JP6481042B2 - 酢酸の製造方法 - Google Patents

酢酸の製造方法 Download PDF

Info

Publication number
JP6481042B2
JP6481042B2 JP2017536045A JP2017536045A JP6481042B2 JP 6481042 B2 JP6481042 B2 JP 6481042B2 JP 2017536045 A JP2017536045 A JP 2017536045A JP 2017536045 A JP2017536045 A JP 2017536045A JP 6481042 B2 JP6481042 B2 JP 6481042B2
Authority
JP
Japan
Prior art keywords
acetic acid
distillation column
stream
ppm
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017536045A
Other languages
English (en)
Other versions
JPWO2018173307A1 (ja
Inventor
清水 雅彦
雅彦 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=63585380&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6481042(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Daicel Corp filed Critical Daicel Corp
Application granted granted Critical
Publication of JP6481042B2 publication Critical patent/JP6481042B2/ja
Publication of JPWO2018173307A1 publication Critical patent/JPWO2018173307A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/10Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
    • C07C51/12Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide on an oxygen-containing group in organic compounds, e.g. alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • C07C51/44Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/08Acetic acid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、酢酸を製造する方法に関する。本願は、2017年3月22日に、日本に出願した特願2017−056300号の優先権を主張し、その内容をここに援用する。
酢酸の工業的製造法としてメタノール法カルボニル化プロセス(メタノール法酢酸プロセス)が知られている。このプロセスでは、例えば、反応槽でメタノールと一酸化炭素とを触媒の存在下で反応させて酢酸を生成させ、反応混合物を蒸発槽で蒸発させ、その蒸気相を脱低沸塔、続いて脱水塔で精製して酢酸が製品化されるか、あるいは脱水塔に引き続いて脱高沸塔やさらには製品塔を経由して酢酸が製品化される。
このような酢酸製造プロセスでは、ヨウ化メチルが還元されて生成するアセトアルデヒドはアルドール縮合によりクロトンアルデヒドとなり、製品酢酸の過マンガン酸カリウム試験値(過マンガン酸タイム)を悪化させる。さらに、クロトンアルデヒドはアセトアルデヒドとアルドール縮合して2−エチルクロトンアルデヒドとなるが、2−エチルクロトンアルデヒドもまた製品酢酸の過マンガン酸カリウム試験値を悪化させる。しかしながら、クロトンアルデヒドは2−エチルクロトンアルデヒドよりも質量単位あたりの過マンガン酸カリウム試験値悪化の程度が大きく、クロトンアルデヒドを製品酢酸中に含有させる場合、品質の悪化がより顕著になる。
従来、クロトンアルデヒドや2−エチルクロトンアルデヒドの低減には、(i)反応系で副生したアセトアルデヒドを精製工程でヨウ化メチルから分離除去し、反応系にリサイクルするヨウ化メチル中のアセトアルデヒドを低減することにより、反応系でのクロトンアルデヒドの生成を抑制する方法と(ii)精製工程の途中で得られる粗酢酸中に含まれるクロトンアルデヒドを直接オゾンを用いて酸化分解する方法の大きく2通りの方法が工業的に採用されてきた(特許文献1及び2)。しかしながら、アセトアルデヒドの分離除去設備やオゾン処理設備はともに高価である。従来は、製品酢酸の過マンガン酸カリウム試験値を向上させるのにこれらの方法に全面的に依存しており、設備費の増大につながっていた。
また、メタノール法酢酸プロセスにおいて、アルカン類が不純物として生成することが知られている。このアルカン類は炭素数が3以上で、ヨウ化メチルや酢酸メチルよりも高沸点の不純物である。主に飽和又は不飽和の炭化水素であるが、分子内に酸素原子やヨウ素原子を含んでいる場合もある。特開平4−295445号公報には、このアルカン類を除去するため、脱低沸塔の塔頂凝縮液のうち有機相を蒸留塔(脱アルカン塔)で蒸留し、ヨウ化メチル、酢酸メチル及びカルボニル不純物を含む塔頂留出液を反応器にリサイクルさせるか、又は脱アセトアルデヒド塔に供給するとともに、アルカン類、水及び酢酸を含む塔底缶出液に水を加えて抽出し、酢酸を含む水相を反応器にリサイクルし、アルカン類を含む有機相を廃棄物とする技術が開示されている。しかしながら、この文献には製品酢酸の過マンガン酸カリウム試験値をいかにして向上させるかについては何ら開示も示唆もない。
特開平07−25813号公報 特表2001−508405号公報 特開平4−295445号公報
したがって、本発明の目的は、過マンガン酸カリウム試験値の良好な酢酸を多大なコストをかけることなく、工業的に効率よく製造できる方法を提供することにある。
本発明者らは、上記目的を達成するため鋭意検討した結果、メタノール法カルボニル化プロセスにおいて、脱低沸塔の還流比を特定値以上とし、且つ脱低沸塔の塔頂凝縮液の有機相を処理する蒸留塔(脱クロトンアルデヒド塔)を設け、この脱クロトンアルデヒド塔の操作条件を規定することにより、脱水塔缶出液中のクロトンアルデヒド濃度を低減でき、当該缶出液の過マンガン酸カリウム試験値を大幅に向上できることを見出した。より詳細には、クロトンアルデヒドの沸点(104℃)は酢酸の沸点(117℃)より低いため、脱低沸塔の還流比を上げると、クロトンアルデヒドは蒸留塔の塔頂に濃縮される。この濃縮されたクロトンアルデヒドを反応槽にリサイクルすると、反応槽内でアセトアルデヒドと反応して2−エチルクロトンアルデヒドが生成する。また、クロトンアルデヒドは反応槽内で水素と反応してブタノールが生成し、このブタノールは酢酸と反応して酢酸ブチルとなる。2−エチルクロトンアルデヒドはクロトンアルデヒドと比べて過マンガン酸カリウム試験値に与える影響は小さく、ブタノールや酢酸ブチルは過マンガン酸カリウム試験値に全く影響を与えず、無害である。したがって、酢酸の品質がより向上する傾向となる。なお、2−エチルクロトンアルデヒド、酢酸ブチルの沸点は、それぞれ137℃、126℃と酢酸の沸点(117℃)よりも高いため、脱低沸塔の還流比を上げると、これらの成分の塔頂濃度がさらに低下し、脱低沸塔の缶出から反応系にリサイクルされ濃縮されるか、一部は、仕込液供給位置より高いサイドカットから次工程に送られるか、製品酢酸中に含有される。一方、クロトンアルデヒドを濃縮させた脱低沸塔塔頂凝縮液を、脱アセトアルデヒド処理とは別に蒸留処理することにより、有用なヨウ化メチルと不要なクロトンアルデヒドとを効率よく分離できる。すなわち、例えば脱低沸塔塔頂凝縮液のうち有機相を蒸留処理すると、ヨウ化メチルは酢酸メチルとともに塔頂留出液として得られる。これは脱低沸塔塔頂凝縮液を貯留するデカンタや反応槽にリサイクルできる。また、クロトンアルデヒドは他の高沸点不純物(2−エチルクロトンアルデヒド、酢酸ブチル、アルカン類など)及び酢酸とともに塔底缶出液として得られる。この缶出液は系外除去し廃棄処分される。水は塔頂に濃縮させても塔底から抜き取ってもよい。なお、従来公知の脱アルカン塔を脱クロトンアルデヒド塔として利用することも可能である。脱アルカン塔は、常時運転する場合もあるが、アルカン類の生成速度が遅い場合は、バッチ式で運転することもある。バッチ式で運転する場合は、製品酢酸の過マンガン酸カリウム試験値が低下するため、脱アセトアルデヒド処理、オゾン処理、運転条件の変更などにより製品品質を維持する必要がある。なお、2−エチルクロトンアルデヒドも脱低沸塔塔頂に極僅か存在し、これもクロトンアルデヒドと同様、上記操作で系外排出でき、それによって過マンガン酸カリウム試験値を向上させることができるが、高沸点の2−エチルクロトンアルデヒドは脱低沸塔の塔頂には濃縮されにくいため、その効果は限定的である。なお、脱クロトンアルデヒド塔へは主に脱低沸塔塔頂凝縮液のうち有機相を供給するが、それに加えて又はそれの代わりに、脱低沸塔塔頂凝縮液のうちの水相を脱クロトンアルデヒド塔へ供給してもよい。このようにして、簡易に製品酢酸の過マンガン酸カリウム試験値を向上できるので、脱アセトアルデヒド設備、オゾン処理設備の削除もしくは小規模化、蒸気及び電気代の削減を図ることができる。本発明はこれらの知見に基づき、さらに検討を重ねて完成したものである。
すなわち、本発明は、金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水の存在下、メタノールと一酸化炭素とを反応槽で反応させて酢酸を生成させるカルボニル化反応工程と、
前記カルボニル化反応工程で得られた反応混合物を蒸発槽において蒸気流と残液流とに分離する蒸発工程と、
前記蒸気流を第1蒸留塔によりヨウ化メチル及びアセトアルデヒドから選択された少なくとも一種の低沸成分に富む第1オーバーヘッド流と酢酸に富む第1酢酸流とに分離するとともに、前記第1オーバーヘッド流を凝縮、分液させて水相と有機相とを得る脱低沸工程と、
前記水相及び/又は有機相の少なくとも一部を反応槽にリサイクルする第1オーバーヘッド流リサイクル工程と、
前記水相及び/又は有機相の少なくとも他の一部を蒸留塔で処理してクロトンアルデヒドを分離除去する脱クロトンアルデヒド工程と、
を備えた酢酸の製造方法であって、
第1蒸留塔の還流比について、当該第1蒸留塔に水相のみを還流させる場合は水相の還流比を2以上とし、有機相のみを還流させる場合は有機相の還流比を1以上とし、水相及び有機相をともに還流させる場合は水相及び有機相の総和の還流比を1.5以上とし、且つ、前記脱クロトンアルデヒド工程において下記(i)〜(iii)の少なくとも1つの条件を満たすように蒸留塔を操作することを特徴とする酢酸の製造方法を提供する。
(i)当該蒸留塔の還流比を0.01以上とする
(ii)当該蒸留塔の留出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1未満とする
(iii)当該蒸留塔の缶出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1より大きくする
前記酢酸の製造方法は、さらに、前記第1酢酸流を第2蒸留塔により水に富む第2オーバーヘッド流と第1酢酸流よりも酢酸に富む第2酢酸流とに分離する脱水工程を有していてもよい。この場合、第2蒸留塔の還流比は0.3以上とするのが好ましい。第2酢酸流におけるクロトンアルデヒド濃度が0.98質量ppm以下及び/又は2−エチルクロトンアルデヒド濃度が1.0質量ppm以下及び/又は酢酸ブチル濃度が15質量ppm以下であってもよい。また、第2酢酸流の過マンガン酸カリウム試験値は50分を超えることが好ましい。
前記触媒系は、さらにイオン性ヨウ化物を含んでいてもよい。
前記酢酸の製造方法は、さらに、前記第1オーバーヘッド流を凝縮させた水相及び/又は有機相の少なくとも一部を蒸留してアセトアルデヒドを分離除去するためのアセトアルデヒド分離除去工程を有していてもよい。この場合、前記水相及び/又は前記有機相の少なくとも一部からアセトアルデヒドを分離除去した後の残液の少なくとも一部を反応槽にリサイクルしてもよい。
第1蒸留塔に供給する前記蒸気流におけるクロトンアルデヒド濃度が0〜5.0質量ppm及び/又は2−エチルクロトンアルデヒド濃度が0〜3.0質量ppm及び/又は酢酸ブチル濃度が0.1〜13.0質量ppmであってもよい。
第1酢酸流におけるクロトンアルデヒド濃度が1.3質量ppm以下及び/又は2−エチルクロトンアルデヒド濃度が1.0質量ppm以下及び/又は酢酸ブチル濃度が15質量ppm以下であってもよい。
前記脱クロトンアルデヒド工程における蒸留塔仕込液中のクロトンアルデヒド濃度は、例えば0.01〜50質量ppmである。
前記脱クロトンアルデヒド工程において、前記(i)〜(iii)のすべての条件を満たすように蒸留塔を操作することが好ましい。
前記脱クロトンアルデヒド工程において、蒸留をバッチ処理で行ってもよい。
前記脱クロトンアルデヒド工程における蒸留塔の処理量は、第1蒸留塔に供給する蒸気流の量100質量部に対して、例えば0.0001〜50質量部である。
本発明によれば、脱低沸塔の還流比を特定値以上とし、且つ脱クロトンアルデヒド工程によりクロトンアルデヒドを効率よく除去できるので、大規模な脱アセトアルデヒド設備やオゾン処理設備を設けなくても、過マンガン酸カリウム試験値(「過マンガン酸タイム」、「カメレオンタイム」ともいう)の良好な高品質の酢酸を工業的に効率よく製造できる。
本発明の一実施形態を示す酢酸製造フロー図である。 アセトアルデヒド分離除去システムの一例を示す概略フロー図である。 アセトアルデヒド分離除去システムの他の例を示す概略フロー図である。 アセトアルデヒド分離除去システムのさらに他の例を示す概略フロー図である。 アセトアルデヒド分離除去システムのさらに他の例を示す概略フロー図である。
本発明の酢酸の製造方法では、金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水の存在下、メタノールと一酸化炭素とを反応槽で反応させて酢酸を生成させるカルボニル化反応工程と、前記カルボニル化反応工程で得られた反応混合物を蒸発槽において蒸気流と残液流とに分離する蒸発工程と、前記蒸気流を第1蒸留塔によりヨウ化メチル及びアセトアルデヒドから選択された少なくとも一種の低沸成分に富む第1オーバーヘッド流と酢酸に富む第1酢酸流とに分離するとともに、前記第1オーバーヘッド流を凝縮、分液させて水相と有機相とを得る脱低沸工程と、前記水相及び/又は有機相の少なくとも一部を反応槽にリサイクルする第1オーバーヘッド流リサイクル工程と、前記水相及び/又は有機相の少なくとも他の一部を蒸留塔で処理してクロトンアルデヒドを分離除去する脱クロトンアルデヒド工程とを備え、第1蒸留塔の還流比について、当該第1蒸留塔に水相のみを還流させる場合は水相の還流比を2以上とし、有機相のみを還流させる場合は有機相の還流比を1以上とし、水相及び有機相をともに還流させる場合は水相及び有機相の総和の還流比を1.5以上とし、且つ、前記脱クロトンアルデヒド工程において下記(i)〜(iii)の少なくとも1つの条件を満たすように蒸留塔(脱クロトンアルデヒド塔)を操作する。
(i)当該蒸留塔の還流比を0.01以上とする
(ii)当該蒸留塔の留出液中のクロトンアルデヒド濃度(質量ppm)と仕込液(供給液)中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1未満とする
(iii)当該蒸留塔の缶出液中のクロトンアルデヒド濃度(質量ppm)と仕込液(供給液)中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1より大きくする
本発明では、第1蒸留塔の還流比を上げてクロトンアルデヒドを塔頂に濃縮し、クロトンアルデヒドが濃縮された脱低沸塔塔頂凝縮液の水相及び/又は有機相の少なくとも一部を反応槽にリサイクルする。クロトンアルデヒドが塔頂に濃縮されるため、第1酢酸流中のクロトンアルデヒド濃度が低下し、その結果過マンガン酸カリウム試験値が良好な製品酢酸を得ることができる。また、反応槽にリサイクルされたクロトンアルデヒドは、クロトンアルデヒド+アセトアルデヒド→2−エチルクロトンアルデヒド、クロトンアルデヒド+水素→ブチルアルコール、ブチルアルコール+酢酸→酢酸ブチルの反応により、過マンガン酸カリウム試験値に対してより影響の小さい2−エチルクロトンアルデヒドや全く影響のない酢酸ブチルに変換されるため、製品酢酸の品質を向上させることができる。また、本発明では、前記クロトンアルデヒドが濃縮された脱低沸塔塔頂凝縮液の水相及び/又は有機相の少なくとも他の一部を脱クロトンアルデヒド塔で処理するところ、クロトンアルデヒドは沸点が104℃と高いので、高沸点化合物として酢酸やアルカン類とともに缶出側に抜き取り、系外に排出することで、製品酢酸の過マンガン酸カリウム試験値をより一層向上させることができる。脱クロトンアルデヒド塔の塔頂凝縮液は有用成分(例えば、ヨウ化メチル、酢酸メチル等)を含むので、脱低沸塔塔頂凝縮液を貯留するデカンタや反応槽にリサイクルできる。
第1蒸留塔の還流比については、第1蒸留塔に前記水相のみを還流させる場合は、水相の還流比(水相の還流量/水相の留出量)は2以上であり、好ましくは3以上、より好ましくは5以上、さらに好ましくは8以上、特に好ましくは12以上である。また、第1蒸留塔に前記有機相のみを還流させる場合は、有機相の還流比(有機相の還流量/有機相の留出量)は1以上であり、好ましくは1.5以上、より好ましくは2以上、さらに好ましくは4以上、特に好ましくは5以上である。さらに、第1蒸留塔に前記水相及び有機相をともに還流させる場合は、水相及び有機相の総和の還流比(水相及び有機相の還流量の総和/水相及び有機相の留出量の総和)は1.5以上であり、好ましくは2.3以上、より好ましくは3.5以上、さらに好ましくは6以上、特に好ましくは8.5以上である。また、第1蒸留塔に前記水相を還流させる場合は、水相の還流比(水相の還流量/水相の留出量)は2以上であることが好ましく、より好ましくは3以上、さらに好ましくは5以上、特に好ましくは8以上、とりわけ12以上である。第1蒸留塔の還流比の上限は、いずれの場合も、例えば3000(特に1000)であってもよく、あるいは100(特に30)であってもよい。
