JP6481043B1 - 酢酸の製造方法 - Google Patents

酢酸の製造方法 Download PDF

Info

Publication number
JP6481043B1
JP6481043B1 JP2017536046A JP2017536046A JP6481043B1 JP 6481043 B1 JP6481043 B1 JP 6481043B1 JP 2017536046 A JP2017536046 A JP 2017536046A JP 2017536046 A JP2017536046 A JP 2017536046A JP 6481043 B1 JP6481043 B1 JP 6481043B1
Authority
JP
Japan
Prior art keywords
acetic acid
less
mass
stream
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017536046A
Other languages
English (en)
Other versions
JPWO2018179457A1 (ja
Inventor
清水 雅彦
雅彦 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Corp filed Critical Daicel Corp
Application granted granted Critical
Publication of JP6481043B1 publication Critical patent/JP6481043B1/ja
Publication of JPWO2018179457A1 publication Critical patent/JPWO2018179457A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/08Acetic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/10Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
    • C07C51/12Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide on an oxygen-containing group in organic compounds, e.g. alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • C07C51/44Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

過マンガン酸カリウム試験値が良好で且つ不純物含量の少ない高品質の酢酸を多大なコストをかけることなく、工業的に効率よく製造できる方法を提供する。本発明の酢酸の製造方法は、カルボニル化反応工程、蒸発工程、脱低沸工程を有し、蒸発槽の加熱により、(i)脱低沸塔オーバーヘッド凝縮液の水相中のアセトアルデヒド濃度を2340質量ppm以上、及び/又は、(ii)前記水相中の酢酸メチル濃度を19.0質量%未満、及び/又は、(iii)脱低沸塔オーバーヘッド凝縮液の有機相中の酢酸メチル濃度を38.0質量%未満に制御するとともに、当該水相の少なくとも一部を前記アセトアルデヒド分離除去工程にて処理し、アセトアルデヒド分離除去後の残液を反応槽及び/又はアセトアルデヒド分離除去工程及び/又はその他のプロセスにリサイクルする。

