WO2019230007A1 - 酢酸の製造方法 - Google Patents
酢酸の製造方法 Download PDFInfo
- Publication number
- WO2019230007A1 WO2019230007A1 PCT/JP2018/027894 JP2018027894W WO2019230007A1 WO 2019230007 A1 WO2019230007 A1 WO 2019230007A1 JP 2018027894 W JP2018027894 W JP 2018027894W WO 2019230007 A1 WO2019230007 A1 WO 2019230007A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acetic acid
- concentration
- mass
- stream
- organic phase
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/10—Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
- C07C51/12—Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide on an oxygen-containing group in organic compounds, e.g. alcohols
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/42—Separation; Purification; Stabilisation; Use of additives
- C07C51/43—Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
- C07C51/44—Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/46—Ruthenium, rhodium, osmium or iridium
- B01J23/468—Iridium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/06—Halogens; Compounds thereof
- B01J27/08—Halides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0231—Halogen-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/42—Separation; Purification; Stabilisation; Use of additives
- C07C51/43—Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
- C07C51/44—Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation
- C07C51/445—Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation by steam distillation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/42—Separation; Purification; Stabilisation; Use of additives
- C07C51/48—Separation; Purification; Stabilisation; Use of additives by liquid-liquid treatment
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C53/00—Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
- C07C53/08—Acetic acid
Definitions
- the present invention relates to a method for producing acetic acid.
- This application claims the priority of PCT / JP2018 / 20603 which applied for PCT on May 29, 2018, and uses the content here.
- Methanol carbonylation process is known as an industrial method for producing acetic acid.
- a reaction vessel methanol and carbon monoxide are reacted in the presence of a catalyst to produce acetic acid, and the resulting reaction mixture is evaporated in a vapor phase containing acetic acid and a low boiling component.
- the vapor phase is distilled in a distillation column (delow boiling tower) and separated into an overhead stream containing low boiling components and an acetic acid stream, and the acetic acid stream is further purified To obtain product acetic acid.
- acetaldehyde is by-produced during the reaction, and this acetaldehyde causes the quality of the product acetic acid to deteriorate.
- crotonaldehyde has a greater degree of deterioration of the potassium permanganate test value per mass unit than 2-ethylcrotonaldehyde, and when crotonaldehyde is contained in the product acetic acid, the deterioration of quality becomes more remarkable.
- alkanes are generated as impurities in the methanol acetic acid process. These alkanes have 3 or more carbon atoms and are higher boiling impurities than methyl iodide and methyl acetate. Although it is mainly a saturated or unsaturated hydrocarbon, it may contain an oxygen atom or an iodine atom in the molecule.
- JP-A-4-295445 in order to remove these alkanes, the organic phase of the condensate at the top of the deboiling tower is distilled in a distillation tower (dealkane tower), and methyl iodide, methyl acetate and The top distillate containing carbonyl impurities is recycled to the reactor or supplied to the deacetaldehyde tower, and water is added to the bottom bottom effluent containing alkanes, water and acetic acid to extract and contain acetic acid.
- a technology is disclosed in which an aqueous phase is recycled to a reactor and an organic phase containing alkanes is used as waste.
- this document does not disclose or suggest how to improve the potassium permanganate test value of the product acetic acid.
- the organic phase (methyl iodide phase) described later is removed in order to separate methyl iodide and acetaldehyde that have a small boiling point difference in addition to water separation.
- the number of distillation towers is the same as when distilled in the acetaldehyde tower.
- a method of separating and removing acetaldehyde by distilling the organic phase out of the two phases separated by the decanter of the deboiling tower and extracting the condensate of the overhead stream with water is also known.
- This method has an advantage that the main component of the organic phase is methyl iodide having a small latent heat of vaporization, so that the processing energy is small and the problem of corrosion is less likely to occur than when the aqueous phase is processed.
- the organic phase generally has a demerit that the separation efficiency is low because the acetaldehyde concentration is lower than the aqueous phase.
- both the method of subjecting the aqueous phase to deacetaldehyde treatment and the method of subjecting the organic phase to deacetaldehyde treatment have advantages and disadvantages.
- Another object of the present invention is to provide a method for subjecting the aqueous phase to deacetaldehyde treatment and a method for subjecting the organic phase to deacetaldehyde treatment in a liquid separation step in which the process stream in the methanol carbonylation process is separated into an aqueous phase and an organic phase.
- an object is to provide a method capable of industrially advantageously separating and removing acetaldehyde as a by-product.
- crotonaldehyde since the boiling point of crotonaldehyde (104 ° C.) is lower than that of acetic acid (117 ° C.), when the reflux ratio of the deboiling tower is increased, crotonaldehyde is concentrated at the top of the distillation column. When this concentrated crotonaldehyde is recycled to the reaction vessel, it reacts with acetaldehyde in the reaction vessel to produce 2-ethylcrotonaldehyde. In addition, crotonaldehyde reacts with hydrogen in the reaction vessel to produce butanol, which reacts with acetic acid to butyl acetate.
- 2-Ethylcrotonaldehyde has less effect on the potassium permanganate test value than crotonaldehyde, butanol and butyl acetate have no effect on the potassium permanganate test value and are harmless. Therefore, the quality of acetic acid tends to be further improved.
- the boiling points of 2-ethylcrotonaldehyde and butyl acetate are 137 ° C. and 126 ° C., respectively, which are higher than the boiling points of acetic acid (117 ° C.).
- Crotonaldehyde can be obtained as a bottom bottom effluent together with other high-boiling impurities (2-ethylcrotonaldehyde, butyl acetate, alkanes, etc.) and acetic acid.
- the bottoms are removed from the system and discarded. Water may be concentrated at the top of the tower or withdrawn from the bottom.
- a conventionally known dealkane tower as a decrotonaldehyde tower.
- the dealkane tower may be operated constantly, but may be operated in a batch mode when the production rate of alkanes is slow.
- the product peracetic acid potassium permanganate test value decreases, so it is necessary to maintain product quality by deacetaldehyde treatment, ozone treatment, changes in operating conditions, and the like.
- 2-ethylcrotonaldehyde is also present in a very small amount at the top of the deboiling tower, and it can be discharged out of the system by the above operation as with crotonaldehyde, thereby improving the potassium permanganate test value. Since the high-boiling 2-ethylcrotonaldehyde is difficult to concentrate at the top of the delow boiling tower, its effect is limited.
- the present inventors pay attention to the distribution ratio of acetaldehyde under various conditions (acetaldehyde concentration in the aqueous phase / acetaldehyde concentration in the organic phase) in the liquid separation step, and condensate of the overhead stream of the deboiling tower.
- a liquid-liquid equilibrium experiment was performed assuming the composition.
- the acetaldehyde concentration in the aqueous phase and the acetaldehyde concentration in the organic phase obtained by separating with a decanter in the deboiling tower, the liquid temperature during the separation, the methyl acetate concentration in the aqueous phase and the organic phase It was found that there is a certain correlation between the methyl acetate concentration of acetaldehyde and the partition rate of acetaldehyde.
- the method of subjecting the aqueous phase to deacetaldehyde treatment and the method of subjecting the organic phase to deacetaldehyde treatment have advantages and disadvantages, respectively.
- the former method is used when the acetaldehyde distribution rate is low (when acetaldehyde is relatively distributed in the organic phase), and the latter method is used in the middle region. It is industrially advantageous to adopt the method. In particular, when adopting a method of subjecting the aqueous phase to deacetaldehyde treatment, it is necessary to use expensive equipment and equipment with high corrosion resistance, and therefore it is necessary to strictly determine the acetaldehyde distribution rate. Based on these findings and considerations, the present inventor has found that the object to be subjected to deacetaldehyde treatment can be reasonably determined.
- the present invention relates to a catalyst system comprising a metal catalyst and methyl iodide, and a carbonylation reaction step in which acetic acid is produced by reacting methanol and carbon monoxide in a reaction vessel in the presence of acetic acid, methyl acetate and water.
- a stream containing a metal catalyst, an acetic acid stream rich in acetic acid, and a lower boiling component than the acetic acid stream using one or more evaporation tanks and / or distillation towers.
- a separation step of separating and obtaining a rich stream A liquid separation step of separating a process stream containing at least water, acetic acid, methyl iodide and acetaldehyde into an aqueous phase and an organic phase; Separating and removing acetaldehyde from the process stream, Processing target based on liquid temperature at the time of liquid separation in the liquid separation step, acetaldehyde concentration in the aqueous phase and / or organic phase, acetaldehyde distribution rate, methyl acetate concentration in the aqueous phase and / or organic phase, or methyl acetate distribution rate
- An acetaldehyde separation and removal step in which is selected from at least a part of the aqueous phase and / or organic phase;
- a decrotonaldehyde step in which at least another part of the aqueous phase and /
- the reflux ratio of the distillation column is 0.01 or more.
- a-iii The ratio of the crotonaldehyde concentration (mass ppm) in the bottoms of the distillation column to the crotonaldehyde concentration (mass ppm) in the feed solution (Former / latter) is made larger than 1.
- the present invention also provides a catalyst system comprising a metal catalyst and methyl iodide, and a carbonylation reaction step in which acetic acid is produced by reacting methanol and carbon monoxide in a reaction vessel in the presence of acetic acid, methyl acetate and water.
- a stream containing a metal catalyst, an acetic acid stream rich in acetic acid, and a lower boiling component than the acetic acid stream using one or more evaporation tanks and / or distillation towers.
- a separation step of separating and obtaining a rich stream A liquid separation step of separating a process stream containing at least water, acetic acid, methyl iodide and acetaldehyde into an aqueous phase and an organic phase; Separating and removing acetaldehyde from the process stream, Processing target based on liquid temperature at the time of liquid separation in the liquid separation step, acetaldehyde concentration in the aqueous phase and / or organic phase, acetaldehyde distribution rate, methyl acetate concentration in the aqueous phase and / or organic phase, or methyl acetate distribution rate
- An acetaldehyde separation and removal step in which is selected from at least a part of the aqueous phase and / or organic phase;
- a decrotonaldehyde step in which at least another part of the aqueous phase and /
- the reflux ratio of the distillation column is 0.01 or more.
- a-iii The ratio of the crotonaldehyde concentration (mass ppm) in the bottoms of the distillation column to the crotonaldehyde concentration (mass ppm) in the feed solution (Former / latter) is made larger than 1.
- the liquid separation step satisfies at least one of the following conditions (bi) to (bv), and at least a part of the aqueous phase is subjected to the acetaldehyde separation and removal step: It is preferable to process.
- the acetaldehyde concentration in the aqueous phase is 28.1% by mass or less and / or the acetaldehyde concentration in the organic phase is 24.8% by mass or less.
- the separation step satisfies all the conditions (bi), (b-ii), (b-iii), (b-iv), and (bv). It is preferable.
- the separation step satisfies at least one of the following conditions (b′-i) to (b′-v), and at least a part of the organic phase is separated and removed by the acetaldehyde It is preferable to treat with.
- the acetaldehyde concentration in the aqueous phase is 0.045 mass% or more and / or the acetaldehyde concentration in the organic phase is 0.013 mass% or more.
- the liquid separation step comprises the steps (b′-i), (b′-ii), (b′-iii), (b′-iv) and (b′-v). It is preferable to satisfy all the conditions.
- the separation step separates the first acetic acid stream into a second overhead stream rich in water and a second acetic acid stream richer in acetic acid than the first acetic acid stream by a second distillation column. It is preferable to have a dehydration step.
- the crotonaldehyde concentration in the second acetic acid stream is, for example, 2.0 mass ppm or less.
- the concentration of 2-ethylcrotonaldehyde in the second acetic acid stream is, for example, 3.0 mass ppm or less.
- the ratio (C CR / C ECR ) between the crotonaldehyde concentration C CR (mass ppm) and the 2-ethylcrotonaldehyde concentration C ECR (mass ppm) in the second acetic acid stream is, for example, 50 or less.
- the butyl acetate concentration in the second acetic acid stream is, for example, 15 ppm by mass or less.
- the ratio (C CR / C BA ) between the crotonaldehyde concentration C CR (mass ppm) and the butyl acetate concentration C BA (mass ppm) in the second acetic acid stream is, for example, 2.0 or less.
- the catalyst system may further contain an ionic iodide.
- At least a part of the residual liquid after separating and removing acetaldehyde from at least a part of the aqueous phase and / or the organic phase may be recycled to the reaction vessel.
- the hydrogen partial pressure in the reaction tank is, for example, 0.001 MPa (absolute pressure) or more.
- the concentration of acetaldehyde in the reaction mixture in the reaction vessel is, for example, 500 ppm by mass or less.
- the crotonaldehyde concentration in the second acetic acid stream may be 0.98 ppm by mass or less and / or the 2-ethylcrotonaldehyde concentration may be 1.0 ppm by mass or less and / or the butyl acetate concentration may be 15 ppm by mass or less.
- the potassium permanganate test value of the second acetic acid stream preferably exceeds 50 minutes.
- the concentration of 2-ethylcrotonaldehyde in the first acetic acid stream is, for example, 3.0 mass ppm or less.
- the ratio (C CR / C ECR ) between the crotonaldehyde concentration C CR (mass ppm) and the 2-ethylcrotonaldehyde concentration C ECR (mass ppm) in the first acetic acid stream is, for example, 50 or less.
- the butyl acetate concentration in the first acetic acid stream is, for example, 15 ppm by mass or less.
- the ratio (C CR / C BA ) between the crotonaldehyde concentration C CR (mass ppm) and the butyl acetate concentration C BA (mass ppm) in the first acetic acid stream is, for example, 2.0 or less.
- the crotonaldehyde concentration in the first acetic acid stream may be 1.3 mass ppm or less and / or the 2-ethylcrotonaldehyde concentration may be 1.0 mass ppm or less and / or the butyl acetate concentration may be 15 mass ppm or less.
- the crotonaldehyde concentration in the distillation column charge in the decrotonaldehyde process is, for example, 0.01 to 50 ppm by mass.
- distillation may be performed in a batch process.
- the throughput of the distillation column in the decrotonaldehyde process is, for example, 0.0001 to 50 parts by mass with respect to 100 parts by mass of the steam flow supplied to the first distillation column.
- the method for producing acetic acid according to the present invention further includes a scrubber process in which off-gas from the process is absorbed with an absorption solvent containing at least acetic acid to separate a stream rich in carbon monoxide and a stream rich in acetic acid. It may be.
- the liquid temperature at the time of separation in the liquid separation step, the acetaldehyde concentration in the aqueous phase and / or the organic phase, the acetaldehyde distribution rate, the methyl acetate in the aqueous phase and / or the organic phase is industrially advantageous because the treatment target is selected from at least a part of the aqueous phase and / or organic phase based on the concentration or the methyl acetate partition rate. It can be removed efficiently.
- a catalyst system containing a metal catalyst and methyl iodide, and methanol and carbon monoxide are reacted in a reaction vessel in the presence of acetic acid, methyl acetate and water to produce acetic acid.
- a separation step of separating and obtaining a rich stream A liquid separation step of separating a process stream containing at least water, acetic acid, methyl iodide and acetaldehyde into an aqueous phase and an organic phase; Separating and removing acetaldehyde from the process stream, Processing target based on liquid temperature at the time of liquid separation in the liquid separation step, acetaldehyde concentration in the aqueous phase and / or organic phase, acetaldehyde distribution rate, methyl acetate concentration in the aqueous phase and / or organic phase, or methyl acetate distribution rate
- An acetaldehyde separation and removal step in which is selected from at least a part of the aqueous phase and / or organic phase;
- a decrotonaldehyde step in which at least another part of the aqueous phase and /
- a catalyst system containing a metal catalyst and methyl iodide, and methanol and carbon monoxide are reacted in a reaction vessel in the presence of acetic acid, methyl acetate and water.
- a carbonylation reaction step to produce acetic acid From the reaction mixture obtained in the carbonylation reaction step, a stream containing a metal catalyst, an acetic acid stream rich in acetic acid, and a lower boiling component than the acetic acid stream using one or more evaporation tanks and / or distillation towers.
- a separation step of separating and obtaining a rich stream A liquid separation step of separating a process stream containing at least water, acetic acid, methyl iodide and acetaldehyde into an aqueous phase and an organic phase; Separating and removing acetaldehyde from the process stream, Processing target based on liquid temperature at the time of liquid separation in the liquid separation step, acetaldehyde concentration in the aqueous phase and / or organic phase, acetaldehyde distribution rate, methyl acetate concentration in the aqueous phase and / or organic phase, or methyl acetate distribution rate
- An acetaldehyde separation and removal step in which is selected from at least a part of the aqueous phase and / or organic phase;
- a decrotonaldehyde step in which at least another part of the aqueous phase and /
- the reflux ratio of the distillation column is 0.01 or more.
- a-iii The ratio of the crotonaldehyde concentration (mass ppm) in the bottoms of the distillation column to the crotonaldehyde concentration (mass ppm) in the feed solution (Former / latter) is made larger than 1.
- the catalyst system may further contain ionic iodide.
- the ionic iodide functions as a promoter.
- the separation step includes, for example, an evaporation step of separating the reaction mixture obtained in the carbonylation reaction step into a vapor stream and a residual liquid stream in an evaporation tank;
- a de-low boiling step that undergoes distillation to separate a stream rich in low boiling components (eg, an overhead stream, specifically a first overhead stream) and a first acetic acid stream rich in acetic acid;
- the acetic acid stream is subjected to distillation to have a dehydration step of separating the water-rich overhead stream (second overhead stream) into a second acetic acid stream richer in acetic acid than the first acetic acid stream.
- the distillation column used in the delowing step may be referred to as a first distillation column (delowing boiling column), and the distillation column used in the dehydration step may be referred to as a second distillation column (dehydration column).
- the separation step instead of the evaporation step and the delow boiling step, the reaction mixture obtained in the carbonylation reaction step is divided into a flow containing the metal catalyst and a flow rich in the low boiling component (for example, An overhead stream) and a first acetic acid stream rich in acetic acid (evaporative de-boiling step) may be provided.
- the separation step is a delowing boiling step (so-called delowing boiling dehydration step) having a function of the dehydration step instead of the delowing low boiling step and dehydration step, that is, subjecting the vapor stream to distillation.
- the evaporative de-low boiling step may be a step (evaporative de-low boiling dehydration step) having the function of the dehydration step.
- the acetic acid stream rich in acetic acid obtained from the de-low boiling dehydration process and the evaporative de-low boiling dehydration process corresponds to the second acetic acid stream.
- the distillation column used in the evaporative de-low boiling step, the de-low boiling dehydration step, and the evaporative de-low boiling dehydration step corresponds to the first distillation column.
- the separation step is an evaporation step for separating the reaction mixture obtained in the carbonylation reaction step into a vapor stream and a residual liquid stream in an evaporation tank, and the vapor flow is selected from methyl iodide and acetaldehyde by a first distillation column. Separating the first overhead stream rich in at least one low boiling component and the first acetic acid stream rich in acetic acid, and condensing and separating the first overhead stream to obtain an aqueous phase and an organic phase. You may have a boiling process.
- the acetaldehyde separation and removal step is a step of separating and removing acetaldehyde derived from the process stream, wherein the liquid temperature at the time of liquid separation in the liquid separation step, the acetaldehyde concentration in the aqueous phase and / or the organic phase, the acetaldehyde distribution rate,
- the treatment target is selected from at least a part of the aqueous phase and / or the organic phase based on the methyl acetate concentration of the aqueous phase and / or the organic phase or the methyl acetate partition rate.
- process flow refers to a process when performing process unit operations such as reaction, evaporation, distillation, cooling, condensation, liquid separation, storage, and absorption in an acetic acid production apparatus, or process unit operations.
- process unit operations such as reaction, evaporation, distillation, cooling, condensation, liquid separation, storage, and absorption in an acetic acid production apparatus, or process unit operations.
- the liquid phase in a piping, a reaction tank, an evaporation tank, and a distillation tower, or a gaseous phase is mentioned.
- the acetaldehyde concentration and the methyl acetate concentration in the aqueous phase and the organic phase are determined by the composition of the liquid used for liquid separation (hereinafter sometimes referred to as “liquid separation process supply liquid”) and the temperature at the time of liquid separation.
- liquid separation process supply liquid the composition of the liquid used for liquid separation
- the higher the temperature at the time of liquid separation the higher the proportion of acetaldehyde distributed to the organic phase.
- concentration in a liquid separation process supply liquid can be controlled by the reaction conditions in a reaction tank, the evaporation conditions in an evaporation tank, and the distillation conditions in a distillation tower, for example.
- the higher the acetaldehyde concentration and the methyl acetate concentration in the reaction mixture the higher the acetaldehyde concentration and the methyl acetate concentration in the liquid separation process supply liquid, respectively.
- the acetaldehyde concentration in the reaction mixture increases as the reaction temperature, hydrogen partial pressure, methyl iodide concentration, water concentration, catalyst concentration, and lithium iodide concentration in the reaction system increase, and the CO partial pressure and methyl acetate concentration increase, respectively. It shows a tendency to decrease (see Japanese Patent Application Laid-Open No. 2006-182691). Furthermore, since methyl acetate is produced by the esterification reaction of acetic acid and methanol, the methyl acetate concentration in the reaction mixture increases as the acetic acid concentration and methanol concentration in the reaction system increase, and decreases as the water concentration increases.
- the composition of the liquid supplied to the liquid separation process and consequently the concentration of acetaldehyde in the aqueous phase and the organic phase And the methyl acetate concentration can be adjusted.
- the inventors have obtained the acetaldehyde concentration in the aqueous phase and the acetaldehyde concentration in the organic phase obtained by separating with a decanter in the low boiling tower, the liquid temperature at the time of liquid separation, and the methyl acetate concentration in the aqueous phase and the organic phase.
- the method of subjecting the aqueous phase to deacetaldehyde treatment and the method of subjecting the organic phase to deacetaldehyde treatment have advantages and disadvantages, respectively.
- the former method is used when the acetaldehyde distribution rate is low (when acetaldehyde is relatively distributed in the organic phase), and the latter method is used in the middle region. It is industrially advantageous to adopt the method.
- the control of the methyl acetate concentration in the deboiling tower is adjusted by controlling the methyl acetate concentration in the reaction vessel.
- the concentration of methyl acetate in the reaction vessel is, for example, under the conditions of constant methanol and CO charge, temperature in the reaction vessel, rhodium complex (Rh), methyl iodide (MeI), H 2 O, hydrogen partial pressure, and monoxide. It can be adjusted by increasing or decreasing factors that affect the reaction rate, such as carbon partial pressure and lithium iodide (LiI). That is, when the temperature, Rh, MeI, H 2 O, hydrogen partial pressure, carbon monoxide partial pressure, LiI, etc.
- the methyl acetate concentration in the reaction vessel decreases, and when it is decreased, the methyl acetate concentration increases.
- these conditions are made constant, that is, conditions such as temperature, Rh, MeI, H 2 O, hydrogen partial pressure, carbon monoxide partial pressure, LiI, etc. are made constant, increasing methanol and CO feed amounts will increase acetic acid.
- the methyl concentration increases, and as it decreases, the methyl acetate concentration decreases.
- the concentration of methyl acetate in the vapor obtained by evaporating the reaction liquid in the evaporation tank (preparation of the low boiling tower) varies in proportion to the concentration of methyl acetate in the reaction liquid because the evaporation rate is operated under a constant condition. .
- the recycling step includes an overhead flow recycling step of recycling at least a part of the aqueous phase and / or the organic phase condensed from the first overhead stream and / or a part of the second overhead stream to a reaction vessel. You may do it.
- the present invention by controlling the crotonaldehyde concentration in the first acetic acid stream obtained in the separation step to a low concentration of 2.2 ppm by mass or less, in the second acetic acid stream obtained by separating and removing water in the dehydration step.
- the crotonaldehyde concentration can be reduced, for example, to 2.0 mass ppm or less, and the potassium permanganate test value of the second acetic acid stream can be increased. Therefore, the deacetaldehyde facility and the ozone treatment facility that have been conventionally used for improving the potassium permanganate test value can be reduced in size or omitted.
- acetic acid with a high potassium permanganate test value can be obtained simply by passing through the low deboiling tower and the dehydration tower. It becomes.
- the crotonaldehyde concentration in the first acetic acid stream is preferably 2.0 mass ppm or less, more preferably 1.8 mass ppm or less, still more preferably 1.5 mass ppm or less, and particularly preferably 1.2 mass ppm or less ( For example, it is 1.0 mass ppm or less, or 0.8 mass ppm or less, especially 0.5 mass ppm or less.
- the crotonaldehyde concentration in the first acetic acid stream is, for example, 5 Although it may be not more than ppm by mass (particularly not more than 2.5 ppm by mass), it is preferably in the above range.
- crotonaldehyde concentration in the first acetic acid stream for example, increasing the hydrogen partial pressure in the reaction vessel can be mentioned.
- increasing the hydrogen partial pressure in the reaction tank crotonaldehyde is hydrogenated, and the crotonaldehyde concentration in the reaction mixture (liquid phase of the reaction mixture; reaction medium) decreases.
- the crotonaldehyde concentration also decreases, and therefore the crotonaldehyde concentration in the first acetic acid stream obtained by deboiling in the first distillation column also decreases.
- the hydrogen partial pressure in the reaction tank is, for example, 0.001 MPa (absolute pressure) or more [eg, 0.005 MPa or more], preferably 0.01 MPa (absolute pressure) or more [eg, 0.015 MPa or more], more preferably 0.02 MPa ( Absolute pressure) or more, more preferably 0.04 MPa (absolute pressure) or more, particularly preferably 0.06 MPa (absolute pressure) or more [for example, 0.07 MPa (absolute pressure) or more].
- the upper limit of the hydrogen partial pressure in the reaction tank is, for example, 0.5 MPa (absolute pressure) [particularly 0.2 MPa (absolute pressure)].
- Another method for reducing the crotonaldehyde concentration in the first acetic acid stream is to increase the reflux ratio in the deboiling tower. Since crotonaldehyde (boiling point 104 ° C.) has a lower boiling point than acetic acid (boiling point 117 ° C.), by increasing the reflux ratio of the deboiling tower, crotonaldehyde is more concentrated at the top of the distillation column. The crotonaldehyde concentration in the first acetic acid stream obtained as a stream or as a bottom stream is reduced.
- crotonaldehyde is recovered in the reaction vessel. Reacts with acetaldehyde to produce 2-ethylcrotonaldehyde.
- crotonaldehyde reacts with hydrogen in the reaction vessel to produce butanol, which reacts with acetic acid to butyl acetate.
- 2-Ethylcrotonaldehyde has a smaller effect on the potassium permanganate test value than crotonaldehyde, and butyl acetate has no effect on the potassium permanganate test value.
- the reflux ratio of the delow boiling tower when only the aqueous phase of the condensate of the first overhead stream is refluxed to the delow boiling tower, the reflux ratio of the aqueous phase (the reflux amount of the aqueous phase / the distillate amount of the aqueous phase) ) Is, for example, 2 or more, preferably 3 or more, more preferably 4 or more, still more preferably 8 or more, and particularly preferably 10 or more.
- the reflux ratio of the organic phase (the reflux amount of the organic phase / the distillate amount of the organic phase) is, for example, 1 or more, preferably Is 1.5 or more, more preferably 2 or more, still more preferably 4 or more, and particularly preferably 5 or more.
- the reflux ratio of the aqueous phase (the reflux amount of the aqueous phase / the distillate amount of the aqueous phase) is preferably 2 or more, more preferably 3 or more, Preferably it is 5 or more, particularly preferably 8 or more, especially 12 or more.
- the reflux ratio of the dehydration tower is controlled to 0.1 or more (particularly 0.3 or more, for example, 0.32 or more)
- the reflux ratio of the deboiling tower is either the upper phase or the lower phase. Regardless of refluxing, for example, it may be 0.5 or more.
- the upper limit of the reflux ratio of the delow boiling tower may be, for example, 3000 (particularly 1000) or 100 (particularly 30).
- Still another method for reducing the crotonaldehyde concentration in the first acetic acid stream is to reduce the concentration of acetaldehyde present in the reaction mixture (reaction medium) in the reaction vessel. Since the formation of crotonaldehyde due to aldol condensation of acetaldehyde is suppressed by lowering the acetaldehyde concentration in the reaction mixture in the reaction tank, the crotonaldehyde concentration in the first distillation column charge is lowered, and thus the first distillation column The crotonaldehyde concentration in the first acetic acid stream obtained by deboiling at 1 is also reduced.
- the acetaldehyde concentration in the reaction mixture in the reaction tank is, for example, 500 ppm by mass or less, preferably 450 ppm by mass or less, more preferably 400 ppm by mass or less, further preferably 350 ppm by mass or less, and particularly preferably 300 ppm by mass or less (for example, 250 ppm by mass or less).
- the acetaldehyde concentration in the reaction mixture in the reaction vessel can be lowered, for example, by increasing the CO partial pressure in the reaction vessel or increasing the methyl acetate concentration in the reaction mixture in the reaction vessel.
- the concentration of acetaldehyde in the reaction mixture in the reaction vessel is increased in the proportion supplied to the acetaldehyde separation and removal step in the condensed liquid (aqueous phase and / or organic phase) of the first overhead liquid obtained in the first distillation column. It can be lowered by reducing the rate of recycling to the reaction vessel.
- the method for producing acetic acid according to the present invention includes a dehydration step of separating the first acetic acid stream into a second overhead stream rich in water and a second acetic acid stream richer in acetic acid than the first acetic acid stream by a second distillation column. You may do it.
- a second acetic acid stream having a low water content can be obtained as a bottoms or side cut liquid from the bottom of the tower or an intermediate portion of the tower.
- the second acetic acid stream can be made into product acetic acid as it is or by further purification as required.
- the reflux ratio of the second distillation column is, for example, 0.1 or more (particularly 0.3 or more, for example 0.32 or more), preferably 1.0 or more, more preferably 5.0 or more, and further preferably 10 or more (for example, 12 or more).
- the upper limit of the reflux ratio of the second distillation column may be, for example, about 3000 (or 1000) or 200 (or 100).
- crotonaldehyde By controlling the reflux ratio of the dehydration column to 0.1 or more (particularly 0.3 or more, preferably 0.32 or more), crotonaldehyde has a lower boiling point than acetic acid as described above, and thus flowed into the dehydration column. Crotonaldehyde can be concentrated at the top of the column, and the concentration of crotonaldehyde in the second acetic acid stream obtained as a side stream or can stream can be significantly reduced. Also, when the second overhead stream at the top of the dehydration tower concentrated with crotonaldehyde is recycled to the reaction vessel, crotonaldehyde is converted into harmless 2-ethylcrotonaldehyde and harmless butyl acetate as described above. The quality of acetic acid is further improved.
- the reflux ratio of the dehydrating tower is 0.1 or more (particularly 0.3 or more, for example 0.32 or more), preferably 0.4 or more, more preferably 1 or more, and further preferably 2 or more.
- the reflux ratio of the dehydration tower is, for example, 0.1 or more (for example, 0.2 or more, particularly 0.3 or more).
- the upper limit of the reflux ratio of the dehydration tower is, for example, 3000 (particularly 1000), and may be about 100 or 10.
- the reflux ratio of the first distillation column is increased to concentrate crotonaldehyde at the top of the column, and at least one of the aqueous phase and / or the organic phase of the de-low boiling column top condensate condensed with crotonaldehyde.
- Recycle part to reaction vessel Since crotonaldehyde is concentrated at the top of the column, the concentration of crotonaldehyde in the first acetic acid stream is lowered, and as a result, product acetic acid having a good potassium permanganate test value can be obtained.
- crotonaldehyde recycled to the reaction vessel is compared to the potassium permanganate test value by the reaction of crotonaldehyde + acetaldehyde ⁇ 2-ethylcrotonaldehyde, crotonaldehyde + hydrogen ⁇ butyl alcohol, butyl alcohol + acetic acid ⁇ butyl acetate. Therefore, it is converted into 2-ethylcrotonaldehyde, which has less influence, and butyl acetate, which has no influence, so that the quality of the product acetic acid can be improved.
- the potassium permanganate test value of product acetic acid can be further improved by extracting it to the can side with acetic acid and alkanes as a high boiling point compound and discharging it to the outside of the system.
- the tower top condensate of the decrotonaldehyde tower contains useful components (for example, methyl iodide, methyl acetate, etc.), it can be recycled to a decanter or a reaction tank storing the tower bottom condensate.
- useful components for example, methyl iodide, methyl acetate, etc.
- the reflux ratio of the aqueous phase when only the aqueous phase is refluxed to the first distillation column, the reflux ratio of the aqueous phase (the reflux amount of the aqueous phase / the distillate amount of the aqueous phase) is 2 or more. Yes, preferably 3 or more, more preferably 5 or more, still more preferably 8 or more, and particularly preferably 12 or more.
- the reflux ratio of the organic phase is 1 or more, preferably 1.5 or more. Preferably it is 2 or more, more preferably 4 or more, particularly preferably 5 or more.
- the reflux ratio of the sum of the aqueous phase and the organic phase (sum of the reflux amount of the aqueous phase and the organic phase / distillation of the aqueous phase and the organic phase) (Total amount) is 1.5 or more, preferably 2.3 or more, more preferably 3.5 or more, still more preferably 6 or more, and particularly preferably 8.5 or more.
- the reflux ratio of the decrotonaldehyde column is preferably 0.05 or more, more preferably 0.5 or more, still more preferably 5 or more, particularly preferably 20 or more (for example, 30 or more).
- the upper limit of the reflux ratio of the decrotonaldehyde tower is, for example, 1000.
- the ratio (the former / the latter) of the crotonaldehyde concentration (mass ppm) in the distillate of the decrotonaldehyde tower and the crotonaldehyde concentration (mass ppm) in the charged solution is preferably 0.
- the ratio (the former / the latter) of the crotonaldehyde concentration (mass ppm) in the bottoms of the decrotonaldehyde tower and the crotonaldehyde concentration (mass ppm) in the charged solution is preferably 1 .2 or more, more preferably 1.5 or more, further preferably 2.0 or more, particularly preferably 3.0 or more (for example, 4.0 or more, especially 5.0 or more), especially 10 or more (for example, 20 or more). is there.
- crotonaldehyde When decrotonaldehyde is operated so as to satisfy at least one of the above conditions (ai) to (a-iii), crotonaldehyde is concentrated at the bottom of the column, and other high-boiling impurities such as alkane and acetic acid At the same time, it can be discharged out of the system as a bottom.
- reflux ratio in the distillation column means “reflux amount / distillation amount”.
- the “reflux amount” refers to the amount of liquid returned to the distillation column in the top liquid of the distillation column
- distillation amount refers to the distillation column in the top liquid of the distillation column. The amount of liquid discharged outside the distillation column without being returned to the above.
- a liquid separation step for example, separation in the decanter 4 for separating a process stream containing at least water, acetic acid (AC), methyl iodide (MeI) and acetaldehyde (AD) into an aqueous phase and an organic phase.
- AC acetic acid
- MeI methyl iodide
- AD acetaldehyde
- AD partition ratio ⁇ AD concentration (mass%) in the aqueous phase ⁇ / ⁇ AD concentration (mass%) in the organic phase ⁇
- MA partition ratio ⁇ MA concentration (mass%) in aqueous phase ⁇ / ⁇ MA concentration (mass%) in organic phase ⁇
- the separation step satisfies at least one of the following conditions (bi) to (bb), and at least a part of the aqueous phase is separated and removed from the acetaldehyde: Processed in the process.
- the acetaldehyde concentration in the aqueous phase is 28.1% by mass or less and / or the acetaldehyde concentration in the organic phase is 24.8% by mass or less.
- the concentration of acetaldehyde in the aqueous phase is, for example, 0.045 to 28.1% by mass, preferably 0.098 to 10% by mass, more preferably 0.098 to 3.0% by mass, Particularly preferred is 0.098 to 1.0 mass% (for example, 0.15 to 0.9 mass%).
- the acetaldehyde concentration in the organic phase is, for example, 0.013 to 24.8% by mass, preferably 0.030 to 2.0% by mass, more preferably 0.030 to 0.50% by mass, and particularly preferably 0. 0.030 to 0.24% by mass.
- the acetaldehyde concentration in the aqueous phase is preferably 28.1% by mass or less, and the acetaldehyde concentration in the organic phase is preferably 24.8% by mass or less.
- the concentration of acetaldehyde in the separation process supply liquid is, for example, 26.0% by mass or less (for example, 0.026 to 26.0% by mass), preferably Is 0.057 to 10% by mass, more preferably 0.057 to 3.0% by mass, and particularly preferably 0.057 to 1.0% by mass (for example, 0.057 to 0.42% by mass).
- the AD distribution ratio becomes small (for example, below 1.1). Therefore, if the amount of acetaldehyde recovered is compared with the necessity of using an expensive apparatus with extremely high corrosion resistance, the merit of treating the aqueous phase in the acetaldehyde separation and removal step is extremely small.
- the temperature (liquid temperature) at the time of liquid separation is, for example, ⁇ 5 ° C. to 70 ° C., preferably ⁇ 5 ° C. to 60 ° C., more preferably ⁇ 5 ° C. to 51 ° C. (eg, ⁇ 5 ° C to 45 ° C), more preferably -5 ° C to 41 ° C (eg, -5 ° C to 31 ° C).
- the temperature (liquid temperature) at the time of liquid separation exceeds 70 degreeC, since AD distribution rate becomes very small, the merit of processing an aqueous phase in an acetaldehyde separation and removal process is very small.
- the concentration of methyl acetate in the aqueous phase is, for example, 1.2 to 12.0% by mass, preferably 2.0 to 12.0% by mass, more preferably 5.0 to 12.0%. % By mass (eg, 6.0 to 12.0% by mass).
- the concentration of methyl acetate in the organic phase is, for example, 2.2 to 47.6% by mass, preferably 5.0 to 42% by mass, and more preferably 8.0 to 35% by mass (eg 10.0 to 30% by mass). %).
- the methyl acetate concentration in the aqueous phase is preferably 12.0% by mass or less, and the methyl acetate concentration in the organic phase is preferably 47.6% by mass or less.
- the sum of the methyl acetate concentration (% by mass) in the aqueous phase and the methyl acetate concentration (% by mass) in the organic phase is, for example, 59.6% by mass or less (eg, 4.2 to 59.6% by mass), Preferably 6.0 to 54% by mass, more preferably 8.0 to 54% by mass, still more preferably 10.0 to 54% by mass, and particularly preferably 14.0 to 47% by mass (eg 16.0 to 42% by mass). %)).
- the methyl acetate concentration in the liquid separation process supply liquid is, for example, 38.2% by mass or less (for example, 2.0 to 38.2% by mass), Preferably it is 5.0 to 31% by mass, more preferably 8.0 to 25% by mass, and still more preferably 10.0 to 25% by mass.
- the methyl acetate concentration in the aqueous phase exceeds 12.0% by mass
- the methyl acetate concentration in the organic phase exceeds 47.6% by mass, or the methyl acetate concentration (% by mass) in the aqueous phase
- the AD partition rate is less than 1.1, for example. The merit of processing with is very small.
- the AD distribution rate is, for example, 1.1 to 8.0, preferably 1.5 to 6.0, and more preferably 1.9 to 5.0.
- the AD distribution ratio is less than 1.1, the concentration of acetaldehyde in the aqueous phase is low. Therefore, it is industrially disadvantageous to carry out the deacetaldehyde treatment of the aqueous phase, which requires a lot of energy and easily corrodes the apparatus.
- the AD distribution ratio is 1.1 or more (preferably 1.5 or more, more preferably 1.9 or more), there is a merit of improving the efficiency of separation and removal of acetaldehyde even when a highly corrosion-resistant apparatus is used. large.
- the MA distribution ratio is 0.25 or more (for example, 0.25 to 0.70), preferably 0.26 or more (for example 0.26 to 0.65), more preferably 0.00. 28 or more (for example, 0.28 to 0.60).
- the distribution ratio of methyl acetate (MA) to the aqueous phase and the organic phase varies depending on the temperature and composition (including water, methyl iodide and other components such as acetic acid), which is also the acetaldehyde distribution ratio. It becomes a guideline for control.
- the separation step may satisfy at least one of the conditions (bi) to (bb), but two or more of the above conditions may be satisfied simultaneously.
- the liquid separation step satisfies at least one of the following conditions (b′-i) to (b′-v), and at least a part of the organic phase: It is processed in the acetaldehyde separation and removal step.
- the acetaldehyde concentration in the aqueous phase is 0.045 mass% or more and / or the acetaldehyde concentration in the organic phase is 0.013 mass% or more.
- the concentration of acetaldehyde in the aqueous phase is, for example, 0.045 to 35% by mass, preferably 0.15 to 10% by mass, and more preferably 0.2 to 2.0% by mass. .
- the acetaldehyde concentration in the organic phase is, for example, 0.013 to 30% by mass, preferably 0.05 to 5.0% by mass, and more preferably 0.1 to 1.0% by mass.
- the acetaldehyde concentration in the aqueous phase is preferably 0.045% by mass or more and the acetaldehyde concentration in the organic phase is preferably 0.013% by mass or more.
- the acetaldehyde concentration in the separation process supply liquid (for example, the liquid supplied to the decanter 4) is, for example, 0.026 mass% or more (for example, 0.026 to 32 mass%), preferably It is 0.10 to 8.0% by mass, more preferably 0.15 to 1.8% by mass.
- the acetaldehyde concentration in the aqueous phase is less than 0.045% by mass, or when the acetaldehyde concentration in the organic phase is less than 0.013% by mass, the AD partition ratio becomes a large value. The merit of processing in the separation and removal process is extremely small.
- a temperature higher than 70 ° C. for example, higher than 70 ° C. and lower than 90 ° C.
- the AD partition ratio exceeds 4.3, for example, and therefore, the merit of treating the organic phase in the acetaldehyde separation and removal step is extremely small.
- the concentration of methyl acetate in the aqueous phase is, for example, 1.2 to 20% by mass, preferably 2.5 to 18% by mass, more preferably 4.0 to 15% by mass, and still more preferably. Is 6.0 to 13% by mass, particularly preferably 7.0 to 12% by mass.
- the methyl acetate concentration in the organic phase is, for example, 2.2 to 60% by mass, preferably 5.8 to 48% by mass, more preferably 8.0 to 40% by mass, and still more preferably 10.0 to 30% by mass. %, Particularly preferably 11.0 to 25% by mass.
- the methyl acetate concentration in the aqueous phase is preferably 1.2% by mass or more, and the methyl acetate concentration in the organic phase is preferably 2.2% by mass or more.
- the sum of the methyl acetate concentration (mass%) in the aqueous phase and the methyl acetate concentration (mass%) in the organic phase is, for example, 3.4 to 75 mass%, preferably 8.3 to 60 mass% (for example, 10 mass%). -40 mass%), more preferably 15.0-50 mass%, still more preferably 25-53 mass%.
- the methyl acetate concentration in the separation process supply liquid is, for example, 2.0 to 50% by mass, preferably 5.0 to 38% by mass. More preferably, the content is 8.0 to 35% by mass, and still more preferably 10.0 to 32% by mass.
- the methyl acetate concentration in the aqueous phase is less than 1.2% by mass
- the methyl acetate concentration in the organic phase is less than 2.2% by mass, or with the methyl acetate concentration (% by mass) in the aqueous phase
- the AD partition rate becomes a large value, so that the merit of treating the organic phase in the acetaldehyde separation and removal step is small.
- the AD distribution ratio is 4.1 or less (for example, 0.5 to 4.1), preferably 3.35 or less (for example, 0.6 to 3.35), more preferably 3 Or less (0.7 to 3), more preferably 2.8 or less (eg 0.8 to 2.8), particularly preferably 2.5 or less (eg 0.8 to 2.5), especially 2.3 or less. (For example, 0.9 to 2.3), especially 2.0 or less (for example, 1.0 to 2.0).
- the AD distribution ratio exceeds 4.1, since the acetaldehyde concentration in the organic phase is extremely low, the merit of treating the organic phase in the acetaldehyde separation and removal step is extremely small.
- Examples of a method for obtaining the most suitable AD partition rate (less than 1.1) for the deacetaldehyde treatment of the organic phase include, for example, increasing the acetaldehyde concentration in the aqueous phase to more than 28.1% by mass, 2. More than 24.8% by mass
- the acetaldehyde concentration in the liquid separation process feed liquid is made more than 26.0% by mass
- the temperature during the liquid separation is made more than 70 ° C.
- the methyl acetate concentration in the aqueous phase is made 12.
- the concentration of methyl acetate in the organic phase exceeds 47.6% by mass, or the concentration of methyl acetate in the liquid supplied to the separation process exceeds 38.2% by mass.
- the liquid separation step may satisfy at least one of the conditions (b′-i) to (b′-v). Good.
- the crotonaldehyde concentration in the second acetic acid stream is, for example, 0.98 mass ppm or less, preferably 0.80 mass ppm or less, more preferably 0.50 mass ppm or less, and even more preferably 0.30 mass ppm or less. It is.
- the lower limit value of the crotonaldehyde concentration in the second acetic acid stream may be 0 mass ppm, but may be, for example, 0.01 mass ppm (or 0.10 mass ppm).
- the concentration of 2-ethylcrotonaldehyde in the second acetic acid stream is, for example, 3.0 mass ppm or less, preferably 2.0 mass ppm or less, more preferably 1.0 mass ppm or less, and even more preferably 0.8 mass ppm or less ( For example, 0.5 mass ppm or less).
- the concentration of 2-ethylcrotonaldehyde in the second acetic acid stream is, for example, 1.00 mass ppm or less, preferably 0.50 mass ppm or less, more preferably 0.30 mass ppm or less, and even more preferably 0.20.
- the mass is ppm or less.
- the lower limit of the 2-ethylcrotonaldehyde concentration in the second acetic acid stream may be, for example, 0 mass ppm, or 0.01 mass ppm (for example, 0.10 mass ppm).
- the ratio (C CR / C ECR ) between the crotonaldehyde concentration C CR (mass ppm) and the 2-ethylcrotonaldehyde concentration C ECR (mass ppm) in the second acetic acid stream is, for example, 50 or less, preferably 35 or less, more preferably Is 25 or less, more preferably 20 or less, and particularly preferably 15 or less.
- the lower limit of the ratio may be, for example, 0.5, 0.3, 0.1, 0.05, 0.01.
- the ratio of the present invention, crotonaldehyde concentration and 2-ethyl crotonaldehyde concentration in the second acid stream simultaneously controlled to, crotonaldehyde concentration C CR (mass ppm) and 2-ethyl crotonaldehyde concentration C ECR (mass ppm) (C CR / C ECR ) may be adjusted. That is, in the separation step, the second acetic acid stream obtained by concentrating crotonaldehyde to the condensate at the top of the dehydration tower (second distillation tower) using the difference in boiling point with acetic acid to obtain a side stream or a bottom stream.
- the butyl acetate concentration in the second acetic acid stream is, for example, 15 ppm by mass or less, preferably 12 ppm by mass or less, more preferably 10 ppm by mass or less, and further preferably 8 ppm by mass or less.
- the concentration of butyl acetate in the second acetic acid stream is, for example, 15 mass ppm or less, preferably 10 mass ppm or less, more preferably 8 mass ppm or less, and particularly preferably 5 mass ppm or less (for example, 3 mass ppm or less). is there.
- the lower limit of the butyl acetate concentration in the second acetic acid stream may be, for example, 0 mass ppm, or 0.1 mass ppm (for example, 0.3 mass ppm or 1.0 mass ppm).
- the ratio (C CR / C BA ) between the crotonaldehyde concentration C CR (mass ppm) and the butyl acetate concentration C BA (mass ppm) in the second acetic acid stream is, for example, 2.0 or less, preferably 1.5 or less. Preferably it is 1.0 or less, More preferably, it is 0.6 or less.
- the lower limit of the ratio may be 0.1, 0.05, 0.02, 0.01, or 0.001.
- the method for producing acetic acid according to the present invention includes an acetaldehyde separation and removal step for separating and removing acetaldehyde by distilling at least a part of the aqueous phase and / or the organic phase condensed from the first overhead stream. At least a part of the residual liquid after separating and removing acetaldehyde from at least a part of the aqueous phase and / or the organic phase may be recycled to the reaction vessel.
- acetaldehyde separation and removal step acetaldehyde generated in the reaction system can be separated and removed efficiently.
- useful methyl iodide etc. can be utilized effectively by recycling the residual liquid after separating and removing acetaldehyde to a reaction tank.
- the crotonaldehyde concentration in the steam stream supplied to the first distillation column is, for example, 0 to 5.0 ppm by mass (eg 0.01 to 4.0 ppm by mass), preferably 0.1 to 3.0 ppm by mass, The content is preferably 0.2 to 2.0 ppm by mass.
- the concentration of 2-ethylcrotonaldehyde in the vapor stream is, for example, 0 to 3.0 mass ppm (for example, 0.01 to 2.5 mass ppm), preferably 0.02 to 2.0 mass ppm, and more preferably 0.8. It is 03 to 0.8 ppm by mass.
- the concentration of butyl acetate in the vapor stream is, for example, 0.1 to 13.0 ppm by mass, preferably 0.2 to 12.0 ppm by mass, and more preferably 0.3 to 9.0 ppm by mass.
- the crotonaldehyde concentration in the first acetic acid stream is, for example, 1.3 mass ppm or less, preferably 1.0 mass ppm or less, more preferably 0.85 mass ppm or less, and particularly preferably 0.5 mass ppm or less. (For example, 0.25 mass ppm or less).
- the lower limit value of the crotonaldehyde concentration in the first acetic acid stream may be 0 mass ppm, but may be, for example, 0.01 mass ppm (or 0.10 mass ppm).
- the concentration of 2-ethylcrotonaldehyde in the first acetic acid stream is, for example, 3.0 mass ppm or less, preferably 2.0 mass ppm or less, more preferably 1.0 mass ppm or less, and still more preferably 0.8 mass ppm. It is mass ppm or less (for example, 0.5 mass ppm or less).
- the concentration of 2-ethylcrotonaldehyde in the first acetic acid stream is, for example, 1.0 mass ppm or less, preferably 0.50 mass ppm or less.
- concentration in the first acetic acid stream is, for example, 1.0 mass ppm or less, preferably 0.50 mass ppm or less.
- the ratio (C CR / C ECR ) between the crotonaldehyde concentration C CR (mass ppm) and the 2-ethylcrotonaldehyde concentration C ECR (mass ppm) in the first acetic acid stream is, for example, 50 or less, preferably 35 or less, more preferably Is 25 or less, more preferably 20 or less, and particularly preferably 15 or less.
- the lower limit of the ratio may be, for example, 0.5, 0.3, 0.1, 0.05, 0.01.
- the ratio between the crotonaldehyde concentration C CR (mass ppm) and the 2-ethylcrotonaldehyde concentration C ECR (mass ppm) is controlled by simultaneously controlling the crotonaldehyde concentration and 2-ethylcrotonaldehyde concentration in the first acetic acid stream.
- C CR / C ECR may be adjusted. That is, in the separation step, crotonaldehyde is concentrated in the overhead condensate of the deboiling tower (first distillation tower) by efficiently separating using the difference in boiling point with acetic acid, and the side stream or the bottom.
- the crotonaldehyde concentration in the first acetic acid stream obtained as a stream may be reduced and the 2-ethylcrotonaldehyde concentration may be adjusted. This makes it possible to simultaneously control the crotonaldehyde concentration and 2-ethylcrotonaldehyde concentration in the first acetic acid stream.
- the concentration of butyl acetate in the first acetic acid stream is, for example, 15 mass ppm or less, preferably 10 mass ppm or less, more preferably 8 mass ppm or less, and particularly preferably 5 mass ppm or less (for example, 3 mass ppm or less). is there.
- the lower limit of the butyl acetate concentration in the second acetic acid stream may be, for example, 0 mass ppm, or 0.1 mass ppm (for example, 0.3 mass ppm or 1.0 mass ppm).
- the concentration of crotonaldehyde in the distillation column charge in the decrotonaldehyde process is usually 0.01 to 50 ppm by mass (for example, 0.1 to 50 ppm by mass), preferably 0.3 to 30 ppm by mass, more preferably 0.8. It is 5 to 10 ppm by mass, more preferably 0.8 to 7.0 ppm by mass (for example, 1.0 to 5.0 ppm by mass).
- the distillation column it is preferable to operate the distillation column so as to satisfy all the conditions (ai) to (a-iii).
- the decrotonaldehyde tower so as to satisfy all the conditions (ai) to (a-iii)
- the removal efficiency of crotonaldehyde can be remarkably improved, and the potassium permanganate test value of the product acetic acid can be increased. Can be significantly increased.
- the throughput of the distillation column in the decrotonaldehyde step is, for example, 0.0001 to 50 parts by mass, preferably 0.001 to 30 parts by mass with respect to 100 parts by mass of the steam flow supplied to the first distillation column ( For example, 0.01 to 10 parts by mass, particularly 0.1 to 5 parts by mass).
- the acetic acid production method of the present invention further includes a scrubber process in which off-gas from the process is absorbed with an absorption solvent containing at least acetic acid to separate a stream rich in carbon monoxide and a stream rich in acetic acid. You may do it.
- FIG. 1 is an example of an acetic acid production flow diagram (methanol carbonylation process) showing an embodiment of the present invention.
- the acetic acid production apparatus includes a reaction tank 1, an evaporation tank 2, a distillation tower 3, a decanter 4, a distillation tower 5, a distillation tower 6, an ion exchange resin tower 7, and a scrubber system 8. And acetaldehyde separation and removal system 9, distillation column 10, condensers 1a, 2a, 3a, 5a, 6a, 10a, heat exchanger 2b, reboilers 3b, 5b, 6b, 10b, lines 11 to 56, 58 to 63.
- the pump 57 is provided so that acetic acid can be continuously produced.
- a reaction process and an evaporation process Flash step
- first distillation step is also called a delow boiling step
- second distillation step is also called a dehydration step
- third distillation step is also called a dehigh boiling step.
- a liquid separation step and an acetaldehyde separation / removal (deacetaldehyde treatment) step are performed, respectively.
- a process is not restricted above,
- the equipment of the distillation tower 5, the distillation tower 6, and the ion exchange resin tower 7 may not be attached.
- a product tower may be provided downstream of the ion exchange resin tower 7.
- the reaction tank 1 is a unit for performing a reaction process.
- This reaction step is a step for continuously generating acetic acid by a reaction (methanol carbonylation reaction) represented by the following chemical formula (1).
- a reaction mixture that is stirred by, for example, a stirrer exists in the reaction tank 1.
- the reaction mixture contains methanol and carbon monoxide as raw materials, a metal catalyst, a cocatalyst, water, acetic acid for production purposes, and various by-products, and the liquid phase and the gas phase are in an equilibrium state. It is in. CH 3 OH + CO ⁇ CH 3 COOH (1)
- the raw materials in the reaction mixture are liquid methanol and gaseous carbon monoxide.
- Methanol is continuously supplied from the methanol reservoir (not shown) to the reaction tank 1 through the line 11 at a predetermined flow rate.
- the metal catalyst in the reaction mixture is for accelerating the carbonylation reaction of methanol.
- a rhodium catalyst or an iridium catalyst can be used.
- the rhodium catalyst for example, the formula [Rh (CO) 2 I 2 ] - rhodium complex represented by the can be used.
- the iridium catalyst such as chemical formulas [Ir (CO) 2 I 2 ] - iridium complex represented by the can be used.
- a metal complex catalyst is preferable as the metal catalyst.
- the cocatalyst is an iodide for assisting the action of the above-described catalyst.
- methyl iodide or ionic iodide is used.
- Methyl iodide can exhibit an action of promoting the catalytic action of the above-described catalyst.
- the concentration of methyl iodide is, for example, 1 to 20% by mass with respect to the entire liquid phase of the reaction mixture.
- the ionic iodide is an iodide (in particular, an ionic metal iodide) that generates iodide ions in the reaction solution, and can exhibit an effect of stabilizing the above-described catalyst and an effect of suppressing side reactions.
- the ionic iodide examples include alkali metal iodides such as lithium iodide, sodium iodide, and potassium iodide.
- concentration of the ionic iodide in the reaction mixture is, for example, 1 to 25% by mass, preferably 5 to 20% by mass, based on the entire liquid phase of the reaction mixture.
- a ruthenium compound or an osmium compound can also be used as a promoter.
- the total amount of these compounds used is, for example, 0.1 to 30 mol (metal conversion), preferably 0.5 to 15 mol (metal conversion) with respect to 1 mol of iridium (metal conversion).
- Water in the reaction mixture is a component necessary for generating acetic acid in the reaction mechanism of the carbonylation reaction of methanol, and is also a component necessary for solubilization of water-soluble components in the reaction system.
- the concentration of water in the reaction mixture is, for example, 0.1 to 15% by mass, preferably 0.8 to 10% by mass, more preferably 1 to 6% by mass, with respect to the entire liquid phase of the reaction mixture.
- the amount is preferably 1.5 to 4% by mass.
- the water concentration is preferably 15% by mass or less in order to suppress the energy required for water removal during the purification process of acetic acid and promote the efficiency of acetic acid production.
- a predetermined flow rate of water may be continuously supplied to the reaction tank 1.
- Examples of main by-products contained in the reaction mixture include methyl acetate. This methyl acetate can be generated by the reaction of acetic acid and methanol.
- the concentration of methyl acetate in the reaction mixture is, for example, 0.1 to 30% by mass, preferably 1 to 10% by mass, with respect to the entire liquid phase of the reaction mixture.
- Examples of by-products contained in the reaction mixture include hydrogen iodide. This hydrogen iodide is inevitably generated due to the reaction mechanism of the carbonylation reaction of methanol when the above-described catalyst or promoter is used.
- the concentration of hydrogen iodide in the reaction mixture is, for example, 0.01 to 2% by mass with respect to the entire liquid phase of the reaction mixture.
- Examples of by-products include hydrogen, methane, carbon dioxide, acetaldehyde, crotonaldehyde, 2-ethylcrotonaldehyde, butyl acetate, dimethyl ether, alkanes, formic acid and propionic acid, and ethyl iodide and propyl iodide.
- alkyl iodides such as butyl iodide, hexyl iodide and decyl iodide.
- the crotonaldehyde concentration in the reaction mixture is, for example, 5 mass ppm or less, preferably 3 mass ppm or less, and more preferably 2 mass ppm or less.
- the lower limit of the crotonaldehyde concentration in the reaction mixture is 0 ppm, but may be, for example, 0.1 mass ppm (or 0.2 mass ppm).
- the concentration of 2-ethylcrotonaldehyde in the reaction mixture is, for example, 5 ppm by mass or less, preferably 3 ppm by mass or less, and more preferably 2 ppm by mass or less.
- the lower limit of the 2-ethylcrotonaldehyde concentration in the reaction mixture is 0 ppm, but may be, for example, 0.1 mass ppm or 0.2 mass ppm.
- the concentration of crotonaldehyde in the first acetic acid stream withdrawn from the deboiling tower is controlled below a specific value.
- the reflux ratio of the dehydration tower is controlled to a specific value or more.
- the hydrogen partial pressure in the reaction vessel is increased, or the reflux ratio in the delow boiling tower is increased.
- the reflux ratio of the deboiling tower or dehydration tower is increased, crotonaldehyde is concentrated at the top of each distillation tower.