前記(i)において、脱クロトンアルデヒド塔の還流比は、好ましくは0.05以上、より好ましくは0.5以上、さらに好ましくは5以上、特に好ましくは20以上(例えば30以上)である。脱クロトンアルデヒド塔の還流比の上限は、例えば1000である。前記(ii)において、脱クロトンアルデヒド塔の留出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)は、好ましくは0.95以下、より好ましくは0.80以下、さらに好ましくは0.70以下、特に好ましくは0.60以下(例えば0.50以下、とりわけ0.30以下、中でも0.20以下)である。前記(iii)において、脱クロトンアルデヒド塔の缶出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)は、好ましくは1.2以上、より好ましくは1.5以上、さらに好ましくは2.0以上、特に好ましくは3.0以上(例えば4.0以上、とりわけ5.0以上)、なかんずく10以上(例えば20以上)である。上記(i)〜(iii)の少なくとも1つの条件を満足するように、脱クロトンアルデヒド等を操作すると、クロトンアルデヒドは塔底に濃縮され、アルカン等の他の高沸点不純物及び酢酸とともに缶出液として系外に排出できる。
前記酢酸の製造方法は、さらに、前記第1酢酸流を第2蒸留塔により水に富む第2オーバーヘッド流と第1酢酸流よりも酢酸に富む第2酢酸流とに分離する脱水工程を有していてもよい。第1酢酸流を第2蒸留塔にて脱水することにより、塔底又は塔の中間部位から缶出液又はサイドカット液として水含有量の少ない第2酢酸流を得ることができる。第2酢酸流はそのまま、或いは必要に応じてさらに精製することにより製品酢酸とすることができる。
第2蒸留塔の還流比は、例えば0.3以上、好ましくは1.0以上、より好ましくは5.0以上、さらに好ましくは10以上(例えば12以上)である。第2蒸留塔の還流比の上限は、例えば3000(又は1000)、或いは200(又は100)程度であってもよい。第2蒸留塔の還流比を0.3以上に上げることにより、第2酢酸流の純度及び過マンガン酸カリウム試験値を向上できる。
第2酢酸流におけるクロトンアルデヒド濃度は、例えば0.98質量ppm以下、好ましくは0.80質量ppm以下、より好ましくは0.50質量ppm以下、さらに好ましくは0.30質量ppm以下である。第2酢酸流におけるクロトンアルデヒド濃度を0.98質量ppm以下とすることにより、第2酢酸流中のクロトンアルデヒド濃度を著しく低減できるとともに、第2酢酸流の過マンガン酸カリウム試験値を大幅に向上できる。第2酢酸流におけるクロトンアルデヒド濃度の下限値は0質量ppmであってもよいが、例えば0.01質量ppm(或いは0.10質量ppm)であってもよい。
第2酢酸流における2−エチルクロトンアルデヒド濃度は、例えば1.00質量ppm以下、好ましくは0.50質量ppm以下、より好ましくは0.30質量ppm以下、さらに好ましくは0.20質量ppm以下である。第2酢酸流における2−エチルクロトンアルデヒド濃度を1.0質量ppm以下とすることにより、第2酢酸流の過マンガン酸カリウム試験値をより向上できる。第2酢酸流における2−エチルクロトンアルデヒド濃度の下限値は、例えば0質量ppm、或いは0.01質量ppm(例えば0.10質量ppm)であってもよい。
第2酢酸流における酢酸ブチル濃度は、例えば15質量ppm以下、好ましくは10質量ppm以下、より好ましくは8質量ppm以下、特に好ましくは5質量ppm以下(例えば3質量ppm以下)である。第2酢酸流における酢酸ブチル濃度を15質量ppm以下とすることにより、第2酢酸流の純度を向上できる。第2酢酸流における酢酸ブチル濃度の下限値は、例えば0質量ppm、或いは0.1質量ppm(例えば0.3質量ppm又は1.0質量ppm)であってもよい。
第2酢酸流の過マンガン酸カリウム試験値は、50分を超えることが好ましく、より好ましくは60分以上、さらに好ましくは100分以上、特に好ましくは120分以上(例えば180分以上、とりわけ240分以上、中でも360分以上)である。
前記触媒系は、さらにイオン性ヨウ化物を含んでいてもよい。イオン性ヨウ化物は助触媒として機能する。
前記酢酸の製造方法は、さらに、前記第1オーバーヘッド流を凝縮させた水相及び/又は有機相の少なくとも一部を蒸留してアセトアルデヒドを分離除去するためのアセトアルデヒド分離除去工程を有していてもよい。この場合、前記水相及び/又は前記有機相の少なくとも一部からアセトアルデヒドを分離除去した後の残液の少なくとも一部を反応槽にリサイクルしてもよい。アセトアルデヒド分離除去工程を設けることにより、反応系で生成したアセトアルデヒドを効率よく分離除去できる。また、アセトアルデヒドを分離除去した後の残液を反応槽にリサイクルすることにより、有用なヨウ化メチル等を有効に利用できる。
第1蒸留塔に供給する前記蒸気流におけるクロトンアルデヒド濃度は、例えば0〜5.0質量ppm(例えば0.01〜4.0質量ppm)、好ましくは0.1〜3.0質量ppm、さらに好ましくは0.2〜2.0質量ppmである。前記蒸気流の2−エチルクロトンアルデヒド濃度は、例えば0〜3.0質量ppm(例えば0.01〜2.5質量ppm)、好ましくは0.02〜2.0質量ppm、さらに好ましくは0.03〜0.8質量ppmである。前記蒸気流の酢酸ブチル濃度は、例えば0.1〜13.0質量ppm、好ましくは0.2〜12.0質量ppm、さらに好ましくは0.3〜9.0質量ppmである。
第1酢酸流におけるクロトンアルデヒド濃度は、例えば1.3質量ppm以下、好ましくは1.0質量ppm以下、より好ましくは0.85質量ppm以下、特に好ましくは0.5質量ppm以下(例えば0.25質量ppm以下)である。第1酢酸流におけるクロトンアルデヒド濃度を1.3質量ppm以下とすることにより、第2酢酸流中のクロトンアルデヒド濃度を著しく低減できるとともに、第2酢酸流の過マンガン酸カリウム試験値を大幅に向上できる。第1酢酸流におけるクロトンアルデヒド濃度の下限値は、0質量ppmであってもよいが、例えば0.01質量ppm(或いは0.10質量ppm)であってもよい。
第1酢酸流における2−エチルクロトンアルデヒド濃度は、例えば1.0質量ppm以下、好ましくは0.50質量ppm以下である。第1酢酸流における2−エチルクロトンアルデヒド濃度を1.0質量ppm以下とすることにより、第2酢酸流の過マンガン酸カリウム試験値をより向上できる。第1酢酸流における2−エチルクロトンアルデヒド濃度の下限値は、例えば0質量ppm、或いは0.01質量ppm(又は0.10質量ppm)であってもよい。
第1酢酸流における酢酸ブチル濃度は、例えば15質量ppm以下、好ましくは10質量ppm以下、より好ましくは8質量ppm以下、特に好ましくは5質量ppm以下(例えば3質量ppm以下)である。第1酢酸流における酢酸ブチル濃度を15質量ppm以下とすることにより、第2酢酸流の純度を向上できる。第2酢酸流における酢酸ブチル濃度の下限値は、例えば0質量ppm、或いは0.1質量ppm(例えば0.3質量ppm又は1.0質量ppm)であってもよい。
脱クロトンアルデヒド工程における蒸留塔仕込液中のクロトンアルデヒド濃度は、通常0.01〜50質量ppm(例えば0.1〜50質量ppm)、好ましくは0.3〜30質量ppm、より好ましくは0.5〜10質量ppm、さらに好ましくは0.8〜7.0質量ppm(例えば1.0〜5.0質量ppm)である。
脱クロトンアルデヒド工程において、前記(i)〜(iii)のすべての条件を満たすように蒸留塔を操作することが好ましい。前記(i)〜(iii)のすべての条件を満たすように脱クロトンアルデヒド塔を操作することにより、クロトンアルデヒドの除去効率を著しく向上でき、製品酢酸の過マンガン酸カリウム試験値を著しく高めることができる。
また、脱クロトンアルデヒド工程において、蒸留をバッチ処理で行ってもよい。前記水相及び/又は有機相にクロトンアルデヒドがある程度蓄積した時点でバッチ式で蒸留処理を行えば、エネルギーコストを節減できる。
前記脱クロトンアルデヒド工程における蒸留塔の処理量は、第1蒸留塔に供給する蒸気流の量100質量部に対して、例えば0.0001〜50質量部、好ましくは0.001〜30質量部(例えば0.01〜10質量部、特に0.1〜5質量部)である。
以下、本発明の一実施形態について説明する。図1は、本発明の一実施形態を示す酢酸製造フロー図(メタノール法カルボニル化プロセス)の一例である。この酢酸製造フローに係る酢酸製造装置は、反応槽1と、蒸発槽2と、蒸留塔3と、デカンタ4と、蒸留塔5と、蒸留塔6と、イオン交換樹脂塔7と、スクラバーシステム8と、アセトアルデヒド分離除去システム9、蒸留塔10、コンデンサ1a,2a,3a,5a,6a,10aと、熱交換器2bと、リボイラー3b,5b,6b,10bと、ライン11〜56、58〜63、ポンプ57とを備え、酢酸を連続的に製造可能に構成されている。本実施形態の酢酸の製造方法では、反応槽1、蒸発槽2、蒸留塔3、蒸留塔5、蒸留塔6、蒸留塔10、及びイオン交換樹脂塔7において、それぞれ、反応工程、蒸発工程(フラッシュ工程)、第1蒸留工程、第2蒸留工程、第3蒸留工程、脱クロトンアルデヒド工程、及び吸着除去工程が行われる。第1蒸留工程は脱低沸工程、第2蒸留工程は脱水工程、第3蒸留工程は脱高沸工程ともいう。なお、本発明において、工程は上記に限らず、例えば、蒸留塔5、蒸留塔6、イオン交換樹脂塔7、アセトアルデヒド分離除去システム9(脱アセトアルデヒド塔など)の設備は付帯しない場合がある。また、後述するように、イオン交換樹脂塔7の下流に製品塔を設けてもよい。
反応槽1は、反応工程を行うためのユニットである。この反応工程は、下記の化学式(1)で示される反応(メタノールのカルボニル化反応)によって酢酸を連続的に生成させるための工程である。酢酸製造装置の定常稼働状態において、反応槽1内には、例えば撹拌機によって撹拌されている反応混合物が存在する。反応混合物は、原料であるメタノール及び一酸化炭素と、金属触媒と、助触媒と、水と、製造目的である酢酸と、各種の副生成物とを含み、液相と気相とが平衡状態にある。
CH3OH + CO → CH3COOH (1)
反応混合物中の原料は、液体状のメタノール及び気体状の一酸化炭素である。メタノールは、メタノール貯留部(図示略)からライン11を通じて反応槽1に所定の流量で連続的に供給される。
一酸化炭素は、一酸化炭素貯留部(図示略)からライン12を通じて反応槽1に所定の流量で連続的に供給される。一酸化炭素は必ずしも純粋な一酸化炭素でなくてもよく、例えば窒素、水素、二酸化炭素、酸素等の他のガスが少量(例えば5質量%以下、好ましくは1質量%以下)含まれていてもよい。
反応混合物中の金属触媒は、メタノールのカルボニル化反応を促進するためのものであり、例えばロジウム触媒やイリジウム触媒を使用することができる。ロジウム触媒としては、例えば、化学式[Rh(CO)22]-で表されるロジウム錯体を使用することができる。イリジウム触媒としては、例えば化学式[Ir(CO)22]-で表されるイリジウム錯体を使用することができる。金属触媒としては金属錯体触媒が好ましい。反応混合物中の触媒の濃度(金属換算)は、反応混合物の液相全体に対して、例えば100〜10000質量ppm、好ましくは200〜5000質量ppm、さらに好ましくは400〜2000質量ppmである。
助触媒は、上述の触媒の作用を補助するためのヨウ化物であり、例えば、ヨウ化メチルやイオン性ヨウ化物が使用される。ヨウ化メチルは、上述の触媒の触媒作用を促進する作用を示し得る。ヨウ化メチルの濃度は、反応混合物の液相全体に対して例えば1〜20質量%である。イオン性ヨウ化物は、反応液中でヨウ化物イオンを生じさせるヨウ化物(特に、イオン性金属ヨウ化物)であり、上述の触媒を安定化させる作用や、副反応を抑制する作用を示し得る。イオン性ヨウ化物としては、例えば、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウムなどのアルカリ金属ヨウ化物などが挙げられる。反応混合物中のイオン性ヨウ化物の濃度は、反応混合物の液相全体に対して、例えば1〜25質量%であり、好ましくは5〜20質量%である。また、例えばイリジウム触媒などを用いる場合は、助触媒として、ルテニウム化合物やオスミウム化合物を用いることもできる。これらの化合物の使用量は総和で、例えばイリジウム1モル(金属換算)に対して、0.1〜30モル(金属換算)、好ましくは0.5〜15モル(金属換算)である。
反応混合物中の水は、メタノールのカルボニル化反応の反応機構上、酢酸を生じさせるのに必要な成分であり、また、反応系の水溶性成分の可溶化のためにも必要な成分である。反応混合物中の水の濃度は、反応混合物の液相全体に対して、例えば0.1〜15質量%であり、好ましくは0.8〜10質量%、さらに好ましくは1〜6質量%、特に好ましくは1.5〜4質量%である。水濃度は、酢酸の精製過程での水の除去に要するエネルギーを抑制して酢酸製造の効率化を進めるうえでは15質量%以下が好ましい。水濃度を制御するために、反応槽1に対して所定流量の水を連続的に供給してもよい。
反応混合物中の酢酸は、酢酸製造装置の稼働前に反応槽1内に予め仕込まれた酢酸、及び、メタノールのカルボニル化反応の主生成物として生じる酢酸を含む。このような酢酸は、反応系では溶媒として機能し得る。反応混合物中の酢酸の濃度は、反応混合物の液相全体に対して、例えば50〜90質量%であり、好ましくは60〜80質量%である。
反応混合物に含まれる主な副生成物としては、例えば酢酸メチルが挙げられる。この酢酸メチルは、酢酸とメタノールとの反応によって生じ得る。反応混合物中の酢酸メチルの濃度は、反応混合物の液相全体に対して、例えば0.1〜30質量%であり、好ましくは1〜10質量%である。反応混合物に含まれる副生成物としては、ヨウ化水素も挙げられる。このヨウ化水素は、上述のような触媒や助触媒が使用される場合、メタノールのカルボニル化反応の反応機構上、不可避的に生じることとなる。反応混合物中のヨウ化水素の濃度は、反応混合物の液相全体に対して、例えば0.01〜2質量%である。
また、副生成物としては、例えば、水素、メタン、二酸化炭素、アセトアルデヒド、クロトンアルデヒド、2−エチルクロトンアルデヒド、酢酸ブチル、ジメチルエーテル、アルカン類、ギ酸及びプロピオン酸、並びに、ヨウ化エチル、ヨウ化プロピル、ヨウ化ブチル、ヨウ化ヘキシル及びヨウ化デシルなどのヨウ化アルキル等が挙げられる。
反応混合液中のアセトアルデヒド濃度は、例えば500質量ppm以下、好ましくは450質量ppm以下、より好ましくは400質量ppm以下、さらに好ましくは350質量ppm以下、特に好ましくは300質量ppm以下(例えば250質量ppm以下)である。反応混合液中のアセトアルデヒド濃度の下限は、例えば1質量ppm(或いは10質量ppm)である。
反応混合液中のクロトンアルデヒド濃度は、例えば5質量ppm以下、好ましくは3質量ppm以下、さらに好ましくは2質量ppm以下である。反応混合液中のクロトンアルデヒド濃度の下限は0ppmであるが、例えば0.1質量ppm(或いは0.2質量ppm)であってもよい。反応混合液中の2−エチルクロトンアルデヒド濃度は、例えば5質量ppm以下、好ましくは3質量ppm以下、さらに好ましくは2質量ppm以下である。反応混合液中の2−エチルクロトンアルデヒド濃度の下限は0ppmであるが、例えば0.1質量ppm或いは0.2質量ppmであってもよい。
本発明では前記のように、製品酢酸の過マンガン酸カリウム試験値を向上させるため、脱低沸塔の還流比を特定値以上に制御する。脱低沸塔の還流比を大きくすると、塔頂にクロトンアルデヒドが濃縮される。この濃縮されたクロトンアルデヒドを反応槽にリサイクルすると、クロトンアルデヒドは水素添加されてブチルアルコールとなり、さらにこのブチルアルコールは酢酸と反応して酢酸ブチルに転化され、過マンガン酸カリウム試験に対して無害化される。従って、本発明では、反応混合液中の酢酸ブチル濃度は上昇する傾向となる。しかしながら、酢酸ブチル濃度の上昇は製品酢酸の純度の低下をもたらす場合がある。このため、反応混合液中の酢酸ブチル濃度は、例えば0.1〜15質量ppm(特に1〜12質量ppm、とりわけ2〜9質量ppm)に制御することが好ましい。
また、反応混合物には、装置の腐食により生じる鉄、ニッケル、クロム、マンガン、モリブデンなどの金属[腐食金属(腐食性金属ともいう)]、及びその他の金属としてコバルトや亜鉛、銅などが含まれ得る。上記腐食金属とその他の金属とを併せて「腐食金属等」と称する場合がある。
以上のような反応混合物が存在する反応槽1内において、反応温度は例えば150〜250℃に設定され、全体圧力としての反応圧力は例えば2.0〜3.5MPa(絶対圧)に設定され、一酸化炭素分圧は、例えば0.4〜1.8MPa(絶対圧)、好ましくは0.6〜1.6MPa(絶対圧)、さらに好ましくは0.9〜1.4MPa(絶対圧)に設定される。
装置稼働時の反応槽1内の気相部の蒸気には、例えば、一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、ギ酸及びプロピオン酸などが含まれる。水素は原料として用いられる一酸化炭素中に含まれているほか、反応槽1中で起きるシフト反応(CO + H2O → H2 + CO2)により生成する。反応槽1における水素分圧は、例えば0.01MPa(絶対圧)以上、好ましくは0.015MPa(絶対圧)以上、より好ましくは0.02MPa(絶対圧)以上、さらに好ましくは0.04MPa(絶対圧)以上、特に好ましくは0.06MPa(絶対圧)以上[例えば0.07MPa(絶対圧)以上]である。なお、反応槽の水素分圧の上限は、例えば0.5MPa(絶対圧)[特に0.2MPa(絶対圧)]である。反応槽の水素分圧を上げすぎると、アセトアルデヒド生成量の増加、アルドール縮合によるクロトンアルデヒドの増加を招き、逆に少なすぎると、クロトンアルデヒド→ブタノールの反応がほとんど起こらなくなる。反応槽1内の気相部の蒸気は、反応槽1内からライン13を通じて抜き取ることが可能である。蒸気の抜き取り量の調節によって、反応槽1内の圧力を制御することが可能であり、例えば、反応槽1内の圧力は一定に維持される。反応槽1内から抜き取られた蒸気は、コンデンサ1aへと導入される。