Description

本発明は、酢酸を製造する方法に関する。本願は、2017年3月28日に、日本に出願した特願2017−062764号の優先権を主張し、その内容をここに援用する。
酢酸の工業的製造法としてメタノール法カルボニル化プロセス(メタノール法酢酸プロセス)が知られている。このプロセスでは、例えば、反応槽でメタノールと一酸化炭素とを触媒の存在下で反応させて酢酸を生成させ、反応混合物を蒸発槽で蒸発させ、その蒸気相を脱低沸塔、続いて脱水塔で精製して酢酸が製品化されるか、あるいは脱水塔に引き続いて脱高沸塔やさらには製品塔を経由して酢酸が製品化される。
このような酢酸製造プロセスでは、反応系でヨウ化メチルが還元されて生成するアセトアルデヒドはアルドール縮合によってクロトンアルデヒドや2−エチルクロトンアルデヒドに転化され、製品酢酸の過マンガン酸カリウム試験値(過マンガン酸タイム)を悪化させる。また、クロトンアルデヒドとアセトアルデヒドが反応した後、水素還元されヨウ素化されるとヨウ化ヘキシルとなる。製品酢酸中にヨウ化ヘキシルが含まれていると、この酢酸を用いて酢酸ビニルを製造する際、使用するパラジウム触媒が失活する。
従来、クロトンアルデヒドや2−エチルクロトンアルデヒドの低減には、(i)反応系で副生したアセトアルデヒドを精製工程でヨウ化メチルから分離除去し、反応系にリサイクルするヨウ化メチル中のアセトアルデヒドを低減することにより、反応系でのクロトンアルデヒドの生成を抑制する方法と、(ii)精製工程の途中で得られる粗酢酸中に含まれるクロトンアルデヒドを直接オゾンを用いて酸化分解する方法の大きく2通りの方法が工業的に採用されてきた(特許文献1及び2)。しかしながら、アセトアルデヒドの分離除去設備やオゾン処理設備はともに高価である。従来は、製品酢酸の過マンガン酸カリウム試験値を向上させるのにこれらの方法に全面的に依存しており、設備費の増大につながっていた。一方、ヨウ化ヘキシルの除去法として、銀イオンで交換した陽イオン交換樹脂で処理する方法が知られている。しかし、このような銀置換イオン交換樹脂を用いた処理方法は、銀置換交換樹脂が劣化しやすく、比例費の上昇につながる。なお、特表2011−518880号公報には、半経験的シミュレーターを用いて、想定された組成の反応混合物を蒸発槽に導入し加熱した場合のフラッシュ温度と、フラッシャーから排出される蒸気及び液体組成との関係が検討されている。しかしながら、この文献には、フラッシャーから排出される蒸気を脱低沸塔に供して得られるオーバーヘッド凝縮液の水相中のアセトアルデヒド濃度や酢酸メチル濃度、或いは有機相中の酢酸メチル濃度を制御して、反応槽中のアセトアルデヒド、2−エチルクロトンアルデヒド及びヨウ化ヘキシルの濃度を低減させることについては何ら開示も示唆もない。
特開平07−25813号公報 特表2001−508405号公報 特表2011−518880号公報
したがって、本発明の目的は、過マンガン酸カリウム試験値が良好で且つ不純物含量の少ない高品質の酢酸を多大なコストをかけることなく、工業的に効率よく製造できる方法を提供することにある。
本発明者らは、上記目的を達成するため鋭意検討した結果、メタノール法カルボニル化プロセスにおいて、蒸発槽を加熱して蒸発槽缶出液中のアセトアルデヒド濃度を低減させるとともに、脱低沸塔への仕込み酢酸濃度を上げると、脱低沸塔のオーバーヘッド凝縮液を水相及び有機相に分液させる際のアセトアルデヒド分配係数を制御でき、水相側へのアセトアルデヒド分配量を増加させ、その水相を脱アセトアルデヒド除去処理に付すことで、脱アセトアルデヒド効率を大きく向上できることを見出した。アセトアルデヒド分配係数が増加する原因は、脱低沸塔仕込み液組成の変更による蒸留条件の変化により、蒸留塔オーバーヘッドの酢酸メチル濃度が低減し、この酢酸メチル濃度の低減がアセトアルデヒド分配係数に影響を与えたものである。脱アセトアルデヒド効率の向上により、反応槽の反応混合液中のアセトアルデヒド濃度は低下し、クロトンアルデヒド、2−エチルクロトンアルデヒド及びヨウ化ヘキシルの生成量が抑制される。反応槽の反応混合液中のアセトアルデヒド濃度が低下すると、アセトアルデヒド+H2+CO→プロピオン酸の反応によるプロピオン酸の生成も低減される。さらに脱低沸塔の還流比を増加させると、アセトアルデヒドが塔頂にさらに濃縮され、脱アセトアルデヒド効率がより一層向上することが分かった。本発明はこれらの知見に基づき、さらに検討を加えて完成させたものである。
すなわち、本発明は、金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水の存在下、メタノールと一酸化炭素とを反応槽で反応させて酢酸を生成させるカルボニル化反応工程と、
前記カルボニル化反応工程で得られた反応混合物を蒸発槽に導入して加熱し、前記反応混合物を蒸気流と残液流とに分離する蒸発工程と、
前記残液流を反応槽にリサイクルする残液流リサイクル工程と、
前記蒸気流を第1蒸留塔によりヨウ化メチル及びアセトアルデヒドに富む第1オーバーヘッド流と酢酸に富む第1酢酸流とに分離するとともに、前記第1オーバーヘッド流を凝縮、分液させて水相と有機相とを得る脱低沸工程と、
前記水相及び/又は有機相の少なくとも一部を反応槽にリサイクルする第1オーバーヘッド流リサイクル工程と、
プロセス流中のアセトアルデヒドを分離除去するためのアセトアルデヒド分離除去工程と、
を備えた酢酸の製造方法であって、
前記蒸発槽の加熱により、(i)前記水相中のアセトアルデヒド濃度を2340質量ppm以上、及び/又は、(ii)前記水相中の酢酸メチル濃度を19.0質量%未満、及び/又は、(iii)前記有機相中の酢酸メチル濃度を38.0質量%未満に制御するとともに、当該水相の少なくとも一部を前記アセトアルデヒド分離除去工程にて処理し、アセトアルデヒド分離除去後の残液を反応槽及び/又はアセトアルデヒド分離除去工程及び/又はその他のプロセスにリサイクルすることを特徴とする酢酸の製造方法(以下、「第1の酢酸の製造方法」と称する場合がある)を提供する。
第1の酢酸の製造方法において、触媒系はさらにイオン性ヨウ化物を含んでいてもよい。
第1蒸留塔の運転条件につき、当該第1蒸留塔に水相のみを還流させる場合は水相の還流比を2以上とし、有機相のみを還流させる場合は有機相の還流比を1以上とし、水相及び有機相をともに還流させる場合は水相及び有機相の総和の還流比を1.5以上としてもよい。
第1の酢酸の製造方法は、さらに、前記第1酢酸流を第2蒸留塔により水に富む第2オーバーヘッド流と第1酢酸流よりも酢酸に富む第2酢酸流とに分離する脱水工程を有していてもよい。この場合、前記第2酢酸流におけるクロトンアルデヒド濃度が1.10質量ppm以下及び/又は2−エチルクロトンアルデヒド濃度が0.80質量ppm以下及び/又はプロピオン酸濃度が130質量ppm以下であることが好ましい。
第1の酢酸の製造方法においては、前記蒸発槽における残液流中のアセトアルデヒド濃度を70質量ppm以下にしてもよい。
反応槽の反応混合液におけるクロトンアルデヒド濃度が1.7質量ppm以下及び/又は2−エチルクロトンアルデヒド濃度が1.8質量ppm以下及び/又はプロピオン酸濃度が240質量ppm以下であってもよい。
第1蒸留塔に供給する前記蒸気流におけるクロトンアルデヒド濃度が2.4質量ppm以下及び/又は2−エチルクロトンアルデヒド濃度が0.45質量ppm以下及び/又はプロピオン酸濃度が106質量ppm以下であってもよい。
前記第1酢酸流におけるクロトンアルデヒド濃度が1.34質量ppm以下及び/又は2−エチルクロトンアルデヒド濃度が0.60質量ppm以下及び/又はプロピオン酸濃度が106質量ppm以下であってもよい。
本発明は、また、金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水の存在下、メタノールと一酸化炭素とを反応槽で反応させて酢酸を生成させるカルボニル化反応工程と、
前記カルボニル化反応工程で得られた反応混合物を蒸発槽に導入して加熱し、前記反応混合物を蒸気流と残液流とに分離する蒸発工程と、
前記残液流を反応槽にリサイクルする残液流リサイクル工程と、
前記蒸気流を第1蒸留塔によりヨウ化メチル及びアセトアルデヒドに富む第1オーバーヘッド流と酢酸に富む第1酢酸流とに分離するとともに、前記第1オーバーヘッド流を凝縮、分液させて水相と有機相とを得る脱低沸工程と、
前記水相及び/又は有機相の少なくとも一部を反応槽にリサイクルする第1オーバーヘッド流リサイクル工程と、
プロセス流中のアセトアルデヒドを分離除去するためのアセトアルデヒド分離除去工程と、
を備えた酢酸の製造方法であって、
前記蒸発槽の加熱により、(i)前記水相中のアセトアルデヒド濃度を2340質量ppm以上、及び/又は、(ii)前記水相中の酢酸メチル濃度を19.0質量%未満、及び/又は、(iii)前記有機相中の酢酸メチル濃度を38.0質量%未満に制御し、且つ前記残液流中のアセトアルデヒド濃度を70質量ppm以下に制御し、前記水相の少なくとも一部を前記アセトアルデヒド分離除去工程にて処理し、アセトアルデヒド分離除去後の残液を反応槽及び/又はアセトアルデヒド分離除去工程及び/又はその他のプロセスにリサイクルするとともに、第1蒸留塔の水相の還流比を2以上とすることを特徴とする酢酸の製造方法(以下、「第2の酢酸の製造方法」と称する場合がある)を提供する。
第2の酢酸の製造方法において、触媒系はさらにイオン性ヨウ化物を含んでいてもよい。
本発明によれば、蒸発槽を加熱して、脱低沸塔のオーバーヘッド凝縮液を分液して得られる水相及び有機相について、水相のアセトアルデヒド濃度、及び/又は、水相の酢酸メチル濃度、及び/又は、有機相の酢酸メチル濃度を特定範囲に制御するので、水相側へのアセトアルデヒド分配量が増加し、この水相をアセトアルデヒド分離除去工程に付すことにより、アセトアルデヒドを効率よく分離除去できる。このため、反応槽中のアセトアルデヒド濃度が低下し、クロトンアルデヒド、2−エチルクロトンアルデヒド、ヨウ化ヘキシル、さらにはプロピオン酸の生成量が抑制される。よって、大規模な脱アセトアルデヒド設備やオゾン処理設備を設けなくても、過マンガン酸カリウム試験値が良好で且つ不純物含量の低い高品質の製品酢酸を得ることができる。蒸発槽の加熱を調整して蒸発槽残液流(缶出液)中のアセトアルデヒド濃度を特定値以下にしたり、脱低沸塔の還流比を特定値以上にすることにより、上記効果はさらに顕著なものとなる。
本発明の一実施形態を示す酢酸製造フロー図である。 アセトアルデヒド分離除去システムの一例を示す概略フロー図である。 アセトアルデヒド分離除去システムの他の例を示す概略フロー図である。 アセトアルデヒド分離除去システムのさらに他の例を示す概略フロー図である。 アセトアルデヒド分離除去システムのさらに他の例を示す概略フロー図である。
本発明の第1の酢酸の製造方法では、金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水の存在下、メタノールと一酸化炭素とを反応槽で反応させて酢酸を生成させるカルボニル化反応工程と、前記カルボニル化反応工程で得られた反応混合物を蒸発槽に導入して加熱し、前記反応混合物を蒸気流と残液流とに分離する蒸発工程と、前記残液流を反応槽にリサイクルする残液流リサイクル工程と、前記蒸気流を第1蒸留塔によりヨウ化メチル及びアセトアルデヒドに富む第1オーバーヘッド流と酢酸に富む第1酢酸流とに分離するとともに、前記第1オーバーヘッド流を凝縮、分液させて水相と有機相とを得る脱低沸工程と、前記水相及び/又は有機相の少なくとも一部を反応槽にリサイクルする第1オーバーヘッド流リサイクル工程と、プロセス流中のアセトアルデヒドを分離除去するためのアセトアルデヒド分離除去工程とを備え、前記蒸発槽の加熱により、(i)前記水相中のアセトアルデヒド濃度を2340質量ppm以上、及び/又は、(ii)前記水相中の酢酸メチル濃度を19.0質量%未満、及び/又は、(iii)前記有機相中の酢酸メチル濃度を38.0質量%未満に制御するとともに、当該水相の少なくとも一部を前記アセトアルデヒド分離除去工程にて処理し、アセトアルデヒド分離除去後の残液を反応槽及び/又はアセトアルデヒド分離除去工程及び/又はその他のプロセスに(好ましくは、少なくとも反応槽に)リサイクルする。水相中のアセトアルデヒド濃度、水相中の酢酸メチル濃度、或いは有機相中の酢酸メチル濃度を上記の範囲に制御すると、アセトアルデヒドの分配係数[{水相のアセトアルデヒド濃度(質量%)}/{有機相のアセトアルデヒド濃度(質量%)}]が増大する。すなわち、水相側へのアセトアルデヒド分配量が増大する。そのため、この水相をアセトアルデヒド分離除去工程に供することでアセトアルデヒドの分離除去効率を大幅に向上できる。
本発明の第2の酢酸の製造方法では、前記のカルボニル化反応工程、蒸発工程、残液流リサイクル工程と、脱低沸工程、第1オーバーヘッド流リサイクル工程、アセトアルデヒド分離除去工程とを備え、前記蒸発槽の加熱により、(i)前記水相中のアセトアルデヒド濃度を2340質量ppm以上、及び/又は、(ii)前記水相中の酢酸メチル濃度を19.0質量%未満、及び/又は、(iii)前記有機相中の酢酸メチル濃度を38.0質量%未満に制御し、且つ前記残液流中のアセトアルデヒド濃度を70質量ppm以下に制御し、前記水相の少なくとも一部を前記アセトアルデヒド分離除去工程にて処理し、アセトアルデヒド分離除去後の残液を反応槽及び/又はアセトアルデヒド分離除去工程及び/又はその他のプロセスに(好ましくは、少なくとも反応槽に)リサイクルするとともに、第1蒸留塔の水相の還流比を2以上とする。本発明の第2の酢酸の製造方法は、前記本発明の第1の酢酸の製造方法の好ましい態様の一つである。
前記(i)において、水相中のアセトアルデヒド濃度は、好ましくは2400質量ppm以上、より好ましくは2500質量ppm以上、さらに好ましくは2600質量ppm以上である。水相中のアセトアルデヒド濃度の上限は、例えば1.0質量%、又は5000質量ppmであってもよい。前記(ii)において、水相中の酢酸メチル濃度は、好ましくは18.5質量%以下、より好ましくは17.5質量%以下、さらに好ましくは17.0質量%以下である。水相中の酢酸メチル濃度の下限は、例えば1.0質量%、又は5.0質量%(或いは8.0質量%又は10.0質量%)であってもよい。前記(iii)において、有機相中の酢酸メチル濃度は、好ましくは37.5質量%以下、より好ましくは37.0質量%以下、さらに好ましくは35.0質量%以下、特に好ましくは30.0質量%以下(例えば25.0質量%以下)である。有機相中の酢酸メチル濃度の下限は、例えば1.0質量%若しくは2.0質量%であってもよく、又は5.0質量%(或いは10.0質量%若しくは15.0質量%、特に20.0質量%)であってもよい。
前記第1及び第2の酢酸の製造方法(以下、これらを「本発明の酢酸の製造方法」と総称する場合がある)において、前記触媒系は、さらにイオン性ヨウ化物を含んでいてもよい。イオン性ヨウ化物は助触媒として機能する。
本発明の酢酸の製造方法では、前記水相の少なくとも一部をアセトアルデヒド分離除去工程にて処理し、アセトアルデヒド分離除去後の残液を反応槽等にリサイクルするが、これに加えて、前記有機相の少なくとも一部をアセトアルデヒド分離除去工程にて処理し、アセトアルデヒド分離除去後の残液を反応槽等にリサイクルしてもよい。
本発明の酢酸の製造方法では、さらに、前記第1酢酸流を第2蒸留塔により水に富む第2オーバーヘッド流と第1酢酸流よりも酢酸に富む第2酢酸流とに分離する脱水工程を有していてもよい。第1酢酸流を第2蒸留塔にて脱水することにより、塔底又は塔の中間部位から缶出液又はサイドカット液として水含有量の少ない第2酢酸流を得ることができる。第2酢酸流はそのまま、或いは必要に応じてさらに精製することにより製品酢酸とすることができる。
本発明の酢酸の製造方法では、第1蒸留塔に第1オーバーヘッド流の凝縮液の水相のみを還流させる場合は、水相の還流比(水相の還流量/水相の留出量)を、例えば2以上とすることが望ましく、好ましくは3以上、より好ましくは5以上、さらに好ましくは8以上、特に好ましくは10以上、とりわけ12以上である。また、第1蒸留塔に第1オーバーヘッド流の凝縮液の有機相のみを還流させる場合は、有機相の還流比(有機相の還流量/有機相の留出量)を、例えば1以上とすることが望ましく、好ましくは1.5以上、より好ましくは2以上、さらに好ましくは4以上、特に好ましくは5以上である。さらに、第1蒸留塔に第1オーバーヘッド流の凝縮液の水相及び有機相をともに還流させる場合は、水相及び有機相の総和の還流比(水相及び有機相の還流量の総和/水相及び有機相の留出量の総和)を、例えば1.5以上とすることが望ましく、好ましくは2.3以上、より好ましくは3.5以上、さらに好ましくは6以上、特に好ましくは8.5以上である。また、第1蒸留塔に前記水相を還流させる場合は、水相の還流比(水相の還流量/水相の留出量)は2以上であることが好ましく、より好ましくは3以上、さらに好ましくは5以上、特に好ましくは8以上、とりわけ12以上である。第1蒸留塔の還流比の上限は、いずれの場合も、例えば3000(特に1000)であってもよく、或いは100(特に30)であってもよい。第1蒸留塔の還流比を上げることにより、アセトアルデヒドを塔頂に濃縮できるので、塔頂の凝縮液をアセトアルデヒド分離除去工程に供することにより、脱アセトアルデヒド効率をより向上できる。
本発明の酢酸の製造方法では、蒸発槽の加熱を調整して、蒸発槽における残液流(缶出液)中のアセトアルデヒド濃度を70質量ppm以下にすることが好ましい。残液流中のアセトアルデヒド濃度は、より好ましくは60質量ppm以下、さらに好ましくは50質量ppm以下、特に好ましくは40質量ppm以下(例えば30質量ppm以下)である。このような操作を行う場合には、前記残液流は触媒液として反応槽にリサイクルされるので、反応槽にリサイクルされるアセトアルデヒド量が低減し、それによって反応槽でのクロトンアルデヒド、2−エチルクロトンアルデヒド、ヨウ化ヘキシル、プロピオン酸などの副生物の生成を抑制できる。
本発明の製造方法では、上記のようにアセトアルデヒド分離除去効率を高くできるため、反応系に戻るアセトアルデヒド量が低減され、その結果として、反応槽の反応混合液中のクロトンアルデヒド、2−エチルクロトンアルデヒド、プロピオン酸、ヨウ化ヘキシルの濃度を低下させることができる。
反応槽の反応混合液中のクロトンアルデヒド濃度は、例えば1.7質量ppm以下、好ましくは1.4質量ppm以下、より好ましくは1.2質量ppm以下、特に好ましくは1.0質量ppm以下(例えば0.8質量ppm以下、とりわけ0.6質量ppm以下)である。反応槽の反応混合液中のクロトンアルデヒド濃度の下限値は、例えば0.01質量ppm(或いは0.1質量ppm)であってもよい。反応槽の反応混合液中の2−エチルクロトンアルデヒド濃度は、例えば1.8質量ppm以下、好ましくは1.6質量ppm以下、より好ましくは1.4質量ppm以下、特に好ましくは1.2質量ppm以下(例えば1.0質量ppm以下、とりわけ0.8質量ppm以下)である。反応槽の反応混合液中の2−エチルクロトンアルデヒド濃度の下限値は、例えば0.01質量ppm(或いは0.1質量ppm)であってもよい。反応槽の反応混合液中のプロピオン酸濃度は、例えば240質量ppm以下、好ましくは230質量ppm以下、より好ましくは220質量ppm以下、特に好ましくは200質量ppm以下(例えば180質量ppm以下)である。反応槽の反応混合液中のプロピオン酸濃度の下限値は、例えば10質量ppm(或いは50質量ppm)であってもよい。
反応槽の反応混合液中のクロトンアルデヒド、2−エチルクロトンアルデヒド、プロピオン酸、ヨウ化ヘキシルの各濃度が低下すると、第1蒸留塔に供給する蒸気流中のこれらの不純物の濃度が低下し、さらには第1蒸留塔から得られる第1酢酸流中のこれらの不純物の濃度が低下し、よって過マンガン酸カリウム試験値が良好で且つ不純物含量の少ない高品質の製品酢酸を得ることができる。このため、過マンガン酸カリウム試験値の向上のために従来用いられてきた脱アセトアルデヒド設備やオゾン処理設備を小規模化したり省略化できる。また、脱低沸塔或いはさらに脱水塔を経るだけで過マンガン酸カリウム試験値の高い酢酸を得ることができるので、その後の脱高沸塔や製品塔(仕上塔)を小規模化乃至省略が可能となる。
第1蒸留塔に供給する前記蒸気流中のクロトンアルデヒド濃度は、例えば2.4質量ppm以下、好ましくは2.2質量ppm以下、より好ましくは2.0質量ppm以下、特に好ましくは1.6質量ppm以下(例えば1.2質量ppm以下)である。第1蒸留塔に供給する前記蒸気流中のクロトンアルデヒド濃度の下限値は、例えば0.01質量ppm(或いは0.1質量ppm)であってもよい。第1蒸留塔に供給する前記蒸気流中の2−エチルクロトンアルデヒド濃度は、例えば0.45質量ppm以下、好ましくは0.40質量ppm以下、より好ましくは0.30質量ppm以下である。第1蒸留塔に供給する前記蒸気流中の2−エチルクロトンアルデヒド濃度の下限値は、例えば0.01質量ppm(或いは0.1質量ppm)であってもよい。第1蒸留塔に供給する前記蒸気流中のプロピオン酸濃度は、例えば106質量ppm以下、好ましくは74.0質量ppm以下、より好ましくは65.0質量ppm以下、さらに好ましくは55.0質量ppm以下である。第1蒸留塔に供給する前記蒸気流中のプロピオン酸濃度の下限値は、例えば1.0質量ppm、或いは5.0質量ppm又は10.0質量ppmであってもよい。