- the crotonaldehyde When this concentrated crotonaldehyde is recycled to the reaction vessel, the crotonaldehyde is hydrogenated to butyl alcohol, which in turn reacts with acetic acid to be converted to butyl acetate, rendering it harmless to the potassium permanganate test. Is done. Further, when the hydrogen partial pressure in the reaction tank is increased, crotonaldehyde in the reaction tank is easily hydrogenated, and is converted into harmless butyl acetate via butyl alcohol as described above. Therefore, in the present invention, the butyl acetate concentration in the reaction mixture tends to increase. However, increasing the butyl acetate concentration may lead to a decrease in the purity of the product acetic acid. Therefore, the butyl acetate concentration in the reaction mixture is preferably controlled to, for example, 0.1 to 15 mass ppm (particularly 1 to 12 mass ppm, especially 2 to 9 mass ppm).
- the reflux ratio of the deboiling tower is controlled to a specific value or more.
- crotonaldehyde is concentrated at the top of the tower.
- the crotonaldehyde is hydrogenated to butyl alcohol, which in turn reacts with acetic acid to be converted to butyl acetate, rendering it harmless to the potassium permanganate test. Is done. Therefore, in the present invention, the butyl acetate concentration in the reaction mixture tends to increase.
- the butyl acetate concentration in the reaction mixture is preferably controlled to, for example, 0.1 to 15 mass ppm (particularly 1 to 12 mass ppm, especially 2 to 9 mass ppm).
- the reaction mixture contains metals such as iron, nickel, chromium, manganese, and molybdenum [corrosive metal (also called corrosive metal)] generated by corrosion of the apparatus, and other metals such as cobalt, zinc, and copper. obtain.
- the corrosive metal and other metals may be collectively referred to as “corrosive metal or the like”.
- the reaction temperature is set to 150 to 250 ° C., for example, and the reaction pressure as the total pressure is set to 2.0 to 3.5 MPa (absolute pressure), for example.
- the carbon monoxide partial pressure is set, for example, to 0.4 to 1.8 MPa (absolute pressure), preferably 0.6 to 1.5 MPa (absolute pressure).
- the reaction temperature is set to, for example, 150 to 250 ° C. in the reaction vessel 1 in which the above reaction mixture exists, and the reaction pressure as the total pressure is, for example, 2.0 to 3.5 MPa (absolute pressure).
- the carbon monoxide partial pressure is, for example, 0.4 to 1.8 MPa (absolute pressure), preferably 0.6 to 1.6 MPa (absolute pressure), more preferably 0.9 to 1.4 MPa (absolute Pressure).
- carbon monoxide, hydrogen, methane, carbon dioxide, nitrogen, oxygen, methyl iodide, hydrogen iodide, water, methyl acetate, acetic acid, dimethyl ether can be used as the vapor in the vapor phase in the reaction tank 1 when the apparatus is in operation.
- Methanol, acetaldehyde, formic acid and propionic acid can be used as the vapor in the vapor phase in the reaction tank 1 when the apparatus is in operation.
- This vapor can be extracted from the reaction vessel 1 through the line 13. It is possible to control the pressure in the reaction vessel 1 by adjusting the amount of steam extracted. For example, the pressure in the reaction vessel 1 is kept constant.
- the steam extracted from the reaction tank 1 is introduced into the condenser 1a.
- the vapor in the gas phase portion in the reaction vessel 1 when the apparatus is in operation includes, for example, carbon monoxide, hydrogen, methane, carbon dioxide, nitrogen, oxygen, methyl iodide, hydrogen iodide, water, methyl acetate. , Acetic acid, dimethyl ether, methanol, acetaldehyde, formic acid and propionic acid.
- hydrogen is generated by a shift reaction (CO + H 2 O ⁇ H 2 + CO 2 ) occurring in the reaction vessel 1.
- the hydrogen partial pressure in the reaction tank 1 is, for example, 0.001 MPa (absolute pressure) or more [eg, 0.005 MPa or more], preferably 0.01 MPa (absolute pressure) or more [eg, 0.015 MPa or more], more preferably 0.02 MPa. (Absolute pressure) or more, more preferably 0.04 MPa (absolute pressure) or more, particularly preferably 0.06 MPa (absolute pressure) or more [for example, 0.07 MPa (absolute pressure) or more]. If the partial pressure of hydrogen in the reactor is increased too much, the amount of acetaldehyde produced will increase and crotonaldehyde will increase due to aldol condensation.
- the vapor in the gas phase in the reaction vessel 1 can be extracted from the reaction vessel 1 through the line 13. It is possible to control the pressure in the reaction tank 1 by adjusting the amount of steam extracted. For example, the pressure in the reaction tank 1 is maintained constant. The steam extracted from the reaction tank 1 is introduced into the condenser 1a.
- the condenser 1a divides the vapor from the reaction vessel 1 into a condensed component and a gas component by cooling and partially condensing.
- the condensate contains, for example, methyl iodide, hydrogen iodide, water, methyl acetate, acetic acid, dimethyl ether, methanol, acetaldehyde, formic acid and propionic acid, and is introduced from the condenser 1a to the reaction tank 1 through the line 14 and recycled. Is done.
- the gas component includes, for example, carbon monoxide, hydrogen, methane, carbon dioxide, nitrogen, oxygen, methyl iodide, hydrogen iodide, water, methyl acetate, acetic acid, dimethyl ether, methanol, acetaldehyde, formic acid, and the like. It is supplied to the scrubber system 8 through a line 15.
- useful components for example, methyl iodide, water, methyl acetate, acetic acid, etc.
- a wet method is used for this separation and recovery, which is performed using an absorbent for collecting useful components in the gas component.
- an absorbing solvent containing at least acetic acid and / or methanol is preferable.
- the absorbing solution may contain methyl acetate.
- a condensate of vapor from the later-described distillation column 6 can be used as the absorbing liquid.
- a pressure fluctuation adsorption method may be used.
- Separated and recovered useful components are introduced from the scrubber system 8 into the reaction tank 1 through the recycling line 48 and recycled.
- the gas after collecting useful components is discarded through line 49.
- the gas discharged from the line 49 can be used as a CO source to be introduced into the bottom of the evaporation tank 2 described later or the residual liquid flow recycling lines 18 and 19.
- the processing in the scrubber system 8 and the subsequent recycling and disposal to the reaction vessel 1 are the same for the gas components described later supplied from other capacitors to the scrubber system 8.
- acetic acid is continuously produced in the reaction tank 1 when the apparatus is in operation.
- a reaction mixture containing such acetic acid is continuously withdrawn from the reaction tank 1 at a predetermined flow rate and introduced into the next evaporation tank 2 through a line 16.
- the evaporation tank 2 is a unit for performing an evaporation process (flash process).
- a vapor stream (volatile phase) and a residual liquid stream (low volatile phase) are obtained by partially evaporating the reaction mixture continuously introduced into the evaporation tank 2 through the line 16 (reaction mixture supply line). It is a process for dividing into. Evaporation may be caused by reducing the pressure without heating the reaction mixture, or evaporation may be caused by reducing the pressure while heating the reaction mixture.
- the temperature of the vapor stream is, for example, 100 to 260 ° C., preferably 120 to 200 ° C.
- the temperature of the residual liquid stream is, for example, 80 to 200 ° C., preferably 100 to 180 ° C.
- the pressure in the tank is, for example, 50 to 1000 kPa (absolute pressure).
- the ratio of the vapor flow and the residual liquid flow separated in the evaporation step is, for example, 10/90 to 50/50 (vapor flow / residual liquid flow) in mass ratio.
- the steam generated in this step includes, for example, methyl iodide, hydrogen iodide, water, methyl acetate, acetic acid, dimethyl ether, methanol, acetaldehyde, formic acid, propionic acid, etc. ) Continuously extracted.
- a part of the steam flow extracted from the inside of the evaporation tank 2 is continuously introduced into the condenser 2a, and the other part of the steam stream is continuously introduced into the next distillation column 3 through the line 21.
- the acetic acid concentration of the vapor stream is, for example, 40 to 85% by mass (preferably 50 to 85% by mass), more preferably 50 to 75% by mass (for example 55 to 75% by mass), and the methyl iodide concentration is, for example, 2 to 50% by mass (preferably 5 to 30% by mass), the water concentration is, for example, 0.2 to 20% by mass (preferably 1 to 15% by mass), and the methyl acetate concentration is, for example, 0.2 to 50% by mass (Preferably 2 to 30% by mass).
- the residual liquid stream generated in this step is composed of the catalyst and cocatalyst (methyl iodide, lithium iodide, etc.) contained in the reaction mixture, water remaining without volatilization in this step, methyl acetate, acetic acid, formic acid and It contains propionic acid and the like and is continuously introduced from the evaporation tank 2 through the line 18 to the heat exchanger 2b using the pump 57.
- the heat exchanger 2b cools the residual liquid stream from the evaporation tank 2.
- the cooled residual liquid stream is continuously introduced from the heat exchanger 2b to the reaction tank 1 through the line 19 and recycled.
- the line 18 and the line 19 are collectively referred to as a residual liquid flow recycling line.
- the acetic acid concentration in the residual stream is, for example, 55 to 90% by mass, preferably 60 to 85% by mass.
- the vapor generated in this step is, for example, methyl iodide, hydrogen iodide, water, methyl acetate, acetic acid, dimethyl ether, methanol, acetaldehyde, crotonaldehyde, 2-ethylcrotonaldehyde, butyl acetate, formic acid, propionic acid.
- alkyl iodide such as ethyl iodide, propyl iodide, butyl iodide, hexyl iodide and decyl iodide, etc., and continuously extracted from the evaporation tank 2 to the line 17 (steam flow discharge line). .
- the acetic acid concentration of the vapor stream is, for example, 50 to 85% by mass, preferably 55 to 75% by mass
- the methyl iodide concentration is, for example, 2 to 50% by mass (preferably 5 to 30% by mass)
- the water concentration is For example, 0.2 to 20% by mass (preferably 1 to 15% by mass)
- the methyl acetate concentration is, for example, 0.2 to 50% by mass (preferably 2 to 30% by mass).
- the crotonaldehyde concentration in the vapor stream is, for example, 0 to 5.0 mass ppm (eg, 0.01 to 4.0 mass ppm), preferably 0.1 to 3.0 mass ppm, more preferably 0.2 to 2 ppm. 0.0 ppm by mass.
- the concentration of 2-ethylcrotonaldehyde in the vapor stream is, for example, 0 to 3.0 mass ppm (for example, 0.01 to 2.5 mass ppm), preferably 0.02 to 2.0 mass ppm, and more preferably 0.8. It is 03 to 0.8 ppm by mass.
- the concentration of butyl acetate in the vapor stream is, for example, 0.1 to 13 ppm by mass, preferably 0.2 to 12 ppm by mass, and more preferably 0.3 to 9 ppm by mass.
- the remaining liquid stream generated in this step is the catalyst and cocatalyst (methyl iodide, lithium iodide, etc.) contained in the reaction mixture, water remaining without volatilization in this step, methyl acetate, acetic acid, crotonaldehyde. , 2-ethylcrotonaldehyde, butyl acetate, formic acid, propionic acid and the like, and are continuously introduced from the evaporation tank 2 to the heat exchanger 2b through the line 18 using the pump 57.
- the heat exchanger 2b cools the residual liquid stream from the evaporation tank 2.
- the cooled residual liquid stream is continuously introduced from the heat exchanger 2b to the reaction tank 1 through the line 19 and recycled.
- the line 18 and the line 19 are collectively referred to as a residual liquid flow recycling line.
- the acetic acid concentration in the residual stream is, for example, 55 to 90% by mass, preferably 60 to 85% by mass.
- a carbon monoxide-containing gas introduction line 54 for introducing a carbon monoxide-containing gas to the bottom of the evaporation tank 2 and / or the residual liquid flow recycling line (line 18 and / or line 19).
- a carbon monoxide-containing gas introduction line 54 for introducing a carbon monoxide-containing gas to the bottom of the evaporation tank 2 and / or the residual liquid flow recycling line (line 18 and / or line 19).
- the condenser 2a divides the vapor flow from the evaporation tank 2 into a condensed component and a gas component by cooling and partially condensing.
- the condensate includes, for example, methyl iodide, hydrogen iodide, water, methyl acetate, acetic acid, dimethyl ether, methanol, acetaldehyde, formic acid, propionic acid, and the like, and is introduced from the condenser 2a into the reaction tank 1 through lines 22 and 23. Recycled.
- the gas component includes, for example, carbon monoxide, hydrogen, methane, carbon dioxide, nitrogen, oxygen, methyl iodide, hydrogen iodide, water, methyl acetate, acetic acid, dimethyl ether, methanol, acetaldehyde, formic acid, and the like. It is supplied to the scrubber system 8 through lines 20 and 15.
- the acetic acid production reaction in the above reaction step is an exothermic reaction, and part of the heat accumulated in the reaction mixture is transferred to the vapor generated from the reaction mixture in the evaporation step (flash step).
- the condensed matter generated by the cooling of the steam in the condenser 2 a is recycled to the reaction tank 1. That is, in this acetic acid production apparatus, heat generated by the carbonylation reaction of methanol is efficiently removed by the capacitor 2a.
- the condenser 2a cools and partially condenses the vapor flow from the evaporation tank 2 into a condensed component and a gas component.
- Condensed components include, for example, methyl iodide, hydrogen iodide, water, methyl acetate, acetic acid, dimethyl ether, methanol, acetaldehyde, crotonaldehyde, 2-ethylcrotonaldehyde, butyl acetate, formic acid, propionic acid, and the like from capacitor 2a. It is introduced into the reaction vessel 1 through the lines 22 and 23 and recycled.
- the gas component includes, for example, carbon monoxide, hydrogen, methane, carbon dioxide, nitrogen, oxygen, methyl iodide, hydrogen iodide, water, methyl acetate, acetic acid, dimethyl ether, methanol, acetaldehyde, formic acid, and the like. It is supplied to the scrubber system 8 through lines 20 and 15.
- the acetic acid production reaction in the above reaction step is an exothermic reaction, and part of the heat accumulated in the reaction mixture is transferred to the vapor generated from the reaction mixture in the evaporation step (flash step).
- the condensed matter generated by the cooling of the steam in the condenser 2 a is recycled to the reaction tank 1. That is, in this acetic acid production apparatus, heat generated by the carbonylation reaction of methanol is efficiently removed by the capacitor 2a.
- the distillation column 3 is a unit for performing the first distillation step, and is positioned as a so-called deboiling tower in this embodiment.
- the first distillation step is a step of separating and removing low boiling components by distillation treatment of the steam stream continuously introduced into the distillation column 3. More specifically, in the first distillation step, the vapor stream is distilled and separated into an overhead stream rich in at least one low-boiling component selected from methyl iodide and acetaldehyde, and an acetic acid stream rich in acetic acid.
- the distillation column 3 is composed of, for example, a rectification column such as a plate column and a packed column.
- the theoretical plate is, for example, 5 to 50 plates, and the reflux ratio is, for example, 0.5 to 3000 depending on the number of theoretical plates.
- the column top pressure is set to 80 to 160 kPa (gauge pressure), for example, and the column bottom pressure is set higher than the column top pressure, for example, 85 to 180 kPa (gauge pressure).
- the column top temperature is set to 90 to 130 ° C., for example, lower than the boiling point of acetic acid at the set column top pressure
- the column bottom temperature is set to, for example, the set column bottom pressure. The temperature is higher than the boiling point of acetic acid and is set to 120 to 160 ° C.
- the column top pressure is set to 80 to 160 kPa (gauge pressure), for example, and the column bottom pressure is set to be higher than the column top pressure, for example 85 to 180 kPa (gauge pressure).
- the column top temperature is set to 90 to 130 ° C., for example, lower than the boiling point of acetic acid at the set column top pressure
- the column bottom temperature is set to, for example, the set column bottom pressure.
- the temperature is higher than the boiling point of acetic acid and is set to 115 to 165 ° C. (preferably 120 to 160 ° C.).
- the steam withdrawn from the top of the distillation column 3 contains a larger amount of components having a lower boiling point than that of acetic acid (low-boiling components) compared to the bottoms and side stream from the distillation column 3, such as methyl iodide, Including hydrogen iodide, water, methyl acetate, dimethyl ether, methanol, acetaldehyde and formic acid. This vapor also contains acetic acid.
- acetic acid low-boiling components
- the steam withdrawn from the top of the distillation column 3 contains a larger amount of components having a lower boiling point than that of acetic acid (low-boiling components) compared to the bottoms and side stream from the distillation column 3, for example, Including methyl iodide, hydrogen iodide, water, methyl acetate, dimethyl ether, methanol, acetaldehyde, crotonaldehyde and formic acid. This vapor also contains acetic acid.
- Such steam is continuously introduced into the condenser 3a through the line 24.
- the condenser 3a cools and partially condenses the vapor from the distillation tower 3 to divide it into a condensed component and a gas component.
- the condensate contains, for example, methyl iodide, hydrogen iodide, water, methyl acetate, acetic acid, dimethyl ether, methanol, acetaldehyde, formic acid, and the like, and is continuously introduced from the capacitor 3 a to the decanter 4 through the line 28.
- the condensed matter introduced into the decanter 4 is separated into an aqueous phase (upper phase) and an organic phase (methyl iodide phase; lower phase).
- the aqueous phase includes water and, for example, methyl iodide, hydrogen iodide, methyl acetate, acetic acid, dimethyl ether, methanol, acetaldehyde and formic acid.
- the organic phase includes, for example, methyl iodide and, for example, hydrogen iodide, water, methyl acetate, acetic acid, dimethyl ether, methanol, acetaldehyde and formic acid.
- a part of the aqueous phase is refluxed to the distillation column 3 through the line 29, and the other part of the aqueous phase is introduced into the reaction tank 1 through the lines 29, 30, and 23 and recycled.
- a part of the organic phase is introduced into the reaction vessel 1 through lines 31 and 23 and recycled.
- the other part of the organic phase and / or the other part of the aqueous phase is introduced into the acetaldehyde separation and removal system 9 through the lines 31, 50 and / or the lines 30, 51.
- the condenser 3a cools and partially condenses the vapor from the distillation column 3 to separate it into a condensed component and a gas component.
- the condensate includes, for example, methyl iodide, hydrogen iodide, water, methyl acetate, acetic acid, dimethyl ether, methanol, acetaldehyde, crotonaldehyde, formic acid, and the like, and is continuously introduced from the condenser 3a to the decanter 4 through the line 28.
- the condensed matter introduced into the decanter 4 is separated into an aqueous phase (upper phase) and an organic phase (methyl iodide phase; lower phase).
- the aqueous phase includes water and, for example, methyl iodide, hydrogen iodide, methyl acetate, acetic acid, dimethyl ether, methanol, acetaldehyde, crotonaldehyde, and formic acid.
- the organic phase includes methyl iodide and, for example, hydrogen iodide, water, methyl acetate, acetic acid, dimethyl ether, methanol, acetaldehyde, crotonaldehyde, and formic acid.
- preferred liquid separation conditions for subjecting the organic phase to the acetaldehyde separation / removal step and preferred liquid separation conditions for subjecting the aqueous phase to the acetaldehyde separation / removal step are shown.
- AD partition ratio ⁇ AD concentration (mass%) in the aqueous phase ⁇ / ⁇ AD concentration (mass%) in the organic phase ⁇
- MA partition ratio ⁇ MA concentration (mass%) in aqueous phase ⁇ / ⁇ MA concentration (mass%) in organic phase ⁇
- the separation step satisfies at least one of the following conditions (bi) to (bb), and at least a part of the aqueous phase is separated and removed from the acetaldehyde: Processed in the process.
- the acetaldehyde concentration in the aqueous phase is 28.1% by mass or less and / or the acetaldehyde concentration in the organic phase is 24.8% by mass or less.
- the concentration of acetaldehyde in the aqueous phase is, for example, 0.045 to 28.1% by mass, preferably 0.098 to 10% by mass, more preferably 0.098 to 3.0% by mass, Particularly preferred is 0.098 to 1.0 mass% (for example, 0.15 to 0.9 mass%).
- the acetaldehyde concentration in the organic phase is, for example, 0.013 to 24.8% by mass, preferably 0.030 to 2.0% by mass, more preferably 0.030 to 0.50% by mass, and particularly preferably 0. 0.030 to 0.24% by mass.
- the acetaldehyde concentration in the aqueous phase is preferably 28.1% by mass or less, and the acetaldehyde concentration in the organic phase is preferably 24.8% by mass or less.
- the concentration of acetaldehyde in the separation process supply liquid is, for example, 26.0% by mass or less (for example, 0.026 to 26.0% by mass), preferably Is 0.057 to 10% by mass, more preferably 0.057 to 3.0% by mass, and particularly preferably 0.057 to 1.0% by mass (for example, 0.057 to 0.42% by mass).
- the AD distribution ratio becomes small (for example, below 1.1). Therefore, if the amount of acetaldehyde recovered is compared with the necessity of using an expensive apparatus with extremely high corrosion resistance, the merit of treating the aqueous phase in the acetaldehyde separation and removal step is extremely small.
- the temperature (liquid temperature) at the time of liquid separation is, for example, ⁇ 5 ° C. to 70 ° C., preferably ⁇ 5 ° C. to 60 ° C., more preferably ⁇ 5 ° C. to 51 ° C. (eg, ⁇ 5 ° C to 45 ° C), more preferably -5 ° C to 41 ° C (eg, -5 ° C to 31 ° C).
- the temperature at the time of liquid separation exceeds 70 ° C.
- the AD distribution rate becomes very small. Therefore, the merit of treating the aqueous phase in the acetaldehyde separation and removal step is extremely small.
- the concentration of methyl acetate in the aqueous phase is, for example, 1.2 to 12.0% by mass, preferably 2.0 to 12.0% by mass, more preferably 5.0 to 12.0%. % By mass (eg, 6.0 to 12.0% by mass).
- the concentration of methyl acetate in the organic phase is, for example, 2.2 to 47.6% by mass, preferably 5.0 to 42% by mass, more preferably 8.0 to 35% by mass (for example, 10 to 30% by mass). It is.
- the methyl acetate concentration in the aqueous phase is preferably 12.0% by mass or less, and the methyl acetate concentration in the organic phase is preferably 47.6% by mass or less.
- the sum of the methyl acetate concentration (% by mass) in the aqueous phase and the methyl acetate concentration (% by mass) in the organic phase is, for example, 59.6% by mass or less (eg, 4.2 to 59.6% by mass), Preferably 6.0 to 54% by mass, more preferably 8.0 to 54% by mass, still more preferably 10.0 to 54% by mass, and particularly preferably 14.0 to 47% by mass (eg, 16 to 42% by mass). It is.
- the methyl acetate concentration in the liquid separation process supply liquid (for example, the liquid supplied to the decanter 4) is, for example, 38.2% by mass or less (for example, 2.0 to 38.2% by mass),
- the content is preferably 5.0 to 31% by mass, more preferably 8.0 to 25% by mass, and still more preferably 10.0 to 25% by mass.
- the methyl acetate concentration in the aqueous phase exceeds 12.0% by mass
- the methyl acetate concentration in the organic phase exceeds 47.6% by mass, or the methyl acetate concentration (% by mass) in the aqueous phase
- the AD partition rate is less than 1.1, for example. The merit of processing with is very small.
- the AD distribution rate is, for example, 1.1 to 8.0, preferably 1.5 to 6.0, and more preferably 1.9 to 5.0.
- the AD distribution ratio is less than 1.1, the concentration of acetaldehyde in the aqueous phase is low. Therefore, it is industrially disadvantageous to carry out the deacetaldehyde treatment of the aqueous phase, which requires a lot of energy and easily corrodes the apparatus.
- the AD distribution ratio is 1.1 or more (preferably 1.5 or more, more preferably 1.9 or more), there is a merit of improving the efficiency of separation and removal of acetaldehyde even when a highly corrosion-resistant apparatus is used. large.
- the MA distribution ratio is 0.25 or more (for example, 0.25 to 0.70), preferably 0.26 or more (for example 0.26 to 0.65), more preferably 0.00. 28 or more (for example, 0.28 to 0.60).
- the distribution ratio of methyl acetate (MA) to the aqueous phase and the organic phase varies depending on the temperature and composition (including water, methyl iodide and other components such as acetic acid), which is also the acetaldehyde distribution ratio. It becomes a guideline for control.
- the separation step may satisfy at least one of the conditions (bi) to (bb), but two or more of the above conditions may be satisfied simultaneously.
- the separation step may satisfy at least one of the conditions (bi) to (bb), but two or more of the above conditions may be satisfied simultaneously.
- At least (bi), (b-ii) and (b-iii) are simultaneously satisfied, and at least (bi), (b-ii), (b-iii) and (b-iv) It is particularly preferable to satisfy all of (bi), (b-ii), (b-iii), (b-iv) and (bv) simultaneously.
- the liquid separation step satisfies at least one of the following conditions (b′-i) to (b′-v), and at least a part of the organic phase is It is processed in the acetaldehyde separation and removal step.
- the acetaldehyde concentration in the aqueous phase is 0.045 mass% or more and / or the acetaldehyde concentration in the organic phase is 0.013 mass% or more.
- the concentration of acetaldehyde in the aqueous phase is, for example, 0.045 to 35% by mass, preferably 0.15 to 10% by mass, and more preferably 0.2 to 2.0% by mass. .
- the acetaldehyde concentration in the organic phase is, for example, 0.013 to 30% by mass, preferably 0.05 to 5.0% by mass, and more preferably 0.1 to 1.0% by mass.
- the acetaldehyde concentration in the aqueous phase is preferably 0.045% by mass or more and the acetaldehyde concentration in the organic phase is preferably 0.013% by mass or more.
- the concentration of acetaldehyde in the separation process supply liquid is, for example, 0.026% by mass or more (for example, 0.026 to 32% by mass), preferably It is 0.10 to 8.0% by mass, more preferably 0.15 to 1.8% by mass.
- the acetaldehyde concentration in the aqueous phase is less than 0.045% by mass, or when the acetaldehyde concentration in the organic phase is less than 0.013% by mass, the AD partition ratio becomes a large value. The merit of processing in the separation and removal process is extremely small.
- the temperature (liquid temperature) at the time of liquid separation is ⁇ 5 ° C. or higher (eg ⁇ 5 ° C. to 90 ° C.), preferably 0 ° C. or higher (eg 0 to 90 ° C.), more preferably 10 ° C. or higher (for example, 10 to 90 ° C.), more preferably 20 ° C. or higher (for example, 25 to 90 ° C.), a temperature higher than 30 ° C. (for example, more than 30 ° C. and 90 ° C. or lower), and a temperature higher than 35 ° C.
- a temperature higher than 40 ° C. for example, higher than 40 ° C.
- a temperature higher than 70 ° C. for example, higher than 70 ° C. and lower than 90 ° C.
- the AD partition ratio exceeds 4.3, for example, and therefore, the merit of treating the organic phase in the acetaldehyde separation and removal step is extremely small.
- the concentration of methyl acetate in the aqueous phase is, for example, 1.2 to 20% by mass, preferably 2.5 to 18% by mass, more preferably 4.0 to 15% by mass, and still more preferably. Is 6.0 to 13% by mass, particularly preferably 7.0 to 12% by mass.
- the methyl acetate concentration in the organic phase is, for example, 2.2 to 60% by mass, preferably 5.8 to 48% by mass, more preferably 8.0 to 40% by mass, and still more preferably 10.0 to 30%.
- the content is 0% by mass, particularly preferably 11.0 to 25.0% by mass.
- the methyl acetate concentration in the separation process supply liquid is, for example, 2.0 to 50% by mass, preferably 5.0 to 38% by mass. More preferably, the content is 8.0 to 35% by mass, still more preferably 10.0 to 32% by mass, and particularly preferably 15.0 to 31% by mass.
- the methyl acetate concentration in the aqueous phase is less than 1.2% by mass
- the methyl acetate concentration in the organic phase is less than 2.2% by mass, or with the methyl acetate concentration (% by mass) in the aqueous phase
- the AD partition rate becomes a large value, so that the merit of treating the organic phase in the acetaldehyde separation and removal step is small.
- the AD distribution ratio is 4.1 or less (for example, 0.5 to 4.1), preferably 3.35 or less (for example, 0.6 to 3.35), more preferably 3 Or less (0.7 to 3), more preferably 2.8 or less (eg 0.8 to 2.8), particularly preferably 2.5 or less (eg 0.8 to 2.5), especially 2.3 or less. (For example, 0.9 to 2.3), especially 2.0 or less (for example, 1.0 to 2.0).
- the AD distribution ratio exceeds 4.1, since the acetaldehyde concentration in the organic phase is extremely low, the merit of treating the organic phase in the acetaldehyde separation and removal step is extremely small.
- Examples of a method for obtaining the most suitable AD partition rate (less than 1.1) for the deacetaldehyde treatment of the organic phase include, for example, increasing the acetaldehyde concentration in the aqueous phase to more than 28.1% by mass, 2. More than 24.8% by mass
- the acetaldehyde concentration in the liquid separation process feed liquid is made more than 26.0% by mass
- the temperature during the liquid separation is made more than 70 ° C.
- the methyl acetate concentration in the aqueous phase is made 12.
- the concentration of methyl acetate in the organic phase exceeds 47.6% by mass, or the concentration of methyl acetate in the liquid supplied to the separation process exceeds 38.2% by mass.
- the method for producing acetic acid according to the present invention is preferable as long as the separation step satisfies at least one of the conditions (b′-i) to (b′-v). Two or more may be satisfied simultaneously.
- At least (b′-i), (b′-ii) and (b′-iii) are simultaneously satisfied, at least (b′-i), (b′-ii), (b′-iii) And (b'-iv) at the same time, or (b'-i), (b'-ii), (b'-iii), (b'-iv) and all of (b'-v) It is particularly preferable to satisfy these simultaneously.
- the acetaldehyde concentration and the methyl acetate concentration in the aqueous phase and the organic phase are determined by the composition of the liquid separation process supply liquid and the temperature at the time of liquid separation.
- the higher the temperature at the time of liquid separation the higher the proportion of acetaldehyde distributed to the organic phase.
- concentration in a liquid separation process supply liquid can be controlled with the reaction conditions in the reaction tank 1, the evaporation conditions in the evaporation tank 2, and the distillation conditions in the distillation tower 3, for example.
- the higher the acetaldehyde concentration and the methyl acetate concentration in the reaction mixture the higher the acetaldehyde concentration and the methyl acetate concentration in the liquid separation process supply liquid, respectively.
- the acetaldehyde concentration in the reaction mixture increases as the reaction temperature, hydrogen partial pressure, methyl iodide concentration, water concentration, catalyst concentration, and lithium iodide concentration in the reaction system increase, and the CO partial pressure and methyl acetate concentration increase, respectively. It shows a tendency to decrease (see Japanese Patent Application Laid-Open No. 2006-182691). Furthermore, since methyl acetate is produced by the esterification reaction of acetic acid and methanol, the methyl acetate concentration in the reaction mixture increases as the acetic acid concentration and methanol concentration in the reaction system increase, and decreases as the water concentration increases.
- the control of the methyl acetate concentration in the deboiling tower is adjusted by controlling the methyl acetate concentration in the reaction vessel.
- the concentration of methyl acetate in the reaction vessel is, for example, under the conditions of constant methanol and CO charge, temperature in the reaction vessel, rhodium complex (Rh), methyl iodide (MeI), H 2 O, hydrogen partial pressure, and monoxide. It can be adjusted by increasing or decreasing factors that affect the reaction rate, such as carbon partial pressure and lithium iodide (LiI). That is, when the temperature, Rh, MeI, H 2 O, hydrogen partial pressure, carbon monoxide partial pressure, LiI, etc.
- the methyl acetate concentration in the reaction vessel decreases, and when it is decreased, the methyl acetate concentration increases.
- these conditions are made constant, that is, conditions such as temperature, Rh, MeI, H 2 O, hydrogen partial pressure, carbon monoxide partial pressure, LiI, etc. are made constant, increasing methanol and CO feed amounts will increase acetic acid.
- the methyl concentration increases, and as it decreases, the methyl acetate concentration decreases.
- the concentration of methyl acetate in the vapor obtained by evaporating the reaction liquid in the evaporation tank (preparation of the low boiling tower) varies in proportion to the concentration of methyl acetate in the reaction liquid because the evaporation rate is operated under a constant condition. .
- a part of the aqueous phase is refluxed to the distillation column 3 through the line 29, and the other part of the aqueous phase is introduced into the reaction tank 1 through the lines 29, 30, and 23 and recycled.
- a part of the organic phase is introduced into the reaction vessel 1 through lines 31 and 23 and recycled.
- the other part of the organic phase and / or the other part of the aqueous phase is introduced into the acetaldehyde separation and removal system 9 through the lines 31, 50 and / or the lines 30, 51.
- a part of the organic phase may be refluxed to the distillation column 3.
- the reflux ratio of the distillation column 3 will be described below.
- the reflux ratio of the aqueous phase (the reflux amount of the aqueous phase / the distillate amount of the aqueous phase) is, for example, 2 or more. Preferably it is 3 or more, more preferably 4 or more, still more preferably 8 or more, and particularly preferably 10 or more.
- the reflux ratio of the organic phase (the reflux amount of the organic phase / the distillate amount of the organic phase) is, for example, 1 or more, preferably 1.
- the reflux ratio of the aqueous phase (the reflux amount of the aqueous phase / the distillate amount of the aqueous phase) is preferably 2 or more, more preferably 3 or more, even more preferably. Is 5 or more, particularly preferably 8 or more, especially 12 or more.
- the reflux ratio of the distillation column 5 described later is controlled to 0.1 or more (particularly 0.3 or more, preferably 0.32 or more), the reflux ratio of the distillation column 3 is the upper phase or lower phase. Regardless of which is refluxed, it may be 0.5 or more, for example.
- 2-Ethylcrotonaldehyde has a smaller effect on the potassium permanganate test value than crotonaldehyde, and butyl acetate has no effect on the potassium permanganate test value. Therefore, the quality of acetic acid tends to be further improved.
- the boiling points of 2-ethylcrotonaldehyde and butyl acetate are 137 ° C. and 126 ° C., respectively, which are higher than the boiling points of acetic acid (117 ° C.). Therefore, when the reflux ratio of the distillation column 3 is increased, the top concentration decreases. It is easy to concentrate in side cuts or bottoms above the feed liquid supply position to the distillation column 3.
- a part of the organic phase is introduced into the distillation column 10 (decrotonaldehyde aldehyde column) through lines 31, 50 and 58, and crotonaldehyde is separated and removed by distillation.
- This distillation may be performed either continuously (continuous operation) or batch (batch treatment).
- a processing amount preparation amount
- the processing amount in the distillation column 10 is, for example, 0.0001 to 50 parts by mass (for example, 0.005) when the charged amount of the distillation column 3 (first distillation column; delow boiling column) is 100 parts by mass. (001 to 30 parts by mass), or 0.01 to 10 parts by mass (for example, 0.1 to 5 parts by mass).
- the distillation column 10 is composed of a rectifying column such as a plate column and a packed column, for example.
- the theoretical plate of the distillation column 10 is, for example, 1 to 100 plates, preferably 2 to 50 plates, more preferably 4 to 30 plates, and further preferably 5 to 20 plates (eg 6 to 15 plates).
- the distillate mainly contains methyl iodide and methyl acetate, and also contains dimethyl ether and low boiling alkanes.
- the distillate can be recycled to the decanter 4 or the reaction tank 1, for example.
- the gas component that has not been condensed in the condenser 10 a in the tower top vapor is sent to the scrubber system 8 through the line 63, for example.
- the bottoms is withdrawn from the bottom of the distillation column 10 through a line 60.
- the bottoms mainly contain crotonaldehyde, 2-ethylcrotonaldehyde, butyl acetate, high boiling impurities such as alkanes, and acetic acid. This bottoms is usually discarded.
- the water contained in a trace amount in the organic phase may be concentrated at the top of the column or extracted from the bottom.
- the aqueous phase may be introduced into the distillation column 10 through the lines 30, 51 and 58.
- a distillate containing water is obtained from the top of the distillation column 10
- a bottoms containing high-boiling impurities such as crotonaldehyde and acetic acid is obtained from the bottom of the column.
- crotonaldehyde can be efficiently removed by treating the aqueous phase and / or organic phase with the distillation column 10, thereby improving the potassium permanganate test value of the product acetic acid.
- the reflux ratio (reflux amount / distillation amount) of the distillation column 10 is, for example, 0.01 or more, preferably 0.05 or more, more preferably 0.5 or more, further preferably 5 or more, particularly preferably 20 or more (for example, 30 or more).
- the upper limit of the reflux ratio of the distillation column 10 is, for example, 1000 (or 100). If the reflux ratio of the distillation column 10 is too large, the crotonaldehyde concentrated on the bottom of the column is concentrated on the top of the column and the concentration of acetic acid having a higher boiling point becomes higher. Is preferred.
- the ratio (the former / the latter) of the crotonaldehyde concentration (mass ppm) in the distillate of the distillation column 10 and the crotonaldehyde concentration (mass ppm) in the charged solution is, for example, 1 Less than, preferably 0.95 or less, more preferably 0.80 or less, even more preferably 0.70 or less, particularly preferably 0.60 or less (for example 0.50 or less, especially 0.30 or less, especially 0.20 or less. ).
- the ratio (the former / the latter) of the crotonaldehyde concentration (mass ppm) in the bottoms of the distillation column 10 to the crotonaldehyde concentration (mass ppm) in the charged solution is greater than 1, for example, preferably 1.2. More preferably, it is 1.5 or more, more preferably 2.0 or more, particularly preferably 3.0 or more (for example, 4.0 or more, especially 5.0 or more), especially 10 or more (for example, 20 or more).
- acetaldehyde contained in the organic phase and / or the aqueous phase is separated and removed by a known method such as distillation, extraction, or a combination thereof.
- the separated acetaldehyde is discharged out of the apparatus through a line 53.
- useful components for example, methyl iodide contained in the organic phase and / or the aqueous phase are recycled to the reaction tank 1 through the lines 52 and 23 and reused.
- FIG. 2 is a schematic flow diagram showing an example of an acetaldehyde separation and removal system.
- the organic phase is fed to the distillation column (first deacetaldehyde column) 91 through the line 101 and distilled, and an overhead stream rich in acetaldehyde is obtained. (Line 102) and a residual stream rich in methyl iodide (line 103).
- the overhead stream is condensed in the condenser 91a, a part of the condensate is refluxed to the top of the distillation column 91 (line 104), and the other part of the condensate is supplied to the extraction tower 92 (line 105).
- the condensate supplied to the extraction tower 92 is extracted with water introduced from the line 109.
- the extract obtained by the extraction process is supplied to a distillation tower (second deacetaldehyde tower) 93 through a line 107 and distilled, and an overhead stream rich in acetaldehyde (line 112) and a residual liquid stream rich in water (line 113) To separate.
- the overhead stream rich in acetaldehyde is condensed by the condenser 93a, a part of the condensate is refluxed to the top of the distillation column 93 (line 114), and the other part of the condensate is discharged out of the system (line 115). ).
- a methyl iodide-rich residual liquid stream that is the bottoms of the first deacetaldehyde column 91, a methyl iodide-rich raffinate obtained in the extraction column 92 (line 108), and a second deacetaldehyde column 93 can
- the water-rich residual liquid stream that is the effluent is recycled to the reaction vessel 1 through lines 103, 111, and 113, respectively, or recycled to an appropriate location in the process and reused.
- the methyl iodide rich raffinate obtained in extraction column 92 can be recycled to distillation column 91 through line 110.
- the liquid 113 is usually discharged to the outside as waste water. Gases (lines 106, 116) that have not been condensed by the condensers 91a, 93a are absorbed by the scrubber system 8 or disposed of.
- the aqueous phase is supplied to the distillation column (first deacetaldehyde column) 91 through the line 101 and distilled to enrich the acetaldehyde.
- the overhead stream (line 102) is separated into a water-rich residual liquid stream (line 103).
- the overhead stream is condensed in the condenser 91a, a part of the condensate is refluxed to the top of the distillation column 91 (line 104), and the other part of the condensate is supplied to the extraction tower 92 (line 105).
- the condensate supplied to the extraction tower 92 is extracted with water introduced from the line 109.
- the extract obtained by the extraction process is supplied to a distillation tower (second deacetaldehyde tower) 93 through a line 107 and distilled, and an overhead stream rich in acetaldehyde (line 112) and a residual liquid stream rich in water (line 113) To separate.
- the overhead stream rich in acetaldehyde is condensed by the condenser 93a, a part of the condensate is refluxed to the top of the distillation column 93 (line 114), and the other part of the condensate is discharged out of the system (line 115). ).
- a water-rich residual stream that is the bottoms of the first deacetaldehyde tower 91, a methyl iodide-rich raffinate obtained from the extraction tower 92 (line 108), and a bottoms of the second deacetaldehyde tower 93
- the water-rich residual liquid stream is recycled to the reaction tank 1 through the lines 103, 111, and 113, or recycled to an appropriate part of the process and reused.
- the methyl iodide rich raffinate obtained in extraction column 92 can be recycled to distillation column 91 through line 110.
- the liquid 113 is usually discharged to the outside as waste water. Gases (lines 106, 116) that have not been condensed by the condensers 91a, 93a are absorbed by the scrubber system 8 or disposed of.
- Acetaldehyde derived from a process stream containing at least water, acetic acid (AC), methyl iodide (MeI) and acetaldehyde (AD) can be separated and removed using extractive distillation in addition to the above method.
- the organic phase and / or the aqueous phase (feed solution) obtained by separating the process stream is supplied to a distillation column (extraction distillation column), and methyl iodide and acetaldehyde in the distillation column are concentrated.
- An extraction solvent usually water
- is introduced into the concentration area for example, the space from the top of the column to the feed liquid supply position
- the liquid descending from the concentration area extraction liquid is extracted as a side flow (side cut flow).
- Acetaldehyde can be discharged out of the system by separating the side stream into an aqueous phase and an organic phase and distilling the aqueous phase. If a relatively large amount of water is present in the distillation column, the liquid descending from the concentration zone may be withdrawn as a side stream without introducing the extraction solvent into the distillation column.
- a unit such as a chimney tray
- the extraction solvent introduction position is preferably above the feed liquid supply position, and more preferably near the top of the column.
- the side stream extraction position is preferably lower than the extraction solvent introduction position and higher than the feed liquid supply position in the height direction of the column.
- a high concentration of acetaldehyde can be extracted from the concentrate of methyl iodide and acetaldehyde with an extraction solvent (usually water), and the area between the extraction solvent introduction site and the side cut site is used as an extraction zone. Therefore, acetaldehyde can be extracted efficiently with a small amount of extraction solvent. Therefore, for example, the number of stages of the distillation column can be greatly reduced and the steam load can be reduced as compared with a method of extracting the extract by extraction distillation from the bottom of the distillation column (extraction distillation column).
- the ratio (MeI / AD ratio) of methyl iodide with respect to acetaldehyde in a water extract can be made smaller than the method of combining deacetaldehyde distillation and water extraction in FIG. 2 using a small amount of extraction solvent, Acetaldehyde can be removed under conditions that can prevent loss of methyl iodide to the outside of the system.
- the concentration of acetaldehyde in the side stream is much higher than the concentration of acetaldehyde in the charged solution and bottoms (bottom solution).
- the ratio of the acetaldehyde with respect to the methyl iodide in the said side stream is larger than the ratio of the acetaldehyde with respect to the methyl iodide in the preparation liquid and the bottom liquid.
- the organic phase (methyl iodide phase) obtained by separating the side stream may be recycled to this distillation column.
- the recycling position of the organic phase obtained by separating the side flow is preferably lower than the side flow extraction position in the height direction of the tower, and preferably higher than the feed liquid supply position.
- a miscible solvent for components (for example, methyl acetate) constituting the organic phase obtained by separating the process stream may be introduced into this distillation column (extraction distillation column).
- miscible solvent examples include acetic acid and ethyl acetate.
- the introduction position of the miscible solvent is preferably lower than the side flow extraction position and higher than the feed liquid supply position in the height direction of the tower.
- the position where the miscible solvent is introduced is preferably lower than the recycling position when the organic phase obtained by separating the side stream is recycled to the distillation column. Recycling the organic phase obtained by separating the side stream into a distillation column or introducing the miscible solvent into the distillation column can reduce the methyl acetate concentration in the extract extracted as a side stream.
- the concentration of methyl acetate in the aqueous phase obtained by separating the extract can be reduced, so that the mixing of methyl iodide into the aqueous phase can be suppressed.
- the top temperature of the distillation column is, for example, 15 to 120 ° C., preferably 20 to 90 ° C., more preferably 20 to 80 ° C., and further preferably 25 to 70 ° C.
- the tower top pressure is an absolute pressure, for example, about 0.1 to 0.5 MPa.
- Other conditions for the distillation column may be the same as those for the conventional distillation column and extraction distillation column used for deacetaldehyde.
- FIG. 3 is a schematic flow diagram showing an example of an acetaldehyde separation and removal system using the above extractive distillation.
- the organic phase and / or the aqueous phase (feed solution) obtained by separating the process stream is supplied to the middle stage of the distillation column 94 (position between the top and the bottom) through the supply line 201.
- water is introduced from the vicinity of the top of the column through the line 202, and extractive distillation is performed in the distillation column 94 (extraction distillation column).
- a chimney tray 200 for receiving a liquid (extracted liquid) descending from a concentration area where methyl iodide and acetaldehyde in the tower are concentrated is disposed above the supply position of the charged liquid in the distillation column 94. .
- the entire amount of the liquid on the chimney tray 200 is preferably withdrawn and introduced into the decanter 95 through the line 208 for liquid separation.
- the aqueous phase (including acetaldehyde) in the decanter 95 is introduced into the cooling cooler 95 a through the line 212 and cooled, and the two phases of methyl iodide dissolved in the aqueous phase are separated and separated in the decanter 96.
- the aqueous phase in the decanter 96 is fed to the distillation column 97 (deacetaldehyde column) through the line 216 and distilled, and the vapor at the top of the column is led to the condenser 97a through the line 217 to be condensed and condensed (mainly acetaldehyde and methyl iodide). ) Is refluxed to the top of the distillation column 97 and the rest is discarded or supplied to the distillation column 98 (extraction distillation column) through the line 220. Water is introduced from the vicinity of the top of the distillation column 98 through the line 222, and extractive distillation is performed.
- the vapor at the top of the column is led to the condenser 98a through the line 223 to be condensed, a part of the condensate (mainly methyl iodide) is refluxed to the top of the column, and the rest is recycled to the reaction system through the line 226.
- the entire amount of the organic phase (methyl iodide phase) in the decanter 95 is preferably recycled below the position of the chimney tray 200 in the distillation column 94 through lines 209 and 210.
- a part of the aqueous phase of the decanter 95 and the organic phase of the decanter 96 are recycled to the distillation column 94 through lines 213 and 210 and lines 214 and 210, respectively, but may not be recycled.
- a part of the aqueous phase of the decanter 95 may be used as an extraction solvent (water) in the distillation column 94.
- a portion of the aqueous phase of the decanter 96 may be recycled to the distillation column 94 through line 210.
- a miscible solvent acetic acid, etc.
- components for example, methyl acetate constituting the organic phase obtained by separating the process stream.
- Ethyl acetate, etc. can be charged into the distillation column 94 through the line 215 to improve the distillation efficiency.
- the supply position of the miscible solvent to the distillation column 94 is above the feed liquid supply unit (connection part of the line 201) and below the connection part of the recycle line 210.
- the bottoms of the distillation column 94 is recycled to the reaction system.
- the vapor at the top of the distillation column 94 is led to the condenser 94a through the line 203 to condense, the condensate is separated by the decanter 99, the organic phase is refluxed to the top of the distillation column 94 through the line 206, and the water phase is the line.
- Guide to decanter 95 through 207 is described by decanter 95 through 207.
- the bottoms of the distillation tower 97 (water is the main component) and the bottoms of the distillation tower 98 (extraction distillation tower) (water containing a small amount of acetaldehyde) are removed from the system through lines 218 and 224, respectively, or the reaction system. Recycle to. Gases (lines 211, 2221 and 227) which have not been condensed by the condensers 94a, 97a and 98a are absorbed by the scrubber system 8 or disposed of.
- FIG. 4 is a schematic flow diagram showing another example of an acetaldehyde separation / removal system using the above extractive distillation.
- the vapor condensate at the top of the distillation column 94 is led to the hold tank 100, and the entire amount is refluxed to the top of the distillation column 94 through the line 206.
- the rest is the same as the example of FIG.
- FIG. 5 is a schematic flowchart showing still another example of the acetaldehyde separation and removal system using the above-described extractive distillation.
- the entire amount of the liquid on the chimney tray 200 is extracted, and directly introduced into the cooling cooler 95 a through the line 208 without passing through the decanter 95, cooled, and supplied to the decanter 96.
- the rest is the same as the example of FIG.
- the gas generated in the capacitor 3a is, for example, carbon monoxide, hydrogen, methane, carbon dioxide, nitrogen, oxygen, methyl iodide, hydrogen iodide, water, methyl acetate, acetic acid, dimethyl ether, methanol, acetaldehyde. And formic acid, etc., are supplied from the condenser 3a to the scrubber system 8 through lines 32 and 15. Methyl iodide, hydrogen iodide, water, methyl acetate, acetic acid, dimethyl ether, methanol, acetaldehyde, formic acid, and the like in the gas component that has reached the scrubber system 8 are absorbed by the absorbent in the scrubber system 8.
- Hydrogen iodide is produced by reaction with methanol or methyl acetate in the absorbing solution. Then, the liquid containing useful components such as methyl iodide is recycled from the scrubber system 8 to the reaction tank 1 through the recycling lines 48 and 23 and reused.
- the bottoms extracted from the bottom of the distillation column 3 contains a larger amount of components having higher boiling points than acetic acid (high-boiling components) as compared to the overhead flow and side flow from the distillation column 3 such as propionic acid.
- acetic acid high-boiling components
- the bottoms include acetic acid, methyl iodide, methyl acetate, water and the like.
- a part of such bottoms is continuously introduced into the evaporation tank 2 through the lines 25 and 26 and recycled, and the other part of the bottoms is passed through the lines 25 and 23. It is continuously introduced into the reaction tank 1 and recycled.
- the first acetic acid stream continuously withdrawn from the distillation column 3 as a side stream is richer in acetic acid than the vapor stream continuously introduced into the distillation column 3. That is, the acetic acid concentration of the first acetic acid stream is higher than the acetic acid concentration of the vapor stream.
- the concentration of acetic acid in the first acetic acid stream is, for example, 90 to 99.9% by mass, preferably 93 to 99% by mass.
- the first acetic acid stream can also contain, for example, methyl iodide, hydrogen iodide, water, methyl acetate, dimethyl ether, methanol, acetaldehyde, formic acid, propionic acid, and the like in addition to acetic acid.
- the methyl iodide concentration is, for example, 8% by mass or less (eg, 0.1-8% by mass), preferably 0.2-5% by mass
- the water concentration is, for example, 8% by mass or less (eg, 0% 0.1-8% by mass), preferably 0.2-5% by mass
- the methyl acetate concentration is, for example, 8% by mass or less (eg, 0.1-8% by mass), preferably 0.2-5% by mass.
- the connecting position of the line 27 to the distillation column 3 may be higher than the connecting position of the line 21 to the distillation column 3 in the height direction of the distillation column 3 as shown in the figure.
- the first acetic acid stream from the distillation column 3 is continuously introduced into the next distillation column 5 through the line 27 at a predetermined flow rate.
- the first acetic acid stream extracted as a side stream of the distillation column 3, the bottom liquid of the distillation column 3 or the condensate of the vapor at the bottom of the distillation column 3 may be directly used as product acetic acid. It is also possible to introduce it directly into the distillation column 6 without going through.
- the first acetic acid stream continuously withdrawn from the distillation column 3 as a side stream is richer in acetic acid than the vapor stream continuously introduced into the distillation column 3. That is, the acetic acid concentration of the first acetic acid stream is higher than the acetic acid concentration of the vapor stream.
- the concentration of acetic acid in the first acetic acid stream is, for example, 90 to 99.9% by mass, preferably 93 to 99% by mass.
- the first acetic acid stream may be, for example, methyl iodide, hydrogen iodide, water, methyl acetate, dimethyl ether, methanol, acetaldehyde, crotonaldehyde, 2-ethylcrotonaldehyde, butyl acetate, formic acid and propionic acid.
- alkyl iodides such as ethyl iodide, propyl iodide, butyl iodide, hexyl iodide and decyl iodide.
- the methyl iodide concentration is, for example, 0.1 to 8% by mass, preferably 0.2 to 5% by mass
- the water concentration is, for example, 0.1 to 8% by mass, preferably 0.2 to
- the concentration of 5% by mass and the methyl acetate concentration is, for example, 0.1 to 8% by mass, preferably 0.2 to 5% by mass.
- the crotonaldehyde concentration in the first acetic acid stream is controlled to 2.2 mass ppm or less.
- the crotonaldehyde concentration in the second acetic acid stream obtained by separating and removing water in the dehydration step can be reduced, and the potassium permanganate test value of the second acetic acid stream can be increased.
- the deacetaldehyde facility and the ozone treatment facility that have been conventionally used for improving the potassium permanganate test value can be reduced in size or omitted.
- acetic acid with a high potassium permanganate test value can be obtained simply by passing through the low deboiling tower and the dehydration tower. It becomes.
- the crotonaldehyde concentration in the first acetic acid stream is preferably 2.0 mass ppm or less, more preferably 1.8 mass ppm or less, still more preferably 1.5 mass ppm or less, and particularly preferably 1.2 mass ppm or less ( For example, it is 1.0 mass ppm or less, or 0.8 mass ppm or less, especially 0.5 mass ppm or less.
- the reflux ratio of the distillation column 5 described later is controlled to 0.1 or more (particularly 0.3 or more, preferably 0.32 or more)
- the crotonaldehyde concentration in the first acetic acid stream is limited to the above. For example, it may be 5 ppm by mass or less (particularly 2.5 ppm by mass or less), but is preferably in the above range.
- the concentration of 2-ethylcrotonaldehyde in the first acetic acid stream is, for example, 3.0 mass ppm or less, preferably 2.0 mass ppm or less, more preferably 1.0 mass ppm or less, and even more preferably 0.8 mass ppm or less ( For example, 0.5 mass ppm or less).
- the ratio (C CR / C ECR ) between the crotonaldehyde concentration C CR (mass ppm) and the 2-ethylcrotonaldehyde concentration C ECR (mass ppm) in the first acetic acid stream is, for example, 50 or less, preferably 35 or less, more preferably Is 25 or less, more preferably 20 or less, and particularly preferably 15 or less.
- the lower limit of the ratio may be, for example, 0.5, 0.3, 0.1, 0.05, 0.01.
- the ratio between the crotonaldehyde concentration C CR (mass ppm) and the 2-ethylcrotonaldehyde concentration C ECR (mass ppm) is controlled by simultaneously controlling the crotonaldehyde concentration and 2-ethylcrotonaldehyde concentration in the first acetic acid stream. (C CR / C ECR ) may be adjusted.
- crotonaldehyde is concentrated in the overhead condensate of the deboiling tower (first distillation tower) by efficiently separating using the difference in boiling point with acetic acid, and the side stream or the bottom.
- the crotonaldehyde concentration in the first acetic acid stream obtained as a stream may be reduced and the 2-ethylcrotonaldehyde concentration may be adjusted. This makes it possible to simultaneously control the crotonaldehyde concentration and 2-ethylcrotonaldehyde concentration in the first acetic acid stream.
- the butyl acetate concentration in the first acetic acid stream is, for example, 15 ppm by mass or less, preferably 12 ppm by mass or less, more preferably 10 ppm by mass or less, and further preferably 8 ppm by mass or less.
- the lower limit of the butyl acetate concentration in the first acetic acid stream is, for example, 0 mass ppm (or 0.1 mass ppm).
- the ratio (C CR / C BA ) between the crotonaldehyde concentration C CR (mass ppm) and the butyl acetate concentration C BA (mass ppm) in the first acetic acid stream is, for example, 2.0 or less, preferably 1.5 or less.
- the ratio is 1.0 or less, More preferably, it is 0.6 or less.
- the lower limit of the ratio may be 0.1, 0.05, 0.02, 0.01, or 0.001. Since butyl acetate is harmless to the potassium permanganate test, the smaller this ratio (C CR / C BA ), the more likely the product peracetic acid potassium permanganate test value will improve.
- the reflux ratio of the first distillation column is set to a specific value or more, crotonaldehyde is concentrated at the top of this distillation column. For this reason, the crotonaldehyde concentration in the 1st acetic acid stream extracted as a side stream of the 1st distillation column is low.
- the crotonaldehyde concentration in the first acetic acid stream is, for example, 1.3 ppm by mass or less, preferably 1.0 ppm by mass or less, more preferably 0.85 ppm by mass or less, and particularly preferably 0.5 ppm by mass or less (for example, 0.8 ppm). 25 ppm by mass or less).
- the crotonaldehyde concentration in the first acetic acid stream By setting the crotonaldehyde concentration in the first acetic acid stream to 1.3 ppm by mass or less, the crotonaldehyde concentration in the second acetic acid stream described later can be remarkably reduced, and the potassium permanganate test value in the second acetic acid stream is greatly increased. Can be improved.
- the lower limit value of the crotonaldehyde concentration in the first acetic acid stream may be 0 mass ppm, but may be, for example, 0.01 mass ppm (or 0.10 mass ppm).
- the concentration of 2-ethylcrotonaldehyde in the first acetic acid stream is, for example, 1.0 mass ppm or less, preferably 0.50 mass ppm or less.
- the concentration of 2-ethylcrotonaldehyde in the first acetic acid stream By setting the concentration of 2-ethylcrotonaldehyde in the first acetic acid stream to 1.0 mass ppm or less, the potassium permanganate test value of the second acetic acid stream described later can be further improved.
- the lower limit of the 2-ethylcrotonaldehyde concentration in the first acetic acid stream may be, for example, 0 mass ppm, or 0.01 mass ppm (or 0.10 mass ppm).
- the concentration of butyl acetate in the first acetic acid stream is, for example, 15 ppm by mass or less, preferably 10 ppm by mass or less, more preferably 8 ppm by mass or less, and particularly preferably 5 ppm by mass or less (for example, 3 ppm by mass or less).
- the lower limit value of the butyl acetate concentration in the first acetic acid stream may be, for example, 0 mass ppm, or 0.1 mass ppm (for example, 0.3 mass ppm or 1.0 mass ppm).
- connection position of the line 27 to the distillation column 3 may be above the connection position of the line 21 to the distillation column 3 in the height direction of the distillation column 3 as shown in the figure. It may be lower than the connection position of the line 21 to the distillation column 3 or may be the same as the connection position of the line 21 to the distillation column 3.
- the first acetic acid stream from the distillation column 3 is continuously introduced into the next distillation column 5 through the line 27 at a predetermined flow rate.
- the material of the distillation column 5 of the line 27 may be stainless steel, but in order to suppress corrosion inside the pipe by hydrogen iodide or acetic acid, It is preferable to use a highly corrosion-resistant metal such as zirconium.