コンデンサ1aは、反応槽1からの蒸気を、冷却して部分的に凝縮させることによって凝縮分とガス分とに分ける。凝縮分は、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、ギ酸及びプロピオン酸などを含み、コンデンサ1aからライン14を通じて反応槽1へと導入され、リサイクルされる。ガス分は、例えば、一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などを含み、コンデンサ1aからライン15を通じてスクラバーシステム8へと供給される。スクラバーシステム8では、コンデンサ1aからのガス分から有用成分(例えばヨウ化メチル、水、酢酸メチル、酢酸など)が分離回収される。この分離回収には、本実施形態では、ガス分中の有用成分を捕集するための吸収液を使用して行う湿式法が利用される。吸収液としては、少なくとも酢酸及び/又はメタノールを含む吸収溶媒が好ましい。吸収液には酢酸メチルが含まれていてもよい。例えば、吸収液として後述の蒸留塔6からの蒸気の凝縮分を使用できる。分離回収には、圧力変動吸着法を利用してもよい。分離回収された有用成分(例えばヨウ化メチルなど)は、スクラバーシステム8からリサイクルライン48を通じて反応槽1へと導入され、リサイクルされる。有用成分を捕集した後のガスはライン49を通じて廃棄される。なお、ライン49から排出されるガスは、後述する蒸発槽2の底部あるいは残液流リサイクルライン18,19へ導入するCO源として利用することができる。スクラバーシステム8での処理及びその後の反応槽1へのリサイクル及び廃棄については、他のコンデンサからスクラバーシステム8へと供給される後記のガス分についても同様である。本発明の製造方法においては、プロセスからのオフガスを、少なくとも酢酸を含む吸収溶媒で吸収処理して、一酸化炭素に富むストリームと酢酸に富むストリームとを分離するスクラバー工程を有することが好ましい。
装置稼働時の反応槽1内では、上述のように、酢酸が連続的に生成する。そのような酢酸を含む反応混合物が、連続的に、反応槽1内から所定の流量で抜き取られてライン16を通じて次の蒸発槽2へと導入される。
蒸発槽2は、蒸発工程(フラッシュ工程)を行うためのユニットである。この蒸発工程は、ライン16(反応混合物供給ライン)を通じて蒸発槽2に連続的に導入される反応混合物を、部分的に蒸発させることによって蒸気流(揮発相)と残液流(低揮発相)とに分けるための工程である。反応混合物を加熱することなく圧力を減じることによって蒸発を生じさせてもよいし、反応混合物を加熱しつつ圧力を減じることによって蒸発を生じさせてもよい。蒸発工程において、蒸気流の温度は例えば100〜260℃、好ましくは120〜200℃であり、残液流の温度は例えば80〜200℃、好ましくは100〜180℃であり、槽内圧力は例えば50〜1000kPa(絶対圧)である。また、蒸発工程にて分離される蒸気流及び残液流の割合に関しては、質量比で、例えば10/90〜50/50(蒸気流/残液流)である。
本工程で生じる蒸気は、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、クロトンアルデヒド、2−エチルクロトンアルデヒド、酢酸ブチル、ギ酸プロピオン酸、並びに、ヨウ化エチル、ヨウ化プロピル、ヨウ化ブチル、ヨウ化ヘキシル及びヨウ化デシルなどのヨウ化アルキルなどを含み、蒸発槽2内からライン17(蒸気流排出ライン)に連続的に抜き取られる。蒸発槽2内から抜き取られた蒸気流の一部はコンデンサ2aへと連続的に導入され、当該蒸気流の他の一部はライン21を通じて次の蒸留塔3へと連続的に導入される。前記蒸気流の酢酸濃度は、例えば50〜85質量%、好ましくは55〜75質量%であり、ヨウ化メチル濃度は、例えば2〜50質量%(好ましくは5〜30質量%)、水濃度は、例えば0.2〜20質量%(好ましくは1〜15質量%)、酢酸メチル濃度は、例えば0.2〜50質量%(好ましくは2〜30質量%)である。前記蒸気流のクロトンアルデヒド濃度は、例えば0〜5.0質量ppm(例えば0.01〜4.0質量ppm)、好ましくは0.1〜3.0質量ppm、さらに好ましくは0.2〜2.0質量ppmである。前記蒸気流の2−エチルクロトンアルデヒド濃度は、例えば0〜3.0質量ppm(例えば0.01〜2.5質量ppm)、好ましくは0.02〜2.0質量ppm、さらに好ましくは0.03〜0.8質量ppmである。前記蒸気流の酢酸ブチル濃度は、例えば0.1〜13質量ppm、好ましくは0.2〜12質量ppm、さらに好ましくは0.3〜9質量ppmである。
本工程で生ずる残液流は、反応混合物に含まれていた触媒及び助触媒(ヨウ化メチル、ヨウ化リチウムなど)や、本工程では揮発せずに残存する水、酢酸メチル、酢酸、クロトンアルデヒド、2−エチルクロトンアルデヒド、酢酸ブチル、ギ酸及びプロピオン酸などを含み、ポンプ57を用い、連続的に蒸発槽2からライン18を通じて熱交換器2bへと導入される。熱交換器2bは、蒸発槽2からの残液流を冷却する。降温した残液流は、連続的に熱交換器2bからライン19を通じて反応槽1へと導入され、リサイクルされる。なお、ライン18とライン19とを併せて残液流リサイクルラインと称する。前記残液流の酢酸濃度は、例えば55〜90質量%、好ましくは60〜85質量%である。
コンデンサ2aは、蒸発槽2からの蒸気流を、冷却して部分的に凝縮させることによって凝縮分とガス分とに分ける。凝縮分は、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、クロトンアルデヒド、2−エチルクロトンアルデヒド、酢酸ブチル、ギ酸及びプロピオン酸などを含み、コンデンサ2aからライン22,23を通じて反応槽1へと導入され、リサイクルされる。ガス分は、例えば、一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などを含み、コンデンサ2aからライン20,15を通じてスクラバーシステム8へと供給される。上述の反応工程での酢酸の生成反応は発熱反応であるところ、反応混合物に蓄積する熱の一部は、蒸発工程(フラッシュ工程)において、反応混合物から生じた蒸気に移行する。この蒸気のコンデンサ2aでの冷却によって生じた凝縮分が反応槽1へとリサイクルされる。すなわち、この酢酸製造装置においては、メタノールのカルボニル化反応で生じる熱がコンデンサ2aにて効率よく除去されることとなる。
蒸留塔3は、第1蒸留工程を行うためのユニットであり、本実施形態ではいわゆる脱低沸塔に位置付けられる。第1蒸留工程は、蒸留塔3に連続的に導入される蒸気流を蒸留処理して低沸成分を分離除去する工程である。より具体的には、第1蒸留工程では、前記蒸気流を蒸留して、ヨウ化メチル及びアセトアルデヒドから選択された少なくとも一種の低沸成分に富むオーバーヘッド流と、酢酸に富む酢酸流とに分離する。蒸留塔3は、例えば、棚段塔及び充填塔などの精留塔よりなる。蒸留塔3として棚段塔を採用する場合、その理論段は例えば5〜50段である。
蒸留塔3の内部において、塔頂圧力は、例えば80〜160kPa(ゲージ圧)に設定され、塔底圧力は、塔頂圧力より高く、例えば85〜180kPa(ゲージ圧)に設定される。蒸留塔3の内部において、塔頂温度は、例えば、設定塔頂圧力での酢酸の沸点より低い温度であって90〜130℃に設定され、塔底温度は、例えば、設定塔底圧力での酢酸の沸点以上の温度であって120〜165℃(好ましくは125〜160℃)に設定される。
蒸留塔3に対しては、蒸発槽2からの蒸気流がライン21を通じて連続的に導入され、蒸留塔3の塔頂部からは、オーバーヘッド流としての蒸気がライン24に連続的に抜き取られる。蒸留塔3の塔底部からは、缶出液がライン25に連続的に抜き取られる。3bはリボイラーである。蒸留塔3における塔頂部と塔底部との間の高さ位置からは、側流としての酢酸流(第1酢酸流;液体)がライン27より連続的に抜き取られる。
蒸留塔3の塔頂部から抜き取られる蒸気は、酢酸よりも沸点の低い成分(低沸点成分)を蒸留塔3からの上記缶出液及び側流と比較して多く含み、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、ジメチルエーテル、メタノール、アセトアルデヒド、クロトンアルデヒド及びギ酸などを含む。この蒸気には酢酸も含まれる。このような蒸気は、ライン24を通じてコンデンサ3aへと連続的に導入される。
コンデンサ3aは、蒸留塔3からの蒸気を、冷却して部分的に凝縮させることによって凝縮分とガス分とに分ける。凝縮分は、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、クロトンアルデヒド及びギ酸などを含み、コンデンサ3aからライン28を通じてデカンタ4へと連続的に導入される。デカンタ4に導入された凝縮分は水相(上相)と有機相(ヨウ化メチル相;下相)とに分液される。水相には、水と、例えば、ヨウ化メチル、ヨウ化水素、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、クロトンアルデヒド及びギ酸などが含まれる。有機相には、ヨウ化メチルと、例えば、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、クロトンアルデヒド及びギ酸などが含まれる。
本実施形態では、水相の一部はライン29を通じて蒸留塔3に還流され、水相の他の一部は、ライン29,30,23を通じて反応槽1に導入されてリサイクルされる。有機相の一部はライン31,23を通じて反応槽1に導入されてリサイクルされる。有機相の他の一部、及び/又は、水相の他の一部は、ライン31,50、及び/又は、ライン30,51を通じてアセトアルデヒド分離除去システム9に導入される。なお、水相を還流させることに加えて、又はそれに代えて、有機相の一部を蒸留塔3に還流させてもよい。
蒸留塔3の還流比について以下に説明する。蒸留塔3にオーバーヘッド流(第1オーバーヘッド流)の凝縮分の水相のみを還流させる場合は、水相の還流比(水相の還流量/水相の留出量)を、例えば2以上、好ましくは3以上、より好ましくは4以上、さらに好ましくは8以上、特に好ましくは10以上とすることが望ましい。また、蒸留塔3にオーバーヘッド流の凝縮分の有機相のみを還流させる場合は、有機相の還流比(有機相の還流量/有機相の留出量)を、例えば1以上、好ましくは1.5以上、より好ましくは2以上、さらに好ましくは4以上、特に好ましくは5以上とすることが望ましい。さらに、蒸留塔3にオーバーヘッド流の凝縮分の水相及び有機相をともに還流させる場合は、水相及び有機相の総和の還流比(水相及び有機相の還流量の総和/水相及び有機相の留出量の総和)を、例えば1.5以上、好ましくは2.3以上、より好ましくは3以上、さらに好ましくは6以上、特に好ましくは7.5以上とすることが望ましい。また、蒸留塔3に水相を還流させる場合は、水相の還流比(水相の還流量/水相の留出量)は2以上であることが好ましく、より好ましくは3以上、さらに好ましくは5以上、特に好ましくは8以上、とりわけ12以上である。蒸留塔3の還流比の上限は、いずれの場合も、例えば3000(特に1000)であってもよく、あるいは100(特に30)であってもよい。クロトンアルデヒド(沸点104℃)は酢酸(沸点117℃)より低沸点であるため、蒸留塔3の還流比を大きくすることにより、クロトンアルデヒドはより蒸留塔3の塔頂に濃縮されるので、例えば側流として得られる第1酢酸流中のクロトンアルデヒド濃度が低下する。また、蒸留塔3の還流比を大きくすることによりクロトンアルデヒドが濃縮された第1オーバーヘッド流の凝縮分(水相及び/又は有機相)を反応槽1にリサイクルすると、反応槽1内でクロトンアルデヒドはアセトアルデヒドと反応して2−エチルクロトンアルデヒドが生成する。また、クロトンアルデヒドは反応槽1内で水素と反応してブタノールが生成し、このブタノールは酢酸と反応して酢酸ブチルとなる。2−エチルクロトンアルデヒドはクロトンアルデヒドと比べて過マンガン酸カリウム試験値に与える影響は小さく、酢酸ブチルは過マンガン酸カリウム試験値に全く影響を与えない。したがって、酢酸の品質がより向上する傾向となる。なお、2−エチルクロトンアルデヒド、酢酸ブチルの沸点は、それぞれ137℃、126℃と酢酸の沸点(117℃)よりも高いため、蒸留塔3の還流比を上げると、塔頂濃度が下がるため、蒸留塔3への仕込液供給位置より上のサイドカットや缶出液に濃縮されやすい。
そして本実施形態では、有機相の一部をライン31,50,58を通じて蒸留塔10(脱クロトンアルデヒド塔)に導入し、蒸留によりクロトンアルデヒドを分離除去する。この蒸留は連続式(連続運転)、バッチ式(バッチ処理)のいずれで行ってもよい。反応系におけるクロトンアルデヒドの生成が非常に少ない場合は、エネルギーコストの節減等のため、前記水相や有機相にクロトンアルデヒドがある程度蓄積した時点で、バッチ処理によりクロトンアルデヒドを分離除去することが好ましい。また、連続運転を行う場合、処理量(仕込量)を変化させて、品質維持と省蒸気を両立させることもできる。蒸留塔10(脱クロトンアルデヒド塔)における処理量は、蒸留塔3(第1蒸留塔;脱低沸塔)仕込量を100質量部とした場合、例えば0.0001〜50質量部(例えば0.001〜30質量部)であってもよく、或いは0.01〜10質量部(例えば0.1〜5質量部)であってもよい。蒸留塔10は、例えば、棚段塔及び充填塔などの精留塔よりなる。蒸留塔10の理論段は例えば1〜100段、好ましくは2〜50段、より好ましくは4〜30段、さらに好ましくは5〜20段(例えば6〜15段)である。蒸留を連続式で行う場合、蒸留塔10への供給液の仕込み位置は、蒸留塔の高さ方向の中間位置(塔頂から下第1段目と塔底から上第1段目の間)が好ましいが、上方から20%下〜80%下(2/10〜8/10)程度でもよい。仕込位置が下過ぎるとヨウ化メチルのロスが増加し、上過ぎるとクロトンアルデヒド除去量(及びアルカン類除去量)が低下する。蒸留塔10への供給液(仕込液)中のクロトンアルデヒド濃度は、通常0.01〜50質量ppm(例えば0.1〜50質量ppm)、好ましくは0.3〜30質量ppm、より好ましくは0.5〜10質量ppm、さらに好ましくは0.8〜7.0質量ppm(例えば1.0〜5.0質量ppm)である。蒸留塔10の塔頂蒸気はライン59を通じてコンデンサ10aに導入され凝縮される。凝縮液の一部はライン61を通じて蒸留塔10に還流され、凝縮液の残りはライン62を通じて留出液として抜き取られる。留出液は、主にヨウ化メチル、酢酸メチルを含み、ジメチルエーテルや低沸アルカン類なども含む。留出液は、例えばデカンタ4や反応槽1にリサイクルすることができる。塔頂蒸気のうちコンデンサ10aで凝縮されなかったガス成分はライン63を通じて、例えばスクラバーシステム8に送られる。蒸留塔10の塔底からはライン60を通じて缶出液が抜き取られる。缶出液は、主にクロトンアルデヒド、2−エチルクロトンアルデヒド、酢酸ブチル、アルカン類などの高沸点不純物、及び酢酸を含む。この缶出液は通常廃棄される。有機相中に微量含まれている水は、塔頂に濃縮させても塔底から抜き取ってもよい。なお、有機相を蒸留塔10に導入することに加えて、又はその代わりに、水相をライン30,51,58を通じて蒸留塔10に導入してもよい。この場合、蒸留塔10の塔頂からは、水を含む留出液が得られ、塔底からは、クロトンアルデヒドなどの高沸点不純物、及び酢酸を含む缶出液が得られる。このように、前記水相及び/又は有機相を蒸留塔10で処理することによりクロトンアルデヒドを効率よく除去でき、それにより製品酢酸の過マンガン酸カリウム試験値を向上できるので、オゾン処理設備等の大掛かりな設備の撤廃又は小規模化、蒸気代や電気代の削減を図ることができる。蒸留塔10の還流比(還流量/留出量)は、例えば0.01以上、好ましくは0.05以上、より好ましくは0.5以上、さらに好ましくは5以上、特に好ましくは20以上(例えば30以上)である。蒸留塔10の還流比の上限は、例えば1000(或いは100)である。蒸留塔10の還流比が大きすぎると、塔底に濃縮させていたクロトンアルデヒドが逆に塔頂に濃縮され、より沸点の高い酢酸の濃度が高くなるので、蒸留塔10の還流比は100以下が好ましい。クロトンアルデヒドを塔底から抜き取ることから、蒸留塔10の留出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)は、例えば1未満、好ましくは0.95以下、より好ましくは0.80以下、さらに好ましくは0.70以下、特に好ましくは0.60以下(例えば0.50以下、とりわけ0.30以下、中でも0.20以下)である。また、蒸留塔10の缶出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)は、例えば1より大きく、好ましくは1.2以上、より好ましくは1.5以上、さらに好ましくは2.0以上、特に好ましくは3.0以上(例えば4.0以上、とりわけ5.0以上)、なかんずく10以上(例えば20以上)である。
アセトアルデヒド分離除去システム9を用いたアセトアルデヒド分離除去工程では、有機相及び/又は水相に含まれるアセトアルデヒドを公知の方法、例えば、蒸留、抽出又はこれらの組み合わせにより分離除去する。分離されたアセトアルデヒドはライン53を通じて装置外へ排出される。また、有機相及び/又は水相に含まれる有用成分(例えばヨウ化メチルなど)は、ライン52,23を通じて反応槽1へとリサイクルされて再利用される。
図2はアセトアルデヒド分離除去システムの一例を示す概略フロー図である。このフローによれば、例えば前記有機相をアセトアルデヒド分離除去工程にて処理する場合は、有機相をライン101を通じて蒸留塔(第1脱アセトアルデヒド塔)91に供給して蒸留し、アセトアルデヒドに富むオーバーヘッド流(ライン102)と、ヨウ化メチルに富む残液流(ライン103)とに分離する。前記オーバーヘッド流をコンデンサ91aにて凝縮させ、凝縮液の一部を蒸留塔91の塔頂部に還流させ(ライン104)、凝縮液の他の部分を抽出塔92に供給する(ライン105)。前記抽出塔92に供給された凝縮液はライン109から導入された水によって抽出処理される。抽出処理により得られた抽出液はライン107を通じて蒸留塔(第2脱アセトアルデヒド塔)93に供給して蒸留し、アセトアルデヒドに富むオーバーヘッド流(ライン112)と水に富む残液流(ライン113)とに分離する。そして、アセトアルデヒドに富むオーバーヘッド流をコンデンサ93aにて凝縮させ、凝縮液の一部を蒸留塔93の塔頂部に還流させ(ライン114)、凝縮液の他の部分は系外に排出する(ライン115)。また、第1脱アセトアルデヒド塔91の缶出液であるヨウ化メチルに富む残液流、抽出塔92で得られたヨウ化メチルに富むラフィネート(ライン108)、及び第2脱アセトアルデヒド塔93の缶出液である水に富む残液流は、それぞれ、ライン103,111,113を通じて反応槽1へリサイクルされるか、あるいはプロセスの適宜な箇所にリサイクルされ、再利用される。例えば、抽出塔92で得られたヨウ化メチルに富むラフィネートはライン110を通じて蒸留塔91にリサイクルすることができる。113の液は、通常、排水として外部に排出される。コンデンサ91a、93aで凝縮しなかったガス(ライン106,116)はスクラバーシステム8で吸収処理されるか、あるいは廃棄処分される。