第1酢酸流中のクロトンアルデヒド濃度は、例えば1.34質量ppm以下、好ましくは1.20質量ppm以下、より好ましくは1.00質量ppm以下、さらに好ましくは0.80質量ppm以下、特に好ましくは0.60質量ppm以下である。第1酢酸流中のクロトンアルデヒド濃度の下限値は、例えば0.01質量ppm(或いは0.05質量ppm)であってもよい。第1酢酸流中の2−エチルクロトンアルデヒド濃度は、例えば0.60質量ppm以下、好ましくは0.50質量ppm以下、より好ましくは0.40質量ppm以下である。第1酢酸流中の2−エチルクロトンアルデヒド濃度の下限値は、例えば0.01質量ppm(或いは0.05質量ppm)であってもよい。第1酢酸流中のプロピオン酸濃度は、例えば106質量ppm以下、好ましくは100質量ppm以下、より好ましくは90.0質量ppm以下、さらに好ましくは80.0質量ppm以下である。第1酢酸流中のプロピオン酸濃度の下限値は、例えば1.0質量ppm、或いは5.0質量ppm又は10.0質量ppmであってもよい。
脱水塔から得られる第2酢酸流中のクロトンアルデヒド濃度は、例えば1.10質量ppm以下、好ましくは1.00質量ppm以下、より好ましくは0.90質量ppm以下、さらに好ましくは0.80質量ppm以下、特に好ましくは0.70質量ppm以下(例えば0.60質量ppm以下)である。第2酢酸流中のクロトンアルデヒド濃度の下限値は、例えば0.01質量ppm(或いは0.05質量ppm)であってもよい。第2酢酸流中の2−エチルクロトンアルデヒド濃度は、例えば0.80質量ppm以下、好ましくは0.70質量ppm以下、より好ましくは0.60質量ppm以下、さらに好ましくは0.50質量ppm以下、特に好ましくは0.40質量ppm以下である。第2酢酸流中の2−エチルクロトンアルデヒド濃度の下限値は、例えば0.01質量ppm(或いは0.05質量ppm)であってもよい。第2酢酸流中のプロピオン酸濃度は、例えば130質量ppm以下、好ましくは120質量ppm以下、より好ましくは110質量ppm以下、さらに好ましくは80.0質量ppm以下である。第2酢酸流中のプロピオン酸濃度の下限値は、例えば1.0質量ppm、或いは5.0質量ppm又は10.0質量ppmであってもよい。第2酢酸流中のヨウ化ヘキシル濃度は、例えば30質量ppb以下、好ましくは25質量ppb以下、より好ましくは20質量ppb以下、さらに好ましくは17質量ppb以下、特に好ましくは10質量ppb以下である。第2酢酸流中のヨウ化ヘキシル濃度の下限値は、例えば0.1質量ppb(或いは1.0質量ppb)であってもよい。
以下、本発明の一実施形態について説明する。図1は、本発明の一実施形態を示す酢酸製造フロー図(メタノール法カルボニル化プロセス)の一例である。この酢酸製造フローに係る酢酸製造装置は、反応槽1と、蒸発槽2と、蒸留塔3と、デカンタ4と、蒸留塔5と、蒸留塔6と、イオン交換樹脂塔7と、スクラバーシステム8と、アセトアルデヒド分離除去システム9、コンデンサ1a,2a,3a,5a,6aと、熱交換器2bと、リボイラー3b,5b,6bと、ライン11〜56、ポンプ57とを備え、酢酸を連続的に製造可能に構成されている。本実施形態の酢酸の製造方法では、反応槽1、蒸発槽2、蒸留塔3、蒸留塔5、蒸留塔6、及びイオン交換樹脂塔7において、それぞれ、反応工程、蒸発工程(フラッシュ工程)、第1蒸留工程、第2蒸留工程、第3蒸留工程、及び吸着除去工程が行われる。第1蒸留工程は脱低沸工程、第2蒸留工程は脱水工程、第3蒸留工程は脱高沸工程ともいう。なお、本発明において、工程は上記に限らず、例えば、蒸留塔5、蒸留塔6、イオン交換樹脂塔7、アセトアルデヒド分離除去システム9(脱アセトアルデヒド塔など)の設備は付帯しない場合がある。また、後述するように、イオン交換樹脂塔7の下流に製品塔を設けてもよい。
反応槽1は、反応工程を行うためのユニットである。この反応工程は、下記の化学式(1)で示される反応(メタノールのカルボニル化反応)によって酢酸を連続的に生成させるための工程である。酢酸製造装置の定常稼働状態において、反応槽1内には、例えば撹拌機によって撹拌されている反応混合物が存在する。反応混合物は、原料であるメタノール及び一酸化炭素と、金属触媒と、助触媒と、水と、製造目的である酢酸と、各種の副生成物とを含み、液相と気相とが平衡状態にある。
CH3OH + CO → CH3COOH (1)
反応混合物中の原料は、液体状のメタノール及び気体状の一酸化炭素である。メタノールは、メタノール貯留部(図示略)からライン11を通じて反応槽1に所定の流量で連続的に供給される。
一酸化炭素は、一酸化炭素貯留部(図示略)からライン12を通じて反応槽1に所定の流量で連続的に供給される。一酸化炭素は必ずしも純粋な一酸化炭素でなくてもよく、例えば窒素、水素、二酸化炭素、酸素等の他のガスが少量(例えば5質量%以下、好ましくは1質量%以下)含まれていてもよい。
反応混合物中の金属触媒は、メタノールのカルボニル化反応を促進するためのものであり、例えばロジウム触媒やイリジウム触媒を使用することができる。ロジウム触媒としては、例えば、化学式[Rh(CO)22]-で表されるロジウム錯体を使用することができる。イリジウム触媒としては、例えば化学式[Ir(CO)22]-で表されるイリジウム錯体を使用することができる。金属触媒としては金属錯体触媒が好ましい。反応混合物中の触媒の濃度(金属換算)は、反応混合物の液相全体に対して、例えば100〜10000質量ppm、好ましくは200〜5000質量ppm、さらに好ましくは400〜2000質量ppmである。
助触媒は、上述の触媒の作用を補助するためのヨウ化物であり、例えば、ヨウ化メチルやイオン性ヨウ化物が使用される。ヨウ化メチルは、上述の触媒の触媒作用を促進する作用を示し得る。ヨウ化メチルの濃度は、反応混合物の液相全体に対して例えば1〜20質量%である。イオン性ヨウ化物は、反応液中でヨウ化物イオンを生じさせるヨウ化物(特に、イオン性金属ヨウ化物)であり、上述の触媒を安定化させる作用や、副反応を抑制する作用を示し得る。イオン性ヨウ化物としては、例えば、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウムなどのアルカリ金属ヨウ化物などが挙げられる。反応混合物中のイオン性ヨウ化物の濃度は、反応混合物の液相全体に対して、例えば1〜25質量%であり、好ましくは5〜20質量%である。また、例えばイリジウム触媒などを用いる場合は、助触媒として、ルテニウム化合物やオスミウム化合物を用いることもできる。これらの化合物の使用量は総和で、例えばイリジウム1モル(金属換算)に対して、0.1〜30モル(金属換算)、好ましくは0.5〜15モル(金属換算)である。
反応混合物中の水は、メタノールのカルボニル化反応の反応機構上、酢酸を生じさせるのに必要な成分であり、また、反応系の水溶性成分の可溶化のためにも必要な成分である。反応混合物中の水の濃度は、反応混合物の液相全体に対して、例えば0.1〜15質量%であり、好ましくは0.8〜10質量%、さらに好ましくは1〜6質量%、特に好ましくは1.5〜4質量%である。水濃度は、酢酸の精製過程での水の除去に要するエネルギーを抑制して酢酸製造の効率化を進めるうえでは15質量%以下が好ましい。水濃度を制御するために、反応槽1に対して所定流量の水を連続的に供給してもよい。
反応混合物中の酢酸は、酢酸製造装置の稼働前に反応槽1内に予め仕込まれた酢酸、及び、メタノールのカルボニル化反応の主生成物として生じる酢酸を含む。このような酢酸は、反応系では溶媒として機能し得る。反応混合物中の酢酸の濃度は、反応混合物の液相全体に対して、例えば50〜90質量%であり、好ましくは60〜80質量%である。
反応混合物に含まれる主な副生成物としては、例えば酢酸メチルが挙げられる。この酢酸メチルは、酢酸とメタノールとの反応によって生じ得る。反応混合物中の酢酸メチルの濃度は、反応混合物の液相全体に対して、例えば0.1〜30質量%であり、好ましくは1〜10質量%である。反応混合物に含まれる副生成物としては、ヨウ化水素も挙げられる。このヨウ化水素は、上述のような触媒や助触媒が使用される場合、メタノールのカルボニル化反応の反応機構上、不可避的に生じることとなる。反応混合物中のヨウ化水素の濃度は、反応混合物の液相全体に対して、例えば0.01〜2質量%である。
また、副生成物としては、例えば、水素、メタン、二酸化炭素、アセトアルデヒド、クロトンアルデヒド、2−エチルクロトンアルデヒド、酢酸ブチル、ジメチルエーテル、アルカン類、ギ酸及びプロピオン酸、並びに、ヨウ化エチル、ヨウ化プロピル、ヨウ化ブチル、ヨウ化ヘキシル及びヨウ化デシルなどのヨウ化アルキル等が挙げられる。
反応混合液(反応混合物の液相;反応媒体)中のアセトアルデヒド濃度は、例えば500質量ppm以下、好ましくは450質量ppm以下、より好ましくは400質量ppm以下、さらに好ましくは350質量ppm以下、特に好ましくは300質量ppm以下[例えば250質量ppm以下(或いは210質量ppm以下)]である。反応混合液中のアセトアルデヒド濃度の下限は、例えば1質量ppm(或いは10質量ppm)である。
反応混合液中のクロトンアルデヒド濃度は、例えば1.7質量ppm以下、好ましくは1.4質量ppm以下、より好ましくは1.2質量ppm以下、特に好ましくは1.0質量ppm以下(例えば0.8質量ppm以下、とりわけ0.6質量ppm以下)である。反応混合液中のクロトンアルデヒド濃度の下限値は0ppmであるが、例えば0.01質量ppm、或いは0.1質量ppm又は0.2質量ppmであってもよい。反応混合液中の2−エチルクロトンアルデヒド濃度は、例えば1.8質量ppm以下、好ましくは1.6質量ppm以下、より好ましくは1.4質量ppm以下、特に好ましくは1.2質量ppm以下(例えば1.0質量ppm以下、とりわけ0.8質量ppm以下)である。反応混合液中の2−エチルクロトンアルデヒド濃度の下限値は0ppmであるが、例えば0.01質量ppm、或いは0.1質量ppm又は0.2質量ppmであってもよい。反応混合液中のプロピオン酸濃度は、例えば240質量ppm以下、好ましくは230質量ppm以下、さらに好ましくは220質量ppm以下、特に好ましくは200質量ppm以下(例えば180質量ppm以下)である。反応混合液中のプロピオン酸濃度の下限値は0ppmであるが、例えば10質量ppm(或いは50質量ppm)であってもよい。
また、反応混合物には、装置の腐食により生じる鉄、ニッケル、クロム、マンガン、モリブデンなどの金属[腐食金属(腐食性金属ともいう)]、及びその他の金属としてコバルトや亜鉛、銅などが含まれ得る。上記腐食金属とその他の金属とを併せて「腐食金属等」と称する場合がある。
以上のような反応混合物が存在する反応槽1内において、反応温度は例えば150〜250℃に設定され、全体圧力としての反応圧力は例えば2.0〜3.5MPa(絶対圧)に設定され、一酸化炭素分圧は、例えば0.4〜1.8MPa(絶対圧)、好ましくは0.6〜1.6MPa(絶対圧)、さらに好ましくは0.9〜1.4MPa(絶対圧)に設定される。
装置稼働時の反応槽1内の気相部の蒸気には、例えば、一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、ギ酸及びプロピオン酸などが含まれる。水素は原料として用いられる一酸化炭素中に含まれているほか、反応槽1中で起きるシフト反応(CO + H2O → H2 + CO2)により生成する。反応槽1における水素分圧は、例えば0.01MPa(絶対圧)以上、好ましくは0.015MPa(絶対圧)以上、より好ましくは0.02MPa(絶対圧)以上、さらに好ましくは0.04MPa(絶対圧)以上、特に好ましくは0.06MPa(絶対圧)以上[例えば0.07MPa(絶対圧)以上]である。なお、反応槽の水素分圧の上限は、例えば0.5MPa(絶対圧)[特に0.2MPa(絶対圧)]である。反応槽1内の気相部の蒸気は、反応槽1内からライン13を通じて抜き取ることが可能である。蒸気の抜き取り量の調節によって、反応槽1内の圧力を制御することが可能であり、例えば、反応槽1内の圧力は一定に維持される。反応槽1内から抜き取られた蒸気は、コンデンサ1aへと導入される。
コンデンサ1aは、反応槽1からの蒸気を、冷却して部分的に凝縮させることによって凝縮分とガス分とに分ける。凝縮分は、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、ギ酸及びプロピオン酸などを含み、コンデンサ1aからライン14を通じて反応槽1へと導入され、リサイクルされる。ガス分は、例えば、一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などを含み、コンデンサ1aからライン15を通じてスクラバーシステム8へと供給される。スクラバーシステム8では、コンデンサ1aからのガス分から有用成分(例えばヨウ化メチル、水、酢酸メチル、酢酸など)が分離回収される。この分離回収には、本実施形態では、ガス分中の有用成分を捕集するための吸収液を使用して行う湿式法が利用される。吸収液としては、少なくとも酢酸及び/又はメタノールを含む吸収溶媒が好ましい。吸収液には酢酸メチルが含まれていてもよい。例えば、吸収液として後述の蒸留塔6からの蒸気の凝縮分を使用できる。分離回収には、圧力変動吸着法を利用してもよい。分離回収された有用成分(例えばヨウ化メチルなど)は、スクラバーシステム8からリサイクルライン48を通じて反応槽1へと導入され、リサイクルされる。有用成分を捕集した後のガスはライン49を通じて廃棄される。なお、ライン49から排出されるガスは、後述する蒸発槽2の底部あるいは残液流リサイクルライン18,19へ導入するCO源として利用することができる。スクラバーシステム8での処理及びその後の反応槽1へのリサイクル及び廃棄については、他のコンデンサからスクラバーシステム8へと供給される後記のガス分についても同様である。本発明の製造方法においては、プロセスからのオフガスを、少なくとも酢酸を含む吸収溶媒で吸収処理して、一酸化炭素に富むストリームと酢酸に富むストリームとを分離するスクラバー工程を有することが好ましい。
装置稼働時の反応槽1内では、上述のように、酢酸が連続的に生成する。そのような酢酸を含む反応混合物が、連続的に、反応槽1内から所定の流量で抜き取られてライン16を通じて次の蒸発槽2へと導入される。
蒸発槽2は、蒸発工程(フラッシュ工程)を行うためのユニットである。この蒸発工程は、ライン16(反応混合物供給ライン)を通じて蒸発槽2に連続的に導入される反応混合物を、部分的に蒸発させることによって蒸気流(揮発相)と残液流(低揮発相)とに分けるための工程である。本発明では蒸発槽を加熱しつつ圧力を減じることによって蒸発を生じさせる。蒸発工程において、蒸気流の温度は例えば100〜260℃、好ましくは120〜200℃であり、残液流の温度は例えば100〜260℃、好ましくは120〜200℃であり、槽内圧力は例えば50〜1000kPa(絶対圧)である。また、蒸発工程にて分離される蒸気流及び残液流の割合(蒸気流/残液流)に関しては、質量比で、例えば10/90〜60/40(蒸発率:10〜60質量%)、好ましくは26/74〜45/55(蒸発率:26〜45質量%)、より好ましくは27/73〜42/58(蒸発率:27〜42質量%)、さらに好ましくは30/70〜40/60(蒸発率:30〜40質量%)である。
本工程で生じる蒸気は、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、クロトンアルデヒド、2−エチルクロトンアルデヒド、酢酸ブチル、ギ酸プロピオン酸、並びに、ヨウ化エチル、ヨウ化プロピル、ヨウ化ブチル、ヨウ化ヘキシル及びヨウ化デシルなどのヨウ化アルキルなどを含み、蒸発槽2内からライン17(蒸気流排出ライン)に連続的に抜き取られる。蒸発槽2内から抜き取られた蒸気流の一部はコンデンサ2aへと連続的に導入され、当該蒸気流の他の一部はライン21を通じて次の蒸留塔3へと連続的に導入される。
前記蒸気流中の酢酸濃度は、例えば50.0〜90.0質量%、好ましくは55.0〜85.0質量%である。酢酸濃度の下限は、より好ましくは57.0質量%、さらに好ましくは58.0質量%(又は60.0質量%、或いは63.0質量%、特に65.0質量%)であり、上限は、より好ましくは80.0質量%、さらに好ましくは75.0質量%、特に好ましくは72.0質量%(又は68.0質量%、或いは65.5質量%)である。前記酢酸濃度の範囲としては、より好ましくは57.0〜68.0質量%(例えば58.0〜65.5質量%)である。前記蒸気流中のヨウ化メチル濃度は、例えば2.0〜50.0質量%、好ましくは5.0〜40.0質量%である。ヨウ化メチル濃度の下限は、より好ましくは10.0質量%、さらに好ましくは15.0質量%、特に好ましくは18.0質量%(又は20.0質量%、或いは22.5質量%)であり、上限は、より好ましくは35.0質量%、さらに好ましくは30.0質量%、特に好ましくは28.0質量%である。前記ヨウ化メチル濃度の範囲としては、より好ましくは20.0〜35.0質量%(例えば22.5〜30.0質量%)である。前記蒸気流中の水濃度は、例えば0.2〜20.0質量%、好ましくは0.5〜15.0質量%、より好ましくは0.8〜5.0質量%である。水濃度の下限は、より好ましくは1.0質量%、さらに好ましくは1.2質量%であり、上限は、より好ましくは4.0質量%、特に好ましくは3.0質量%である。前記水濃度の範囲としては、より好ましくは1.2〜5.0質量%(例えば1.2〜4.0質量%、或いは1.2〜3.0質量%)である。前記蒸気流中の酢酸メチル濃度は、例えば0.2〜50.0質量%、好ましくは2.0〜30.0質量%である。酢酸メチル濃度の下限は、より好ましくは3.0質量%、さらに好ましくは5.0質量%、特に好ましくは6.0質量%(又は7.0質量%、或いは8.0質量%)であり、上限は、より好ましくは25.0質量%、さらに好ましくは20.0質量%、特に好ましくは15.0質量%(又は10.0質量%)である。前記酢酸メチル濃度の範囲としては、より好ましくは7.0〜25.0質量%(例えば8.0〜20.0質量%)である。
前記蒸気流中のクロトンアルデヒド濃度は、例えば2.4質量ppm以下、好ましくは2.2質量ppm以下、より好ましくは2.0質量ppm以下、特に好ましくは1.6質量ppm以下(例えば1.2質量ppm以下)である。前記蒸気流中のクロトンアルデヒド濃度の下限値は、例えば0.01質量ppm(或いは0.1質量ppm)であってもよい。前記蒸気流中の2−エチルクロトンアルデヒド濃度は、例えば0.45質量ppm以下、好ましくは0.40質量ppm以下、より好ましくは0.30質量ppm以下である。前記蒸気流中の2−エチルクロトンアルデヒド濃度の下限値は、例えば0.01質量ppm(或いは0.1質量ppm)であってもよい。前記蒸気流中のプロピオン酸濃度は、例えば106質量ppm以下、好ましくは74.0質量ppm以下、より好ましくは60.0質量ppm以下、さらに好ましくは55.0質量ppm以下である。前記蒸気流中のプロピオン酸濃度の下限値は、例えば1.0質量ppm、或いは5.0質量ppm又は10.0質量ppmであってもよい。
本工程で生ずる残液流は、反応混合物に含まれていた触媒及び助触媒(ヨウ化メチル、ヨウ化リチウムなど)や、本工程では揮発せずに残存する水、アセトアルデヒド、酢酸メチル、酢酸、クロトンアルデヒド、2−エチルクロトンアルデヒド、酢酸ブチル、ギ酸及びプロピオン酸などを含み、ポンプ57を用い、連続的に蒸発槽2からライン18を通じて熱交換器2bへと導入される。残液流中のアセトアルデヒド濃度は、70質量ppm以下にすることが好ましく、より好ましくは60質量ppm以下、さらに好ましくは50質量ppm以下、特に好ましくは40質量ppm以下(例えば30質量ppm以下)である。前記残液流中のアセトアルデヒド濃度を低下させることにより、反応槽1でのクロトンアルデヒド、2−エチルクロトンアルデヒド、ヨウ化ヘキシル、プロピオン酸などの副生物の生成を抑制できる。
熱交換器2bは、蒸発槽2からの残液流を冷却する。降温した残液流は、連続的に熱交換器2bからライン19を通じて反応槽1へと導入され、リサイクルされる。なお、ライン18とライン19とを併せて残液流リサイクルラインと称する。前記残液流の酢酸濃度は、例えば55〜90質量%、好ましくは60〜85質量%である。
