を通じて次の蒸留塔5へと導入される。
 なお、蒸留塔3の塔底部から抜き取られる缶出液、又は蒸留塔3から側流として抜き取られる第1酢酸流は、品質が許容できればそのまま製品酢酸とすることもできる。
 ライン27を通流する第1酢酸流に、ライン55(水酸化カリウム導入ライン)を通じて、水酸化カリウムを供給ないし添加することができる。水酸化カリウムは、例えば水溶液等の溶液として供給ないし添加できる。第1酢酸流に対する水酸化カリウムの供給ないし添加によって第1酢酸流中のヨウ化水素を減少できる。具体的には、ヨウ化水素は水酸化カリウムと反応してヨウ化カリウムと水が生じる。そのことによって、ヨウ化水素に起因する蒸留塔等の装置の腐食を低減できる。なお、水酸化カリウムは本プロセスにおいてヨウ化水素が存在する適宜な場所に供給ないし添加することができる。なお、プロセス中に添加された水酸化カリウムは酢酸とも反応して酢酸カリウムを生じさせる。
 蒸留塔5は、第2蒸留工程を行うためのユニットであり、本実施形態ではいわゆる脱水塔に位置付けられる。第2蒸留工程は、蒸留塔5に連続的に導入される第1酢酸流を蒸留処理して酢酸を更に精製するための工程である。蒸留塔5の材質(少なくとも接液、接ガス部の材質)は、ニッケル基合金又はジルコニウムとすることが好ましい。このような材質を用いることにより、ヨウ化水素や酢酸による蒸留塔内部の腐食を抑制でき、腐食金属イオンの溶出を抑制できる。
 蒸留塔5の仕込液は、第1酢酸流の少なくとも一部(ライン27)を含んでおり、第1酢酸流以外の流れ[例えば下流工程からのリサイクル流(例えばライン42)]が加わっていてもよい。
 蒸留塔5は、例えば、棚段塔及び充填塔などの精留塔よりなる。蒸留塔5として棚段塔を採用する場合、その理論段は例えば5~50段である。還流比は理論段数に応じて例えば0.2以上から適宜選択されるが、好ましくは0.3以上、より好ましくは0.35以上、さらに好ましくは0.4以上である。蒸留塔5の還流比の上限は、例えば3000(特に1000)であり、100或いは10程度であってもよい。
 第2蒸留工程にある蒸留塔5の内部において、塔頂圧力は、例えば0.10~0.28MPa(ゲージ圧)、好ましくは0.15~0.23MPa(ゲージ圧)、さらに好ましくは0.17~0.21MPa(ゲージ圧)である。塔底圧力は、塔頂圧力より高く、例えば0.13~0.31MPa(ゲージ圧)、好ましくは0.18~0.26MPa(ゲージ圧)、さらに好ましくは0.20~0.24MPa(ゲージ圧)である。第2蒸留工程にある蒸留塔5の内部において、塔頂温度165℃未満、塔底温度175℃未満であることが好ましい。蒸留塔5の塔頂温度及び塔底温度を上記の範囲にすることにより、ヨウ化水素や酢酸による蒸留塔内部の腐食がより抑制され、腐食金属イオンの溶出をより抑制できる。塔頂温度は、より好ましくは163℃未満、さらに好ましくは161℃未満、特に好ましくは160℃未満であり、とりわけ155℃未満が好ましい。塔頂温度の下限は、例えば110℃である。塔底温度は、より好ましくは173℃未満、さらに好ましくは171℃未満、特に好ましくは166℃未満である。塔底温度の下限は、例えば120℃である。
 蒸留塔5の塔頂部からは、オーバーヘッド流(第2オーバーヘッド流)としての蒸気がライン33に連続的に抜き取られる。蒸留塔5の塔底部からは、缶出液がライン34に連続的に抜き取られる。5bはリボイラーである。蒸留塔5における塔頂部と塔底部との間の高さ位置から、側流(液体または気体)がライン34に連続的に抜き取られてもよい。
 蒸留塔5の塔頂部から抜き取られる蒸気は、酢酸よりも沸点の低い成分(低沸点成分)を蒸留塔5からの上記の缶出液と比較して多く含み、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、クロトンアルデヒド及びギ酸などを含む。このような蒸気は、ライン33を通じてコンデンサ5aへと連続的に導入される。
 コンデンサ5aは、蒸留塔5からの蒸気を、冷却して部分的に凝縮させることによって凝縮分とガス分とに分ける。凝縮分は、例えば水及び酢酸などを含む。凝縮分の一部は、コンデンサ5aからライン35を通じて蒸留塔5へと連続的に還流される。凝縮分の他の一部は、コンデンサ5aからライン35,36,23を通じて反応槽1へと連続的に導入され、リサイクルされる。また、コンデンサ5aで生じるガス分は、例えば一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などを含み、コンデンサ5aからライン37,15を通じてスクラバーシステム8へと供給される。スクラバーシステム8に至ったガス分中のヨウ化水素は、スクラバーシステム8にて吸収液に吸収され、吸収液中のヨウ化水素とメタノールまたは酢酸メチルとの反応によってヨウ化メチルが生じ、そして、当該ヨウ化メチル等の有用成分を含有する液分がスクラバーシステム8からリサイクルライン48,23を通じて反応槽1へとリサイクルされて再利用される。
 蒸留塔5の塔底部から抜き取られる缶出液あるいは塔の中間位置から抜き取られる側流(第2酢酸流)は蒸留塔5に連続的に導入される第1酢酸流よりも酢酸が富化されている。すなわち、第2酢酸流の酢酸濃度は第1酢酸流の酢酸濃度よりも高い。第2酢酸流の酢酸濃度は、第1酢酸流の酢酸濃度より高い限りにおいて、例えば99.10~99.99質量%である。本実施形態では、側流を抜き取る場合、蒸留塔5からの側流の抜き取り位置は、蒸留塔5の高さ方向において、蒸留塔5への第1酢酸流の導入位置よりも低い。
 本発明においては、第2酢酸流は高い過マンガン酸カリウム試験値を有するので、そのまま製品酢酸とすることができる。しかしながら、微量の不純物[例えば、クロトンアルデヒド、2-エチルクロトンアルデヒド、酢酸ブチル、プロピオン酸、酢酸カリウム(ライン27等に水酸化カリウムを供給した場合)、ヨウ化水素、並びに、飛沫同伴の上述の触媒や助触媒など]を含みうる。そのため、この缶出液あるいは側流を、ライン34を通じて蒸留塔6に連続的に導入して蒸留してもよい。