- the bottoms extracted from the bottom of the distillation column 3 or the first acetic acid flow extracted as a side stream from the distillation column 3 can be directly used as product acetic acid if the quality is acceptable.
- Potassium hydroxide can be supplied or added to the first acetic acid stream flowing through the line 27 through a line 55 (potassium hydroxide introduction line). Potassium hydroxide can be supplied or added as a solution such as an aqueous solution. Hydrogen iodide in the first acetic acid stream can be reduced by supplying or adding potassium hydroxide to the first acetic acid stream. Specifically, hydrogen iodide reacts with potassium hydroxide to produce potassium iodide and water. As a result, corrosion of a device such as a distillation tower caused by hydrogen iodide can be reduced. In addition, potassium hydroxide can be supplied or added to an appropriate place where hydrogen iodide is present in this process. Note that potassium hydroxide added during the process also reacts with acetic acid to produce potassium acetate.
- the feed liquid of the distillation column 5 includes at least a part of the first acetic acid stream (line 27), and a stream other than the first acetic acid stream [for example, a recycle stream from a downstream process (for example, line 42)] is added. Also good.
- the distillation column 5 is composed of, for example, a rectification column such as a plate column and a packed column. When a plate column is employed as the distillation column 5, the theoretical plate has, for example, 5 to 50 plates.
- the reflux ratio of the distillation column 5 is controlled to 0.1 or more (particularly 0.3 or more, preferably 0.32 or more).
- crotonaldehyde has a lower boiling point than acetic acid. The concentration of crotonaldehyde in the second acetic acid stream obtained as a side stream or a bottom stream can be significantly reduced.
- the reflux ratio of the distillation column 5 is preferably 0.1 or more (particularly 0.3 or more, for example 0.32 or more), more preferably 0.35 or more, still more preferably 0.4 or more, particularly preferably 1 or more. Above all, it is 2 or more.
- the reflux ratio of the distillation column 5 is, for example, 0.1 or more (for example, 0.2 or more, particularly 0.3 or more, For example, it may be 0.32 or more.
- the upper limit of the reflux ratio of the distillation column 5 is, for example, 3000 (particularly 1000), and may be about 100 or 10.
- crotonaldehyde is 2-ethyl which is less harmful to the potassium permanganate test value. Since it is converted to crotonaldehyde and harmless butyl acetate, the quality of acetic acid is further improved.
- the column top temperature is more preferably less than 163 ° C, even more preferably less than 161 ° C, particularly preferably less than 160 ° C, and particularly preferably less than 155 ° C.
- the lower limit of the tower top temperature is, for example, 110 ° C.
- the column bottom temperature is more preferably less than 173 ° C, further preferably less than 171 ° C, and particularly preferably less than 166 ° C.
- the lower limit of the tower bottom temperature is, for example, 120 ° C.
- the distillation column 5 is a unit for performing the second distillation step, and is positioned as a so-called dehydration column in this embodiment.
- the second distillation step is a step for further purifying acetic acid by subjecting the first acetic acid stream continuously introduced into the distillation column 5 to a distillation treatment.
- the distillation column 5 is composed of a rectifying column such as a plate column and a packed column.
- the theoretical plate is, for example, 5 to 50 plates
- the reflux ratio is, for example, 0.2 to 3000 depending on the number of theoretical plates.
- the column top pressure is set to 150 to 250 kPa (gauge pressure), for example, and the column bottom pressure is higher than the column top pressure, for example, 160 to 290 kPa (gauge pressure). Is done.
- the column top temperature is set to 130 to 160 ° C., for example, a temperature higher than the boiling point of water at the set column top pressure and lower than the boiling point of acetic acid.
- the bottom temperature is, for example, a temperature equal to or higher than the boiling point of acetic acid at a set tower bottom pressure and is set to 150 to 175 ° C.
- the vapor extracted from the top of the distillation column 5 contains more components having a lower boiling point than that of acetic acid (low-boiling components) compared to the above-mentioned bottoms from the distillation column 5, for example, iodination.
- acetic acid low-boiling components
- iodination Including methyl, hydrogen iodide, water, methyl acetate, acetic acid, dimethyl ether, methanol, acetaldehyde, crotonaldehyde and formic acid.
- Such steam is continuously introduced into the condenser 5a through the line 33.
- the condenser 5a cools and partially condenses the steam from the distillation column 5 to separate it into a condensed component and a gas component.
- the condensate includes, for example, water and acetic acid.
- a part of the condensate is continuously refluxed from the condenser 5a through the line 35 to the distillation column 5.
- the other part of the condensate is continuously introduced from the condenser 5a into the reaction tank 1 through the lines 35, 36 and 23 and recycled.
- the gas generated in the capacitor 5a includes, for example, carbon monoxide, hydrogen, methane, carbon dioxide, nitrogen, oxygen, methyl iodide, hydrogen iodide, water, methyl acetate, acetic acid, dimethyl ether, methanol, acetaldehyde and formic acid. And supplied from the capacitor 5a to the scrubber system 8 through lines 37 and 15.
- the second acetic acid stream is richer in acetic acid than the first acetic acid stream continuously introduced into the distillation column 5. That is, the acetic acid concentration in the second acetic acid stream is higher than the acetic acid concentration in the first acetic acid stream.
- the acetic acid concentration of the second acetic acid stream is, for example, 99.1 to 99.99% by mass as long as it is higher than the acetic acid concentration of the first acetic acid stream.
- the second acetic acid stream can also include, for example, propionic acid, hydrogen iodide, etc., in addition to acetic acid, as described above.
- the side stream extraction position from the distillation column 5 is lower than the introduction position of the first acetic acid stream into the distillation column 5 in the height direction of the distillation column 5.
- the bottoms extracted from the bottom of the distillation column 5 or the side stream (second acetic acid stream) extracted from the middle position of the column is more acetic acid than the first acetic acid stream continuously introduced into the distillation column 5.
- the acetic acid concentration of the second acetic acid stream is, for example, 99.1 to 99.99% by mass as long as it is higher than the acetic acid concentration of the first acetic acid stream.
- the side stream extraction position from the distillation column 5 is lower than the introduction position of the first acetic acid stream into the distillation column 5 in the height direction of the distillation column 5.
- the second acetic acid stream since the second acetic acid stream has a high potassium permanganate test value, it can be used as the product acetic acid as it is.
- trace amounts of impurities for example, crotonaldehyde, 2-ethylcrotonaldehyde, butyl acetate, propionic acid, potassium acetate (when potassium hydroxide is supplied to line 27 etc.), hydrogen iodide, Catalyst, cocatalyst, etc.]. Therefore, the bottoms or side stream may be continuously introduced into the distillation column 6 through the line 34 and distilled.
- the crotonaldehyde concentration in the second acetic acid stream is, for example, 2.0 mass ppm or less, preferably 1.8 mass ppm or less, more preferably 1.5 mass ppm or less, still more preferably 1.2 mass ppm or less, particularly preferably. Is 0.7 mass ppm or less (for example, 0.5 mass ppm or less).
- concentration of 2-ethylcrotonaldehyde in the second acetic acid stream is, for example, 3.0 mass ppm or less, preferably 2.0 mass ppm or less, more preferably 1.0 mass ppm or less, and even more preferably 0.8 mass ppm or less ( For example, 0.5 mass ppm or less).
- the ratio (C CR / C ECR ) between the crotonaldehyde concentration C CR (mass ppm) and the 2-ethylcrotonaldehyde concentration C ECR (mass ppm) in the second acetic acid stream is, for example, 50 or less, preferably 35 or less, preferably It is 25 or less, more preferably 20 or less, and further preferably 15 or less.
- the lower limit of the ratio may be, for example, 0.5, 0.3, 0.1, 0.05, 0.01.
- the ratio of the present invention, crotonaldehyde concentration and 2-ethyl crotonaldehyde concentration in the second acid stream simultaneously controlled to, crotonaldehyde concentration C CR (mass ppm) and 2-ethyl crotonaldehyde concentration C ECR (mass ppm) (C CR / C ECR ) may be adjusted. That is, in the separation step, the second acetic acid stream obtained by concentrating crotonaldehyde to the condensate at the top of the dehydration tower (second distillation tower) using the difference in boiling point with acetic acid to obtain a side stream or a bottom stream.
- the butyl acetate concentration in the second acetic acid stream is, for example, 15 ppm by mass or less, preferably 12 ppm by mass or less, more preferably 10 ppm by mass or less, and further preferably 8 ppm by mass or less.
- the lower limit of the butyl acetate concentration in the second acetic acid stream is, for example, 0 mass ppm (or 0.1 mass ppm).
- the ratio (C CR / C BA ) between the crotonaldehyde concentration C CR (mass ppm) and the butyl acetate concentration C BA (mass ppm) in the second acetic acid stream is, for example, 2.0 or less, preferably 1.5 or less.
- the lower limit of the ratio may be 0.1, 0.05, 0.02, 0.01, or 0.001. Since butyl acetate is harmless to the potassium permanganate test, the smaller this ratio (C CR / C BA ), the better the potassium permanganate test value of the product acetic acid.
- the crotonaldehyde concentration in the second acetic acid stream is, for example, 0.98 mass ppm or less, preferably 0.80 mass ppm or less, more preferably 0.50 mass ppm or less, and even more preferably 0.30 mass ppm. Hereinafter, it is particularly preferably 0.17 mass ppm or less.
- the lower limit value of the crotonaldehyde concentration in the second acetic acid stream may be 0 mass ppm, but may be, for example, 0.01 mass ppm (or 0.10 mass ppm).
- the concentration of 2-ethylcrotonaldehyde in the second acetic acid stream is, for example, 1.0 mass ppm or less, preferably 0.50 mass ppm or less, more preferably 0.30 mass ppm or less, and even more preferably 0.20.
- the mass is ppm or less.
- the concentration of butyl acetate in the second acetic acid stream is, for example, 15 mass ppm or less, preferably 10 mass ppm or less, more preferably 8 mass ppm or less, and particularly preferably 5 mass ppm or less (for example, 3 mass ppm or less). is there.
- the lower limit of the butyl acetate concentration in the second acetic acid stream may be, for example, 0 mass ppm, or 0.1 mass ppm (for example, 0.3 mass ppm or 1.0 mass ppm).
- the potassium permanganate test value of the second acetic acid stream is preferably more than 50 minutes, more preferably 60 minutes or more, even more preferably 100 minutes or more, particularly preferably 120 minutes or more (eg 180 minutes or more, especially 240 minutes). Above, in particular, 360 minutes or more).
- Potassium hydroxide can be supplied or added to the second acetic acid stream flowing through the line 34 through a line 56 (potassium hydroxide introduction line). Potassium hydroxide can be supplied or added as a solution such as an aqueous solution. Hydrogen iodide in the second acetic acid stream can be reduced by supplying or adding potassium hydroxide to the second acetic acid stream. Specifically, hydrogen iodide reacts with potassium hydroxide to produce potassium iodide and water. As a result, corrosion of a device such as a distillation tower caused by hydrogen iodide can be reduced.
- the distillation column 6 is a unit for performing the third distillation step, and is positioned as a so-called dehigh boiling tower in this embodiment.
- the third distillation step is a step for further purifying acetic acid by purifying the second acetic acid stream continuously introduced into the distillation column 6. In the present embodiment, this is not necessarily a necessary process.
- the distillation column 6 includes a rectifying column such as a plate column and a packed column. When a plate column is employed as the distillation column 6, the theoretical plate has, for example, 5 to 50 plates, and the reflux ratio is, for example, 0.2 to 3000 depending on the number of theoretical plates.
- the column top pressure is set to, for example, ⁇ 100 to 150 kPa (gauge pressure), and the column bottom pressure is higher than the column top pressure, for example, ⁇ 90 to 180 kPa (gauge pressure).
- the column top temperature is set to 50 to 150 ° C., for example, higher than the boiling point of water and lower than the boiling point of acetic acid at the set column top pressure.
- the bottom temperature is, for example, a temperature higher than the boiling point of acetic acid at the set tower bottom pressure and is set to 70 to 160 ° C.
- connection position of the line 46 to the distillation column 6 may be higher than the connection position of the line 34 to the distillation column 6, as shown in the figure. The position may be lower than the connection position of 34, or may be the same as the connection position of the line 34 to the distillation column 6.
- the vapor extracted from the top of the distillation column 6 contains a larger amount of components having a lower boiling point than that of acetic acid (low-boiling components) compared to the above-mentioned bottoms from the distillation column 6, and in addition to acetic acid, for example, iodination Including methyl, hydrogen iodide, water, methyl acetate, dimethyl ether, methanol and formic acid.
- acetic acid for example, iodination Including methyl, hydrogen iodide, water, methyl acetate, dimethyl ether, methanol and formic acid.
- Such steam is continuously introduced into the condenser 6a through the line 38.
- the condenser 6a divides the vapor from the distillation column 6 into a condensed component and a gas component by cooling and partially condensing.
- the condensate contains, for example, methyl iodide, hydrogen iodide, water, methyl acetate, dimethyl ether, methanol and formic acid in addition to acetic acid.
- At least a part of the condensate is continuously refluxed from the condenser 6 a to the distillation column 6 through the line 40.
- a part of the condensate (distillate) can be recycled from the condenser 6a through the lines 40, 41 and 42 to the first acetic acid stream in the line 27 before being introduced into the distillation column 5. is there.
- a part of the condensate is transferred from the condenser 6a through the lines 40, 41, 43 to the steam flow in the line 21 before being introduced into the distillation column 3. And can be recycled. Further, a part of the condensed portion (distilled portion) may be recycled to the reaction tank 1 from the condenser 6a through the lines 40, 44, and 23. Further, as described above, a part of the distillate from the condenser 6a can be supplied to the scrubber system 8 and used as an absorbing liquid in the system.
- the gas component after absorbing the useful component is discharged out of the apparatus, and the liquid component containing the useful component is introduced or recycled from the scrubber system 8 to the reaction tank 1 through the recycle lines 48 and 23. Reused.
- a part of the distillate from the condenser 6a may be led to various pumps (not shown) operating in the apparatus through a line outside the figure and used as a sealing liquid for the pump.
- a part of the distillate from the condenser 6a may be regularly extracted out of the apparatus through an extraction line attached to the line 40, or unsteadily extracted out of the apparatus when necessary. May be.
- the amount of distillate (distillation) is 0.01 to 30 of the condensate produced in the condenser 6a, for example. % By mass, preferably 0.1 to 10% by mass, more preferably 0.3 to 5% by mass, and more preferably 0.5 to 3% by mass.
- the gas generated in the capacitor 6a is, for example, carbon monoxide, hydrogen, methane, carbon dioxide, nitrogen, oxygen, methyl iodide, hydrogen iodide, water, methyl acetate, acetic acid, dimethyl ether, methanol, acetaldehyde, formic acid, and the like. And is supplied from the capacitor 6a to the scrubber system 8 through lines 45 and 15.
- the bottoms extracted from the bottom of the distillation column 6 through the line 39 contains more components having a higher boiling point than acetic acid (high-boiling components) compared to the overhead stream from the distillation column 6 such as propionic acid, And potassium acetate (when potassium hydroxide is supplied to the line 34 and the like).
- the bottoms extracted from the bottom of the distillation column 6 through the line 39 are corrosive metals such as free metals generated on the inner walls of the components of the acetic acid production apparatus, iodine derived from corrosive iodine, Also includes compounds with corrosive metals. Such bottoms are discharged out of the acetic acid production apparatus in this embodiment.
- the bottoms withdrawn from the bottom of the distillation column 6 through the line 39 contains a large amount of components having a boiling point higher than that of acetic acid (high-boiling components) compared to the above overhead stream from the distillation column 6;
- acetic acid salt such as propionic acid or potassium acetate (when an alkali such as potassium hydroxide is supplied to the line 34 or the like) is included.
- the bottoms extracted from the bottom of the distillation column 6 through the line 39 are corrosive metals such as free metals generated on the inner walls of the components of the acetic acid production apparatus, iodine derived from corrosive iodine, Also includes compounds with corrosive metals. Such bottoms are discharged out of the acetic acid production apparatus in this embodiment.
- the side stream continuously withdrawn from the distillation column 6 to the line 46 is continuously introduced into the next ion exchange resin column 7 as a third acetic acid stream.
- This third acetic acid stream is richer in acetic acid than the second acetic acid stream continuously introduced into the distillation column 6. That is, the acetic acid concentration in the third acetic acid stream is higher than the acetic acid concentration in the second acetic acid stream.
- the acetic acid concentration of the third acetic acid stream is, for example, 99.8 to 99.999% by mass as long as it is higher than the acetic acid concentration of the second acetic acid stream.
- the position for extracting the side stream from the distillation column 6 is higher than the position for introducing the second acetic acid stream into the distillation column 6 in the height direction of the distillation column 6.
- the side stream extraction position from the distillation column 6 is the same as or lower than the introduction position of the second acetic acid stream into the distillation column 6 in the height direction of the distillation column 6.
- the distillation column 6 can be replaced by a single distiller (evaporator).
- the distillation column 6 can be omitted because acetic acid having a very high potassium permanganate test value is obtained by the distillation treatment in the distillation column 5.
- the ion exchange resin tower 7 is a purification unit for performing the adsorption removal step.
- acetic acid is further purified by adsorbing and removing mainly alkyl iodide (hexyl iodide, decyl iodide, etc.) contained in a trace amount in the third acetic acid stream continuously introduced into the ion exchange resin tower 7. It is a process for doing.
- an ion exchange resin having an adsorption ability for alkyl iodide is filled in the tower to form an ion exchange resin bed.
- an ion exchange resin for example, a cation exchange resin in which a part of the detachable protons in the sulfonic acid group, carboxyl group, phosphonic acid group or the like as an exchange group is substituted with a metal such as silver or copper.
- adsorption removal step for example, a third acetic acid stream (liquid) flows through the inside of the ion exchange resin tower 7 filled with such an ion exchange resin, and in the flow process, the alkyl iodide in the third acetic acid stream is passed. And the like are adsorbed on the ion exchange resin and removed from the third acetic acid stream.
- the internal temperature is, for example, 18 to 100 ° C.
- the acetic acid flow rate [acetic acid treatment amount per m 3 of resin volume (m 3 / h)] is, for example, 3 ⁇ 15 m 3 / h ⁇ m 3 (resin volume).
- the ion exchange resin tower 7 is a purification unit for performing an adsorption removal process.
- This adsorption and removal step is mainly performed by alkyl iodide (for example, ethyl iodide, propyl iodide, butyl iodide, hexyl iodide, etc.) contained in a trace amount in the third acetic acid stream continuously introduced into the ion exchange resin column 7.
- alkyl iodide for example, ethyl iodide, propyl iodide, butyl iodide, hexyl iodide, etc.
- the distillation column 6 may be omitted, and the second acetic acid stream from the distillation column 5 may be supplied to the ion exchange resin column 7. Moreover, the adsorption removal process using the ion exchange resin tower 7 does not necessarily need to be provided.
- an ion exchange resin capable of adsorbing alkyl iodide is filled in the tower to form an ion exchange resin bed.
- an ion exchange resin for example, a cation exchange resin in which a part of the detachable protons in the sulfonic acid group, carboxyl group, phosphonic acid group or the like as an exchange group is substituted with a metal such as silver or copper. Can be mentioned.
- a third acetic acid stream flows through the inside of the ion exchange resin tower 7 filled with such an ion exchange resin, and in the flow process, the alkyl iodide in the third acetic acid stream is passed. And the like are adsorbed on the ion exchange resin and removed from the third acetic acid stream.
- the internal temperature is, for example, 18 to 100 ° C.
- the acetic acid flow rate [acetic acid treatment amount per m 3 of resin volume (m 3 / h)] is, for example, 3 ⁇ 15 m 3 / h ⁇ m 3 (resin volume).
- the fourth acetic acid flow is continuously led out from the lower end of the ion exchange resin tower 7 to the line 47.
- the acetic acid concentration in the fourth acetic acid stream is higher than the acetic acid concentration in the third acetic acid stream. That is, the fourth acetic acid stream is richer in acetic acid than the third acetic acid stream that is continuously introduced into the ion exchange resin tower 7.
- the acetic acid concentration of the fourth acetic acid stream is, for example, 99.9 to 99.999% by mass or more as long as it is higher than the acetic acid concentration of the third acetic acid stream.
- this fourth acetic acid stream can be stored in a product tank (not shown).
- the column top pressure is set to, for example, -195 to 150 kPa (gauge pressure)
- the column bottom pressure is set to be higher than the column top pressure, for example, -190 to 180 kPa (gauge pressure).
- the inside the product column the column top temperature is set to, for example, 50 to 150 ° C. higher than the boiling point of water and lower than the boiling point of acetic acid at the set column top pressure
- the column bottom temperature is set to, for example, The temperature is higher than the boiling point of acetic acid at the bottom pressure and is set to 70 to 160 ° C.
- the product tower or finishing tower can be replaced by a simple distiller (evaporator).
- the gas component is supplied to the scrubber system 8. From the bottom of the product column, bottoms containing a trace amount of high-boiling components are continuously withdrawn, and this bottoms, for example, into the second acetic acid stream in the line 34 before being introduced into the distillation column 6. And recycled.
- a side stream (liquid) is continuously withdrawn as a fifth acetic acid stream from a height position between the tower top and the tower bottom in the product tower. The extraction position of the side stream from the product tower is lower in the height direction of the product tower, for example, than the introduction position of the fourth acetic acid stream into the product tower.
- the fifth acetic acid stream is richer in acetic acid than the fourth acetic acid stream that is continuously introduced into the product column.
- AD partition ratio ⁇ AD concentration (mass%) in the aqueous phase ⁇ / ⁇ AD concentration (mass%) in the organic phase
- MA partition ratio ⁇ MA concentration (mass%) in aqueous phase ⁇ / ⁇ MA concentration (mass%) in organic phase ⁇
- 301 is a pressure-resistant glass container (with an internal volume of 100 cc)
- 302 is a stirrer chip (rugby ball shape)
- 303 is a lower phase extraction pipe
- 304 is an upper phase extraction pipe
- 305 is a thermometer
- 306 is a magnetic stirrer
- 307 Is a water bath
- 308 is a temperature controller
- 309 is a thermometer
- 310 is a lower phase sampling pipe
- 311 is an upper phase sampling pipe
- 312 is a pressure gauge
- 313 is a pressure regulating valve
- 314, 315, 316 and 317 are valves
- 318 is a safety valve
- 319 is a lower phase extraction line
- 320 is an upper phase extraction line
- 321 is a nitrogen gas introduction line
- 322 is a pressure release line
- 323 is an exhaust line.
- the dotted line indicates the liquid level or interface.
- Experimental Examples 11-15 In Experimental Examples 11 to 15, the concentration of each component in the aqueous phase and the organic phase and the AD distribution ratio were examined when the AD concentration in the charged solution was constant and the temperature (liquid temperature) of the liquid separation step was changed. It is an experiment. With the AD and MeI and water charge amounts and temperature charged in the pressure-resistant glass container 301 set to the values shown in Table 1, the same operations as in Experimental Examples 1 to 10 were performed to measure the concentration of each component in the aqueous phase and the organic phase, The AD distribution rate was determined. The results are shown in Table 1.
- Experimental Examples 16-21 In Experimental Examples 16 to 21, the AD concentration and the MA concentration in the charged solution were fixed, and the concentration of each component in the aqueous phase and the organic phase when changing the temperature (liquid temperature) in the liquid separation step, the AD partition rate, and the MA This is an experiment for examining the distribution rate.
- the AD, MeI, MA and water charge amounts and temperature charged in the pressure-resistant glass container 301 are set to the values shown in Table 2, and the same operations as in Experimental Examples 1 to 10 are performed to measure the concentration of each component in the water phase and the organic phase.
- the AD distribution ratio and the MA distribution ratio were obtained. The results are shown in Table 2.
- Experimental Examples 22 to 26 are experiments in which the MA concentration in the charged solution was changed, and the concentration of each component in the aqueous phase and the organic phase, the AD partition rate, and the MA partition rate were examined.
- the AD, MeI, MA and water charge amounts and temperature charged in the pressure-resistant glass container 301 are set to the values shown in Table 2, and the same operations as in Experimental Examples 1 to 10 are performed to measure the concentration of each component in the water phase and the organic phase.
- the AD distribution ratio and the MA distribution ratio were obtained. The results are shown in Table 2.
- Reference examples 1-2 are experiments in which the concentration of each component in the aqueous phase and the organic phase and the AD partition ratio were examined by changing the AC concentration in the charged solution.
- the amounts and temperatures of AD, MeI, water and AC charged in the pressure-resistant glass container 301 are set to the values shown in Table 2, and the same operations as in Experimental Examples 1 to 10 are performed to measure the concentration of each component in the aqueous phase and the organic phase. In addition, the AD distribution rate was obtained. The results are shown in Table 2.
- the AD concentration of the aqueous phase and the organic phase is low, the advantage of de-AD treatment of the aqueous phase is large, but when the AD concentration of the aqueous phase and organic phase is high, the advantage of de-AD treatment of the aqueous phase is small.
- the process and equipment for de-AD treatment of the organic phase for example, the reaction conditions in the reaction vessel, the evaporation conditions in the evaporator, the distillation conditions of the vapor flow obtained in the evaporation process, etc. By adjusting, it is preferable to increase the AD concentration of the aqueous phase and / or the organic phase in the liquid separation step.
- the MA concentration of the aqueous phase and the organic phase when the MA concentration of the aqueous phase and the organic phase is low, the merit of de-AD treatment of the aqueous phase is large, but when the MA concentration of the aqueous phase and organic phase is high, the merit of de-AD treatment of the aqueous phase is small.
- the MA concentration in the aqueous phase and / or the organic phase in the liquid separation step is preferably lowered. From the results of Experimental Examples 22 to 26, it can be seen that not only the AD distribution ratio but also the MA distribution ratio decreases as the MA concentration in the charged solution increases and the MA concentration in the aqueous phase and organic phase increases.
- Comparative Example 1 The following experiment was conducted in a methanol acetic acid pilot plant (see FIG. 1). Reaction mixture obtained in a reaction vessel [total pressure 2.8 MPa (absolute pressure), carbon monoxide partial pressure 1.4 MPa (absolute pressure), hydrogen partial pressure 0.04 MPa (absolute pressure), reaction temperature 187 ° C.] Composition: methyl iodide (MeI) 7.8%, methyl acetate (MA) 2.1%, water (H 2 O) 2.5%, rhodium complex 910 ppm (Rh equivalent), lithium iodide (LiI) 14.
- Vapor in the evaporation tank [composition: methyl iodide 28.1%, methyl acetate 4.9%, water 1.9%, acetaldehyde 651 ppm, crotonaldehyde 1.5 ppm, 2-ethylcrotonaldehyde 0.23 ppm, propionic acid 73 ppm, Formic acid 85ppm, butyl acetate 0.7ppm, remaining acetic acid (however, including a small amount of impurities)] 100 parts low deboiling tower [actual stage number 20 stages, 2 stages from the bottom of the feed position, tower top pressure 250kPa (absolute pressure), The tower top temperature is 140 ° C., the top steam is condensed, separated into a water phase and an organic phase with a decanter [temperature 40 ° C., pressure 0.13 MPaG], and a part (11 parts) of the organic phase is removed.
- low deboiling tower actual stage number 20 stages, 2 stages from the bottom
- acetic acid product 46 parts was obtained as a bottom from the bottom of the dehydration tower.
- the product acetic acid had a crotonaldehyde content of 0.99 ppm, a 2-ethylcrotonaldehyde content of 0.29 ppm, and a butyl acetate content of 0.76 ppm.
- the permanganate time (chameleon time) of the product acetic acid was measured and found to be 50 minutes. The results are shown in Table 3.
- Comparative Example 3 The same experiment as Comparative Example 1 was performed except that the reflux ratio of the dehydration tower was set to 0.05. As a result, the crotonaldehyde content in the product acetic acid was 1.1 ppm, the 2-ethylcrotonaldehyde content was 0.28 ppm, and the butyl acetate content was 0.72 ppm. The permanganate time (chameleon time) of the product acetic acid was measured and found to be 40 minutes. The results are shown in Table 3.
- Example 1 In Comparative Example 1 described above, the temperature of the decanter was set to -5.2 ° C, and after separation into an aqueous phase and an organic phase, a part (11 parts) of the (organic phase) was removed from the deacetaldehyde column [actual 80 stages, 11 stages from the bottom of the charging position, tower top pressure 280 kPa (absolute pressure), tower top temperature 52 ° C.], acetaldehyde is separated and removed out of the system, and the bottom liquid after removing acetaldehyde (feed liquid and 11 parts) was recycled to the reaction system.
- the deacetaldehyde column actual 80 stages, 11 stages from the bottom of the charging position, tower top pressure 280 kPa (absolute pressure), tower top temperature 52 ° C.
- the composition of each process liquid changed by this change.
- the crotonaldehyde content in the product acetic acid obtained as a bottom liquid from the bottom of the dehydration tower was 0.92 ppm
- the 2-ethylcrotonaldehyde content was 0.27 ppm
- the butyl acetate content was 0.71 ppm. there were. It was 70 minutes when the permanganate time (chameleon time) of the product acetic acid was measured.
- the results are shown in Table 3.
- Example 2 The same experiment as in Example 1 was performed except that the temperature of the decanter was changed to 11.0 ° C., the reflux ratio of the deboiling tower was changed to 15, and the reflux ratio of the dehydration tower was changed to 10. In addition, the composition of each process liquid changed by this change. As a result, the crotonaldehyde content in the product acetic acid obtained from the bottom of the dehydration tower was 0.23 ppm, the 2-ethylcrotonaldehyde content was 0.56 ppm, and the butyl acetate content was 2.1 ppm. The permanganate time (chameleon time) of the product acetic acid was measured and found to be 200 minutes. The results are shown in Table 3.
- Example 3 The same experiment as in Example 2 was performed except that the temperature of the decanter was changed to 22 ° C. and the reflux ratio of the decrotonaldehyde tower was changed to 0.1. In addition, the composition of each process liquid changed by this change. Further, the amount of distillate and bottoms from the decrotonaldehyde tower were changed to 19.52 parts and 0.48 parts, respectively. This is the result of the separation of the water distilled at the top of the column being improved and separated into the bottom.
- the product acetic acid obtained from the bottom of the dehydration tower had a crotonaldehyde content of 0.21 ppm, a 2-ethylcrotonaldehyde content of 0.55 ppm, and a butyl acetate content of 2 ppm. It was 220 minutes when the permanganate time (chameleon time) of the product acetic acid was measured. The results are shown in Table 3.
- Example 4 The same experiment as in Example 2 was performed, except that the temperature of the decanter was 29 ° C. and the reflux ratio of the decrotonaldehyde column was changed to 1. In addition, the composition of each process liquid changed by this change. In addition, the amount of distillate and bottoms from the decrotonaldehyde tower changed to 19.56 parts and 0.44 parts, respectively. This is a result of further improvement of separation of water distilled off at the top of the tower and separation into cans.
- the crotonaldehyde content in the product acetic acid obtained from the bottom of the dehydration tower was 0.19 ppm
- the 2-ethylcrotonaldehyde content was 0.4 ppm
- the butyl acetate content was 1.8 ppm.
- the permanganate time (chameleon time) of the product acetic acid was measured and found to be 280 minutes. The results are shown in Table 3.
- Example 5 The same experiment as in Example 2 was performed, except that the temperature of the decanter was 40.8 ° C. and the reflux ratio of the decrotonaldehyde tower was changed to 10. In addition, the composition of each process liquid changed by this change. In addition, the amount of distillate and bottoms from the decrotonaldehyde tower changed to 19.6 parts and 0.4 parts, respectively. This is a result of further improvement of separation of water distilled off at the top of the tower and separation into cans.
- the product acetic acid obtained from the bottom of the dehydration tower had a crotonaldehyde content of 0.15 ppm, a 2-ethylcrotonaldehyde content of 0.28 ppm, and a butyl acetate content of 1.8 ppm.
- the permanganate time (chameleon time) of the product acetic acid was measured and found to be 360 minutes. The results are shown in Table 3.
- Example 6 An experiment similar to that of Example 2 was performed, except that the temperature of the decanter was changed to 49.9 ° C. and the reflux ratio of the decrotonaldehyde column was changed to 50. In addition, the composition of each process liquid changed by this change. In addition, the amount of distillate in the decrotonaldehyde tower was changed to 19.6 parts and the amount of bottoms was changed to 0.4 parts. This is a result of further improvement of separation of water distilled off at the top of the tower and separation into cans.
- the crotonaldehyde content in the product acetic acid obtained from the bottom of the dehydration tower was 0.09 ppm
- the 2-ethylcrotonaldehyde content was 0.14 ppm
- the butyl acetate content was 1.6 ppm.
- the permanganate time (chameleon time) of the product acetic acid was measured and found to be 450 minutes. The results are shown in Table 4.
- Example 7 The temperature of the decanter is 40.2 ° C., the organic phase is selected on the basis of the temperature at the time of separation of the condensed liquid at the top of the delow boiling tower, and the amount supplied to the deacetaldehyde tower is 11 parts.
- the same experiment as in Example 5 was performed, except that the methyl acetate concentration was changed to change the decanter methyl acetate concentration and AD distribution ratio. In addition, the composition of each process liquid changed by this change.
- the crotonaldehyde content in the product acetic acid obtained as the bottoms from the bottom of the dehydration tower was 0.3 ppm
- the 2-ethylcrotonaldehyde content was 0.56 ppm
- the butyl acetate content was 2.2 ppm. there were.
- the permanganate time (chameleon time) of the product acetic acid was measured and found to be 150 minutes. The results are shown in Table 4.
- Example 8 The same experiment as in Example 5 was performed, except that the temperature of the decanter was 40.5 ° C., the methyl acetate concentration in the delow boiling tower was changed, and the methyl acetate concentration and AD distribution ratio of the decanter were changed. In addition, the composition of each process liquid changed by this change. As a result, the crotonaldehyde content in the product acetic acid obtained as the bottoms from the bottom of the dehydration tower was 0.22 ppm, the 2-ethylcrotonaldehyde content was 0.53 ppm, and the butyl acetate content was 2 ppm. . It was 220 minutes when the permanganate time (chameleon time) of the product acetic acid was measured. The results are shown in Table 4.
- Example 9 The same experiment as in Example 5 was performed, except that the temperature of the decanter was 39.9 ° C., the methyl acetate concentration in the deboiling tower was changed, and the methyl acetate concentration and AD distribution ratio of the decanter were changed. In addition, the composition of each process liquid changed by this change. As a result, the crotonaldehyde content in the product acetic acid obtained as the bottoms from the bottom of the dehydration tower was 0.18 ppm, the 2-ethylcrotonaldehyde content was 0.28 ppm, and the butyl acetate content was 1.7 ppm. there were. It was 290 minutes when the permanganate time (chameleon time) of the product acetic acid was measured. The results are shown in Table 4.
- Example 10 The same experiment as in Example 5 was performed, except that the temperature of the decanter was 40.7 ° C., the methyl acetate concentration in the delow boiling tower was changed, and the methyl acetate concentration and AD distribution ratio of the decanter were changed. In addition, the composition of each process liquid changed by this change. As a result, the crotonaldehyde content in the product acetic acid obtained as a bottoms from the bottom of the dehydration tower was 0.12 ppm, the 2-ethylcrotonaldehyde content was 0.26 ppm, and the butyl acetate content was 1.6 ppm. there were. It was 400 minutes when the permanganate time (chameleon time) of the product acetic acid was measured. The results are shown in Table 4.
- Example 13 The same experiment as in Example 1 was performed with the decanter temperature set to 40.1 ° C. In addition, the composition of each process liquid changed by this change. As a result, the crotonaldehyde content in the product acetic acid obtained as a bottom liquid from the bottom of the dehydration tower was 0.8 ppm, the 2-ethylcrotonaldehyde content was 0.26 ppm, and the butyl acetate content was 0.68 ppm. there were. When the permanganate time (chameleon time) of the product acetic acid was measured, it was 90 minutes. The results are shown in Table 4.
- the crotonaldehyde content in the product acetic acid obtained as the bottoms from the bottom of the dehydration tower was 0.08 ppm
- the 2-ethylcrotonaldehyde content was 0.12 ppm
- the butyl acetate content was 1.3 ppm. there were.
- the permanganate time (chameleon time) of the product acetic acid was measured and found to be 530 minutes. The results are shown in Table 4.
- C CR is crotonaldehyde concentration
- C ECR 2-ethylcrotonaldehyde concentration
- C BA is butyl acetate concentration
- AD is acetaldehyde
- MeI is methyl iodide
- MA represents methyl acetate
- AC represents acetic acid.
- the numerical value in the column of each component represents the concentration.
- the distillate [CR] / feed solution [CR] represents the ratio (the former / the latter) of the crotonaldehyde concentration (mass ppm) in the distillate and the crotonaldehyde concentration (mass ppm) in the feed solution.
- the bottom liquid [CR] / feed liquid [CR] represents the ratio (the former / the latter) of the crotonaldehyde concentration (mass ppm) in the bottom liquid and the crotonaldehyde concentration (mass ppm) in the bottom liquid.
- Comparative Example 3 is an example operated under the same conditions as Comparative Example 1 except that the reflux ratio of the dehydration tower was set to 0.05.
- the reflux ratio of the dehydration tower is as small as 1/6 of that of Comparative Example 1, the CR flowing into the dehydration tower cannot be sufficiently concentrated at the top of the tower, and the CR concentration in the second acetic acid stream is reduced. Stays slightly. For this reason, the product chameleon time is inferior to that of Comparative Example 1.
- the target for de-AD processing is selected based on the AD distribution rate in the liquid separation step, and the CR concentration in the first acetic acid stream is controlled to 2.2 ppm or less, and When the reflux ratio of the crotonaldehyde tower is operated at 0.01 or more, the synergistic effect reduces the CR concentration of the second acetic acid stream (the dehydrated tower bottom) to less than half, and the product chameleon time is significantly reduced. It turns out that it is improving (extending 7 times).
- Example 1 as a means for controlling the CR concentration in the first acetic acid flow, the hydrogen partial pressure in the reaction vessel is increased to twice that of Comparative Example 2 (0.04 MPa).
- the target to be de-AD processed is selected based on the AD distribution rate in the liquid separation process, the CR concentration in the first acetic acid stream is controlled to 2.2 ppm or less, and dehydration is performed.
- the reflux ratio of the tower is set to a specific value or more and the reflux ratio of the delow boiling tower and decrotonaldehyde tower is operated under specific conditions, the synergistic effect of these decreases the CR concentration in the product acetic acid and the product chameleon time. It turns out that it improves to 70 minutes of about 2 times (1.75 times).
- Example 1 From the comparison between Example 1 and Example 2, it can be seen that the product chameleon time is significantly improved by increasing the reflux ratio of the deboiling tower and the dehydration tower even under the same decrotonaldehyde tower operation conditions.
- crotonaldehyde concentration C CR mass ppm
- 2-ethylcrotonaldehyde concentration C ECR masses ppm
- the reflux ratio of the decrotonaldehyde aldehyde column is 0.01, which is extremely low compared to normal distillation.
- the amount of distillation is The amount is very much the same as the amount of the charged solution, and even a low reflux amount contributes to the separation of crotonaldehyde.
- the methyl iodide concentration of the bottoms of Example 6 can be reduced to the limit, and the amount of useful methyl iodide discharged is also suppressed.
- the AD partition rate decreases and the methyl acetate is present as the temperature at the time of liquid separation increases under the conditions of constant AD concentration and MA concentration in the deboiling tower charging liquid. It can be seen that even in the system, the distribution ratio of AD to the organic phase tends to be relatively higher as the temperature is higher. That is, from the viewpoint of acetaldehyde removal efficiency, the advantage of de-AD treatment of the organic phase is great when the temperature during separation is high, but the advantage of de-AD treatment of the organic phase when the temperature during separation is low. Is small.
- the MA concentration of the aqueous phase and the organic phase when the MA concentration of the aqueous phase and the organic phase is low, the merit of de-AD treatment of the aqueous phase is large, but when the MA concentration of the aqueous phase and organic phase is high, the merit of de-AD treatment of the aqueous phase is small.
- the MA concentration in the aqueous phase and / or the organic phase in the liquid separation step is preferably lowered. From the results of Examples 7 to 11, it can be seen that not only the AD distribution ratio but also the MA distribution ratio decreases as the MA concentration in the charged solution increases and the MA concentration in the aqueous phase and organic phase increases.
- the product chameleon time of the second acetic acid stream is about 150 minutes (Example 7) and the maximum is 540 minutes or more (Example 11), showing a difference of about 4 times.
- the example 7 with the smallest product chameleon time is 4.3
- the example 11 with the largest product chameleon time is 1.1.
- the difference in operating conditions is that the MA concentration in the deboiling tower is changed.
- the MA concentration in the decanter changes, and the AD distribution ratio also changes accordingly.
- the AD partition rate is high to some extent (when acetaldehyde is relatively distributed in the aqueous phase), it is advantageous to subject the aqueous phase to de-AD treatment.
- the AD partition rate is low to some extent (the acetaldehyde is an organic phase)
- the AD distribution rate in the liquid separation process is one of the indicators for carrying out the AD separation / removal process.
- Example 1 when the decanter temperature is increased and the AD concentration in the organic phase of the decanter is increased, the amount of de-AD increases and the amount of crotonaldehyde produced decreases, so the product chameleon It can be seen that the time is improved by about 1.3 times (90 minutes). Control of temperature conditions during decanter (liquid temperature during liquid separation) is shown to be one of the effective parameters in efficient de-AD processing.
- Example 11 the hydrogen partial pressure of the reaction tank, the reflux ratio of the deboiling tower, and the reflux ratio of the dehydration tower are the same, and only the reflux ratio of the decrotonaldehyde tower is that of Example 14. 5 times larger (reflux ratio 50).
- the effect of the reflux ratio of the decrotonaldehyde column is 10 (Example 11) and the reflux ratio 50 (Example 11). This seems to be because the difference in effect is less likely to occur with Example 14).
- the reflux ratio of the decrotonaldehyde tower is increased, the separation efficiency of crotonaldehyde approaches a constant value, indicating that the effect does not change even if the reflux ratio is increased infinitely.
- the reflux ratio of the deboiling tower is increased, crotonaldehyde is concentrated at the top of the tower, recycled to the reaction tank, and crotonaldehyde is converted into 2-ethylcrotonaldehyde or butyl acetate in the reaction tank.
- the crotonaldehyde concentration in the first acetic acid stream obtained in the deboiling tower is controlled to a specific value or less, and / or the reflux ratio of the dehydration tower is set to a specific value or more, Efficient removal of crotonaldehyde by the decrotonaldehyde process with the reflux ratio of the boiling tower exceeding a specific value, and (3) rationally subject to deacetaldehyde treatment based on the acetaldehyde distribution rate of the liquid separation process
- a catalyst system including a metal catalyst and methyl iodide, and a carbonylation reaction step of reacting methanol and carbon monoxide in a reaction vessel in the presence of acetic acid, methyl acetate and water to produce acetic acid; From the reaction mixture obtained in the carbonylation reaction step, a stream containing a metal catalyst, an acetic acid stream rich in acetic acid, and a lower boiling component than the acetic acid stream using one or more evaporation tanks and / or distillation towers.
- a separation step of separating and obtaining a rich stream A liquid separation step of separating a process stream containing at least water, acetic acid, methyl iodide and acetaldehyde into an aqueous phase and an organic phase; Separating and removing acetaldehyde from the process stream, Processing target based on liquid temperature at the time of liquid separation in the liquid separation step, acetaldehyde concentration in the aqueous phase and / or organic phase, acetaldehyde distribution rate, methyl acetate concentration in the aqueous phase and / or organic phase, or methyl acetate distribution rate
- An acetaldehyde separation and removal step in which is selected from at least a part of the aqueous phase and / or organic phase;
- a decrotonaldehyde step in which at least another part of the aqueous phase and /
- a catalyst system comprising a metal catalyst and methyl iodide, and a carbonylation reaction step of reacting methanol and carbon monoxide in a reaction vessel in the presence of acetic acid, methyl acetate and water to produce acetic acid; From the reaction mixture obtained in the carbonylation reaction step, a stream containing a metal catalyst, an acetic acid stream rich in acetic acid, and a lower boiling component than the acetic acid stream using one or more evaporation tanks and / or distillation towers.
- a separation step of separating and obtaining a rich stream A liquid separation step of separating a process stream containing at least water, acetic acid, methyl iodide and acetaldehyde into an aqueous phase and an organic phase; Separating and removing acetaldehyde from the process stream, Processing target based on liquid temperature at the time of liquid separation in the liquid separation step, acetaldehyde concentration in the aqueous phase and / or organic phase, acetaldehyde distribution rate, methyl acetate concentration in the aqueous phase and / or organic phase, or methyl acetate distribution rate
- An acetaldehyde separation and removal step in which is selected from at least a part of the aqueous phase and / or organic phase;
- a decrotonaldehyde step in which at least another part of the aqueous phase and /
- a separation step of separating and obtaining a rich stream A liquid separation step of separating a process stream containing at least water, acetic acid, methyl iodide and acetaldehyde into an aqueous phase and an organic phase; Separating and removing acetaldehyde from the process stream, Processing target based on liquid temperature at the time of liquid separation in the liquid separation step, acetaldehyde concentration in the aqueous phase and / or organic phase, acetaldehyde distribution rate, methyl acetate concentration in the aqueous phase and / or organic phase, or methyl acetate distribution rate
- An acetaldehyde separation and removal step in which is selected from at least a part of the aqueous phase and / or organic phase;
- a decrotonaldehyde step in which at least another part of the aqueous phase and /
- a catalyst system including a metal catalyst and methyl iodide, and a carbonylation reaction step of reacting methanol and carbon monoxide in a reaction vessel in the presence of acetic acid, methyl acetate and water to generate acetic acid, From the reaction mixture obtained in the carbonylation reaction step, a stream containing a metal catalyst, an acetic acid stream rich in acetic acid, and a lower boiling component than the acetic acid stream using one or more evaporation tanks and / or distillation towers.
- a separation step of separating and obtaining a rich stream A liquid separation step of separating a process stream containing at least water, acetic acid, methyl iodide and acetaldehyde into an aqueous phase and an organic phase; Separating and removing acetaldehyde from the process stream, Processing target based on liquid temperature at the time of liquid separation in the liquid separation step, acetaldehyde concentration in the aqueous phase and / or organic phase, acetaldehyde distribution rate, methyl acetate concentration in the aqueous phase and / or organic phase, or methyl acetate distribution rate
- An acetaldehyde separation and removal step in which is selected from at least a part of the aqueous phase and / or organic phase;
- a decrotonaldehyde step in which at least another part of the aqueous phase and /
- the ratio (the former / the latter) of the crotonaldehyde concentration (mass ppm) in the bottoms of the distillation column to the crotonaldehyde concentration (mass ppm) in the charged solution is made larger than 1.
- the liquid separation step satisfies at least one of the following conditions (bi) to (bv), and at least a part of the aqueous phase is treated in the acetaldehyde separation and removal step [1] to [4]
- the method for producing acetic acid according to any one of [4].
- the acetaldehyde concentration in the aqueous phase is 28.1% by mass or less and / or the acetaldehyde concentration in the organic phase is 24.8% by mass or less.
- the temperature during liquid separation is 70 ° C. or lower.
- the methyl acetate concentration in the aqueous phase is 12.0% by mass or less, and / or the methyl acetate concentration in the organic phase is 47.6% by mass or less, and / or the methyl acetate concentration in the aqueous phase.
- Acetaldehyde partition ratio [ ⁇ acetaldehyde concentration in water phase (% by mass) ⁇ / ⁇ acetaldehyde concentration in organic phase (% by mass) ⁇ ] is 1.1 or more
- Methyl acetate distribution ratio [ ⁇ methyl acetate concentration in water phase (% by mass) ⁇ / ⁇ methyl acetate concentration in organic phase (% by mass) ⁇ ] is 0.25 or more [6]
- the concentration of acetaldehyde in the aqueous phase is 0.045 to 28.1% by mass (preferably 0.098 to 10% by mass, more preferably 0.098 to 3.0% by mass).
- the concentration of acetaldehyde in the organic phase is 0.013 to 24.8% by mass (preferably 0.030 to 2.0% by mass, more preferably 0.030 to 0.50).
- the concentration of acetaldehyde in the liquid supplied to the liquid separation is 26.0% by mass or less (eg, 0.026 to 26.0% by mass, preferably 0.057 to 10 mass%, more preferably 0.057 to 3.0 mass%, particularly preferably 0.057 to 1.0 mass% (for example, 0.057 to 0.42 mass%)).
- the temperature at the time of separation is ⁇ 5 ° C. to 70 ° C.
- the concentration of methyl acetate in the aqueous phase is 1.2 to 12.0% by mass (preferably 2.0 to 12.0% by mass, more preferably 5.0 to 12.2.
- the methyl acetate concentration in the organic phase is 2.2 to 47.6% by mass (preferably 5.0 to 42% by mass, more preferably 8.0 to 35% by mass ( For example, the method for producing acetic acid according to any one of [5] to [12], which is 10.0 to 30% by mass)).
- the sum of the methyl acetate concentration in the aqueous phase and the methyl acetate concentration in the organic phase is 4.2 to 59.6% by mass (preferably 6.0 to 54% by mass, It is preferably 8.0 to 54% by mass, more preferably 10.0 to 54% by mass, and particularly preferably 14.0 to 47% by mass (for example, 16.0 to 42% by mass).
- the concentration of methyl acetate in the liquid used for the liquid separation is 38.2% by mass or less (eg, 2.0 to 38.2% by mass, preferably 5.0%).
- the acetaldehyde distribution rate is 1.1 to 8.0 (preferably 1.5 to 6.0, more preferably 1.9 to 5.0).
- the methyl acetate partition rate is 0.26 or more (eg, 0.26 to 0.65, preferably 0.28 or more (eg, 0.28 to 0.60)).
- the liquid separation step satisfies all the conditions (bi), (b-ii), (b-iii), (b-iv) and (bv) [5] to [19 ]
- the liquid separation step satisfies at least one of the following conditions (b′-i) to (b′-v), and at least a part of the organic phase is treated in the acetaldehyde separation and removal step [1] ]
- the method for producing acetic acid according to any one of [4] to [4].
- the acetaldehyde concentration in the aqueous phase is 0.045 mass% or more and / or the acetaldehyde concentration in the organic phase is 0.013 mass% or more.
- the temperature at the time of liquid separation is ⁇ 5 ° C. or higher.
- a temperature higher than 30 ° C. for example, more than 30 ° C. and 90 ° C. or less
- a temperature higher than 35 ° C. for example, more than 35 ° C. to 90 ° C. or less
- the methyl acetate concentration in the aqueous phase is 1.2% by mass or more, and the methyl acetate concentration in the organic phase is 2.2% by mass or more.
- the concentration of methyl acetate in the aqueous phase is 1.2 to 20% by mass, preferably 2.5 to 18% by mass, more preferably 4.0 to 15% by mass,
- the concentration of methyl acetate in the organic phase is 2.2 to 60% by mass (preferably 5.8 to 48% by mass, more preferably 8.0 to 40% by mass,
- the sum of the methyl acetate concentration in the aqueous phase and the methyl acetate concentration in the organic phase is 3.4 to 75% by mass (preferably 8.3 to 60% by mass (eg 10% 0.02 to 40% by mass), more preferably 15.0 to 50% by mass, and still more preferably 25.0 to 53% by mass) of the acetic acid according to any one of [21] to [29] Production method.
- the methyl acetate concentration in the liquid supplied to the liquid separation is 2.0 to 50% by mass (preferably 5.0 to 38% by mass, more preferably 8%).
- the acetaldehyde distribution rate is 3.35 or less (for example, 0.6 to 3.35), more preferably 3 or less (0.7 to 3), and still more preferably 2. 8 or less (eg 0.8 to 2.8), particularly preferably 2.5 or less (eg 0.8 to 2.5), especially 2.3 or less (eg 0.9 to 2.3), especially 2.
- the methyl acetate partition rate is 0.7 or less (for example, 0.20 to 0.70), more preferably 0.6 or less (for example, 0.20 to 0.60). ), More preferably 0.44 or less (for example, 0.20 to 0.44), and particularly preferably less than 0.25 (for example, 0.20 to less than 0.25)).
- the manufacturing method of acetic acid as described in any one.
- the separation step includes an evaporation step of separating the reaction mixture obtained in the carbonylation reaction step into a vapor stream and a residual liquid stream in an evaporation tank;
- the vapor stream is separated by a first distillation column into a first overhead stream rich in at least one low-boiling component selected from methyl iodide and acetaldehyde and a first acetic acid stream rich in acetic acid,
- the method for producing acetic acid according to any one of [1] to [36], further comprising a delow boiling step for condensation and liquid separation to obtain an aqueous phase and an organic phase.
- the concentration of 2-ethylcrotonaldehyde in the second acetic acid stream is 3.0 mass ppm or less (preferably 1.8 mass ppm or less, more preferably 1.5 mass ppm or less, further preferably 1.2 mass ppm or less).
- Crotonaldehyde concentration C in the second acetic acid stream CR (Mass ppm) and butyl acetate concentration C BA (Cppm by mass) (C CR / C BA ) Is 2.0 or less (preferably 1.5 or less, more preferably 1.0 or less, and even more preferably 0.6 or less), the acetic acid according to any one of [38] to [44] Production method.
- the hydrogen partial pressure in the reaction vessel is, for example, 0.001 MPa (absolute pressure) or more (preferably 0.005 MPa or more, more preferably 0.01 MPa (absolute pressure) or more [eg, 0.015 MPa or more], and more preferably Is 0.02 MPa (absolute pressure) or more, particularly preferably 0.04 MPa (absolute pressure) or more, particularly 0.06 MPa (absolute pressure) or more [eg 0.07 MPa (absolute pressure) or more]).
- the method for producing acetic acid according to any one of [47].
- the crotonaldehyde concentration in the second acetic acid stream is 0.98 mass ppm or less (preferably 0.80 mass ppm or less, more preferably 0.50 mass ppm or less, further preferably 0.30 mass ppm or less) and / or Alternatively, the 2-ethylcrotonaldehyde concentration is 1.0 mass ppm or less (preferably 0.50 mass ppm or less, more preferably 0.30 mass ppm or less, further preferably 0.20 mass ppm or less) and / or the butyl acetate concentration.
- the crotonaldehyde concentration in the steam stream supplied to the first distillation column is 0 to 5.0 mass ppm (preferably 0.01 to 4.0 mass ppm, more preferably 0.1 to 3.0 mass ppm). More preferably 0.2 to 2.0 mass ppm) and / or 2-ethylcrotonaldehyde concentration of 0 to 3.0 mass ppm (preferably 0.01 to 2.5 mass ppm, more preferably 0.02).
- the crotonaldehyde concentration in the first acetic acid stream is 1.3 mass ppm or less (preferably 1.0 mass ppm or less, more preferably 0.85 mass ppm or less, still more preferably 0.5 mass ppm or less, particularly preferably 0.25 mass ppm or less) and / or 2-ethylcrotonaldehyde concentration is 1.0 mass ppm or less (preferably 0.50 mass ppm or less) and / or butyl acetate concentration is 15 mass ppm or less (preferably 10 masses).
- the method for producing acetic acid according to any one of [1] to [52], which is at most ppm, more preferably at most 8 mass ppm, further preferably at most 5 mass ppm, particularly preferably at most 3 mass ppm.
- the concentration of crotonaldehyde in the distillation column charge in the decrotonaldehyde step is 0.01 to 50 ppm by mass (preferably 0.1 to 50 ppm by mass, more preferably 0.3 to 30 ppm by mass, more preferably Is 0.5 to 10 ppm by mass, particularly preferably 0.8 to 7.0 ppm by mass, especially 1.0 to 5.0 ppm by mass), according to any one of [1] to [53] Process for the production of acetic acid.
- the distillation tower is operated so as to satisfy all the conditions (ai) to (a-iii) in the decrotonaldehyde aldehyde step, according to any one of [1] to [54] Process for the production of acetic acid.
- the processing amount of the distillation column in the decrotonaldehyde step is 0.0001 to 50 parts by mass (preferably 0.001 to 30 parts by mass with respect to 100 parts by mass of the steam flow supplied to the first distillation column.
- the reflux ratio of the first distillation column when only the aqueous phase is refluxed to the first distillation column, the reflux ratio of the aqueous phase is 3 or more (preferably 5 or more, more preferably 8 or more, and still more preferably 12).
- the reflux ratio of the first distillation column when only the organic phase is refluxed to the first distillation column, the reflux ratio of the organic phase is 1.5 or more (preferably 2 or more, more preferably 4 or more, still more preferably Is a method of producing acetic acid according to any one of [1] to [59].
- the reflux ratio of the first distillation column when both the aqueous phase and the organic phase are refluxed in the first distillation column, the total reflux ratio of the aqueous phase and the organic phase is 2.3 or more (preferably 3.5).
- [62] The method for producing acetic acid according to any one of [1] to [61], wherein the upper limit of the reflux ratio of the first distillation column is 3000 (preferably 1000, more preferably 100, still more preferably 30). .
- the reflux ratio of the distillation column is 0.05 or more (preferably 0.5 or more, more preferably 5 or more, further preferably 20 or more, particularly preferably 30 or more).
- the concentration of butyl acetate in the vapor stream is 0.1 to 13 mass ppm (preferably 0.2 to 12 mass ppm, more preferably 0.3 to 9 mass ppm).
- the manufacturing method of acetic acid as described in any one.
- the manufacturing method of acetic acid as described in any one.
- the method for producing acetic acid according to the present invention can be used as an industrial method for producing acetic acid by a methanol carbonylation process (methanol acetic acid process).