コンデンサ2aは、蒸発槽2からの蒸気流を、冷却して部分的に凝縮させることによって凝縮分とガス分とに分ける。凝縮分は、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、クロトンアルデヒド、2−エチルクロトンアルデヒド、酢酸ブチル、ギ酸及びプロピオン酸などを含み、コンデンサ2aからライン22,23を通じて反応槽1へと導入され、リサイクルされる。ガス分は、例えば、一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などを含み、コンデンサ2aからライン20,15を通じてスクラバーシステム8へと供給される。上述の反応工程での酢酸の生成反応は発熱反応であるところ、反応混合物に蓄積する熱の一部は、蒸発工程(フラッシュ工程)において、反応混合物から生じた蒸気に移行する。この蒸気のコンデンサ2aでの冷却によって生じた凝縮分が反応槽1へとリサイクルされる。すなわち、この酢酸製造装置においては、メタノールのカルボニル化反応で生じる熱がコンデンサ2aにて効率よく除去されることとなる。
蒸留塔3は、第1蒸留工程を行うためのユニットであり、本実施形態ではいわゆる脱低沸塔に位置付けられる。第1蒸留工程は、蒸留塔3に連続的に導入される蒸気流を蒸留処理して低沸成分を分離除去する工程である。より具体的には、第1蒸留工程では、前記蒸気流を蒸留して、ヨウ化メチル及びアセトアルデヒドから選択された少なくとも一種の低沸成分に富むオーバーヘッド流と、酢酸に富む酢酸流とに分離する。蒸留塔3は、例えば、棚段塔及び充填塔などの精留塔よりなる。蒸留塔3として棚段塔を採用する場合、その理論段は例えば5〜50段である。
蒸留塔3の内部において、塔頂圧力は、例えば80〜160kPa(ゲージ圧)に設定され、塔底圧力は、塔頂圧力より高く、例えば85〜180kPa(ゲージ圧)に設定される。蒸留塔3の内部において、塔頂温度は、例えば、設定塔頂圧力での酢酸の沸点より低い温度であって90〜130℃に設定され、塔底温度は、例えば、設定塔底圧力での酢酸の沸点以上の温度であって120〜165℃(好ましくは125〜160℃)に設定される。
蒸留塔3に対しては、蒸発槽2からの蒸気流がライン21を通じて連続的に導入され、蒸留塔3の塔頂部からは、オーバーヘッド流としての蒸気がライン24に連続的に抜き取られる。蒸留塔3の塔底部からは、缶出液がライン25に連続的に抜き取られる。3bはリボイラーである。蒸留塔3における塔頂部と塔底部との間の高さ位置からは、側流としての酢酸流(第1酢酸流;液体)がライン27より連続的に抜き取られる。
蒸留塔3の塔頂部から抜き取られる蒸気は、酢酸よりも沸点の低い成分(低沸点成分)を蒸留塔3からの上記缶出液及び側流と比較して多く含み、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、ジメチルエーテル、メタノール、アセトアルデヒド、クロトンアルデヒド及びギ酸などを含む。この蒸気には酢酸も含まれる。このような蒸気は、ライン24を通じてコンデンサ3aへと連続的に導入される。
コンデンサ3aは、蒸留塔3からの蒸気を、冷却して部分的に凝縮させることによって凝縮分とガス分とに分ける。凝縮分は、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、クロトンアルデヒド及びギ酸などを含み、コンデンサ3aからライン28を通じてデカンタ4へと連続的に導入される。デカンタ4に導入された凝縮分は水相(上相)と有機相(ヨウ化メチル相;下相)とに分液される。水相には、水と、例えば、ヨウ化メチル、ヨウ化水素、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、クロトンアルデヒド及びギ酸などが含まれる。有機相には、例えば、ヨウ化メチルと、例えば、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、クロトンアルデヒド及びギ酸などが含まれる。
本発明の製造方法では、前記のように、蒸発槽を加熱して、(i)前記水相中のアセトアルデヒド濃度を2340質量ppm以上、及び/又は、(ii)前記水相中の酢酸メチル濃度を19.0質量%未満、及び/又は、(iii)前記有機相中の酢酸メチル濃度を38.0質量%未満に制御するとともに、当該水相の少なくとも一部を前記アセトアルデヒド分離除去工程にて処理し、アセトアルデヒド分離除去後の残液を反応槽にリサイクルする。
前記(i)において、水相中のアセトアルデヒド濃度は、好ましくは2400質量ppm以上、より好ましくは2500質量ppm以上、さらに好ましくは2600質量ppm以上である。水相中のアセトアルデヒド濃度の上限は、例えば1.0質量%、或いは5000質量ppmであってもよい。前記(ii)において、水相中の酢酸メチル濃度は、好ましくは18.5質量%以下、より好ましくは17.5質量%以下、さらに好ましくは17.0質量%以下である。水相中の酢酸メチル濃度の下限は、例えば1.0質量%、或いは5.0質量%であってもよく、又は8.0質量%若しくは10.0質量%であってもよい。前記(iii)において、有機相中の酢酸メチル濃度は、好ましくは37.5質量%以下、より好ましくは37.0質量%以下、さらに好ましくは35.0質量%以下、特に好ましくは30.0質量%以下(例えば25.0質量%以下)である。有機相中の酢酸メチル濃度の下限は、例えば1.0質量%若しくは2.0質量%、或いは5.0質量%若しくは10.0質量%であってもよく、又は15.0質量%(例えば20.0質量%)であってもよい。
水相中のアセトアルデヒド濃度、水相中の酢酸メチル濃度、又は有機相中の酢酸メチル濃度が上記範囲内にあると、アセトアルデヒドの水相側への分配量が増大する。そのため、この水相をアセトアルデヒド分離除去工程に供することにより、アセトアルデヒドの分離除去効率を大幅に向上できる。
本実施形態では、水相の一部はライン29を通じて蒸留塔3に還流され、水相の他の一部はライン29,30,51を通じてアセトアルデヒド分離除去システム9に導入され、アセトアルデヒドがライン53から系外に分離除去される。アセトアルデヒド分離除去後の残液はライン52,23を通じて反応槽1にリサイクルされる。水相のさらに他の一部は、アセトアルデヒド分離除去システム9を経ることなく、ライン29,30,23を通じて反応槽1にリサイクルされてもよい。有機相はライン31,23を通じて反応槽1に導入されてリサイクルされる。有機相の一部は、必要に応じて、ライン31,50を通じてアセトアルデヒド分離除去システム9に導入してもよい。なお、水相の蒸留塔3への還流に加えて、又はそれに代えて、有機相を蒸留塔3に還流してもよい。
蒸留塔3の還流比について以下に説明する。蒸留塔3に第1オーバーヘッド流の凝縮液の水相のみを還流させる場合は、水相の還流比(水相の還流量/水相の留出量)を、例えば2以上とすることが望ましく、好ましくは3以上、より好ましくは5以上、さらに好ましくは8以上、特に好ましくは10以上(例えば12以上)である。また、蒸留塔3に第1オーバーヘッド流の凝縮液の有機相のみを還流させる場合は、有機相の還流比(有機相の還流量/有機相の留出量)を、例えば1以上とすることが望ましく、好ましくは1.5以上、より好ましくは2以上、さらに好ましくは4以上、特に好ましくは5以上である。さらに、蒸留塔3に第1オーバーヘッド流の凝縮液の水相及び有機相をともに還流させる場合は、水相及び有機相の総和の還流比(水相及び有機相の還流量の総和/水相及び有機相の留出量の総和)を、例えば1.5以上とすることが望ましく、好ましくは2.3以上、より好ましくは3.5以上、さらに好ましくは6以上、特に好ましくは8.5以上である。また、蒸留塔3に水相を還流させる場合は、水相の還流比(水相の還流量/水相の留出量)は2以上であることが好ましく、より好ましくは3以上、さらに好ましくは5以上、特に好ましくは8以上、とりわけ12以上である。第1蒸留塔の還流比の上限は、いずれの場合も、例えば3000(特に1000)であってもよく、あるいは100(特に30)であってもよい。第1蒸留塔の還流比を上げることにより、アセトアルデヒドを塔頂に濃縮できるので、塔頂の凝縮液をアセトアルデヒド分離除去工程に供することにより、脱アセトアルデヒド効率をより向上できる。
アセトアルデヒド分離除去システム9を用いたアセトアルデヒド分離除去工程では、有機相及び/又は水相に含まれるアセトアルデヒドを公知の方法、例えば、蒸留、抽出又はこれらの組み合わせにより分離除去する。分離されたアセトアルデヒドはライン53を通じて装置外へ排出される。また、有機相及び/又は水相に含まれる有用成分(例えばヨウ化メチルなど)は、ライン52,23を通じて反応槽1へとリサイクルされて再利用される。
図2はアセトアルデヒド分離除去システムの一例を示す概略フロー図である。このフローによれば、例えば前記有機相をアセトアルデヒド分離除去工程にて処理する場合は、有機相をライン101を通じて蒸留塔(第1脱アセトアルデヒド塔)91に供給して蒸留し、アセトアルデヒドに富むオーバーヘッド流(ライン102)と、ヨウ化メチルに富む残液流(ライン103)とに分離する。前記オーバーヘッド流をコンデンサ91aにて凝縮させ、凝縮液の一部を蒸留塔91の塔頂部に還流させ(ライン104)、凝縮液の他の部分を抽出塔92に供給する(ライン105)。前記抽出塔92に供給された凝縮液はライン109から導入された水によって抽出処理される。抽出処理により得られた抽出液はライン107を通じて蒸留塔(第2脱アセトアルデヒド塔)93に供給して蒸留し、アセトアルデヒドに富むオーバーヘッド流(ライン112)と水に富む残液流(ライン113)とに分離する。そして、アセトアルデヒドに富むオーバーヘッド流をコンデンサ93aにて凝縮させ、凝縮液の一部を蒸留塔93の塔頂部に還流させ(ライン114)、凝縮液の他の部分は系外に排出する(ライン115)。また、第1脱アセトアルデヒド塔91の缶出液であるヨウ化メチルに富む残液流、抽出塔92で得られたヨウ化メチルに富むラフィネート(ライン108)、及び第2脱アセトアルデヒド塔93の缶出液である水に富む残液流は、それぞれ、ライン103,111,113を通じて反応槽1へリサイクルされるか、あるいはプロセスの適宜な箇所にリサイクルされ、再利用される。例えば、抽出塔92で得られたヨウ化メチルに富むラフィネートはライン110を通じて蒸留塔91にリサイクルすることができる。113の液は、通常、排水として外部に排出される。コンデンサ91a、93aで凝縮しなかったガス(ライン106,116)はスクラバーシステム8で吸収処理されるか、あるいは廃棄処分される。
また、図2のフローにより前記水相をアセトアルデヒド分離除去工程にて処理する場合は、例えば、水相をライン101を通じて蒸留塔(第1脱アセトアルデヒド塔)91に供給して蒸留し、アセトアルデヒドに富むオーバーヘッド流(ライン102)と、水に富む残液流(ライン103)とに分離する。前記オーバーヘッド流をコンデンサ91aにて凝縮させ、凝縮液の一部を蒸留塔91の塔頂部に還流させ(ライン104)、凝縮液の他の部分を抽出塔92に供給する(ライン105)。前記抽出塔92に供給された凝縮液はライン109から導入された水によって抽出処理される。抽出処理により得られた抽出液はライン107を通じて蒸留塔(第2脱アセトアルデヒド塔)93に供給して蒸留し、アセトアルデヒドに富むオーバーヘッド流(ライン112)と水に富む残液流(ライン113)とに分離する。そして、アセトアルデヒドに富むオーバーヘッド流をコンデンサ93aにて凝縮させ、凝縮液の一部を蒸留塔93の塔頂部に還流させ(ライン114)、凝縮液の他の部分は系外に排出する(ライン115)。また、第1脱アセトアルデヒド塔91の缶出液である水に富む残液流、抽出塔92で得られたヨウ化メチルに富むラフィネート(ライン108)、及び第2脱アセトアルデヒド塔93の缶出液である水に富む残液流は、それぞれ、ライン103,111,113を通じて反応槽1へリサイクルされるか、あるいはプロセスの適宜な箇所にリサイクルされ、再利用される。例えば、抽出塔92で得られたヨウ化メチルに富むラフィネートはライン110を通じて蒸留塔91にリサイクルすることができる。113の液は、通常、排水として外部に排出される。コンデンサ91a、93aで凝縮しなかったガス(ライン106,116)はスクラバーシステム8で吸収処理されるか、あるいは廃棄処分される。
前記の水、酢酸(AC)、ヨウ化メチル(MeI)及びアセトアルデヒド(AD)を少なくとも含むプロセス流に由来するアセトアルデヒドは、上記方法のほか、抽出蒸留を利用して分離除去することもできる。例えば、前記プロセス流を分液させて得られた有機相及び/又は水相(仕込液)を蒸留塔(抽出蒸留塔)に供給するとともに、蒸留塔内のヨウ化メチル及びアセトアルデヒドが濃縮される濃縮域(例えば、塔頂から仕込液供給位置までの空間)に抽出溶媒(通常、水)を導入し、前記濃縮域から降下する液(抽出液)を側流(サイドカット流)として抜き取り、この側流を水相と有機相とに分液させ、前記水相を蒸留することによりアセトアルデヒドを系外に排出することができる。なお、蒸留塔内に比較的多くの水が存在する場合は、前記抽出溶媒を蒸留塔に導入することなく、前記濃縮域から降下する液を側流として抜き取ってもよい。例えば、この蒸留塔に前記濃縮域から降下する液(抽出液)を受けることのできるユニット(チムニートレイなど)を配設し、このユニットで受けた液(抽出液)を側流として抜き取ることができる。抽出溶媒の導入位置は前記仕込液の供給位置よりも上方が好ましく、より好ましくは塔頂付近である。側流の抜き取り位置は、塔の高さ方向において、抽出溶媒の導入位置よりも下方であって、前記仕込液の供給位置よりも上方が好ましい。この方法によれば、抽出溶媒(通常、水)によって、ヨウ化メチルとアセトアルデヒドの濃縮物からアセトアルデヒドを高濃度に抽出できるとともに、抽出溶媒の導入部位とサイドカット部位との間を抽出域として利用するので、少量の抽出溶媒によりアセトアルデヒドを効率よく抽出できる。そのため、例えば、抽出蒸留による抽出液を蒸留塔(抽出蒸留塔)の塔底部から抜き取る方法と比較して蒸留塔の段数を大幅に低減できるとともに、蒸気負荷も低減できる。また、少量の抽出溶媒を用いて、上記図2の脱アルデヒド蒸留と水抽出とを組み合わせる方法よりも、水抽出液中のアセトアルデヒドに対するヨウ化メチルの割合(MeI/AD比)を小さくできるので、ヨウ化メチルの系外へのロスを抑制できる条件でアセトアルデヒドを除去可能である。前記側流中のアセトアルデヒド濃度は、前記仕込液及び缶出液(塔底液)中のアセトアルデヒド濃度よりも格段に高い。また、前記側流中のヨウ化メチルに対するアセトアルデヒドの割合は、仕込液及び缶出液中のヨウ化メチルに対するアセトアルデヒドの割合よりも大きい。なお、前記側流を分液させて得られる有機相(ヨウ化メチル相)をこの蒸留塔にリサイクルしてもよい。この場合、前記側流を分液させて得られる有機相のリサイクル位置は、塔の高さ方向において前記側流抜き取り位置よりも下方が好ましく、前記仕込液の供給位置よりも上方が好ましい。また、前記プロセス流を分液させて得られた有機相を構成する成分(例えば酢酸メチルなど)に対する混和性溶媒をこの蒸留塔(抽出蒸留塔)に導入してもよい。前記混和性溶媒として、例えば、酢酸、酢酸エチルなどが挙げられる。前記混和性溶媒の導入位置は、塔の高さ方向において、前記側流抜き取り位置よりも下方が好ましく、前記仕込液の供給位置よりも上方が好ましい。また、前記混和性溶媒の導入位置は、上記側流を分液させて得られる有機相をこの蒸留塔にリサイクル場合はそのリサイクル位置よりも下方が好ましい。前記側流を分液させて得られる有機相を蒸留塔へリサイクルしたり、前記混和性溶媒を蒸留塔へ導入することにより、側流として抜き取られる抽出液中の酢酸メチル濃度を低下させることができ、前記抽出液を分液させて得られる水相中の酢酸メチル濃度を低減でき、もって水相へのヨウ化メチルの混入を抑制できる。
前記蒸留塔(抽出蒸留塔)の理論段は、例えば1〜100段、好ましくは2〜50段、さらに好ましくは3〜30段、特に好ましくは5〜20段であり、従来の脱アセトアルデヒドに用いる蒸留塔や抽出蒸留塔の80〜100段と比較して、少ない段数で効率よくアセトアルデヒドを分離除去できる。抽出溶媒の流量と仕込液(プロセス流を分液させて得られた有機相及び/又は水相)の流量との質量割合(前者/後者)は、0.0001/100〜100/100の範囲から選択してもよいが、通常、0.0001/100〜20/100、好ましくは0.001/100〜10/100、より好ましくは0.01/100〜8/100、さらに好ましくは0.1/100〜5/100である。前記蒸留塔(抽出蒸留塔)の塔頂温度は、例えば、15〜120℃、好ましくは20〜90℃、より好ましくは20〜80℃、さらに好ましくは25〜70℃である。塔頂圧力は、絶対圧力で、例えば0.1〜0.5MPa程度である。前記蒸留塔(抽出蒸留塔)の他の条件は、従来の脱アセトアルデヒドに用いる蒸留塔や抽出蒸留塔と同様であってもよい。
図3は上記の抽出蒸留を利用したアセトアルデヒド分離除去システムの一例を示す概略フロー図である。この例では、前記プロセス流を分液させて得られた有機相及び/又は水相(仕込液)を供給ライン201を通じて蒸留塔94の中段(塔頂と塔底との間の位置)に供給するとともに、塔頂付近より水をライン202を通じて導入し、蒸留塔94(抽出蒸留塔)内で抽出蒸留を行う。蒸留塔94の前記仕込液の供給位置より上方には、塔内のヨウ化メチル及びアセトアルデヒドが濃縮される濃縮域から降下する液(抽出液)を受けるためのチムニートレイ200が配設されている。この抽出蒸留においては、チムニートレイ200上の液を好ましくは全量抜き取り、ライン208を通じてデカンタ95に導入して分液させる。デカンタ95における水相(アセトアルデヒドを含む)をライン212を通じて冷却クーラー95aに導入して冷却し、水相に溶解していたヨウ化メチルを2相分離させ、デカンタ96にて分液させる。デカンタ96における水相をライン216を通じて蒸留塔97(脱アセトアルデヒド塔)に供給して蒸留し、塔頂の蒸気をライン217を通じてコンデンサ97aに導いて凝縮させ、凝縮液(主にアセトアルデヒド及びヨウ化メチル)の一部は蒸留塔97の塔頂に還流させ、残りは廃棄するか、あるいはライン220を通じて蒸留塔98(抽出蒸留塔)に供給する。蒸留塔98の塔頂付近から水をライン222を通じて導入し、抽出蒸留する。塔頂の蒸気はライン223を通じてコンデンサ98aに導いて凝縮させ、凝縮液(主にヨウ化メチル)の一部は塔頂部に還流させ、残りはライン226を通じて反応系にリサイクルするが、系外除去する場合もある。デカンタ95における有機相(ヨウ化メチル相)は、好ましくは全量をライン209,210を通じて蒸留塔94のチムニートレイ200の位置より下方にリサイクルする。デカンタ95の水相の一部、及びデカンタ96の有機相は、それぞれ、ライン213,210、ライン214,210を通じて蒸留塔94にリサイクルするが、リサイクルしない場合もある。デカンタ95の水相の一部は蒸留塔94における抽出溶媒(水)として利用してもよい。デカンタ96の水相の一部はライン210を通じて蒸留塔94にリサイクルしてもよい。場合により(例えば、前記仕込液中に酢酸メチルが含まれている場合など)、前記プロセス流を分液させて得られた有機相を構成する成分(例えば酢酸メチルなど)に対する混和性溶媒(酢酸、酢酸エチル等)をライン215を通じて蒸留塔94に仕込み、蒸留効率を向上させることもできる。混和性溶媒の蒸留塔94への供給位置は前記仕込液供給部(ライン201の接続部)よりも上方で且つリサイクルライン210の接続部よりも下方である。蒸留塔94の缶出液は反応系にリサイクルする。蒸留塔94の塔頂の蒸気はライン203を通じてコンデンサ94aに導いて凝縮させ、凝縮液をデカンタ99で分液させ、有機相はライン206を通じて蒸留塔94の塔頂部に還流させ、水相はライン207を通じてデカンタ95に導く。蒸留塔97の缶出液(水が主成分)や蒸留塔98(抽出蒸留塔)の缶出液(少量のアセトアルデヒドを含む水)は、それぞれライン218,224を通じて系外除去するか、反応系にリサイクルする。コンデンサ94a、97a,98aで凝縮しなかったガス(ライン211,221,227)はスクラバーシステム8で吸収処理されるか、あるいは廃棄処分される。
図4は上記の抽出蒸留を利用したアセトアルデヒド分離除去システムの他の例を示す概略フロー図である。この例では、蒸留塔94の塔頂の蒸気の凝縮液をホールドタンク100に導き、その全量をライン206を通じて蒸留塔94の塔頂部に還流する。これ以外は図3の例と同様である。
図5は上記の抽出蒸留を利用したアセトアルデヒド分離除去システムのさらに他の例を示す概略フロー図である。この例では、チムニートレイ200上の液を全量抜き取り、ライン208を通じて、デカンタ95を経ることなく、直接冷却クーラー95aに導入して冷却し、デカンタ96に供給する。これ以外は図4の例と同様である。