 第2酢酸流中のクロトンアルデヒド濃度は、例えば1.10質量ppm以下、好ましくは1.00質量ppm以下、より好ましくは0.90質量ppm以下、さらに好ましくは0.80質量ppm以下、特に好ましくは0.70質量ppm以下(例えば0.60質量ppm以下)である。第2酢酸流中のクロトンアルデヒド濃度の下限値は、例えば0.01質量ppm、或いは0.05質量ppmであってもよい。第2酢酸流中の2-エチルクロトンアルデヒド濃度は、例えば0.80質量ppm以下、好ましくは0.70質量ppm以下、より好ましくは0.60質量ppm以下、さらに好ましくは0.50質量ppm以下、特に好ましくは0.40質量ppm以下である。第2酢酸流中の2-エチルクロトンアルデヒド濃度の下限値は、例えば0.01質量ppm、或いは0.05質量ppmであってもよい。第2酢酸流中のプロピオン酸濃度は、例えば130質量ppm以下、好ましくは120質量ppm以下、より好ましくは110質量ppm以下、さらに好ましくは80.0質量ppm以下である。第2酢酸流中のプロピオン酸濃度の下限値は、例えば1.0質量ppm、或いは5.0質量ppm又は10.0質量ppmであってもよい。第2酢酸流中のヨウ化ヘキシル濃度は、例えば30質量ppb以下、好ましくは25質量ppb以下、より好ましくは20質量ppb以下、さらに好ましくは17質量ppb以下、特に好ましくは10質量ppb以下である。第2酢酸流中のヨウ化ヘキシル濃度の下限値は、例えば0.1質量ppb(或いは1.0質量ppb)であってもよい。
 ライン34を通流する第2酢酸流に、ライン56(水酸化カリウム導入ライン)を通じて、水酸化カリウムを供給ないし添加することができる。水酸化カリウムは、例えば水溶液等の溶液として供給ないし添加できる。第2酢酸流に対する水酸化カリウムの供給ないし添加によって第2酢酸流中のヨウ化水素を減少できる。具体的には、ヨウ化水素は水酸化カリウムと反応してヨウ化カリウムと水が生じる。そのことによって、ヨウ化水素に起因する蒸留塔等の装置の腐食を低減できる。
 蒸留塔6は、第3蒸留工程を行うためのユニットであり、本実施形態ではいわゆる脱高沸塔に位置付けられる。第3蒸留工程は、蒸留塔6に連続的に導入される第2酢酸流を精製処理して酢酸を更に精製するための工程である。なお、本実施形態では必ずしも必要な工程ではない。蒸留塔6は、例えば、棚段塔及び充填塔などの精留塔よりなる。蒸留塔6として棚段塔を採用する場合、その理論段は例えば5~50段であり、還流比は理論段数に応じて例えば0.2~3000である。第3蒸留工程にある蒸留塔6の内部において、塔頂圧力は例えば-100~150kPa(ゲージ圧)に設定され、塔底圧力は、塔頂圧力より高く、例えば-90~180kPa(ゲージ圧)に設定される。第3蒸留工程にある蒸留塔6の内部において、塔頂温度は、例えば、設定塔頂圧力での水の沸点より高く且つ酢酸の沸点より低い温度であって50~150℃に設定され、塔底温度は、例えば、設定塔底圧力での酢酸の沸点より高い温度であって70~160℃に設定される。
 蒸留塔6の塔頂部からは、オーバーヘッド流としての蒸気がライン38に連続的に抜き取られる。蒸留塔6の塔底部からは、缶出液がライン39に連続的に抜き取られる。6bはリボイラーである。蒸留塔6における塔頂部と塔底部との間の高さ位置からは、側流(液体又は気体)がライン46に連続的に抜き取られる。蒸留塔6の高さ方向において、蒸留塔6に対するライン46の連結位置は、図示されているように、蒸留塔6に対するライン34の連結位置より上方であってもよいが、蒸留塔6に対するライン34の連結位置より下方であってもよいし、蒸留塔6に対するライン34の連結位置と同じであってもよい。
 蒸留塔6の塔頂部から抜き取られる蒸気は、酢酸よりも沸点の低い成分(低沸点成分)を蒸留塔6からの上記の缶出液と比較して多く含み、酢酸のほか、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、ジメチルエーテル、メタノール及びギ酸などを含む。このような蒸気は、ライン38を通じてコンデンサ6aへと連続的に導入される。
 コンデンサ6aは、蒸留塔6からの蒸気を、冷却して部分的に凝縮させることによって凝縮分とガス分とに分ける。凝縮分は、酢酸のほか、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、ジメチルエーテル、メタノール及びギ酸などを含む。凝縮分の少なくとも一部については、コンデンサ6aからライン40を通じて蒸留塔6へと連続的に還流される。凝縮分の一部(留出分)については、コンデンサ6aからライン40,41,42を通じて、蒸留塔5へと導入される前のライン27中の第1酢酸流へとリサイクルすることが可能である。これと共に或はこれに代えて、凝縮分の一部(留出分)については、コンデンサ6aからライン40,41,43を通じて、蒸留塔3へと導入される前のライン21中の蒸気流へとリサイクルすることが可能である。また、凝縮分の一部(留出分)については、コンデンサ6aからライン40,44,23を通じて、反応槽1へリサイクルしてもよい。さらに、コンデンサ6aからの留出分の一部については、前述したように、スクラバーシステム8へと供給して当該システム内で吸収液として使用することが可能である。スクラバーシステム8では、有用分を吸収した後のガス分は装置外に排出され、そして、有用成分を含む液分がスクラバーシステム8からリサイクルライン48,23を通じて反応槽1へと導入ないしリサイクルされて再利用される。加えて、コンデンサ6aからの留出分の一部については、装置内で稼働する各種ポンプ(図示略)へと図外のラインを通じて導いて当該ポンプのシール液として使用してもよい。更に加えて、コンデンサ6aからの留出分の一部については、ライン40に付設される抜き取りラインを通じて、定常的に装置外へ抜き取ってもよいし、非定常的に必要時において装置外へ抜き取ってもよい。凝縮分の一部(留出分)が蒸留塔6での蒸留処理系から除かれる場合、その留出分の量(留出量)は、コンデンサ6aで生ずる凝縮液の例えば0.01~30質量%であり、好ましくは0.1~10質量%、より好ましくは0.3~5質量%、より好ましくは0.5~3質量%である。一方、コンデンサ6aで生じるガス分は、例えば、一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などを含み、コンデンサ6aからライン45,15を通じてスクラバーシステム8へと供給される。