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
過マンガン酸カリウム試験値の良好な酢酸を多大なコストをかけることなく、工業的に効率よく製造できる方法を提供する。 (1)プロセス流から副生物であるアセトアルデヒドを工業的に有利に分離除去するとともに、(2)脱低沸塔で得られる酢酸流中のクロトンアルデヒド濃度を特定値以下に制御し、及び/又は、第2蒸留塔の還流比を0.1以上に制御するとともに、(3)脱低沸塔塔頂凝縮液の水相及び/又は有機相を脱クロトンアルデヒド塔で蒸留する工程を含み、脱低沸塔の還流比を2以上(水相を還流させる場合)とし、且つ、脱クロトンアルデヒド塔を特定の条件を満たすように操作する酢酸の製造方法。
Description
本発明は、酢酸を製造する方法に関する。本願は2018年5月29日に、PCT出願したPCT/JP2018/20603の優先権を主張し、その内容をここに援用する。
酢酸の工業的製造法としてメタノール法カルボニル化プロセスが知られている。このプロセスでは、例えば、反応槽で、触媒の存在下、メタノールと一酸化炭素とを反応させて酢酸を生成させ、得られた反応混合物を蒸発槽で酢酸及び低沸成分を含む蒸気相と、酢酸及び触媒を含む残液相とに分離し、前記蒸気相を蒸留塔(脱低沸塔)で蒸留して低沸成分を含むオーバーヘッド流と酢酸流とに分離し、前記酢酸流をさらに精製することにより製品酢酸を得る。このプロセスでは、反応中にアセトアルデヒドが副生し、このアセトアルデヒドが製品酢酸の品質を低下させる原因となる。
また、上記アセトアルデヒドはアルドール縮合によりクロトンアルデヒドとなり、製品酢酸の過マンガン酸カリウム試験値(過マンガン酸タイム)を悪化させる。さらに、クロトンアルデヒドはアセトアルデヒドとアルドール縮合して2-エチルクロトンアルデヒドとなるが、2-エチルクロトンアルデヒドもまた製品酢酸の過マンガン酸カリウム試験値を悪化させる。しかしながら、クロトンアルデヒドは2-エチルクロトンアルデヒドよりも質量単位あたりの過マンガン酸カリウム試験値悪化の程度が大きく、クロトンアルデヒドを製品酢酸中に含有させる場合、品質の悪化がより顕著になる。
従来、アセトアルデヒド、クロトンアルデヒド、2-エチルクロトンアルデヒドの低減には、(i)前記脱低沸塔のオーバーヘッド流の凝縮液をデカンターで水相と有機相とに分液させ、そのうち水相を脱アセトアルデヒド塔で蒸留し、そのオーバーヘッド流の凝縮液(アセトアルデヒドとヨウ化メチルを含む)を水で抽出することによりアセトアルデヒドを分離除去し、反応系にリサイクルするヨウ化メチル中のアセトアルデヒドを低減することにより、反応系でのクロトンアルデヒドの生成を抑制する方法と(ii)精製工程の途中で得られる粗酢酸中に含まれるクロトンアルデヒドを直接オゾンを用いて酸化分解する方法の大きく2通りの方法が工業的に採用されてきた(特許文献1及び2)。しかしながら、アセトアルデヒドの分離除去設備やオゾン処理設備はともに高価である。従来は、製品酢酸の過マンガン酸カリウム試験値を向上させるのにこれらの方法に全面的に依存しており、設備費の増大につながっていた。
また、メタノール法酢酸プロセスにおいて、アルカン類が不純物として生成することが知られている。このアルカン類は炭素数が3以上で、ヨウ化メチルや酢酸メチルよりも高沸点の不純物である。主に飽和又は不飽和の炭化水素であるが、分子内に酸素原子やヨウ素原子を含んでいる場合もある。特開平4-295445号公報には、このアルカン類を除去するため、脱低沸塔の塔頂凝縮液のうち有機相を蒸留塔(脱アルカン塔)で蒸留し、ヨウ化メチル、酢酸メチル及びカルボニル不純物を含む塔頂留出液を反応器にリサイクルさせるか、又は脱アセトアルデヒド塔に供給するとともに、アルカン類、水及び酢酸を含む塔底缶出液に水を加えて抽出し、酢酸を含む水相を反応器にリサイクルし、アルカン類を含む有機相を廃棄物とする技術が開示されている。しかしながら、この文献には製品酢酸の過マンガン酸カリウム試験値をいかにして向上させるかについては何ら開示も示唆もない。
本発明者らの検討によると、上記特許文献2に記載されているような脱低沸塔のデカンタで分液させた二相のうち水相を脱アセトアルデヒド塔で蒸留する方法では、一般に、水相の方が有機相よりアセトアルデヒド濃度が高くなるので分離効率が高くなる傾向にある。しかしながら、この方法では、蒸発潜熱の大きい水を多量に含む液を蒸留するため処理エネルギーが大きくなるのに加え、水相中に少量含まれるヨウ化メチルが加水分解して生成するヨウ化水素が蒸留装置を腐食しやすいため、耐腐食性の極めて高い高価な材質の蒸留装置が必要となる。なお、水相中には相当量のヨウ化メチルが存在するので、水の分離に加え沸点差の小さいヨウ化メチルとアセトアルデヒドとの分離のため、後述の有機相(ヨウ化メチル相)を脱アセトアルデヒド塔で蒸留する場合と同程度の蒸留塔段数が必要となる。
一方、前記脱低沸塔のデカンタで分液させた二相のうち有機相を脱アセトアルデヒド塔で蒸留し、そのオーバーヘッド流の凝縮液を水で抽出することによりアセトアルデヒドを分離除去する方法も知られている。この方法では、有機相の主成分が蒸発潜熱の小さいヨウ化メチルのため処理エネルギーは小さく、腐食の問題も水相を処理する場合に比べて起きにくいというメリットがある。しかしながら、上記のように、本発明者らの検討によると、一般に、有機相の方が水相よりアセトアルデヒド濃度が低くなるので分離効率が低いというデメリットがある。このように、水相を脱アセトアルデヒド処理に付す方法と有機相を脱アセトアルデヒド処理する方法のどちらもメリットとデメリットがある。
したがって、本発明の目的は、過マンガン酸カリウム試験値の良好な酢酸を多大なコストをかけることなく、工業的に効率よく製造できる方法を提供することにある。
また、本発明の目的は、メタノール法カルボニル化プロセスにおけるプロセス流を水相と有機相とに分液させる分液工程において、水相を脱アセトアルデヒド処理に付す方法と有機相を脱アセトアルデヒド処理に付す方法のメリット及びデメリットを勘案して、副生物であるアセトアルデヒドを工業的に有利に分離除去できる方法を提供することにある。
本発明者らは、上記目的を達成するため鋭意検討した結果、メタノール法カルボニル化プロセスにおいて、脱低沸塔にて脱低沸して得られる酢酸流(第1酢酸流)中のクロトンアルデヒド濃度を特定値以下に制御すると、過マンガン酸カリウム試験値の良好な高品質の酢酸を大掛かりな処理設備を設けなくても工業的に効率よく製造できることを見出した。
さらに、本発明者らは、脱低沸塔の還流比を特定値以上とし、且つ脱低沸塔の塔頂凝縮液の有機相を処理する蒸留塔(脱クロトンアルデヒド塔)を設け、この脱クロトンアルデヒド塔の操作条件を規定することにより、脱水塔缶出液中のクロトンアルデヒド濃度を低減でき、当該缶出液の過マンガン酸カリウム試験値を大幅に向上できることを見出した。より詳細には、クロトンアルデヒドの沸点(104℃)は酢酸の沸点(117℃)より低いため、脱低沸塔の還流比を上げると、クロトンアルデヒドは蒸留塔の塔頂に濃縮される。この濃縮されたクロトンアルデヒドを反応槽にリサイクルすると、反応槽内でアセトアルデヒドと反応して2-エチルクロトンアルデヒドが生成する。また、クロトンアルデヒドは反応槽内で水素と反応してブタノールが生成し、このブタノールは酢酸と反応して酢酸ブチルとなる。2-エチルクロトンアルデヒドはクロトンアルデヒドと比べて過マンガン酸カリウム試験値に与える影響は小さく、ブタノールや酢酸ブチルは過マンガン酸カリウム試験値に全く影響を与えず、無害である。したがって、酢酸の品質がより向上する傾向となる。なお、2-エチルクロトンアルデヒド、酢酸ブチルの沸点は、それぞれ137℃、126℃と酢酸の沸点(117℃)よりも高いため、脱低沸塔の還流比を上げると、これらの成分の塔頂濃度がさらに低下し、脱低沸塔の缶出から反応系にリサイクルされ濃縮されるか、一部は、仕込液供給位置より高いサイドカットから次工程に送られるか、製品酢酸中に含有される。一方、クロトンアルデヒドを濃縮させた脱低沸塔塔頂凝縮液を、脱アセトアルデヒド処理とは別に蒸留処理することにより、有用なヨウ化メチルと不要なクロトンアルデヒドとを効率よく分離できる。すなわち、例えば脱低沸塔塔頂凝縮液のうち有機相を蒸留処理すると、ヨウ化メチルは酢酸メチルとともに塔頂留出液として得られる。これは脱低沸塔塔頂凝縮液を貯留するデカンタや反応槽にリサイクルできる。また、クロトンアルデヒドは他の高沸点不純物(2-エチルクロトンアルデヒド、酢酸ブチル、アルカン類など)及び酢酸とともに塔底缶出液として得られる。この缶出液は系外除去し廃棄処分される。水は塔頂に濃縮させても塔底から抜き取ってもよい。なお、従来公知の脱アルカン塔を脱クロトンアルデヒド塔として利用することも可能である。脱アルカン塔は、常時運転する場合もあるが、アルカン類の生成速度が遅い場合は、バッチ式で運転することもある。バッチ式で運転する場合は、製品酢酸の過マンガン酸カリウム試験値が低下するため、脱アセトアルデヒド処理、オゾン処理、運転条件の変更などにより製品品質を維持する必要がある。なお、2-エチルクロトンアルデヒドも脱低沸塔塔頂に極僅か存在し、これもクロトンアルデヒドと同様、上記操作で系外排出でき、それによって過マンガン酸カリウム試験値を向上させることができるが、高沸点の2-エチルクロトンアルデヒドは脱低沸塔の塔頂には濃縮されにくいため、その効果は限定的である。なお、脱クロトンアルデヒド塔へは主に脱低沸塔塔頂凝縮液のうち有機相を供給するが、それに加えて又はそれの代わりに、脱低沸塔塔頂凝縮液のうちの水相を脱クロトンアルデヒド塔へ供給してもよい。このようにして、簡易に製品酢酸の過マンガン酸カリウム試験値を向上できるので、脱アセトアルデヒド設備、オゾン処理設備の削除もしくは小規模化、蒸気及び電気代の削減を図ることができる。
さらに、本発明者らは、分液工程において各種条件下でのアセトアルデヒドの分配率(水相中のアセトアルデヒド濃度/有機相中のアセトアルデヒド濃度)に着目し、脱低沸塔のオーバーヘッド流の凝縮液組成を想定した液液平衡実験を行った。その結果、脱低沸塔のデカンタで分液させて得られる水相中のアセトアルデヒド濃度及び有機相中のアセトアルデヒド濃度、分液時の液温、並びに、水相中の酢酸メチル濃度及び有機相中の酢酸メチル濃度と、アセトアルデヒドの分配率との間に一定の相関が存在することを見出した。上述したように、水相を脱アセトアルデヒド処理に付す方法と有機相を脱アセトアルデヒド処理に付す方法にはそれぞれメリットとデメリットがあるので、アセトアルデヒド分配率がある程度高い場合(アセトアルデヒドが水相に比較的多く分配されている場合)は前者の方法を採用し、アセトアルデヒド分配率がある程度低い場合(アセトアルデヒドが有機相に比較的多く分配されている場合)は後者の方法を採用し、その中間領域では両方の方法を採用することが工業的に有利である。特に、水相を脱アセトアルデヒド処理に付す方法を採用する際には、高耐食性の高価な装置や設備を用いる必要があるため、アセトアルデヒド分配率を厳しく見定める必要がある。本発明者はこれらの知見、考察に基づき、脱アセトアルデヒド処理に付す対象を合理的に定めることができることを見出した。
本発明はこれらの知見に基づき、さらに検討を重ねて完成させたものである。
すなわち、本発明は、金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水の存在下、メタノールと一酸化炭素とを反応槽で反応させて酢酸を生成させるカルボニル化反応工程と、
前記カルボニル化反応工程で得られた反応混合物から、1以上の蒸発槽及び/又は蒸留塔を用いて、金属触媒を含む流れと、酢酸に富む酢酸流と、前記酢酸流よりも低沸成分に富む流れとを分離取得する分離工程と、
水、酢酸、ヨウ化メチル及びアセトアルデヒドを少なくとも含むプロセス流を水相と有機相とに分液させる分液工程と、
前記プロセス流に由来するアセトアルデヒドを分離除去する工程であって、
前記分液工程における分液時の液温、水相及び/又は有機相のアセトアルデヒド濃度、アセトアルデヒド分配率、水相及び/又は有機相の酢酸メチル濃度、又は酢酸メチル分配率に基づいてその処理対象を、水相及び/又は有機相の少なくとも一部から選択して処理するアセトアルデヒド分離除去工程と、
前記水相及び/又は有機相の少なくとも一部を反応槽にリサイクルするリサイクル工程と、
前記水相及び/又は有機相の少なくとも他の一部を蒸留塔で処理してクロトンアルデヒドを分離除去する脱クロトンアルデヒド工程と、
を備えた酢酸の製造方法であって、
前記分離工程が、第1蒸留塔により、酢酸に富む第1酢酸流と、前記第1酢酸流よりも低沸成分に富むオーバーヘッド流とを分離取得する工程を有しており、
当該工程において前記第1酢酸流におけるクロトンアルデヒド濃度を2.2質量ppm以下に制御するとともに、
前記分離工程の第1蒸留塔の還流比について、当該第1蒸留塔に水相のみを還流させる場合は水相の還流比を2以上とし、有機相のみを還流させる場合は有機相の還流比を1以上とし、水相及び有機相をともに還流させる場合は水相及び有機相の総和の還流比を1.5以上とし、且つ、前記脱クロトンアルデヒド工程において下記(a-i)~(a-iii)の少なくとも1つの条件を満たすように蒸留塔を操作する酢酸の製造方法(以下、「第1の酢酸の製造方法」と称する場合がある)を提供する。
(a-i)当該蒸留塔の還流比を0.01以上とする
(a-ii)当該蒸留塔の留出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1未満とする
(a-iii)当該蒸留塔の缶出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1より大きくする
前記カルボニル化反応工程で得られた反応混合物から、1以上の蒸発槽及び/又は蒸留塔を用いて、金属触媒を含む流れと、酢酸に富む酢酸流と、前記酢酸流よりも低沸成分に富む流れとを分離取得する分離工程と、
水、酢酸、ヨウ化メチル及びアセトアルデヒドを少なくとも含むプロセス流を水相と有機相とに分液させる分液工程と、
前記プロセス流に由来するアセトアルデヒドを分離除去する工程であって、
前記分液工程における分液時の液温、水相及び/又は有機相のアセトアルデヒド濃度、アセトアルデヒド分配率、水相及び/又は有機相の酢酸メチル濃度、又は酢酸メチル分配率に基づいてその処理対象を、水相及び/又は有機相の少なくとも一部から選択して処理するアセトアルデヒド分離除去工程と、
前記水相及び/又は有機相の少なくとも一部を反応槽にリサイクルするリサイクル工程と、
前記水相及び/又は有機相の少なくとも他の一部を蒸留塔で処理してクロトンアルデヒドを分離除去する脱クロトンアルデヒド工程と、
を備えた酢酸の製造方法であって、
前記分離工程が、第1蒸留塔により、酢酸に富む第1酢酸流と、前記第1酢酸流よりも低沸成分に富むオーバーヘッド流とを分離取得する工程を有しており、
当該工程において前記第1酢酸流におけるクロトンアルデヒド濃度を2.2質量ppm以下に制御するとともに、
前記分離工程の第1蒸留塔の還流比について、当該第1蒸留塔に水相のみを還流させる場合は水相の還流比を2以上とし、有機相のみを還流させる場合は有機相の還流比を1以上とし、水相及び有機相をともに還流させる場合は水相及び有機相の総和の還流比を1.5以上とし、且つ、前記脱クロトンアルデヒド工程において下記(a-i)~(a-iii)の少なくとも1つの条件を満たすように蒸留塔を操作する酢酸の製造方法(以下、「第1の酢酸の製造方法」と称する場合がある)を提供する。
(a-i)当該蒸留塔の還流比を0.01以上とする
(a-ii)当該蒸留塔の留出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1未満とする
(a-iii)当該蒸留塔の缶出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1より大きくする
また、本発明は、金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水の存在下、メタノールと一酸化炭素とを反応槽で反応させて酢酸を生成させるカルボニル化反応工程と、
前記カルボニル化反応工程で得られた反応混合物から、1以上の蒸発槽及び/又は蒸留塔を用いて、金属触媒を含む流れと、酢酸に富む酢酸流と、前記酢酸流よりも低沸成分に富む流れとを分離取得する分離工程と、
水、酢酸、ヨウ化メチル及びアセトアルデヒドを少なくとも含むプロセス流を水相と有機相とに分液させる分液工程と、
前記プロセス流に由来するアセトアルデヒドを分離除去する工程であって、
前記分液工程における分液時の液温、水相及び/又は有機相のアセトアルデヒド濃度、アセトアルデヒド分配率、水相及び/又は有機相の酢酸メチル濃度、又は酢酸メチル分配率に基づいてその処理対象を、水相及び/又は有機相の少なくとも一部から選択して処理するアセトアルデヒド分離除去工程と、
前記水相及び/又は有機相の少なくとも一部を反応槽にリサイクルするリサイクル工程と、
前記水相及び/又は有機相の少なくとも他の一部を蒸留塔で処理してクロトンアルデヒドを分離除去する脱クロトンアルデヒド工程と、
を備えた酢酸の製造方法であって、
前記分離工程が、第1蒸留塔により酢酸に富む第1酢酸流と前記第1酢酸流よりも低沸成分に富む第1オーバーヘッド流とを分離取得する工程、及び、前記第1酢酸流を第2蒸留塔により、水に富む第2オーバーヘッド流と第1酢酸流よりも酢酸に富む第2酢酸流とを分離取得する工程を有しており、
前記各工程において前記第1酢酸流におけるクロトンアルデヒド濃度を2.2質量ppm以下に制御する、及び/又は、第2蒸留塔の還流比を0.1以上に制御するとともに、
前記分離工程の第1蒸留塔の還流比について、当該第1蒸留塔に水相のみを還流させる場合は水相の還流比を2以上とし、有機相のみを還流させる場合は有機相の還流比を1以上とし、水相及び有機相をともに還流させる場合は水相及び有機相の総和の還流比を1.5以上とし、且つ、前記脱クロトンアルデヒド工程において下記(a-i)~(a-iii)の少なくとも1つの条件を満たすように蒸留塔を操作する酢酸の製造方法(以下、「第2の酢酸の製造方法」と称する場合がある)を提供する。
(a-i)当該蒸留塔の還流比を0.01以上とする
(a-ii)当該蒸留塔の留出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1未満とする
(a-iii)当該蒸留塔の缶出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1より大きくする
前記カルボニル化反応工程で得られた反応混合物から、1以上の蒸発槽及び/又は蒸留塔を用いて、金属触媒を含む流れと、酢酸に富む酢酸流と、前記酢酸流よりも低沸成分に富む流れとを分離取得する分離工程と、
水、酢酸、ヨウ化メチル及びアセトアルデヒドを少なくとも含むプロセス流を水相と有機相とに分液させる分液工程と、
前記プロセス流に由来するアセトアルデヒドを分離除去する工程であって、
前記分液工程における分液時の液温、水相及び/又は有機相のアセトアルデヒド濃度、アセトアルデヒド分配率、水相及び/又は有機相の酢酸メチル濃度、又は酢酸メチル分配率に基づいてその処理対象を、水相及び/又は有機相の少なくとも一部から選択して処理するアセトアルデヒド分離除去工程と、
前記水相及び/又は有機相の少なくとも一部を反応槽にリサイクルするリサイクル工程と、
前記水相及び/又は有機相の少なくとも他の一部を蒸留塔で処理してクロトンアルデヒドを分離除去する脱クロトンアルデヒド工程と、
を備えた酢酸の製造方法であって、
前記分離工程が、第1蒸留塔により酢酸に富む第1酢酸流と前記第1酢酸流よりも低沸成分に富む第1オーバーヘッド流とを分離取得する工程、及び、前記第1酢酸流を第2蒸留塔により、水に富む第2オーバーヘッド流と第1酢酸流よりも酢酸に富む第2酢酸流とを分離取得する工程を有しており、
前記各工程において前記第1酢酸流におけるクロトンアルデヒド濃度を2.2質量ppm以下に制御する、及び/又は、第2蒸留塔の還流比を0.1以上に制御するとともに、
前記分離工程の第1蒸留塔の還流比について、当該第1蒸留塔に水相のみを還流させる場合は水相の還流比を2以上とし、有機相のみを還流させる場合は有機相の還流比を1以上とし、水相及び有機相をともに還流させる場合は水相及び有機相の総和の還流比を1.5以上とし、且つ、前記脱クロトンアルデヒド工程において下記(a-i)~(a-iii)の少なくとも1つの条件を満たすように蒸留塔を操作する酢酸の製造方法(以下、「第2の酢酸の製造方法」と称する場合がある)を提供する。
(a-i)当該蒸留塔の還流比を0.01以上とする
(a-ii)当該蒸留塔の留出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1未満とする
(a-iii)当該蒸留塔の缶出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1より大きくする
本発明の酢酸の製造方法において、前記分液工程は、下記(b-i)~(b-v)のうち少なくとも1つの条件を満たし、前記水相の少なくとも一部を前記アセトアルデヒド分離除去工程にて処理することが好ましい。
(b-i)水相中のアセトアルデヒド濃度が28.1質量%以下、及び/又は、有機相中のアセトアルデヒド濃度が24.8質量%以下である
(b-ii)分液時の温度が70℃以下である
(b-iii)水相中の酢酸メチル濃度が12.0質量%以下、及び/又は、有機相中の酢酸メチル濃度が47.6質量%以下、及び/又は、水相中の酢酸メチル濃度と有機相中の酢酸メチル濃度の和が59.6質量%以下である
(b-iv)アセトアルデヒド分配率[{水相のアセトアルデヒド濃度(質量%)}/{有機相のアセトアルデヒド濃度(質量%)}]が1.1以上である
(b-v)酢酸メチル分配率[{水相の酢酸メチル濃度(質量%)}/{有機相の酢酸メチル濃度(質量%)}]が0.25以上である
(b-i)水相中のアセトアルデヒド濃度が28.1質量%以下、及び/又は、有機相中のアセトアルデヒド濃度が24.8質量%以下である
(b-ii)分液時の温度が70℃以下である
(b-iii)水相中の酢酸メチル濃度が12.0質量%以下、及び/又は、有機相中の酢酸メチル濃度が47.6質量%以下、及び/又は、水相中の酢酸メチル濃度と有機相中の酢酸メチル濃度の和が59.6質量%以下である
(b-iv)アセトアルデヒド分配率[{水相のアセトアルデヒド濃度(質量%)}/{有機相のアセトアルデヒド濃度(質量%)}]が1.1以上である
(b-v)酢酸メチル分配率[{水相の酢酸メチル濃度(質量%)}/{有機相の酢酸メチル濃度(質量%)}]が0.25以上である
本発明の酢酸の製造方法において、前記分液工程が前記(b-i)、(b-ii)、(b-iii)、(b-iv)及び(b-v)の全ての条件を満たすことが好ましい。
本発明の酢酸の製造方法において、前記分液工程が下記(b´-i)~(b´-v)のうち少なくとも1つの条件を満たし、前記有機相の少なくとも一部を前記アセトアルデヒド分離除去工程にて処理することが好ましい。
(b´-i)水相中のアセトアルデヒド濃度が0.045質量%以上、及び/又は、有機相中のアセトアルデヒド濃度が0.013質量%以上である
(b´-ii)分液時の温度が-5℃以上である
(b´-iii)水相中の酢酸メチル濃度が1.2質量%以上、及び/又は、有機相中の酢酸メチル濃度が2.2質量%以上、及び/又は、水相中の酢酸メチル濃度と有機相中の酢酸メチル濃度の和が3.4質量%以上である
(b´-iv)アセトアルデヒド分配率[{水相のアセトアルデヒド濃度(質量%)}/{有機相のアセトアルデヒド濃度(質量%)}]が4.1以下である
(b´-v)酢酸メチル分配率[{水相の酢酸メチル濃度(質量%)}/{有機相の酢酸メチル濃度(質量%)}]が0.8以下である
(b´-i)水相中のアセトアルデヒド濃度が0.045質量%以上、及び/又は、有機相中のアセトアルデヒド濃度が0.013質量%以上である
(b´-ii)分液時の温度が-5℃以上である
(b´-iii)水相中の酢酸メチル濃度が1.2質量%以上、及び/又は、有機相中の酢酸メチル濃度が2.2質量%以上、及び/又は、水相中の酢酸メチル濃度と有機相中の酢酸メチル濃度の和が3.4質量%以上である
(b´-iv)アセトアルデヒド分配率[{水相のアセトアルデヒド濃度(質量%)}/{有機相のアセトアルデヒド濃度(質量%)}]が4.1以下である
(b´-v)酢酸メチル分配率[{水相の酢酸メチル濃度(質量%)}/{有機相の酢酸メチル濃度(質量%)}]が0.8以下である
本発明の酢酸の製造方法において、前記分液工程が前記(b´-i)、(b´-ii)、(b´-iii)、(b´-iv)及び(b´-v)の全ての条件を満たすことが好ましい。
本発明の酢酸の製造方法において、前記分離工程は、前記カルボニル化反応工程で得られた反応混合物を蒸発槽において蒸気流と残液流とに分離する蒸発工程と、
前記蒸気流を第1蒸留塔によりヨウ化メチル及びアセトアルデヒドから選択された少なくとも一種の低沸成分に富む第1オーバーヘッド流と酢酸に富む第1酢酸流とに分離するとともに、前記第1オーバーヘッド流を凝縮、分液させて水相と有機相とを得る脱低沸工程と、を有することが好ましい。
前記蒸気流を第1蒸留塔によりヨウ化メチル及びアセトアルデヒドから選択された少なくとも一種の低沸成分に富む第1オーバーヘッド流と酢酸に富む第1酢酸流とに分離するとともに、前記第1オーバーヘッド流を凝縮、分液させて水相と有機相とを得る脱低沸工程と、を有することが好ましい。
本発明の酢酸の製造方法において、前記分離工程は、前記第1酢酸流を第2蒸留塔により水に富む第2オーバーヘッド流と第1酢酸流よりも酢酸に富む第2酢酸流とに分離する脱水工程を有することが好ましい。
前記第2酢酸流におけるクロトンアルデヒド濃度は、例えば2.0質量ppm以下である。
前記第2酢酸流における2-エチルクロトンアルデヒド濃度は、例えば3.0質量ppm以下である。
前記第2酢酸流におけるクロトンアルデヒド濃度CCR(質量ppm)と2-エチルクロトンアルデヒド濃度CECR(質量ppm)との比(CCR/CECR)は、例えば50以下である。
前記第2酢酸流における酢酸ブチル濃度は、例えば15質量ppm以下である。
前記第2酢酸流におけるクロトンアルデヒド濃度CCR(質量ppm)と酢酸ブチル濃度CBA(質量ppm)との比(CCR/CBA)は、例えば2.0以下である。
本発明の酢酸の製造方法において、前記触媒系はさらにイオン性ヨウ化物を含んでいてもよい。
本発明の酢酸の製造方法において、前記水相及び/又は前記有機相の少なくとも一部からアセトアルデヒドを分離除去した後の残液の少なくとも一部を反応槽にリサイクルしてもよい。
反応槽の水素分圧は、例えば0.001MPa(絶対圧)以上である。
反応槽の反応混合液中のアセトアルデヒド濃度は、例えば500質量ppm以下である。
前記第2酢酸流におけるクロトンアルデヒド濃度が0.98質量ppm以下及び/又は2-エチルクロトンアルデヒド濃度が1.0質量ppm以下及び/又は酢酸ブチル濃度が15質量ppm以下であってもよい。
前記第2酢酸流の過マンガン酸カリウム試験値は、50分を超えることが好ましい。
本発明の酢酸の製造方法において、第1蒸留塔に供給する前記蒸気流におけるクロトンアルデヒド濃度が0~5.0質量ppm及び/又は2-エチルクロトンアルデヒド濃度が0~3.0質量ppm及び/又は酢酸ブチル濃度が0.1~13.0質量ppmであってもよい。
前記第1酢酸流における2-エチルクロトンアルデヒド濃度は、例えば3.0質量ppm以下である。
前記第1酢酸流におけるクロトンアルデヒド濃度CCR(質量ppm)と2-エチルクロトンアルデヒド濃度CECR(質量ppm)との比(CCR/CECR)は、例えば50以下である。
前記第1酢酸流における酢酸ブチル濃度は、例えば15質量ppm以下である。
前記第1酢酸流におけるクロトンアルデヒド濃度CCR(質量ppm)と酢酸ブチル濃度CBA(質量ppm)との比(CCR/CBA)は、例えば2.0以下である。
前記第1酢酸流におけるクロトンアルデヒド濃度が1.3質量ppm以下及び/又は2-エチルクロトンアルデヒド濃度が1.0質量ppm以下及び/又は酢酸ブチル濃度が15質量ppm以下であってもよい。
前記脱クロトンアルデヒド工程における蒸留塔仕込液中のクロトンアルデヒド濃度は、例えば0.01~50質量ppmである。
前記脱クロトンアルデヒド工程において、前記(a-i)~(a-iii)の全ての条件を満たすように蒸留塔を操作することが好ましい。
前記脱クロトンアルデヒド工程において、蒸留をバッチ処理で行ってもよい。
脱クロトンアルデヒド工程における蒸留塔の処理量が、第1蒸留塔に供給する蒸気流の量100質量部に対して、例えば0.0001~50質量部である。
本発明の酢酸の製造方法においては、さらに、プロセスからのオフガスを、少なくとも酢酸を含む吸収溶媒で吸収処理して、一酸化炭素に富むストリームと酢酸に富むストリームとに分離するスクラバー工程を有していてもよい。
本発明によれば、脱低沸塔で得られる酢酸流(第1酢酸流)中のクロトンアルデヒド濃度を特定値以下に制御するため、大掛かりなオゾン処理設備等を設けなくても、過マンガン酸カリウム試験値(「過マンガン酸タイム」、「カメレオンタイム」ともいう)の良好な高品質の酢酸を工業的に効率よく製造できる。また、本発明によれば、脱低沸塔の還流比を特定値以上とし、且つ脱クロトンアルデヒド工程によりクロトンアルデヒドを効率よく除去できるので、オゾン処理設備等を設けなくても、過マンガン酸カリウム試験値の良好な高品質の酢酸を工業的に効率よく製造できる。また、本発明によれば、アセトアルデヒド分離除去工程において、分液工程における分液時の液温、水相及び/又は有機相のアセトアルデヒド濃度、アセトアルデヒド分配率、水相及び/又は有機相の酢酸メチル濃度、又は酢酸メチル分配率に基づいてその処理対象を、水相及び/又は有機相の少なくとも一部から選択して処理するため、メタノール法カルボニル化プロセスにおいて副生するアセトアルデヒドを工業的に有利に効率よく除去することができる。
本発明の第1の酢酸の製造方法では、金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水の存在下、メタノールと一酸化炭素とを反応槽で反応させて酢酸を生成させるカルボニル化反応工程と、
前記カルボニル化反応工程で得られた反応混合物から、1以上の蒸発槽及び/又は蒸留塔を用いて、金属触媒を含む流れと、酢酸に富む酢酸流と、前記酢酸流よりも低沸成分に富む流れとを分離取得する分離工程と、
水、酢酸、ヨウ化メチル及びアセトアルデヒドを少なくとも含むプロセス流を水相と有機相とに分液させる分液工程と、
前記プロセス流に由来するアセトアルデヒドを分離除去する工程であって、
前記分液工程における分液時の液温、水相及び/又は有機相のアセトアルデヒド濃度、アセトアルデヒド分配率、水相及び/又は有機相の酢酸メチル濃度、又は酢酸メチル分配率に基づいてその処理対象を、水相及び/又は有機相の少なくとも一部から選択して処理するアセトアルデヒド分離除去工程と、
前記水相及び/又は有機相の少なくとも一部を反応槽にリサイクルするリサイクル工程と、
前記水相及び/又は有機相の少なくとも他の一部を蒸留塔で処理してクロトンアルデヒドを分離除去する脱クロトンアルデヒド工程と、
を備え、
前記分離工程が、第1蒸留塔により、酢酸に富む第1酢酸流と、前記第1酢酸流よりも低沸成分に富むオーバーヘッド流とを分離取得する工程を有しており、
当該工程において前記第1酢酸流におけるクロトンアルデヒド濃度を2.2質量ppm以下に制御するとともに、
前記分離工程の第1蒸留塔の還流比について、当該第1蒸留塔に水相のみを還流させる場合は水相の還流比を2以上とし、有機相のみを還流させる場合は有機相の還流比を1以上とし、水相及び有機相をともに還流させる場合は水相及び有機相の総和の還流比を1.5以上とし、且つ、前記脱クロトンアルデヒド工程において下記(a-i)~(a-iii)の少なくとも1つの条件を満たすように蒸留塔を操作する。
(a-i)当該蒸留塔の還流比を0.01以上とする
(a-ii)当該蒸留塔の留出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1未満とする
(a-iii)当該蒸留塔の缶出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1より大きくする
前記カルボニル化反応工程で得られた反応混合物から、1以上の蒸発槽及び/又は蒸留塔を用いて、金属触媒を含む流れと、酢酸に富む酢酸流と、前記酢酸流よりも低沸成分に富む流れとを分離取得する分離工程と、
水、酢酸、ヨウ化メチル及びアセトアルデヒドを少なくとも含むプロセス流を水相と有機相とに分液させる分液工程と、
前記プロセス流に由来するアセトアルデヒドを分離除去する工程であって、
前記分液工程における分液時の液温、水相及び/又は有機相のアセトアルデヒド濃度、アセトアルデヒド分配率、水相及び/又は有機相の酢酸メチル濃度、又は酢酸メチル分配率に基づいてその処理対象を、水相及び/又は有機相の少なくとも一部から選択して処理するアセトアルデヒド分離除去工程と、
前記水相及び/又は有機相の少なくとも一部を反応槽にリサイクルするリサイクル工程と、
前記水相及び/又は有機相の少なくとも他の一部を蒸留塔で処理してクロトンアルデヒドを分離除去する脱クロトンアルデヒド工程と、
を備え、
前記分離工程が、第1蒸留塔により、酢酸に富む第1酢酸流と、前記第1酢酸流よりも低沸成分に富むオーバーヘッド流とを分離取得する工程を有しており、
当該工程において前記第1酢酸流におけるクロトンアルデヒド濃度を2.2質量ppm以下に制御するとともに、
前記分離工程の第1蒸留塔の還流比について、当該第1蒸留塔に水相のみを還流させる場合は水相の還流比を2以上とし、有機相のみを還流させる場合は有機相の還流比を1以上とし、水相及び有機相をともに還流させる場合は水相及び有機相の総和の還流比を1.5以上とし、且つ、前記脱クロトンアルデヒド工程において下記(a-i)~(a-iii)の少なくとも1つの条件を満たすように蒸留塔を操作する。
(a-i)当該蒸留塔の還流比を0.01以上とする
(a-ii)当該蒸留塔の留出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1未満とする
(a-iii)当該蒸留塔の缶出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1より大きくする
また、本発明の第2の酢酸の製造方法では、金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水の存在下、メタノールと一酸化炭素とを反応槽で反応させて酢酸を生成させるカルボニル化反応工程と、
前記カルボニル化反応工程で得られた反応混合物から、1以上の蒸発槽及び/又は蒸留塔を用いて、金属触媒を含む流れと、酢酸に富む酢酸流と、前記酢酸流よりも低沸成分に富む流れとを分離取得する分離工程と、
水、酢酸、ヨウ化メチル及びアセトアルデヒドを少なくとも含むプロセス流を水相と有機相とに分液させる分液工程と、
前記プロセス流に由来するアセトアルデヒドを分離除去する工程であって、
前記分液工程における分液時の液温、水相及び/又は有機相のアセトアルデヒド濃度、アセトアルデヒド分配率、水相及び/又は有機相の酢酸メチル濃度、又は酢酸メチル分配率に基づいてその処理対象を、水相及び/又は有機相の少なくとも一部から選択して処理するアセトアルデヒド分離除去工程と、
前記水相及び/又は有機相の少なくとも一部を反応槽にリサイクルするリサイクル工程と、
前記水相及び/又は有機相の少なくとも他の一部を蒸留塔で処理してクロトンアルデヒドを分離除去する脱クロトンアルデヒド工程と、
を備えた酢酸の製造方法であって、
前記分離工程が、第1蒸留塔により酢酸に富む第1酢酸流と前記第1酢酸流よりも低沸成分に富む第1オーバーヘッド流とを分離取得する工程、及び、前記第1酢酸流を第2蒸留塔により、水に富む第2オーバーヘッド流と第1酢酸流よりも酢酸に富む第2酢酸流とを分離取得する工程を有しており、
前記各工程において前記第1酢酸流におけるクロトンアルデヒド濃度を2.2質量ppm以下に制御する、及び/又は、第2蒸留塔の還流比を0.1以上に制御するとともに、
前記分離工程の第1蒸留塔の還流比について、当該第1蒸留塔に水相のみを還流させる場合は水相の還流比を2以上とし、有機相のみを還流させる場合は有機相の還流比を1以上とし、水相及び有機相をともに還流させる場合は水相及び有機相の総和の還流比を1.5以上とし、且つ、前記脱クロトンアルデヒド工程において下記(a-i)~(a-iii)の少なくとも1つの条件を満たすように蒸留塔を操作する。
(a-i)当該蒸留塔の還流比を0.01以上とする
(a-ii)当該蒸留塔の留出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1未満とする
(a-iii)当該蒸留塔の缶出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1より大きくする
前記カルボニル化反応工程で得られた反応混合物から、1以上の蒸発槽及び/又は蒸留塔を用いて、金属触媒を含む流れと、酢酸に富む酢酸流と、前記酢酸流よりも低沸成分に富む流れとを分離取得する分離工程と、
水、酢酸、ヨウ化メチル及びアセトアルデヒドを少なくとも含むプロセス流を水相と有機相とに分液させる分液工程と、
前記プロセス流に由来するアセトアルデヒドを分離除去する工程であって、
前記分液工程における分液時の液温、水相及び/又は有機相のアセトアルデヒド濃度、アセトアルデヒド分配率、水相及び/又は有機相の酢酸メチル濃度、又は酢酸メチル分配率に基づいてその処理対象を、水相及び/又は有機相の少なくとも一部から選択して処理するアセトアルデヒド分離除去工程と、
前記水相及び/又は有機相の少なくとも一部を反応槽にリサイクルするリサイクル工程と、
前記水相及び/又は有機相の少なくとも他の一部を蒸留塔で処理してクロトンアルデヒドを分離除去する脱クロトンアルデヒド工程と、
を備えた酢酸の製造方法であって、
前記分離工程が、第1蒸留塔により酢酸に富む第1酢酸流と前記第1酢酸流よりも低沸成分に富む第1オーバーヘッド流とを分離取得する工程、及び、前記第1酢酸流を第2蒸留塔により、水に富む第2オーバーヘッド流と第1酢酸流よりも酢酸に富む第2酢酸流とを分離取得する工程を有しており、
前記各工程において前記第1酢酸流におけるクロトンアルデヒド濃度を2.2質量ppm以下に制御する、及び/又は、第2蒸留塔の還流比を0.1以上に制御するとともに、
前記分離工程の第1蒸留塔の還流比について、当該第1蒸留塔に水相のみを還流させる場合は水相の還流比を2以上とし、有機相のみを還流させる場合は有機相の還流比を1以上とし、水相及び有機相をともに還流させる場合は水相及び有機相の総和の還流比を1.5以上とし、且つ、前記脱クロトンアルデヒド工程において下記(a-i)~(a-iii)の少なくとも1つの条件を満たすように蒸留塔を操作する。
(a-i)当該蒸留塔の還流比を0.01以上とする
(a-ii)当該蒸留塔の留出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1未満とする
(a-iii)当該蒸留塔の缶出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1より大きくする
本発明の第1及び第2の酢酸の製造方法(以下、これらを「本発明の酢酸の製造方法」と称する場合がある)において、前記触媒系は、さらにイオン性ヨウ化物を含んでいてもよい。イオン性ヨウ化物は助触媒として機能する。
前記本発明の酢酸の製造方法において、分離工程は、例えば、前記カルボニル化反応工程で得られた反応混合物を蒸発槽において蒸気流と残液流とに分離する蒸発工程と、前記前記蒸気流を蒸留に付して、低沸成分に富む流れ(例えば、オーバーヘッド流、具体的には、第1オーバーヘッド流)と、酢酸に富む第1酢酸流とに分離する脱低沸工程と、前記第1酢酸流を蒸留に付して、水に富むオーバーヘッド流(第2オーバーヘッド流)と第1酢酸流よりも酢酸に富む第2酢酸流とに分離する脱水工程と、を有することが好ましい。なお脱低沸工程で用いる蒸留塔を第1蒸留塔(脱低沸塔)、脱水工程で用いる蒸留塔を第2蒸留塔(脱水塔)と称する場合がある。
なお、前記分離工程は、前記蒸発工程及び脱低沸工程に代えて、前記カルボニル化反応工程で得られた反応混合物を、前記金属触媒を含む流れと、前記低沸成分に富む流れ(例えば、オーバーヘッド流)と、酢酸に富む第1酢酸流とに分離する工程(蒸発脱低沸工程)を備えていてもよい。また、前記分離工程は、前記脱低沸工程及び脱水工程に代えて、前記脱水工程の機能も備えた脱低沸工程(いわゆる脱低沸脱水工程)、すなわち、前記蒸気流を蒸留に付して、低沸成分に富む流れ(例えば、オーバーヘッド流)と、上記第2酢酸流と同等の水濃度まで脱水された酢酸流とに分離する工程を備えていてもよい。よって、前記蒸発脱低沸工程は、前記脱水工程の機能も備えた工程(蒸発脱低沸脱水工程)であってもよい。脱低沸脱水工程及び蒸発脱低沸脱水工程から得られる酢酸に富む酢酸流は、前記第2酢酸流に相当する。なお、前記蒸発脱低沸工程、脱低沸脱水工程及び蒸発脱低沸脱水工程に用いられる蒸留塔は、第1蒸留塔に相当する。
前記分離工程は、前記カルボニル化反応工程で得られた反応混合物を蒸発槽において蒸気流と残液流とに分離する蒸発工程と、前記蒸気流を第1蒸留塔によりヨウ化メチル及びアセトアルデヒドから選択された少なくとも一種の低沸成分に富む第1オーバーヘッド流と酢酸に富む第1酢酸流とに分離するとともに、前記第1オーバーヘッド流を凝縮、分液させて水相と有機相とを得る脱低沸工程とを有していてもよい。
前記アセトアルデヒド分離除去工程は、前記プロセス流に由来するアセトアルデヒドを分離除去する工程であって、前記分液工程における分液時の液温、水相及び/又は有機相のアセトアルデヒド濃度、アセトアルデヒド分配率、水相及び/又は有機相の酢酸メチル濃度、又は酢酸メチル分配率に基づいてその処理対象を、水相及び/又は有機相の少なくとも一部から選択して処理する工程である。
なお、本明細書において、「プロセス流」とは、酢酸製造装置における、反応、蒸発、蒸留、冷却、凝縮、分液、貯留、吸収などのプロセス単位操作を行う際の工程、又はプロセス単位操作を行うための装置若しくは設備内における液相又は気相を意味する。例えば、配管、反応槽、蒸発槽、蒸留塔内の液相又は気相が挙げられる。
なお、水相及び有機相中のアセトアルデヒド濃度、酢酸メチル濃度は分液に供する液(以下、「分液工程供給液」と称する場合がある)の組成、及び分液時の温度によって定まる。分液工程供給液中のアセトアルデヒド濃度が高いほど、水相及び有機相中のアセトアルデヒド濃度は高くなり、分液工程供給液中の酢酸メチル濃度が高いほど、水相及び有機相中の酢酸メチル濃度は高くなる。なお、実施例で示されるように、分液時の温度が高くなるほど、アセトアルデヒドの有機相への分配割合が相対的に高くなる。そして、分液工程供給液中のアセトアルデヒド濃度及び酢酸メチル濃度は、例えば、反応槽における反応条件、蒸発槽における蒸発条件、蒸留塔における蒸留条件により制御できる。一般に、反応混合物中のアセトアルデヒド濃度、酢酸メチル濃度が高いほど、それぞれ、分液工程供給液中のアセトアルデヒド濃度、酢酸メチル濃度が高くなる。反応混合物中のアセトアルデヒド濃度は、反応系における反応温度、水素分圧、ヨウ化メチル濃度、水濃度、触媒濃度、ヨウ化リチウム濃度がそれぞれ高くなるほど増大し、CO分圧、酢酸メチル濃度がそれぞれ高くなるほど低下する傾向を示す(特開2006-182691号公報参照)。さらに、酢酸メチルは酢酸とメタノールのエステル化反応によって生成するので、反応混合物中の酢酸メチル濃度は、反応系における酢酸濃度、メタノール濃度がそれぞれ高いほど増大し、水濃度が高いほど低下する。このように、反応槽における反応条件、及び分液工程より前に行う蒸発工程や蒸留工程の操作条件を調節することにより、分液工程供給液の組成、ひいては水相及び有機相中のアセトアルデヒド濃度及び酢酸メチル濃度を調整することができる。発明者らは脱低沸塔のデカンタで分液させて得られる水相中のアセトアルデヒド濃度及び有機相中のアセトアルデヒド濃度、分液時の液温、並びに、水相中の酢酸メチル濃度及び有機相中の酢酸メチル濃度と、アセトアルデヒドの分配率との間に一定の相関が存在することを見出した。上述したように、水相を脱アセトアルデヒド処理に付す方法と有機相を脱アセトアルデヒド処理に付す方法にはそれぞれメリットとデメリットがあるので、アセトアルデヒド分配率がある程度高い場合(アセトアルデヒドが水相に比較的多く分配されている場合)は前者の方法を採用し、アセトアルデヒド分配率がある程度低い場合(アセトアルデヒドが有機相に比較的多く分配されている場合)は後者の方法を採用し、その中間領域では両方の方法を採用することが工業的に有利である。
また、脱低沸塔仕込の酢酸メチル濃度の制御は、反応槽の酢酸メチル濃度を制御して調整される。反応槽の酢酸メチル濃度は、例えばメタノールとCO仕込量を一定化した条件では、反応槽内の温度、ロジウム錯体(Rh)、ヨウ化メチル(MeI)、H2O、水素分圧、一酸化炭素分圧、ヨウ化リチウム(LiI)など、反応速度に影響を及ぼす因子を上下させることで調整できる。即ち、温度、Rh、MeI、H2O、水素分圧、一酸化炭素分圧、LiIなどを増加させると、反応槽の酢酸メチル濃度は低下し、減少させると酢酸メチル濃度は増加する。また、これら条件の一定化、即ち温度、Rh、MeI、H2O、水素分圧、一酸化炭素分圧、LiIなどの条件を一定化した上で、メタノールとCO仕込量を増加させると酢酸メチル濃度は上昇し、減少させると酢酸メチル濃度は低下する。反応液を蒸発槽で蒸発させた蒸気(脱低沸塔の仕込)中の酢酸メチル濃度は、蒸発率が一定条件下で運転されるため、反応液中の酢酸メチル濃度に比例して変化する。なお、蒸発槽を加熱、冷却する場合は、蒸発率が変化するため、酢酸メチル濃度も変化する。例えば、加熱する場合は、蒸発槽蒸気中の酢酸濃度が上昇し、酢酸メチル濃度は低下する。一方、冷却する場合は、その逆の現象、即ち蒸発槽蒸気中の酢酸濃度が低下し、酢酸メチル濃度は上昇することになる。
前記リサイクル工程は、前記第1オーバーヘッド流を凝縮させた水相及び/又は有機相の少なくとも一部、及び/又は、前記第2オーバーヘッド流の一部を反応槽にリサイクルするオーバーヘッド流リサイクル工程を有していてもよい。
本発明では、分離工程で得られる第1酢酸流中のクロトンアルデヒド濃度を2.2質量ppm以下の低濃度に制御することで、脱水工程において水を分離除去して得られる第2酢酸流中のクロトンアルデヒド濃度を例えば2.0質量ppm以下に低減でき、第2酢酸流の過マンガン酸カリウム試験値を高めることができる。従って、過マンガン酸カリウム試験値の向上のために従来用いられてきた脱アセトアルデヒド設備やオゾン処理設備を小規模化したり省略化できる。また、脱低沸塔及び脱水塔を経るだけで過マンガン酸カリウム試験値の高い酢酸を得ることができるので、その後の脱高沸塔や製品塔(仕上塔)を小規模化乃至省略が可能となる。第1酢酸流中のクロトンアルデヒド濃度は、好ましくは2.0質量ppm以下、より好ましくは1.8質量ppm以下、さらに好ましくは1.5質量ppm以下、特に好ましくは1.2質量ppm以下(例えば1.0質量ppm以下、或いは0.8質量ppm以下、なかんずく0.5質量ppm以下)である。なお、第2蒸留塔(脱水塔)の還流比を0.1以上(特に0.3以上、例えば0.32以上)に制御する場合は、第1酢酸流中のクロトンアルデヒド濃度は、例えば5質量ppm以下(特に2.5質量ppm以下)であってもよいが、好ましくは前記の範囲である。
第1酢酸流中のクロトンアルデヒド濃度を低下させる方法としては、例えば反応槽の水素分圧を高くすることが挙げられる。反応槽の水素分圧を上げることによりクロトンアルデヒドが水添され、反応混合液(反応混合物のうちの液相;反応媒体)中のクロトンアルデヒド濃度が低下するため、第1蒸留塔仕込液中のクロトンアルデヒド濃度も低下し、よって、第1蒸留塔で脱低沸して得られる第1酢酸流中のクロトンアルデヒド濃度も低下する。反応槽の水素分圧は、例えば0.001MPa(絶対圧)以上[例えば0.005MPa以上]、好ましくは0.01MPa(絶対圧)以上[例えば0.015MPa以上]、より好ましくは0.02MPa(絶対圧)以上、さらに好ましくは0.04MPa(絶対圧)以上、特に好ましくは0.06MPa(絶対圧)以上[例えば0.07MPa(絶対圧)以上]である。なお、反応槽の水素分圧の上限は、例えば0.5MPa(絶対圧)[特に0.2MPa(絶対圧)]である。
好ましい態様では、第1酢酸流におけるクロトンアルデヒド濃度は、例えば1.3質量ppm以下、好ましくは1.0質量ppm以下、より好ましくは0.85質量ppm以下、特に好ましくは0.5質量ppm以下(例えば0.25質量ppm以下)である。第1酢酸流におけるクロトンアルデヒド濃度を1.3質量ppm以下とすることにより、第2酢酸流中のクロトンアルデヒド濃度を著しく低減できるとともに、第2酢酸流の過マンガン酸カリウム試験値を大幅に向上できる。第1酢酸流におけるクロトンアルデヒド濃度の下限値は、0質量ppmであってもよいが、例えば0.01質量ppm(或いは0.10質量ppm)であってもよい。
第1酢酸流中のクロトンアルデヒド濃度を低下させる他の方法として、脱低沸塔における還流比を大きくすることが挙げられる。クロトンアルデヒド(沸点104℃)は酢酸(沸点117℃)より低沸点であるため、脱低沸塔の還流比を大きくすることにより、クロトンアルデヒドはより蒸留塔の塔頂に濃縮されるので、側流又は缶出流として得られる第1酢酸流中のクロトンアルデヒド濃度が低下する。また、脱低沸塔の還流比を大きくすることによりクロトンアルデヒドが濃縮された第1オーバーヘッド流の凝縮液(水相及び/又は有機相)を反応槽にリサイクルすると、反応槽内でクロトンアルデヒドはアセトアルデヒドと反応して2-エチルクロトンアルデヒドが生成する。また、クロトンアルデヒドは反応槽内で水素と反応してブタノールが生成し、このブタノールは酢酸と反応して酢酸ブチルとなる。2-エチルクロトンアルデヒドはクロトンアルデヒドと比べて過マンガン酸カリウム試験値に与える影響は小さく、酢酸ブチルは過マンガン酸カリウム試験値に全く影響を与えない。したがって、酢酸の品質がより向上する傾向となる。なお、2-エチルクロトンアルデヒド、酢酸ブチルの沸点は、それぞれ137℃、126℃と酢酸の沸点(117℃)よりも高いため、脱低沸塔の還流比を上げると、脱低沸塔への仕込液供給位置より下のサイドカットや缶出液に濃縮されやすい。
脱低沸塔の還流比については、脱低沸塔に第1オーバーヘッド流の凝縮液の水相のみを還流させる場合は、水相の還流比(水相の還流量/水相の留出量)を、例えば2以上、好ましくは3以上、より好ましくは4以上、さらに好ましくは8以上、特に好ましくは10以上とする。また、脱低沸塔に第1オーバーヘッド流の凝縮液の有機相のみを還流させる場合は、有機相の還流比(有機相の還流量/有機相の留出量)を、例えば1以上、好ましくは1.5以上、より好ましくは2以上、さらに好ましくは4以上、特に好ましくは5以上とする。さらに、脱低沸塔に第1オーバーヘッド流の凝縮液の水相及び有機相をともに還流させる場合は、水相及び有機相の総和の還流比(水相及び有機相の還流量の総和/水相及び有機相の留出量の総和)を、例えば1.5以上、好ましくは2.3以上、より好ましくは3以上、さらに好ましくは6以上、特に好ましくは7.5以上とする。また、脱低沸塔に水相を還流させる場合は、水相の還流比(水相の還流量/水相の留出量)は2以上であることが好ましく、より好ましくは3以上、さらに好ましくは5以上、特に好ましくは8以上、とりわけ12以上である。なお、脱水塔の還流比を前記の0.1以上(特に0.3以上、例えば0.32以上)に制御する場合には、脱低沸塔の還流比は、上相、下相のいずれを還流させるにかかわらず、例えば0.5以上であってもよい。脱低沸塔の還流比の上限は、いずれの場合も、例えば3000(特に1000)であってもよく、あるいは100(特に30)であってもよい。
第1酢酸流中のクロトンアルデヒド濃度を低下させるさらに他の方法として、反応槽の反応混合液(反応媒体)中に存在するアセトアルデヒド濃度を低くすることが挙げられる。反応槽の反応混合液中のアセトアルデヒド濃度を低くすることによりアセトアルデヒドのアルドール縮合によるクロトンアルデヒドの生成が抑えられるため、第1蒸留塔仕込液中のクロトンアルデヒド濃度が低下し、よって、第1蒸留塔で脱低沸して得られる第1酢酸流中のクロトンアルデヒド濃度も低下する。反応槽の反応混合液中のアセトアルデヒド濃度は、例えば500質量ppm以下、好ましくは450質量ppm以下、より好ましくは400質量ppm以下、さらに好ましくは350質量ppm以下、特に好ましくは300質量ppm以下(例えば250質量ppm以下)である。反応槽の反応混合液中のアセトアルデヒド濃度は、例えば、反応槽内のCO分圧を上げたり、反応槽の反応混合液中の酢酸メチル濃度を上げることにより低下できる。また、反応槽の反応混合液中のアセトアルデヒド濃度は、第1蒸留塔で得られる第1オーバーヘッド液の凝縮液(水相及び/又は有機相)のうちアセトアルデヒド分離除去工程に供給する割合を多くし、反応槽へリサイクルする割合を少なくすることにより低下できる。
前記本発明の酢酸の製造方法は、前記第1酢酸流を第2蒸留塔により水に富む第2オーバーヘッド流と第1酢酸流よりも酢酸に富む第2酢酸流とに分離する脱水工程を有していてもよい。第1酢酸流を第2蒸留塔にて脱水することにより、塔底又は塔の中間部位から缶出液又はサイドカット液として水含有量の少ない第2酢酸流を得ることができる。第2酢酸流はそのまま、或いは必要に応じてさらに精製することにより製品酢酸とすることができる。
第2蒸留塔の還流比は、例えば0.1以上(特に0.3以上、例えば0.32以上)、好ましくは1.0以上、より好ましくは5.0以上、さらに好ましくは10以上(例えば12以上)である。第2蒸留塔の還流比の上限は、例えば3000(又は1000)、或いは200(又は100)程度であってもよい。第2蒸留塔の還流比を0.1以上(特に0.3以上、例えば0.32以上)に上げることにより、第2酢酸流の純度及び過マンガン酸カリウム試験値を向上できる。
脱水塔の還流比を0.1以上(特に0.3以上、好ましくは0.32以上)に制御することにより、上記のようにクロトンアルデヒドは酢酸より沸点が低いので、脱水塔内に流入したクロトンアルデヒドを塔頂に濃縮でき、側流又は缶出流として得られる第2酢酸流中のクロトンアルデヒド濃度を著しく低減できる。また、クロトンアルデヒドが濃縮された脱水塔塔頂の第2オーバーヘッド流を反応槽にリサイクルすると、上記のようにクロトンアルデヒドは害の少ない2-エチルクロトンアルデヒド及び無害の酢酸ブチルに変換されるので、酢酸の品質がより向上する。
好ましい態様では、脱水塔の還流比は、0.1以上(特に0.3以上、例えば0.32以上)、好ましくは0.4以上、より好ましくは1以上、さらに好ましくは2以上である。なお、前記の第1酢酸流中のクロトンアルデヒド濃度を2.2質量ppm以下に制御する場合は、脱水塔の還流比は、例えば0.1以上(例えば0.2以上、特に0.3以上、例えば0.32以上)であってもよい。脱水塔の還流比の上限は、例えば3000(特に1000)であり、100或いは10程度であってもよい。脱水塔の還流比を0.1以上(特に0.3以上、好ましくは0.32以上)に上げることにより、第2酢酸流の純度及び過マンガン酸カリウム試験値を向上できる。
また、本発明では、第1蒸留塔の還流比を上げてクロトンアルデヒドを塔頂に濃縮し、クロトンアルデヒドが濃縮された脱低沸塔塔頂凝縮液の水相及び/又は有機相の少なくとも一部を反応槽にリサイクルする。クロトンアルデヒドが塔頂に濃縮されるため、第1酢酸流中のクロトンアルデヒド濃度が低下し、その結果過マンガン酸カリウム試験値が良好な製品酢酸を得ることができる。また、反応槽にリサイクルされたクロトンアルデヒドは、クロトンアルデヒド+アセトアルデヒド→2-エチルクロトンアルデヒド、クロトンアルデヒド+水素→ブチルアルコール、ブチルアルコール+酢酸→酢酸ブチルの反応により、過マンガン酸カリウム試験値に対してより影響の小さい2-エチルクロトンアルデヒドや全く影響のない酢酸ブチルに変換されるため、製品酢酸の品質を向上させることができる。また、本発明では、前記クロトンアルデヒドが濃縮された脱低沸塔塔頂凝縮液の水相及び/又は有機相の少なくとも他の一部を脱クロトンアルデヒド塔で処理するところ、クロトンアルデヒドは沸点が104℃と高いので、高沸点化合物として酢酸やアルカン類とともに缶出側に抜き取り、系外に排出することで、製品酢酸の過マンガン酸カリウム試験値をより一層向上させることができる。脱クロトンアルデヒド塔の塔頂凝縮液は有用成分(例えば、ヨウ化メチル、酢酸メチル等)を含むので、脱低沸塔塔頂凝縮液を貯留するデカンタや反応槽にリサイクルできる。
前記の第1蒸留塔の還流比については、第1蒸留塔に前記水相のみを還流させる場合は、水相の還流比(水相の還流量/水相の留出量)は2以上であり、好ましくは3以上、より好ましくは5以上、さらに好ましくは8以上、特に好ましくは12以上である。また、第1蒸留塔に前記有機相のみを還流させる場合は、有機相の還流比(有機相の還流量/有機相の留出量)は1以上であり、好ましくは1.5以上、より好ましくは2以上、さらに好ましくは4以上、特に好ましくは5以上である。さらに、第1蒸留塔に前記水相及び有機相をともに還流させる場合は、水相及び有機相の総和の還流比(水相及び有機相の還流量の総和/水相及び有機相の留出量の総和)は1.5以上であり、好ましくは2.3以上、より好ましくは3.5以上、さらに好ましくは6以上、特に好ましくは8.5以上である。また、第1蒸留塔に前記水相を還流させる場合は、水相の還流比(水相の還流量/水相の留出量)は2以上であることが好ましく、より好ましくは3以上、さらに好ましくは5以上、特に好ましくは8以上、とりわけ12以上である。第1蒸留塔の還流比の上限は、いずれの場合も、例えば3000(特に1000)であってもよく、あるいは100(特に30)であってもよい。