前記図1において、コンデンサ3aで生じるガス分は、例えば、一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などを含み、コンデンサ3aからライン32,15を通じてスクラバーシステム8へと供給される。スクラバーシステム8に至ったガス分中のヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などは、スクラバーシステム8にて吸収液に吸収される。ヨウ化水素は吸収液中のメタノールまたは酢酸メチルとの反応によってヨウ化メチルが生じる。そして、当該ヨウ化メチル等の有用成分を含有する液分がスクラバーシステム8からリサイクルライン48,23を通じて反応槽1へとリサイクルされて再利用される。
蒸留塔3の塔底部から抜き取られる缶出液は、酢酸よりも沸点の高い成分(高沸点成分)を蒸留塔3からの上記のオーバーヘッド流及び側流と比較して多く含み、例えば、プロピオン酸、並びに、飛沫同伴の上述の触媒や助触媒を含む。この缶出液には、酢酸、ヨウ化メチル、酢酸メチル、2−エチルクロトンアルデヒド、酢酸ブチル及び水なども含まれる。本実施形態では、このような缶出液の一部は、ライン25,26を通じて蒸発槽2へと連続的に導入されてリサイクルされ、缶出液の他の一部は、ライン25,23を通じて反応槽1へと連続的に導入されてリサイクルされる。
蒸留塔3から側流として連続的に抜き取られる第1酢酸流は、蒸留塔3に連続的に導入される蒸気流よりも酢酸が富化されている。すなわち、第1酢酸流の酢酸濃度は前記蒸気流の酢酸濃度よりも高い。第1酢酸流の酢酸濃度は、例えば90.0〜99.9質量%、好ましくは93.0〜99.0質量%である。また、第1酢酸流は、酢酸に加えて、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、ジメチルエーテル、メタノール、アセトアルデヒド、クロトンアルデヒド、2−エチルクロトンアルデヒド、酢酸ブチル、ギ酸及びプロピオン酸、並びに、ヨウ化エチル、ヨウ化プロピル、ヨウ化ブチル、ヨウ化ヘキシル及びヨウ化デシルなどのヨウ化アルキル等を含む。
第1酢酸流において、ヨウ化メチル濃度は、例えば0.1〜18質量%(例えば0.1〜8質量%)、好ましくは0.2〜13質量%(例えば0.2〜5質量%)、水濃度は、例えば0.1〜8質量%、好ましくは0.2〜5質量%、酢酸メチル濃度は、例えば0.1〜8質量%、好ましくは0.2〜5質量%である。また、第1酢酸流中のクロトンアルデヒド濃度は、例えば1.34質量ppm以下、好ましくは1.20質量ppm以下、より好ましくは1.00質量ppm以下、さらに好ましくは0.80質量ppm以下、特に好ましくは0.60質量ppm以下である。第1酢酸流中のクロトンアルデヒド濃度の下限値は、例えば0.01質量ppm、或いは0.05質量ppmであってもよい。第1酢酸流中の2−エチルクロトンアルデヒド濃度は、例えば0.60質量ppm以下、好ましくは0.50質量ppm以下、より好ましくは0.40質量ppm以下である。第1酢酸流中の2−エチルクロトンアルデヒド濃度の下限値は、例えば0.01質量ppm、或いは0.05質量ppmであってもよい。第1酢酸流中のプロピオン酸濃度は、例えば106質量ppm以下、好ましくは100質量ppm以下、より好ましくは90.0質量ppm以下、さらに好ましくは80.0質量ppm以下である。第1酢酸流中のプロピオン酸濃度の下限値は、例えば1.0質量ppm、或いは5.0質量ppm又は10.0質量ppmであってもよい。
蒸留塔3に対するライン27の連結位置は、蒸留塔3の高さ方向において、図示されているように、蒸留塔3に対するライン21の連結位置より上方であってもよいが、蒸留塔3に対するライン21の連結位置より下方であってもよいし、蒸留塔3に対するライン21の連結位置と同じであってもよい。蒸留塔3からの第1酢酸流は、所定の流量で連続的に、ライン27を通じて次の蒸留塔5へと導入される。
なお、蒸留塔3の塔底部から抜き取られる缶出液、又は蒸留塔3から側流として抜き取られる第1酢酸流は、品質が許容できればそのまま製品酢酸とすることもできる。
ライン27を通流する第1酢酸流に、ライン55(水酸化カリウム導入ライン)を通じて、水酸化カリウムを供給ないし添加することができる。水酸化カリウムは、例えば水溶液等の溶液として供給ないし添加できる。第1酢酸流に対する水酸化カリウムの供給ないし添加によって第1酢酸流中のヨウ化水素を減少できる。具体的には、ヨウ化水素は水酸化カリウムと反応してヨウ化カリウムと水が生じる。そのことによって、ヨウ化水素に起因する蒸留塔等の装置の腐食を低減できる。なお、水酸化カリウムは本プロセスにおいてヨウ化水素が存在する適宜な場所に供給ないし添加することができる。なお、プロセス中に添加された水酸化カリウムは酢酸とも反応して酢酸カリウムを生じさせる。
蒸留塔5は、第2蒸留工程を行うためのユニットであり、本実施形態ではいわゆる脱水塔に位置付けられる。第2蒸留工程は、蒸留塔5に連続的に導入される第1酢酸流を蒸留処理して酢酸を更に精製するための工程である。蒸留塔5の材質(少なくとも接液、接ガス部の材質)は、ニッケル基合金又はジルコニウムとすることが好ましい。このような材質を用いることにより、ヨウ化水素や酢酸による蒸留塔内部の腐食を抑制でき、腐食金属イオンの溶出を抑制できる。
蒸留塔5の仕込液は、第1酢酸流の少なくとも一部(ライン27)を含んでおり、第1酢酸流以外の流れ[例えば下流工程からのリサイクル流(例えばライン42)]が加わっていてもよい。
蒸留塔5は、例えば、棚段塔及び充填塔などの精留塔よりなる。蒸留塔5として棚段塔を採用する場合、その理論段は例えば5〜50段である。還流比は理論段数に応じて例えば0.2以上から適宜選択されるが、好ましくは0.3以上、より好ましくは0.35以上、さらに好ましくは0.4以上である。蒸留塔5の還流比の上限は、例えば3000(特に1000)であり、100或いは10程度であってもよい。
第2蒸留工程にある蒸留塔5の内部において、塔頂圧力は、例えば0.10〜0.28MPa(ゲージ圧)、好ましくは0.15〜0.23MPa(ゲージ圧)、さらに好ましくは0.17〜0.21MPa(ゲージ圧)である。塔底圧力は、塔頂圧力より高く、例えば0.13〜0.31MPa(ゲージ圧)、好ましくは0.18〜0.26MPa(ゲージ圧)、さらに好ましくは0.20〜0.24MPa(ゲージ圧)である。第2蒸留工程にある蒸留塔5の内部において、塔頂温度165℃未満、塔底温度175℃未満であることが好ましい。蒸留塔5の塔頂温度及び塔底温度を上記の範囲にすることにより、ヨウ化水素や酢酸による蒸留塔内部の腐食がより抑制され、腐食金属イオンの溶出をより抑制できる。塔頂温度は、より好ましくは163℃未満、さらに好ましくは161℃未満、特に好ましくは160℃未満であり、とりわけ155℃未満が好ましい。塔頂温度の下限は、例えば110℃である。塔底温度は、より好ましくは173℃未満、さらに好ましくは171℃未満、特に好ましくは166℃未満である。塔底温度の下限は、例えば120℃である。
蒸留塔5の塔頂部からは、オーバーヘッド流(第2オーバーヘッド流)としての蒸気がライン33に連続的に抜き取られる。蒸留塔5の塔底部からは、缶出液がライン34に連続的に抜き取られる。5bはリボイラーである。蒸留塔5における塔頂部と塔底部との間の高さ位置から、側流(液体または気体)がライン34に連続的に抜き取られてもよい。
蒸留塔5の塔頂部から抜き取られる蒸気は、酢酸よりも沸点の低い成分(低沸点成分)を蒸留塔5からの上記の缶出液と比較して多く含み、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、クロトンアルデヒド及びギ酸などを含む。このような蒸気は、ライン33を通じてコンデンサ5aへと連続的に導入される。
コンデンサ5aは、蒸留塔5からの蒸気を、冷却して部分的に凝縮させることによって凝縮分とガス分とに分ける。凝縮分は、例えば水及び酢酸などを含む。凝縮分の一部は、コンデンサ5aからライン35を通じて蒸留塔5へと連続的に還流される。凝縮分の他の一部は、コンデンサ5aからライン35,36,23を通じて反応槽1へと連続的に導入され、リサイクルされる。また、コンデンサ5aで生じるガス分は、例えば一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などを含み、コンデンサ5aからライン37,15を通じてスクラバーシステム8へと供給される。スクラバーシステム8に至ったガス分中のヨウ化水素は、スクラバーシステム8にて吸収液に吸収され、吸収液中のヨウ化水素とメタノールまたは酢酸メチルとの反応によってヨウ化メチルが生じ、そして、当該ヨウ化メチル等の有用成分を含有する液分がスクラバーシステム8からリサイクルライン48,23を通じて反応槽1へとリサイクルされて再利用される。
蒸留塔5の塔底部から抜き取られる缶出液あるいは塔の中間位置から抜き取られる側流(第2酢酸流)は蒸留塔5に連続的に導入される第1酢酸流よりも酢酸が富化されている。すなわち、第2酢酸流の酢酸濃度は第1酢酸流の酢酸濃度よりも高い。第2酢酸流の酢酸濃度は、第1酢酸流の酢酸濃度より高い限りにおいて、例えば99.10〜99.99質量%である。本実施形態では、側流を抜き取る場合、蒸留塔5からの側流の抜き取り位置は、蒸留塔5の高さ方向において、蒸留塔5への第1酢酸流の導入位置よりも低い。
本発明においては、第2酢酸流は高い過マンガン酸カリウム試験値を有するので、そのまま製品酢酸とすることができる。しかしながら、微量の不純物[例えば、クロトンアルデヒド、2−エチルクロトンアルデヒド、酢酸ブチル、プロピオン酸、酢酸カリウム(ライン27等に水酸化カリウムを供給した場合)、ヨウ化水素、並びに、飛沫同伴の上述の触媒や助触媒など]を含みうる。そのため、この缶出液あるいは側流を、ライン34を通じて蒸留塔6に連続的に導入して蒸留してもよい。
第2酢酸流中のクロトンアルデヒド濃度は、例えば1.10質量ppm以下、好ましくは1.00質量ppm以下、より好ましくは0.90質量ppm以下、さらに好ましくは0.80質量ppm以下、特に好ましくは0.70質量ppm以下(例えば0.60質量ppm以下)である。第2酢酸流中のクロトンアルデヒド濃度の下限値は、例えば0.01質量ppm、或いは0.05質量ppmであってもよい。第2酢酸流中の2−エチルクロトンアルデヒド濃度は、例えば0.80質量ppm以下、好ましくは0.70質量ppm以下、より好ましくは0.60質量ppm以下、さらに好ましくは0.50質量ppm以下、特に好ましくは0.40質量ppm以下である。第2酢酸流中の2−エチルクロトンアルデヒド濃度の下限値は、例えば0.01質量ppm、或いは0.05質量ppmであってもよい。第2酢酸流中のプロピオン酸濃度は、例えば130質量ppm以下、好ましくは120質量ppm以下、より好ましくは110質量ppm以下、さらに好ましくは80.0質量ppm以下である。第2酢酸流中のプロピオン酸濃度の下限値は、例えば1.0質量ppm、或いは5.0質量ppm又は10.0質量ppmであってもよい。第2酢酸流中のヨウ化ヘキシル濃度は、例えば30質量ppb以下、好ましくは25質量ppb以下、より好ましくは20質量ppb以下、さらに好ましくは17質量ppb以下、特に好ましくは10質量ppb以下である。第2酢酸流中のヨウ化ヘキシル濃度の下限値は、例えば0.1質量ppb(或いは1.0質量ppb)であってもよい。
ライン34を通流する第2酢酸流に、ライン56(水酸化カリウム導入ライン)を通じて、水酸化カリウムを供給ないし添加することができる。水酸化カリウムは、例えば水溶液等の溶液として供給ないし添加できる。第2酢酸流に対する水酸化カリウムの供給ないし添加によって第2酢酸流中のヨウ化水素を減少できる。具体的には、ヨウ化水素は水酸化カリウムと反応してヨウ化カリウムと水が生じる。そのことによって、ヨウ化水素に起因する蒸留塔等の装置の腐食を低減できる。
蒸留塔6は、第3蒸留工程を行うためのユニットであり、本実施形態ではいわゆる脱高沸塔に位置付けられる。第3蒸留工程は、蒸留塔6に連続的に導入される第2酢酸流を精製処理して酢酸を更に精製するための工程である。なお、本実施形態では必ずしも必要な工程ではない。蒸留塔6は、例えば、棚段塔及び充填塔などの精留塔よりなる。蒸留塔6として棚段塔を採用する場合、その理論段は例えば5〜50段であり、還流比は理論段数に応じて例えば0.2〜3000である。第3蒸留工程にある蒸留塔6の内部において、塔頂圧力は例えば−100〜150kPa(ゲージ圧)に設定され、塔底圧力は、塔頂圧力より高く、例えば−90〜180kPa(ゲージ圧)に設定される。第3蒸留工程にある蒸留塔6の内部において、塔頂温度は、例えば、設定塔頂圧力での水の沸点より高く且つ酢酸の沸点より低い温度であって50〜150℃に設定され、塔底温度は、例えば、設定塔底圧力での酢酸の沸点より高い温度であって70〜160℃に設定される。
蒸留塔6の塔頂部からは、オーバーヘッド流としての蒸気がライン38に連続的に抜き取られる。蒸留塔6の塔底部からは、缶出液がライン39に連続的に抜き取られる。6bはリボイラーである。蒸留塔6における塔頂部と塔底部との間の高さ位置からは、側流(液体又は気体)がライン46に連続的に抜き取られる。蒸留塔6の高さ方向において、蒸留塔6に対するライン46の連結位置は、図示されているように、蒸留塔6に対するライン34の連結位置より上方であってもよいが、蒸留塔6に対するライン34の連結位置より下方であってもよいし、蒸留塔6に対するライン34の連結位置と同じであってもよい。
蒸留塔6の塔頂部から抜き取られる蒸気は、酢酸よりも沸点の低い成分(低沸点成分)を蒸留塔6からの上記の缶出液と比較して多く含み、酢酸のほか、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、ジメチルエーテル、メタノール及びギ酸などを含む。このような蒸気は、ライン38を通じてコンデンサ6aへと連続的に導入される。
コンデンサ6aは、蒸留塔6からの蒸気を、冷却して部分的に凝縮させることによって凝縮分とガス分とに分ける。凝縮分は、酢酸のほか、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、ジメチルエーテル、メタノール及びギ酸などを含む。凝縮分の少なくとも一部については、コンデンサ6aからライン40を通じて蒸留塔6へと連続的に還流される。凝縮分の一部(留出分)については、コンデンサ6aからライン40,41,42を通じて、蒸留塔5へと導入される前のライン27中の第1酢酸流へとリサイクルすることが可能である。これと共に或はこれに代えて、凝縮分の一部(留出分)については、コンデンサ6aからライン40,41,43を通じて、蒸留塔3へと導入される前のライン21中の蒸気流へとリサイクルすることが可能である。また、凝縮分の一部(留出分)については、コンデンサ6aからライン40,44,23を通じて、反応槽1へリサイクルしてもよい。さらに、コンデンサ6aからの留出分の一部については、前述したように、スクラバーシステム8へと供給して当該システム内で吸収液として使用することが可能である。スクラバーシステム8では、有用分を吸収した後のガス分は装置外に排出され、そして、有用成分を含む液分がスクラバーシステム8からリサイクルライン48,23を通じて反応槽1へと導入ないしリサイクルされて再利用される。加えて、コンデンサ6aからの留出分の一部については、装置内で稼働する各種ポンプ(図示略)へと図外のラインを通じて導いて当該ポンプのシール液として使用してもよい。更に加えて、コンデンサ6aからの留出分の一部については、ライン40に付設される抜き取りラインを通じて、定常的に装置外へ抜き取ってもよいし、非定常的に必要時において装置外へ抜き取ってもよい。凝縮分の一部(留出分)が蒸留塔6での蒸留処理系から除かれる場合、その留出分の量(留出量)は、コンデンサ6aで生ずる凝縮液の例えば0.01〜30質量%であり、好ましくは0.1〜10質量%、より好ましくは0.3〜5質量%、より好ましくは0.5〜3質量%である。一方、コンデンサ6aで生じるガス分は、例えば、一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などを含み、コンデンサ6aからライン45,15を通じてスクラバーシステム8へと供給される。
蒸留塔6の塔底部からライン39を通じて抜き取られる缶出液は、酢酸よりも沸点の高い成分(高沸点成分)を蒸留塔6からの上記のオーバーヘッド流と比較して多く含み、例えばプロピオン酸、酢酸カリウム等の酢酸塩(ライン34等に水酸化カリウム等のアルカリを供給した場合)などを含む。また、蒸留塔6の塔底部からライン39を通じて抜き取られる缶出液は、この酢酸製造装置の構成部材の内壁で生じて遊離した金属などの腐食金属等、及び腐食性ヨウ素に由来するヨウ素と当該腐食金属等との化合物も含む。このような缶出液は、本実施形態では酢酸製造装置外に排出される。
蒸留塔6からライン46に連続的に抜き取られる側流は、第3酢酸流として、次のイオン交換樹脂塔7に連続的に導入されることとなる。この第3酢酸流は、蒸留塔6に連続的に導入される第2酢酸流よりも酢酸が富化されている。すなわち、第3酢酸流の酢酸濃度は第2酢酸流の酢酸濃度よりも高い。第3酢酸流の酢酸濃度は、第2酢酸流の酢酸濃度より高い限りにおいて、例えば99.800〜99.999質量%である。本実施形態では、蒸留塔6からの側流の抜き取り位置は、蒸留塔6の高さ方向において、蒸留塔6への第2酢酸流の導入位置よりも高い。他の実施形態では、蒸留塔6からの側流の抜き取り位置は、蒸留塔6の高さ方向において、蒸留塔6への第2酢酸流の導入位置と同じかそれよりも低い。なお、蒸留塔6は、単蒸留器(蒸発器)でも代用可能である。特に、本発明では、蒸留塔5での蒸留処理により、過マンガン酸カリウム試験値の非常に高い酢酸が得られるので、蒸留塔6を省略することができる。
イオン交換樹脂塔7は、吸着除去工程を行うための精製ユニットである。この吸着除去工程は、イオン交換樹脂塔7に連続的に導入される第3酢酸流に微量含まれる主にヨウ化アルキル(例えば、ヨウ化エチル、ヨウ化プロピル、ヨウ化ブチル、ヨウ化ヘキシル、ヨウ化デシルなど)を吸着除去して酢酸を更に精製するための工程である。なお、蒸留塔6を省略し、蒸留塔5からの第2酢酸流をイオン交換樹脂塔7に供給してもよい。また、イオン交換樹脂塔7を用いる吸着除去工程は必ずしも設けなくてもよい。
イオン交換樹脂塔7においては、ヨウ化アルキルに対する吸着能を有するイオン交換樹脂が塔内に充填されてイオン交換樹脂床をなす。そのようなイオン交換樹脂としては、例えば、交換基たるスルホン酸基、カルボキシル基、ホスホン酸基等における脱離性のプロトンの一部が銀や銅などの金属で置換された陽イオン交換樹脂を挙げることができる。吸着除去工程では、例えばこのようなイオン交換樹脂が充填されたイオン交換樹脂塔7の内部を第3酢酸流(液体)が通流し、その通流過程において、第3酢酸流中のヨウ化アルキル等の不純物がイオン交換樹脂に吸着されて第3酢酸流から除去される。吸着除去工程にあるイオン交換樹脂塔7において、内部温度は例えば18〜100℃であり、酢酸流の通液速度[樹脂容積1m3当たりの酢酸処理量(m3/h)]は、例えば3〜15m3/h・m3(樹脂容積)である。
イオン交換樹脂塔7の下端部からライン47へと第4酢酸流が連続的に導出される。第4酢酸流の酢酸濃度は第3酢酸流の酢酸濃度よりも高い。すなわち、第4酢酸流は、イオン交換樹脂塔7に連続的に導入される第3酢酸流よりも酢酸が富化されている。第4酢酸流の酢酸濃度は、第3酢酸流の酢酸濃度より高い限りにおいて例えば99.900〜99.999質量%又はそれ以上である。本製造方法においては、この第4酢酸流を図外の製品タンクに貯留することができる。
この酢酸製造装置においては、イオン交換樹脂塔7からの上記の第4酢酸流を更に精製するための精製ユニットとして、蒸留塔であるいわゆる製品塔ないし仕上塔が設けられてもよい。そのような製品塔が設けられる場合、当該製品塔は、例えば、棚段塔及び充填塔などの精留塔よりなる。製品塔として棚段塔を採用する場合、その理論段は例えば5〜50段であり、還流比は理論段数に応じて例えば0.5〜3000である。精製工程にある製品塔の内部において、塔頂圧力は例えば−195〜150kPa(ゲージ圧)に設定され、塔底圧力は、塔頂圧力より高く、例えば−190〜180kPa(ゲージ圧)に設定される。製品塔の内部において、塔頂温度は、例えば、設定塔頂圧力での水の沸点より高く且つ酢酸の沸点より低い温度であって50〜150℃に設定され、塔底温度は、例えば、設定塔底圧力での酢酸の沸点より高い温度であって70〜160℃に設定される。なお、製品塔ないし仕上塔は、単蒸留器(蒸発器)でも代用可能である。