 蒸留塔6の塔底部からライン39を通じて抜き取られる缶出液は、酢酸よりも沸点の高い成分(高沸点成分)を蒸留塔6からの上記のオーバーヘッド流と比較して多く含み、例えばプロピオン酸、酢酸カリウム等の酢酸塩(ライン34等に水酸化カリウム等のアルカリを供給した場合)などを含む。また、蒸留塔6の塔底部からライン39を通じて抜き取られる缶出液は、この酢酸製造装置の構成部材の内壁で生じて遊離した金属などの腐食金属等、及び腐食性ヨウ素に由来するヨウ素と当該腐食金属等との化合物も含む。このような缶出液は、本実施形態では酢酸製造装置外に排出される。
 蒸留塔6からライン46に連続的に抜き取られる側流は、第3酢酸流として、次のイオン交換樹脂塔7に連続的に導入されることとなる。この第3酢酸流は、蒸留塔6に連続的に導入される第2酢酸流よりも酢酸が富化されている。すなわち、第3酢酸流の酢酸濃度は第2酢酸流の酢酸濃度よりも高い。第3酢酸流の酢酸濃度は、第2酢酸流の酢酸濃度より高い限りにおいて、例えば99.800~99.999質量%である。本実施形態では、蒸留塔6からの側流の抜き取り位置は、蒸留塔6の高さ方向において、蒸留塔6への第2酢酸流の導入位置よりも高い。他の実施形態では、蒸留塔6からの側流の抜き取り位置は、蒸留塔6の高さ方向において、蒸留塔6への第2酢酸流の導入位置と同じかそれよりも低い。なお、蒸留塔6は、単蒸留器(蒸発器)でも代用可能である。特に、本発明では、蒸留塔5での蒸留処理により、過マンガン酸カリウム試験値の非常に高い酢酸が得られるので、蒸留塔6を省略することができる。
 イオン交換樹脂塔7は、吸着除去工程を行うための精製ユニットである。この吸着除去工程は、イオン交換樹脂塔7に連続的に導入される第3酢酸流に微量含まれる主にヨウ化アルキル(例えば、ヨウ化エチル、ヨウ化プロピル、ヨウ化ブチル、ヨウ化ヘキシル、ヨウ化デシルなど)を吸着除去して酢酸を更に精製するための工程である。なお、蒸留塔6を省略し、蒸留塔5からの第2酢酸流をイオン交換樹脂塔7に供給してもよい。また、イオン交換樹脂塔7を用いる吸着除去工程は必ずしも設けなくてもよい。
 イオン交換樹脂塔7においては、ヨウ化アルキルに対する吸着能を有するイオン交換樹脂が塔内に充填されてイオン交換樹脂床をなす。そのようなイオン交換樹脂としては、例えば、交換基たるスルホン酸基、カルボキシル基、ホスホン酸基等における脱離性のプロトンの一部が銀や銅などの金属で置換された陽イオン交換樹脂を挙げることができる。吸着除去工程では、例えばこのようなイオン交換樹脂が充填されたイオン交換樹脂塔7の内部を第3酢酸流(液体)が通流し、その通流過程において、第3酢酸流中のヨウ化アルキル等の不純物がイオン交換樹脂に吸着されて第3酢酸流から除去される。吸着除去工程にあるイオン交換樹脂塔7において、内部温度は例えば18~100℃であり、酢酸流の通液速度[樹脂容積1m3当たりの酢酸処理量(m3/h)]は、例えば3~15m3/h・m3(樹脂容積)である。
 イオン交換樹脂塔7の下端部からライン47へと第4酢酸流が連続的に導出される。第4酢酸流の酢酸濃度は第3酢酸流の酢酸濃度よりも高い。すなわち、第4酢酸流は、イオン交換樹脂塔7に連続的に導入される第3酢酸流よりも酢酸が富化されている。第4酢酸流の酢酸濃度は、第3酢酸流の酢酸濃度より高い限りにおいて例えば99.900~99.999質量%又はそれ以上である。本製造方法においては、この第4酢酸流を図外の製品タンクに貯留することができる。
 この酢酸製造装置においては、イオン交換樹脂塔7からの上記の第4酢酸流を更に精製するための精製ユニットとして、蒸留塔であるいわゆる製品塔ないし仕上塔が設けられてもよい。そのような製品塔が設けられる場合、当該製品塔は、例えば、棚段塔及び充填塔などの精留塔よりなる。製品塔として棚段塔を採用する場合、その理論段は例えば5~50段であり、還流比は理論段数に応じて例えば0.5~3000である。精製工程にある製品塔の内部において、塔頂圧力は例えば-195~150kPa(ゲージ圧)に設定され、塔底圧力は、塔頂圧力より高く、例えば-190~180kPa(ゲージ圧)に設定される。製品塔の内部において、塔頂温度は、例えば、設定塔頂圧力での水の沸点より高く且つ酢酸の沸点より低い温度であって50~150℃に設定され、塔底温度は、例えば、設定塔底圧力での酢酸の沸点より高い温度であって70~160℃に設定される。なお、製品塔ないし仕上塔は、単蒸留器(蒸発器)でも代用可能である。
 製品塔を設ける場合、イオン交換樹脂塔7からの第4酢酸流(液体)の全部又は一部が、製品塔に対して連続的に導入される。そのような製品塔の塔頂部からは、微量の低沸点成分(例えば、ヨウ化メチル、水、酢酸メチル、ジメチルエーテル、クロトンアルデヒド、アセトアルデヒド及びギ酸など)を含むオーバーヘッド流としての蒸気が連続的に抜き取られる。この蒸気は、所定のコンデンサにて凝縮分とガス分とに分けられる。凝縮分の一部は製品塔へと連続的に還流され、凝縮分の他の一部は反応槽1へとリサイクルされるか、系外に廃棄されるか、あるいはその両方であってもよく、ガス分はスクラバーシステム8へと供給される。製品塔の塔底部からは、微量の高沸点成分を含む缶出液が連続的に抜き取られ、この缶出液は、例えば蒸留塔6へ導入される前のライン34中の第2酢酸流へとリサイクルされる。製品塔における塔頂部と塔底部との間の高さ位置からは、側流(液体)が第5酢酸流として連続的に抜き取られる。製品塔からの側流の抜き取り位置は、製品塔の高さ方向において、例えば、製品塔への第4酢酸流の導入位置よりも低い。第5酢酸流は、製品塔に連続的に導入される第4酢酸流よりも酢酸が富化されている。すなわち、第5酢酸流の酢酸濃度は第4酢酸流の酢酸濃度よりも高い。第5酢酸流の酢酸濃度は、第4酢酸流の酢酸濃度より高い限りにおいて例えば99.900~99.999質量%又はそれ以上である。この第5酢酸流は、例えば、図外の製品タンクに貯留される。なお、イオン交換樹脂塔7は、蒸留塔6の下流に設置する代わりに(又はそれに加えて)、製品塔の下流に設置し、製品塔出の酢酸流を処理してもよい。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。なお、部、%、ppm、ppbはすべて質量基準である。水濃度はカールフィッシャー水分測定法、金属イオン濃度はICP分析(又は原子吸光分析)、その他の成分の濃度はガスクロマトグラフィーにより測定した。
 比較例1
 メタノール法酢酸パイロットプラントにおいて以下の実験を行った(図1参照)。