前記(a-i)において、脱クロトンアルデヒド塔の還流比は、好ましくは0.05以上、より好ましくは0.5以上、さらに好ましくは5以上、特に好ましくは20以上(例えば30以上)である。脱クロトンアルデヒド塔の還流比の上限は、例えば1000である。前記(a-ii)において、脱クロトンアルデヒド塔の留出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)は、好ましくは0.95以下、より好ましくは0.80以下、さらに好ましくは0.70以下、特に好ましくは0.60以下(例えば0.50以下、とりわけ0.30以下、中でも0.20以下)である。前記(a-iii)において、脱クロトンアルデヒド塔の缶出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)は、好ましくは1.2以上、より好ましくは1.5以上、さらに好ましくは2.0以上、特に好ましくは3.0以上(例えば4.0以上、とりわけ5.0以上)、なかんずく10以上(例えば20以上)である。上記(a-i)~(a-iii)の少なくとも1つの条件を満足するように、脱クロトンアルデヒド等を操作すると、クロトンアルデヒドは塔底に濃縮され、アルカン等の他の高沸点不純物及び酢酸とともに缶出液として系外に排出できる。
なお、本明細書において、蒸留塔における「還流比」とは、「還流量/留出量」を意味する。ここで、「還流量」とは、蒸留塔の塔頂液のうちの当該蒸留塔に戻される液体の量をいい、「留出量」とは、蒸留塔の塔頂液のうち当該蒸留塔に戻されず蒸留塔外に排出される液体の量をいう。
また、本発明では、水、酢酸(AC)、ヨウ化メチル(MeI)及びアセトアルデヒド(AD)を少なくとも含むプロセス流を水相と有機相とに分液させる分液工程(例えばデカンタ4での分液)における水相中のアセトアルデヒド濃度、有機相中のアセトアルデヒド濃度、水相中の酢酸メチル濃度、有機相中の酢酸メチル濃度、水相中の酢酸メチル濃度と有機相中の酢酸メチル濃度の和、分液時の温度(液温)、下記式で求められるアセトアルデヒド分配率(AD分配率)、又は下記式で求められる酢酸メチル分配率(MA分配率)に基づいて、アセトアルデヒド分離除去工程に供すべき相が定められる。別の側面では、有機相をアセトアルデヒド分離除去工程に供する際の好適な分液条件、及び水相をアセトアルデヒド分離除去工程に供する際の好適な分液条件が示される。
AD分配率={水相のAD濃度(質量%)}/{有機相のAD濃度(質量%)}
MA分配率={水相のMA濃度(質量%)}/{有機相のMA濃度(質量%)}
MA分配率={水相のMA濃度(質量%)}/{有機相のMA濃度(質量%)}
前記本発明の酢酸の製造方法では、前記分液工程が下記(b-i)~(b-v)のうち少なくとも1つの条件を満たしており、前記水相の少なくとも一部が前記アセトアルデヒド分離除去工程にて処理される。
(b-i)水相中のアセトアルデヒド濃度が28.1質量%以下、及び/又は、有機相中のアセトアルデヒド濃度が24.8質量%以下である
(b-ii)分液時の温度が70℃以下である
(b-iii)水相中の酢酸メチル濃度が12.0質量%以下、及び/又は、有機相中の酢酸メチル濃度が47.6質量%以下、及び/又は、水相中の酢酸メチル濃度と有機相中の酢酸メチル濃度の和が59.6質量%以下である
(b-iv)アセトアルデヒド分配率[{水相のアセトアルデヒド濃度(質量%)}/{有機相のアセトアルデヒド濃度(質量%)}]が1.1以上である
(b-v)酢酸メチル分配率[{水相の酢酸メチル濃度(質量%)}/{有機相の酢酸メチル濃度(質量%)}]が0.25以上である
(b-i)水相中のアセトアルデヒド濃度が28.1質量%以下、及び/又は、有機相中のアセトアルデヒド濃度が24.8質量%以下である
(b-ii)分液時の温度が70℃以下である
(b-iii)水相中の酢酸メチル濃度が12.0質量%以下、及び/又は、有機相中の酢酸メチル濃度が47.6質量%以下、及び/又は、水相中の酢酸メチル濃度と有機相中の酢酸メチル濃度の和が59.6質量%以下である
(b-iv)アセトアルデヒド分配率[{水相のアセトアルデヒド濃度(質量%)}/{有機相のアセトアルデヒド濃度(質量%)}]が1.1以上である
(b-v)酢酸メチル分配率[{水相の酢酸メチル濃度(質量%)}/{有機相の酢酸メチル濃度(質量%)}]が0.25以上である
前記(b-i)において、水相中のアセトアルデヒド濃度は、例えば0.045~28.1質量%、好ましくは0.098~10質量%、さらに好ましくは0.098~3.0質量%、特に好ましくは0.098~1.0質量%(例えば0.15~0.9質量%)である。また、有機相中のアセトアルデヒド濃度は、例えば0.013~24.8質量%、好ましくは0.030~2.0質量%、さらに好ましくは0.030~0.50質量%、特に好ましくは0.030~0.24質量%である。前記(b-i)においては、水相中のアセトアルデヒド濃度が28.1質量%以下、且つ、有機相中のアセトアルデヒド濃度が24.8質量%以下であることが好ましい。前記(b-i)において、分液工程供給液(例えばデカンタ4に供給される液)中のアセトアルデヒド濃度は、例えば26.0質量%以下(例えば0.026~26.0質量%)、好ましくは0.057~10質量%、さらに好ましくは0.057~3.0質量%、特に好ましくは0.057~1.0質量%(例えば0.057~0.42質量%)である。なお、水相中のアセトアルデヒド濃度が28.1質量%を超える場合や、有機相中のアセトアルデヒド濃度が24.8質量%を超える場合は、AD分配率が小さくなる(例えば1.1を下回る)ので、アセトアルデヒドの回収量と、耐食性の極めて高い高価な装置を使用する必要性とを比較考量すると、水相をアセトアルデヒド分離除去工程で処理することのメリットは極めて小さい。
前記(b-ii)において、分液時の温度(液温)は、例えば-5℃~70℃、好ましくは-5℃~60℃、より好ましくは-5℃~51℃(例えば、-5℃~45℃)、さらに好ましくは-5℃~41℃(例えば-5℃~31℃)である。なお、分液時の温度(液温)が70℃を超える場合は、AD分配率が非常に小さくなるので、水相をアセトアルデヒド分離除去工程で処理することのメリットは極めて小さい。
前記(b-iii)において、水相中の酢酸メチル濃度は、例えば1.2~12.0質量%、好ましくは2.0~12.0質量%、さらに好ましくは5.0~12.0質量%(例えば6.0~12.0質量%)である。また、有機相中の酢酸メチル濃度は、例えば2.2~47.6質量%、好ましくは5.0~42質量%、さらに好ましくは8.0~35質量%(例えば10.0~30質量%)である。前記(b-iii)においては、水相中の酢酸メチル濃度が12.0質量%以下、且つ、有機相中の酢酸メチル濃度が47.6質量%以下であることが好ましい。また、水相中の酢酸メチル濃度(質量%)と有機相中の酢酸メチル濃度(質量%)の和は、例えば、59.6質量%以下(例えば4.2~59.6質量%)、好ましくは6.0~54質量%、より好ましくは8.0~54質量%、さらに好ましくは10.0~54質量%、特に好ましくは14.0~47質量%(例えば16.0~42質量%))である。前記(b-iii)において、分液工程供給液(例えばデカンタ4に供給される液)中の酢酸メチル濃度は、例えば38.2質量%以下(例えば2.0~38.2質量%)、好ましくは5.0~31質量%、より好ましくは8.0~25質量%、さらに好ましくは10.0~25質量%)である。なお、水相中の酢酸メチル濃度が12.0質量%を超える場合や、有機相中の酢酸メチル濃度が47.6質量%を超える場合や、水相中の酢酸メチル濃度(質量%)と有機相中の酢酸メチル濃度(質量%)の和が59.6質量%を超える場合は、AD分配率が例えば1.1を下回るので、前記と同様の理由から、水相をアセトアルデヒド分離除去工程で処理することのメリットは極めて小さい。
前記(b-iv)において、AD分配率は、例えば1.1~8.0、好ましくは1.5~6.0、さらに好ましくは1.9~5.0である。AD分配率が1.1未満の場合は、水相中のアセトアルデヒド濃度が低いので、エネルギーが多く必要で装置も腐食しやすい水相の脱アセトアルデヒド処理を行うことは工業的に極めて不利であるが、AD分配率が1.1以上(好ましくは1.5以上、さらに好ましくは1.9以上)であれば、耐腐食性の高い装置を使用してもなおアセトアルデヒドの分離除去効率向上のメリットが大きい。
前記(b-v)において、MA分配率は、0.25以上(例えば0.25~0.70)、好ましくは0.26以上(例えば0.26~0.65)、さらに好ましくは0.28以上(例えば0.28~0.60)である。上述したように、水相と有機相への酢酸メチル(MA)の分配割合は、温度、組成(水、ヨウ化メチルのほか、酢酸などの成分も含む)により変化し、これもアセトアルデヒド分配率制御の指針となる。
本発明の酢酸の製造方法では、前記分液工程が(b-i)~(b-v)のうち少なくとも1つの条件を満たせばよいが、上記条件のうち2以上を同時に満たしてもよい。
また、前記本発明の酢酸の製造方法では、前記分液工程が下記(b´-i)~(b´-v)のうち少なくとも1つの条件を満たしており、前記有機相の少なくとも一部が前記アセトアルデヒド分離除去工程にて処理される。
(b´-i)水相中のアセトアルデヒド濃度が0.045質量%以上、及び/又は、有機相中のアセトアルデヒド濃度が0.013質量%以上である
(b´-ii)分液時の温度が-5℃以上である
(b´-iii)水相中の酢酸メチル濃度が1.2質量%以上、及び/又は、有機相中の酢酸メチル濃度が2.2質量%以上、及び/又は、水相中の酢酸メチル濃度と有機相中の酢酸メチル濃度の和が3.4質量%以上である
(b´-iv)アセトアルデヒド分配率[{水相のアセトアルデヒド濃度(質量%)}/{有機相のアセトアルデヒド濃度(質量%)}]が4.1以下である
(b´-v)酢酸メチル分配率[{水相の酢酸メチル濃度(質量%)}/{有機相の酢酸メチル濃度(質量%)}]が0.8以下である
(b´-i)水相中のアセトアルデヒド濃度が0.045質量%以上、及び/又は、有機相中のアセトアルデヒド濃度が0.013質量%以上である
(b´-ii)分液時の温度が-5℃以上である
(b´-iii)水相中の酢酸メチル濃度が1.2質量%以上、及び/又は、有機相中の酢酸メチル濃度が2.2質量%以上、及び/又は、水相中の酢酸メチル濃度と有機相中の酢酸メチル濃度の和が3.4質量%以上である
(b´-iv)アセトアルデヒド分配率[{水相のアセトアルデヒド濃度(質量%)}/{有機相のアセトアルデヒド濃度(質量%)}]が4.1以下である
(b´-v)酢酸メチル分配率[{水相の酢酸メチル濃度(質量%)}/{有機相の酢酸メチル濃度(質量%)}]が0.8以下である
前記(b´-i)において、水相中のアセトアルデヒド濃度は、例えば0.045~35質量%、好ましくは0.15~10質量%、さらに好ましくは0.2~2.0質量%である。また、有機相中のアセトアルデヒド濃度は、例えば0.013~30質量%、好ましくは0.05~5.0質量%、さらに好ましくは0.1~1.0質量%である。前記(b´-i)においては、水相中のアセトアルデヒド濃度が0.045質量%以上、且つ、有機相中のアセトアルデヒド濃度が0.013質量%以上であることが好ましい。前記(b´-i)において、分液工程供給液中(例えばデカンタ4に供給される液)のアセトアルデヒド濃度は、例えば0.026質量%以上(例えば0.026~32質量%)、好ましくは0.10~8.0質量%、さらに好ましくは0.15~1.8質量%である。なお、水相中のアセトアルデヒド濃度が0.045質量%未満の場合や、有機相中のアセトアルデヒド濃度が0.013質量%未満の場合は、AD分配率が大きな値になるため、有機相をアセトアルデヒド分離除去工程で処理することのメリットは極めて小さい。
前記(b´-ii)において、分液時の温度(液温)は、-5℃以上(例えば-5℃~90℃)、好ましくは0℃以上(例えば0~90℃)、より好ましくは10℃以上(例えば10~90℃)、さらに好ましくは20℃以上(例えば25~90℃)、30℃より高い温度(例えば30℃超90℃以下))、35℃より高い温度(例えば35℃超90℃以下)、40℃より高い温度(例えば40℃超90℃以下)、特に好ましくは70℃より高い温度(例えば70℃超90℃以下)である。なお、分液時の温度(液温)が-5℃未満の場合は、AD分配率が例えば4.3を超えるので、有機相をアセトアルデヒド分離除去工程で処理することのメリットは極めて小さい。
前記(b´-iii)において、水相中の酢酸メチル濃度は、例えば1.2~20質量%、好ましくは2.5~18質量%、より好ましくは4.0~15質量%、さらに好ましくは6.0~13質量%、特に好ましくは7.0~12質量%である。また、有機相中の酢酸メチル濃度は、例えば2.2~60質量%、好ましくは5.8~48質量%、より好ましくは8.0~40質量%、さらに好ましくは10.0~30質量%、特に好ましくは11.0~25質量%である。前記(b´-iii)においては、水相中の酢酸メチル濃度が1.2質量%以上、且つ、有機相中の酢酸メチル濃度が2.2質量%以上であることが好ましい。また、水相中の酢酸メチル濃度(質量%)と有機相中の酢酸メチル濃度(質量%)の和は、例えば3.4~75質量%、好ましくは8.3~60質量%(例えば10~40質量%)、より好ましくは15.0~50質量%、さらに好ましくは25~53質量%である。前記(b´-iii)の場合、分液工程供給液(例えばデカンタ4に供給される液)中の酢酸メチル濃度は、例えば2.0~50質量%、好ましくは5.0~38質量%、より好ましくは8.0~35質量%、さらに好ましくは10.0~32質量%である。なお、水相中の酢酸メチル濃度が1.2質量%未満の場合や、有機相中の酢酸メチル濃度が2.2質量%未満の場合や、水相中の酢酸メチル濃度(質量%)と有機相中の酢酸メチル濃度(質量%)の和が3.4質量%未満の場合は、AD分配率が大きな値になるため、有機相をアセトアルデヒド分離除去工程で処理することのメリットは小さい。
前記(b´-iv)において、AD分配率は、4.1以下(例えば0.5~4.1)、好ましくは3.35以下(例えば0.6~3.35)、より好ましくは3以下(0.7~3)、さらに好ましくは2.8以下(例えば0.8~2.8)、特に好ましくは2.5以下(例えば0.8~2.5)、とりわけ2.3以下(例えば0.9~2.3)、なかんずく2.0以下(例えば1.0~2.0)である。AD分配率が4.1を超える場合は、有機相中のアセトアルデヒド濃度が極めて低いので、有機相をアセトアルデヒド分離除去工程で処理することのメリットは極めて小さい。有機相の脱アセトアルデヒド処理に最も好適なAD分配率(1.1未満)にする方法としては、例えば、水相中のアセトアルデヒド濃度を28.1質量%超にする、有機相中のアセトアルデヒド濃度を24.8質量%超にする、分液工程供給液中のアセトアルデヒド濃度を26.0質量%超にする、分液時の温度を70℃超にする、水相中の酢酸メチル濃度を12.0質量%超にする、有機相中の酢酸メチル濃度を47.6質量%超にする、分液工程供給液中の酢酸メチル濃度を38.2質量%超にするなどがある。
前記(b´-v)において、MA分配率は、0.8以下(例えば0.15~0.80)、好ましくは0.7以下(例えば0.20~0.70)、より好ましくは0.6以下(例えば、0.20~0.60)、さらに好ましくは0.44以下(例えば0.20~0.44)、特に好ましくは0.25未満(例えば0.20以上0.25未満)である。水相と有機相への酢酸メチル(MA)の分配割合は、温度、組成(水、ヨウ化メチルのほか、酢酸などの成分も含む)により変化し、これもアセトアルデヒド分配率制御の指針となる。
本発明の酢酸の製造方法では、前記分液工程が(b´-i)~(b´-v)のうち少なくとも1つの条件を満たせばよいが、上記条件のうち2以上を同時に満たしてもよい。
本発明において、第2酢酸流中のクロトンアルデヒド濃度は、例えば2.0質量ppm以下、好ましくは1.8質量ppm以下、より好ましくは1.5質量ppm以下、さらに好ましくは1.2質量ppm以下、特に好ましくは0.7質量ppm以下(例えば0.5質量ppm以下)である。
好ましい態様では、第2酢酸流におけるクロトンアルデヒド濃度は、例えば0.98質量ppm以下、好ましくは0.80質量ppm以下、より好ましくは0.50質量ppm以下、さらに好ましくは0.30質量ppm以下である。第2酢酸流におけるクロトンアルデヒド濃度を0.98質量ppm以下とすることにより、第2酢酸流中のクロトンアルデヒド濃度を著しく低減できるとともに、第2酢酸流の過マンガン酸カリウム試験値を大幅に向上できる。第2酢酸流におけるクロトンアルデヒド濃度の下限値は0質量ppmであってもよいが、例えば0.01質量ppm(或いは0.10質量ppm)であってもよい。
第2酢酸流における2-エチルクロトンアルデヒド濃度は、例えば3.0質量ppm以下、好ましくは2.0質量ppm以下、より好ましくは1.0質量ppm以下、さらに好ましくは0.8質量ppm以下(例えば0.5質量ppm以下)である。
好ましい態様では、第2酢酸流における2-エチルクロトンアルデヒド濃度は、例えば1.00質量ppm以下、好ましくは0.50質量ppm以下、より好ましくは0.30質量ppm以下、さらに好ましくは0.20質量ppm以下である。第2酢酸流における2-エチルクロトンアルデヒド濃度を1.0質量ppm以下とすることにより、第2酢酸流の過マンガン酸カリウム試験値をより向上できる。第2酢酸流における2-エチルクロトンアルデヒド濃度の下限値は、例えば0質量ppm、或いは0.01質量ppm(例えば0.10質量ppm)であってもよい。
第2酢酸流におけるクロトンアルデヒド濃度CCR(質量ppm)と2-エチルクロトンアルデヒド濃度CECR(質量ppm)との比(CCR/CECR)は、例えば50以下、好ましくは35以下、より好ましくは25以下、さらに好ましくは20以下、特に好ましくは15以下である。上記比の下限は、例えば0.5、0.3、0.1、0.05、0.01であってもよい。本発明では、第2酢酸流におけるクロトンアルデヒド濃度と2-エチルクロトンアルデヒド濃度を同時に制御して、クロトンアルデヒド濃度CCR(質量ppm)と2-エチルクロトンアルデヒド濃度CECR(質量ppm)との比(CCR/CECR)を調節してもよい。すなわち前記分離工程において、酢酸との沸点差を利用して、脱水塔(第2蒸留塔)の塔頂凝縮液にクロトンアルデヒドを濃縮させて、側流又は缶出流として得られる第2酢酸流中のクロトンアルデヒド濃度を低減させるとともに、2-エチルクロトンアルデヒド濃度を調節してもよい。これにより第2酢酸流におけるクロトンアルデヒド濃度と2-エチルクロトンアルデヒド濃度を同時に制御することが可能となる。
第2酢酸流における酢酸ブチル濃度は、例えば15質量ppm以下、好ましくは12質量ppm以下、より好ましくは10質量ppm以下、さらに好ましくは8質量ppm以下である。
好ましい態様では、第2酢酸流における酢酸ブチル濃度は、例えば15質量ppm以下、好ましくは10質量ppm以下、より好ましくは8質量ppm以下、特に好ましくは5質量ppm以下(例えば3質量ppm以下)である。第2酢酸流における酢酸ブチル濃度を15質量ppm以下とすることにより、第2酢酸流の純度を向上できる。第2酢酸流における酢酸ブチル濃度の下限値は、例えば0質量ppm、或いは0.1質量ppm(例えば0.3質量ppm又は1.0質量ppm)であってもよい。
第2酢酸流におけるクロトンアルデヒド濃度CCR(質量ppm)と酢酸ブチル濃度CBA(質量ppm)との比(CCR/CBA)は、例えば2.0以下、好ましくは1.5以下、より好ましくは1.0以下、さらに好ましくは0.6以下である。上記比の下限は、例えば0.1、0.05、0.02、0.01、0.001であってもよい。
第2酢酸流の過マンガン酸カリウム試験値は、50分を超えることが好ましく、より好ましくは60分以上、さらに好ましくは100分以上、特に好ましくは120分以上(例えば180分以上、とりわけ240分以上、中でも360分以上)である。なお過マンガン酸カリウム試験値は、製品酢酸の品質を管理の指標の1つとして、日本工業規格(JIS)にも規定されている。このように、過マンガン酸カリウム試験値は、製品酢酸の品質管理に工業的にも汎用されており、簡便に製品酢酸の純度を確認することができる好ましい指標であると言える。過マンガン酸カリウム試験は、JIS K 1351(1993年度版)の目視比色法の手順に準じて測定することができる。
前記本発明の酢酸の製造方法は、前記第1オーバーヘッド流を凝縮させた水相及び/又は有機相の少なくとも一部を蒸留してアセトアルデヒドを分離除去するためのアセトアルデヒド分離除去工程を有する。前記水相及び/又は前記有機相の少なくとも一部からアセトアルデヒドを分離除去した後の残液の少なくとも一部を反応槽にリサイクルしてもよい。アセトアルデヒド分離除去工程を設けることにより、反応系で生成したアセトアルデヒドを効率よく分離除去できる。また、アセトアルデヒドを分離除去した後の残液を反応槽にリサイクルすることにより、有用なヨウ化メチル等を有効に利用できる。
第1蒸留塔に供給する前記蒸気流におけるクロトンアルデヒド濃度は、例えば0~5.0質量ppm(例えば0.01~4.0質量ppm)、好ましくは0.1~3.0質量ppm、さらに好ましくは0.2~2.0質量ppmである。前記蒸気流の2-エチルクロトンアルデヒド濃度は、例えば0~3.0質量ppm(例えば0.01~2.5質量ppm)、好ましくは0.02~2.0質量ppm、さらに好ましくは0.03~0.8質量ppmである。前記蒸気流の酢酸ブチル濃度は、例えば0.1~13.0質量ppm、好ましくは0.2~12.0質量ppm、さらに好ましくは0.3~9.0質量ppmである。
好ましい態様において、第1酢酸流におけるクロトンアルデヒド濃度は、例えば1.3質量ppm以下、好ましくは1.0質量ppm以下、より好ましくは0.85質量ppm以下、特に好ましくは0.5質量ppm以下(例えば0.25質量ppm以下)である。第1酢酸流におけるクロトンアルデヒド濃度を1.3質量ppm以下とすることにより、第2酢酸流中のクロトンアルデヒド濃度を著しく低減できるとともに、第2酢酸流の過マンガン酸カリウム試験値を大幅に向上できる。第1酢酸流におけるクロトンアルデヒド濃度の下限値は、0質量ppmであってもよいが、例えば0.01質量ppm(或いは0.10質量ppm)であってもよい。
本発明において、第1酢酸流における2-エチルクロトンアルデヒド濃度は、例えば3.0質量ppm以下、好ましくは2.0質量ppm以下、より好ましくは1.0質量ppm以下、さらに好ましくは0.8質量ppm以下(例えば0.5質量ppm以下)である。
好ましい態様において、第1酢酸流における2-エチルクロトンアルデヒド濃度は、例えば1.0質量ppm以下、好ましくは0.50質量ppm以下である。第1酢酸流における2-エチルクロトンアルデヒド濃度を1.0質量ppm以下とすることにより、第2酢酸流の過マンガン酸カリウム試験値をより向上できる。第1酢酸流における2-エチルクロトンアルデヒド濃度の下限値は、例えば0質量ppm、或いは0.01質量ppm(又は0.10質量ppm)であってもよい。
第1酢酸流におけるクロトンアルデヒド濃度CCR(質量ppm)と2-エチルクロトンアルデヒド濃度CECR(質量ppm)との比(CCR/CECR)は、例えば50以下、好ましくは35以下、より好ましくは25以下、さらに好ましくは20以下、特に好ましくは15以下である。上記比の下限は、例えば0.5、0.3、0.1、0.05、0.01であってもよい。本発明では、第1酢酸流におけるクロトンアルデヒド濃度と2-エチルクロトンアルデヒド濃度を同時に制御して、クロトンアルデヒド濃度CCR(質量ppm)と2-エチルクロトンアルデヒド濃度CECR(質量ppm)との比(CCR/CECR)を調節してもよい。すなわち前記分離工程において、酢酸との沸点差を利用して効率的に分離することにより、脱低沸塔(第1蒸留塔)の塔頂凝縮液にクロトンアルデヒドを濃縮させ、側流又は缶出流として得られる第1酢酸流中のクロトンアルデヒド濃度を低減するとともに、2-エチルクロトンアルデヒド濃度を調節してもよい。これにより第1酢酸流におけるクロトンアルデヒド濃度と2-エチルクロトンアルデヒド濃度を同時に制御することが可能となる。
第1酢酸流における酢酸ブチル濃度は、例えば15質量ppm以下、好ましくは12質量ppm以下、より好ましくは10質量ppm以下、さらに好ましくは8質量ppm以下である。
好ましい態様において、第1酢酸流における酢酸ブチル濃度は、例えば15質量ppm以下、好ましくは10質量ppm以下、より好ましくは8質量ppm以下、特に好ましくは5質量ppm以下(例えば3質量ppm以下)である。第1酢酸流における酢酸ブチル濃度を15質量ppm以下とすることにより、第2酢酸流の純度を向上できる。第2酢酸流における酢酸ブチル濃度の下限値は、例えば0質量ppm、或いは0.1質量ppm(例えば0.3質量ppm又は1.0質量ppm)であってもよい。
第1酢酸流におけるクロトンアルデヒド濃度CCR(質量ppm)と酢酸ブチル濃度CBA(質量ppm)との比(CCR/CBA)は、例えば2.0以下、好ましくは1.5以下、より好ましくは1.0以下、さらに好ましくは0.6以下である。上記比の下限は、例えば0.1、0.05、0.02、0.01、0.001であってもよい
脱クロトンアルデヒド工程における蒸留塔仕込液中のクロトンアルデヒド濃度は、通常0.01~50質量ppm(例えば0.1~50質量ppm)、好ましくは0.3~30質量ppm、より好ましくは0.5~10質量ppm、さらに好ましくは0.8~7.0質量ppm(例えば1.0~5.0質量ppm)である。
脱クロトンアルデヒド工程において、前記(a-i)~(a-iii)の全ての条件を満たすように蒸留塔を操作することが好ましい。前記(a-i)~(a-iii)の全ての条件を満たすように脱クロトンアルデヒド塔を操作することにより、クロトンアルデヒドの除去効率を著しく向上でき、製品酢酸の過マンガン酸カリウム試験値を著しく高めることができる。
また、脱クロトンアルデヒド工程において、蒸留をバッチ処理で行ってもよい。前記水相及び/又は有機相にクロトンアルデヒドがある程度蓄積した時点でバッチ式で蒸留処理を行えば、エネルギーコストを節減できる。
前記脱クロトンアルデヒド工程における蒸留塔の処理量は、第1蒸留塔に供給する蒸気流の量100質量部に対して、例えば0.0001~50質量部、好ましくは0.001~30質量部(例えば0.01~10質量部、特に0.1~5質量部)である。
前記本発明の酢酸の製造方法においては、さらに、プロセスからのオフガスを、少なくとも酢酸を含む吸収溶媒で吸収処理して、一酸化炭素に富むストリームと酢酸に富むストリームとに分離するスクラバー工程を有していてもよい。
以下、本発明の一実施形態について説明する。図1は、本発明の一実施形態を示す酢酸製造フロー図(メタノール法カルボニル化プロセス)の一例である。この酢酸製造フローに係る酢酸製造装置は、反応槽1と、蒸発槽2と、蒸留塔3と、デカンタ4と、蒸留塔5と、蒸留塔6と、イオン交換樹脂塔7と、スクラバーシステム8と、アセトアルデヒド分離除去システム9、蒸留塔10、コンデンサ1a,2a,3a,5a,6a,10aと、熱交換器2bと、リボイラー3b,5b,6b,10bと、ライン11~56、58~63、ポンプ57とを備え、酢酸を連続的に製造可能に構成されている。本実施形態の酢酸の製造方法では、反応槽1、蒸発槽2、蒸留塔3、蒸留塔5、蒸留塔6、蒸留塔10、及びイオン交換樹脂塔7において、それぞれ、反応工程、蒸発工程(フラッシュ工程)、第1蒸留工程、第2蒸留工程、第3蒸留工程、脱クロトンアルデヒド工程、及び吸着除去工程が行われる。第1蒸留工程は脱低沸工程、第2蒸留工程は脱水工程、第3蒸留工程は脱高沸工程ともいう。また、デカンタ4、及びアセトアルデヒド分離除去システム9において、それぞれ、分液工程、及びアセトアルデヒド分離除去(脱アセトアルデヒド処理)工程が行われる。なお、本発明において、工程は上記に限らず、例えば、蒸留塔5、蒸留塔6、イオン交換樹脂塔7の設備は付帯しない場合がある。また、後述するように、イオン交換樹脂塔7の下流に製品塔を設けてもよい。
反応槽1は、反応工程を行うためのユニットである。この反応工程は、下記の化学式(1)で示される反応(メタノールのカルボニル化反応)によって酢酸を連続的に生成させるための工程である。酢酸製造装置の定常稼働状態において、反応槽1内には、例えば撹拌機によって撹拌されている反応混合物が存在する。反応混合物は、原料であるメタノール及び一酸化炭素と、金属触媒と、助触媒と、水と、製造目的である酢酸と、各種の副生成物とを含み、液相と気相とが平衡状態にある。
CH3OH + CO → CH3COOH (1)
CH3OH + CO → CH3COOH (1)
反応混合物中の原料は、液体状のメタノール及び気体状の一酸化炭素である。メタノールは、メタノール貯留部(図示略)からライン11を通じて反応槽1に所定の流量で連続的に供給される。
一酸化炭素は、一酸化炭素貯留部(図示略)からライン12を通じて反応槽1に所定の流量で連続的に供給される。一酸化炭素は必ずしも純粋な一酸化炭素でなくてもよく、例えば窒素、水素、二酸化炭素、酸素等の他のガスが少量(例えば5質量%以下、好ましくは1質量%以下)含まれていてもよい。
反応混合物中の金属触媒は、メタノールのカルボニル化反応を促進するためのものであり、例えばロジウム触媒やイリジウム触媒を使用することができる。ロジウム触媒としては、例えば、化学式[Rh(CO)2I2]-で表されるロジウム錯体を使用することができる。イリジウム触媒としては、例えば化学式[Ir(CO)2I2]-で表されるイリジウム錯体を使用することができる。金属触媒としては金属錯体触媒が好ましい。反応混合物中の触媒の濃度(金属換算)は、反応混合物の液相全体に対して、例えば100~10000質量ppm、好ましくは200~5000質量ppm、さらに好ましくは400~3000質量ppmである。
助触媒は、上述の触媒の作用を補助するためのヨウ化物であり、例えば、ヨウ化メチルやイオン性ヨウ化物が使用される。ヨウ化メチルは、上述の触媒の触媒作用を促進する作用を示し得る。ヨウ化メチルの濃度は、反応混合物の液相全体に対して例えば1~20質量%である。イオン性ヨウ化物は、反応液中でヨウ化物イオンを生じさせるヨウ化物(特に、イオン性金属ヨウ化物)であり、上述の触媒を安定化させる作用や、副反応を抑制する作用を示し得る。イオン性ヨウ化物としては、例えば、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウムなどのアルカリ金属ヨウ化物などが挙げられる。反応混合物中のイオン性ヨウ化物の濃度は、反応混合物の液相全体に対して、例えば1~25質量%であり、好ましくは5~20質量%である。また、例えばイリジウム触媒などを用いる場合は、助触媒として、ルテニウム化合物やオスミウム化合物を用いることもできる。これらの化合物の使用量は総和で、例えばイリジウム1モル(金属換算)に対して、0.1~30モル(金属換算)、好ましくは0.5~15モル(金属換算)である。
反応混合物中の水は、メタノールのカルボニル化反応の反応機構上、酢酸を生じさせるのに必要な成分であり、また、反応系の水溶性成分の可溶化のためにも必要な成分である。反応混合物中の水の濃度は、反応混合物の液相全体に対して、例えば0.1~15質量%であり、好ましくは0.8~10質量%、さらに好ましくは1~6質量%、特に好ましくは1.5~4質量%である。水濃度は、酢酸の精製過程での水の除去に要するエネルギーを抑制して酢酸製造の効率化を進めるうえでは15質量%以下が好ましい。水濃度を制御するために、反応槽1に対して所定流量の水を連続的に供給してもよい。
反応混合物中の酢酸は、酢酸製造装置の稼働前に反応槽1内に予め仕込まれた酢酸、及び、メタノールのカルボニル化反応の主生成物として生じる酢酸を含む。このような酢酸は、反応系では溶媒として機能し得る。反応混合物中の酢酸の濃度は、反応混合物の液相全体に対して、例えば50~90質量%であり、好ましくは60~80質量%である。
反応混合物に含まれる主な副生成物としては、例えば酢酸メチルが挙げられる。この酢酸メチルは、酢酸とメタノールとの反応によって生じ得る。反応混合物中の酢酸メチルの濃度は、反応混合物の液相全体に対して、例えば0.1~30質量%であり、好ましくは1~10質量%である。反応混合物に含まれる副生成物としては、ヨウ化水素も挙げられる。このヨウ化水素は、上述のような触媒や助触媒が使用される場合、メタノールのカルボニル化反応の反応機構上、不可避的に生じることとなる。反応混合物中のヨウ化水素の濃度は、反応混合物の液相全体に対して、例えば0.01~2質量%である。
また、副生成物としては、例えば、水素、メタン、二酸化炭素、アセトアルデヒド、クロトンアルデヒド、2-エチルクロトンアルデヒド、酢酸ブチル、ジメチルエーテル、アルカン類、ギ酸及びプロピオン酸、並びに、ヨウ化エチル、ヨウ化プロピル、ヨウ化ブチル、ヨウ化ヘキシル及びヨウ化デシルなどのヨウ化アルキル等が挙げられる。
反応混合液中のアセトアルデヒド濃度は、例えば500質量ppm以下、好ましくは450質量ppm以下、より好ましくは400質量ppm以下、さらに好ましくは350質量ppm以下、特に好ましくは300質量ppm以下(例えば250質量ppm以下)である。反応混合液中のアセトアルデヒド濃度の下限は、例えば1質量ppm(或いは10質量ppm)である。
反応混合液中のクロトンアルデヒド濃度は、例えば5質量ppm以下、好ましくは3質量ppm以下、さらに好ましくは2質量ppm以下である。反応混合液中のクロトンアルデヒド濃度の下限は0ppmであるが、例えば0.1質量ppm(或いは0.2質量ppm)であってもよい。反応混合液中の2-エチルクロトンアルデヒド濃度は、例えば5質量ppm以下、好ましくは3質量ppm以下、さらに好ましくは2質量ppm以下である。反応混合液中の2-エチルクロトンアルデヒド濃度の下限は0ppmであるが、例えば0.1質量ppm或いは0.2質量ppmであってもよい。
本発明では前記のように、製品酢酸の過マンガン酸カリウム試験値を向上させる目的を達成するため、脱低沸塔から抜き取られる第1酢酸流中のクロトンアルデヒド濃度を特定値以下に制御したり、脱水塔の還流比を特定値以上に制御する。そして、第1酢酸流中のクロトンアルデヒド濃度を低下させるために、例えば、反応槽の水素分圧を高くしたり、脱低沸塔における還流比を大きくする。脱低沸塔や脱水塔の還流比を大きくすると、各蒸留塔の塔頂にクロトンアルデヒドが濃縮される。この濃縮されたクロトンアルデヒドを反応槽にリサイクルすると、クロトンアルデヒドは水素添加されてブチルアルコールとなり、さらにこのブチルアルコールは酢酸と反応して酢酸ブチルに転化され、過マンガン酸カリウム試験に対して無害化される。また、反応槽の水素分圧を高くすると、反応槽中のクロトンアルデヒドは水素添加されやすくなり、上記と同様、ブチルアルコールを経て無害の酢酸ブチルに転化される。従って、本発明では、反応混合液中の酢酸ブチル濃度は上昇する傾向となる。しかしながら、酢酸ブチル濃度の上昇は製品酢酸の純度の低下をもたらす場合がある。このため、反応混合液中の酢酸ブチル濃度は、例えば0.1~15質量ppm(特に1~12質量ppm、とりわけ2~9質量ppm)に制御することが好ましい。
本発明では前記のように、製品酢酸の過マンガン酸カリウム試験値を向上させるため、脱低沸塔の還流比を特定値以上に制御する。脱低沸塔の還流比を大きくすると、塔頂にクロトンアルデヒドが濃縮される。この濃縮されたクロトンアルデヒドを反応槽にリサイクルすると、クロトンアルデヒドは水素添加されてブチルアルコールとなり、さらにこのブチルアルコールは酢酸と反応して酢酸ブチルに転化され、過マンガン酸カリウム試験に対して無害化される。従って、本発明では、反応混合液中の酢酸ブチル濃度は上昇する傾向となる。しかしながら、酢酸ブチル濃度の上昇は製品酢酸の純度の低下をもたらす場合がある。このため、反応混合液中の酢酸ブチル濃度は、例えば0.1~15質量ppm(特に1~12質量ppm、とりわけ2~9質量ppm)に制御することが好ましい。
また、反応混合物には、装置の腐食により生じる鉄、ニッケル、クロム、マンガン、モリブデンなどの金属[腐食金属(腐食性金属ともいう)]、及びその他の金属としてコバルトや亜鉛、銅などが含まれ得る。上記腐食金属とその他の金属とを併せて「腐食金属等」と称する場合がある。
以上のような反応混合物が存在する反応槽1内において、反応温度は例えば150~250℃に設定され、全体圧力としての反応圧力は例えば2.0~3.5MPa(絶対圧)に設定され、一酸化炭素分圧は、例えば0.4~1.8MPa(絶対圧)、好ましくは0.6~1.5MPa(絶対圧)に設定される。
好ましい態様では、以上のような反応混合物が存在する反応槽1内において、反応温度は例えば150~250℃に設定され、全体圧力としての反応圧力は例えば2.0~3.5MPa(絶対圧)に設定され、一酸化炭素分圧は、例えば0.4~1.8MPa(絶対圧)、好ましくは0.6~1.6MPa(絶対圧)、さらに好ましくは0.9~1.4MPa(絶対圧)に設定される。
装置稼働時の反応槽1内の気相部の蒸気には、例えば、一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、ギ酸及びプロピオン酸などが含まれる。この蒸気は、反応槽1内からライン13を通じて抜き取ることが可能である。蒸気の抜き取り量の調節によって、反応槽1内の圧力を制御することが可能であり、例えば、反応槽1内の圧力は一定に維持される。反応槽1内から抜き取られた蒸気は、コンデンサ1aへと導入される。
好ましい態様では、装置稼働時の反応槽1内の気相部の蒸気には、例えば、一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、ギ酸及びプロピオン酸などが含まれる。水素は原料として用いられる一酸化炭素中に含まれているほか、反応槽1中で起きるシフト反応(CO + H2O → H2 + CO2)により生成する。反応槽1における水素分圧は、例えば0.001MPa(絶対圧)以上[例えば0.005MPa以上]、好ましくは0.01MPa(絶対圧)以上[例えば0.015MPa以上]、より好ましくは0.02MPa(絶対圧)以上、さらに好ましくは0.04MPa(絶対圧)以上、特に好ましくは0.06MPa(絶対圧)以上[例えば0.07MPa(絶対圧)以上]である。反応槽の水素分圧を上げすぎると、アセトアルデヒド生成量の増加、アルドール縮合によるクロトンアルデヒドの増加を招き、逆に少なすぎると、クロトンアルデヒド→ブタノールの反応がほとんど起こらなくなるが、水素の微小な変動により反応速度が大きく変動し、運転が不安定になる。反応槽1内の気相部の蒸気は、反応槽1内からライン13を通じて抜き取ることが可能である。蒸気の抜き取り量の調節によって、反応槽1内の圧力を制御することが可能であり、例えば、反応槽1内の圧力は一定に維持される。反応槽1内から抜き取られた蒸気は、コンデンサ1aへと導入される。
コンデンサ1aは、反応槽1からの蒸気を、冷却して部分的に凝縮させることによって凝縮分とガス分とに分ける。凝縮分は、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、ギ酸及びプロピオン酸などを含み、コンデンサ1aからライン14を通じて反応槽1へと導入され、リサイクルされる。ガス分は、例えば、一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などを含み、コンデンサ1aからライン15を通じてスクラバーシステム8へと供給される。スクラバーシステム8では、コンデンサ1aからのガス分から有用成分(例えばヨウ化メチル、水、酢酸メチル、酢酸など)が分離回収される。この分離回収には、本実施形態では、ガス分中の有用成分を捕集するための吸収液を使用して行う湿式法が利用される。吸収液としては、少なくとも酢酸及び/又はメタノールを含む吸収溶媒が好ましい。吸収液には酢酸メチルが含まれていてもよい。例えば、吸収液として後述の蒸留塔6からの蒸気の凝縮分を使用できる。分離回収には、圧力変動吸着法を利用してもよい。分離回収された有用成分(例えばヨウ化メチルなど)は、スクラバーシステム8からリサイクルライン48を通じて反応槽1へと導入され、リサイクルされる。有用成分を捕集した後のガスはライン49を通じて廃棄される。なお、ライン49から排出されるガスは、後述する蒸発槽2の底部あるいは残液流リサイクルライン18,19へ導入するCO源として利用することができる。スクラバーシステム8での処理及びその後の反応槽1へのリサイクル及び廃棄については、他のコンデンサからスクラバーシステム8へと供給される後記のガス分についても同様である。本発明の酢酸の製造方法においては、プロセスからのオフガスを、少なくとも酢酸を含む吸収溶媒で吸収処理して、一酸化炭素に富むストリームと酢酸に富むストリームとを分離するスクラバー工程を有することが好ましい。
装置稼働時の反応槽1内では、上述のように、酢酸が連続的に生成する。そのような酢酸を含む反応混合物が、連続的に、反応槽1内から所定の流量で抜き取られてライン16を通じて次の蒸発槽2へと導入される。
蒸発槽2は、蒸発工程(フラッシュ工程)を行うためのユニットである。この蒸発工程は、ライン16(反応混合物供給ライン)を通じて蒸発槽2に連続的に導入される反応混合物を、部分的に蒸発させることによって蒸気流(揮発相)と残液流(低揮発相)とに分けるための工程である。反応混合物を加熱することなく圧力を減じることによって蒸発を生じさせてもよいし、反応混合物を加熱しつつ圧力を減じることによって蒸発を生じさせてもよい。蒸発工程において、蒸気流の温度は例えば100~260℃、好ましくは120~200℃であり、残液流の温度は例えば80~200℃、好ましくは100~180℃であり、槽内圧力は例えば50~1000kPa(絶対圧)である。また、蒸発工程にて分離される蒸気流及び残液流の割合に関しては、質量比で、例えば10/90~50/50(蒸気流/残液流)である。
本工程で生じる蒸気は、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、ギ酸及びプロピオン酸などを含み、蒸発槽2内からライン17(蒸気流排出ライン)に連続的に抜き取られる。蒸発槽2内から抜き取られた蒸気流の一部はコンデンサ2aへと連続的に導入され、当該蒸気流の他の一部はライン21を通じて次の蒸留塔3へと連続的に導入される。前記蒸気流の酢酸濃度は、例えば40~85質量%(好ましくは50~85質量%)、さらに好ましくは50~75質量%(例えば55~75質量%)であり、ヨウ化メチル濃度は、例えば2~50質量%(好ましくは5~30質量%)、水濃度は、例えば0.2~20質量%(好ましくは1~15質量%)、酢酸メチル濃度は、例えば0.2~50質量%(好ましくは2~30質量%)である。本工程で生ずる残液流は、反応混合物に含まれていた触媒及び助触媒(ヨウ化メチル、ヨウ化リチウムなど)や、本工程では揮発せずに残存する水、酢酸メチル、酢酸、ギ酸及びプロピオン酸などを含み、ポンプ57を用い、連続的に蒸発槽2からライン18を通じて熱交換器2bへと導入される。熱交換器2bは、蒸発槽2からの残液流を冷却する。降温した残液流は、連続的に熱交換器2bからライン19を通じて反応槽1へと導入され、リサイクルされる。なお、ライン18とライン19とを併せて残液流リサイクルラインと称する。前記残液流の酢酸濃度は、例えば55~90質量%、好ましくは60~85質量%である。
好ましい態様では、本工程で生じる蒸気は、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、クロトンアルデヒド、2-エチルクロトンアルデヒド、酢酸ブチル、ギ酸、プロピオン酸、並びに、ヨウ化エチル、ヨウ化プロピル、ヨウ化ブチル、ヨウ化ヘキシル及びヨウ化デシルなどのヨウ化アルキルなどを含み、蒸発槽2内からライン17(蒸気流排出ライン)に連続的に抜き取られる。蒸発槽2内から抜き取られた蒸気流の一部はコンデンサ2aへと連続的に導入され、当該蒸気流の他の一部はライン21を通じて次の蒸留塔3へと連続的に導入される。前記蒸気流の酢酸濃度は、例えば50~85質量%、好ましくは55~75質量%であり、ヨウ化メチル濃度は、例えば2~50質量%(好ましくは5~30質量%)、水濃度は、例えば0.2~20質量%(好ましくは1~15質量%)、酢酸メチル濃度は、例えば0.2~50質量%(好ましくは2~30質量%)である。前記蒸気流のクロトンアルデヒド濃度は、例えば0~5.0質量ppm(例えば0.01~4.0質量ppm)、好ましくは0.1~3.0質量ppm、さらに好ましくは0.2~2.0質量ppmである。前記蒸気流の2-エチルクロトンアルデヒド濃度は、例えば0~3.0質量ppm(例えば0.01~2.5質量ppm)、好ましくは0.02~2.0質量ppm、さらに好ましくは0.03~0.8質量ppmである。前記蒸気流の酢酸ブチル濃度は、例えば0.1~13質量ppm、好ましくは0.2~12質量ppm、さらに好ましくは0.3~9質量ppmである。
本工程で生ずる残液流は、反応混合物に含まれていた触媒及び助触媒(ヨウ化メチル、ヨウ化リチウムなど)や、本工程では揮発せずに残存する水、酢酸メチル、酢酸、クロトンアルデヒド、2-エチルクロトンアルデヒド、酢酸ブチル、ギ酸及びプロピオン酸などを含み、ポンプ57を用い、連続的に蒸発槽2からライン18を通じて熱交換器2bへと導入される。熱交換器2bは、蒸発槽2からの残液流を冷却する。降温した残液流は、連続的に熱交換器2bからライン19を通じて反応槽1へと導入され、リサイクルされる。なお、ライン18とライン19とを併せて残液流リサイクルラインと称する。前記残液流の酢酸濃度は、例えば55~90質量%、好ましくは60~85質量%である。
蒸発槽2の底部及び/又は残液流リサイクルライン(ライン18及び/又はライン19)には、一酸化炭素含有ガスを導入するための一酸化炭素含有ガス導入ライン54を接続することが好ましい。蒸発槽2の下部に貯まる残液や、残液流リサイクルライン18,19(特にライン18)を通過する残液流に一酸化炭素を導入することにより、残液流中の一酸化炭素溶存量が増大して触媒の安定性が増し、触媒の沈降、蓄積を防止できる。導入する一酸化炭素含有ガス中の一酸化炭素の含有量は、例えば10質量%以上、好ましくは20質量%以上、さらに好ましくは40質量%以上、特に好ましくは60質量%以上である。
コンデンサ2aは、蒸発槽2からの蒸気流を、冷却して部分的に凝縮させることによって凝縮分とガス分とに分ける。凝縮分は、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、ギ酸及びプロピオン酸などを含み、コンデンサ2aからライン22,23を通じて反応槽1へと導入され、リサイクルされる。ガス分は、例えば、一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などを含み、コンデンサ2aからライン20,15を通じてスクラバーシステム8へと供給される。上述の反応工程での酢酸の生成反応は発熱反応であるところ、反応混合物に蓄積する熱の一部は、蒸発工程(フラッシュ工程)において、反応混合物から生じた蒸気に移行する。この蒸気のコンデンサ2aでの冷却によって生じた凝縮分が反応槽1へとリサイクルされる。すなわち、この酢酸製造装置においては、メタノールのカルボニル化反応で生じる熱がコンデンサ2aにて効率よく除去されることとなる。
好ましい態様では、コンデンサ2aは、蒸発槽2からの蒸気流を、冷却して部分的に凝縮させることによって凝縮分とガス分とに分ける。凝縮分は、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、クロトンアルデヒド、2-エチルクロトンアルデヒド、酢酸ブチル、ギ酸及びプロピオン酸などを含み、コンデンサ2aからライン22,23を通じて反応槽1へと導入され、リサイクルされる。ガス分は、例えば、一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などを含み、コンデンサ2aからライン20,15を通じてスクラバーシステム8へと供給される。上述の反応工程での酢酸の生成反応は発熱反応であるところ、反応混合物に蓄積する熱の一部は、蒸発工程(フラッシュ工程)において、反応混合物から生じた蒸気に移行する。この蒸気のコンデンサ2aでの冷却によって生じた凝縮分が反応槽1へとリサイクルされる。すなわち、この酢酸製造装置においては、メタノールのカルボニル化反応で生じる熱がコンデンサ2aにて効率よく除去されることとなる。
蒸留塔3は、第1蒸留工程を行うためのユニットであり、本実施形態ではいわゆる脱低沸塔に位置付けられる。第1蒸留工程は、蒸留塔3に連続的に導入される蒸気流を蒸留処理して低沸成分を分離除去する工程である。より具体的には、第1蒸留工程では、前記蒸気流を蒸留して、ヨウ化メチル及びアセトアルデヒドから選択された少なくとも一種の低沸成分に富むオーバーヘッド流と、酢酸に富む酢酸流とに分離する。蒸留塔3は、例えば、棚段塔及び充填塔などの精留塔よりなる。蒸留塔3として棚段塔を採用する場合、その理論段は例えば5~50段であり、還流比は理論段数に応じて例えば0.5~3000である。蒸留塔3の内部において、塔頂圧力は例えば80~160kPa(ゲージ圧)に設定され、塔底圧力は、塔頂圧力より高く、例えば85~180kPa(ゲージ圧)に設定される。蒸留塔3の内部において、塔頂温度は、例えば、設定塔頂圧力での酢酸の沸点より低い温度であって90~130℃に設定され、塔底温度は、例えば、設定塔底圧力での酢酸の沸点以上の温度であって120~160℃に設定される。
好ましい態様では、蒸留塔3の内部において、塔頂圧力は、例えば80~160kPa(ゲージ圧)に設定され、塔底圧力は、塔頂圧力より高く、例えば85~180kPa(ゲージ圧)に設定される。蒸留塔3の内部において、塔頂温度は、例えば、設定塔頂圧力での酢酸の沸点より低い温度であって90~130℃に設定され、塔底温度は、例えば、設定塔底圧力での酢酸の沸点以上の温度であって115~165℃(好ましくは120~160℃)に設定される。
蒸留塔3に対しては、蒸発槽2からの蒸気流がライン21を通じて連続的に導入され、蒸留塔3の塔頂部からは、オーバーヘッド流としての蒸気がライン24に連続的に抜き取られる。蒸留塔3の塔底部からは、缶出液がライン25に連続的に抜き取られる。3bはリボイラーである。蒸留塔3における塔頂部と塔底部との間の高さ位置からは、側流としての酢酸流(第1酢酸流;液体)がライン27より連続的に抜き取られる。
蒸留塔3の塔頂部から抜き取られる蒸気は、酢酸よりも沸点の低い成分(低沸点成分)を蒸留塔3からの上記缶出液及び側流と比較して多く含み、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などを含む。この蒸気には酢酸も含まれる。このような蒸気は、ライン24を通じてコンデンサ3aへと連続的に導入される。
好ましい態様では、蒸留塔3の塔頂部から抜き取られる蒸気は、酢酸よりも沸点の低い成分(低沸点成分)を蒸留塔3からの上記缶出液及び側流と比較して多く含み、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、ジメチルエーテル、メタノール、アセトアルデヒド、クロトンアルデヒド及びギ酸などを含む。この蒸気には酢酸も含まれる。このような蒸気は、ライン24を通じてコンデンサ3aへと連続的に導入される。
コンデンサ3aは、蒸留塔3からの蒸気を、冷却して部分的に凝縮させることによって凝縮分とガス分とに分ける。凝縮分は、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などを含み、コンデンサ3aからライン28を通じてデカンタ4へと連続的に導入される。デカンタ4に導入された凝縮分は水相(上相)と有機相(ヨウ化メチル相;下相)とに分液される。水相には、水と、例えば、ヨウ化メチル、ヨウ化水素、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などが含まれる。有機相には、例えば、ヨウ化メチルと、例えば、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などが含まれる。本実施形態では、水相の一部はライン29を通じて蒸留塔3に還流され、水相の他の一部は、ライン29,30,23を通じて反応槽1に導入されてリサイクルされる。有機相の一部はライン31,23を通じて反応槽1に導入されてリサイクルされる。有機相の他の一部、及び/又は、水相の他の一部は、ライン31,50、及び/又は、ライン30,51を通じてアセトアルデヒド分離除去システム9に導入される。
好ましい態様では、コンデンサ3aは、蒸留塔3からの蒸気を、冷却して部分的に凝縮させることによって凝縮分とガス分とに分ける。凝縮分は、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、クロトンアルデヒド及びギ酸などを含み、コンデンサ3aからライン28を通じてデカンタ4へと連続的に導入される。デカンタ4に導入された凝縮分は水相(上相)と有機相(ヨウ化メチル相;下相)とに分液される。水相には、水と、例えば、ヨウ化メチル、ヨウ化水素、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、クロトンアルデヒド及びギ酸などが含まれる。有機相には、ヨウ化メチルと、例えば、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、クロトンアルデヒド及びギ酸などが含まれる。
本発明では、水、酢酸(AC)、ヨウ化メチル(MeI)及びアセトアルデヒド(AD)を少なくとも含むプロセス流を水相と有機相とに分液させる分液工程(例えばデカンタ4での分液)における水相中のアセトアルデヒド濃度、有機相中のアセトアルデヒド濃度、水相中の酢酸メチル濃度、有機相中の酢酸メチル濃度、水相中の酢酸メチル濃度と有機相中の酢酸メチル濃度の和、分液時の温度(液温)、下記式で求められるアセトアルデヒド分配率(AD分配率)、又は下記式で求められる酢酸メチル分配率(MA分配率)に基づいて、アセトアルデヒド分離除去工程に供すべき相が定められる。別の側面では、有機相をアセトアルデヒド分離除去工程に供する際の好適な分液条件、及び水相をアセトアルデヒド分離除去工程に供する際の好適な分液条件が示される。
AD分配率={水相のAD濃度(質量%)}/{有機相のAD濃度(質量%)}
MA分配率={水相のMA濃度(質量%)}/{有機相のMA濃度(質量%)}
MA分配率={水相のMA濃度(質量%)}/{有機相のMA濃度(質量%)}
前記本発明の酢酸の製造方法では、前記分液工程が下記(b-i)~(b-v)のうち少なくとも1つの条件を満たしており、前記水相の少なくとも一部が前記アセトアルデヒド分離除去工程にて処理される。
(b-i)水相中のアセトアルデヒド濃度が28.1質量%以下、及び/又は、有機相中のアセトアルデヒド濃度が24.8質量%以下である
(b-ii)分液時の温度が70℃以下である
(b-iii)水相中の酢酸メチル濃度が12.0質量%以下、及び/又は、有機相中の酢酸メチル濃度が47.6質量%以下、及び/又は、水相中の酢酸メチル濃度と有機相中の酢酸メチル濃度の和が59.6質量%以下である
(b-iv)アセトアルデヒド分配率[{水相のアセトアルデヒド濃度(質量%)}/{有機相のアセトアルデヒド濃度(質量%)}]が1.1以上である
(b-v)酢酸メチル分配率[{水相の酢酸メチル濃度(質量%)}/{有機相の酢酸メチル濃度(質量%)}]が0.25以上である
(b-i)水相中のアセトアルデヒド濃度が28.1質量%以下、及び/又は、有機相中のアセトアルデヒド濃度が24.8質量%以下である
(b-ii)分液時の温度が70℃以下である
(b-iii)水相中の酢酸メチル濃度が12.0質量%以下、及び/又は、有機相中の酢酸メチル濃度が47.6質量%以下、及び/又は、水相中の酢酸メチル濃度と有機相中の酢酸メチル濃度の和が59.6質量%以下である
(b-iv)アセトアルデヒド分配率[{水相のアセトアルデヒド濃度(質量%)}/{有機相のアセトアルデヒド濃度(質量%)}]が1.1以上である
(b-v)酢酸メチル分配率[{水相の酢酸メチル濃度(質量%)}/{有機相の酢酸メチル濃度(質量%)}]が0.25以上である
前記(b-i)において、水相中のアセトアルデヒド濃度は、例えば0.045~28.1質量%、好ましくは0.098~10質量%、さらに好ましくは0.098~3.0質量%、特に好ましくは0.098~1.0質量%(例えば0.15~0.9質量%)である。また、有機相中のアセトアルデヒド濃度は、例えば0.013~24.8質量%、好ましくは0.030~2.0質量%、さらに好ましくは0.030~0.50質量%、特に好ましくは0.030~0.24質量%である。前記(b-i)においては、水相中のアセトアルデヒド濃度が28.1質量%以下、且つ、有機相中のアセトアルデヒド濃度が24.8質量%以下であることが好ましい。前記(b-i)において、分液工程供給液(例えばデカンタ4に供給される液)中のアセトアルデヒド濃度は、例えば26.0質量%以下(例えば0.026~26.0質量%)、好ましくは0.057~10質量%、さらに好ましくは0.057~3.0質量%、特に好ましくは0.057~1.0質量%(例えば0.057~0.42質量%)である。なお、水相中のアセトアルデヒド濃度が28.1質量%を超える場合や、有機相中のアセトアルデヒド濃度が24.8質量%を超える場合は、AD分配率が小さくなる(例えば1.1を下回る)ので、アセトアルデヒドの回収量と、耐食性の極めて高い高価な装置を使用する必要性とを比較考量すると、水相をアセトアルデヒド分離除去工程で処理することのメリットは極めて小さい。