また、図2のフローにより前記水相をアセトアルデヒド分離除去工程にて処理する場合は、例えば、水相をライン101を通じて蒸留塔(第1脱アセトアルデヒド塔)91に供給して蒸留し、アセトアルデヒドに富むオーバーヘッド流(ライン102)と、水に富む残液流(ライン103)とに分離する。前記オーバーヘッド流をコンデンサ91aにて凝縮させ、凝縮液の一部を蒸留塔91の塔頂部に還流させ(ライン104)、凝縮液の他の部分を抽出塔92に供給する(ライン105)。前記抽出塔92に供給された凝縮液はライン109から導入された水によって抽出処理される。抽出処理により得られた抽出液はライン107を通じて蒸留塔(第2脱アセトアルデヒド塔)93に供給して蒸留し、アセトアルデヒドに富むオーバーヘッド流(ライン112)と水に富む残液流(ライン113)とに分離する。そして、アセトアルデヒドに富むオーバーヘッド流をコンデンサ93aにて凝縮させ、凝縮液の一部を蒸留塔93の塔頂部に還流させ(ライン114)、凝縮液の他の部分は系外に排出する(ライン115)。また、第1脱アセトアルデヒド塔91の缶出液である水に富む残液流、抽出塔92で得られたヨウ化メチルに富むラフィネート(ライン108)、及び第2脱アセトアルデヒド塔93の缶出液である水に富む残液流は、それぞれ、ライン103,111,113を通じて反応槽1へリサイクルされるか、あるいはプロセスの適宜な箇所にリサイクルされ、再利用される。例えば、抽出塔92で得られたヨウ化メチルに富むラフィネートはライン110を通じて蒸留塔91にリサイクルすることができる。113の液は、通常、排水として外部に排出される。コンデンサ91a、93aで凝縮しなかったガス(ライン106,116)はスクラバーシステム8で吸収処理されるか、あるいは廃棄処分される。
前記の水、酢酸(AC)、ヨウ化メチル(MeI)及びアセトアルデヒド(AD)を少なくとも含むプロセス流に由来するアセトアルデヒドは、上記方法のほか、抽出蒸留を利用して分離除去することもできる。例えば、前記プロセス流を分液させて得られた有機相及び/又は水相(仕込液)を蒸留塔(抽出蒸留塔)に供給するとともに、蒸留塔内のヨウ化メチル及びアセトアルデヒドが濃縮される濃縮域(例えば、塔頂から仕込液供給位置までの空間)に抽出溶媒(通常、水)を導入し、前記濃縮域から降下する液(抽出液)を側流(サイドカット流)として抜き取り、この側流を水相と有機相とに分液させ、前記水相を蒸留することによりアセトアルデヒドを系外に排出することができる。なお、蒸留塔内に比較的多くの水が存在する場合は、前記抽出溶媒を蒸留塔に導入することなく、前記濃縮域から降下する液を側流として抜き取ってもよい。例えば、この蒸留塔に前記濃縮域から降下する液(抽出液)を受けることのできるユニット(チムニートレイなど)を配設し、このユニットで受けた液(抽出液)を側流として抜き取ることができる。抽出溶媒の導入位置は前記仕込液の供給位置よりも上方が好ましく、より好ましくは塔頂付近である。側流の抜き取り位置は、塔の高さ方向において、抽出溶媒の導入位置よりも下方であって、前記仕込液の供給位置よりも上方が好ましい。この方法によれば、抽出溶媒(通常、水)によって、ヨウ化メチルとアセトアルデヒドの濃縮物からアセトアルデヒドを高濃度に抽出できるとともに、抽出溶媒の導入部位とサイドカット部位との間を抽出域として利用するので、少量の抽出溶媒によりアセトアルデヒドを効率よく抽出できる。そのため、例えば、抽出蒸留による抽出液を蒸留塔(抽出蒸留塔)の塔底部から抜き取る方法と比較して蒸留塔の段数を大幅に低減できるとともに、蒸気負荷も低減できる。また、少量の抽出溶媒を用いて、上記図2の脱アルデヒド蒸留と水抽出とを組み合わせる方法よりも、水抽出液中のアセトアルデヒドに対するヨウ化メチルの割合(MeI/AD比)を小さくできるので、ヨウ化メチルの系外へのロスを抑制できる条件でアセトアルデヒドを除去可能である。前記側流中のアセトアルデヒド濃度は、前記仕込液及び缶出液(塔底液)中のアセトアルデヒド濃度よりも格段に高い。また、前記側流中のヨウ化メチルに対するアセトアルデヒドの割合は、仕込液及び缶出液中のヨウ化メチルに対するアセトアルデヒドの割合よりも大きい。なお、前記側流を分液させて得られる有機相(ヨウ化メチル相)をこの蒸留塔にリサイクルしてもよい。この場合、前記側流を分液させて得られる有機相のリサイクル位置は、塔の高さ方向において前記側流抜き取り位置よりも下方が好ましく、前記仕込液の供給位置よりも上方が好ましい。また、前記プロセス流を分液させて得られた有機相を構成する成分(例えば酢酸メチルなど)に対する混和性溶媒をこの蒸留塔(抽出蒸留塔)に導入してもよい。前記混和性溶媒として、例えば、酢酸、酢酸エチルなどが挙げられる。前記混和性溶媒の導入位置は、塔の高さ方向において、前記側流抜き取り位置よりも下方が好ましく、前記仕込液の供給位置よりも上方が好ましい。また、前記混和性溶媒の導入位置は、上記側流を分液させて得られる有機相をこの蒸留塔にリサイクル場合はそのリサイクル位置よりも下方が好ましい。前記側流を分液させて得られる有機相を蒸留塔へリサイクルしたり、前記混和性溶媒を蒸留塔へ導入することにより、側流として抜き取られる抽出液中の酢酸メチル濃度を低下させることができ、前記抽出液を分液させて得られる水相中の酢酸メチル濃度を低減でき、もって水相へのヨウ化メチルの混入を抑制できる。
前記蒸留塔(抽出蒸留塔)の理論段は、例えば1〜100段、好ましくは2〜50段、さらに好ましくは3〜30段、特に好ましくは5〜20段であり、従来の脱アセトアルデヒドに用いる蒸留塔や抽出蒸留塔の80〜100段と比較して、少ない段数で効率よくアセトアルデヒドを分離除去できる。抽出溶媒の流量と仕込液(プロセス流を分液させて得られた有機相及び/又は水相)の流量との質量割合(前者/後者)は、0.0001/100〜100/100の範囲から選択してもよいが、通常、0.0001/100〜20/100、好ましくは0.001/100〜10/100、より好ましくは0.01/100〜8/100、さらに好ましくは0.1/100〜5/100である。前記蒸留塔(抽出蒸留塔)の塔頂温度は、例えば、15〜120℃、好ましくは20〜90℃、より好ましくは20〜80℃、さらに好ましくは25〜70℃である。塔頂圧力は、絶対圧力で、例えば0.1〜0.5MPa程度である。前記蒸留塔(抽出蒸留塔)の他の条件は、従来の脱アセトアルデヒドに用いる蒸留塔や抽出蒸留塔と同様であってもよい。
図3は上記の抽出蒸留を利用したアセトアルデヒド分離除去システムの一例を示す概略フロー図である。この例では、前記プロセス流を分液させて得られた有機相及び/又は水相(仕込液)を供給ライン201を通じて蒸留塔94の中段(塔頂と塔底との間の位置)に供給するとともに、塔頂付近より水をライン202を通じて導入し、蒸留塔94(抽出蒸留塔)内で抽出蒸留を行う。蒸留塔94の前記仕込液の供給位置より上方には、塔内のヨウ化メチル及びアセトアルデヒドが濃縮される濃縮域から降下する液(抽出液)を受けるためのチムニートレイ200が配設されている。この抽出蒸留においては、チムニートレイ200上の液を好ましくは全量抜き取り、ライン208を通じてデカンタ95に導入して分液させる。デカンタ95における水相(アセトアルデヒドを含む)をライン212を通じて冷却クーラー95aに導入して冷却し、水相に溶解していたヨウ化メチルを2相分離させ、デカンタ96にて分液させる。デカンタ96における水相をライン216を通じて蒸留塔97(脱アセトアルデヒド塔)に供給して蒸留し、塔頂の蒸気をライン217を通じてコンデンサ97aに導いて凝縮させ、凝縮液(主にアセトアルデヒド及びヨウ化メチル)の一部は蒸留塔97の塔頂に還流させ、残りは廃棄するか、あるいはライン220を通じて蒸留塔98(抽出蒸留塔)に供給する。蒸留塔98の塔頂付近から水をライン222を通じて導入し、抽出蒸留する。塔頂の蒸気はライン223を通じてコンデンサ98aに導いて凝縮させ、凝縮液(主にヨウ化メチル)の一部は塔頂部に還流させ、残りはライン226を通じて反応系にリサイクルするが、系外除去する場合もある。デカンタ95における有機相(ヨウ化メチル相)は、好ましくは全量をライン209,210を通じて蒸留塔94のチムニートレイ200の位置より下方にリサイクルする。デカンタ95の水相の一部、及びデカンタ96の有機相は、それぞれ、ライン213,210、ライン214,210を通じて蒸留塔94にリサイクルするが、リサイクルしない場合もある。デカンタ95の水相の一部は蒸留塔94における抽出溶媒(水)として利用してもよい。デカンタ96の水相の一部はライン210を通じて蒸留塔94にリサイクルしてもよい。場合により(例えば、前記仕込液中に酢酸メチルが含まれている場合など)、前記プロセス流を分液させて得られた有機相を構成する成分(例えば酢酸メチルなど)に対する混和性溶媒(酢酸、酢酸エチル等)をライン215を通じて蒸留塔94に仕込み、蒸留効率を向上させることもできる。混和性溶媒の蒸留塔94への供給位置は前記仕込液供給部(ライン201の接続部)よりも上方で且つリサイクルライン210の接続部よりも下方である。蒸留塔94の缶出液は反応系にリサイクルする。蒸留塔94の塔頂の蒸気はライン203を通じてコンデンサ94aに導いて凝縮させ、凝縮液をデカンタ99で分液させ、有機相はライン206を通じて蒸留塔94の塔頂部に還流させ、水相はライン207を通じてデカンタ95に導く。蒸留塔97の缶出液(水が主成分)や蒸留塔98(抽出蒸留塔)の缶出液(少量のアセトアルデヒドを含む水)は、それぞれライン218,224を通じて系外除去するか、反応系にリサイクルする。コンデンサ94a、97a,98aで凝縮しなかったガス(ライン211,221,227)はスクラバーシステム8で吸収処理されるか、あるいは廃棄処分される。
図4は上記の抽出蒸留を利用したアセトアルデヒド分離除去システムの他の例を示す概略フロー図である。この例では、蒸留塔94の塔頂の蒸気の凝縮液をホールドタンク100に導き、その全量をライン206を通じて蒸留塔94の塔頂部に還流する。これ以外は図3の例と同様である。
図5は上記の抽出蒸留を利用したアセトアルデヒド分離除去システムのさらに他の例を示す概略フロー図である。この例では、チムニートレイ200上の液を全量抜き取り、ライン208を通じて、デカンタ95を経ることなく、直接冷却クーラー95aに導入して冷却し、デカンタ96に供給する。これ以外は図4の例と同様である。
前記図1において、コンデンサ3aで生じるガス分は、例えば、一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などを含み、コンデンサ3aからライン32,15を通じてスクラバーシステム8へと供給される。スクラバーシステム8に至ったガス分中のヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などは、スクラバーシステム8にて吸収液に吸収される。ヨウ化水素は吸収液中のメタノールまたは酢酸メチルとの反応によってヨウ化メチルが生じる。そして、当該ヨウ化メチル等の有用成分を含有する液分がスクラバーシステム8からリサイクルライン48,23を通じて反応槽1へとリサイクルされて再利用される。
蒸留塔3の塔底部から抜き取られる缶出液は、酢酸よりも沸点の高い成分(高沸点成分)を蒸留塔3からの上記のオーバーヘッド流及び側流と比較して多く含み、例えば、プロピオン酸、並びに、飛沫同伴の上述の触媒や助触媒を含む。この缶出液には、酢酸、ヨウ化メチル、酢酸メチル、2−エチルクロトンアルデヒド、酢酸ブチル及び水なども含まれる。本実施形態では、このような缶出液の一部は、ライン25,26を通じて蒸発槽2へと連続的に導入されてリサイクルされ、缶出液の他の一部は、ライン25,23を通じて反応槽1へと連続的に導入されてリサイクルされる。
蒸留塔3から側流として連続的に抜き取られる第1酢酸流は、蒸留塔3に連続的に導入される蒸気流よりも酢酸が富化されている。すなわち、第1酢酸流の酢酸濃度は前記蒸気流の酢酸濃度よりも高い。第1酢酸流の酢酸濃度は、例えば90〜99.9質量%、好ましくは93〜99質量%である。また、第1酢酸流は、酢酸に加えて、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、ジメチルエーテル、メタノール、アセトアルデヒド、クロトンアルデヒド、2−エチルクロトンアルデヒド、酢酸ブチル、ギ酸及びプロピオン酸、並びに、ヨウ化エチル、ヨウ化プロピル、ヨウ化ブチル、ヨウ化ヘキシル及びヨウ化デシルなどのヨウ化アルキル等を含む。第1酢酸流において、ヨウ化メチル濃度は、例えば0.1〜8質量%、好ましくは0.2〜5質量%、水濃度は、例えば0.1〜8質量%、好ましくは0.2〜5質量%、酢酸メチル濃度は、例えば0.1〜8質量%、好ましくは0.2〜5質量%である。
本発明では、第1蒸留塔の還流比を特定値以上とするので、クロトンアルデヒドはこの蒸留塔の塔頂部に濃縮される。このため、第1蒸留塔の側流として抜き取られる第1酢酸流中のクロトンアルデヒド濃度は低い。第1酢酸流におけるクロトンアルデヒド濃度は、例えば1.3質量ppm以下、好ましくは1.0質量ppm以下、より好ましくは0.85質量ppm以下、特に好ましくは0.5質量ppm以下(例えば0.25質量ppm以下)である。第1酢酸流におけるクロトンアルデヒド濃度を1.3質量ppm以下とすることにより、後述の第2酢酸流中のクロトンアルデヒド濃度を著しく低減できるとともに、第2酢酸流の過マンガン酸カリウム試験値を大幅に向上できる。第1酢酸流におけるクロトンアルデヒド濃度の下限値は、0質量ppmであってもよいが、例えば0.01質量ppm(或いは0.10質量ppm)であってもよい。第1酢酸流における2−エチルクロトンアルデヒド濃度は、例えば1.0質量ppm以下、好ましくは0.50質量ppm以下である。第1酢酸流における2−エチルクロトンアルデヒド濃度を1.0質量ppm以下とすることにより、後述の第2酢酸流の過マンガン酸カリウム試験値をより向上できる。第1酢酸流における2−エチルクロトンアルデヒド濃度の下限値は、例えば0質量ppm、或いは0.01質量ppm(又は0.10質量ppm)であってもよい。第1酢酸流における酢酸ブチル濃度は、例えば15質量ppm以下、好ましくは10質量ppm以下、より好ましくは8質量ppm以下、特に好ましくは5質量ppm以下(例えば3質量ppm以下)である。第1酢酸流における酢酸ブチル濃度を15質量ppm以下とすることにより、後述の第2酢酸流の純度を向上できる。第1酢酸流における酢酸ブチル濃度の下限値は、例えば0質量ppm、或いは0.1質量ppm(例えば0.3質量ppm又は1.0質量ppm)であってもよい。
なお、蒸留塔3に対するライン27の連結位置は、蒸留塔3の高さ方向において、図示されているように、蒸留塔3に対するライン21の連結位置より上方であってもよいが、蒸留塔3に対するライン21の連結位置より下方であってもよいし、蒸留塔3に対するライン21の連結位置と同じであってもよい。蒸留塔3からの第1酢酸流は、所定の流量で連続的に、ライン27を通じて次の蒸留塔5へと導入される。
なお、蒸留塔3の塔底部から抜き取られる缶出液、又は蒸留塔3から側流として抜き取られる第1酢酸流は、品質が許容できればそのまま製品酢酸とすることもできる。
ライン27を通流する第1酢酸流に、ライン55(水酸化カリウム導入ライン)を通じて、水酸化カリウムを供給ないし添加することができる。水酸化カリウムは、例えば水溶液等の溶液として供給ないし添加できる。第1酢酸流に対する水酸化カリウムの供給ないし添加によって第1酢酸流中のヨウ化水素を減少できる。具体的には、ヨウ化水素は水酸化カリウムと反応してヨウ化カリウムと水が生じる。そのことによって、ヨウ化水素に起因する蒸留塔等の装置の腐食を低減できる。なお、水酸化カリウムは本プロセスにおいてヨウ化水素が存在する適宜な場所に供給ないし添加することができる。なお、プロセス中に添加された水酸化カリウムは酢酸とも反応して酢酸カリウムを生じさせる。
蒸留塔5は、第2蒸留工程を行うためのユニットであり、本実施形態ではいわゆる脱水塔に位置付けられる。第2蒸留工程は、蒸留塔5に連続的に導入される第1酢酸流を蒸留処理して酢酸を更に精製するための工程である。蒸留塔5の材質(少なくとも接液、接ガス部の材質)は、ニッケル基合金又はジルコニウムとすることが好ましい。このような材質を用いることにより、ヨウ化水素や酢酸による蒸留塔内部の腐食を抑制でき、腐食金属イオンの溶出を抑制できる。
蒸留塔5の仕込液は、第1酢酸流の少なくとも一部(ライン27)を含んでおり、第1酢酸流以外の流れ[例えば下流工程からのリサイクル流(例えばライン42)]が加わっていてもよい。
蒸留塔5は、例えば、棚段塔及び充填塔などの精留塔よりなる。蒸留塔5として棚段塔を採用する場合、その理論段は例えば5〜50段である。蒸留塔5の還流比は、例えば0.3以上、好ましくは1.0以上、より好ましくは5.0以上、さらに好ましくは10以上(例えば12以上)である。蒸留塔5の還流比の上限は、例えば3000(又は1000)、或いは200(又は100)程度であってもよい。蒸留塔5の還流比を0.3以上にすると、クロトンアルデヒドは酢酸より沸点が低いので、蒸留塔5内に流入したクロトンアルデヒドを塔頂に濃縮でき、側流又は缶出流として得られる第2酢酸流中のクロトンアルデヒド濃度を著しく低減できる。また、クロトンアルデヒドが濃縮された蒸留塔5塔頂のオーバーヘッド流(第2オーバーヘッド流)を反応槽1にリサイクルすると、前記のようにクロトンアルデヒドは過マンガン酸カリウム試験値にとって害の少ない2−エチルクロトンアルデヒド及び無害の酢酸ブチルに変換されるので、酢酸の品質がより向上する。
第2蒸留工程にある蒸留塔5の内部において、塔頂圧力は、例えば0.10〜0.28MPa(ゲージ圧)、好ましくは0.15〜0.23MPa(ゲージ圧)、さらに好ましくは0.17〜0.21MPa(ゲージ圧)である。塔底圧力は、塔頂圧力より高く、例えば0.13〜0.31MPa(ゲージ圧)、好ましくは0.18〜0.26MPa(ゲージ圧)、さらに好ましくは0.20〜0.24MPa(ゲージ圧)である。第2蒸留工程にある蒸留塔5の内部において、塔頂温度165℃未満、塔底温度175℃未満であることが好ましい。蒸留塔5の塔頂温度及び塔底温度を上記の範囲にすることにより、ヨウ化水素や酢酸による蒸留塔内部の腐食がより抑制され、腐食金属イオンの溶出をより抑制できる。塔頂温度は、より好ましくは163℃未満、さらに好ましくは161℃未満、特に好ましくは160℃未満であり、とりわけ155℃未満が好ましい。塔頂温度の下限は、例えば110℃である。塔底温度は、より好ましくは173℃未満、さらに好ましくは171℃未満、特に好ましくは166℃未満である。塔底温度の下限は、例えば120℃である。
蒸留塔5の塔頂部からは、オーバーヘッド流(第2オーバーヘッド流)としての蒸気がライン33に連続的に抜き取られる。蒸留塔5の塔底部からは、缶出液がライン34に連続的に抜き取られる。5bはリボイラーである。蒸留塔5における塔頂部と塔底部との間の高さ位置から、側流(液体または気体)がライン34に連続的に抜き取られてもよい。
蒸留塔5の塔頂部から抜き取られる蒸気は、酢酸よりも沸点の低い成分(低沸点成分)を蒸留塔5からの上記の缶出液と比較して多く含み、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、クロトンアルデヒド及びギ酸などを含む。このような蒸気は、ライン33を通じてコンデンサ5aへと連続的に導入される。