 反応槽[全圧2.8MPa(絶対圧)、一酸化炭素分圧1.4MPa(絶対圧)、水素分圧0.5MPa(絶対圧)、反応温度187℃]で得られた反応混合液[組成:ヨウ化メチル(MeI)7.6%、酢酸メチル(MA)4.5%、水(H2O)2.5%、ロジウム錯体910ppm(Rh換算)、ヨウ化リチウム(LiI)14.1%、アセトアルデヒド(AD)212ppm、クロトンアルデヒド(CR)2.0ppm、2-エチルクロトンアルデヒド(2ECR)2.2ppm、プロピオン酸280ppm、残り酢酸(但し、微量の不純物を含む)]400部を蒸発槽に仕込み、蒸発槽を加熱して25%蒸発させた(蒸発率25%)。蒸発槽缶出液中のアセトアルデヒド濃度は73ppmであった。蒸発槽の蒸気[組成:ヨウ化メチル27.2%、酢酸メチル14.7%、水2.0%、アセトアルデヒド689ppm、クロトンアルデヒド2.8ppm、2-エチルクロトンアルデヒド0.60ppm、プロピオン酸84.6ppm、残り酢酸(但し、微量の不純物を含む)]100部を脱低沸塔[実段数20段、仕込位置下から2段、塔頂圧250kPa(絶対圧)、塔頂温度140℃]に仕込み、塔頂蒸気を凝縮させ、デカンタにて水相と有機相とに分離後、水相の一部(11部)を脱アセトアルデヒド塔[実段数80段、仕込位置下から11段、塔頂圧280kPa(絶対圧)、塔頂温度52℃]に送り、アセトアルデヒドを分離し系外に除去し、アセトアルデヒド除去後の水溶液(1.6部)を留出液として反応系にリサイクルした。水相の残りは脱低沸塔に還流した。水相の還流量/留出量を還流比とし、還流比を2とした。有機相(41部)は直接反応系にリサイクルした。脱低沸塔の塔底から3部を缶出液として抜取り、反応系にリサイクルした。脱低沸塔の中間部(下から4段)からサイドカット(SC)流として65.7部を抜取り、脱水塔[実段数50段、仕込位置下から34段、塔頂圧295kPa(絶対圧)、塔頂温度150℃]に仕込んだ。脱水塔の塔頂蒸気凝縮液の一部を脱水塔に還流(リサイクル)し、残り(19部)を留出液として反応系にリサイクルした。脱水塔の還流比(還流量/留出量)を0.5とした。その結果、脱水塔の塔底から缶出液として製品酢酸46.7部を得た。アセトアルデヒド除去量(脱AD量)は0.0141部となり、脱水塔缶出液量(製品製造量)に対する脱AD量の比は3.02×10-4となった。製品酢酸中のクロトンアルデヒド含有量は1.28ppm、2-エチルクロトンアルデヒド含有量は0.95ppm、プロピオン酸含有量は150ppm、ヨウ化ヘキシル含有量は36ppbであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ40分であった。結果を表1に示す。
 比較例2
 脱低沸塔の還流比を10とした以外は比較例1と同様の実験を行った。なお、この変更により、反応混合液組成、蒸発槽の蒸気組成は変化した。結果を表1に示す。
 実施例1
 蒸発槽における蒸発率を28%とした以外は比較例2と同様の実験を行った。なお、この変更により、反応混合液組成、蒸発槽の蒸気組成は変化した。結果を表1に示す。
 実施例2
 蒸発槽における蒸発率を31%とした以外は比較例2と同様の実験を行った。なお、この変更により、反応混合液組成、蒸発槽の蒸気組成は変化した。結果を表1に示す。
 実施例3
 蒸発槽における蒸発率を35%とした以外は比較例2と同様の実験を行った。なお、この変更により、反応混合液組成、蒸発槽の蒸気組成は変化した。結果を表1に示す。
 実施例4
 蒸発槽における蒸発率を31%とし、且つ脱低沸塔の還流比を15とした以外は比較例2と同様の実験を行った。なお、この変更により、反応混合液組成、蒸発槽の蒸気組成は変化した。結果を表1に示す。
 表1において、ADはアセトアルデヒド、MeIはヨウ化メチル、MAは酢酸メチル、ACは酢酸、CRはクロトンアルデヒド、2ECRは2-エチルクロトンアルデヒド、PAはプロピオン酸、HexIはヨウ化ヘキシルを示す。表1において各成分の欄の数値は濃度を表す。
Figure JPOXMLDOC01-appb-T000001
 [結果の考察]
 比較例2と実施例1~3の対比より、蒸発槽を加熱して蒸発率を上げ、蒸発槽缶出液のAD濃度を低減させ、脱低沸塔の仕込み組成を変化させると、デカンタでのAD濃度が上昇し、デカンタのMA濃度をある一定値以下とすることで、AD分配係数[水相AD濃度(%)/有機相AD濃度(%)]が増大し、その結果、脱AD効率が上昇して、反応槽AD濃度は低下し、CR、2ECR、HexI、PAの生成量は低減し、製品カメレオンタイムは上昇することが分かる。
 比較例1と2、及び実施例2と4の対比より、蒸発槽の蒸発率は同じでも、脱低沸塔の還流比を上げると、脱AD効率は上昇して、反応槽AD濃度は低下し、CR、2ECR、HexI、PAの生成量は低減し、製品カメレオンタイムは上昇することが分かる。
 以上のことから、蒸発槽を加熱し、脱低沸塔塔頂デカンタ中のAD濃度を上げるか或いはMA濃度を低下させ、さらに脱低沸塔の還流比を上げることで、脱AD効率が上昇し、製品品質が向上することが分かる。
 以上のまとめとして、本発明の構成及びそのバリエーションを以下に付記しておく。
[1]金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水の存在下、メタノールと一酸化炭素とを反応槽で反応させて酢酸を生成させるカルボニル化反応工程と、
 前記カルボニル化反応工程で得られた反応混合物を蒸発槽に導入して加熱し、前記反応混合物を蒸気流と残液流とに分離する蒸発工程と、
 前記残液流を反応槽にリサイクルする残液流リサイクル工程と、
 前記蒸気流を第1蒸留塔によりヨウ化メチル及びアセトアルデヒドに富む第1オーバーヘッド流と酢酸に富む第1酢酸流とに分離するとともに、前記第1オーバーヘッド流を凝縮、分液させて水相と有機相とを得る脱低沸工程と、
 前記水相及び/又は有機相の少なくとも一部を反応槽にリサイクルする第1オーバーヘッド流リサイクル工程と、
 プロセス流中のアセトアルデヒドを分離除去するためのアセトアルデヒド分離除去工程と、
 を備えた酢酸の製造方法であって、
 前記蒸発槽の加熱により、(i)前記水相中のアセトアルデヒド濃度を2340質量ppm以上、及び/又は、(ii)前記水相中の酢酸メチル濃度を19.0質量%未満、及び/又は、(iii)前記有機相中の酢酸メチル濃度を38.0質量%未満に制御するとともに、当該水相の少なくとも一部を前記アセトアルデヒド分離除去工程にて処理し、アセトアルデヒド分離除去後の残液を反応槽及び/又はアセトアルデヒド分離除去工程及び/又はその他のプロセスにリサイクルすることを特徴とする酢酸の製造方法。