前記(b-ii)において、分液時の温度(液温)は、例えば-5℃~70℃、好ましくは-5℃~60℃、より好ましくは-5℃~51℃(例えば、-5℃~45℃)、さらに好ましくは-5℃~41℃(例えば-5℃~31℃)である。なお。分液時の温度(液温)が70℃を超える場合は、AD分配率が非常に小さくなるので、水相をアセトアルデヒド分離除去工程で処理することのメリットは極めて小さい。
前記(b-iii)において、水相中の酢酸メチル濃度は、例えば1.2~12.0質量%、好ましくは2.0~12.0質量%、さらに好ましくは5.0~12.0質量%(例えば6.0~12.0質量%)である。また、有機相中の酢酸メチル濃度は、例えば2.2~47.6質量%、好ましくは5.0~42質量%、さらに好ましくは8.0~35質量%(例えば10~30質量%)である。前記(b-iii)においては、水相中の酢酸メチル濃度が12.0質量%以下、且つ、有機相中の酢酸メチル濃度が47.6質量%以下であることが好ましい。また、水相中の酢酸メチル濃度(質量%)と有機相中の酢酸メチル濃度(質量%)の和は、例えば、59.6質量%以下(例えば4.2~59.6質量%)、好ましくは6.0~54質量%、より好ましくは8.0~54質量%、さらに好ましくは10.0~54質量%、特に好ましくは14.0~47質量%(例えば16~42質量%)である。前記(b-iii)において、分液工程供給液(例えばデカンタ4に供給される液)中の酢酸メチル濃度は、例えば38.2質量%以下(例えば2.0~38.2質量%)、好ましくは5.0~31質量%、より好ましくは8.0~25質量%、さらに好ましくは10.0~25質量%である。なお、水相中の酢酸メチル濃度が12.0質量%を超える場合や、有機相中の酢酸メチル濃度が47.6質量%を超える場合や、水相中の酢酸メチル濃度(質量%)と有機相中の酢酸メチル濃度(質量%)の和が59.6質量%を超える場合は、AD分配率が例えば1.1を下回るので、前記と同様の理由から、水相をアセトアルデヒド分離除去工程で処理することのメリットは極めて小さい。
前記(b-iv)において、AD分配率は、例えば1.1~8.0、好ましくは1.5~6.0、さらに好ましくは1.9~5.0である。AD分配率が1.1未満の場合は、水相中のアセトアルデヒド濃度が低いので、エネルギーが多く必要で装置も腐食しやすい水相の脱アセトアルデヒド処理を行うことは工業的に極めて不利であるが、AD分配率が1.1以上(好ましくは1.5以上、さらに好ましくは1.9以上)であれば、耐腐食性の高い装置を使用してもなおアセトアルデヒドの分離除去効率向上のメリットが大きい。
前記(b-v)において、MA分配率は、0.25以上(例えば0.25~0.70)、好ましくは0.26以上(例えば0.26~0.65)、さらに好ましくは0.28以上(例えば0.28~0.60)である。上述したように、水相と有機相への酢酸メチル(MA)の分配割合は、温度、組成(水、ヨウ化メチルのほか、酢酸などの成分も含む)により変化し、これもアセトアルデヒド分配率制御の指針となる。
本発明の酢酸の製造方法では、前記分液工程が(b-i)~(b-v)のうち少なくとも1つの条件を満たせばよいが、上記条件のうち2以上を同時に満たしてもよい。同時に満たすことが好ましい2以上の条件の組み合わせとして、(b-i)と(b-ii)、(b-i)と(b-iii)、(b-i)と(b-iv)、(b-i)と(b-v)、(b-ii)と(b-iii)、(b-ii)と(b-iv)、(b-ii)と(b-v)、(b-iii)と(b-iv)、(b-iii)と(b-v)、(b-iv)と(b-v)、(b-i)と(b-ii)と(b-iii)、(b-i)と(b-ii)と(b-iv)、(b-i)と(b-ii)と(b-v)、(b-i)と(b-iii)と(b-iv)、(b-i)と(b-iii)と(b-v)、(b-i)と(b-iv)と(b-v)、(b-ii)と(b-iii)と(b-iv)、(b-ii)と(b-iii)と(b-v)、(b-ii)と(b-iv)と(b-v)、(b-iii)と(b-iv)と(b-v)、(b-i)と(b-ii)と(b-iii)と(b-iv)、(b-i)と(b-ii)と(b-iii)と(b-v)、(b-i)と(b-iii)と(b-iv)と(b-v)、(b-ii)と(b-iii)と(b-iv)と(b-v)、及び(b-i)と(b-ii)と(b-iii)と(b-iv)と(b-v)の組み合わせが挙げられる。なかでも、少なくとも(b-i)、(b-ii)及び(b-iii)を同時に満たすこと、少なくとも(b-i)、(b-ii)、(b-iii)及び(b-iv)を同時に満たすこと、あるいは、(b-i)、(b-ii)、(b-iii)、(b-iv)及び(b-v)の全てを同時に満たすことが特に好ましい。
一方、前記本発明の酢酸の製造方法では、前記分液工程が下記(b´-i)~(b´-v)のうち少なくとも1つの条件を満たしており、前記有機相の少なくとも一部が前記アセトアルデヒド分離除去工程にて処理される。
(b´-i)水相中のアセトアルデヒド濃度が0.045質量%以上、及び/又は、有機相中のアセトアルデヒド濃度が0.013質量%以上である
(b´-ii)分液時の温度が-5℃以上である
(b´-iii)水相中の酢酸メチル濃度が1.2質量%以上、及び/又は、有機相中の酢酸メチル濃度が2.2質量%以上、及び/又は、水相中の酢酸メチル濃度と有機相中の酢酸メチル濃度の和が3.4質量%以上である
(b´-iv)アセトアルデヒド分配率[{水相のアセトアルデヒド濃度(質量%)}/{有機相のアセトアルデヒド濃度(質量%)}]が4.1以下である
(b´-v)酢酸メチル分配率[{水相の酢酸メチル濃度(質量%)}/{有機相の酢酸メチル濃度(質量%)}]が0.8以下である
(b´-i)水相中のアセトアルデヒド濃度が0.045質量%以上、及び/又は、有機相中のアセトアルデヒド濃度が0.013質量%以上である
(b´-ii)分液時の温度が-5℃以上である
(b´-iii)水相中の酢酸メチル濃度が1.2質量%以上、及び/又は、有機相中の酢酸メチル濃度が2.2質量%以上、及び/又は、水相中の酢酸メチル濃度と有機相中の酢酸メチル濃度の和が3.4質量%以上である
(b´-iv)アセトアルデヒド分配率[{水相のアセトアルデヒド濃度(質量%)}/{有機相のアセトアルデヒド濃度(質量%)}]が4.1以下である
(b´-v)酢酸メチル分配率[{水相の酢酸メチル濃度(質量%)}/{有機相の酢酸メチル濃度(質量%)}]が0.8以下である
前記(b´-i)において、水相中のアセトアルデヒド濃度は、例えば0.045~35質量%、好ましくは0.15~10質量%、さらに好ましくは0.2~2.0質量%である。また、有機相中のアセトアルデヒド濃度は、例えば0.013~30質量%、好ましくは0.05~5.0質量%、さらに好ましくは0.1~1.0質量%である。前記(b´-i)においては、水相中のアセトアルデヒド濃度が0.045質量%以上、且つ、有機相中のアセトアルデヒド濃度が0.013質量%以上であることが好ましい。前記(b´-i)において、分液工程供給液(例えばデカンタ4に供給される液)中のアセトアルデヒド濃度は、例えば0.026質量%以上(例えば0.026~32質量%)、好ましくは0.10~8.0質量%、さらに好ましくは0.15~1.8質量%である。なお、水相中のアセトアルデヒド濃度が0.045質量%未満の場合や、有機相中のアセトアルデヒド濃度が0.013質量%未満の場合は、AD分配率が大きな値になるため、有機相をアセトアルデヒド分離除去工程で処理することのメリットは極めて小さい。
前記(b´-ii)において、分液時の温度(液温)は、-5℃以上(例えば-5℃~90℃)、好ましくは0℃以上(例えば0~90℃)、より好ましくは10℃以上(例えば10~90℃)、さらに好ましくは20℃以上(例えば25~90℃)、30℃より高い温度(例えば30℃超90℃以下))、35℃より高い温度(例えば35℃超90℃以下)、40℃より高い温度(例えば40℃超90℃以下)、特に好ましくは70℃より高い温度(例えば70℃超90℃以下)である。なお、分液時の温度(液温)が-5℃未満の場合は、AD分配率が例えば4.3を超えるので、有機相をアセトアルデヒド分離除去工程で処理することのメリットは極めて小さい。
前記(b´-iii)において、水相中の酢酸メチル濃度は、例えば1.2~20質量%、好ましくは2.5~18質量%、より好ましくは4.0~15質量%、さらに好ましくは6.0~13質量%、特に好ましくは7.0~12質量%である。また、有機相中の酢酸メチル濃度は、例えば2.2~60質量%、好ましくは5.8~48質量%、より好ましくは8.0~40質量%、さらに好ましくは10.0~30.0質量%、特に好ましくは11.0~25.0質量%である。前記(b´-iii)においては、水相中の酢酸メチル濃度が1.2質量%以上、且つ、有機相中の酢酸メチル濃度が2.2質量%以上であることが好ましい。また、水相中の酢酸メチル濃度(質量%)と有機相中の酢酸メチル濃度(質量%)の和は、例えば3.4~75質量%、好ましくは8.3~60質量%(例えば10~40質量%)、より好ましくは15.0~50質量%、さらに好ましくは25~53質量%である。前記(b´-iii)の場合、分液工程供給液(例えばデカンタ4に供給される液)中の酢酸メチル濃度は、例えば2.0~50質量%、好ましくは5.0~38質量%、より好ましくは8.0~35質量%、さらに好ましくは10.0~32質量%、特に好ましくは15.0~31質量%である。なお、水相中の酢酸メチル濃度が1.2質量%未満の場合や、有機相中の酢酸メチル濃度が2.2質量%未満の場合や、水相中の酢酸メチル濃度(質量%)と有機相中の酢酸メチル濃度(質量%)の和が3.4質量%未満の場合は、AD分配率が大きな値になるため、有機相をアセトアルデヒド分離除去工程で処理することのメリットは小さい。
前記(b´-iv)において、AD分配率は、4.1以下(例えば0.5~4.1)、好ましくは3.35以下(例えば0.6~3.35)、より好ましくは3以下(0.7~3)、さらに好ましくは2.8以下(例えば0.8~2.8)、特に好ましくは2.5以下(例えば0.8~2.5)、とりわけ2.3以下(例えば0.9~2.3)、なかんずく2.0以下(例えば1.0~2.0)である。AD分配率が4.1を超える場合は、有機相中のアセトアルデヒド濃度が極めて低いので、有機相をアセトアルデヒド分離除去工程で処理することのメリットは極めて小さい。有機相の脱アセトアルデヒド処理に最も好適なAD分配率(1.1未満)にする方法としては、例えば、水相中のアセトアルデヒド濃度を28.1質量%超にする、有機相中のアセトアルデヒド濃度を24.8質量%超にする、分液工程供給液中のアセトアルデヒド濃度を26.0質量%超にする、分液時の温度を70℃超にする、水相中の酢酸メチル濃度を12.0質量%超にする、有機相中の酢酸メチル濃度を47.6質量%超にする、分液工程供給液中の酢酸メチル濃度を38.2質量%超にするなどがある。
前記(b´-v)において、MA分配率は、0.8以下(例えば0.15~0.80)、好ましくは0.7以下(例えば0.20~0.70)、より好ましくは0.6以下(例えば、0.20~0.60)、さらに好ましくは0.44以下(例えば0.20~0.44)、特に好ましくは0.25未満(例えば0.20以上0.25未満)である。水相と有機相への酢酸メチル(MA)の分配割合は、温度、組成(水、ヨウ化メチルのほか、酢酸などの成分も含む)により変化し、これもアセトアルデヒド分配率制御の指針となる。
本発明の酢酸の製造方法では、前記分液工程が(b´-i)~(b´-v)のうち少なくとも1つの条件を満たせば本発明の酢酸の製造方法よいが、上記条件のうち2以上を同時に満たしてもよい。同時に満たすことが好ましい2以上の条件の組み合わせとして、(b´-i)と(b´-ii)、(b´-i)と(b´-iii)、(b´-i)と(b´-iv)、(b´-i)と(b´-v)、(b´-ii)と(b´-iii)、(b´-ii)と(b´-iv)、(b´-ii)と(b´-v)、(b´-iii)と(b´-iv)、(b´-iii)と(b´-v)、(b´-iv)と(b´-v)、(b´-i)と(b´-ii)と(b´-iii)、(b´-i)と(b´-ii)と(b´-iv)、(b´-i)と(b´-ii)と(b´-v)、(b´-i)と(b´-iii)と(b´-iv)、(b´-i)と(b´-iii)と(b´-v)、(b´-i)と(b´-iv)と(b´-v)、(b´-ii)と(b´-iii)と(b´-iv)、(b´-ii)と(b´-iii)と(b´-v)、(b´-ii)と(b´-iv)と(b´-v)、(b´-iii)と(b´-iv)と(b´-v)、(b´-i)と(b´-ii)と(b´-iii)と(b´-iv)、(b´-i)と(b´-ii)と(b´-iii)と(b´-v)、(b´-i)と(b´-iii)と(b´-iv)と(b´-v)、(b´-ii)と(b´-iii)と(b´-iv)と(b´-v)、及び(b´-i)と(b´-ii)と(b´-iii)と(b´-iv)と(b´-v)の組み合わせが挙げられる。なかでも、少なくとも(b´-i)、(b´-ii)及び(b´-iii)を同時に満たすこと、少なくとも(b´-i)、(b´-ii)、(b´-iii)及び(b´-iv)を同時に満たすこと、あるいは、(b´-i)、(b´-ii)、(b´-iii)、(b´-iv)及び(b´-v)の全てを同時に満たすことが特に好ましい。
なお、水相及び有機相中のアセトアルデヒド濃度、酢酸メチル濃度は分液工程供給液の組成、及び分液時の温度によって定まる。分液工程供給液中のアセトアルデヒド濃度が高いほど、水相及び有機相中のアセトアルデヒド濃度は高くなり、分液工程供給液中の酢酸メチル濃度が高いほど、水相及び有機相中の酢酸メチル濃度は高くなる。なお、実施例で示されるように、分液時の温度が高くなるほど、アセトアルデヒドの有機相への分配割合が相対的に高くなる。そして、分液工程供給液中のアセトアルデヒド濃度及び酢酸メチル濃度は、例えば、反応槽1における反応条件、蒸発槽2における蒸発条件、蒸留塔3における蒸留条件によりコントロールできる。一般に、反応混合物中のアセトアルデヒド濃度、酢酸メチル濃度が高いほど、それぞれ、分液工程供給液中のアセトアルデヒド濃度、酢酸メチル濃度が高くなる。反応混合物中のアセトアルデヒド濃度は、反応系における反応温度、水素分圧、ヨウ化メチル濃度、水濃度、触媒濃度、ヨウ化リチウム濃度がそれぞれ高くなるほど増大し、CO分圧、酢酸メチル濃度がそれぞれ高くなるほど低下する傾向を示す(特開2006-182691号公報参照)。さらに、酢酸メチルは酢酸とメタノールのエステル化反応によって生成するので、反応混合物中の酢酸メチル濃度は、反応系における酢酸濃度、メタノール濃度がそれぞれ高いほど増大し、水濃度が高いほど低下する。このように、反応槽における反応条件、及び分液工程より前に行う蒸発工程や蒸留工程の操作条件を調節することにより、分液工程供給液の組成、ひいては水相及び有機相中のアセトアルデヒド濃度及び酢酸メチル濃度を調整することができる。
また、脱低沸塔仕込の酢酸メチル濃度の制御は、反応槽の酢酸メチル濃度を制御して調整される。反応槽の酢酸メチル濃度は、例えばメタノールとCO仕込量を一定化した条件では、反応槽内の温度、ロジウム錯体(Rh)、ヨウ化メチル(MeI)、H2O、水素分圧、一酸化炭素分圧、ヨウ化リチウム(LiI)など、反応速度に影響を及ぼす因子を上下させることで調整できる。即ち、温度、Rh、MeI、H2O、水素分圧、一酸化炭素分圧、LiIなどを増加させると、反応槽の酢酸メチル濃度は低下し、減少させると酢酸メチル濃度は増加する。また、これら条件の一定化、即ち温度、Rh、MeI、H2O、水素分圧、一酸化炭素分圧、LiIなどの条件を一定化した上で、メタノールとCO仕込量を増加させると酢酸メチル濃度は上昇し、減少させると酢酸メチル濃度は低下する。反応液を蒸発槽で蒸発させた蒸気(脱低沸塔の仕込)中の酢酸メチル濃度は、蒸発率が一定条件下で運転されるため、反応液中の酢酸メチル濃度に比例して変化する。なお、蒸発槽を加熱、冷却する場合は、蒸発率が変化するため、酢酸メチル濃度も変化する。例えば、加熱する場合は、蒸発槽蒸気中の酢酸濃度が上昇し、酢酸メチル濃度は低下する。一方、冷却する場合は、その逆の現象、即ち蒸発槽蒸気中の酢酸濃度が低下し、酢酸メチル濃度は上昇することになる。
アセトアルデヒド分離除去システム9を用いたアセトアルデヒド分離除去工程では、前記の水、酢酸(AC)、ヨウ化メチル(MeI)及びアセトアルデヒド(AD)を少なくとも含むプロセス流に由来するアセトアルデヒドを分離除去する。アセトアルデヒドの分離除去方法としては公知の方法を用いることができる。例えば、蒸留、抽出又はこれらの組み合わせによりアセトアルデヒドを分離除去する。分離されたアセトアルデヒドはライン53を通じて装置外へ排出される。また、有機相及び/又は水相に含まれる有用成分(例えばヨウ化メチルなど)は、ライン52,23を通じて反応槽1へとリサイクルされて再利用される。
本実施形態では、水相の一部はライン29を通じて蒸留塔3に還流され、水相の他の一部は、ライン29,30,23を通じて反応槽1に導入されてリサイクルされる。有機相の一部はライン31,23を通じて反応槽1に導入されてリサイクルされる。有機相の他の一部、及び/又は、水相の他の一部は、ライン31,50、及び/又は、ライン30,51を通じてアセトアルデヒド分離除去システム9に導入される。なお、水相を還流させることに加えて、又はそれに代えて、有機相の一部を蒸留塔3に還流させてもよい。
蒸留塔3の還流比について以下に説明する。蒸留塔3にオーバーヘッド流(第1オーバーヘッド流)の凝縮分の水相のみを還流させる場合は、水相の還流比(水相の還流量/水相の留出量)を、例えば2以上、好ましくは3以上、より好ましくは4以上、さらに好ましくは8以上、特に好ましくは10以上とすることが望ましい。また、蒸留塔3にオーバーヘッド流の凝縮分の有機相のみを還流させる場合は、有機相の還流比(有機相の還流量/有機相の留出量)を、例えば1以上、好ましくは1.5以上、より好ましくは2以上、さらに好ましくは4以上、特に好ましくは5以上とすることが望ましい。さらに、蒸留塔3にオーバーヘッド流の凝縮分の水相及び有機相をともに還流させる場合は、水相及び有機相の総和の還流比(水相及び有機相の還流量の総和/水相及び有機相の留出量の総和)を、例えば1.5以上、好ましくは2.3以上、より好ましくは3以上、さらに好ましくは6以上、特に好ましくは7.5以上とすることが望ましい。また、蒸留塔3に水相を還流させる場合は、水相の還流比(水相の還流量/水相の留出量)は2以上であることが好ましく、より好ましくは3以上、さらに好ましくは5以上、特に好ましくは8以上、とりわけ12以上である。なお、後述の蒸留塔5の還流比を0.1以上(特に0.3以上、好ましくは0.32以上)に制御する場合には、蒸留塔3の還流比は、上相、下相のいずれを還流させるにかかわらず、例えば0.5以上であってもよい。蒸留塔3の還流比の上限は、いずれの場合も、例えば3000(特に1000)であってもよく、あるいは100(特に30)であってもよい。クロトンアルデヒド(沸点104℃)は酢酸(沸点117℃)より低沸点であるため、蒸留塔3の還流比を大きくすることにより、クロトンアルデヒドはより蒸留塔3の塔頂に濃縮されるので、例えば側流として得られる第1酢酸流中のクロトンアルデヒド濃度が低下する。また、蒸留塔3の還流比を大きくすることによりクロトンアルデヒドが濃縮された第1オーバーヘッド流の凝縮分(水相及び/又は有機相)を反応槽1にリサイクルすると、反応槽1内でクロトンアルデヒドはアセトアルデヒドと反応して2-エチルクロトンアルデヒドが生成する。また、クロトンアルデヒドは反応槽1内で水素と反応してブタノールが生成し、このブタノールは酢酸と反応して酢酸ブチルとなる。2-エチルクロトンアルデヒドはクロトンアルデヒドと比べて過マンガン酸カリウム試験値に与える影響は小さく、酢酸ブチルは過マンガン酸カリウム試験値に全く影響を与えない。したがって、酢酸の品質がより向上する傾向となる。なお、2-エチルクロトンアルデヒド、酢酸ブチルの沸点は、それぞれ137℃、126℃と酢酸の沸点(117℃)よりも高いため、蒸留塔3の還流比を上げると、塔頂濃度が下がるため、蒸留塔3への仕込液供給位置より上のサイドカットや缶出液に濃縮されやすい。
そして本実施形態では、有機相の一部をライン31,50,58を通じて蒸留塔10(脱クロトンアルデヒド塔)に導入し、蒸留によりクロトンアルデヒドを分離除去する。この蒸留は連続式(連続運転)、バッチ式(バッチ処理)のいずれで行ってもよい。反応系におけるクロトンアルデヒドの生成が非常に少ない場合は、エネルギーコストの節減等のため、前記水相や有機相にクロトンアルデヒドがある程度蓄積した時点で、バッチ処理によりクロトンアルデヒドを分離除去することが好ましい。また、連続運転を行う場合、処理量(仕込量)を変化させて、品質維持と省蒸気を両立させることもできる。蒸留塔10(脱クロトンアルデヒド塔)における処理量は、蒸留塔3(第1蒸留塔;脱低沸塔)仕込量を100質量部とした場合、例えば0.0001~50質量部(例えば0.001~30質量部)であってもよく、或いは0.01~10質量部(例えば0.1~5質量部)であってもよい。蒸留塔10は、例えば、棚段塔及び充填塔などの精留塔よりなる。蒸留塔10の理論段は例えば1~100段、好ましくは2~50段、より好ましくは4~30段、さらに好ましくは5~20段(例えば6~15段)である。蒸留を連続式で行う場合、蒸留塔10への供給液の仕込み位置は、蒸留塔の高さ方向の中間位置(塔頂から下第1段目と塔底から上第1段目の間)が好ましいが、上方から20%下~80%下(2/10~8/10)程度でもよい。仕込位置が下過ぎるとヨウ化メチルのロスが増加し、上過ぎるとクロトンアルデヒド除去量(及びアルカン類除去量)が低下する。蒸留塔10への供給液(仕込液)中のクロトンアルデヒド濃度は、通常0.01~50質量ppm(例えば0.1~50質量ppm)、好ましくは0.3~30質量ppm、より好ましくは0.5~10質量ppm、さらに好ましくは0.8~7.0質量ppm(例えば1.0~5.0質量ppm)である。蒸留塔10の塔頂蒸気はライン59を通じてコンデンサ10aに導入され凝縮される。凝縮液の一部はライン61を通じて蒸留塔10に還流され、凝縮液の残りはライン62を通じて留出液として抜き取られる。留出液は、主にヨウ化メチル、酢酸メチルを含み、ジメチルエーテルや低沸アルカン類なども含む。留出液は、例えばデカンタ4や反応槽1にリサイクルすることができる。塔頂蒸気のうちコンデンサ10aで凝縮されなかったガス成分はライン63を通じて、例えばスクラバーシステム8に送られる。蒸留塔10の塔底からはライン60を通じて缶出液が抜き取られる。缶出液は、主にクロトンアルデヒド、2-エチルクロトンアルデヒド、酢酸ブチル、アルカン類などの高沸点不純物、及び酢酸を含む。この缶出液は通常廃棄される。有機相中に微量含まれている水は、塔頂に濃縮させても塔底から抜き取ってもよい。なお、有機相を蒸留塔10に導入することに加えて、又はその代わりに、水相をライン30,51,58を通じて蒸留塔10に導入してもよい。この場合、蒸留塔10の塔頂からは、水を含む留出液が得られ、塔底からは、クロトンアルデヒドなどの高沸点不純物、及び酢酸を含む缶出液が得られる。このように、前記水相及び/又は有機相を蒸留塔10で処理することによりクロトンアルデヒドを効率よく除去でき、それにより製品酢酸の過マンガン酸カリウム試験値を向上できるので、オゾン処理設備等の大掛かりな設備の撤廃又は小規模化、蒸気代や電気代の削減を図ることができる。蒸留塔10の還流比(還流量/留出量)は、例えば0.01以上、好ましくは0.05以上、より好ましくは0.5以上、さらに好ましくは5以上、特に好ましくは20以上(例えば30以上)である。蒸留塔10の還流比の上限は、例えば1000(或いは100)である。蒸留塔10の還流比が大きすぎると、塔底に濃縮させていたクロトンアルデヒドが逆に塔頂に濃縮され、より沸点の高い酢酸の濃度が高くなるので、蒸留塔10の還流比は100以下が好ましい。クロトンアルデヒドを塔底から抜き取ることから、蒸留塔10の留出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)は、例えば1未満、好ましくは0.95以下、より好ましくは0.80以下、さらに好ましくは0.70以下、特に好ましくは0.60以下(例えば0.50以下、とりわけ0.30以下、中でも0.20以下)である。また、蒸留塔10の缶出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)は、例えば1より大きく、好ましくは1.2以上、より好ましくは1.5以上、さらに好ましくは2.0以上、特に好ましくは3.0以上(例えば4.0以上、とりわけ5.0以上)、なかんずく10以上(例えば20以上)である。
好ましい態様では、アセトアルデヒド分離除去システム9を用いたアセトアルデヒド分離除去工程では、有機相及び/又は水相に含まれるアセトアルデヒドを公知の方法、例えば、蒸留、抽出又はこれらの組み合わせにより分離除去する。分離されたアセトアルデヒドはライン53を通じて装置外へ排出される。また、有機相及び/又は水相に含まれる有用成分(例えばヨウ化メチルなど)は、ライン52,23を通じて反応槽1へとリサイクルされて再利用される。
図2はアセトアルデヒド分離除去システムの一例を示す概略フロー図である。このフローによれば、例えば前記有機相をアセトアルデヒド分離除去工程にて処理する場合は、有機相をライン101を通じて蒸留塔(第1脱アセトアルデヒド塔)91に供給して蒸留し、アセトアルデヒドに富むオーバーヘッド流(ライン102)と、ヨウ化メチルに富む残液流(ライン103)とに分離する。前記オーバーヘッド流をコンデンサ91aにて凝縮させ、凝縮液の一部を蒸留塔91の塔頂部に還流させ(ライン104)、凝縮液の他の部分を抽出塔92に供給する(ライン105)。前記抽出塔92に供給された凝縮液はライン109から導入された水によって抽出処理される。抽出処理により得られた抽出液はライン107を通じて蒸留塔(第2脱アセトアルデヒド塔)93に供給して蒸留し、アセトアルデヒドに富むオーバーヘッド流(ライン112)と水に富む残液流(ライン113)とに分離する。そして、アセトアルデヒドに富むオーバーヘッド流をコンデンサ93aにて凝縮させ、凝縮液の一部を蒸留塔93の塔頂部に還流させ(ライン114)、凝縮液の他の部分は系外に排出する(ライン115)。また、第1脱アセトアルデヒド塔91の缶出液であるヨウ化メチルに富む残液流、抽出塔92で得られたヨウ化メチルに富むラフィネート(ライン108)、及び第2脱アセトアルデヒド塔93の缶出液である水に富む残液流は、それぞれ、ライン103,111,113を通じて反応槽1へリサイクルされるか、あるいはプロセスの適宜な箇所にリサイクルされ、再利用される。例えば、抽出塔92で得られたヨウ化メチルに富むラフィネートはライン110を通じて蒸留塔91にリサイクルすることができる。113の液は、通常、排水として外部に排出される。コンデンサ91a、93aで凝縮しなかったガス(ライン106,116)はスクラバーシステム8で吸収処理されるか、あるいは廃棄処分される。
また、図2のフローにより前記水相をアセトアルデヒド分離除去工程にて処理する場合は、例えば、水相をライン101を通じて蒸留塔(第1脱アセトアルデヒド塔)91に供給して蒸留し、アセトアルデヒドに富むオーバーヘッド流(ライン102)と、水に富む残液流(ライン103)とに分離する。前記オーバーヘッド流をコンデンサ91aにて凝縮させ、凝縮液の一部を蒸留塔91の塔頂部に還流させ(ライン104)、凝縮液の他の部分を抽出塔92に供給する(ライン105)。前記抽出塔92に供給された凝縮液はライン109から導入された水によって抽出処理される。抽出処理により得られた抽出液はライン107を通じて蒸留塔(第2脱アセトアルデヒド塔)93に供給して蒸留し、アセトアルデヒドに富むオーバーヘッド流(ライン112)と水に富む残液流(ライン113)とに分離する。そして、アセトアルデヒドに富むオーバーヘッド流をコンデンサ93aにて凝縮させ、凝縮液の一部を蒸留塔93の塔頂部に還流させ(ライン114)、凝縮液の他の部分は系外に排出する(ライン115)。また、第1脱アセトアルデヒド塔91の缶出液である水に富む残液流、抽出塔92で得られたヨウ化メチルに富むラフィネート(ライン108)、及び第2脱アセトアルデヒド塔93の缶出液である水に富む残液流は、それぞれ、ライン103,111,113を通じて反応槽1へリサイクルされるか、あるいはプロセスの適宜な箇所にリサイクルされ、再利用される。例えば、抽出塔92で得られたヨウ化メチルに富むラフィネートはライン110を通じて蒸留塔91にリサイクルすることができる。113の液は、通常、排水として外部に排出される。コンデンサ91a、93aで凝縮しなかったガス(ライン106,116)はスクラバーシステム8で吸収処理されるか、あるいは廃棄処分される。
前記の水、酢酸(AC)、ヨウ化メチル(MeI)及びアセトアルデヒド(AD)を少なくとも含むプロセス流に由来するアセトアルデヒドは、上記方法のほか、抽出蒸留を利用して分離除去することもできる。例えば、前記プロセス流を分液させて得られた有機相及び/又は水相(仕込液)を蒸留塔(抽出蒸留塔)に供給するとともに、蒸留塔内のヨウ化メチル及びアセトアルデヒドが濃縮される濃縮域(例えば、塔頂から仕込液供給位置までの空間)に抽出溶媒(通常、水)を導入し、前記濃縮域から降下する液(抽出液)を側流(サイドカット流)として抜き取り、この側流を水相と有機相とに分液させ、前記水相を蒸留することによりアセトアルデヒドを系外に排出することができる。なお、蒸留塔内に比較的多くの水が存在する場合は、前記抽出溶媒を蒸留塔に導入することなく、前記濃縮域から降下する液を側流として抜き取ってもよい。例えば、この蒸留塔に前記濃縮域から降下する液(抽出液)を受けることのできるユニット(チムニートレイなど)を配設し、このユニットで受けた液(抽出液)を側流として抜き取ることができる。抽出溶媒の導入位置は前記仕込液の供給位置よりも上方が好ましく、より好ましくは塔頂付近である。側流の抜き取り位置は、塔の高さ方向において、抽出溶媒の導入位置よりも下方であって、前記仕込液の供給位置よりも上方が好ましい。この方法によれば、抽出溶媒(通常、水)によって、ヨウ化メチルとアセトアルデヒドの濃縮物からアセトアルデヒドを高濃度に抽出できるとともに、抽出溶媒の導入部位とサイドカット部位との間を抽出域として利用するので、少量の抽出溶媒によりアセトアルデヒドを効率よく抽出できる。そのため、例えば、抽出蒸留による抽出液を蒸留塔(抽出蒸留塔)の塔底部から抜き取る方法と比較して蒸留塔の段数を大幅に低減できるとともに、蒸気負荷も低減できる。また、少量の抽出溶媒を用いて、上記図2の脱アセトアルデヒド蒸留と水抽出とを組み合わせる方法よりも、水抽出液中のアセトアルデヒドに対するヨウ化メチルの割合(MeI/AD比)を小さくできるので、ヨウ化メチルの系外へのロスを抑制できる条件でアセトアルデヒドを除去可能である。前記側流中のアセトアルデヒド濃度は、前記仕込液及び缶出液(塔底液)中のアセトアルデヒド濃度よりも格段に高い。また、前記側流中のヨウ化メチルに対するアセトアルデヒドの割合は、仕込液及び缶出液中のヨウ化メチルに対するアセトアルデヒドの割合よりも大きい。なお、前記側流を分液させて得られる有機相(ヨウ化メチル相)をこの蒸留塔にリサイクルしてもよい。この場合、前記側流を分液させて得られる有機相のリサイクル位置は、塔の高さ方向において前記側流抜き取り位置よりも下方が好ましく、前記仕込液の供給位置よりも上方が好ましい。また、前記プロセス流を分液させて得られた有機相を構成する成分(例えば酢酸メチルなど)に対する混和性溶媒をこの蒸留塔(抽出蒸留塔)に導入してもよい。前記混和性溶媒として、例えば、酢酸、酢酸エチルなどが挙げられる。前記混和性溶媒の導入位置は、塔の高さ方向において、前記側流抜き取り位置よりも下方が好ましく、前記仕込液の供給位置よりも上方が好ましい。また、前記混和性溶媒の導入位置は、上記側流を分液させて得られる有機相をこの蒸留塔にリサイクル場合はそのリサイクル位置よりも下方が好ましい。前記側流を分液させて得られる有機相を蒸留塔へリサイクルしたり、前記混和性溶媒を蒸留塔へ導入することにより、側流として抜き取られる抽出液中の酢酸メチル濃度を低下させることができ、前記抽出液を分液させて得られる水相中の酢酸メチル濃度を低減でき、もって水相へのヨウ化メチルの混入を抑制できる。
前記蒸留塔(抽出蒸留塔)の理論段は、例えば1~100段、好ましくは2~50段、さらに好ましくは3~30段、特に好ましくは5~20段であり、従来の脱アセトアルデヒドに用いる蒸留塔や抽出蒸留塔の80~100段と比較して、少ない段数で効率よくアセトアルデヒドを分離除去できる。抽出溶媒の流量と仕込液(プロセス流を分液させて得られた有機相及び/又は水相)の流量との質量割合(前者/後者)は、0.0001/100~100/100の範囲から選択してもよいが、通常、0.0001/100~20/100、好ましくは0.001/100~10/100、より好ましくは0.01/100~8/100、さらに好ましくは0.1/100~5/100である。前記蒸留塔(抽出蒸留塔)の塔頂温度は、例えば、15~120℃、好ましくは20~90℃、より好ましくは20~80℃、さらに好ましくは25~70℃である。塔頂圧力は、絶対圧力で、例えば0.1~0.5MPa程度である。前記蒸留塔(抽出蒸留塔)の他の条件は、従来の脱アセトアルデヒドに用いる蒸留塔や抽出蒸留塔と同様であってもよい。
図3は上記の抽出蒸留を利用したアセトアルデヒド分離除去システムの一例を示す概略フロー図である。この例では、前記プロセス流を分液させて得られた有機相及び/又は水相(仕込液)を供給ライン201を通じて蒸留塔94の中段(塔頂と塔底との間の位置)に供給するとともに、塔頂付近より水をライン202を通じて導入し、蒸留塔94(抽出蒸留塔)内で抽出蒸留を行う。蒸留塔94の前記仕込液の供給位置より上方には、塔内のヨウ化メチル及びアセトアルデヒドが濃縮される濃縮域から降下する液(抽出液)を受けるためのチムニートレイ200が配設されている。この抽出蒸留においては、チムニートレイ200上の液を好ましくは全量抜き取り、ライン208を通じてデカンタ95に導入して分液させる。デカンタ95における水相(アセトアルデヒドを含む)をライン212を通じて冷却クーラー95aに導入して冷却し、水相に溶解していたヨウ化メチルを2相分離させ、デカンタ96にて分液させる。デカンタ96における水相をライン216を通じて蒸留塔97(脱アセトアルデヒド塔)に供給して蒸留し、塔頂の蒸気をライン217を通じてコンデンサ97aに導いて凝縮させ、凝縮液(主にアセトアルデヒド及びヨウ化メチル)の一部は蒸留塔97の塔頂に還流させ、残りは廃棄するか、あるいはライン220を通じて蒸留塔98(抽出蒸留塔)に供給する。蒸留塔98の塔頂付近から水をライン222を通じて導入し、抽出蒸留する。塔頂の蒸気はライン223を通じてコンデンサ98aに導いて凝縮させ、凝縮液(主にヨウ化メチル)の一部は塔頂部に還流させ、残りはライン226を通じて反応系にリサイクルするが、系外除去する場合もある。デカンタ95における有機相(ヨウ化メチル相)は、好ましくは全量をライン209,210を通じて蒸留塔94のチムニートレイ200の位置より下方にリサイクルする。デカンタ95の水相の一部、及びデカンタ96の有機相は、それぞれ、ライン213,210、ライン214,210を通じて蒸留塔94にリサイクルするが、リサイクルしない場合もある。デカンタ95の水相の一部は蒸留塔94における抽出溶媒(水)として利用してもよい。デカンタ96の水相の一部はライン210を通じて蒸留塔94にリサイクルしてもよい。場合により(例えば、前記仕込液中に酢酸メチルが含まれている場合など)、前記プロセス流を分液させて得られた有機相を構成する成分(例えば酢酸メチルなど)に対する混和性溶媒(酢酸、酢酸エチル等)をライン215を通じて蒸留塔94に仕込み、蒸留効率を向上させることもできる。混和性溶媒の蒸留塔94への供給位置は前記仕込液供給部(ライン201の接続部)よりも上方で且つリサイクルライン210の接続部よりも下方である。蒸留塔94の缶出液は反応系にリサイクルする。蒸留塔94の塔頂の蒸気はライン203を通じてコンデンサ94aに導いて凝縮させ、凝縮液をデカンタ99で分液させ、有機相はライン206を通じて蒸留塔94の塔頂部に還流させ、水相はライン207を通じてデカンタ95に導く。蒸留塔97の缶出液(水が主成分)や蒸留塔98(抽出蒸留塔)の缶出液(少量のアセトアルデヒドを含む水)は、それぞれライン218,224を通じて系外除去するか、反応系にリサイクルする。コンデンサ94a、97a,98aで凝縮しなかったガス(ライン211,221,227)はスクラバーシステム8で吸収処理されるか、あるいは廃棄処分される。
図4は上記の抽出蒸留を利用したアセトアルデヒド分離除去システムの他の例を示す概略フロー図である。この例では、蒸留塔94の塔頂の蒸気の凝縮液をホールドタンク100に導き、その全量をライン206を通じて蒸留塔94の塔頂部に還流する。これ以外は図3の例と同様である。
図5は上記の抽出蒸留を利用したアセトアルデヒド分離除去システムのさらに他の例を示す概略フロー図である。この例では、チムニートレイ200上の液を全量抜き取り、ライン208を通じて、デカンタ95を経ることなく、直接冷却クーラー95aに導入して冷却し、デカンタ96に供給する。これ以外は図4の例と同様である。
前記図1において、コンデンサ3aで生じるガス分は、例えば、一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などを含み、コンデンサ3aからライン32,15を通じてスクラバーシステム8へと供給される。スクラバーシステム8に至ったガス分中のヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などは、スクラバーシステム8にて吸収液に吸収される。ヨウ化水素は吸収液中のメタノールまたは酢酸メチルとの反応によってヨウ化メチルが生じる。そして、当該ヨウ化メチル等の有用成分を含有する液分がスクラバーシステム8からリサイクルライン48,23を通じて反応槽1へとリサイクルされて再利用される。
蒸留塔3の塔底部から抜き取られる缶出液は、酢酸よりも沸点の高い成分(高沸点成分)を蒸留塔3からの上記のオーバーヘッド流及び側流と比較して多く含み、例えば、プロピオン酸、並びに、飛沫同伴の上述の触媒や助触媒を含む。この缶出液には、酢酸、ヨウ化メチル、酢酸メチル、及び水なども含まれる。本実施形態では、このような缶出液の一部は、ライン25,26を通じて蒸発槽2へと連続的に導入されてリサイクルされ、缶出液の他の一部は、ライン25,23を通じて反応槽1へと連続的に導入されてリサイクルされる。
好ましい態様では、蒸留塔3の塔底部から抜き取られる缶出液は、酢酸よりも沸点の高い成分(高沸点成分)を蒸留塔3からの上記のオーバーヘッド流及び側流と比較して多く含み、例えば、プロピオン酸、並びに、飛沫同伴の上述の触媒や助触媒を含む。この缶出液には、酢酸、ヨウ化メチル、酢酸メチル、クロトンアルデヒド、2-エチルクロトンアルデヒド、酢酸ブチル及び水なども含まれる。本実施形態では、このような缶出液の一部は、ライン25,26を通じて蒸発槽2へと連続的に導入されてリサイクルされ、缶出液の他の一部は、ライン25,23を通じて反応槽1へと連続的に導入されてリサイクルされる。
蒸留塔3から側流として連続的に抜き取られる第1酢酸流は、蒸留塔3に連続的に導入される蒸気流よりも酢酸が富化されている。すなわち、第1酢酸流の酢酸濃度は前記蒸気流の酢酸濃度よりも高い。第1酢酸流の酢酸濃度は、例えば90~99.9質量%、好ましくは93~99質量%である。また、第1酢酸流は、酢酸に加えて、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、ジメチルエーテル、メタノール、アセトアルデヒド、ギ酸及びプロピオン酸などを含みうる。第1酢酸流において、ヨウ化メチル濃度は、例えば8質量%以下(例えば0.1~8質量%)、好ましくは0.2~5質量%、水濃度は、例えば8質量%以下(例えば0.1~8質量%)、好ましくは0.2~5質量%、酢酸メチル濃度は、例えば8質量%以下(例えば0.1~8質量%)、好ましくは0.2~5質量%である。なお、蒸留塔3に対するライン27の連結位置は、蒸留塔3の高さ方向において、図示されているように、蒸留塔3に対するライン21の連結位置より上方であってもよいが、蒸留塔3に対するライン21の連結位置より下方であってもよいし、蒸留塔3に対するライン21の連結位置と同じであってもよい。蒸留塔3からの第1酢酸流は、所定の流量で連続的に、ライン27を通じて次の蒸留塔5へと導入される。なお、蒸留塔3の側流として抜き取られる第1酢酸流や、蒸留塔3の塔底液あるいは蒸留塔3の塔底部の蒸気の凝縮液は、そのまま製品酢酸としてもよく、また、蒸留塔5を経ずに、蒸留塔6に直接連続的に導入することもできる。
好ましい態様では、蒸留塔3から側流として連続的に抜き取られる第1酢酸流は、蒸留塔3に連続的に導入される蒸気流よりも酢酸が富化されている。すなわち、第1酢酸流の酢酸濃度は前記蒸気流の酢酸濃度よりも高い。第1酢酸流の酢酸濃度は、例えば90~99.9質量%、好ましくは93~99質量%である。また、第1酢酸流は、酢酸に加えて、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、ジメチルエーテル、メタノール、アセトアルデヒド、クロトンアルデヒド、2-エチルクロトンアルデヒド、酢酸ブチル、ギ酸及びプロピオン酸、並びに、ヨウ化エチル、ヨウ化プロピル、ヨウ化ブチル、ヨウ化ヘキシル及びヨウ化デシルなどのヨウ化アルキル等を含む。第1酢酸流において、ヨウ化メチル濃度は、例えば0.1~8質量%、好ましくは0.2~5質量%、水濃度は、例えば0.1~8質量%、好ましくは0.2~5質量%、酢酸メチル濃度は、例えば0.1~8質量%、好ましくは0.2~5質量%である。
本発明では、第1酢酸流中のクロトンアルデヒド濃度を2.2質量ppm以下に制御する。こうすることで、脱水工程において水を分離除去して得られる第2酢酸流中のクロトンアルデヒド濃度を低減でき、第2酢酸流の過マンガン酸カリウム試験値を高めることができる。このため、過マンガン酸カリウム試験値の向上のために従来用いられてきた脱アセトアルデヒド設備やオゾン処理設備を小規模化したり省略化できる。また、脱低沸塔及び脱水塔を経るだけで過マンガン酸カリウム試験値の高い酢酸を得ることができるので、その後の脱高沸塔や製品塔(仕上塔)を小規模化乃至省略が可能となる。第1酢酸流中のクロトンアルデヒド濃度は、好ましくは2.0質量ppm以下、より好ましくは1.8質量ppm以下、さらに好ましくは1.5質量ppm以下、特に好ましくは1.2質量ppm以下(例えば1.0質量ppm以下、或いは0.8質量ppm以下、なかんずく0.5質量ppm以下)である。なお、後述の蒸留塔5の還流比を0.1以上(特に0.3以上、好ましくは0.32以上)に制御する場合は、第1酢酸流中のクロトンアルデヒド濃度は、上記に限定されず、例えば5質量ppm以下(特に2.5質量ppm以下)であってもよいが、好ましくは前記の範囲である。
第1酢酸流における2-エチルクロトンアルデヒド濃度は、例えば3.0質量ppm以下、好ましくは2.0質量ppm以下、より好ましくは1.0質量ppm以下、さらに好ましくは0.8質量ppm以下(例えば0.5質量ppm以下)である。第1酢酸流におけるクロトンアルデヒド濃度CCR(質量ppm)と2-エチルクロトンアルデヒド濃度CECR(質量ppm)との比(CCR/CECR)は、例えば50以下、好ましくは35以下、より好ましくは25以下、さらに好ましくは20以下、特に好ましくは15以下である。上記比の下限は、例えば0.5、0.3、0.1、0.05、0.01であってもよい。本発明では、第1酢酸流におけるクロトンアルデヒド濃度と2-エチルクロトンアルデヒド濃度を同時に制御して、クロトンアルデヒド濃度CCR(質量ppm)と2-エチルクロトンアルデヒド濃度CECR(質量ppm)との比(CCR/CECR)を調節してもよい。すなわち前記分離工程において、酢酸との沸点差を利用して効率的に分離することにより、脱低沸塔(第1蒸留塔)の塔頂凝縮液にクロトンアルデヒドを濃縮させ、側流又は缶出流として得られる第1酢酸流中のクロトンアルデヒド濃度を低減するとともに、2-エチルクロトンアルデヒド濃度を調節してもよい。これにより第1酢酸流におけるクロトンアルデヒド濃度と2-エチルクロトンアルデヒド濃度を同時に制御することが可能となる。なお、クロトンアルデヒドの方が2-エチルクロトンアルデヒドよりも過マンガン酸カリウム試験値に与える負の影響が大きいので、この比(CCR/CECR)が小さいほど、製品酢酸の過マンガン酸カリウム試験値が向上する傾向となる。
第1酢酸流における酢酸ブチル濃度は、例えば15質量ppm以下、好ましくは12質量ppm以下、より好ましくは10質量ppm以下、さらに好ましくは8質量ppm以下である。第1酢酸流における酢酸ブチル濃度の下限は、例えば0質量ppm(或いは0.1質量ppm)である。第1酢酸流におけるクロトンアルデヒド濃度CCR(質量ppm)と酢酸ブチル濃度CBA(質量ppm)との比(CCR/CBA)は、例えば2.0以下、好ましくは1.5以下、より好ましくは1.0以下、さらに好ましくは0.6以下である。上記比の下限は、例えば0.1、0.05、0.02、0.01、0.001であってもよい。酢酸ブチルは過マンガン酸カリウム試験に対して無害であるため、この比(CCR/CBA)が小さいほど、製品酢酸の過マンガン酸カリウム試験値が向上する傾向となる。
また、本発明では、第1蒸留塔の還流比を特定値以上とするので、クロトンアルデヒドはこの蒸留塔の塔頂部に濃縮される。このため、第1蒸留塔の側流として抜き取られる第1酢酸流中のクロトンアルデヒド濃度は低い。第1酢酸流におけるクロトンアルデヒド濃度は、例えば1.3質量ppm以下、好ましくは1.0質量ppm以下、より好ましくは0.85質量ppm以下、特に好ましくは0.5質量ppm以下(例えば0.25質量ppm以下)である。第1酢酸流におけるクロトンアルデヒド濃度を1.3質量ppm以下とすることにより、後述の第2酢酸流中のクロトンアルデヒド濃度を著しく低減できるとともに、第2酢酸流の過マンガン酸カリウム試験値を大幅に向上できる。第1酢酸流におけるクロトンアルデヒド濃度の下限値は、0質量ppmであってもよいが、例えば0.01質量ppm(或いは0.10質量ppm)であってもよい。第1酢酸流における2-エチルクロトンアルデヒド濃度は、例えば1.0質量ppm以下、好ましくは0.50質量ppm以下である。第1酢酸流における2-エチルクロトンアルデヒド濃度を1.0質量ppm以下とすることにより、後述の第2酢酸流の過マンガン酸カリウム試験値をより向上できる。第1酢酸流における2-エチルクロトンアルデヒド濃度の下限値は、例えば0質量ppm、或いは0.01質量ppm(又は0.10質量ppm)であってもよい。第1酢酸流における酢酸ブチル濃度は、例えば15質量ppm以下、好ましくは10質量ppm以下、より好ましくは8質量ppm以下、特に好ましくは5質量ppm以下(例えば3質量ppm以下)である。第1酢酸流における酢酸ブチル濃度を15質量ppm以下とすることにより、後述の第2酢酸流の純度を向上できる。第1酢酸流における酢酸ブチル濃度の下限値は、例えば0質量ppm、或いは0.1質量ppm(例えば0.3質量ppm又は1.0質量ppm)であってもよい。
なお、好ましい態様では、蒸留塔3に対するライン27の連結位置は、蒸留塔3の高さ方向において、図示されているように、蒸留塔3に対するライン21の連結位置より上方であってもよいが、蒸留塔3に対するライン21の連結位置より下方であってもよいし、蒸留塔3に対するライン21の連結位置と同じであってもよい。蒸留塔3からの第1酢酸流は、所定の流量で連続的に、ライン27を通じて次の蒸留塔5へと導入される。ライン27の材質蒸留塔5の材質(少なくとも接液、接ガス部の材質)は、ステンレス鋼であってもよいが、ヨウ化水素や酢酸による配管内部の腐食を抑制するため、ニッケル基合金やジルコニウム等の高耐腐食性金属とすることが好ましい。
なお、好ましい態様では、蒸留塔3の塔底部から抜き取られる缶出液、又は蒸留塔3から側流として抜き取られる第1酢酸流は、品質が許容できればそのまま製品酢酸とすることもできる。
ライン27を通流する第1酢酸流に、ライン55(水酸化カリウム導入ライン)を通じて、水酸化カリウムを供給ないし添加することができる。水酸化カリウムは、例えば水溶液等の溶液として供給ないし添加できる。第1酢酸流に対する水酸化カリウムの供給ないし添加によって第1酢酸流中のヨウ化水素を減少できる。具体的には、ヨウ化水素は水酸化カリウムと反応してヨウ化カリウムと水が生じる。そのことによって、ヨウ化水素に起因する蒸留塔等の装置の腐食を低減できる。なお、水酸化カリウムは本プロセスにおいてヨウ化水素が存在する適宜な場所に供給ないし添加することができる。なお、プロセス中に添加された水酸化カリウムは酢酸とも反応して酢酸カリウムを生じさせる。
蒸留塔5は、第2蒸留工程を行うためのユニットであり、本実施形態ではいわゆる脱水塔に位置付けられる。第2蒸留工程は、蒸留塔5に連続的に導入される第1酢酸流を蒸留処理して酢酸を更に精製するための工程である。蒸留塔5の材質(少なくとも接液、接ガス部の材質)は、ニッケル基合金又はジルコニウムとすることが好ましい。このような材質を用いることにより、ヨウ化水素や酢酸による蒸留塔内部の腐食を抑制でき、腐食金属イオンの溶出を抑制できる。
蒸留塔5の仕込液は、第1酢酸流の少なくとも一部(ライン27)を含んでおり、第1酢酸流以外の流れ[例えば下流工程からのリサイクル流(例えばライン42)]が加わっていてもよい。
蒸留塔5は、例えば、棚段塔及び充填塔などの精留塔よりなる。蒸留塔5として棚段塔を採用する場合、その理論段は例えば5~50段である。本発明では、蒸留塔5の還流比を0.1以上(特に0.3以上、好ましくは0.32以上)に制御する。蒸留塔5の還流比を0.1以上(特に0.3以上、好ましくは0.32以上)に制御すると、クロトンアルデヒドは酢酸より沸点が低いので、脱水塔内に流入したクロトンアルデヒドを塔頂に濃縮でき、側流又は缶出流として得られる第2酢酸流中のクロトンアルデヒド濃度を著しく低減できる。また、クロトンアルデヒドが濃縮された蒸留塔5塔頂のオーバーヘッド流(第2オーバーヘッド流)を反応槽1にリサイクルすると、上記のようにクロトンアルデヒドは過マンガン酸カリウム試験値にとって害の少ない2-エチルクロトンアルデヒド及び無害の酢酸ブチルに変換されるので、酢酸の品質がより向上する。
蒸留塔5の還流比は、好ましくは0.1以上(特に0.3以上、例えば0.32以上)、より好ましくは0.35以上、さらに好ましくは0.4以上、特に好ましくは1以上、なかんずく2以上である。なお、第1酢酸流中のクロトンアルデヒド濃度を2.2質量ppm以下に制御する場合は、蒸留塔5の還流比は、例えば0.1以上(例えば0.2以上、特に0.3以上、例えば0.32以上)であってもよい。蒸留塔5の還流比の上限は、例えば3000(特に1000)であり、100或いは10程度であってもよい。
好ましい態様では、蒸留塔5の還流比は、例えば0.1以上(特に0.3以上、例えば0.32以上)、好ましくは1.0以上、より好ましくは5.0以上、さらに好ましくは10以上(例えば12以上)である。蒸留塔5の還流比の上限は、例えば3000(又は1000)、或いは200(又は100)程度であってもよい。蒸留塔5の還流比を0.1以上(特に0.3以上、好ましくは0.32以上)にすると、クロトンアルデヒドは酢酸より沸点が低いので、蒸留塔5内に流入したクロトンアルデヒドを塔頂に濃縮でき、側流又は缶出流として得られる第2酢酸流中のクロトンアルデヒド濃度を著しく低減できる。また、クロトンアルデヒドが濃縮された蒸留塔5塔頂のオーバーヘッド流(第2オーバーヘッド流)を反応槽1にリサイクルすると、前記のようにクロトンアルデヒドは過マンガン酸カリウム試験値にとって害の少ない2-エチルクロトンアルデヒド及び無害の酢酸ブチルに変換されるので、酢酸の品質がより向上する。
第2蒸留工程にある蒸留塔5の内部において、塔頂圧力は、例えば0.01~0.50MPa(ゲージ圧)、好ましくは0.10~0.28MPa(ゲージ圧)、より好ましくは0.15~0.23MPa(ゲージ圧)、さらに好ましくは0.17~0.21MPa(ゲージ圧)である。塔底圧力は、塔頂圧力より高く、例えば0.13~0.31MPa(ゲージ圧)、好ましくは0.18~0.26MPa(ゲージ圧)、さらに好ましくは0.20~0.24MPa(ゲージ圧)である。第2蒸留工程にある蒸留塔5の内部において、塔頂温度175℃未満(好ましくは165℃未満)、塔底温度185℃未満(好ましくは175℃未満)であることが好ましい。蒸留塔5の塔頂温度及び塔底温度を上記の範囲にすることにより、ヨウ化水素や酢酸による蒸留塔内部の腐食がより抑制され、腐食金属イオンの溶出をより抑制できる。塔頂温度は、より好ましくは163℃未満、さらに好ましくは161℃未満、特に好ましくは160℃未満であり、とりわけ155℃未満が好ましい。塔頂温度の下限は、例えば110℃である。塔底温度は、より好ましくは173℃未満、さらに好ましくは171℃未満、特に好ましくは166℃未満である。塔底温度の下限は、例えば120℃である。
好ましい態様において、蒸留塔5は、第2蒸留工程を行うためのユニットであり、本実施形態ではいわゆる脱水塔に位置付けられる。第2蒸留工程は、蒸留塔5に連続的に導入される第1酢酸流を蒸留処理して酢酸を更に精製するための工程である。蒸留塔5は、例えば、棚段塔及び充填塔などの精留塔よりなる。蒸留塔5として棚段塔を採用する場合、その理論段は例えば5~50段であり、還流比は理論段数に応じて例えば0.2~3000である。第2蒸留工程にある蒸留塔5の内部において、塔頂圧力は例えば150~250kPa(ゲージ圧)に設定され、塔底圧力は、塔頂圧力より高く、例えば160~290kPa(ゲージ圧)に設定される。第2蒸留工程にある蒸留塔5の内部において、塔頂温度は、例えば、設定塔頂圧力での水の沸点より高く且つ酢酸の沸点より低い温度であって130~160℃に設定され、塔底温度は、例えば、設定塔底圧力での酢酸の沸点以上の温度であって150~175℃に設定される。
蒸留塔5の塔頂部からは、オーバーヘッド流(第2オーバーヘッド流)としての蒸気がライン33に連続的に抜き取られる。蒸留塔5の塔底部からは、缶出液がライン34に連続的に抜き取られる。5bはリボイラーである。蒸留塔5における塔頂部と塔底部との間の高さ位置から、側流(液体または気体)がライン34に連続的に抜き取られてもよい。
蒸留塔5の塔頂部から抜き取られる蒸気は、酢酸よりも沸点の低い成分(低沸点成分)を蒸留塔5からの上記の缶出液と比較して多く含み、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などを含む。このような蒸気は、ライン33を通じてコンデンサ5aへと連続的に導入される。
好ましい態様では、蒸留塔5の塔頂部から抜き取られる蒸気は、酢酸よりも沸点の低い成分(低沸点成分)を蒸留塔5からの上記の缶出液と比較して多く含み、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、クロトンアルデヒド及びギ酸などを含む。このような蒸気は、ライン33を通じてコンデンサ5aへと連続的に導入される。
コンデンサ5aは、蒸留塔5からの蒸気を、冷却して部分的に凝縮させることによって凝縮分とガス分とに分ける。凝縮分は、例えば水及び酢酸などを含む。凝縮分の一部は、コンデンサ5aからライン35を通じて蒸留塔5へと連続的に還流される。凝縮分の他の一部は、コンデンサ5aからライン35,36,23を通じて反応槽1へと連続的に導入され、リサイクルされる。また、コンデンサ5aで生じるガス分は、例えば一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などを含み、コンデンサ5aからライン37,15を通じてスクラバーシステム8へと供給される。スクラバーシステム8に至ったガス分中のヨウ化水素は、スクラバーシステム8にて吸収液に吸収され、吸収液中のヨウ化水素とメタノールまたは酢酸メチルとの反応によってヨウ化メチルが生じ、そして、当該ヨウ化メチル等の有用成分を含有する液分がスクラバーシステム8からリサイクルライン48,23を通じて反応槽1へとリサイクルされて再利用される。
蒸留塔5の塔底部から抜き取られる缶出液(あるいは側流)は、酢酸よりも沸点の高い成分(高沸点成分)を蒸留塔5からの上記のオーバーヘッド流と比較して多く含み、例えば、プロピオン酸、酢酸カリウム(ライン27等に水酸化カリウムを供給した場合)、並びに、飛沫同伴の上述の触媒や助触媒などを含む。この缶出液には酢酸も含まれうる。このような缶出液は、ライン34を通じて、第2酢酸流をなして次の蒸留塔6に連続的に導入されることとなる。
第2酢酸流は、蒸留塔5に連続的に導入される第1酢酸流よりも酢酸が富化されている。すなわち、第2酢酸流の酢酸濃度は第1酢酸流の酢酸濃度よりも高い。第2酢酸流の酢酸濃度は、第1酢酸流の酢酸濃度より高い限りにおいて、例えば99.1~99.99質量%である。また、第2酢酸流は、上記のように、酢酸に加えて、例えば、プロピオン酸、ヨウ化水素などを含みうる。本実施形態では、側流を抜き取る場合、蒸留塔5からの側流の抜き取り位置は、蒸留塔5の高さ方向において、蒸留塔5への第1酢酸流の導入位置よりも低い。