コンデンサ5aは、蒸留塔5からの蒸気を、冷却して部分的に凝縮させることによって凝縮分とガス分とに分ける。凝縮分は、例えば水及び酢酸などを含む。凝縮分の一部は、コンデンサ5aからライン35を通じて蒸留塔5へと連続的に還流される。凝縮分の他の一部は、コンデンサ5aからライン35,36,23を通じて反応槽1へと連続的に導入され、リサイクルされる。また、コンデンサ5aで生じるガス分は、例えば一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などを含み、コンデンサ5aからライン37,15を通じてスクラバーシステム8へと供給される。スクラバーシステム8に至ったガス分中のヨウ化水素は、スクラバーシステム8にて吸収液に吸収され、吸収液中のヨウ化水素とメタノールまたは酢酸メチルとの反応によってヨウ化メチルが生じ、そして、当該ヨウ化メチル等の有用成分を含有する液分がスクラバーシステム8からリサイクルライン48,23を通じて反応槽1へとリサイクルされて再利用される。
蒸留塔5の塔底部から抜き取られる缶出液あるいは塔の中間位置から抜き取られる側流(第2酢酸流)は蒸留塔5に連続的に導入される第1酢酸流よりも酢酸が富化されている。すなわち、第2酢酸流の酢酸濃度は第1酢酸流の酢酸濃度よりも高い。第2酢酸流の酢酸濃度は、第1酢酸流の酢酸濃度より高い限りにおいて、例えば99.1〜99.99質量%である。本実施形態では、側流を抜き取る場合、蒸留塔5からの側流の抜き取り位置は、蒸留塔5の高さ方向において、蒸留塔5への第1酢酸流の導入位置よりも低い。
本発明においては、第2酢酸流は高い過マンガン酸カリウム試験値を有するので、そのまま製品酢酸とすることができる。しかしながら、微量の不純物[例えば、クロトンアルデヒド、2−エチルクロトンアルデヒド、酢酸ブチル、プロピオン酸、酢酸カリウム(ライン27等に水酸化カリウムを供給した場合)、ヨウ化水素、並びに、飛沫同伴の上述の触媒や助触媒など]を含みうる。そのため、この缶出液あるいは側流を、ライン34を通じて蒸留塔6に連続的に導入して蒸留してもよい。
第2酢酸流中のクロトンアルデヒド濃度は、例えば0.98質量ppm以下、好ましくは0.80質量ppm以下、より好ましくは0.50質量ppm以下、さらに好ましくは0.30質量ppm以下、特に好ましくは0.17質量ppm以下である。第2酢酸流におけるクロトンアルデヒド濃度を0.98質量ppm以下とすることにより、第2酢酸流中のクロトンアルデヒド濃度を著しく低減できるとともに、第2酢酸流の過マンガン酸カリウム試験値を大幅に向上できる。第2酢酸流におけるクロトンアルデヒド濃度の下限値は0質量ppmであってもよいが、例えば0.01質量ppm(或いは0.10質量ppm)であってもよい。第2酢酸流における2−エチルクロトンアルデヒド濃度は、例えば1.0質量ppm以下、好ましくは0.50質量ppm以下、より好ましくは0.30質量ppm以下、さらに好ましくは0.20質量ppm以下である。第2酢酸流における2−エチルクロトンアルデヒド濃度を1.0質量ppm以下とすることにより、第2酢酸流の過マンガン酸カリウム試験値をより向上できる。第2酢酸流における2−エチルクロトンアルデヒド濃度の下限値は、例えば0質量ppm、或いは0.01質量ppm(例えば0.10質量ppm)であってもよい。
第2酢酸流における酢酸ブチル濃度は、例えば15質量ppm以下、好ましくは10質量ppm以下、より好ましくは8質量ppm以下、特に好ましくは5質量ppm以下(例えば3質量ppm以下)である。第2酢酸流における酢酸ブチル濃度を15質量ppm以下とすることにより、第2酢酸流の純度を向上できる。第2酢酸流における酢酸ブチル濃度の下限値は、例えば0質量ppm、或いは0.1質量ppm(例えば0.3質量ppm又は1.0質量ppm)であってもよい。
第2酢酸流の過マンガン酸カリウム試験値は、50分を超えることが好ましく、より好ましくは60分以上、さらに好ましくは100分以上、特に好ましくは120分以上(例えば180分以上、とりわけ240分以上、中でも360分以上)である。
ライン34を通流する第2酢酸流に、ライン56(水酸化カリウム導入ライン)を通じて、水酸化カリウムを供給ないし添加することができる。水酸化カリウムは、例えば水溶液等の溶液として供給ないし添加できる。第2酢酸流に対する水酸化カリウムの供給ないし添加によって第2酢酸流中のヨウ化水素を減少できる。具体的には、ヨウ化水素は水酸化カリウムと反応してヨウ化カリウムと水が生じる。そのことによって、ヨウ化水素に起因する蒸留塔等の装置の腐食を低減できる。
蒸留塔6は、第3蒸留工程を行うためのユニットであり、本実施形態ではいわゆる脱高沸塔に位置付けられる。第3蒸留工程は、蒸留塔6に連続的に導入される第2酢酸流を精製処理して酢酸を更に精製するための工程である。なお、本実施形態では必ずしも必要な工程ではない。蒸留塔6は、例えば、棚段塔及び充填塔などの精留塔よりなる。蒸留塔6として棚段塔を採用する場合、その理論段は例えば5〜50段であり、還流比は理論段数に応じて例えば0.2〜3000である。第3蒸留工程にある蒸留塔6の内部において、塔頂圧力は例えば−100〜150kPa(ゲージ圧)に設定され、塔底圧力は、塔頂圧力より高く、例えば−90〜180kPa(ゲージ圧)に設定される。第3蒸留工程にある蒸留塔6の内部において、塔頂温度は、例えば、設定塔頂圧力での水の沸点より高く且つ酢酸の沸点より低い温度であって50〜150℃に設定され、塔底温度は、例えば、設定塔底圧力での酢酸の沸点より高い温度であって70〜160℃に設定される。
蒸留塔6の塔頂部からは、オーバーヘッド流としての蒸気がライン38に連続的に抜き取られる。蒸留塔6の塔底部からは、缶出液がライン39に連続的に抜き取られる。6bはリボイラーである。蒸留塔6における塔頂部と塔底部との間の高さ位置からは、側流(液体又は気体)がライン46に連続的に抜き取られる。蒸留塔6の高さ方向において、蒸留塔6に対するライン46の連結位置は、図示されているように、蒸留塔6に対するライン34の連結位置より上方であってもよいが、蒸留塔6に対するライン34の連結位置より下方であってもよいし、蒸留塔6に対するライン34の連結位置と同じであってもよい。
蒸留塔6の塔頂部から抜き取られる蒸気は、酢酸よりも沸点の低い成分(低沸点成分)を蒸留塔6からの上記の缶出液と比較して多く含み、酢酸のほか、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、ジメチルエーテル、メタノール及びギ酸などを含む。このような蒸気は、ライン38を通じてコンデンサ6aへと連続的に導入される。
コンデンサ6aは、蒸留塔6からの蒸気を、冷却して部分的に凝縮させることによって凝縮分とガス分とに分ける。凝縮分は、酢酸のほか、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、ジメチルエーテル、メタノール及びギ酸などを含む。凝縮分の少なくとも一部については、コンデンサ6aからライン40を通じて蒸留塔6へと連続的に還流される。凝縮分の一部(留出分)については、コンデンサ6aからライン40,41,42を通じて、蒸留塔5へと導入される前のライン27中の第1酢酸流へとリサイクルすることが可能である。これと共に或はこれに代えて、凝縮分の一部(留出分)については、コンデンサ6aからライン40,41,43を通じて、蒸留塔3へと導入される前のライン21中の蒸気流へとリサイクルすることが可能である。また、凝縮分の一部(留出分)については、コンデンサ6aからライン40,44,23を通じて、反応槽1へリサイクルしてもよい。さらに、コンデンサ6aからの留出分の一部については、前述したように、スクラバーシステム8へと供給して当該システム内で吸収液として使用することが可能である。スクラバーシステム8では、有用分を吸収した後のガス分は装置外に排出され、そして、有用成分を含む液分がスクラバーシステム8からリサイクルライン48,23を通じて反応槽1へと導入ないしリサイクルされて再利用される。加えて、コンデンサ6aからの留出分の一部については、装置内で稼働する各種ポンプ(図示略)へと図外のラインを通じて導いて当該ポンプのシール液として使用してもよい。更に加えて、コンデンサ6aからの留出分の一部については、ライン40に付設される抜き取りラインを通じて、定常的に装置外へ抜き取ってもよいし、非定常的に必要時において装置外へ抜き取ってもよい。凝縮分の一部(留出分)が蒸留塔6での蒸留処理系から除かれる場合、その留出分の量(留出量)は、コンデンサ6aで生ずる凝縮液の例えば0.01〜30質量%であり、好ましくは0.1〜10質量%、より好ましくは0.3〜5質量%、より好ましくは0.5〜3質量%である。一方、コンデンサ6aで生じるガス分は、例えば、一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などを含み、コンデンサ6aからライン45,15を通じてスクラバーシステム8へと供給される。
蒸留塔6の塔底部からライン39を通じて抜き取られる缶出液は、酢酸よりも沸点の高い成分(高沸点成分)を蒸留塔6からの上記のオーバーヘッド流と比較して多く含み、例えばプロピオン酸、酢酸カリウム等の酢酸塩(ライン34等に水酸化カリウム等のアルカリを供給した場合)などを含む。また、蒸留塔6の塔底部からライン39を通じて抜き取られる缶出液は、この酢酸製造装置の構成部材の内壁で生じて遊離した金属などの腐食金属等、及び腐食性ヨウ素に由来するヨウ素と当該腐食金属等との化合物も含む。このような缶出液は、本実施形態では酢酸製造装置外に排出される。
蒸留塔6からライン46に連続的に抜き取られる側流は、第3酢酸流として、次のイオン交換樹脂塔7に連続的に導入されることとなる。この第3酢酸流は、蒸留塔6に連続的に導入される第2酢酸流よりも酢酸が富化されている。すなわち、第3酢酸流の酢酸濃度は第2酢酸流の酢酸濃度よりも高い。第3酢酸流の酢酸濃度は、第2酢酸流の酢酸濃度より高い限りにおいて、例えば99.8〜99.999質量%である。本実施形態では、蒸留塔6からの側流の抜き取り位置は、蒸留塔6の高さ方向において、蒸留塔6への第2酢酸流の導入位置よりも高い。他の実施形態では、蒸留塔6からの側流の抜き取り位置は、蒸留塔6の高さ方向において、蒸留塔6への第2酢酸流の導入位置と同じかそれよりも低い。なお、蒸留塔6は、単蒸留器(蒸発器)でも代用可能である。特に、本発明では、蒸留塔5での蒸留処理により、過マンガン酸カリウム試験値の非常に高い酢酸が得られるので、蒸留塔6を省略することができる。
イオン交換樹脂塔7は、吸着除去工程を行うための精製ユニットである。この吸着除去工程は、イオン交換樹脂塔7に連続的に導入される第3酢酸流に微量含まれる主にヨウ化アルキル(例えば、ヨウ化エチル、ヨウ化プロピル、ヨウ化ブチル、ヨウ化ヘキシル、ヨウ化デシルなど)を吸着除去して酢酸を更に精製するための工程である。なお、蒸留塔6を省略し、蒸留塔5からの第2酢酸流をイオン交換樹脂塔7に供給してもよい。また、イオン交換樹脂塔7を用いる吸着除去工程は必ずしも設けなくてもよい。
イオン交換樹脂塔7においては、ヨウ化アルキルに対する吸着能を有するイオン交換樹脂が塔内に充填されてイオン交換樹脂床をなす。そのようなイオン交換樹脂としては、例えば、交換基たるスルホン酸基、カルボキシル基、ホスホン酸基等における脱離性のプロトンの一部が銀や銅などの金属で置換された陽イオン交換樹脂を挙げることができる。吸着除去工程では、例えばこのようなイオン交換樹脂が充填されたイオン交換樹脂塔7の内部を第3酢酸流(液体)が通流し、その通流過程において、第3酢酸流中のヨウ化アルキル等の不純物がイオン交換樹脂に吸着されて第3酢酸流から除去される。吸着除去工程にあるイオン交換樹脂塔7において、内部温度は例えば18〜100℃であり、酢酸流の通液速度[樹脂容積1m3当たりの酢酸処理量(m3/h)]は、例えば3〜15m3/h・m3(樹脂容積)である。
イオン交換樹脂塔7の下端部からライン47へと第4酢酸流が連続的に導出される。第4酢酸流の酢酸濃度は第3酢酸流の酢酸濃度よりも高い。すなわち、第4酢酸流は、イオン交換樹脂塔7に連続的に導入される第3酢酸流よりも酢酸が富化されている。第4酢酸流の酢酸濃度は、第3酢酸流の酢酸濃度より高い限りにおいて例えば99.9〜99.999質量%又はそれ以上である。本製造方法においては、この第4酢酸流を図外の製品タンクに貯留することができる。
この酢酸製造装置においては、イオン交換樹脂塔7からの上記の第4酢酸流を更に精製するための精製ユニットとして、蒸留塔であるいわゆる製品塔ないし仕上塔が設けられてもよい。そのような製品塔が設けられる場合、当該製品塔は、例えば、棚段塔及び充填塔などの精留塔よりなる。製品塔として棚段塔を採用する場合、その理論段は例えば5〜50段であり、還流比は理論段数に応じて例えば0.5〜3000である。精製工程にある製品塔の内部において、塔頂圧力は例えば−195〜150kPa(ゲージ圧)に設定され、塔底圧力は、塔頂圧力より高く、例えば−190〜180kPa(ゲージ圧)に設定される。製品塔の内部において、塔頂温度は、例えば、設定塔頂圧力での水の沸点より高く且つ酢酸の沸点より低い温度であって50〜150℃に設定され、塔底温度は、例えば、設定塔底圧力での酢酸の沸点より高い温度であって70〜160℃に設定される。なお、製品塔ないし仕上塔は、単蒸留器(蒸発器)でも代用可能である。
製品塔を設ける場合、イオン交換樹脂塔7からの第4酢酸流(液体)の全部又は一部が、製品塔に対して連続的に導入される。そのような製品塔の塔頂部からは、微量の低沸点成分(例えば、ヨウ化メチル、水、酢酸メチル、ジメチルエーテル、クロトンアルデヒド、アセトアルデヒド及びギ酸など)を含むオーバーヘッド流としての蒸気が連続的に抜き取られる。この蒸気は、所定のコンデンサにて凝縮分とガス分とに分けられる。凝縮分の一部は製品塔へと連続的に還流され、凝縮分の他の一部は反応槽1へとリサイクルされるか、系外に廃棄されるか、あるいはその両方であってもよく、ガス分はスクラバーシステム8へと供給される。製品塔の塔底部からは、微量の高沸点成分を含む缶出液が連続的に抜き取られ、この缶出液は、例えば蒸留塔6へ導入される前のライン34中の第2酢酸流へとリサイクルされる。製品塔における塔頂部と塔底部との間の高さ位置からは、側流(液体)が第5酢酸流として連続的に抜き取られる。製品塔からの側流の抜き取り位置は、製品塔の高さ方向において、例えば、製品塔への第4酢酸流の導入位置よりも低い。第5酢酸流は、製品塔に連続的に導入される第4酢酸流よりも酢酸が富化されている。すなわち、第5酢酸流の酢酸濃度は第4酢酸流の酢酸濃度よりも高い。第5酢酸流の酢酸濃度は、第4酢酸流の酢酸濃度より高い限りにおいて例えば99.9〜99.999質量%又はそれ以上である。この第5酢酸流は、例えば、図外の製品タンクに貯留される。なお、イオン交換樹脂塔7は、蒸留塔6の下流に設置する代わりに(又はそれに加えて)、製品塔の下流に設置し、製品塔出の酢酸流を処理してもよい。
以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。なお、実施例1は参考例として記載するものである。なお、部、%、ppm、ppbはすべて質量基準である。水濃度はカールフィッシャー水分測定法、金属イオン濃度はICP分析(又は原子吸光分析)、その他の成分の濃度はガスクロマトグラフィーにより測定した。
比較例1
メタノール法酢酸パイロットプラントにおいて以下の実験を行った(図1参照)。
反応槽[全圧2.8MPa(絶対圧)、一酸化炭素分圧1.4MPa(絶対圧)、水素分圧0.04MPa(絶対圧)、反応温度187℃]で得られた反応混合液[組成:ヨウ化メチル(MeI)7.8%、酢酸メチル(MA)2.1%、水(H2O)2.5%、ロジウム錯体910ppm(Rh換算)、ヨウ化リチウム(LiI)14.1%、アセトアルデヒド(AD)250ppm、クロトンアルデヒド(CR)1.3ppm、2−エチルクロトンアルデヒド(2ECR)1.5ppm、プロピオン酸(PA)250ppm、ギ酸(FA)40ppm、酢酸ブチル(BA)4.5ppm、残り酢酸(但し、微量の不純物を含む)]400部を蒸発槽に仕込み、蒸発槽を加熱して25%蒸発させた(蒸発率25%)。蒸発槽の蒸気[組成:ヨウ化メチル28.1%、酢酸メチル4.9%、水1.9%、アセトアルデヒド651ppm、クロトンアルデヒド1.4ppm、2−エチルクロトンアルデヒド0.22ppm、プロピオン酸73ppm、ギ酸85ppm、酢酸ブチル0.6ppm、残り酢酸(但し、微量の不純物を含む)]100部を脱低沸塔[実段数20段、仕込位置下から2段、塔頂圧250kPa(絶対圧)、塔頂温度140℃]に仕込み、塔頂蒸気を凝縮させ、デカンタにて水相と有機相とに分離後、有機相の一部(11部)を脱アセトアルデヒド塔[実段数80段、仕込位置下から11段、塔頂圧280kPa(絶対圧)、塔頂温度52℃]に送り、アセトアルデヒドを分離し系外に除去し、アセトアルデヒド除去後の缶出液(仕込液とほぼ同等の11部)を反応系にリサイクルした。有機相の残り(41部)は直接反応槽にリサイクルした。水相の一部を脱低沸塔に還流し、残り(1.5部)を留出液として反応槽にリサイクルした。水相の還流量/留出量を還流比とし、還流比を2とした。脱低沸塔の塔底から3部を缶出液として抜取り、反応系にリサイクルした。脱低沸塔の中間部(下から4段)からサイドカット(SC)流として65部を抜取り、脱水塔[実段数50段、仕込位置下から34段、塔頂圧295kPa(絶対圧)、塔頂温度150℃]に仕込んだ。脱水塔の塔頂蒸気凝縮液の一部を脱水塔に還流(リサイクル)し、残り(19部)を留出液として反応系にリサイクルした。脱水塔の還流比(還流量/留出量)を0.3とした。その結果、脱水塔の塔底から缶出液として製品酢酸46部を得た。製品酢酸中のクロトンアルデヒド含有量は0.99ppm、2−エチルクロトンアルデヒド含有量は0.03ppm、酢酸ブチル含有量は0.76ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ50分であった。結果を表1に示す。
実施例1
上記比較例1において、直接反応槽にリサイクルした有機相[組成:アルカン類0.3%、アセトアルデヒド1300ppm、酢酸メチル12.5%、水0.7%、酢酸1.9%、クロトンアルデヒド1.5ppm、2−エチルクロトンアルデヒド0.1ppm、酢酸ブチル0.3ppm、残りヨウ化メチル(但し、微量の不純物を含む)]41部のうち20部を脱クロトンアルデヒド塔[充填塔;理論段数10段、仕込位置下から理論段で5段、塔頂圧280kPa(絶対圧)、塔頂温度52℃]に仕込み(有機相21部は直接反応槽にリサイクルした)、還流比0.01で19.48部を留出させ[留出組成:アセトアルデヒド1305ppm、酢酸メチル12.5%、水0.7%、酢酸0.1%、クロトンアルデヒド1.4ppm、2−エチルクロトンアルデヒド0.05ppm、酢酸ブチル0.2ppm、残りヨウ化メチル(但し、微量の不純物を含む)]、これをデカンタに循環するとともに、塔底から缶出液[缶出組成:酢酸メチル2.1%、水1.5%、ヨウ化メチル5.5%、クロトンアルデヒド6.4ppm、2−エチルクロトンアルデヒド13.3ppm、酢酸ブチル6.9ppm、アルカン類1.2%、残り酢酸(但し、微量の不純物を含む)]0.52部を抜き取ったこと以外は、比較例1と同様の実験を行った。なお、この変更により、各プロセス液の組成は変化した。その結果、脱水塔の塔底から缶出液として得られた製品酢酸中のクロトンアルデヒド含有量は0.95ppm、2−エチルクロトンアルデヒド含有量は0.03ppm、酢酸ブチル含有量は0.71ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ70分であった。結果を表1に示す。