[2]触媒系がさらにイオン性ヨウ化物を含む[1]記載の酢酸の製造方法。
[3]第1蒸留塔の運転条件につき、当該第1蒸留塔に水相のみを還流させる場合は水相の還流比を2以上(好ましくは3以上、より好ましくは5以上、さらに好ましくは8以上、特に好ましくは10以上、とりわけ12以上)とし、有機相のみを還流させる場合は有機相の還流比を1以上(好ましくは1.5以上、より好ましくは2以上、さらに好ましくは4以上、特に好ましくは5以上)とし、水相及び有機相をともに還流させる場合は水相及び有機相の総和の還流比を1.5以上(好ましくは2.3以上、より好ましくは3.5以上、さらに好ましくは6以上、特に好ましくは8.5以上)とする[1]又は[2]記載の酢酸の製造方法。
[4]さらに、前記第1酢酸流を第2蒸留塔により水に富む第2オーバーヘッド流と第1酢酸流よりも酢酸に富む第2酢酸流とに分離する脱水工程を有する[1]~[3]のいずれか1つに記載の酢酸の製造方法。
[5] 前記第2酢酸流におけるクロトンアルデヒド濃度が1.10質量ppm以下(好ましくは1.00質量ppm以下、より好ましくは0.90質量ppm以下、さらに好ましくは0.80質量ppm以下、特に好ましくは0.70質量ppm以下、とりわけ0.60質量ppm以下)及び/又は2-エチルクロトンアルデヒド濃度が0.80質量ppm以下(好ましくは0.70質量ppm以下、より好ましくは0.60質量ppm以下、さらに好ましくは0.50質量ppm以下、特に好ましくは0.40質量ppm以下)及び/又はプロピオン酸濃度が130質量ppm以下(好ましくは120質量ppm以下、より好ましくは110質量ppm以下、さらに好ましくは80.0質量ppm以下)である[4]記載の酢酸の製造方法。
[6]前記第2酢酸流におけるヨウ化ヘキシル濃度が30質量ppb以下(好ましくは25質量ppb以下、より好ましくは20質量ppb以下、さらに好ましくは17質量ppb以下、特に好ましくは10質量ppb以下)である[4]又は[5]記載の酢酸の製造方法。
[7]前記蒸発槽における残液流中のアセトアルデヒド濃度を70質量ppm以下(好ましくは60質量ppm以下、より好ましくは50質量ppm以下、さらに好ましくは40質量ppm以下、特に好ましくは30質量ppm以下)にする[1]~[6]のいずれか1つに記載の酢酸の製造方法。
[8]反応槽の反応混合液におけるクロトンアルデヒド濃度が1.7質量ppm以下(好ましくは1.4質量ppm以下、より好ましくは1.2質量ppm以下、さらに好ましくは1.0質量ppm以下、特に好ましくは0.8質量ppm以下、とりわけ0.6質量ppm以下)及び/又は2-エチルクロトンアルデヒド濃度が1.8質量ppm以下(好ましくは1.6質量ppm以下、より好ましくは1.4質量ppm以下、さらに好ましくは1.2質量ppm以下、特に好ましくは1.0質量ppm以下、とりわけ0.8質量ppm以下)及び/又はプロピオン酸濃度が240質量ppm以下(好ましくは230質量ppm以下、より好ましくは220質量ppm以下、さらに好ましくは200質量ppm以下、特に好ましくは180質量ppm以下)である[1]~[7]のいずれか1つに記載の酢酸の製造方法。
[9]第1蒸留塔に供給する前記蒸気流におけるクロトンアルデヒド濃度が2.4質量ppm以下(好ましくは2.2質量ppm以下、より好ましくは2.0質量ppm以下、さらに好ましくは1.6質量ppm以下、特に好ましくは1.2質量ppm以下)及び/又は2-エチルクロトンアルデヒド濃度が0.45質量ppm以下(好ましくは0.40質量ppm以下、より好ましくは0.30質量ppm以下)及び/又はプロピオン酸濃度が106質量ppm以下(好ましくは74.0質量ppm以下、より好ましくは65.0質量ppm以下、さらに好ましくは55.0質量ppm以下)である[1]~[8]のいずれか1つに記載の酢酸の製造方法。
[10] 前記第1酢酸流におけるクロトンアルデヒド濃度が1.34質量ppm以下(好ましくは1.20質量ppm以下、より好ましくは1.00質量ppm以下、さらに好ましくは0.80質量ppm以下、特に好ましくは0.60質量ppm以下)及び/又は2-エチルクロトンアルデヒド濃度が0.60質量ppm以下(好ましくは0.50質量ppm以下、より好ましくは0.40質量ppm以下)及び/又はプロピオン酸濃度が106質量ppm以下(好ましくは100質量ppm以下、より好ましくは90.0質量ppm以下、さらに好ましくは80.0質量ppm以下)である[1]~[9]のいずれか1つに記載の酢酸の製造方法。
[11]金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水の存在下、メタノールと一酸化炭素とを反応槽で反応させて酢酸を生成させるカルボニル化反応工程と、
 前記カルボニル化反応工程で得られた反応混合物を蒸発槽に導入して加熱し、前記反応混合物を蒸気流と残液流とに分離する蒸発工程と、
 前記残液流を反応槽にリサイクルする残液流リサイクル工程と、
 前記蒸気流を第1蒸留塔によりヨウ化メチル及びアセトアルデヒドに富む第1オーバーヘッド流と酢酸に富む第1酢酸流とに分離するとともに、前記第1オーバーヘッド流を凝縮、分液させて水相と有機相とを得る脱低沸工程と、
 前記水相及び/又は有機相の少なくとも一部を反応槽にリサイクルする第1オーバーヘッド流リサイクル工程と、
 プロセス流中のアセトアルデヒドを分離除去するためのアセトアルデヒド分離除去工程と、
 を備えた酢酸の製造方法であって、
 前記蒸発槽の加熱により、(i)前記水相中のアセトアルデヒド濃度を2340質量ppm以上、及び/又は、(ii)前記水相中の酢酸メチル濃度を19.0質量%未満、及び/又は、(iii)前記有機相中の酢酸メチル濃度を38.0質量%未満に制御し、且つ前記残液流中のアセトアルデヒド濃度を70質量ppm以下に制御し、前記水相の少なくとも一部を前記アセトアルデヒド分離除去工程にて処理し、アセトアルデヒド分離除去後の残液を反応槽及び/又はアセトアルデヒド分離除去工程及び/又はその他のプロセスにリサイクルするとともに、第1蒸留塔の水相の還流比を2以上とすることを特徴とする酢酸の製造方法。
[12]触媒系がさらにイオン性ヨウ化物を含む[11]記載の酢酸の製造方法。