好ましい態様では、蒸留塔5の塔底部から抜き取られる缶出液あるいは塔の中間位置から抜き取られる側流(第2酢酸流)は蒸留塔5に連続的に導入される第1酢酸流よりも酢酸が富化されている。すなわち、第2酢酸流の酢酸濃度は第1酢酸流の酢酸濃度よりも高い。第2酢酸流の酢酸濃度は、第1酢酸流の酢酸濃度より高い限りにおいて、例えば99.1~99.99質量%である。本実施形態では、側流を抜き取る場合、蒸留塔5からの側流の抜き取り位置は、蒸留塔5の高さ方向において、蒸留塔5への第1酢酸流の導入位置よりも低い。
本発明においては、第2酢酸流は高い過マンガン酸カリウム試験値を有するので、そのまま製品酢酸とすることができる。しかしながら、微量の不純物[例えば、クロトンアルデヒド、2-エチルクロトンアルデヒド、酢酸ブチル、プロピオン酸、酢酸カリウム(ライン27等に水酸化カリウムを供給した場合)、ヨウ化水素、並びに、飛沫同伴の上述の触媒や助触媒など]を含みうる。そのため、この缶出液あるいは側流を、ライン34を通じて蒸留塔6に連続的に導入して蒸留してもよい。
第2酢酸流中のクロトンアルデヒド濃度は、例えば2.0質量ppm以下、好ましくは1.8質量ppm以下、より好ましくは1.5質量ppm以下、さらに好ましくは1.2質量ppm以下、特に好ましくは0.7質量ppm以下(例えば0.5質量ppm以下)である。第2酢酸流における2-エチルクロトンアルデヒド濃度は、例えば3.0質量ppm以下、好ましくは2.0質量ppm以下、より好ましくは1.0質量ppm以下、さらに好ましくは0.8質量ppm以下(例えば0.5質量ppm以下)である。第2酢酸流におけるクロトンアルデヒド濃度CCR(質量ppm)と2-エチルクロトンアルデヒド濃度CECR(質量ppm)との比(CCR/CECR)は、例えば50以下、好ましくは35以下、好ましくは25以下、より好ましくは20以下、さらに好ましくは15以下である。上記比の下限は、例えば0.5、0.3、0.1、0.05、0.01であってもよい。本発明では、第2酢酸流におけるクロトンアルデヒド濃度と2-エチルクロトンアルデヒド濃度を同時に制御して、クロトンアルデヒド濃度CCR(質量ppm)と2-エチルクロトンアルデヒド濃度CECR(質量ppm)との比(CCR/CECR)を調節してもよい。すなわち前記分離工程において、酢酸との沸点差を利用して、脱水塔(第2蒸留塔)の塔頂凝縮液にクロトンアルデヒドを濃縮させて、側流又は缶出流として得られる第2酢酸流中のクロトンアルデヒド濃度を低減させるとともに、2-エチルクロトンアルデヒド濃度を調節してもよい。これにより第2酢酸流におけるクロトンアルデヒド濃度と2-エチルクロトンアルデヒド濃度を同時に制御することが可能となる。なお、クロトンアルデヒドの方が2-エチルクロトンアルデヒドよりも過マンガン酸カリウム試験値に与える負の影響が大きいので、この比(CCR/CECR)が小さいほど、製品酢酸の過マンガン酸カリウム試験値が向上する。
第2酢酸流における酢酸ブチル濃度は、例えば15質量ppm以下、好ましくは12質量ppm以下、より好ましくは10質量ppm以下、さらに好ましくは8質量ppm以下である。第2酢酸流における酢酸ブチル濃度の下限は、例えば0質量ppm(或いは0.1質量ppm)である。第2酢酸流におけるクロトンアルデヒド濃度CCR(質量ppm)と酢酸ブチル濃度CBA(質量ppm)との比(CCR/CBA)は、例えば2.0以下、好ましくは1.5以下、より好ましくは1.0以下、さらに好ましくは0.6以下である。上記比の下限は、例えば0.1、0.05、0.02、0.01、0.001であってもよい。酢酸ブチルは過マンガン酸カリウム試験に対して無害であるため、この比(CCR/CBA)が小さいほど、製品酢酸の過マンガン酸カリウム試験値が向上する。
好ましい態様では、第2酢酸流中のクロトンアルデヒド濃度は、例えば0.98質量ppm以下、好ましくは0.80質量ppm以下、より好ましくは0.50質量ppm以下、さらに好ましくは0.30質量ppm以下、特に好ましくは0.17質量ppm以下である。第2酢酸流におけるクロトンアルデヒド濃度を0.98質量ppm以下とすることにより、第2酢酸流中のクロトンアルデヒド濃度を著しく低減できるとともに、第2酢酸流の過マンガン酸カリウム試験値を大幅に向上できる。第2酢酸流におけるクロトンアルデヒド濃度の下限値は0質量ppmであってもよいが、例えば0.01質量ppm(或いは0.10質量ppm)であってもよい。好ましい態様では、第2酢酸流における2-エチルクロトンアルデヒド濃度は、例えば1.0質量ppm以下、好ましくは0.50質量ppm以下、より好ましくは0.30質量ppm以下、さらに好ましくは0.20質量ppm以下である。第2酢酸流における2-エチルクロトンアルデヒド濃度を1.0質量ppm以下とすることにより、第2酢酸流の過マンガン酸カリウム試験値をより向上できる。第2酢酸流における2-エチルクロトンアルデヒド濃度の下限値は、例えば0質量ppm、或いは0.01質量ppm(例えば0.10質量ppm)であってもよい。
好ましい態様では、第2酢酸流における酢酸ブチル濃度は、例えば15質量ppm以下、好ましくは10質量ppm以下、より好ましくは8質量ppm以下、特に好ましくは5質量ppm以下(例えば3質量ppm以下)である。第2酢酸流における酢酸ブチル濃度を15質量ppm以下とすることにより、第2酢酸流の純度を向上できる。第2酢酸流における酢酸ブチル濃度の下限値は、例えば0質量ppm、或いは0.1質量ppm(例えば0.3質量ppm又は1.0質量ppm)であってもよい。
第2酢酸流の過マンガン酸カリウム試験値は、50分を超えることが好ましく、より好ましくは60分以上、さらに好ましくは100分以上、特に好ましくは120分以上(例えば180分以上、とりわけ240分以上、中でも360分以上)である。
ライン34を通流する第2酢酸流に、ライン56(水酸化カリウム導入ライン)を通じて、水酸化カリウムを供給ないし添加することができる。水酸化カリウムは、例えば水溶液等の溶液として供給ないし添加できる。第2酢酸流に対する水酸化カリウムの供給ないし添加によって第2酢酸流中のヨウ化水素を減少できる。具体的には、ヨウ化水素は水酸化カリウムと反応してヨウ化カリウムと水が生じる。そのことによって、ヨウ化水素に起因する蒸留塔等の装置の腐食を低減できる。
蒸留塔6は、第3蒸留工程を行うためのユニットであり、本実施形態ではいわゆる脱高沸塔に位置付けられる。第3蒸留工程は、蒸留塔6に連続的に導入される第2酢酸流を精製処理して酢酸を更に精製するための工程である。なお、本実施形態では必ずしも必要な工程ではない。蒸留塔6は、例えば、棚段塔及び充填塔などの精留塔よりなる。蒸留塔6として棚段塔を採用する場合、その理論段は例えば5~50段であり、還流比は理論段数に応じて例えば0.2~3000である。第3蒸留工程にある蒸留塔6の内部において、塔頂圧力は例えば-100~150kPa(ゲージ圧)に設定され、塔底圧力は、塔頂圧力より高く、例えば-90~180kPa(ゲージ圧)に設定される。第3蒸留工程にある蒸留塔6の内部において、塔頂温度は、例えば、設定塔頂圧力での水の沸点より高く且つ酢酸の沸点より低い温度であって50~150℃に設定され、塔底温度は、例えば、設定塔底圧力での酢酸の沸点より高い温度であって70~160℃に設定される。
蒸留塔6の塔頂部からは、オーバーヘッド流としての蒸気がライン38に連続的に抜き取られる。蒸留塔6の塔底部からは、缶出液がライン39に連続的に抜き取られる。6bはリボイラーである。蒸留塔6における塔頂部と塔底部との間の高さ位置からは、側流(液体又は気体)がライン46に連続的に抜き取られる。蒸留塔6の高さ方向において、蒸留塔6に対するライン46の連結位置は、図示されているように、蒸留塔6に対するライン34の連結位置より上方であってもよいが、蒸留塔6に対するライン34の連結位置より下方であってもよいし、蒸留塔6に対するライン34の連結位置と同じであってもよい。
蒸留塔6の塔頂部から抜き取られる蒸気は、酢酸よりも沸点の低い成分(低沸点成分)を蒸留塔6からの上記の缶出液と比較して多く含み、酢酸のほか、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、ジメチルエーテル、メタノール及びギ酸などを含む。このような蒸気は、ライン38を通じてコンデンサ6aへと連続的に導入される。
コンデンサ6aは、蒸留塔6からの蒸気を、冷却して部分的に凝縮させることによって凝縮分とガス分とに分ける。凝縮分は、酢酸のほか、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、ジメチルエーテル、メタノール及びギ酸などを含む。凝縮分の少なくとも一部については、コンデンサ6aからライン40を通じて蒸留塔6へと連続的に還流される。凝縮分の一部(留出分)については、コンデンサ6aからライン40,41,42を通じて、蒸留塔5へと導入される前のライン27中の第1酢酸流へとリサイクルすることが可能である。これと共に或はこれに代えて、凝縮分の一部(留出分)については、コンデンサ6aからライン40,41,43を通じて、蒸留塔3へと導入される前のライン21中の蒸気流へとリサイクルすることが可能である。また、凝縮分の一部(留出分)については、コンデンサ6aからライン40,44,23を通じて、反応槽1へリサイクルしてもよい。さらに、コンデンサ6aからの留出分の一部については、前述したように、スクラバーシステム8へと供給して当該システム内で吸収液として使用することが可能である。スクラバーシステム8では、有用分を吸収した後のガス分は装置外に排出され、そして、有用成分を含む液分がスクラバーシステム8からリサイクルライン48,23を通じて反応槽1へと導入ないしリサイクルされて再利用される。加えて、コンデンサ6aからの留出分の一部については、装置内で稼働する各種ポンプ(図示略)へと図外のラインを通じて導いて当該ポンプのシール液として使用してもよい。更に加えて、コンデンサ6aからの留出分の一部については、ライン40に付設される抜き取りラインを通じて、定常的に装置外へ抜き取ってもよいし、非定常的に必要時において装置外へ抜き取ってもよい。凝縮分の一部(留出分)が蒸留塔6での蒸留処理系から除かれる場合、その留出分の量(留出量)は、コンデンサ6aで生ずる凝縮液の例えば0.01~30質量%であり、好ましくは0.1~10質量%、より好ましくは0.3~5質量%、より好ましくは0.5~3質量%である。一方、コンデンサ6aで生じるガス分は、例えば、一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などを含み、コンデンサ6aからライン45,15を通じてスクラバーシステム8へと供給される。
蒸留塔6の塔底部からライン39を通じて抜き取られる缶出液は、酢酸よりも沸点の高い成分(高沸点成分)を蒸留塔6からの上記のオーバーヘッド流と比較して多く含み、例えばプロピオン酸、酢酸カリウム(ライン34等に水酸化カリウムを供給した場合)などを含む。また、蒸留塔6の塔底部からライン39を通じて抜き取られる缶出液は、この酢酸製造装置の構成部材の内壁で生じて遊離した金属などの腐食金属等、及び腐食性ヨウ素に由来するヨウ素と当該腐食金属等との化合物も含む。このような缶出液は、本実施形態では酢酸製造装置外に排出される。
好ましい態様では、蒸留塔6の塔底部からライン39を通じて抜き取られる缶出液は、酢酸よりも沸点の高い成分(高沸点成分)を蒸留塔6からの上記のオーバーヘッド流と比較して多く含み、例えばプロピオン酸、酢酸カリウム等の酢酸塩(ライン34等に水酸化カリウム等のアルカリを供給した場合)などを含む。また、蒸留塔6の塔底部からライン39を通じて抜き取られる缶出液は、この酢酸製造装置の構成部材の内壁で生じて遊離した金属などの腐食金属等、及び腐食性ヨウ素に由来するヨウ素と当該腐食金属等との化合物も含む。このような缶出液は、本実施形態では酢酸製造装置外に排出される。
好ましい態様では、蒸留塔6の塔底部からライン39を通じて抜き取られる缶出液は、酢酸よりも沸点の高い成分(高沸点成分)を蒸留塔6からの上記のオーバーヘッド流と比較して多く含み、例えばプロピオン酸、酢酸カリウム等の酢酸塩(ライン34等に水酸化カリウム等のアルカリを供給した場合)などを含む。また、蒸留塔6の塔底部からライン39を通じて抜き取られる缶出液は、この酢酸製造装置の構成部材の内壁で生じて遊離した金属などの腐食金属等、及び腐食性ヨウ素に由来するヨウ素と当該腐食金属等との化合物も含む。このような缶出液は、本実施形態では酢酸製造装置外に排出される。
蒸留塔6からライン46に連続的に抜き取られる側流は、第3酢酸流として、次のイオン交換樹脂塔7に連続的に導入されることとなる。この第3酢酸流は、蒸留塔6に連続的に導入される第2酢酸流よりも酢酸が富化されている。すなわち、第3酢酸流の酢酸濃度は第2酢酸流の酢酸濃度よりも高い。第3酢酸流の酢酸濃度は、第2酢酸流の酢酸濃度より高い限りにおいて、例えば99.8~99.999質量%である。本実施形態では、蒸留塔6からの側流の抜き取り位置は、蒸留塔6の高さ方向において、蒸留塔6への第2酢酸流の導入位置よりも高い。他の実施形態では、蒸留塔6からの側流の抜き取り位置は、蒸留塔6の高さ方向において、蒸留塔6への第2酢酸流の導入位置と同じかそれよりも低い。なお、蒸留塔6は、単蒸留器(蒸発器)でも代用可能であり、また、蒸留塔5で不純物除去を十分に行えば、蒸留塔6は省略できる。
好ましい態様では、蒸留塔6からライン46に連続的に抜き取られる側流は、第3酢酸流として、次のイオン交換樹脂塔7に連続的に導入されることとなる。この第3酢酸流は、蒸留塔6に連続的に導入される第2酢酸流よりも酢酸が富化されている。すなわち、第3酢酸流の酢酸濃度は第2酢酸流の酢酸濃度よりも高い。第3酢酸流の酢酸濃度は、第2酢酸流の酢酸濃度より高い限りにおいて、例えば99.8~99.999質量%である。本実施形態では、蒸留塔6からの側流の抜き取り位置は、蒸留塔6の高さ方向において、蒸留塔6への第2酢酸流の導入位置よりも高い。他の実施形態では、蒸留塔6からの側流の抜き取り位置は、蒸留塔6の高さ方向において、蒸留塔6への第2酢酸流の導入位置と同じかそれよりも低い。なお、蒸留塔6は、単蒸留器(蒸発器)でも代用可能である。特に、本発明では、蒸留塔5での蒸留処理により、過マンガン酸カリウム試験値の非常に高い酢酸が得られるので、蒸留塔6を省略することができる。
イオン交換樹脂塔7は、吸着除去工程を行うための精製ユニットである。この吸着除去工程は、イオン交換樹脂塔7に連続的に導入される第3酢酸流に微量含まれる主にヨウ化アルキル(ヨウ化ヘキシルやヨウ化デシルなど)を吸着除去して酢酸を更に精製するための工程である。イオン交換樹脂塔7においては、ヨウ化アルキルに対する吸着能を有するイオン交換樹脂が塔内に充填されてイオン交換樹脂床をなす。そのようなイオン交換樹脂としては、例えば、交換基たるスルホン酸基、カルボキシル基、ホスホン酸基等における脱離性のプロトンの一部が銀や銅などの金属で置換された陽イオン交換樹脂を挙げることができる。吸着除去工程では、例えばこのようなイオン交換樹脂が充填されたイオン交換樹脂塔7の内部を第3酢酸流(液体)が通流し、その通流過程において、第3酢酸流中のヨウ化アルキル等の不純物がイオン交換樹脂に吸着されて第3酢酸流から除去される。吸着除去工程にあるイオン交換樹脂塔7において、内部温度は例えば18~100℃であり、酢酸流の通液速度[樹脂容積1m3当たりの酢酸処理量(m3/h)]は、例えば3~15m3/h・m3(樹脂容積)である。
好ましい態様では、イオン交換樹脂塔7は、吸着除去工程を行うための精製ユニットである。この吸着除去工程は、イオン交換樹脂塔7に連続的に導入される第3酢酸流に微量含まれる主にヨウ化アルキル(例えば、ヨウ化エチル、ヨウ化プロピル、ヨウ化ブチル、ヨウ化ヘキシル、ヨウ化デシルなど)を吸着除去して酢酸を更に精製するための工程である。なお、蒸留塔6を省略し、蒸留塔5からの第2酢酸流をイオン交換樹脂塔7に供給してもよい。また、イオン交換樹脂塔7を用いる吸着除去工程は必ずしも設けなくてもよい。
好ましい態様では、イオン交換樹脂塔7においては、ヨウ化アルキルに対する吸着能を有するイオン交換樹脂が塔内に充填されてイオン交換樹脂床をなす。そのようなイオン交換樹脂としては、例えば、交換基たるスルホン酸基、カルボキシル基、ホスホン酸基等における脱離性のプロトンの一部が銀や銅などの金属で置換された陽イオン交換樹脂を挙げることができる。吸着除去工程では、例えばこのようなイオン交換樹脂が充填されたイオン交換樹脂塔7の内部を第3酢酸流(液体)が通流し、その通流過程において、第3酢酸流中のヨウ化アルキル等の不純物がイオン交換樹脂に吸着されて第3酢酸流から除去される。吸着除去工程にあるイオン交換樹脂塔7において、内部温度は例えば18~100℃であり、酢酸流の通液速度[樹脂容積1m3当たりの酢酸処理量(m3/h)]は、例えば3~15m3/h・m3(樹脂容積)である。
イオン交換樹脂塔7の下端部からライン47へと第4酢酸流が連続的に導出される。第4酢酸流の酢酸濃度は第3酢酸流の酢酸濃度よりも高い。すなわち、第4酢酸流は、イオン交換樹脂塔7に連続的に導入される第3酢酸流よりも酢酸が富化されている。第4酢酸流の酢酸濃度は、第3酢酸流の酢酸濃度より高い限りにおいて例えば99.9~99.999質量%又はそれ以上である。本製造方法においては、この第4酢酸流を図外の製品タンクに貯留することができる。
この酢酸製造装置においては、イオン交換樹脂塔7からの上記の第4酢酸流を更に精製するための精製ユニットとして、蒸留塔であるいわゆる製品塔ないし仕上塔が設けられてもよい。そのような製品塔が設けられる場合、当該製品塔は、例えば、棚段塔及び充填塔などの精留塔よりなる。製品塔として棚段塔を採用する場合、その理論段は例えば5~50段であり、還流比は理論段数に応じて例えば0.5~3000である。精製工程にある製品塔の内部において、塔頂圧力は例えば-195~150kPa(ゲージ圧)に設定され、塔底圧力は、塔頂圧力より高く、例えば-190~180kPa(ゲージ圧)に設定される。製品塔の内部において、塔頂温度は、例えば、設定塔頂圧力での水の沸点より高く且つ酢酸の沸点より低い温度であって50~150℃に設定され、塔底温度は、例えば、設定塔底圧力での酢酸の沸点より高い温度であって70~160℃に設定される。なお、製品塔ないし仕上塔は、単蒸留器(蒸発器)でも代用可能である。
製品塔を設ける場合、イオン交換樹脂塔7からの第4酢酸流(液体)の全部又は一部が、製品塔に対して連続的に導入される。そのような製品塔の塔頂部からは、微量の低沸点成分(例えば、ヨウ化メチル、水、酢酸メチル、ジメチルエーテル、クロトンアルデヒド、アセトアルデヒド及びギ酸など)を含むオーバーヘッド流としての蒸気が連続的に抜き取られる。この蒸気は、所定のコンデンサにて凝縮分とガス分とに分けられる。凝縮分の一部は製品塔へと連続的に還流され、凝縮分の他の一部は反応槽1へとリサイクルされるか、系外に廃棄されるか、あるいはその両方であってもよく、ガス分はスクラバーシステム8へと供給される。製品塔の塔底部からは、微量の高沸点成分を含む缶出液が連続的に抜き取られ、この缶出液は、例えば蒸留塔6へ導入される前のライン34中の第2酢酸流へとリサイクルされる。製品塔における塔頂部と塔底部との間の高さ位置からは、側流(液体)が第5酢酸流として連続的に抜き取られる。製品塔からの側流の抜き取り位置は、製品塔の高さ方向において、例えば、製品塔への第4酢酸流の導入位置よりも低い。第5酢酸流は、製品塔に連続的に導入される第4酢酸流よりも酢酸が富化されている。すなわち、第5酢酸流の酢酸濃度は第4酢酸流の酢酸濃度よりも高い。第5酢酸流の酢酸濃度は、第4酢酸流の酢酸濃度より高い限りにおいて例えば99.9~99.999質量%又はそれ以上である。この第5酢酸流は、例えば、図外の製品タンクに貯留される。なお、イオン交換樹脂塔7は、蒸留塔6の下流に設置する代わりに(又はそれに加えて)、製品塔の下流に設置し、製品塔出の酢酸流を処理してもよい。
以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。なお、部、%、ppm、ppbは全て質量基準である。水濃度はカールフィッシャー水分測定法、金属イオン濃度はICP分析(又は原子吸光分析)、過マンガン酸カリウム試験は、JIS K 1351(1993年度版)の目視比色法に準じて、その他の成分の濃度はガスクロマトグラフィーにより測定した。なお、「AD」はアセトアルデヒド、「MeI」はヨウ化メチル、「MA」は酢酸メチル、「AC」は酢酸を示す。水相と有機相へのAD分配率、及び水相と有機相へのMA分配率は下記式により求めた。
AD分配率={水相のAD濃度(質量%)}/{有機相のAD濃度(質量%)}
MA分配率={水相のMA濃度(質量%)}/{有機相のMA濃度(質量%)}
AD分配率={水相のAD濃度(質量%)}/{有機相のAD濃度(質量%)}
MA分配率={水相のMA濃度(質量%)}/{有機相のMA濃度(質量%)}
先ず分液工程の条件を検討するために以下の実験を行った。
実験例1~10
実験例1~10は、図6に示す加圧系対応の液液平衡測定装置300を用い、分液工程に供する仕込液(分液工程供給液)中のAD濃度を変化させ、水相及び有機相中の各成分濃度とAD分配率を調べた実験である。図6において、301は耐圧ガラス容器(内容積100cc)、302はスターラーチップ(ラグビーボール状)、303は下相抜き取り管、304は上相抜き取り管、305は温度計、306はマグネットスターラー、307はウォーターバス、308は温調器、309は温度計、310は下相サンプリング管、311は上相サンプリング管、312は圧力計、313は圧力調整弁、314、315、316及び317はバルブ、318は安全弁、319は下相抜き取りライン、320は上相抜き取りライン、321は窒素ガス導入ライン、322は放圧ライン、323は排気ラインである。点線は液面又は界面を示す。
実験例1~10
実験例1~10は、図6に示す加圧系対応の液液平衡測定装置300を用い、分液工程に供する仕込液(分液工程供給液)中のAD濃度を変化させ、水相及び有機相中の各成分濃度とAD分配率を調べた実験である。図6において、301は耐圧ガラス容器(内容積100cc)、302はスターラーチップ(ラグビーボール状)、303は下相抜き取り管、304は上相抜き取り管、305は温度計、306はマグネットスターラー、307はウォーターバス、308は温調器、309は温度計、310は下相サンプリング管、311は上相サンプリング管、312は圧力計、313は圧力調整弁、314、315、316及び317はバルブ、318は安全弁、319は下相抜き取りライン、320は上相抜き取りライン、321は窒素ガス導入ライン、322は放圧ライン、323は排気ラインである。点線は液面又は界面を示す。
耐圧ガラス容器301に、表1の「実仕込量」の欄に示す量のAD、MeI及び水を仕込み、スターラーチップ302を入れて蓋をし、内部を窒素で置換した後、ウォーターバス307で表1の「温度」の欄に示す温度に調節し、300rpmで30分撹拌した。撹拌を停止した後、10分放置し、完全に分液させた後、水相と有機相(ヨウ化メチル相)を別々にサンプリング管311及び310にサンプリングして、それぞれ、AD、MeI、及び水の濃度を測定するとともに、AD分配率を求めた。結果を表1に示す。
実験例11~15
実験例11~15は、仕込液中のAD濃度を一定とし、分液工程の温度(液温)を変化させた時の水相及び有機相中の各成分濃度とAD分配率とを調べた実験である。
耐圧ガラス容器301に仕込むAD、MeI及び水の仕込量及び温度を表1に示す値とし、実験例1~10と同様の操作を行い、水相及び有機相における各成分濃度を測定するとともに、AD分配率を求めた。結果を表1に示す。
実験例11~15は、仕込液中のAD濃度を一定とし、分液工程の温度(液温)を変化させた時の水相及び有機相中の各成分濃度とAD分配率とを調べた実験である。
耐圧ガラス容器301に仕込むAD、MeI及び水の仕込量及び温度を表1に示す値とし、実験例1~10と同様の操作を行い、水相及び有機相における各成分濃度を測定するとともに、AD分配率を求めた。結果を表1に示す。
実験例16~21
実験例16~21は、仕込液中のAD濃度及びMA濃度を一定とし、分液工程の温度(液温)変化させた時の水相及び有機相中の各成分濃度とAD分配率及びMA分配率を調べた実験である。
耐圧ガラス容器301に仕込むAD、MeI、MA及び水の仕込量及び温度を表2に示す値とし、実験例1~10と同様の操作を行い、水相及び有機相における各成分濃度を測定するとともに、AD分配率及びMA分配率を求めた。結果を表2に示す。
実験例16~21は、仕込液中のAD濃度及びMA濃度を一定とし、分液工程の温度(液温)変化させた時の水相及び有機相中の各成分濃度とAD分配率及びMA分配率を調べた実験である。
耐圧ガラス容器301に仕込むAD、MeI、MA及び水の仕込量及び温度を表2に示す値とし、実験例1~10と同様の操作を行い、水相及び有機相における各成分濃度を測定するとともに、AD分配率及びMA分配率を求めた。結果を表2に示す。
実験例22~26
実験例22~26は、仕込液中のMA濃度を変化させ、水相及び有機相中の各成分濃度とAD分配率及びMA分配率を調べた実験である。
耐圧ガラス容器301に仕込むAD、MeI、MA及び水の仕込量及び温度を表2に示す値とし、実験例1~10と同様の操作を行い、水相及び有機相における各成分濃度を測定するとともに、AD分配率及びMA分配率を求めた。結果を表2に示す。
実験例22~26は、仕込液中のMA濃度を変化させ、水相及び有機相中の各成分濃度とAD分配率及びMA分配率を調べた実験である。
耐圧ガラス容器301に仕込むAD、MeI、MA及び水の仕込量及び温度を表2に示す値とし、実験例1~10と同様の操作を行い、水相及び有機相における各成分濃度を測定するとともに、AD分配率及びMA分配率を求めた。結果を表2に示す。
参考例1~2
参考例1~2は、仕込液中のAC濃度を変化させ、水相及び有機相中の各成分濃度とAD分配率とを調べた実験である。
耐圧ガラス容器301に仕込むAD、MeI、水及びACの仕込量及び温度を表2に示す値とし、実験例1~10と同様の操作を行い、水相及び有機相における各成分濃度を測定するとともに、AD分配率を求めた。結果を表2に示す。
参考例1~2は、仕込液中のAC濃度を変化させ、水相及び有機相中の各成分濃度とAD分配率とを調べた実験である。
耐圧ガラス容器301に仕込むAD、MeI、水及びACの仕込量及び温度を表2に示す値とし、実験例1~10と同様の操作を行い、水相及び有機相における各成分濃度を測定するとともに、AD分配率を求めた。結果を表2に示す。
[結果の考察]
実験例1~10の結果から、仕込液中のAD濃度が高く、水相、有機相のAD濃度が高くなるほど、AD分配率が小さくなり、ADの有機相への分配割合が相対的に高くなる傾向となることが分かる。すなわち、アセトアルデヒドの除去効率の点から、水相、有機相のAD濃度が高い場合は、有機相を脱AD処理するメリットは大きいが、水相、有機相のAD濃度が低い場合は、有機相を脱AD処理するメリットは小さい。一方、水相、有機相のAD濃度が低い場合は、水相を脱AD処理するメリットは大きいが、水相、有機相のAD濃度が高い場合は、水相を脱AD処理するメリットは小さい。別の観点からすると、有機相を脱AD処理する工程、設備を用いる場合は、例えば、反応槽での反応条件、蒸発器での蒸発条件、蒸発工程で得られた蒸気流の蒸留条件等を調節することにより、分液工程における水相及び/又は有機相のAD濃度を高くすることが好ましい。また、水相を脱AD処理する工程、設備を用いる場合は、例えば、反応槽での反応条件、蒸発器での蒸発条件、蒸発工程で得られた蒸気流の蒸留条件等を調節することにより、分液工程における水相及び/又は有機相のAD濃度を低くすることが好ましい。
実験例1~10の結果から、仕込液中のAD濃度が高く、水相、有機相のAD濃度が高くなるほど、AD分配率が小さくなり、ADの有機相への分配割合が相対的に高くなる傾向となることが分かる。すなわち、アセトアルデヒドの除去効率の点から、水相、有機相のAD濃度が高い場合は、有機相を脱AD処理するメリットは大きいが、水相、有機相のAD濃度が低い場合は、有機相を脱AD処理するメリットは小さい。一方、水相、有機相のAD濃度が低い場合は、水相を脱AD処理するメリットは大きいが、水相、有機相のAD濃度が高い場合は、水相を脱AD処理するメリットは小さい。別の観点からすると、有機相を脱AD処理する工程、設備を用いる場合は、例えば、反応槽での反応条件、蒸発器での蒸発条件、蒸発工程で得られた蒸気流の蒸留条件等を調節することにより、分液工程における水相及び/又は有機相のAD濃度を高くすることが好ましい。また、水相を脱AD処理する工程、設備を用いる場合は、例えば、反応槽での反応条件、蒸発器での蒸発条件、蒸発工程で得られた蒸気流の蒸留条件等を調節することにより、分液工程における水相及び/又は有機相のAD濃度を低くすることが好ましい。
実験例11~15の結果から、AD濃度一定条件下において、分液時の温度が高くなるほど、AD分配率が小さくなり、ADの有機相への分配割合が相対的に高くなる傾向となることが分かる。すなわち、アセトアルデヒドの除去効率の点から、分液時の温度が高い場合は、有機相を脱AD処理するメリットは大きいが、分液時の温度が低い場合は、有機相を脱AD処理するメリットは小さい。一方、分液時の温度が低い場合は、水相を脱AD処理するメリットは大きいが、分液時の温度が高い場合は、水相を脱AD処理するメリットは小さい。
また、実験例16~21の結果から、AD濃度及びMA濃度一定条件下において、分液時の温度が高くなるほど、AD分配率が小さくなり、酢酸メチルが存在する系であっても、高温ほどADの有機相への分配割合が相対的に高くなる傾向となることが分かる。すなわち、アセトアルデヒドの除去効率の点から、分液時の温度が高い場合は、有機相を脱AD処理するメリットは大きいが、分液時の温度が低い場合は、有機相を脱AD処理するメリットは小さい。一方、酢酸メチルが存在する系であっても、分液時の温度が低い場合は、水相を脱AD処理するメリットは大きいが、分液時の温度が高い場合は、水相を脱AD処理するメリットは小さい。別の観点からすると、酢酸メチルの有無にかかわらず、有機相を脱AD処理する工程、設備を用いる場合は、分液工程における分液時の液温を高く設定することが好ましい。また、水相を脱AD処理する工程、設備を用いる場合は、分液工程における分液時の液温を低く設定することが好ましい。
実験例22~26及び実験例4、17の結果から、仕込液中のMA濃度が高く、水相、有機相のMA濃度が高くなるほど、AD分配率が小さくなり、ADの有機相への分配割合が相対的に高くなる傾向となることが分かる。すなわち、アセトアルデヒドの除去効率の点から、水相、有機相のMA濃度が高い場合は、有機相を脱AD処理するメリットは大きいが、水相、有機相のMA濃度が低い場合は、有機相を脱AD処理するメリットは小さい。一方、水相、有機相のMA濃度が低い場合は、水相を脱AD処理するメリットは大きいが、水相、有機相のMA濃度が高い場合は、水相を脱AD処理するメリットは小さい。別の側面からすると、有機相を脱AD処理する工程、設備を用いる場合は、例えば、反応槽での反応条件、蒸発器での蒸発条件、蒸発工程で得られた蒸気流の蒸留条件等を調節することにより、分液工程における水相及び/又は有機相のMA濃度を高くすることが好ましい。また、水相を脱AD処理する工程、設備を用いる場合は、例えば、反応槽での反応条件、蒸発器での蒸発条件、蒸発工程で得られた蒸気流の蒸留条件等を調節することにより、分液工程における水相及び/又は有機相のMA濃度を低くすることが好ましい。なお、実験例22~26の結果から、仕込液中のMA濃度が高く、水相、有機相のMA濃度が高くなるほど、AD分配率だけでなくMA分配率も小さくなることが分かる。
参考例1、2の結果から、仕込液、水相、有機相のAC濃度により、AD分配率はさほど変わらないことが分かる。すなわち、前記AC濃度は、アセトアルデヒドの除去効率の点からは、有機相を脱AD処理する方法と水相を脱AD処理する方法とのメリットを比較する際、あまり大きな意味を持たない。
次に実施例を例に挙げて説明を行う。本実施例は一試験運転例に基づくものであり実施にあたっての成分組成、運転条件等は極めて具体的な数値を挙げるが、本発明はこれらの数値に拘束されない。また、系内の成分組成は、水素や酸素等の影響を受けて反応し、前記組成はわずかに変動する場合がある。したがって、表に示す実施例の数値は、実施時のある時点での数値を表している。
比較例1
メタノール法酢酸パイロットプラントにおいて以下の実験を行った(図1参照)。
反応槽[全圧2.8MPa(絶対圧)、一酸化炭素分圧1.4MPa(絶対圧)、水素分圧0.04MPa(絶対圧)、反応温度187℃]で得られた反応混合液[組成:ヨウ化メチル(MeI)7.8%、酢酸メチル(MA)2.1%、水(H2O)2.5%、ロジウム錯体910ppm(Rh換算)、ヨウ化リチウム(LiI)14.1%、アセトアルデヒド(AD)250ppm、クロトンアルデヒド(CR)1.4ppm、2-エチルクロトンアルデヒド(2ECR)1.6ppm、プロピオン酸(PA)250ppm、ギ酸(FA)40ppm、酢酸ブチル(BA)4.8ppm、残り酢酸(但し、微量の不純物を含む)]400部を蒸発槽に仕込み、蒸発槽を加熱して25%蒸発させた(蒸発率25%)。蒸発槽の蒸気[組成:ヨウ化メチル28.1%、酢酸メチル4.9%、水1.9%、アセトアルデヒド651ppm、クロトンアルデヒド1.5ppm、2-エチルクロトンアルデヒド0.23ppm、プロピオン酸73ppm、ギ酸85ppm、酢酸ブチル0.7ppm、残り酢酸(但し、微量の不純物を含む)]100部を脱低沸塔[実段数20段、仕込位置下から2段、塔頂圧250kPa(絶対圧)、塔頂温度140℃]に仕込み、塔頂蒸気を凝縮させ、デカンタ[温度40℃、圧力0.13MPaG]にて水相と有機相とに分離後、有機相の一部(11部)を脱アセトアルデヒド塔[実段数80段、仕込位置下から11段、塔頂圧280kPa(絶対圧)、塔頂温度52℃]に送り、アセトアルデヒドを分離し系外に除去し、アセトアルデヒド除去後の缶出液(仕込液とほぼ同等の11部)を反応系にリサイクルした。有機相の残り(41部)は直接反応槽にリサイクルした。水相の一部を脱低沸塔に還流し、残り(1.5部)を留出液として反応槽にリサイクルした。水相の還流量/留出量を還流比とし、還流比を2とした。脱低沸塔の塔底から3部を缶出液として抜取り、反応系にリサイクルした。脱低沸塔の中間部(下から4段)からサイドカット(SC)流として65部を抜取り、脱水塔[実段数50段、仕込位置下から34段、塔頂圧295kPa(絶対圧)、塔頂温度150℃]に仕込んだ。脱水塔の塔頂蒸気凝縮液の一部を脱水塔に還流(リサイクル)し、残り(19部)を留出液として反応系にリサイクルした。脱水塔の還流比(還流量/留出量)を0.3とした。その結果、脱水塔の塔底から缶出液として製品酢酸46部を得た。製品酢酸中のクロトンアルデヒド含有量は0.99ppm、2-エチルクロトンアルデヒド含有量は0.29ppm、酢酸ブチル含有量は0.76ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ50分であった。結果を表3に示す。
メタノール法酢酸パイロットプラントにおいて以下の実験を行った(図1参照)。
反応槽[全圧2.8MPa(絶対圧)、一酸化炭素分圧1.4MPa(絶対圧)、水素分圧0.04MPa(絶対圧)、反応温度187℃]で得られた反応混合液[組成:ヨウ化メチル(MeI)7.8%、酢酸メチル(MA)2.1%、水(H2O)2.5%、ロジウム錯体910ppm(Rh換算)、ヨウ化リチウム(LiI)14.1%、アセトアルデヒド(AD)250ppm、クロトンアルデヒド(CR)1.4ppm、2-エチルクロトンアルデヒド(2ECR)1.6ppm、プロピオン酸(PA)250ppm、ギ酸(FA)40ppm、酢酸ブチル(BA)4.8ppm、残り酢酸(但し、微量の不純物を含む)]400部を蒸発槽に仕込み、蒸発槽を加熱して25%蒸発させた(蒸発率25%)。蒸発槽の蒸気[組成:ヨウ化メチル28.1%、酢酸メチル4.9%、水1.9%、アセトアルデヒド651ppm、クロトンアルデヒド1.5ppm、2-エチルクロトンアルデヒド0.23ppm、プロピオン酸73ppm、ギ酸85ppm、酢酸ブチル0.7ppm、残り酢酸(但し、微量の不純物を含む)]100部を脱低沸塔[実段数20段、仕込位置下から2段、塔頂圧250kPa(絶対圧)、塔頂温度140℃]に仕込み、塔頂蒸気を凝縮させ、デカンタ[温度40℃、圧力0.13MPaG]にて水相と有機相とに分離後、有機相の一部(11部)を脱アセトアルデヒド塔[実段数80段、仕込位置下から11段、塔頂圧280kPa(絶対圧)、塔頂温度52℃]に送り、アセトアルデヒドを分離し系外に除去し、アセトアルデヒド除去後の缶出液(仕込液とほぼ同等の11部)を反応系にリサイクルした。有機相の残り(41部)は直接反応槽にリサイクルした。水相の一部を脱低沸塔に還流し、残り(1.5部)を留出液として反応槽にリサイクルした。水相の還流量/留出量を還流比とし、還流比を2とした。脱低沸塔の塔底から3部を缶出液として抜取り、反応系にリサイクルした。脱低沸塔の中間部(下から4段)からサイドカット(SC)流として65部を抜取り、脱水塔[実段数50段、仕込位置下から34段、塔頂圧295kPa(絶対圧)、塔頂温度150℃]に仕込んだ。脱水塔の塔頂蒸気凝縮液の一部を脱水塔に還流(リサイクル)し、残り(19部)を留出液として反応系にリサイクルした。脱水塔の還流比(還流量/留出量)を0.3とした。その結果、脱水塔の塔底から缶出液として製品酢酸46部を得た。製品酢酸中のクロトンアルデヒド含有量は0.99ppm、2-エチルクロトンアルデヒド含有量は0.29ppm、酢酸ブチル含有量は0.76ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ50分であった。結果を表3に示す。
比較例2
反応槽水素分圧を0.02MPaとしデカンタ温度を-5.2℃とした以外は、比較例1と同様の実験を行なった。結果、製品酢酸中のクロトンアルデヒド含有量は2.3ppm、2-エチルクロトンアルデヒド含有量は1.5ppm、酢酸ブチル含有量は1.8ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ10分であった。結果を表3に示す。
反応槽水素分圧を0.02MPaとしデカンタ温度を-5.2℃とした以外は、比較例1と同様の実験を行なった。結果、製品酢酸中のクロトンアルデヒド含有量は2.3ppm、2-エチルクロトンアルデヒド含有量は1.5ppm、酢酸ブチル含有量は1.8ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ10分であった。結果を表3に示す。
比較例3
脱水塔の還流比を0.05とした以外は、比較例1と同様の実験を行なった。結果、製品酢酸中のクロトンアルデヒド含有量は1.1ppm、2-エチルクロトンアルデヒド含有量は0.28ppm、酢酸ブチル含有量は0.72ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ40分であった。結果を表3に示す。
脱水塔の還流比を0.05とした以外は、比較例1と同様の実験を行なった。結果、製品酢酸中のクロトンアルデヒド含有量は1.1ppm、2-エチルクロトンアルデヒド含有量は0.28ppm、酢酸ブチル含有量は0.72ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ40分であった。結果を表3に示す。
実施例1
上記比較例1において、デカンタの温度を-5.2℃とし、水相と有機相とに分離後、アセトアルデヒド分配率に基づいて(有機相)の一部(11部)を脱アセトアルデヒド塔[実段数80段、仕込位置下から11段、塔頂圧280kPa(絶対圧)、塔頂温度52℃]に送り、アセトアルデヒドを分離し系外に除去し、アセトアルデヒド除去後の缶出液(仕込液とほぼ同等の11部)を反応系にリサイクルした。直接反応槽にリサイクルした有機相[組成:アルカン類0.3%、アセトアルデヒド1300ppm、酢酸メチル12.5%、水0.7%、酢酸1.9%、クロトンアルデヒド1.7ppm、2-エチルクロトンアルデヒド0.1ppm、酢酸ブチル0.3ppm、残りヨウ化メチル(但し、微量の不純物を含む)]41部のうち20部を脱クロトンアルデヒド塔[充填塔;理論段数10段、仕込位置下から理論段で5段、塔頂圧280kPa(絶対圧)、塔頂温度52℃]に仕込み(有機相21部は直接反応槽にリサイクルした)、還流比0.01で19.48部を留出させ[留出組成:アセトアルデヒド1305ppm、酢酸メチル12.5%、水0.7%、酢酸0.1%、クロトンアルデヒド1.5ppm、2-エチルクロトンアルデヒド0.05ppm、酢酸ブチル0.2ppm、残りヨウ化メチル(但し、微量の不純物を含む)]、これをデカンタに循環するとともに、塔底から缶出液[缶出組成:酢酸メチル2.1%、水1.5%、ヨウ化メチル5.5%、クロトンアルデヒド6.5ppm、2-エチルクロトンアルデヒド13.3ppm、酢酸ブチル6.9ppm、アルカン類1.2%、残り酢酸(但し、微量の不純物を含む)]0.52部を抜き取ったこと以外は、比較例1と同様の実験を行った。なお、この変更により、各プロセス液の組成は変化した。その結果、脱水塔の塔底から缶出液として得られた製品酢酸中のクロトンアルデヒド含有量は0.92ppm、2-エチルクロトンアルデヒド含有量は0.27ppm、酢酸ブチル含有量は0.71ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ70分であった。結果を表3に示す。
上記比較例1において、デカンタの温度を-5.2℃とし、水相と有機相とに分離後、アセトアルデヒド分配率に基づいて(有機相)の一部(11部)を脱アセトアルデヒド塔[実段数80段、仕込位置下から11段、塔頂圧280kPa(絶対圧)、塔頂温度52℃]に送り、アセトアルデヒドを分離し系外に除去し、アセトアルデヒド除去後の缶出液(仕込液とほぼ同等の11部)を反応系にリサイクルした。直接反応槽にリサイクルした有機相[組成:アルカン類0.3%、アセトアルデヒド1300ppm、酢酸メチル12.5%、水0.7%、酢酸1.9%、クロトンアルデヒド1.7ppm、2-エチルクロトンアルデヒド0.1ppm、酢酸ブチル0.3ppm、残りヨウ化メチル(但し、微量の不純物を含む)]41部のうち20部を脱クロトンアルデヒド塔[充填塔;理論段数10段、仕込位置下から理論段で5段、塔頂圧280kPa(絶対圧)、塔頂温度52℃]に仕込み(有機相21部は直接反応槽にリサイクルした)、還流比0.01で19.48部を留出させ[留出組成:アセトアルデヒド1305ppm、酢酸メチル12.5%、水0.7%、酢酸0.1%、クロトンアルデヒド1.5ppm、2-エチルクロトンアルデヒド0.05ppm、酢酸ブチル0.2ppm、残りヨウ化メチル(但し、微量の不純物を含む)]、これをデカンタに循環するとともに、塔底から缶出液[缶出組成:酢酸メチル2.1%、水1.5%、ヨウ化メチル5.5%、クロトンアルデヒド6.5ppm、2-エチルクロトンアルデヒド13.3ppm、酢酸ブチル6.9ppm、アルカン類1.2%、残り酢酸(但し、微量の不純物を含む)]0.52部を抜き取ったこと以外は、比較例1と同様の実験を行った。なお、この変更により、各プロセス液の組成は変化した。その結果、脱水塔の塔底から缶出液として得られた製品酢酸中のクロトンアルデヒド含有量は0.92ppm、2-エチルクロトンアルデヒド含有量は0.27ppm、酢酸ブチル含有量は0.71ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ70分であった。結果を表3に示す。
実施例2
デカンタの温度を11.0℃とし、脱低沸塔の還流比を15、脱水塔の還流比を10に変更した以外は、実施例1と同様の実験を行った。なお、この変更により、各プロセス液の組成は変化した。その結果、脱水塔の塔底から得られた製品酢酸中のクロトンアルデヒド含有量は0.23ppm、2-エチルクロトンアルデヒド含有量は0.56ppm、酢酸ブチル含有量は2.1ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ200分であった。結果を表3に示す。
デカンタの温度を11.0℃とし、脱低沸塔の還流比を15、脱水塔の還流比を10に変更した以外は、実施例1と同様の実験を行った。なお、この変更により、各プロセス液の組成は変化した。その結果、脱水塔の塔底から得られた製品酢酸中のクロトンアルデヒド含有量は0.23ppm、2-エチルクロトンアルデヒド含有量は0.56ppm、酢酸ブチル含有量は2.1ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ200分であった。結果を表3に示す。
実施例3
デカンタの温度を22℃とし、脱クロトンアルデヒド塔の還流比を0.1に変更した以外は、実施例2と同様の実験を行った。なお、この変更により、各プロセス液の組成は変化した。また、脱クロトンアルデヒド塔の留出液量及び缶出液量はそれぞれ19.52部及び0.48部に変化した。塔頂に留出していた水の分離が向上し、缶出に分離された結果である。その結果、脱水塔の塔底から得られた製品酢酸中のクロトンアルデヒド含有量は0.21ppm、2-エチルクロトンアルデヒド含有量は0.55ppm、酢酸ブチル含有量は2ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ220分であった。結果を表3に示す。
デカンタの温度を22℃とし、脱クロトンアルデヒド塔の還流比を0.1に変更した以外は、実施例2と同様の実験を行った。なお、この変更により、各プロセス液の組成は変化した。また、脱クロトンアルデヒド塔の留出液量及び缶出液量はそれぞれ19.52部及び0.48部に変化した。塔頂に留出していた水の分離が向上し、缶出に分離された結果である。その結果、脱水塔の塔底から得られた製品酢酸中のクロトンアルデヒド含有量は0.21ppm、2-エチルクロトンアルデヒド含有量は0.55ppm、酢酸ブチル含有量は2ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ220分であった。結果を表3に示す。
実施例4
デカンタの温度を29℃とし、脱クロトンアルデヒド塔の還流比を1に変更した以外は、実施例2と同様の実験を行った。なお、この変更により、各プロセス液の組成は変化した。また、脱クロトンアルデヒド塔の留出液量及び缶出液量はそれぞれ19.56部及び0.44部に変化した。塔頂に留出していた水の分離がさらに向上し、缶出に分離された結果である。その結果、脱水塔の塔底から得られた製品酢酸中のクロトンアルデヒド含有量は0.19ppm、2-エチルクロトンアルデヒド含有量は0.4ppm、酢酸ブチル含有量は1.8ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ280分であった。結果を表3に示す。
デカンタの温度を29℃とし、脱クロトンアルデヒド塔の還流比を1に変更した以外は、実施例2と同様の実験を行った。なお、この変更により、各プロセス液の組成は変化した。また、脱クロトンアルデヒド塔の留出液量及び缶出液量はそれぞれ19.56部及び0.44部に変化した。塔頂に留出していた水の分離がさらに向上し、缶出に分離された結果である。その結果、脱水塔の塔底から得られた製品酢酸中のクロトンアルデヒド含有量は0.19ppm、2-エチルクロトンアルデヒド含有量は0.4ppm、酢酸ブチル含有量は1.8ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ280分であった。結果を表3に示す。
実施例5
デカンタの温度を40.8℃とし、脱クロトンアルデヒド塔の還流比を10に変更した以外は、実施例2と同様の実験を行った。なお、この変更により、各プロセス液の組成は変化した。また、脱クロトンアルデヒド塔の留出液量及び缶出液量はそれぞれ19.6部及び0.4部に変化した。塔頂に留出していた水の分離がさらに向上し、缶出に分離された結果である。その結果、脱水塔の塔底から得られた製品酢酸中のクロトンアルデヒド含有量は0.15ppm、2-エチルクロトンアルデヒド含有量は0.28ppm、酢酸ブチル含有量は1.8ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ360分であった。結果を表3に示す。
デカンタの温度を40.8℃とし、脱クロトンアルデヒド塔の還流比を10に変更した以外は、実施例2と同様の実験を行った。なお、この変更により、各プロセス液の組成は変化した。また、脱クロトンアルデヒド塔の留出液量及び缶出液量はそれぞれ19.6部及び0.4部に変化した。塔頂に留出していた水の分離がさらに向上し、缶出に分離された結果である。その結果、脱水塔の塔底から得られた製品酢酸中のクロトンアルデヒド含有量は0.15ppm、2-エチルクロトンアルデヒド含有量は0.28ppm、酢酸ブチル含有量は1.8ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ360分であった。結果を表3に示す。
実施例6
デカンタの温度を49.9℃とし、脱クロトンアルデヒド塔の還流比を50に変更した以外は、実施例2と同様の実験を行った。なお、この変更により、各プロセス液の組成は変化した。また、脱クロトンアルデヒド塔の留出液量は19.6部、缶出液量は0.4部に変化した。塔頂に留出していた水の分離がさらに向上し、缶出に分離された結果である。その結果、脱水塔の塔底から得られた製品酢酸中のクロトンアルデヒド含有量は0.09ppm、2-エチルクロトンアルデヒド含有量は0.14ppm、酢酸ブチル含有量は1.6ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ450分であった。結果を表4に示す。
デカンタの温度を49.9℃とし、脱クロトンアルデヒド塔の還流比を50に変更した以外は、実施例2と同様の実験を行った。なお、この変更により、各プロセス液の組成は変化した。また、脱クロトンアルデヒド塔の留出液量は19.6部、缶出液量は0.4部に変化した。塔頂に留出していた水の分離がさらに向上し、缶出に分離された結果である。その結果、脱水塔の塔底から得られた製品酢酸中のクロトンアルデヒド含有量は0.09ppm、2-エチルクロトンアルデヒド含有量は0.14ppm、酢酸ブチル含有量は1.6ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ450分であった。結果を表4に示す。
実施例7
デカンタの温度を40.2℃とし、脱低沸塔塔頂凝縮液の分液時の温度に基づき、有機相を選択し脱アセトアルデヒド塔への供給量を11部とし、脱低沸塔仕込みの酢酸メチル濃度を変化させ、デカンタの酢酸メチル濃度、AD分配率を変化させた以外は、実施例5と同様の実験を行った。なお、この変更により、各プロセス液の組成は変化した。その結果、脱水塔の塔底から缶出液として得られた製品酢酸中のクロトンアルデヒド含有量は0.3ppm、2-エチルクロトンアルデヒド含有量は0.56ppm、酢酸ブチル含有量は2.2ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ150分であった。結果を表4に示す。
デカンタの温度を40.2℃とし、脱低沸塔塔頂凝縮液の分液時の温度に基づき、有機相を選択し脱アセトアルデヒド塔への供給量を11部とし、脱低沸塔仕込みの酢酸メチル濃度を変化させ、デカンタの酢酸メチル濃度、AD分配率を変化させた以外は、実施例5と同様の実験を行った。なお、この変更により、各プロセス液の組成は変化した。その結果、脱水塔の塔底から缶出液として得られた製品酢酸中のクロトンアルデヒド含有量は0.3ppm、2-エチルクロトンアルデヒド含有量は0.56ppm、酢酸ブチル含有量は2.2ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ150分であった。結果を表4に示す。
実施例8
デカンタの温度を40.5℃とし、脱低沸塔仕込みの酢酸メチル濃度を変化させ、デカンタの酢酸メチル濃度、AD分配率を変化させた以外は、実施例5と同様の実験を行った。なお、この変更により、各プロセス液の組成は変化した。その結果、脱水塔の塔底から缶出液として得られた製品酢酸中のクロトンアルデヒド含有量は0.22ppm、2-エチルクロトンアルデヒド含有量は0.53ppm、酢酸ブチル含有量は2ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ220分であった。結果を表4に示す。
デカンタの温度を40.5℃とし、脱低沸塔仕込みの酢酸メチル濃度を変化させ、デカンタの酢酸メチル濃度、AD分配率を変化させた以外は、実施例5と同様の実験を行った。なお、この変更により、各プロセス液の組成は変化した。その結果、脱水塔の塔底から缶出液として得られた製品酢酸中のクロトンアルデヒド含有量は0.22ppm、2-エチルクロトンアルデヒド含有量は0.53ppm、酢酸ブチル含有量は2ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ220分であった。結果を表4に示す。
実施例9
デカンタの温度を39.9℃とし、脱低沸塔仕込みの酢酸メチル濃度を変化させ、デカンタの酢酸メチル濃度、AD分配率を変化させた以外は、実施例5と同様の実験を行った。なお、この変更により、各プロセス液の組成は変化した。その結果、脱水塔の塔底から缶出液として得られた製品酢酸中のクロトンアルデヒド含有量は0.18ppm、2-エチルクロトンアルデヒド含有量は0.28ppm、酢酸ブチル含有量は1.7ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ290分であった。結果を表4に示す。
デカンタの温度を39.9℃とし、脱低沸塔仕込みの酢酸メチル濃度を変化させ、デカンタの酢酸メチル濃度、AD分配率を変化させた以外は、実施例5と同様の実験を行った。なお、この変更により、各プロセス液の組成は変化した。その結果、脱水塔の塔底から缶出液として得られた製品酢酸中のクロトンアルデヒド含有量は0.18ppm、2-エチルクロトンアルデヒド含有量は0.28ppm、酢酸ブチル含有量は1.7ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ290分であった。結果を表4に示す。
実施例10
デカンタの温度を40.7℃とし、脱低沸塔仕込みの酢酸メチル濃度を変化させ、デカンタの酢酸メチル濃度、AD分配率を変化させた以外は、実施例5と同様の実験を行った。なお、この変更により、各プロセス液の組成は変化した。その結果、脱水塔の塔底から缶出液として得られた製品酢酸中のクロトンアルデヒド含有量は0.12ppm、2-エチルクロトンアルデヒド含有量は0.26ppm、酢酸ブチル含有量は1.6ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ400分であった。結果を表4に示す。
デカンタの温度を40.7℃とし、脱低沸塔仕込みの酢酸メチル濃度を変化させ、デカンタの酢酸メチル濃度、AD分配率を変化させた以外は、実施例5と同様の実験を行った。なお、この変更により、各プロセス液の組成は変化した。その結果、脱水塔の塔底から缶出液として得られた製品酢酸中のクロトンアルデヒド含有量は0.12ppm、2-エチルクロトンアルデヒド含有量は0.26ppm、酢酸ブチル含有量は1.6ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ400分であった。結果を表4に示す。
実施例11
デカンタの温度を40.1℃とし、脱低沸塔仕込みの酢酸メチル濃度を変化させ、デカンタの酢酸メチル濃度、AD分配率を変化させた以外は、実施例5と同様の実験を行った。なお、この変更により、各プロセス液の組成は変化した。その結果、脱水塔の塔底から缶出液として得られた製品酢酸中のクロトンアルデヒド含有量は0.07ppm、2-エチルクロトンアルデヒド含有量は0.14ppm、酢酸ブチル含有量は1.4ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ540分超であった。結果を表4に示す。
デカンタの温度を40.1℃とし、脱低沸塔仕込みの酢酸メチル濃度を変化させ、デカンタの酢酸メチル濃度、AD分配率を変化させた以外は、実施例5と同様の実験を行った。なお、この変更により、各プロセス液の組成は変化した。その結果、脱水塔の塔底から缶出液として得られた製品酢酸中のクロトンアルデヒド含有量は0.07ppm、2-エチルクロトンアルデヒド含有量は0.14ppm、酢酸ブチル含有量は1.4ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ540分超であった。結果を表4に示す。
実施例12
反応槽の水素分圧を0.07MPaとし、デカンタの温度を-5.3℃とした以外は、実施例1と同様の実験を行った。なお、この変更により、各プロセス液の組成は変化した。その結果、脱水塔の塔底から缶出液として得られた製品酢酸中のクロトンアルデヒド含有量は0.85ppm、2-エチルクロトンアルデヒド含有量は0.29ppm、酢酸ブチル含有量は0.85ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ80分であった。結果を表4に示す。