製品塔を設ける場合、イオン交換樹脂塔7からの第4酢酸流(液体)の全部又は一部が、製品塔に対して連続的に導入される。そのような製品塔の塔頂部からは、微量の低沸点成分(例えば、ヨウ化メチル、水、酢酸メチル、ジメチルエーテル、クロトンアルデヒド、アセトアルデヒド及びギ酸など)を含むオーバーヘッド流としての蒸気が連続的に抜き取られる。この蒸気は、所定のコンデンサにて凝縮分とガス分とに分けられる。凝縮分の一部は製品塔へと連続的に還流され、凝縮分の他の一部は反応槽1へとリサイクルされるか、系外に廃棄されるか、あるいはその両方であってもよく、ガス分はスクラバーシステム8へと供給される。製品塔の塔底部からは、微量の高沸点成分を含む缶出液が連続的に抜き取られ、この缶出液は、例えば蒸留塔6へ導入される前のライン34中の第2酢酸流へとリサイクルされる。製品塔における塔頂部と塔底部との間の高さ位置からは、側流(液体)が第5酢酸流として連続的に抜き取られる。製品塔からの側流の抜き取り位置は、製品塔の高さ方向において、例えば、製品塔への第4酢酸流の導入位置よりも低い。第5酢酸流は、製品塔に連続的に導入される第4酢酸流よりも酢酸が富化されている。すなわち、第5酢酸流の酢酸濃度は第4酢酸流の酢酸濃度よりも高い。第5酢酸流の酢酸濃度は、第4酢酸流の酢酸濃度より高い限りにおいて例えば99.900〜99.999質量%又はそれ以上である。この第5酢酸流は、例えば、図外の製品タンクに貯留される。なお、イオン交換樹脂塔7は、蒸留塔6の下流に設置する代わりに(又はそれに加えて)、製品塔の下流に設置し、製品塔出の酢酸流を処理してもよい。
以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。なお、部、%、ppm、ppbはすべて質量基準である。水濃度はカールフィッシャー水分測定法、金属イオン濃度はICP分析(又は原子吸光分析)、その他の成分の濃度はガスクロマトグラフィーにより測定した。
比較例1
メタノール法酢酸パイロットプラントにおいて以下の実験を行った(図1参照)。
反応槽[全圧2.8MPa(絶対圧)、一酸化炭素分圧1.4MPa(絶対圧)、水素分圧0.5MPa(絶対圧)、反応温度187℃]で得られた反応混合液[組成:ヨウ化メチル(MeI)7.6%、酢酸メチル(MA)4.5%、水(H2O)2.5%、ロジウム錯体910ppm(Rh換算)、ヨウ化リチウム(LiI)14.1%、アセトアルデヒド(AD)212ppm、クロトンアルデヒド(CR)2.0ppm、2−エチルクロトンアルデヒド(2ECR)2.2ppm、プロピオン酸280ppm、残り酢酸(但し、微量の不純物を含む)]400部を蒸発槽に仕込み、蒸発槽を加熱して25%蒸発させた(蒸発率25%)。蒸発槽缶出液中のアセトアルデヒド濃度は73ppmであった。蒸発槽の蒸気[組成:ヨウ化メチル27.2%、酢酸メチル14.7%、水2.0%、アセトアルデヒド689ppm、クロトンアルデヒド2.8ppm、2−エチルクロトンアルデヒド0.60ppm、プロピオン酸84.6ppm、残り酢酸(但し、微量の不純物を含む)]100部を脱低沸塔[実段数20段、仕込位置下から2段、塔頂圧250kPa(絶対圧)、塔頂温度140℃]に仕込み、塔頂蒸気を凝縮させ、デカンタにて水相と有機相とに分離後、水相の一部(11部)を脱アセトアルデヒド塔[実段数80段、仕込位置下から11段、塔頂圧280kPa(絶対圧)、塔頂温度52℃]に送り、アセトアルデヒドを分離し系外に除去し、アセトアルデヒド除去後の水溶液(1.6部)を留出液として反応系にリサイクルした。水相の残りは脱低沸塔に還流した。水相の還流量/留出量を還流比とし、還流比を2とした。有機相(41部)は直接反応系にリサイクルした。脱低沸塔の塔底から3部を缶出液として抜取り、反応系にリサイクルした。脱低沸塔の中間部(下から4段)からサイドカット(SC)流として65.7部を抜取り、脱水塔[実段数50段、仕込位置下から34段、塔頂圧295kPa(絶対圧)、塔頂温度150℃]に仕込んだ。脱水塔の塔頂蒸気凝縮液の一部を脱水塔に還流(リサイクル)し、残り(19部)を留出液として反応系にリサイクルした。脱水塔の還流比(還流量/留出量)を0.5とした。その結果、脱水塔の塔底から缶出液として製品酢酸46.7部を得た。アセトアルデヒド除去量(脱AD量)は0.0141部となり、脱水塔缶出液量(製品製造量)に対する脱AD量の比は3.02×10-4となった。製品酢酸中のクロトンアルデヒド含有量は1.28ppm、2−エチルクロトンアルデヒド含有量は0.95ppm、プロピオン酸含有量は150ppm、ヨウ化ヘキシル含有量は36ppbであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ40分であった。結果を表1に示す。
比較例2
脱低沸塔の還流比を10とした以外は比較例1と同様の実験を行った。なお、この変更により、反応混合液組成、蒸発槽の蒸気組成は変化した。結果を表1に示す。
実施例1
蒸発槽における蒸発率を28%とした以外は比較例2と同様の実験を行った。なお、この変更により、反応混合液組成、蒸発槽の蒸気組成は変化した。結果を表1に示す。
実施例2
蒸発槽における蒸発率を31%とした以外は比較例2と同様の実験を行った。なお、この変更により、反応混合液組成、蒸発槽の蒸気組成は変化した。結果を表1に示す。
実施例3
蒸発槽における蒸発率を35%とした以外は比較例2と同様の実験を行った。なお、この変更により、反応混合液組成、蒸発槽の蒸気組成は変化した。結果を表1に示す。
実施例4
蒸発槽における蒸発率を31%とし、且つ脱低沸塔の還流比を15とした以外は比較例2と同様の実験を行った。なお、この変更により、反応混合液組成、蒸発槽の蒸気組成は変化した。結果を表1に示す。
表1において、ADはアセトアルデヒド、MeIはヨウ化メチル、MAは酢酸メチル、ACは酢酸、CRはクロトンアルデヒド、2ECRは2−エチルクロトンアルデヒド、PAはプロピオン酸、HexIはヨウ化ヘキシルを示す。表1において各成分の欄の数値は濃度を表す。
Figure 0006481043
[結果の考察]
比較例2と実施例1〜3の対比より、蒸発槽を加熱して蒸発率を上げ、蒸発槽缶出液のAD濃度を低減させ、脱低沸塔の仕込み組成を変化させると、デカンタでのAD濃度が上昇し、デカンタのMA濃度をある一定値以下とすることで、AD分配係数[水相AD濃度(%)/有機相AD濃度(%)]が増大し、その結果、脱AD効率が上昇して、反応槽AD濃度は低下し、CR、2ECR、HexI、PAの生成量は低減し、製品カメレオンタイムは上昇することが分かる。
比較例1と2、及び実施例2と4の対比より、蒸発槽の蒸発率は同じでも、脱低沸塔の還流比を上げると、脱AD効率は上昇して、反応槽AD濃度は低下し、CR、2ECR、HexI、PAの生成量は低減し、製品カメレオンタイムは上昇することが分かる。
以上のことから、蒸発槽を加熱し、脱低沸塔塔頂デカンタ中のAD濃度を上げるか或いはMA濃度を低下させ、さらに脱低沸塔の還流比を上げることで、脱AD効率が上昇し、製品品質が向上することが分かる。
以上のまとめとして、本発明の構成及びそのバリエーションを以下に付記しておく。
[1]金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水の存在下、メタノールと一酸化炭素とを反応槽で反応させて酢酸を生成させるカルボニル化反応工程と、
前記カルボニル化反応工程で得られた反応混合物を蒸発槽に導入して加熱し、前記反応混合物を蒸気流と残液流とに分離する蒸発工程と、
前記残液流を反応槽にリサイクルする残液流リサイクル工程と、
前記蒸気流を第1蒸留塔によりヨウ化メチル及びアセトアルデヒドに富む第1オーバーヘッド流と酢酸に富む第1酢酸流とに分離するとともに、前記第1オーバーヘッド流を凝縮、分液させて水相と有機相とを得る脱低沸工程と、
前記水相及び/又は有機相の少なくとも一部を反応槽にリサイクルする第1オーバーヘッド流リサイクル工程と、
プロセス流中のアセトアルデヒドを分離除去するためのアセトアルデヒド分離除去工程と、
を備えた酢酸の製造方法であって、
前記蒸発槽の加熱により、(i)前記水相中のアセトアルデヒド濃度を2340質量ppm以上、及び/又は、(ii)前記水相中の酢酸メチル濃度を19.0質量%未満、及び/又は、(iii)前記有機相中の酢酸メチル濃度を38.0質量%未満に制御するとともに、当該水相の少なくとも一部を前記アセトアルデヒド分離除去工程にて処理し、アセトアルデヒド分離除去後の残液を反応槽及び/又はアセトアルデヒド分離除去工程及び/又はその他のプロセスにリサイクルすることを特徴とする酢酸の製造方法。
[2]触媒系がさらにイオン性ヨウ化物を含む[1]記載の酢酸の製造方法。
[3]第1蒸留塔の運転条件につき、当該第1蒸留塔に水相のみを還流させる場合は水相の還流比を2以上(好ましくは3以上、より好ましくは5以上、さらに好ましくは8以上、特に好ましくは10以上、とりわけ12以上)とし、有機相のみを還流させる場合は有機相の還流比を1以上(好ましくは1.5以上、より好ましくは2以上、さらに好ましくは4以上、特に好ましくは5以上)とし、水相及び有機相をともに還流させる場合は水相及び有機相の総和の還流比を1.5以上(好ましくは2.3以上、より好ましくは3.5以上、さらに好ましくは6以上、特に好ましくは8.5以上)とする[1]又は[2]記載の酢酸の製造方法。
[4]さらに、前記第1酢酸流を第2蒸留塔により水に富む第2オーバーヘッド流と第1酢酸流よりも酢酸に富む第2酢酸流とに分離する脱水工程を有する[1]〜[3]のいずれか1つに記載の酢酸の製造方法。
[5] 前記第2酢酸流におけるクロトンアルデヒド濃度が1.10質量ppm以下(好ましくは1.00質量ppm以下、より好ましくは0.90質量ppm以下、さらに好ましくは0.80質量ppm以下、特に好ましくは0.70質量ppm以下、とりわけ0.60質量ppm以下)及び/又は2−エチルクロトンアルデヒド濃度が0.80質量ppm以下(好ましくは0.70質量ppm以下、より好ましくは0.60質量ppm以下、さらに好ましくは0.50質量ppm以下、特に好ましくは0.40質量ppm以下)及び/又はプロピオン酸濃度が130質量ppm以下(好ましくは120質量ppm以下、より好ましくは110質量ppm以下、さらに好ましくは80.0質量ppm以下)である[4]記載の酢酸の製造方法。
[6]前記第2酢酸流におけるヨウ化ヘキシル濃度が30質量ppb以下(好ましくは25質量ppb以下、より好ましくは20質量ppb以下、さらに好ましくは17質量ppb以下、特に好ましくは10質量ppb以下)である[4]又は[5]記載の酢酸の製造方法。
[7]前記蒸発槽における残液流中のアセトアルデヒド濃度を70質量ppm以下(好ましくは60質量ppm以下、より好ましくは50質量ppm以下、さらに好ましくは40質量ppm以下、特に好ましくは30質量ppm以下)にする[1]〜[6]のいずれか1つに記載の酢酸の製造方法。
[8]反応槽の反応混合液におけるクロトンアルデヒド濃度が1.7質量ppm以下(好ましくは1.4質量ppm以下、より好ましくは1.2質量ppm以下、さらに好ましくは1.0質量ppm以下、特に好ましくは0.8質量ppm以下、とりわけ0.6質量ppm以下)及び/又は2−エチルクロトンアルデヒド濃度が1.8質量ppm以下(好ましくは1.6質量ppm以下、より好ましくは1.4質量ppm以下、さらに好ましくは1.2質量ppm以下、特に好ましくは1.0質量ppm以下、とりわけ0.8質量ppm以下)及び/又はプロピオン酸濃度が240質量ppm以下(好ましくは230質量ppm以下、より好ましくは220質量ppm以下、さらに好ましくは200質量ppm以下、特に好ましくは180質量ppm以下)である[1]〜[7]のいずれか1つに記載の酢酸の製造方法。
[9]第1蒸留塔に供給する前記蒸気流におけるクロトンアルデヒド濃度が2.4質量ppm以下(好ましくは2.2質量ppm以下、より好ましくは2.0質量ppm以下、さらに好ましくは1.6質量ppm以下、特に好ましくは1.2質量ppm以下)及び/又は2−エチルクロトンアルデヒド濃度が0.45質量ppm以下(好ましくは0.40質量ppm以下、より好ましくは0.30質量ppm以下)及び/又はプロピオン酸濃度が106質量ppm以下(好ましくは74.0質量ppm以下、より好ましくは65.0質量ppm以下、さらに好ましくは55.0質量ppm以下)である[1]〜[8]のいずれか1つに記載の酢酸の製造方法。
[10] 前記第1酢酸流におけるクロトンアルデヒド濃度が1.34質量ppm以下(好ましくは1.20質量ppm以下、より好ましくは1.00質量ppm以下、さらに好ましくは0.80質量ppm以下、特に好ましくは0.60質量ppm以下)及び/又は2−エチルクロトンアルデヒド濃度が0.60質量ppm以下(好ましくは0.50質量ppm以下、より好ましくは0.40質量ppm以下)及び/又はプロピオン酸濃度が106質量ppm以下(好ましくは100質量ppm以下、より好ましくは90.0質量ppm以下、さらに好ましくは80.0質量ppm以下)である[1]〜[9]のいずれか1つに記載の酢酸の製造方法。
[11]金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水の存在下、メタノールと一酸化炭素とを反応槽で反応させて酢酸を生成させるカルボニル化反応工程と、
前記カルボニル化反応工程で得られた反応混合物を蒸発槽に導入して加熱し、前記反応混合物を蒸気流と残液流とに分離する蒸発工程と、
前記残液流を反応槽にリサイクルする残液流リサイクル工程と、
前記蒸気流を第1蒸留塔によりヨウ化メチル及びアセトアルデヒドに富む第1オーバーヘッド流と酢酸に富む第1酢酸流とに分離するとともに、前記第1オーバーヘッド流を凝縮、分液させて水相と有機相とを得る脱低沸工程と、
前記水相及び/又は有機相の少なくとも一部を反応槽にリサイクルする第1オーバーヘッド流リサイクル工程と、
プロセス流中のアセトアルデヒドを分離除去するためのアセトアルデヒド分離除去工程と、
を備えた酢酸の製造方法であって、
前記蒸発槽の加熱により、(i)前記水相中のアセトアルデヒド濃度を2340質量ppm以上、及び/又は、(ii)前記水相中の酢酸メチル濃度を19.0質量%未満、及び/又は、(iii)前記有機相中の酢酸メチル濃度を38.0質量%未満に制御し、且つ前記残液流中のアセトアルデヒド濃度を70質量ppm以下に制御し、前記水相の少なくとも一部を前記アセトアルデヒド分離除去工程にて処理し、アセトアルデヒド分離除去後の残液を反応槽及び/又はアセトアルデヒド分離除去工程及び/又はその他のプロセスにリサイクルするとともに、第1蒸留塔の水相の還流比を2以上とすることを特徴とする酢酸の製造方法。
[12]触媒系がさらにイオン性ヨウ化物を含む[11]記載の酢酸の製造方法。
[13]前記水相の還流比を3以上(好ましくは5以上、より好ましくは8以上、さらに好ましくは10以上、特に好ましくは12以上)とする[11]又は[12]記載の酢酸の製造方法。
[14]さらに、前記第1酢酸流を第2蒸留塔により水に富む第2オーバーヘッド流と第1酢酸流よりも酢酸に富む第2酢酸流とに分離する脱水工程を有する[11]〜[13]のいずれか1つに記載の酢酸の製造方法。
[15] 前記第2酢酸流におけるクロトンアルデヒド濃度が1.10質量ppm以下(好ましくは1.00質量ppm以下、より好ましくは0.90質量ppm以下、さらに好ましくは0.80質量ppm以下、特に好ましくは0.70質量ppm以下、とりわけ0.60質量ppm以下)及び/又は2−エチルクロトンアルデヒド濃度が0.80質量ppm以下(好ましくは0.70質量ppm以下、より好ましくは0.60質量ppm以下、さらに好ましくは0.50質量ppm以下、特に好ましくは0.40質量ppm以下)及び/又はプロピオン酸濃度が130質量ppm以下(好ましくは120質量ppm以下、より好ましくは110質量ppm以下、さらに好ましくは80.0質量ppm以下)である[14]記載の酢酸の製造方法。
[16]前記第2酢酸流におけるヨウ化ヘキシル濃度が30質量ppb以下(好ましくは25質量ppb以下、より好ましくは20質量ppb以下、さらに好ましくは17質量ppb以下、特に好ましくは10質量ppb以下)である[14]又は[15]記載の酢酸の製造方法。
[17]前記蒸発槽における残液流中のアセトアルデヒド濃度を60質量ppm以下(好ましくは50質量ppm以下、より好ましくは40質量ppm以下、さらに好ましくは30質量ppm以下)にする[11]〜[16]のいずれか1つに記載の酢酸の製造方法。
[18]反応槽の反応混合液におけるクロトンアルデヒド濃度が1.7質量ppm以下(好ましくは1.4質量ppm以下、より好ましくは1.2質量ppm以下、さらに好ましくは1.0質量ppm以下、特に好ましくは0.8質量ppm以下、とりわけ0.6質量ppm以下)及び/又は2−エチルクロトンアルデヒド濃度が1.8質量ppm以下(好ましくは1.6質量ppm以下、より好ましくは1.4質量ppm以下、さらに好ましくは1.2質量ppm以下、特に好ましくは1.0質量ppm以下、とりわけ0.8質量ppm以下)及び/又はプロピオン酸濃度が240質量ppm以下(好ましくは230質量ppm以下、より好ましくは220質量ppm以下、さらに好ましくは200質量ppm以下、特に好ましくは180質量ppm以下)である[11]〜[17]のいずれか1つに記載の酢酸の製造方法。
[19]第1蒸留塔に供給する前記蒸気流におけるクロトンアルデヒド濃度が2.4質量ppm以下(好ましくは2.2質量ppm以下、より好ましくは2.0質量ppm以下、さらに好ましくは1.6質量ppm以下、特に好ましくは1.2質量ppm以下)及び/又は2−エチルクロトンアルデヒド濃度が0.45質量ppm以下(好ましくは0.40質量ppm以下、より好ましくは0.30質量ppm以下)及び/又はプロピオン酸濃度が106質量ppm以下(好ましくは74.0質量ppm以下、より好ましくは65.0質量ppm以下、さらに好ましくは55.0質量ppm以下)である[11]〜[18]のいずれか1つに記載の酢酸の製造方法。
[20] 前記第1酢酸流におけるクロトンアルデヒド濃度が1.34質量ppm以下(好ましくは1.20質量ppm以下、より好ましくは1.00質量ppm以下、さらに好ましくは0.80質量ppm以下、特に好ましくは0.60質量ppm以下)及び/又は2−エチルクロトンアルデヒド濃度が0.60質量ppm以下(好ましくは0.50質量ppm以下、より好ましくは0.40質量ppm以下)及び/又はプロピオン酸濃度が106質量ppm以下(好ましくは100質量ppm以下、より好ましくは90.0質量ppm以下、さらに好ましくは80.0質量ppm以下)である[11]〜[19]のいずれか1つに記載の酢酸の製造方法。
[21]前記(i)において、水相中のアセトアルデヒド濃度が2400質量ppm以上(好ましくは2500質量ppm以上、より好ましくは2600質量ppm以上)である[11]〜[20]のいずれか1つに記載の酢酸の製造方法。
[22]前記(ii)において、水相中の酢酸メチル濃度が18.5質量%以下(好ましくは17.5質量%以下、より好ましくは17.0質量%以下)である[11]〜[21]のいずれか1つに記載の酢酸の製造方法。
[23]前記(iii)において、有機相中の酢酸メチル濃度が37.5質量%以下(好ましくは37.0質量%以下、より好ましくは35.0質量%以下、さらに好ましくは30.0質量%以下、特に好ましくは25.0質量%以下)である[11]〜[22]のいずれか1つに記載の酢酸の製造方法。
[24]前記(iii)において、有機相中の酢酸メチル濃度の下限が1.0質量%(好ましくは2.0質量%、より好ましくは5.0質量%、さらに好ましくは10.0質量%、特に好ましくは15.0質量%、とりわけ20.0質量%)である[11]〜[23]のいずれか1つに記載の酢酸の製造方法。
[25]反応槽の反応混合液中のアセトアルデヒド濃度が500質量ppm以下(好ましくは450質量ppm以下、より好ましくは400質量ppm以下、さらに好ましくは350質量ppm以下、特に好ましくは300質量ppm以下、とりわけ250質量ppm以下、なかんずく210質量ppm以下)である[11]〜[24]のいずれか1つに記載の酢酸の製造方法。
本発明の酢酸の製造方法は、メタノール法カルボニル化プロセス(メタノール法酢酸プロセス)による酢酸の工業的製造法として利用可能である。
1 反応槽
2 蒸発槽
3,5,6 蒸留塔
4 デカンタ
7 イオン交換樹脂塔
8 スクラバーシステム
9 アセトアルデヒド分離除去システム
16 反応混合物供給ライン
17 蒸気流排出ライン
18,19 残液流リサイクルライン
54 一酸化炭素含有ガス導入ライン
55,56 水酸化カリウム導入ライン
57 触媒循環ポンプ
91 蒸留塔(第1脱アセトアルデヒド塔)
92 抽出塔
93 蒸留塔(第2脱アセトアルデヒド塔)
94 蒸留塔(抽出蒸留塔)
95 デカンタ
96 デカンタ
97 蒸留塔(脱アセトアルデヒド塔)
98 蒸留塔(抽出蒸留塔)
99 デカンタ
200 チムニートレイ