[13]前記水相の還流比を3以上(好ましくは5以上、より好ましくは8以上、さらに好ましくは10以上、特に好ましくは12以上)とする[11]又は[12]記載の酢酸の製造方法。
[14]さらに、前記第1酢酸流を第2蒸留塔により水に富む第2オーバーヘッド流と第1酢酸流よりも酢酸に富む第2酢酸流とに分離する脱水工程を有する[11]~[13]のいずれか1つに記載の酢酸の製造方法。
[15] 前記第2酢酸流におけるクロトンアルデヒド濃度が1.10質量ppm以下(好ましくは1.00質量ppm以下、より好ましくは0.90質量ppm以下、さらに好ましくは0.80質量ppm以下、特に好ましくは0.70質量ppm以下、とりわけ0.60質量ppm以下)及び/又は2-エチルクロトンアルデヒド濃度が0.80質量ppm以下(好ましくは0.70質量ppm以下、より好ましくは0.60質量ppm以下、さらに好ましくは0.50質量ppm以下、特に好ましくは0.40質量ppm以下)及び/又はプロピオン酸濃度が130質量ppm以下(好ましくは120質量ppm以下、より好ましくは110質量ppm以下、さらに好ましくは80.0質量ppm以下)である[14]記載の酢酸の製造方法。
[16]前記第2酢酸流におけるヨウ化ヘキシル濃度が30質量ppb以下(好ましくは25質量ppb以下、より好ましくは20質量ppb以下、さらに好ましくは17質量ppb以下、特に好ましくは10質量ppb以下)である[14]又は[15]記載の酢酸の製造方法。
[17]前記蒸発槽における残液流中のアセトアルデヒド濃度を60質量ppm以下(好ましくは50質量ppm以下、より好ましくは40質量ppm以下、さらに好ましくは30質量ppm以下)にする[11]~[16]のいずれか1つに記載の酢酸の製造方法。
[18]反応槽の反応混合液におけるクロトンアルデヒド濃度が1.7質量ppm以下(好ましくは1.4質量ppm以下、より好ましくは1.2質量ppm以下、さらに好ましくは1.0質量ppm以下、特に好ましくは0.8質量ppm以下、とりわけ0.6質量ppm以下)及び/又は2-エチルクロトンアルデヒド濃度が1.8質量ppm以下(好ましくは1.6質量ppm以下、より好ましくは1.4質量ppm以下、さらに好ましくは1.2質量ppm以下、特に好ましくは1.0質量ppm以下、とりわけ0.8質量ppm以下)及び/又はプロピオン酸濃度が240質量ppm以下(好ましくは230質量ppm以下、より好ましくは220質量ppm以下、さらに好ましくは200質量ppm以下、特に好ましくは180質量ppm以下)である[11]~[17]のいずれか1つに記載の酢酸の製造方法。
[19]第1蒸留塔に供給する前記蒸気流におけるクロトンアルデヒド濃度が2.4質量ppm以下(好ましくは2.2質量ppm以下、より好ましくは2.0質量ppm以下、さらに好ましくは1.6質量ppm以下、特に好ましくは1.2質量ppm以下)及び/又は2-エチルクロトンアルデヒド濃度が0.45質量ppm以下(好ましくは0.40質量ppm以下、より好ましくは0.30質量ppm以下)及び/又はプロピオン酸濃度が106質量ppm以下(好ましくは74.0質量ppm以下、より好ましくは65.0質量ppm以下、さらに好ましくは55.0質量ppm以下)である[11]~[18]のいずれか1つに記載の酢酸の製造方法。
[20] 前記第1酢酸流におけるクロトンアルデヒド濃度が1.34質量ppm以下(好ましくは1.20質量ppm以下、より好ましくは1.00質量ppm以下、さらに好ましくは0.80質量ppm以下、特に好ましくは0.60質量ppm以下)及び/又は2-エチルクロトンアルデヒド濃度が0.60質量ppm以下(好ましくは0.50質量ppm以下、より好ましくは0.40質量ppm以下)及び/又はプロピオン酸濃度が106質量ppm以下(好ましくは100質量ppm以下、より好ましくは90.0質量ppm以下、さらに好ましくは80.0質量ppm以下)である[11]~[19]のいずれか1つに記載の酢酸の製造方法。
[21]前記(i)において、水相中のアセトアルデヒド濃度が2400質量ppm以上(好ましくは2500質量ppm以上、より好ましくは2600質量ppm以上)である[11]~[20]のいずれか1つに記載の酢酸の製造方法。
[22]前記(ii)において、水相中の酢酸メチル濃度が18.5質量%以下(好ましくは17.5質量%以下、より好ましくは17.0質量%以下)である[11]~[21]のいずれか1つに記載の酢酸の製造方法。
[23]前記(iii)において、有機相中の酢酸メチル濃度が37.5質量%以下(好ましくは37.0質量%以下、より好ましくは35.0質量%以下、さらに好ましくは30.0質量%以下、特に好ましくは25.0質量%以下)である[11]~[22]のいずれか1つに記載の酢酸の製造方法。
[24]前記(iii)において、有機相中の酢酸メチル濃度の下限が1.0質量%(好ましくは2.0質量%、より好ましくは5.0質量%、さらに好ましくは10.0質量%、特に好ましくは15.0質量%、とりわけ20.0質量%)である[11]~[23]のいずれか1つに記載の酢酸の製造方法。
[25]反応槽の反応混合液中のアセトアルデヒド濃度が500質量ppm以下(好ましくは450質量ppm以下、より好ましくは400質量ppm以下、さらに好ましくは350質量ppm以下、特に好ましくは300質量ppm以下、とりわけ250質量ppm以下、なかんずく210質量ppm以下)である[11]~[24]のいずれか1つに記載の酢酸の製造方法。
 本発明の酢酸の製造方法は、メタノール法カルボニル化プロセス(メタノール法酢酸プロセス)による酢酸の工業的製造法として利用可能である。
 1 反応槽
 2 蒸発槽
 3,5,6 蒸留塔
 4 デカンタ
 7 イオン交換樹脂塔
 8 スクラバーシステム
 9 アセトアルデヒド分離除去システム
 16 反応混合物供給ライン
 17 蒸気流排出ライン
 18,19 残液流リサイクルライン
 54 一酸化炭素含有ガス導入ライン
 55,56 水酸化カリウム導入ライン
 57 触媒循環ポンプ
 91 蒸留塔(第1脱アセトアルデヒド塔)
 92 抽出塔
 93 蒸留塔(第2脱アセトアルデヒド塔)
 94 蒸留塔(抽出蒸留塔)
 95 デカンタ
 96 デカンタ
 97 蒸留塔(脱アセトアルデヒド塔)
 98 蒸留塔(抽出蒸留塔)
 99 デカンタ
 200 チムニートレイ