実施例2
脱低沸塔の還流比を15、脱水塔の還流比を10に変更した以外は、実施例1と同様の実験を行った。なお、この変更により、各プロセス液の組成は変化した。その結果、脱水塔の塔底から得られた製品酢酸中のクロトンアルデヒド含有量は0.24ppm、2−エチルクロトンアルデヒド含有量は0.19ppm、酢酸ブチル含有量は2.1ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ200分であった。結果を表1に示す。
実施例3
脱クロトンアルデヒド塔の還流比を0.1に変更した以外は、実施例2と同様の実験を行った。なお、この変更により、各プロセス液の組成は変化した。また、脱クロトンアルデヒド塔の留出液量及び缶出液量はそれぞれ19.52部及び0.48部に変化した。塔頂に留出していた水の分離が向上し、缶出に分離された結果である。その結果、脱水塔の塔底から得られた製品酢酸中のクロトンアルデヒド含有量は0.23ppm、2−エチルクロトンアルデヒド含有量は0.18ppm、酢酸ブチル含有量は2.0ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ220分であった。結果を表1に示す。
実施例4
脱クロトンアルデヒド塔の還流比を1に変更した以外は、実施例2と同様の実験を行った。なお、この変更により、各プロセス液の組成は変化した。また、脱クロトンアルデヒド塔の留出液量及び缶出液量はそれぞれ19.56部及び0.44部に変化した。塔頂に留出していた水の分離がさらに向上し、缶出に分離された結果である。その結果、脱水塔の塔底から得られた製品酢酸中のクロトンアルデヒド含有量は0.20ppm、2−エチルクロトンアルデヒド含有量は0.18ppm、酢酸ブチル含有量は1.8ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ280分であった。結果を表1に示す。
実施例5
脱クロトンアルデヒド塔の還流比を10に変更した以外は、実施例2と同様の実験を行った。なお、この変更により、各プロセス液の組成は変化した。また、脱クロトンアルデヒド塔の留出液量及び缶出液量はそれぞれ19.6部及び0.4部に変化した。塔頂に留出していた水の分離がさらに向上し、缶出に分離された結果である。その結果、脱水塔の塔底から得られた製品酢酸中のクロトンアルデヒド含有量は0.18ppm、2−エチルクロトンアルデヒド含有量は0.16ppm、酢酸ブチル含有量は1.8ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ360分であった。結果を表1に示す。
実施例6
脱水塔の還流比を20、脱クロトンアルデヒド塔の還流比を50に変更した以外は、実施例2と同様の実験を行った。なお、この変更により、各プロセス液の組成は変化した。また、脱クロトンアルデヒド塔の留出液量は19.6部、留出組成は、アセトアルデヒド1298ppm、酢酸メチル12.5%、水0.7%、酢酸0.01%、クロトンアルデヒド0.1ppm、2−エチルクロトンアルデヒド0.00ppm、酢酸ブチル0.00ppm、残りヨウ化メチル(但し、微量の不純物を含む)であった。また、脱クロトンアルデヒド塔の缶出液量は0.4部、缶出組成は、酢酸メチル0.3%、水0.1%、ヨウ化メチル0.05%、クロトンアルデヒド120ppm、2−エチルクロトンアルデヒド13.5ppm、酢酸ブチル6.9ppm、アルカン類1.2%、残り酢酸(但し、微量の不純物を含む)であった。その結果、脱水塔の塔底から得られた製品酢酸中のクロトンアルデヒド含有量は0.16ppm、2−エチルクロトンアルデヒド含有量は0.14ppm、酢酸ブチル含有量は1.6ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ420分超であった。結果を表1に示す。
表1において、CRはクロトンアルデヒド、2ECRは2−エチルクロトンアルデヒド、BAは酢酸メチルを示す。表1において各成分の欄の数値は濃度を表す。留出液[CR]/仕込液[CR]は、留出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を表す。缶出液[CR]/仕込液[CR]は、缶出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を表す。
Figure 0006481042
[結果の考察]
比較例1と実施例1との対比から、脱低沸塔の還流比を特定値以上とし、脱クロトンアルデヒド塔を特定の条件で操作すると、製品酢酸中のクロトンアルデヒド濃度が低下し、カメレオンタイムも向上することが分かる。
実施例1と実施例2の対比より、同じ脱クロトンアルデヒド塔運転条件でも、脱低沸塔及び脱水塔の還流比を増加させると、製品カメレオンタイムが顕著に向上することが分かる。実施例2〜6より、脱低沸塔の還流比が同じ条件であっても、脱クロトンアルデヒド塔の還流比を上げて、脱クロトンアルデヒド塔の塔底にクロトンアルデヒドをより濃縮させると、廃棄するクロトンアルデヒド量が増加し、製品酢酸のカメレオンタイムが向上する。
なお、実施例1、2は、脱クロトンアルデヒド塔の還流比が0.01と通常の蒸留と比べて極端に低いが、本蒸留は、仕込液のほとんどを留出させるため、留出量が仕込液量とほぼ同等と非常に多く、低い還流量であってもクロトンアルデヒドの分離に寄与する。なお、実施例6の缶出液のヨウ化メチル濃度は極限まで低下できており、有用なヨウ化メチルの排出量も抑えられている。
以上のことから、脱低沸塔及び/又は脱水塔の還流比を増加させ、クロトンアルデヒドを塔頂に濃縮させ、反応槽にリサイクルして、反応槽内でクロトンアルデヒドを2−エチルクロトンアルデヒドや酢酸ブチルに変換するとともに(クロトンアルデヒド+アセトアルデヒド→2−エチルクロトンアルデヒド、クロトンアルデヒド+水素→ブチルアルコール、ブチルアルコール+酢酸→酢酸ブチル)、脱低沸塔の還流比を増加させて塔頂にクロトンアルデヒドを濃縮した上で、塔頂液(例えば有機相)を蒸留処理して効率的にクロトンアルデヒドを除去すると、それらの相乗効果により、予想を超えた品質改善を行うことができることが分かる。
以上のまとめとして、本発明の構成及びそのバリエーションを以下に付記しておく。
[1]金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水の存在下、メタノールと一酸化炭素とを反応槽で反応させて酢酸を生成させるカルボニル化反応工程と、
前記カルボニル化反応工程で得られた反応混合物を蒸発槽において蒸気流と残液流とに分離する蒸発工程と、
前記蒸気流を第1蒸留塔によりヨウ化メチル及びアセトアルデヒドから選択された少なくとも一種の低沸成分に富む第1オーバーヘッド流と酢酸に富む第1酢酸流とに分離するとともに、前記第1オーバーヘッド流を凝縮、分液させて水相と有機相とを得る脱低沸工程と、
前記水相及び/又は有機相の少なくとも一部を反応槽にリサイクルする第1オーバーヘッド流リサイクル工程と、
前記水相及び/又は有機相の少なくとも他の一部を蒸留塔で処理してクロトンアルデヒドを分離除去する脱クロトンアルデヒド工程と、
を備えた酢酸の製造方法であって、
第1蒸留塔の還流比について、当該第1蒸留塔に水相のみを還流させる場合は水相の還流比を2以上とし、有機相のみを還流させる場合は有機相の還流比を1以上とし、水相及び有機相をともに還流させる場合は水相及び有機相の総和の還流比を1.5以上とし、且つ、前記脱クロトンアルデヒド工程において下記(i)〜(iii)の少なくとも1つの条件を満たすように蒸留塔を操作することを特徴とする酢酸の製造方法。
(i)当該蒸留塔の還流比を0.01以上とする
(ii)当該蒸留塔の留出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1未満とする
(iii)当該蒸留塔の缶出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1より大きくする
[2]さらに、前記第1酢酸流を第2蒸留塔により水に富む第2オーバーヘッド流と第1酢酸流よりも酢酸に富む第2酢酸流とに分離する脱水工程を有する[1]記載の酢酸の製造方法。
[3]第2蒸留塔の還流比を0.3以上(好ましくは1.0以上、より好ましくは5.0以上、さらに好ましくは10以上、特に好ましくは12以上)とする[2]記載の酢酸の製造方法。
[4]第2酢酸流におけるクロトンアルデヒド濃度が0.98質量ppm以下(好ましくは0.80質量ppm以下、より好ましくは0.50質量ppm以下、さらに好ましくは0.30質量ppm以下)及び/又は2−エチルクロトンアルデヒド濃度が1.0質量ppm以下(好ましくは0.50質量ppm以下、より好ましくは0.30質量ppm以下、さらに好ましくは0.20質量ppm以下)及び/又は酢酸ブチル濃度が15質量ppm以下(好ましくは10質量ppm以下、より好ましくは8質量ppm以下、さらに好ましくは5質量ppm以下、特に好ましくは3質量ppm以下)である[2]又は[3]記載の酢酸の製造方法。
[5] 第2酢酸流の過マンガン酸カリウム試験値が50分を超える(好ましくは60分以上、より好ましくは100分以上、さらに好ましくは120分以上、特に好ましくは180分以上、とりわけ240分以上、なかんずく360分以上である)[2]〜[4]のいずれか1つに記載の酢酸の製造方法。
[6]第2蒸留塔の還流比の上限が3000(好ましくは1000、より好ましくは200、さらに好ましくは100)である[2]〜[5]のいずれか1つに記載の酢酸の製造方法。
[7]触媒系がさらにイオン性ヨウ化物を含む[1]〜[6]のいずれか1つに記載の酢酸の製造方法。
[8] さらに、前記第1オーバーヘッド流を凝縮させた水相及び/又は有機相の少なくとも一部を蒸留してアセトアルデヒドを分離除去するためのアセトアルデヒド分離除去工程を有する[1]〜[7]のいずれか1つに記載の酢酸の製造方法。
[9]前記水相及び/又は前記有機相の少なくとも一部からアセトアルデヒドを分離除去した後の残液の少なくとも一部を反応槽にリサイクルする[8]記載の酢酸の製造方法。
[10]第1蒸留塔に供給する前記蒸気流におけるクロトンアルデヒド濃度が0〜5.0質量ppm(好ましくは0.01〜4.0質量ppm、より好ましくは0.1〜3.0質量ppm、さらに好ましくは0.2〜2.0質量ppm)及び/又は2−エチルクロトンアルデヒド濃度が0〜3.0質量ppm(好ましくは0.01〜2.5質量ppm、より好ましくは0.02〜2.0質量ppm、さらに好ましくは0.03〜0.8質量ppm)及び/又は酢酸ブチル濃度が0.1〜13.0質量ppm(好ましくは0.2〜12.0質量ppm、より好ましくは0.3〜9.0質量ppm)である[1]〜[9]のいずれか1つに記載の酢酸の製造方法。
[11]第1酢酸流におけるクロトンアルデヒド濃度が1.3質量ppm以下(好ましくは1.0質量ppm以下、より好ましくは0.85質量ppm以下、さらに好ましくは0.5質量ppm以下、特に好ましくは0.25質量ppm以下)及び/又は2−エチルクロトンアルデヒド濃度が1.0質量ppm以下(好ましくは0.50質量ppm以下)及び/又は酢酸ブチル濃度が15質量ppm以下(好ましくは10質量ppm以下、より好ましくは8質量ppm以下、さらに好ましくは5質量ppm以下、特に好ましくは3質量ppm以下)である[1]〜[10]のいずれか1つに記載の酢酸の製造方法。
[12]前記脱クロトンアルデヒド工程における蒸留塔仕込液中のクロトンアルデヒド濃度が0.01〜50質量ppm(好ましくは0.1〜50質量ppm、より好ましくは0.3〜30質量ppm、さらに好ましくは0.5〜10質量ppm、特に好ましくは0.8〜7.0質量ppm、とりわけ1.0〜5.0質量ppm)である[1]〜[11]のいずれか1つに記載の酢酸の製造方法。
[13]前記脱クロトンアルデヒド工程において、前記(i)〜(iii)のすべての条件を満たすように蒸留塔を操作する[1]〜[12]のいずれか1つに記載の酢酸の製造方法。
[14]前記脱クロトンアルデヒド工程において、蒸留をバッチ処理で行う[1]〜[13]のいずれか1つに記載の酢酸の製造方法。
[15]脱クロトンアルデヒド工程における蒸留塔の処理量が、第1蒸留塔に供給する蒸気流の量100質量部に対して、0.0001〜50質量部(好ましくは0.001〜30質量部、より好ましくは0.01〜10質量部、さらに好ましくは0.1〜5質量部)である[1]〜[14]のいずれか1つに記載の酢酸の製造方法。
[16]脱クロトンアルデヒド工程における蒸留塔の塔頂凝縮液を前記水相及び/又は有機相及び/又は反応槽にリサイクルする[1]〜[15]のいずれか1つに記載の酢酸の製造方法。
[17]第1蒸留塔の還流比について、当該第1蒸留塔に水相のみを還流させる場合は水相の還流比を3以上(好ましくは5以上、より好ましくは8以上、さらに好ましくは12以上)とする[1]〜[16]のいずれか1つに記載の酢酸の製造方法。
[18]第1蒸留塔の還流比について、当該第1蒸留塔に有機相のみを還流させる場合は有機相の還流比を1.5以上(好ましくは2以上、より好ましくは4以上、さらに好ましくは5以上)とする[1]〜[17]のいずれか1つに記載の酢酸の製造方法。
[19]第1蒸留塔の還流比について、当該第1蒸留塔に水相及び有機相をともに還流させる場合は水相及び有機相の総和の還流比を2.3以上(好ましくは3.5以上、より好ましくは6以上、さらに好ましくは8.5以上)とする[1]〜[18]のいずれか1つに記載の酢酸の製造方法。
[20]第1蒸留塔の還流比の上限が3000(好ましく1000、より好ましくは100、さらに好ましくは30)である[1]〜[19]のいずれか1つに記載の酢酸の製造方法。
[21]前記(i)において、蒸留塔の還流比を0.05以上(好ましくは0.5以上、より好ましくは5以上、さらに好ましくは20以上、特に好ましくは30以上)とする[1]〜[20]のいずれか1つに記載の酢酸の製造方法。
[22]前記(i)において、蒸留塔の還流比の上限が1000である[1]〜[21]のいずれか1つに記載の酢酸の製造方法。
[23]前記(ii)において、蒸留塔の留出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を0.95以下(好ましくは0.80以下、より好ましくは0.70以下、さらに好ましくは0.60以下、特に好ましくは0.50以下、とりわけ0.30以下、なかんずく0.20以下)とする[1]〜[22]のいずれか1つに記載の酢酸の製造方法。
[24]前記(iii)において、蒸留塔の缶出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1.2以上(好ましくは1.5以上、より好ましくは2.0以上、さらに好ましくは3.0以上、特に好ましくは4.0以上、とりわけ5.0以上、なかんずく10以上、中でも20以上)とする[1]〜[23]のいずれか1つに記載の酢酸の製造方法。
[25]脱クロトンアルデヒド工程における蒸留塔の塔底にクロトンアルデヒドを濃縮し、酢酸とともに缶出液として系外に排出する[1]〜[24]のいずれか1つに記載の酢酸の製造方法。
[26]反応槽の反応混合液中のアセトアルデヒド濃度が500質量ppm以下(好ましくは450質量ppm以下、より好ましくは400質量ppm以下、さらに好ましくは350質量ppm以下、特に好ましくは300質量ppm以下、とりわけ250質量ppm以下)である[1]〜[25]のいずれか1つに記載の酢酸の製造方法。
[27]反応槽の反応混合液中のクロトンアルデヒド濃度が5質量ppm以下(好ましくは3質量ppm以下、より好ましくは2質量ppm以下)である[1]〜[26]のいずれか1つに記載の酢酸の製造方法。
[28]反応槽の反応混合液中の2−エチルクロトンアルデヒド濃度が5質量ppm以下(好ましくは3質量ppm以下、より好ましくは2質量ppm以下)である[1]〜[27]のいずれか1つに記載の酢酸の製造方法。
[29]反応槽の反応混合液中の酢酸ブチル濃度が0.1〜15質量ppm(好ましくは1〜12質量ppm、より好ましくは2〜9質量ppm)である[1]〜[28]のいずれか1つに記載の酢酸の製造方法。
[30]反応槽における水素分圧が0.01MPa(絶対圧)以上(好ましくは0.015MPa(絶対圧)以上、より好ましくは0.02MPa(絶対圧)以上、さらに好ましくは0.04MPa(絶対圧)以上、特に好ましくは0.06MPa(絶対圧)以上、とりわけ0.07MPa(絶対圧)以上)である[1]〜[29]のいずれか1つに記載の酢酸の製造方法。
[31]反応槽における水素分圧の上限が0.5MPa(絶対圧)(好ましくは0.2MPa(絶対圧))である[1]〜[30]のいずれか1つに記載の酢酸の製造方法。
[32]脱クロトンアルデヒド工程において蒸留を連続式で行う際の蒸留塔への供給液の仕込み位置が、蒸留塔の高さ方向の上方から20%下〜80%下(2/10〜8/10)である[1]〜[31]のいずれか1つに記載の酢酸の製造方法。
[33]脱クロトンアルデヒド工程において蒸留塔の塔頂蒸気の凝縮液の少なくとも一部を蒸留塔に還流し、前記凝縮液の少なくとも他の一部を留出液として抜き取り前記水相及び/又は有機相及び/又は反応槽にリサイクルする[1]〜[32]のいずれか1つに記載の酢酸の製造方法。
[34]脱クロトンアルデヒド工程において蒸留塔の塔底からクロトンアルデヒドを含む缶出液を抜き取る[1]〜[33]のいずれか1つに記載の酢酸の製造方法。
[35]第1蒸留塔の還流比について、水相の還流比を2以上とする、[1]〜[34]のいずれか1つに記載の酢酸の製造方法。
本発明の酢酸の製造方法は、メタノール法カルボニル化プロセス(メタノール法酢酸プロセス)による酢酸の工業的製造法として利用可能である。
1 反応槽
2 蒸発槽
3,5,6,10 蒸留塔
4 デカンタ
7 イオン交換樹脂塔
8 スクラバーシステム
9 アセトアルデヒド分離除去システム
16 反応混合物供給ライン
17 蒸気流排出ライン
18,19 残液流リサイクルライン
54 一酸化炭素含有ガス導入ライン
55,56 水酸化カリウム導入ライン
57 触媒循環ポンプ
91 蒸留塔(第1脱アセトアルデヒド塔)
92 抽出塔
93 蒸留塔(第2脱アセトアルデヒド塔)
94 蒸留塔(抽出蒸留塔)
95 デカンタ
96 デカンタ
97 蒸留塔(脱アセトアルデヒド塔)
98 蒸留塔(抽出蒸留塔)
99 デカンタ
200 チムニートレイ