Claims (11)

  1. 金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水の存在下、メタノールと一酸化炭素とを反応槽で反応させて酢酸を生成させるカルボニル化反応工程と、
    前記カルボニル化反応工程で得られた反応混合物を蒸発槽に導入して加熱し、前記反応混合物を蒸気流と残液流とに分離する蒸発工程と、
    前記残液流を反応槽にリサイクルする残液流リサイクル工程と、
    前記蒸気流を第1蒸留塔によりヨウ化メチル及びアセトアルデヒドに富む第1オーバーヘッド流と酢酸に富む第1酢酸流とに分離するとともに、前記第1オーバーヘッド流を凝縮、分液させて水相と有機相とを得る脱低沸工程と、
    前記水相及び/又は有機相の少なくとも一部を反応槽にリサイクルする第1オーバーヘッド流リサイクル工程と、
    プロセス流中のアセトアルデヒドを分離除去するためのアセトアルデヒド分離除去工程と、
    を備えた酢酸の製造方法であって、
    前記蒸発槽の加熱により、蒸発率26〜60%とし、(i)前記水相中のアセトアルデヒド濃度を2340質量ppm以上、(ii)前記水相中の酢酸メチル濃度を19.0質量%未満、及び(iii)前記有機相中の酢酸メチル濃度を38.0質量%未満に制御するとともに、当該水相の少なくとも一部を前記アセトアルデヒド分離除去工程にて処理し、アセトアルデヒド分離除去後の残液を反応槽及び/又はアセトアルデヒド分離除去工程及び/又はその他のプロセスにリサイクルすることを特徴とする酢酸の製造方法。
  2. 触媒系がさらにイオン性ヨウ化物を含む請求項1記載の酢酸の製造方法。
  3. 第1蒸留塔の運転条件につき、当該第1蒸留塔に水相のみを還流させる場合は水相の還流比を2以上とし、有機相のみを還流させる場合は有機相の還流比を1以上とし、水相及び有機相をともに還流させる場合は水相及び有機相の総和の還流比を1.5以上とする請求項1又は2記載の酢酸の製造方法。
  4. さらに、前記第1酢酸流を第2蒸留塔により水に富む第2オーバーヘッド流と第1酢酸流よりも酢酸に富む第2酢酸流とに分離する脱水工程を有する請求項1〜3のいずれか1項に記載の酢酸の製造方法。
  5. 前記第2酢酸流におけるクロトンアルデヒド濃度が1.10質量ppm以下及び/又は2−エチルクロトンアルデヒド濃度が0.80質量ppm以下及び/又はプロピオン酸濃度が130質量ppm以下である請求項4記載の酢酸の製造方法。
  6. 前記蒸発槽における残液流中のアセトアルデヒド濃度を70質量ppm以下にする請求項1〜5のいずれか1項に記載の酢酸の製造方法。
  7. 反応槽の反応混合液におけるクロトンアルデヒド濃度が1.7質量ppm以下及び/又は2−エチルクロトンアルデヒド濃度が1.8質量ppm以下及び/又はプロピオン酸濃度が240質量ppm以下である請求項1〜6のいずれか1項に記載の酢酸の製造方法。
  8. 第1蒸留塔に供給する前記蒸気流におけるクロトンアルデヒド濃度が2.4質量ppm以下及び/又は2−エチルクロトンアルデヒド濃度が0.45質量ppm以下及び/又はプロピオン酸濃度が106質量ppm以下である請求項1〜7のいずれか1項に記載の酢酸の製造方法。
  9. 前記第1酢酸流におけるクロトンアルデヒド濃度が1.34質量ppm以下及び/又は2−エチルクロトンアルデヒド濃度が0.60質量ppm以下及び/又はプロピオン酸濃度が106質量ppm以下である請求項1〜8のいずれか1項に記載の酢酸の製造方法。
  10. 金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水の存在下、メタノールと一酸化炭素とを反応槽で反応させて酢酸を生成させるカルボニル化反応工程と、
    前記カルボニル化反応工程で得られた反応混合物を蒸発槽に導入して加熱し、前記反応混合物を蒸気流と残液流とに分離する蒸発工程と、
    前記残液流を反応槽にリサイクルする残液流リサイクル工程と、
    前記蒸気流を第1蒸留塔によりヨウ化メチル及びアセトアルデヒドに富む第1オーバーヘッド流と酢酸に富む第1酢酸流とに分離するとともに、前記第1オーバーヘッド流を凝縮、分液させて水相と有機相とを得る脱低沸工程と、
    前記水相及び/又は有機相の少なくとも一部を反応槽にリサイクルする第1オーバーヘッド流リサイクル工程と、
    プロセス流中のアセトアルデヒドを分離除去するためのアセトアルデヒド分離除去工程と、
    を備えた酢酸の製造方法であって、
    前記蒸発槽の加熱により、蒸発率26〜60%とし、(i)前記水相中のアセトアルデヒド濃度を2340質量ppm以上、(ii)前記水相中の酢酸メチル濃度を19.0質量%未満、及び(iii)前記有機相中の酢酸メチル濃度を38.0質量%未満に制御し、且つ前記残液流中のアセトアルデヒド濃度を70質量ppm以下に制御し、前記水相の少なくとも一部を前記アセトアルデヒド分離除去工程にて処理し、アセトアルデヒド分離除去後の残液を反応槽及び/又はアセトアルデヒド分離除去工程及び/又はその他のプロセスにリサイクルするとともに、第1蒸留塔の水相の還流比を2以上とすることを特徴とする酢酸の製造方法。
  11. 触媒系がさらにイオン性ヨウ化物を含む請求項10記載の酢酸の製造方法。
JP2017536046A 2017-03-28 2017-05-25 酢酸の製造方法 Active JP6481043B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017062764 2017-03-28
JP2017062764 2017-03-28
PCT/JP2017/019579 WO2018179457A1 (ja) 2017-03-28 2017-05-25 酢酸の製造方法