Claims (11)

  1.  金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水の存在下、メタノールと一酸化炭素とを反応槽で反応させて酢酸を生成させるカルボニル化反応工程と、
     前記カルボニル化反応工程で得られた反応混合物を蒸発槽に導入して加熱し、前記反応混合物を蒸気流と残液流とに分離する蒸発工程と、
     前記残液流を反応槽にリサイクルする残液流リサイクル工程と、
     前記蒸気流を第1蒸留塔によりヨウ化メチル及びアセトアルデヒドに富む第1オーバーヘッド流と酢酸に富む第1酢酸流とに分離するとともに、前記第1オーバーヘッド流を凝縮、分液させて水相と有機相とを得る脱低沸工程と、
     前記水相及び/又は有機相の少なくとも一部を反応槽にリサイクルする第1オーバーヘッド流リサイクル工程と、
     プロセス流中のアセトアルデヒドを分離除去するためのアセトアルデヒド分離除去工程と、
     を備えた酢酸の製造方法であって、
     前記蒸発槽の加熱により、(i)前記水相中のアセトアルデヒド濃度を2340質量ppm以上、及び/又は、(ii)前記水相中の酢酸メチル濃度を19.0質量%未満、及び/又は、(iii)前記有機相中の酢酸メチル濃度を38.0質量%未満に制御するとともに、当該水相の少なくとも一部を前記アセトアルデヒド分離除去工程にて処理し、アセトアルデヒド分離除去後の残液を反応槽及び/又はアセトアルデヒド分離除去工程及び/又はその他のプロセスにリサイクルすることを特徴とする酢酸の製造方法。
  2.  触媒系がさらにイオン性ヨウ化物を含む請求項1記載の酢酸の製造方法。
  3.  第1蒸留塔の運転条件につき、当該第1蒸留塔に水相のみを還流させる場合は水相の還流比を2以上とし、有機相のみを還流させる場合は有機相の還流比を1以上とし、水相及び有機相をともに還流させる場合は水相及び有機相の総和の還流比を1.5以上とする請求項1又は2記載の酢酸の製造方法。
  4.  さらに、前記第1酢酸流を第2蒸留塔により水に富む第2オーバーヘッド流と第1酢酸流よりも酢酸に富む第2酢酸流とに分離する脱水工程を有する請求項1~3のいずれか1項に記載の酢酸の製造方法。
  5.  前記第2酢酸流におけるクロトンアルデヒド濃度が1.10質量ppm以下及び/又は2-エチルクロトンアルデヒド濃度が0.80質量ppm以下及び/又はプロピオン酸濃度が130質量ppm以下である請求項4記載の酢酸の製造方法。
  6.  前記蒸発槽における残液流中のアセトアルデヒド濃度を70質量ppm以下にする請求項1~5のいずれか1項に記載の酢酸の製造方法。
  7.  反応槽の反応混合液におけるクロトンアルデヒド濃度が1.7質量ppm以下及び/又は2-エチルクロトンアルデヒド濃度が1.8質量ppm以下及び/又はプロピオン酸濃度が240質量ppm以下である請求項1~6のいずれか1項に記載の酢酸の製造方法。
  8.  第1蒸留塔に供給する前記蒸気流におけるクロトンアルデヒド濃度が2.4質量ppm以下及び/又は2-エチルクロトンアルデヒド濃度が0.45質量ppm以下及び/又はプロピオン酸濃度が106質量ppm以下である請求項1~7のいずれか1項に記載の酢酸の製造方法。
  9.  前記第1酢酸流におけるクロトンアルデヒド濃度が1.34質量ppm以下及び/又は2-エチルクロトンアルデヒド濃度が0.60質量ppm以下及び/又はプロピオン酸濃度が106質量ppm以下である請求項1~8のいずれか1項に記載の酢酸の製造方法。
  10.  金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水の存在下、メタノールと一酸化炭素とを反応槽で反応させて酢酸を生成させるカルボニル化反応工程と、
     前記カルボニル化反応工程で得られた反応混合物を蒸発槽に導入して加熱し、前記反応混合物を蒸気流と残液流とに分離する蒸発工程と、
     前記残液流を反応槽にリサイクルする残液流リサイクル工程と、
     前記蒸気流を第1蒸留塔によりヨウ化メチル及びアセトアルデヒドに富む第1オーバーヘッド流と酢酸に富む第1酢酸流とに分離するとともに、前記第1オーバーヘッド流を凝縮、分液させて水相と有機相とを得る脱低沸工程と、
     前記水相及び/又は有機相の少なくとも一部を反応槽にリサイクルする第1オーバーヘッド流リサイクル工程と、
     プロセス流中のアセトアルデヒドを分離除去するためのアセトアルデヒド分離除去工程と、
     を備えた酢酸の製造方法であって、
     前記蒸発槽の加熱により、(i)前記水相中のアセトアルデヒド濃度を2340質量ppm以上、及び/又は、(ii)前記水相中の酢酸メチル濃度を19.0質量%未満、及び/又は、(iii)前記有機相中の酢酸メチル濃度を38.0質量%未満に制御し、且つ前記残液流中のアセトアルデヒド濃度を70質量ppm以下に制御し、前記水相の少なくとも一部を前記アセトアルデヒド分離除去工程にて処理し、アセトアルデヒド分離除去後の残液を反応槽及び/又はアセトアルデヒド分離除去工程及び/又はその他のプロセスにリサイクルするとともに、第1蒸留塔の水相の還流比を2以上とすることを特徴とする酢酸の製造方法。
  11.  触媒系がさらにイオン性ヨウ化物を含む請求項10記載の酢酸の製造方法。
PCT/JP2017/019579 2017-03-28 2017-05-25 酢酸の製造方法 WO2018179457A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2017536046A JP6481043B1 (ja) 2017-03-28 2017-05-25 酢酸の製造方法
KR1020197030525A KR102328843B1 (ko) 2017-03-28 2017-05-25 아세트산의 제조 방법
CN201780083025.4A CN110191874A (zh) 2017-03-28 2017-05-25 乙酸的制备方法
MYPI2019005733A MY189357A (en) 2017-03-28 2017-05-25 Method for producing acetic acid
SG11201908151V SG11201908151VA (en) 2017-03-28 2017-05-25 Method for producing acetic acid
ES17737197T ES2779805T3 (es) 2017-03-28 2017-05-25 Método para la producción de ácido acético
US15/542,855 US10308581B2 (en) 2017-03-28 2017-05-25 Method for producing acetic acid
BR112019018754A BR112019018754A2 (pt) 2017-03-28 2017-05-25 método para produzir ácido acético
EP17737197.8A EP3401303B1 (en) 2017-03-28 2017-05-25 Acetic acid production method
MX2019011612A MX2019011612A (es) 2017-03-28 2017-05-25 Metodo para producir acido acetico.
PH12019550201A PH12019550201A1 (en) 2017-03-28 2019-09-25 Method for producing acetic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-062764 2017-03-28
JP2017062764 2017-03-28