Claims (14)

  1. 金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水の存在下、メタノールと一酸化炭素とを反応槽で反応させて酢酸を生成させるカルボニル化反応工程と、
    前記カルボニル化反応工程で得られた反応混合物を蒸発槽において蒸気流と残液流とに分離する蒸発工程と、
    前記蒸気流を第1蒸留塔によりヨウ化メチル及びアセトアルデヒドから選択された少なくとも一種の低沸成分に富む第1オーバーヘッド流と酢酸に富む第1酢酸流とに分離するとともに、前記第1オーバーヘッド流を凝縮、分液させて水相と有機相とを得る脱低沸工程と、
    前記第1酢酸流を第2蒸留塔により水に富む第2オーバーヘッド流と第1酢酸流よりも酢酸に富む第2酢酸流とに分離する脱水工程と、
    前記水相及び/又は有機相の少なくとも一部を反応槽にリサイクルする第1オーバーヘッド流リサイクル工程と、
    前記水相及び/又は有機相の少なくとも他の一部を蒸留塔で処理してクロトンアルデヒドを分離除去する脱クロトンアルデヒド工程と、
    を備えた酢酸の製造方法であって、
    第1蒸留塔の還流比について、当該第1蒸留塔に水相のみを還流させる場合は水相の還流比を2以上とし、有機相のみを還流させる場合は有機相の還流比を1以上とし、水相及び有機相をともに還流させる場合は水相及び有機相の総和の還流比を1.5以上とし、且つ、前記脱クロトンアルデヒド工程において下記(i)〜(iii)の少なくとも1つの条件を満たすように蒸留塔を操作し、
    そして第2蒸留塔の還流比を1.0以上とする、酢酸の製造方法。
    (i)当該蒸留塔の還流比を0.01以上とする
    (ii)当該蒸留塔の留出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1未満とする
    (iii)当該蒸留塔の缶出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1より大きくする
  2. 前記第2オーバーヘッド流を前記反応槽にリサイクルする工程を有する請求項1記載の酢酸の製造方法。
  3. 前記脱クロトンアルデヒド工程において下記(iii')の条件を満たすように蒸留塔を操作する請求項1又は2記載の酢酸の製造方法。
    (iii')当該蒸留塔の缶出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を2.0以上とする
  4. 第2酢酸流におけるクロトンアルデヒド濃度が0.98質量ppm以下及び/又は2−エチルクロトンアルデヒド濃度が1.0質量ppm以下及び/又は酢酸ブチル濃度が15質量ppm以下である請求項1〜3のいずれか1項に記載の酢酸の製造方法。
  5. 第2酢酸流の過マンガン酸カリウム試験値が50分を超える請求項1〜4のいずれか1項に記載の酢酸の製造方法。
  6. 触媒系がさらにイオン性ヨウ化物を含む請求項1〜5のいずれか1項に記載の酢酸の製造方法。
  7. さらに、前記第1オーバーヘッド流を凝縮させた水相及び/又は有機相の少なくとも一部を蒸留してアセトアルデヒドを分離除去するためのアセトアルデヒド分離除去工程を有する請求項1〜6のいずれか1項に記載の酢酸の製造方法。
  8. 前記水相及び/又は前記有機相の少なくとも一部からアセトアルデヒドを分離除去した後の残液の少なくとも一部を反応槽にリサイクルする請求項7記載の酢酸の製造方法。
  9. 第1蒸留塔に供給する前記蒸気流におけるクロトンアルデヒド濃度が0〜5.0質量ppm及び/又は2−エチルクロトンアルデヒド濃度が0〜3.0質量ppm及び/又は酢酸ブチル濃度が0.1〜13.0質量ppmである請求項1〜8のいずれか1項に記載の酢酸の製造方法。
  10. 第1酢酸流におけるクロトンアルデヒド濃度が1.3質量ppm以下及び/又は2−エチルクロトンアルデヒド濃度が1.0質量ppm以下及び/又は酢酸ブチル濃度が15質量ppm以下である請求項1〜9のいずれか1項に記載の酢酸の製造方法。
  11. 前記脱クロトンアルデヒド工程における蒸留塔仕込液中のクロトンアルデヒド濃度が0.01〜50質量ppmである請求項1〜10のいずれか1項に記載の酢酸の製造方法。
  12. 前記脱クロトンアルデヒド工程において、前記(i)〜(iii)のすべての条件を満たすように蒸留塔を操作する請求項1〜11のいずれか1項に記載の酢酸の製造方法。
  13. 前記脱クロトンアルデヒド工程において、蒸留をバッチ処理で行う請求項1〜12のいずれか1項に記載の酢酸の製造方法。
  14. 脱クロトンアルデヒド工程における蒸留塔の処理量が、第1蒸留塔に供給する蒸気流の量100質量部に対して、0.0001〜50質量部である請求項1〜13のいずれか1項に記載の酢酸の製造方法。
JP2017536045A 2017-03-22 2017-05-25 酢酸の製造方法 Active JP6481042B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017056300 2017-03-22
JP2017056300 2017-03-22
PCT/JP2017/019578 WO2018173307A1 (ja) 2017-03-22 2017-05-25 酢酸の製造方法