Publications (2)

Publication Number Publication Date
JP6481043B1 true JP6481043B1 (ja) 2019-03-13
JPWO2018179457A1 JPWO2018179457A1 (ja) 2019-04-04

Family

ID=60037537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017536046A Active JP6481043B1 (ja) 2017-03-28 2017-05-25 酢酸の製造方法

Country Status (13)

Country Link
EP (1) EP3401303B1 (ja)
JP (1) JP6481043B1 (ja)
KR (1) KR102328843B1 (ja)
CN (1) CN110191874A (ja)
AR (1) AR111174A1 (ja)
BR (1) BR112019018754A2 (ja)
ES (1) ES2779805T3 (ja)
MX (1) MX2019011612A (ja)
MY (1) MY189357A (ja)
PH (1) PH12019550201A1 (ja)
SG (1) SG11201908151VA (ja)
TW (1) TWI701234B (ja)
WO (1) WO2018179457A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009042078A1 (en) * 2007-09-27 2009-04-02 Celanese International Corporation Method and apparatus for making acetic acid with improved purification
WO2009134333A1 (en) * 2008-04-29 2009-11-05 Celanese International Corporation Method and apparatus for carbonylating methanol with acetic acid enriched flash stream
WO2011146446A1 (en) * 2010-05-18 2011-11-24 Celanese International Corporation Process for purifying acetic acid streams by removing permanganate reducing compounds
WO2012046593A1 (ja) * 2010-10-06 2012-04-12 ダイセル化学工業株式会社 酢酸の製造方法
WO2012081418A1 (ja) * 2010-12-15 2012-06-21 株式会社ダイセル 酢酸の製造方法
WO2013137236A1 (ja) * 2012-03-14 2013-09-19 株式会社ダイセル 酢酸の製造方法
WO2014097867A1 (ja) * 2012-12-21 2014-06-26 株式会社ダイセル 酢酸の製造方法
WO2016076968A1 (en) * 2014-11-14 2016-05-19 Celanese International Corporation Reducing hydrogen iodide content in carbonylation processes
WO2016126292A1 (en) * 2015-02-04 2016-08-11 Celanese International Corporation Process to control hi concentration in residuum stream
WO2016194850A1 (ja) * 2015-06-01 2016-12-08 株式会社ダイセル 酢酸の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW283702B (ja) * 1993-07-08 1996-08-21 Daicel Chem
JP3244350B2 (ja) 1993-07-08 2002-01-07 ダイセル化学工業株式会社 高純度酢酸の製造方法
SG44317A1 (en) * 1994-06-15 1997-12-19 Daicel Chem Process for producing high purity acetic acid
IN192600B (ja) 1996-10-18 2004-05-08 Hoechst Celanese Corp
US7485749B2 (en) * 2006-08-22 2009-02-03 Lyondell Chemical Technology, L.P. Preparation of acetic acid
US8586789B2 (en) * 2009-03-30 2013-11-19 Lyondell Chemical Technology, L.P. Removing hydrocarbon impurities from acetic acid production intermediate
US9302974B1 (en) * 2015-07-01 2016-04-05 Celanese International Corporation Process for producing acetic acid

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009042078A1 (en) * 2007-09-27 2009-04-02 Celanese International Corporation Method and apparatus for making acetic acid with improved purification
WO2009134333A1 (en) * 2008-04-29 2009-11-05 Celanese International Corporation Method and apparatus for carbonylating methanol with acetic acid enriched flash stream
WO2011146446A1 (en) * 2010-05-18 2011-11-24 Celanese International Corporation Process for purifying acetic acid streams by removing permanganate reducing compounds
WO2012046593A1 (ja) * 2010-10-06 2012-04-12 ダイセル化学工業株式会社 酢酸の製造方法
WO2012081418A1 (ja) * 2010-12-15 2012-06-21 株式会社ダイセル 酢酸の製造方法
WO2013137236A1 (ja) * 2012-03-14 2013-09-19 株式会社ダイセル 酢酸の製造方法
WO2014097867A1 (ja) * 2012-12-21 2014-06-26 株式会社ダイセル 酢酸の製造方法
WO2016076968A1 (en) * 2014-11-14 2016-05-19 Celanese International Corporation Reducing hydrogen iodide content in carbonylation processes
WO2016126292A1 (en) * 2015-02-04 2016-08-11 Celanese International Corporation Process to control hi concentration in residuum stream
WO2016194850A1 (ja) * 2015-06-01 2016-12-08 株式会社ダイセル 酢酸の製造方法

Also Published As

Publication number Publication date
EP3401303A1 (en) 2018-11-14
KR102328843B1 (ko) 2021-11-19
JPWO2018179457A1 (ja) 2019-04-04
MY189357A (en) 2022-02-07
KR20190127857A (ko) 2019-11-13
MX2019011612A (es) 2019-11-18
TW201840522A (zh) 2018-11-16
WO2018179457A1 (ja) 2018-10-04
TWI701234B (zh) 2020-08-11
CN110191874A (zh) 2019-08-30
EP3401303B1 (en) 2020-02-12
ES2779805T3 (es) 2020-08-19
EP3401303A4 (en) 2018-11-14
AR111174A1 (es) 2019-06-12
BR112019018754A2 (pt) 2020-04-07
SG11201908151VA (en) 2019-10-30
PH12019550201A1 (en) 2020-07-06

Similar Documents

Publication Publication Date Title
JP6481041B2 (ja) 酢酸の製造方法
JP6626988B1 (ja) 酢酸の製造方法
US10428005B2 (en) Method for producing acetic acid
JP6481042B2 (ja) 酢酸の製造方法
JP6693959B2 (ja) 酢酸の製造方法
JP6481040B2 (ja) 酢酸の製造方法
JP6481043B1 (ja) 酢酸の製造方法
US10308581B2 (en) Method for producing acetic acid
JP6588658B1 (ja) 酢酸の製造方法
JP6529592B2 (ja) 酢酸の製造方法
US10550058B2 (en) Method for producing acetic acid
JP6546709B1 (ja) 酢酸の製造方法
JP6588657B1 (ja) 酢酸の製造方法
JP6626987B1 (ja) 酢酸の製造方法
JP6663436B2 (ja) 酢酸の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190208

R150 Certificate of patent or registration of utility model

Ref document number: 6481043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150