Publications (1)

Publication Number Publication Date
WO2018179457A1 true WO2018179457A1 (ja) 2018-10-04

Family

ID=60037537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019579 WO2018179457A1 (ja) 2017-03-28 2017-05-25 酢酸の製造方法

Country Status (13)

Country Link
EP (1) EP3401303B1 (ja)
JP (1) JP6481043B1 (ja)
KR (1) KR102328843B1 (ja)
CN (1) CN110191874A (ja)
AR (1) AR111174A1 (ja)
BR (1) BR112019018754A2 (ja)
ES (1) ES2779805T3 (ja)
MX (1) MX2019011612A (ja)
MY (1) MY189357A (ja)
PH (1) PH12019550201A1 (ja)
SG (1) SG11201908151VA (ja)
TW (1) TWI701234B (ja)
WO (1) WO2018179457A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725813A (ja) 1993-07-08 1995-01-27 Daicel Chem Ind Ltd 高純度酢酸の製造方法
JP2001508405A (ja) 1996-10-18 2001-06-26 セラニーズ・インターナショナル・コーポレーション カルボニル化処理の流れからの過マンガン酸塩還元化合物及びアルキルヨウ化物の除去
WO2009042078A1 (en) * 2007-09-27 2009-04-02 Celanese International Corporation Method and apparatus for making acetic acid with improved purification
WO2009134333A1 (en) * 2008-04-29 2009-11-05 Celanese International Corporation Method and apparatus for carbonylating methanol with acetic acid enriched flash stream
WO2011146446A1 (en) * 2010-05-18 2011-11-24 Celanese International Corporation Process for purifying acetic acid streams by removing permanganate reducing compounds
WO2012081418A1 (ja) * 2010-12-15 2012-06-21 株式会社ダイセル 酢酸の製造方法
WO2013137236A1 (ja) * 2012-03-14 2013-09-19 株式会社ダイセル 酢酸の製造方法
WO2014097867A1 (ja) * 2012-12-21 2014-06-26 株式会社ダイセル 酢酸の製造方法
WO2016076968A1 (en) * 2014-11-14 2016-05-19 Celanese International Corporation Reducing hydrogen iodide content in carbonylation processes
WO2016126292A1 (en) * 2015-02-04 2016-08-11 Celanese International Corporation Process to control hi concentration in residuum stream
WO2016194850A1 (ja) * 2015-06-01 2016-12-08 株式会社ダイセル 酢酸の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW283702B (ja) * 1993-07-08 1996-08-21 Daicel Chem
SG44317A1 (en) * 1994-06-15 1997-12-19 Daicel Chem Process for producing high purity acetic acid
US7485749B2 (en) * 2006-08-22 2009-02-03 Lyondell Chemical Technology, L.P. Preparation of acetic acid
US8586789B2 (en) * 2009-03-30 2013-11-19 Lyondell Chemical Technology, L.P. Removing hydrocarbon impurities from acetic acid production intermediate
WO2012046593A1 (ja) * 2010-10-06 2012-04-12 ダイセル化学工業株式会社 酢酸の製造方法
US9302974B1 (en) * 2015-07-01 2016-04-05 Celanese International Corporation Process for producing acetic acid

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725813A (ja) 1993-07-08 1995-01-27 Daicel Chem Ind Ltd 高純度酢酸の製造方法
JP2001508405A (ja) 1996-10-18 2001-06-26 セラニーズ・インターナショナル・コーポレーション カルボニル化処理の流れからの過マンガン酸塩還元化合物及びアルキルヨウ化物の除去
WO2009042078A1 (en) * 2007-09-27 2009-04-02 Celanese International Corporation Method and apparatus for making acetic acid with improved purification
WO2009134333A1 (en) * 2008-04-29 2009-11-05 Celanese International Corporation Method and apparatus for carbonylating methanol with acetic acid enriched flash stream
JP2011518880A (ja) 2008-04-29 2011-06-30 セラニーズ・インターナショナル・コーポレーション 酢酸に富むフラッシュ流を与えるメタノールをカルボニル化するための方法及び装置
WO2011146446A1 (en) * 2010-05-18 2011-11-24 Celanese International Corporation Process for purifying acetic acid streams by removing permanganate reducing compounds
WO2012081418A1 (ja) * 2010-12-15 2012-06-21 株式会社ダイセル 酢酸の製造方法
WO2013137236A1 (ja) * 2012-03-14 2013-09-19 株式会社ダイセル 酢酸の製造方法
WO2014097867A1 (ja) * 2012-12-21 2014-06-26 株式会社ダイセル 酢酸の製造方法
WO2016076968A1 (en) * 2014-11-14 2016-05-19 Celanese International Corporation Reducing hydrogen iodide content in carbonylation processes
WO2016126292A1 (en) * 2015-02-04 2016-08-11 Celanese International Corporation Process to control hi concentration in residuum stream
WO2016194850A1 (ja) * 2015-06-01 2016-12-08 株式会社ダイセル 酢酸の製造方法

Also Published As

Publication number Publication date
EP3401303A4 (en) 2018-11-14
EP3401303A1 (en) 2018-11-14
JPWO2018179457A1 (ja) 2019-04-04
CN110191874A (zh) 2019-08-30
BR112019018754A2 (pt) 2020-04-07
EP3401303B1 (en) 2020-02-12
SG11201908151VA (en) 2019-10-30
MY189357A (en) 2022-02-07
KR20190127857A (ko) 2019-11-13
TW201840522A (zh) 2018-11-16
ES2779805T3 (es) 2020-08-19
PH12019550201A1 (en) 2020-07-06
AR111174A1 (es) 2019-06-12
MX2019011612A (es) 2019-11-18
JP6481043B1 (ja) 2019-03-13
KR102328843B1 (ko) 2021-11-19
TWI701234B (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
JP6481041B2 (ja) 酢酸の製造方法
JP6626988B1 (ja) 酢酸の製造方法
US10428005B2 (en) Method for producing acetic acid
JP6693959B2 (ja) 酢酸の製造方法
JP6481042B2 (ja) 酢酸の製造方法
JP6481040B2 (ja) 酢酸の製造方法
US10308581B2 (en) Method for producing acetic acid
JP6481043B1 (ja) 酢酸の製造方法
JP6588658B1 (ja) 酢酸の製造方法
WO2018163449A1 (ja) 酢酸の製造方法
US10550058B2 (en) Method for producing acetic acid
JP6626987B1 (ja) 酢酸の製造方法
JP6588657B1 (ja) 酢酸の製造方法
JP6663436B2 (ja) 酢酸の製造方法
WO2020008503A1 (ja) 酢酸の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017536046

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15542855

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2017737197

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019018754

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197030525

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112019018754

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190910