Publications (2)

Publication Number Publication Date
JP6481042B2 true JP6481042B2 (ja) 2019-03-13
JPWO2018173307A1 JPWO2018173307A1 (ja) 2019-03-28

Family

ID=63585380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017536045A Active JP6481042B2 (ja) 2017-03-22 2017-05-25 酢酸の製造方法

Country Status (12)

Country Link
EP (1) EP3398930B1 (ja)
JP (1) JP6481042B2 (ja)
KR (1) KR102281510B1 (ja)
CN (1) CN110049961B (ja)
AR (1) AR111328A1 (ja)
BR (1) BR112019017941A2 (ja)
ES (1) ES2761850T3 (ja)
MX (1) MX2019011249A (ja)
PH (1) PH12019550196A1 (ja)
SG (1) SG11201908724VA (ja)
TW (1) TWI697478B (ja)
WO (1) WO2018173307A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10737996B2 (en) * 2018-05-29 2020-08-11 Daicel Corporation Method for producing acetic acid
JP7555187B2 (ja) * 2019-12-16 2024-09-24 ケロッグ ブラウン アンド ルート エルエルシー 酢酸の製造方法および酢酸製造装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5371286A (en) * 1991-01-28 1994-12-06 Hoechst Celanese Corporation Removal of carbonyl impurities from a carbonylation process stream
JPH0725813A (ja) * 1993-07-08 1995-01-27 Daicel Chem Ind Ltd 高純度酢酸の製造方法
JPH07133249A (ja) * 1993-09-17 1995-05-23 Daicel Chem Ind Ltd 高純度酢酸の製造方法
JPH0820555A (ja) * 1994-07-06 1996-01-23 Daicel Chem Ind Ltd 酢酸および/または無水酢酸の製造法
WO1996033965A1 (fr) * 1995-04-27 1996-10-31 Daicel Chemical Industries, Ltd. Procede de production d'acide acetique
JP2001508405A (ja) * 1996-10-18 2001-06-26 セラニーズ・インターナショナル・コーポレーション カルボニル化処理の流れからの過マンガン酸塩還元化合物及びアルキルヨウ化物の除去
WO2014097867A1 (ja) * 2012-12-21 2014-06-26 株式会社ダイセル 酢酸の製造方法
JP2016164137A (ja) * 2015-01-30 2016-09-08 セラニーズ・インターナショナル・コーポレーション 酢酸の製造方法
JP2016539078A (ja) * 2014-10-02 2016-12-15 セラニーズ・インターナショナル・コーポレーション 酢酸の製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3769329A (en) 1970-03-12 1973-10-30 Monsanto Co Production of carboxylic acids and esters
US5001259A (en) 1984-05-03 1991-03-19 Hoechst Celanese Corporation Methanol carbonylation process
CN1031402C (zh) * 1992-06-03 1996-03-27 中国石油化工总公司上海石油化工总厂 乙醛氧化法醋酸的精制
JP3220234B2 (ja) * 1992-07-07 2001-10-22 ダイセル化学工業株式会社 オゾンによる無水酢酸または無水酢酸および酢酸の混合物の精製法
TW283702B (ja) * 1993-07-08 1996-08-21 Daicel Chem
JP3332594B2 (ja) * 1994-08-12 2002-10-07 ダイセル化学工業株式会社 酢酸の精製方法
US5599976A (en) 1995-04-07 1997-02-04 Hoechst Celanese Corporation Recovery of acetic acid from dilute aqueous streams formed during a carbonylation process
US6339171B1 (en) * 1996-10-18 2002-01-15 Celanese International Corporation Removal or reduction of permanganate reducing compounds and alkyl iodides from a carbonylation process stream
US6303813B1 (en) 1999-08-31 2001-10-16 Celanese International Corporation Rhodium/inorganic iodide catalyst system for methanol carbonylation process with improved impurity profile
CN1312101C (zh) * 2004-10-15 2007-04-25 上海吴泾化工有限公司 提高醋酸高锰酸钾试验时间的醋酸精制方法
US7485749B2 (en) * 2006-08-22 2009-02-03 Lyondell Chemical Technology, L.P. Preparation of acetic acid
EP2628720B1 (en) 2010-10-06 2018-11-07 Daicel Corporation Acetic acid production method
KR101865436B1 (ko) * 2010-12-24 2018-06-07 주식회사 다이셀 아세트산의 제조 방법
WO2013070212A1 (en) * 2011-11-09 2013-05-16 Celanese International Corporation Producing ethanol using two different streams from acetic acid carbonylation process
AR094541A1 (es) 2013-01-25 2015-08-12 Daicel Corp Procedimiento para producir ácido carboxílico
US9260369B1 (en) 2014-11-14 2016-02-16 Celanese International Corporation Processes for producing acetic acid product having low butyl acetate content
US9487464B2 (en) 2015-01-30 2016-11-08 Celanese International Corporation Processes for producing acetic acid

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5371286A (en) * 1991-01-28 1994-12-06 Hoechst Celanese Corporation Removal of carbonyl impurities from a carbonylation process stream
JPH0725813A (ja) * 1993-07-08 1995-01-27 Daicel Chem Ind Ltd 高純度酢酸の製造方法
JPH07133249A (ja) * 1993-09-17 1995-05-23 Daicel Chem Ind Ltd 高純度酢酸の製造方法
JPH0820555A (ja) * 1994-07-06 1996-01-23 Daicel Chem Ind Ltd 酢酸および/または無水酢酸の製造法
WO1996033965A1 (fr) * 1995-04-27 1996-10-31 Daicel Chemical Industries, Ltd. Procede de production d'acide acetique
JP2001508405A (ja) * 1996-10-18 2001-06-26 セラニーズ・インターナショナル・コーポレーション カルボニル化処理の流れからの過マンガン酸塩還元化合物及びアルキルヨウ化物の除去
WO2014097867A1 (ja) * 2012-12-21 2014-06-26 株式会社ダイセル 酢酸の製造方法
JP2016539078A (ja) * 2014-10-02 2016-12-15 セラニーズ・インターナショナル・コーポレーション 酢酸の製造方法
JP2016164137A (ja) * 2015-01-30 2016-09-08 セラニーズ・インターナショナル・コーポレーション 酢酸の製造方法

Also Published As

Publication number Publication date
EP3398930A4 (en) 2018-11-07
MX2019011249A (es) 2019-11-01
TWI697478B (zh) 2020-07-01
ES2761850T3 (es) 2020-05-21
JPWO2018173307A1 (ja) 2019-03-28
CN110049961A (zh) 2019-07-23
EP3398930B1 (en) 2019-11-20
KR102281510B1 (ko) 2021-07-26
KR20190127859A (ko) 2019-11-13
WO2018173307A1 (ja) 2018-09-27
AR111328A1 (es) 2019-07-03
EP3398930A1 (en) 2018-11-07
PH12019550196A1 (en) 2020-06-29
CN110049961B (zh) 2022-03-08
BR112019017941A2 (pt) 2020-05-19
TW201840521A (zh) 2018-11-16
SG11201908724VA (en) 2019-10-30

Similar Documents

Publication Publication Date Title
JP6481041B2 (ja) 酢酸の製造方法
JP6626988B1 (ja) 酢酸の製造方法
US10428005B2 (en) Method for producing acetic acid
JP6481042B2 (ja) 酢酸の製造方法
JP6693959B2 (ja) 酢酸の製造方法
JP6481040B2 (ja) 酢酸の製造方法
JP6588658B1 (ja) 酢酸の製造方法
JP6481043B1 (ja) 酢酸の製造方法
JP6529592B2 (ja) 酢酸の製造方法
JP6588656B1 (ja) 酢酸の製造方法
JP6626987B1 (ja) 酢酸の製造方法
US10550058B2 (en) Method for producing acetic acid
WO2019230007A1 (ja) 酢酸の製造方法
WO2018163448A1 (ja) 酢酸の製造方法
JPWO2019211904A1 (ja) 酢酸の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190208

R150 Certificate of patent or registration of utility model

Ref document number: 6481042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150