反応槽の水素分圧を0.07MPaとし、デカンタの温度を-5.3℃とした以外は、実施例1と同様の実験を行った。なお、この変更により、各プロセス液の組成は変化した。その結果、脱水塔の塔底から缶出液として得られた製品酢酸中のクロトンアルデヒド含有量は0.85ppm、2-エチルクロトンアルデヒド含有量は0.29ppm、酢酸ブチル含有量は0.85ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ80分であった。結果を表4に示す。
実施例13
デカンタ温度を40.1℃とし、実施例1と同様の実験を行った。なお、この変更により、各プロセス液の組成は変化した。その結果、脱水塔の塔底から缶出液として得られた製品酢酸中のクロトンアルデヒド含有量は0.8ppm、2-エチルクロトンアルデヒド含有量は0.26ppm、酢酸ブチル含有量は0.68ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ90分であった。結果を表4に示す。
デカンタ温度を40.1℃とし、実施例1と同様の実験を行った。なお、この変更により、各プロセス液の組成は変化した。その結果、脱水塔の塔底から缶出液として得られた製品酢酸中のクロトンアルデヒド含有量は0.8ppm、2-エチルクロトンアルデヒド含有量は0.26ppm、酢酸ブチル含有量は0.68ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ90分であった。結果を表4に示す。
実施例14
デカンタ温度を40.3℃とし、脱低沸塔仕込みの酢酸メチル濃度を変化させ、デカンタの酢酸メチル濃度、AD分配率を変化させ、脱低沸塔塔頂凝縮液の分液時の温度に基づき、水相を選択し脱アセトアルデヒド塔への供給量を11部とした以外は、実施例6と同様の実験を行った。なお、この変更により、各プロセス液の組成は変化した。その結果、脱水塔の塔底から缶出液として得られた製品酢酸中のクロトンアルデヒド含有量は0.08ppm、2-エチルクロトンアルデヒド含有量は0.12ppm、酢酸ブチル含有量は1.3ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ530分であった。結果を表4に示す。
デカンタ温度を40.3℃とし、脱低沸塔仕込みの酢酸メチル濃度を変化させ、デカンタの酢酸メチル濃度、AD分配率を変化させ、脱低沸塔塔頂凝縮液の分液時の温度に基づき、水相を選択し脱アセトアルデヒド塔への供給量を11部とした以外は、実施例6と同様の実験を行った。なお、この変更により、各プロセス液の組成は変化した。その結果、脱水塔の塔底から缶出液として得られた製品酢酸中のクロトンアルデヒド含有量は0.08ppm、2-エチルクロトンアルデヒド含有量は0.12ppm、酢酸ブチル含有量は1.3ppmであった。製品酢酸の過マンガン酸タイム(カメレオンタイム)を測定したところ530分であった。結果を表4に示す。
表3及び表4において、「CCR」はクロトンアルデヒド濃度、「CECR」は2-エチルクロトンアルデヒド濃度、「CBA」は酢酸ブチル濃度、「AD」はアセトアルデヒド、「MeI」はヨウ化メチル、「MA」は酢酸メチル、「AC」は酢酸を示す。また、各成分の欄の数値は濃度を表す。留出液[CR]/仕込液[CR]は、留出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を表す。缶出液[CR]/仕込液[CR]は、缶出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を表す。
[結果の考察]
比較例1~3は、脱クロトンアルデヒド工程を実施せず、且つ分液後の脱AD処理に付す対象(水相又は有機相)を、AD分配率等に基づき選択することなく、単に有機相とした場合の例である。比較例2は、比較例1よりも水素分圧が低いために、CRの水添割合が減少し、結果としてCRの分解が減少している。また、分液工程時のデカンタ温度も比較例2の方が低い(-5.2℃)ため、有機相のAD濃度が低下して、脱AD量が低下し、製品酢酸中のクロトンアルデヒド濃度が上昇したものと推察される。その結果として、比較例2の製品酢酸カメレオンタイムは、比較例1よりも大幅に低下したものと推察される。
比較例1~3は、脱クロトンアルデヒド工程を実施せず、且つ分液後の脱AD処理に付す対象(水相又は有機相)を、AD分配率等に基づき選択することなく、単に有機相とした場合の例である。比較例2は、比較例1よりも水素分圧が低いために、CRの水添割合が減少し、結果としてCRの分解が減少している。また、分液工程時のデカンタ温度も比較例2の方が低い(-5.2℃)ため、有機相のAD濃度が低下して、脱AD量が低下し、製品酢酸中のクロトンアルデヒド濃度が上昇したものと推察される。その結果として、比較例2の製品酢酸カメレオンタイムは、比較例1よりも大幅に低下したものと推察される。
比較例3は、脱水塔の還流比を0.05とした以外は、比較例1と同様の条件で運転した例である。比較例3は、脱水塔の還流比が比較例1の1/6と小さいため、脱水塔内に流入したCRを十分に塔頂に濃縮できず、第2酢酸流中のCR濃度の低減がわずかに留まっている。このため、製品カメレオンタイムは、比較例1よりも劣る結果となっている。
ところで比較例2の脱水塔の還流比は0.3であり、比較例3の還流比の0.05と比較して、6倍も大きいにもかかわらず、製品カメレオンタイムは、比較例3よりも劣る。この脱水塔の還流比増加の効果が打ち消された理由について、運転条件を詳細に対比して検討を試みたところ、比較例2のデカンタ温度の低さ(-5.2℃)に起因するものと思われた。つまり比較例2では、デカンタ温度が低いため、有機相のAD濃度が低下して、脱AD量が低下したことで、脱低沸塔のサイドカット液(第1酢酸流)中のCR濃度に加え、製品酢酸中のCR濃度が上昇したものと推察された。その結果、比較例2の製品酢酸カメレオンタイムは、比較例3よりも劣る結果となったもの推察される。以上の結果より、脱水塔の還流比を単に増加させるだけでは、製品酢酸の品質を効率よく向上させるには十分ではないこと、デカンタ時の温度条件(分液時の液温)の制御が、効率の良い脱AD処理において有効なパラメータの一つであることが示された。
比較例2と実施例1との対比から、分液工程のAD分配率等に基づき、脱AD処理する対象を選択し、第1酢酸流におけるCR濃度を2.2ppm以下に制御するとともに、脱クロトンアルデヒド塔の還流比を0.01以上で運転した場合、これらの相乗効果により、第2酢酸流(脱水塔缶出液)のCR濃度は半分以下に低下し、製品カメレオンタイムは、顕著に向上(7倍延長)していることが分かる。実施例1では、第1酢酸流におけるCR濃度を制御する手段として、反応槽の水素分圧を比較例2の2倍(0.04MPa)に高めている。反応槽の水素分圧を上げることによりCRが水添され、反応混合液(反応混合物のうちの液相;反応媒体)中のCR濃度が低下するため、第1蒸留塔仕込液中のCR濃度も低下し、これにより、第1蒸留塔で脱低沸して得られる第1酢酸流中のCR濃度も低下するというメカニズムに基づく。
なお実施例1(0.04MPa)と実施例12(0.07MPa)の対比より、反応槽の水素分圧を一層高くすると、製品カメレオンタイムが上昇している理由も、上記のメカニズムと同様である。
比較例3と実施例1との対比から、分液工程のAD分配率等に基づき、脱AD処理する対象を選択し、第1酢酸流におけるCR濃度を2.2ppm以下に制御し、且つ脱水塔の還流比を特定値以上として、脱低沸塔及び脱クロトンアルデヒド塔の還流比を特定条件で運転した場合、これらの相乗効果により、製品酢酸中のCR濃度が低下し、製品カメレオンタイムも約2倍(1.75倍)の70分に向上することが分かる。また、実施例1のほうが比較例3よりも、第1酢酸流及び第2酢酸流におけるクロトンアルデヒド濃度CCR(質量ppm)と2-エチルクロトンアルデヒド濃度CECR(質量ppm)との比(CCR/CECR)のいずれも小さくなっていることが分かる。
実施例1と実施例2の対比より、同じ脱クロトンアルデヒド塔運転条件でも、脱低沸塔及び脱水塔の還流比を増加させると、製品カメレオンタイムが顕著に向上することが分かる。また上記分離工程により、実施例2のほうが実施例1よりも、第1酢酸流及び第2酢酸流におけるクロトンアルデヒド濃度CCR(質量ppm)と2-エチルクロトンアルデヒド濃度CECR(質量ppm)との比(CCR/CECR)のいずれも顕著に小さくなっていることが分かる。
実施例2~6より、脱低沸塔及び脱水塔の還流比が同じ条件であっても、脱クロトンアルデヒド塔の還流比を上げて、脱クロトンアルデヒド塔の塔底にクロトンアルデヒドをより濃縮させると、廃棄するクロトンアルデヒド量が増加し、製品酢酸のカメレオンタイムが向上することが分かる。
なお、実施例1、2は、脱クロトンアルデヒド塔の還流比が0.01と通常の蒸留と比べて極端に低いが、本蒸留は、仕込液のほとんどを留出させるため、留出量が仕込液量とほぼ同等と非常に多く、低い還流量であってもクロトンアルデヒドの分離に寄与する。なお、実施例6の缶出液のヨウ化メチル濃度は極限まで低下できており、有用なヨウ化メチルの排出量も抑えられている。
また、実施例1~6の結果から、脱低沸塔仕込液中のAD濃度及びMA濃度一定条件下において、分液時の温度が高くなるほど、AD分配率が小さくなり、酢酸メチルが存在する系であっても、高温ほどADの有機相への分配割合が相対的に高くなる傾向となることが分かる。すなわち、アセトアルデヒドの除去効率の点から、分液時の温度が高い場合は、有機相を脱AD処理するメリットは大きいが、分液時の温度が低い場合は、有機相を脱AD処理するメリットは小さい。一方、酢酸メチルが存在する系であっても、分液時の温度が低い場合は、水相を脱AD処理するメリットは大きいが、分液時の温度が高い場合は、水相を脱AD処理するメリットは小さい。別の観点からすると、酢酸メチルの有無にかかわらず、有機相を脱AD処理する工程、設備を用いる場合は、分液工程における分液時の液温を高く設定することが好ましい。また、水相を脱AD処理する工程、設備を用いる場合は、分液工程における分液時の液温を低く設定することが好ましい。
実施例7~11の結果から、脱低沸塔仕込液中のMA濃度が高く、水相、有機相のMA濃度が高くなるほど、AD分配率が小さくなり、ADの有機相への分配割合が相対的に高くなる傾向となることが分かる。すなわち、アセトアルデヒドの除去効率の点から、水相、有機相のMA濃度が高い場合は、有機相を脱AD処理するメリットは大きいが、水相、有機相のMA濃度が低い場合は、有機相を脱AD処理するメリットは小さい。一方、水相、有機相のMA濃度が低い場合は、水相を脱AD処理するメリットは大きいが、水相、有機相のMA濃度が高い場合は、水相を脱AD処理するメリットは小さい。別の側面からすると、有機相を脱AD処理する工程、設備を用いる場合は、例えば、反応槽での反応条件、蒸発器での蒸発条件、蒸発工程で得られた蒸気流の蒸留条件等を調節することにより、分液工程における水相及び/又は有機相のMA濃度を高くすることが好ましい。また、水相を脱AD処理する工程、設備を用いる場合は、例えば、反応槽での反応条件、蒸発器での蒸発条件、蒸発工程で得られた蒸気流の蒸留条件等を調節することにより、分液工程における水相及び/又は有機相のMA濃度を低くすることが好ましい。なお、実施例7~11の結果から、仕込液中のMA濃度が高く、水相、有機相のMA濃度が高くなるほど、AD分配率だけでなくMA分配率も小さくなることが分かる。
実施例5、7~11は、反応槽の水素分圧、脱低沸塔の還流比、脱水塔の還流比、脱クロトンアルデヒド塔の還流比、分液時の液温、及び脱AD処理の運転条件が共通するところ、第2酢酸流の製品カメレオンタイムは最小で150分(実施例7)、最大で540分以上(実施例11)と約4倍の差が表れている。ここでAD分配率に着目すると、製品カメレオンタイムが最小の実施例7は4.3であるのに対し、最大の実施例11は1.1である。運転条件の違いは脱低沸塔仕込みのMA濃度を変化させている点である。これによりデカンタ内(水相及び有機相)のMA濃度が変化し、これに伴いAD分配率も変化する。AD分配率がある程度高い場合(アセトアルデヒドが水相に比較的多く分配されている場合)は水相を脱AD処理に付する方が有利であり、AD分配率がある程度低い場合(アセトアルデヒドが有機相に比較的多く分配されている場合)は有機相を脱AD処理に付する方が有利であることを踏まえると、分液工程におけるAD分配率を、AD分離除去工程を実施する指標の一つとして活用することで、合理的に脱AD処理に付する対象を水相及び/又は有機相の少なくとも一部から選択して処理できるため、一層効率的に、副生物であるADを工業的に有利に分離除去できることが分かる。また、これに伴い、製品カメレオンタイムの向上に寄与することも分かる。
また、実施例1と実施例13の対比により、デカンタ温度を上昇させ、デカンタの有機相中のAD濃度が上昇すると、脱AD量が増加して、クロトンアルデヒド生成量が低下するため、製品カメレオンタイムが約1.3倍(90分)に向上することが分かる。デカンタ時の温度条件(分液時の液温)の制御が、効率の良い脱AD処理において有効なパラメータの一つであることが示されている。
また、実施例11と14の対比により、AD濃度がほぼ同等の有機相及び水相をそれぞれ脱AD処理した場合、製品酢酸のクロトンアルデヒド、2-エチルクロトンアルデヒド濃度、カメレオンタイムは何れもほぼ同等の結果となる事が分かる。すなわち、このような中間領域のAD濃度の場合は、水相又は有機相のいずれを脱AD処理の対象としても、良いことが分かる。なお、実施例11と14とでは、反応槽の水素分圧、脱低沸塔の還流比、及び脱水塔の還流比が共通し、脱クロトンアルデヒド塔の還流比のみが実施例14の方が5倍大きい(還流比50)。しかし製品カメレオンタイムには差がほとんどないのは、製品酢酸の純度が極めて高められているため、脱クロトンアルデヒド塔の還流比の効果が還流比10の場合(実施例11)と還流比50(実施例14)との間で効果の差異が表れにくいためと思われる。また、脱クロトンアルデヒド塔の還流比を上昇させていくと、クロトンアルデヒドの分離効率が一定値に近づくため、還流比を無限に上昇させても効果は変らないことを示している。
以上のことから、脱低沸塔の還流比を増加させ、クロトンアルデヒドを塔頂に濃縮させ、反応槽にリサイクルして、反応槽内でクロトンアルデヒドを2-エチルクロトンアルデヒドや酢酸ブチルに変換するとともに(クロトンアルデヒド+アセトアルデヒド→2-エチルクロトンアルデヒド、クロトンアルデヒド+水素→ブチルアルコール、ブチルアルコール+酢酸→酢酸ブチル)、脱低沸塔の還流比を増加させて塔頂にクロトンアルデヒドを濃縮した上で、塔頂液(例えば有機相)を蒸留処理して効率的にクロトンアルデヒドを除去すると、それらの相乗効果により、予想を超えた品質改善を行うことができることが分かる。
すなわち(1)脱低沸塔で得られる第1酢酸流中のクロトンアルデヒド濃度を特定値以下に制御する、及び/又は、脱水塔の還流比を特定値以上とするとともに、(2)脱低沸塔の還流比を特定値以上とし脱クロトンアルデヒド工程によりクロトンアルデヒドを効率的に除去すること、及び(3)分液工程のアセトアルデヒド分配率等に基づき、脱アセトアルデヒド処理に付す対象を合理的に決定すること、を兼ね備えることにより、副生物であるアセトアルデヒドを工業的に有利に分離除去でき、これにより過マンガン酸カリウム試験値の良好な高品質の酢酸を工業的により一層効率よく製造できることが分かる。
以上のまとめとして、本発明の構成及びそのバリエーションを以下に付記しておく。
[1]金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水の存在下、メタノールと一酸化炭素とを反応槽で反応させて酢酸を生成させるカルボニル化反応工程と、
前記カルボニル化反応工程で得られた反応混合物から、1以上の蒸発槽及び/又は蒸留塔を用いて、金属触媒を含む流れと、酢酸に富む酢酸流と、前記酢酸流よりも低沸成分に富む流れとを分離取得する分離工程と、
水、酢酸、ヨウ化メチル及びアセトアルデヒドを少なくとも含むプロセス流を水相と有機相とに分液させる分液工程と、
前記プロセス流由来のアセトアルデヒドを分離除去する工程であって、
前記分液工程における分液時の液温、水相及び/又は有機相のアセトアルデヒド濃度、アセトアルデヒド分配率、水相及び/又は有機相の酢酸メチル濃度、又は酢酸メチル分配率に基づいてその処理対象を、水相及び/又は有機相の少なくとも一部から選択して処理するアセトアルデヒド分離除去工程と、
前記水相及び/又は有機相の少なくとも一部を反応槽にリサイクルするリサイクル工程と、
前記水相及び/又は有機相の少なくとも他の一部を蒸留塔で処理してクロトンアルデヒドを分離除去する脱クロトンアルデヒド工程と、
を備えた酢酸の製造方法であって、
前記分離工程が、第1蒸留塔により、酢酸に富む第1酢酸流と、前記第1酢酸流よりも低沸成分に富むオーバーヘッド流とを分離取得する工程を有しており、
当該工程において前記第1酢酸流におけるクロトンアルデヒド濃度を2.2質量ppm以下に制御するとともに、
前記分離工程の第1蒸留塔の還流比について、当該第1蒸留塔に水相のみを還流させる場合は水相の還流比を2以上とし、有機相のみを還流させる場合は有機相の還流比を1以上とし、水相及び有機相をともに還流させる場合は水相及び有機相の総和の還流比を1.5以上とし、且つ、前記脱クロトンアルデヒド工程において下記(a-i)~(a-iii)の少なくとも1つの条件を満たすように蒸留塔を操作する
(a-i)当該蒸留塔の還流比を0.01以上とする
(a-ii)当該蒸留塔の留出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1未満とする
(a-iii)当該蒸留塔の缶出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1より大きくする
[2]金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水の存在下、メタノールと一酸化炭素とを反応槽で反応させて酢酸を生成させるカルボニル化反応工程と、
前記カルボニル化反応工程で得られた反応混合物から、1以上の蒸発槽及び/又は蒸留塔を用いて、金属触媒を含む流れと、酢酸に富む酢酸流と、前記酢酸流よりも低沸成分に富む流れとを分離取得する分離工程と、
水、酢酸、ヨウ化メチル及びアセトアルデヒドを少なくとも含むプロセス流を水相と有機相とに分液させる分液工程と、
前記プロセス流由来のアセトアルデヒドを分離除去する工程であって、
前記分液工程における分液時の液温、水相及び/又は有機相のアセトアルデヒド濃度、アセトアルデヒド分配率、水相及び/又は有機相の酢酸メチル濃度、又は酢酸メチル分配率に基づいてその処理対象を、水相及び/又は有機相の少なくとも一部から選択して処理するアセトアルデヒド分離除去工程と、
前記水相及び/又は有機相の少なくとも一部を反応槽にリサイクルするリサイクル工程と、
前記水相及び/又は有機相の少なくとも他の一部を蒸留塔で処理してクロトンアルデヒドを分離除去する脱クロトンアルデヒド工程と、
を備えた酢酸の製造方法であって、
前記分離工程が、第1蒸留塔により、酢酸に富む第1酢酸流と、前記第1酢酸流よりも低沸成分に富むオーバーヘッド流とを分離取得する工程を有しており、
当該工程において前記第1酢酸流におけるクロトンアルデヒド濃度を2.2質量ppm以下に制御し、且つ前記第1酢酸流におけるクロトンアルデヒド濃度CCR(質量ppm)と2-エチルクロトンアルデヒド濃度CECR(質量ppm)との比(CCR/CECR)を調節するとともに、
前記分離工程の第1蒸留塔の還流比について、当該第1蒸留塔に水相のみを還流させる場合は水相の還流比を2以上とし、有機相のみを還流させる場合は有機相の還流比を1以上とし、水相及び有機相をともに還流させる場合は水相及び有機相の総和の還流比を1.5以上とし、且つ、前記脱クロトンアルデヒド工程において下記(a-i)~(a-iii)の少なくとも1つの条件を満たすように蒸留塔を操作する
(a-i)当該蒸留塔の還流比を0.01以上とする
(a-ii)当該蒸留塔の留出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1未満とする
(a-iii)当該蒸留塔の缶出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1より大きくする
[3]金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水の存在下、メタノールと一酸化炭素とを反応槽で反応させて酢酸を生成させるカルボニル化反応工程と、
前記カルボニル化反応工程で得られた反応混合物から、1以上の蒸発槽及び/又は蒸留塔を用いて、金属触媒を含む流れと、酢酸に富む酢酸流と、前記酢酸流よりも低沸成分に富む流れとを分離取得する分離工程と、
水、酢酸、ヨウ化メチル及びアセトアルデヒドを少なくとも含むプロセス流を水相と有機相とに分液させる分液工程と、
前記プロセス流に由来するアセトアルデヒドを分離除去する工程であって、
前記分液工程における分液時の液温、水相及び/又は有機相のアセトアルデヒド濃度、アセトアルデヒド分配率、水相及び/又は有機相の酢酸メチル濃度、又は酢酸メチル分配率に基づいてその処理対象を、水相及び/又は有機相の少なくとも一部から選択して処理するアセトアルデヒド分離除去工程と、
前記水相及び/又は有機相の少なくとも一部を反応槽にリサイクルするリサイクル工程と、
前記水相及び/又は有機相の少なくとも他の一部を蒸留塔で処理してクロトンアルデヒドを分離除去する脱クロトンアルデヒド工程と、
を備えた酢酸の製造方法であって、
前記分離工程が、第1蒸留塔により酢酸に富む第1酢酸流と前記第1酢酸流よりも低沸成分に富む第1オーバーヘッド流とを分離取得する工程、及び、前記第1酢酸流を第2蒸留塔により、水に富む第2オーバーヘッド流と第1酢酸流よりも酢酸に富む第2酢酸流とを分離取得する工程を有しており、
前記各工程において前記第1酢酸流におけるクロトンアルデヒド濃度を2.2質量ppm以下に制御する、及び/又は、第2蒸留塔の還流比を0.1以上に制御するとともに、
前記分離工程の第1蒸留塔の還流比について、当該第1蒸留塔に水相のみを還流させる場合は水相の還流比を2以上とし、有機相のみを還流させる場合は有機相の還流比を1以上とし、水相及び有機相をともに還流させる場合は水相及び有機相の総和の還流比を1.5以上とし、且つ、前記脱クロトンアルデヒド工程において下記(a-i)~(a-iii)の少なくとも1つの条件を満たすように蒸留塔を操作する酢酸の製造方法。
(a-i)当該蒸留塔の還流比を0.01以上とする
(a-ii)当該蒸留塔の留出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1未満とする
(a-iii)当該蒸留塔の缶出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1より大きくする
[4]金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水の存在下、メタノールと一酸化炭素とを反応槽で反応させて酢酸を生成させるカルボニル化反応工程と、
前記カルボニル化反応工程で得られた反応混合物から、1以上の蒸発槽及び/又は蒸留塔を用いて、金属触媒を含む流れと、酢酸に富む酢酸流と、前記酢酸流よりも低沸成分に富む流れとを分離取得する分離工程と、
水、酢酸、ヨウ化メチル及びアセトアルデヒドを少なくとも含むプロセス流を水相と有機相とに分液させる分液工程と、
前記プロセス流に由来するアセトアルデヒドを分離除去する工程であって、
前記分液工程における分液時の液温、水相及び/又は有機相のアセトアルデヒド濃度、アセトアルデヒド分配率、水相及び/又は有機相の酢酸メチル濃度、又は酢酸メチル分配率に基づいてその処理対象を、水相及び/又は有機相の少なくとも一部から選択して処理するアセトアルデヒド分離除去工程と、
前記水相及び/又は有機相の少なくとも一部を反応槽にリサイクルするリサイクル工程と、
前記水相及び/又は有機相の少なくとも他の一部を蒸留塔で処理してクロトンアルデヒドを分離除去する脱クロトンアルデヒド工程と、
を備えた酢酸の製造方法であって、
前記分離工程が、第1蒸留塔により酢酸に富む第1酢酸流と前記第1酢酸流よりも低沸成分に富む第1オーバーヘッド流とを分離取得する工程、及び、前記第1酢酸流を第2蒸留塔により、水に富む第2オーバーヘッド流と第1酢酸流よりも酢酸に富む第2酢酸流とを分離取得する工程を有しており、
前記各工程において前記第1酢酸流におけるクロトンアルデヒド濃度を2.2質量ppm以下に制御する、及び/又は、第2蒸留塔の還流比を0.1以上に制御し、且つ前記第1酢酸流、及び前記第2酢酸流のうち少なくとも1つにおけるクロトンアルデヒド濃度CCR(質量ppm)と2-エチルクロトンアルデヒド濃度CECR(質量ppm)との比(CCR/CECR)を調節するとともに、
前記分離工程の第1蒸留塔の還流比について、当該第1蒸留塔に水相のみを還流させる場合は水相の還流比を2以上とし、有機相のみを還流させる場合は有機相の還流比を1以上とし、水相及び有機相をともに還流させる場合は水相及び有機相の総和の還流比を1.5以上とし、且つ、前記脱クロトンアルデヒド工程において下記(a-i)~(a-iii)の少なくとも1つの条件を満たすように蒸留塔を操作する酢酸の製造方法。
(a-i)当該蒸留塔の還流比を0.01以上とする
(a-ii)当該蒸留塔の留出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1未満とする
(a-iii)当該蒸留塔の缶出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1より大きくする
[5]前記分液工程が下記(b-i)~(b-v)のうち少なくとも1つの条件を満たし、前記水相の少なくとも一部を前記アセトアルデヒド分離除去工程にて処理する[1]~[4]のいずれか1つに記載の酢酸の製造方法。
(b-i)水相中のアセトアルデヒド濃度が28.1質量%以下、及び/又は、有機相中のアセトアルデヒド濃度が24.8質量%以下である
(b-ii)分液時の温度が70℃以下である
(b-iii)水相中の酢酸メチル濃度が12.0質量%以下、及び/又は、有機相中の酢酸メチル濃度が47.6質量%以下、及び/又は、水相中の酢酸メチル濃度と有機相中の酢酸メチル濃度の和が59.6質量%以下である
(b-iv)アセトアルデヒド分配率[{水相のアセトアルデヒド濃度(質量%)}/{有機相のアセトアルデヒド濃度(質量%)}]が1.1以上である
(b-v)酢酸メチル分配率[{水相の酢酸メチル濃度(質量%)}/{有機相の酢酸メチル濃度(質量%)}]が0.25以上である
[6]前記(b-i)において、水相中のアセトアルデヒド濃度が28.1質量%以下、且つ、有機相中のアセトアルデヒド濃度が24.8質量%以下である、[5]記載の酢酸の製造方法。
[7]前記(b-i)において、水相中のアセトアルデヒド濃度が0.045~28.1質量%(好ましくは0.098~10質量%、さらに好ましくは0.098~3.0質量%、特に好ましくは0.098~1.0質量%(例えば0.15~0.9質量%))である、[5]又は[6]記載の酢酸の製造方法。
[8]前記(b-i)において、有機相中のアセトアルデヒド濃度が0.013~24.8質量%(好ましくは0.030~2.0質量%、さらに好ましくは0.030~0.50質量%、特に好ましくは0.030~0.24質量%)である、[5]~[7]のいずれか1つに記載の酢酸の製造方法。
[9]前記(b-i)を満たす場合、前記分液に供される液中のアセトアルデヒド濃度が26.0質量%以下(例えば0.026~26.0質量%、好ましくは0.057~10質量%、さらに好ましくは0.057~3.0質量%、特に好ましくは0.057~1.0質量%(例えば0.057~0.42質量%))である、[5]~[8]のいずれか1つに記載の酢酸の製造方法。
[10]前記(b-ii)において、分液時の温度が-5℃~70℃(好ましくは-5℃~60℃、より好ましくは-5℃~51℃(例えば、-5℃~45℃)、さらに好ましくは-5℃~41℃(例えば-5℃~31℃))である、[5]~[9]のいずれか1つに記載の酢酸の製造方法。
[11]前記(b-iii)において、水相中の酢酸メチル濃度が12.0質量%以下、且つ、有機相中の酢酸メチル濃度が47.6質量%以下である、[5]~[10]のいずれか1つに記載の酢酸の製造方法。
[12]前記(b-iii)において、水相中の酢酸メチル濃度が1.2~12.0質量%(好ましくは2.0~12.0質量%、さらに好ましくは5.0~12.0質量%(例えば6.0~12.0質量%))である、[5]~[11]のいずれか1つに記載の酢酸の製造方法。
[13]前記(b-iii)において、有機相中の酢酸メチル濃度が2.2~47.6質量%(好ましくは5.0~42質量%、さらに好ましくは8.0~35質量%(例えば10.0~30質量%))である、[5]~[12]のいずれか1つに記載の酢酸の製造方法。
[14]前記(b-iii)において、水相中の酢酸メチル濃度と有機相中の酢酸メチル濃度の和が4.2~59.6質量%(好ましくは6.0~54質量%、より好ましくは8.0~54質量%、さらに好ましくは10.0~54質量%、特に好ましくは14.0~47質量%(例えば16.0~42質量%))である、[5]~[13]のいずれか1つに記載の酢酸の製造方法。
[15]前記(b-iii)を満たす場合、前記分液に供される液中の酢酸メチル濃度が38.2質量%以下(例えば2.0~38.2質量%、好ましくは5.0~31質量%、より好ましくは8.0~25質量%、さらに好ましくは10.0~25質量%)である、[5]~[14]のいずれか1つに記載の酢酸の製造方法。
[16]前記(b-iv)において、アセトアルデヒド分配率が1.1~8.0(好ましくは1.5~6.0、さらに好ましくは1.9~5.0)である、[5]~[15]のいずれか1つに記載の酢酸の製造方法。
[17]前記(b-v)において、酢酸メチル分配率が0.26以上(例えば0.26~0.65、好ましくは0.28以上(例えば0.28~0.60))である、[5]~[16]のいずれか1つに記載の酢酸の製造方法。
[18]前記分液工程が少なくとも前記(b-i)、(b-ii)及び(b-iii)を同時に満たす[5]~[17]のいずれか1つに記載の酢酸の製造方法。
[19]前記分液工程が少なくとも前記(b-i)、(b-ii)、(b-iii)及び(b-iv)を同時に満たす[5]~[18]のいずれか1つに記載の酢酸の製造方法。
[20]前記分液工程が前記(b-i)、(b-ii)、(b-iii)、(b-iv)及び(b-v)の全ての条件を満たす[5]~[19]のいずれか1つに記載の酢酸の製造方法。
[21]前記分液工程が下記(b´-i)~(b´-v)のうち少なくとも1つの条件を満たし、前記有機相の少なくとも一部を前記アセトアルデヒド分離除去工程にて処理する[1]~[4]のいずれか1つに記載の酢酸の製造方法。
(b´-i)水相中のアセトアルデヒド濃度が0.045質量%以上、及び/又は、有機相中のアセトアルデヒド濃度が0.013質量%以上である
(b´-ii)分液時の温度が-5℃以上である
(b´-iii)水相中の酢酸メチル濃度が1.2質量%以上、及び/又は、有機相中の酢酸メチル濃度が2.2質量%以上、及び/又は、水相中の酢酸メチル濃度と有機相中の酢酸メチル濃度の和が3.4質量%以上である
(b´-iv)アセトアルデヒド分配率[{水相のアセトアルデヒド濃度(質量%)}/{有機相のアセトアルデヒド濃度(質量%)}]が4.1以下である
(b´-v)酢酸メチル分配率[{水相の酢酸メチル濃度(質量%)}/{有機相の酢酸メチル濃度(質量%)}]が0.8以下である
[22]前記(b´-i)において、水相中のアセトアルデヒド濃度が0.045質量%以上、且つ、有機相中のアセトアルデヒド濃度が0.013質量%以上である、[21]記載の酢酸の製造方法。
[23]前記(b´-i)において、水相中のアセトアルデヒド濃度が0.045~35質量%(好ましくは0.15~10質量%、さらに好ましくは0.2~2.0質量%)である、[21]又は[22]記載の酢酸の製造方法。
[24]前記(b´-i)において、有機相中のアセトアルデヒド濃度が0.013~30質量%(好ましくは0.05~5.0質量%、さらに好ましくは0.1~1.0質量%)である、[21]~[23]のいずれか1つに記載の酢酸の製造方法。
[25]前記(b´-i)を満たす場合、前記分液に供される液中のアセトアルデヒド濃度が0.026質量%以上(例えば0.026~32質量%、好ましくは0.10~8.0質量%、さらに好ましくは0.15~1.8質量%)である、[21]~[24]のいずれか1つに記載の酢酸の製造方法。
[26]前記(b´-ii)において、分液時の温度が0℃以上(例えば0~90℃、好ましくは10℃以上(例えば10~90℃)、より好ましくは10℃以上(例えば10~90℃)、さらに好ましくは20℃以上(例えば25~90℃)、30℃より高い温度(例えば30℃超90℃以下))、35℃より高い温度(例えば35℃超90℃以下)、40℃より高い温度(例えば40℃超90℃以下)、特に好ましくは70℃より高い温度(例えば70℃超90℃以下)である、[21]~[25]のいずれか1つに記載の酢酸の製造方法。
[27]前記(b´-iii)において、水相中の酢酸メチル濃度が1.2質量%以上、且つ、有機相中の酢酸メチル濃度が2.2質量%以上である、[21]~[26]のいずれか1つに記載の酢酸の製造方法。
[28]前記(b´-iii)において、水相中の酢酸メチル濃度が1.2~20質量%、好ましくは2.5~18質量%、より好ましくは4.0~15質量%、さらに好ましくは6.0~13質量%、特に好ましくは7.0~12質量%)である、[21]~[27]のいずれか1つに記載の酢酸の製造方法。
[29]前記(b´-iii)において、有機相中の酢酸メチル濃度が2.2~60質量%(好ましくは5.8~48質量%、より好ましくは8.0~40質量%、さらに好ましくは10.0~30質量%、特に好ましくは11.0~25質量%)である、[21]~[28]のいずれか1つに記載の酢酸の製造方法。
[30]前記(b´-iii)において、水相中の酢酸メチル濃度と有機相中の酢酸メチル濃度の和が3.4~75質量%(好ましくは8.3~60質量%(例えば10.0~40質量%)、より好ましくは15.0~50質量%、さらに好ましくは25.0~53質量%)である、[21]~[29]のいずれか1つに記載の酢酸の製造方法。
[31]前記(b´-iii)を満たす場合、前記分液に供される液中の酢酸メチル濃度が2.0~50質量%(好ましくは5.0~38質量%、より好ましくは8.0~35質量%、さらに好ましくは10.0~32質量%、特に好ましくは15~31質量%)である、[21]~[30]のいずれか1つに記載の酢酸の製造方法。
[32]前記(b´-iv)において、アセトアルデヒド分配率が3.35以下((例えば0.6~3.35)、より好ましくは3以下(0.7~3)、さらに好ましくは2.8以下(例えば0.8~2.8)、特に好ましくは2.5以下(例えば0.8~2.5)、とりわけ2.3以下(例えば0.9~2.3)、なかんずく2.0以下(例えば1.0~2.0))である、[21]~[31]のいずれか1つに記載の酢酸の製造方法。
[33]前記(b´-v)において、酢酸メチル分配率が0.7以下((例えば0.20~0.70)、より好ましくは0.6以下(例えば、0.20~0.60)、さらに好ましくは0.44以下(例えば0.20~0.44)、特に好ましくは0.25未満(例えば0.20以上0.25未満))である、[21]~[32]のいずれか1つに記載の酢酸の製造方法。
[34]前記分液工程が少なくとも前記(b´-i)、(b´-ii)及び(b´-iii)を同時に満たす[21]~[33]のいずれか1つに記載の酢酸の製造方法。
[35]前記分液工程が少なくとも前記(b´-i)、(b´-ii)、(b´-iii)及び(b´-iv)を同時に満たす[21]~[34]のいずれか1つに記載の酢酸の製造方法。
[36]前記分液工程が前記(b´-i)、(b´-ii)、(b´-iii)、(b´-iv)及び(b´-v)の全ての条件を満たす[21]~[35]のいずれか1つに記載の酢酸の製造方法。
[37]前記分離工程は、前記カルボニル化反応工程で得られた反応混合物を蒸発槽において蒸気流と残液流とに分離する蒸発工程と、
前記蒸気流を第1蒸留塔によりヨウ化メチル及びアセトアルデヒドから選択された少なくとも一種の低沸成分に富む第1オーバーヘッド流と酢酸に富む第1酢酸流とに分離するとともに、前記第1オーバーヘッド流を凝縮、分液させて水相と有機相とを得る脱低沸工程とを有する、[1]~[36]のいずれか1つに記載の酢酸の製造方法。
[38]前記分離工程は、前記第1酢酸流を第2蒸留塔により水に富む第2オーバーヘッド流と第1酢酸流よりも酢酸に富む第2酢酸流とに分離する脱水工程を有する、[37]記載の酢酸の製造方法。
[39]第2蒸留塔の還流比を0.3以上(例えば0.32以上、好ましくは、0.35以上、より好ましくは0.4以上、さらに好ましくは1以上、特に好ましくは2以上)に制御する、[3]~[38]記載の酢酸の製造方法。
[40]第2蒸留塔の還流比の上限が3000(好ましくは1000、より好ましくは100、さらに好ましくは10程度)である、[3]~[39]記載の酢酸の製造方法。
[41]第2酢酸流におけるクロトンアルデヒド濃度が2.0質量ppm以下(好ましくは1.8質量ppm以下、より好ましくは1.5質量ppm以下、さらに好ましくは1.2質量ppm以下、特に好ましくは0.7質量ppm以下、とりわけ0.5質量ppm以下)である、[38]~[40]のいずれか1つに記載の酢酸の製造方法。
[42]第2酢酸流における2-エチルクロトンアルデヒド濃度が3.0質量ppm以下(好ましくは1.8質量ppm以下、より好ましくは1.5質量ppm以下、さらに好ましくは1.2質量ppm以下、特に好ましくは0.7質量ppm以下、とりわけ0.5質量ppm以下)である、[38]~[41]のいずれか1つに記載の酢酸の製造方法。
[43]第2酢酸流におけるクロトンアルデヒド濃度CCR(質量ppm)と2-エチルクロトンアルデヒド濃度CECR(質量ppm)との比(CCR/CECR)が50以下(好ましくは、35以下、より好ましくは25以下、さらに好ましくは20以下、特に好ましくは15以下)である、[38]~[42]のいずれか1つに記載の酢酸の製造方法。
[44]第2酢酸流における酢酸ブチル濃度が15質量ppm以下(好ましくは12質量ppm以下、より好ましくは10質量ppm以下、さらに好ましくは8質量ppm以下)である、[38]~[43]のいずれか1つに記載の酢酸の製造方法。
[45]第2酢酸流におけるクロトンアルデヒド濃度CCR(質量ppm)と酢酸ブチル濃度CBA(質量ppm)との比(CCR/CBA)が2.0以下(好ましくは1.5以下、より好ましくは1.0以下、さらに好ましくは0.6以下)である、[38]~[44]のいずれか1つに記載の酢酸の製造方法。
[46]触媒系がさらにイオン性ヨウ化物を含む、[1]~[45]のいずれか1つに記載の酢酸の製造方法。
[47]前記水相及び/又は前記有機相の少なくとも一部からアセトアルデヒドを分離除去した後の残液の少なくとも一部を反応槽にリサイクルする、[1]~[46]のいずれか1つに記載の酢酸の製造方法。
[48]反応槽の水素分圧は、例えば0.001MPa(絶対圧)以上(好ましくは、0.005MPa以上、より好ましくは0.01MPa(絶対圧)以上[例えば0.015MPa以上]、さらに好ましくは0.02MPa(絶対圧)以上、特に好ましくは0.04MPa(絶対圧)以上、とりわけ0.06MPa(絶対圧)以上[例えば0.07MPa(絶対圧)以上])である、[1]~[47]のいずれか1つに記載の酢酸の製造方法。
[49]反応槽の反応混合液中のアセトアルデヒド濃度が500質量ppm以下(好ましくは450質量ppm以下、より好ましくは400質量ppm以下、さらに好ましくは350質量ppm以下、特に好ましくは300質量ppm以下、とりわけ250質量ppm以下)である、[1]~[48]のいずれか1つに記載の酢酸の製造方法。
[50]第2酢酸流におけるクロトンアルデヒド濃度が0.98質量ppm以下(好ましくは0.80質量ppm以下、より好ましくは0.50質量ppm以下、さらに好ましくは0.30質量ppm以下)及び/又は2-エチルクロトンアルデヒド濃度が1.0質量ppm以下(好ましくは0.50質量ppm以下、より好ましくは0.30質量ppm以下、さらに好ましくは0.20質量ppm以下)及び/又は酢酸ブチル濃度が15質量ppm以下(好ましくは10質量ppm以下、より好ましくは8質量ppm以下、さらに好ましくは5質量ppm以下、特に好ましくは3質量ppm以下)である、[38]~[49]のいずれか1つに記載の酢酸の製造方法。
[51]第2酢酸流の過マンガン酸カリウム試験値が50分を超える(好ましくは60分以上、より好ましくは100分以上、さらに好ましくは120分以上、特に好ましくは180分以上、とりわけ240分以上、なかんずく360分以上である)[38]~[50]のいずれか1つに記載の酢酸の製造方法。
[52]第1蒸留塔に供給する前記蒸気流におけるクロトンアルデヒド濃度が0~5.0質量ppm(好ましくは0.01~4.0質量ppm、より好ましくは0.1~3.0質量ppm、さらに好ましくは0.2~2.0質量ppm)及び/又は2-エチルクロトンアルデヒド濃度が0~3.0質量ppm(好ましくは0.01~2.5質量ppm、より好ましくは0.02~2.0質量ppm、さらに好ましくは0.03~0.8質量ppm)及び/又は酢酸ブチル濃度が0.1~13.0質量ppm(好ましくは0.2~12.0質量ppm、より好ましくは0.3~9.0質量ppm)である、[37]~[51]のいずれか1つに記載の酢酸の製造方法。
[53]第1酢酸流におけるクロトンアルデヒド濃度が1.3質量ppm以下(好ましくは1.0質量ppm以下、より好ましくは0.85質量ppm以下、さらに好ましくは0.5質量ppm以下、特に好ましくは0.25質量ppm以下)及び/又は2-エチルクロトンアルデヒド濃度が1.0質量ppm以下(好ましくは0.50質量ppm以下)及び/又は酢酸ブチル濃度が15質量ppm以下(好ましくは10質量ppm以下、より好ましくは8質量ppm以下、さらに好ましくは5質量ppm以下、特に好ましくは3質量ppm以下)である、[1]~[52]のいずれか1つに記載の酢酸の製造方法。
[54]前記脱クロトンアルデヒド工程における蒸留塔仕込液中のクロトンアルデヒド濃度が0.01~50質量ppm(好ましくは0.1~50質量ppm、より好ましくは0.3~30質量ppm、さらに好ましくは0.5~10質量ppm、特に好ましくは0.8~7.0質量ppm、とりわけ1.0~5.0質量ppm)である、[1]~[53]のいずれか1つに記載の酢酸の製造方法。
[55]前記脱クロトンアルデヒド工程において、前記(a-i)~(a-iii)の全ての条件を満たすように蒸留塔を操作する、[1]~[54]のいずれか1つに記載の酢酸の製造方法。
[56]前記脱クロトンアルデヒド工程において、蒸留をバッチ処理で行う[1]~[55]のいずれか1つに記載の酢酸の製造方法。
[57]脱クロトンアルデヒド工程における蒸留塔の処理量が、第1蒸留塔に供給する蒸気流の量100質量部に対して、0.0001~50質量部(好ましくは0.001~30質量部、より好ましくは0.01~10質量部、さらに好ましくは0.1~5質量部)である、[1]~[56]のいずれか1つに記載の酢酸の製造方法。
[58]脱クロトンアルデヒド工程における蒸留塔の塔頂凝縮液を前記水相及び/又は有機相及び/又は反応槽にリサイクルする、[1]~[57]のいずれか1つに記載の酢酸の製造方法。
[59]第1蒸留塔の還流比について、当該第1蒸留塔に水相のみを還流させる場合は水相の還流比を3以上(好ましくは5以上、より好ましくは8以上、さらに好ましくは12以上)とする、[1]~[58]のいずれか1つに記載の酢酸の製造方法。
[60]第1蒸留塔の還流比について、当該第1蒸留塔に有機相のみを還流させる場合は有機相の還流比を1.5以上(好ましくは2以上、より好ましくは4以上、さらに好ましくは5以上)とする、[1]~[59]のいずれか1つに記載の酢酸の製造方法。
[61]第1蒸留塔の還流比について、当該第1蒸留塔に水相及び有機相をともに還流させる場合は水相及び有機相の総和の還流比を2.3以上(好ましくは3.5以上、より好ましくは6以上、さらに好ましくは8.5以上)とする、[1]~[60]のいずれか1つに記載の酢酸の製造方法。
[62]第1蒸留塔の還流比の上限が3000(好ましく1000、より好ましくは100、さらに好ましくは30)である、[1]~[61]のいずれか1つに記載の酢酸の製造方法。
[63]前記(a-i)において、蒸留塔の還流比を0.05以上(好ましくは0.5以上、より好ましくは5以上、さらに好ましくは20以上、特に好ましくは30以上)とする、[1]~[62]のいずれか1つに記載の酢酸の製造方法。
[64]前記(a-i)において、蒸留塔の還流比の上限が1000である、[1]~[63]のいずれか1つに記載の酢酸の製造方法。
[65]前記(a-ii)において、蒸留塔の留出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を0.95以下(好ましくは0.80以下、より好ましくは0.70以下、さらに好ましくは0.60以下、特に好ましくは0.50以下、とりわけ0.30以下、なかんずく0.20以下)とする、[1]~[64]のいずれか1つに記載の酢酸の製造方法。
[66]前記(a-iii)において、蒸留塔の缶出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1.2以上(好ましくは1.5以上、より好ましくは2.0以上、さらに好ましくは3.0以上、特に好ましくは4.0以上、とりわけ5.0以上、なかんずく10以上、中でも20以上)とする、[1]~[65]のいずれか1つに記載の酢酸の製造方法。
[67]脱クロトンアルデヒド工程における蒸留塔の塔底にクロトンアルデヒドを濃縮し、酢酸とともに缶出液として系外に排出する[1]~[66]のいずれか1つに記載の酢酸の製造方法。
[68]反応槽における水素分圧の上限が0.5MPa(絶対圧)(好ましくは0.2MPa(絶対圧))である、[1]~[67]のいずれか1つに記載の酢酸の製造方法。
[69]脱クロトンアルデヒド工程において蒸留を連続式で行う際の蒸留塔への供給液の仕込み位置が、蒸留塔の高さ方向の上方から20%下~80%下(2/10~8/10)である、[1]~[68]のいずれか1つに記載の酢酸の製造方法。
[70]脱クロトンアルデヒド工程において蒸留塔の塔頂蒸気の凝縮液の少なくとも一部を蒸留塔に還流し、前記凝縮液の少なくとも他の一部を留出液として抜き取り前記水相及び/又は有機相及び/又は反応槽にリサイクルする、[1]~[69]のいずれか1つに記載の酢酸の製造方法。
[71]脱クロトンアルデヒド工程において蒸留塔の塔底からクロトンアルデヒドを含む缶出液を抜き取る、[1]~[70]のいずれか1つに記載の酢酸の製造方法。
[72]反応槽の反応混合液中のクロトンアルデヒド濃度が5質量ppm以下(好ましくは3質量ppm以下、より好ましくは2質量ppm以下)である、[1]~[71]のいずれか1つに記載の酢酸の製造方法。
[73]反応槽の反応混合液中の2-エチルクロトンアルデヒド濃度が5質量ppm以下(好ましくは3質量ppm以下、より好ましくは2質量ppm以下)である、[1]~[72]のいずれか1つに記載の酢酸の製造方法。
[74]反応槽の反応混合液中の酢酸ブチル濃度が0.1~15質量ppm(好ましくは1~12質量ppm、より好ましくは2~9質量ppm)である、[1]~[73]のいずれか1つに記載の酢酸の製造方法。
[75]蒸気流中のクロトンアルデヒド濃度が0~5質量ppm(好ましくは0.1~3質量ppm、より好ましくは0.2~2質量ppm)である[37]~[74]のいずれか1つに記載の酢酸の製造方法。
[76]蒸気流中の2-エチルクロトンアルデヒド濃度が0~3質量ppm(好ましくは0.02~2質量ppm、より好ましくは0.03~0.8質量ppm)である、[37]~[75]のいずれか1つに記載の酢酸の製造方法。
[77]蒸気流中の酢酸ブチル濃度が0.1~13質量ppm(好ましくは0.2~12質量ppm、より好ましくは0.3~9質量ppm)である[37]~[76]のいずれか1つに記載の酢酸の製造方法。
[78]さらに、プロセスからのオフガスを、少なくとも酢酸を含む吸収溶媒で吸収処理して、一酸化炭素に富むストリームと酢酸に富むストリームとに分離するスクラバー工程を有する[1]~[77]のいずれか1つに記載の酢酸の製造方法。
[1]金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水の存在下、メタノールと一酸化炭素とを反応槽で反応させて酢酸を生成させるカルボニル化反応工程と、
前記カルボニル化反応工程で得られた反応混合物から、1以上の蒸発槽及び/又は蒸留塔を用いて、金属触媒を含む流れと、酢酸に富む酢酸流と、前記酢酸流よりも低沸成分に富む流れとを分離取得する分離工程と、
水、酢酸、ヨウ化メチル及びアセトアルデヒドを少なくとも含むプロセス流を水相と有機相とに分液させる分液工程と、
前記プロセス流由来のアセトアルデヒドを分離除去する工程であって、
前記分液工程における分液時の液温、水相及び/又は有機相のアセトアルデヒド濃度、アセトアルデヒド分配率、水相及び/又は有機相の酢酸メチル濃度、又は酢酸メチル分配率に基づいてその処理対象を、水相及び/又は有機相の少なくとも一部から選択して処理するアセトアルデヒド分離除去工程と、
前記水相及び/又は有機相の少なくとも一部を反応槽にリサイクルするリサイクル工程と、
前記水相及び/又は有機相の少なくとも他の一部を蒸留塔で処理してクロトンアルデヒドを分離除去する脱クロトンアルデヒド工程と、
を備えた酢酸の製造方法であって、
前記分離工程が、第1蒸留塔により、酢酸に富む第1酢酸流と、前記第1酢酸流よりも低沸成分に富むオーバーヘッド流とを分離取得する工程を有しており、
当該工程において前記第1酢酸流におけるクロトンアルデヒド濃度を2.2質量ppm以下に制御するとともに、
前記分離工程の第1蒸留塔の還流比について、当該第1蒸留塔に水相のみを還流させる場合は水相の還流比を2以上とし、有機相のみを還流させる場合は有機相の還流比を1以上とし、水相及び有機相をともに還流させる場合は水相及び有機相の総和の還流比を1.5以上とし、且つ、前記脱クロトンアルデヒド工程において下記(a-i)~(a-iii)の少なくとも1つの条件を満たすように蒸留塔を操作する
(a-i)当該蒸留塔の還流比を0.01以上とする
(a-ii)当該蒸留塔の留出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1未満とする
(a-iii)当該蒸留塔の缶出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1より大きくする
[2]金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水の存在下、メタノールと一酸化炭素とを反応槽で反応させて酢酸を生成させるカルボニル化反応工程と、
前記カルボニル化反応工程で得られた反応混合物から、1以上の蒸発槽及び/又は蒸留塔を用いて、金属触媒を含む流れと、酢酸に富む酢酸流と、前記酢酸流よりも低沸成分に富む流れとを分離取得する分離工程と、
水、酢酸、ヨウ化メチル及びアセトアルデヒドを少なくとも含むプロセス流を水相と有機相とに分液させる分液工程と、
前記プロセス流由来のアセトアルデヒドを分離除去する工程であって、
前記分液工程における分液時の液温、水相及び/又は有機相のアセトアルデヒド濃度、アセトアルデヒド分配率、水相及び/又は有機相の酢酸メチル濃度、又は酢酸メチル分配率に基づいてその処理対象を、水相及び/又は有機相の少なくとも一部から選択して処理するアセトアルデヒド分離除去工程と、
前記水相及び/又は有機相の少なくとも一部を反応槽にリサイクルするリサイクル工程と、
前記水相及び/又は有機相の少なくとも他の一部を蒸留塔で処理してクロトンアルデヒドを分離除去する脱クロトンアルデヒド工程と、
を備えた酢酸の製造方法であって、
前記分離工程が、第1蒸留塔により、酢酸に富む第1酢酸流と、前記第1酢酸流よりも低沸成分に富むオーバーヘッド流とを分離取得する工程を有しており、
当該工程において前記第1酢酸流におけるクロトンアルデヒド濃度を2.2質量ppm以下に制御し、且つ前記第1酢酸流におけるクロトンアルデヒド濃度CCR(質量ppm)と2-エチルクロトンアルデヒド濃度CECR(質量ppm)との比(CCR/CECR)を調節するとともに、
前記分離工程の第1蒸留塔の還流比について、当該第1蒸留塔に水相のみを還流させる場合は水相の還流比を2以上とし、有機相のみを還流させる場合は有機相の還流比を1以上とし、水相及び有機相をともに還流させる場合は水相及び有機相の総和の還流比を1.5以上とし、且つ、前記脱クロトンアルデヒド工程において下記(a-i)~(a-iii)の少なくとも1つの条件を満たすように蒸留塔を操作する
(a-i)当該蒸留塔の還流比を0.01以上とする
(a-ii)当該蒸留塔の留出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1未満とする
(a-iii)当該蒸留塔の缶出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1より大きくする
[3]金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水の存在下、メタノールと一酸化炭素とを反応槽で反応させて酢酸を生成させるカルボニル化反応工程と、
前記カルボニル化反応工程で得られた反応混合物から、1以上の蒸発槽及び/又は蒸留塔を用いて、金属触媒を含む流れと、酢酸に富む酢酸流と、前記酢酸流よりも低沸成分に富む流れとを分離取得する分離工程と、
水、酢酸、ヨウ化メチル及びアセトアルデヒドを少なくとも含むプロセス流を水相と有機相とに分液させる分液工程と、
前記プロセス流に由来するアセトアルデヒドを分離除去する工程であって、
前記分液工程における分液時の液温、水相及び/又は有機相のアセトアルデヒド濃度、アセトアルデヒド分配率、水相及び/又は有機相の酢酸メチル濃度、又は酢酸メチル分配率に基づいてその処理対象を、水相及び/又は有機相の少なくとも一部から選択して処理するアセトアルデヒド分離除去工程と、
前記水相及び/又は有機相の少なくとも一部を反応槽にリサイクルするリサイクル工程と、
前記水相及び/又は有機相の少なくとも他の一部を蒸留塔で処理してクロトンアルデヒドを分離除去する脱クロトンアルデヒド工程と、
を備えた酢酸の製造方法であって、
前記分離工程が、第1蒸留塔により酢酸に富む第1酢酸流と前記第1酢酸流よりも低沸成分に富む第1オーバーヘッド流とを分離取得する工程、及び、前記第1酢酸流を第2蒸留塔により、水に富む第2オーバーヘッド流と第1酢酸流よりも酢酸に富む第2酢酸流とを分離取得する工程を有しており、
前記各工程において前記第1酢酸流におけるクロトンアルデヒド濃度を2.2質量ppm以下に制御する、及び/又は、第2蒸留塔の還流比を0.1以上に制御するとともに、
前記分離工程の第1蒸留塔の還流比について、当該第1蒸留塔に水相のみを還流させる場合は水相の還流比を2以上とし、有機相のみを還流させる場合は有機相の還流比を1以上とし、水相及び有機相をともに還流させる場合は水相及び有機相の総和の還流比を1.5以上とし、且つ、前記脱クロトンアルデヒド工程において下記(a-i)~(a-iii)の少なくとも1つの条件を満たすように蒸留塔を操作する酢酸の製造方法。
(a-i)当該蒸留塔の還流比を0.01以上とする
(a-ii)当該蒸留塔の留出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1未満とする
(a-iii)当該蒸留塔の缶出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1より大きくする
[4]金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水の存在下、メタノールと一酸化炭素とを反応槽で反応させて酢酸を生成させるカルボニル化反応工程と、
前記カルボニル化反応工程で得られた反応混合物から、1以上の蒸発槽及び/又は蒸留塔を用いて、金属触媒を含む流れと、酢酸に富む酢酸流と、前記酢酸流よりも低沸成分に富む流れとを分離取得する分離工程と、
水、酢酸、ヨウ化メチル及びアセトアルデヒドを少なくとも含むプロセス流を水相と有機相とに分液させる分液工程と、
前記プロセス流に由来するアセトアルデヒドを分離除去する工程であって、
前記分液工程における分液時の液温、水相及び/又は有機相のアセトアルデヒド濃度、アセトアルデヒド分配率、水相及び/又は有機相の酢酸メチル濃度、又は酢酸メチル分配率に基づいてその処理対象を、水相及び/又は有機相の少なくとも一部から選択して処理するアセトアルデヒド分離除去工程と、
前記水相及び/又は有機相の少なくとも一部を反応槽にリサイクルするリサイクル工程と、
前記水相及び/又は有機相の少なくとも他の一部を蒸留塔で処理してクロトンアルデヒドを分離除去する脱クロトンアルデヒド工程と、
を備えた酢酸の製造方法であって、
前記分離工程が、第1蒸留塔により酢酸に富む第1酢酸流と前記第1酢酸流よりも低沸成分に富む第1オーバーヘッド流とを分離取得する工程、及び、前記第1酢酸流を第2蒸留塔により、水に富む第2オーバーヘッド流と第1酢酸流よりも酢酸に富む第2酢酸流とを分離取得する工程を有しており、
前記各工程において前記第1酢酸流におけるクロトンアルデヒド濃度を2.2質量ppm以下に制御する、及び/又は、第2蒸留塔の還流比を0.1以上に制御し、且つ前記第1酢酸流、及び前記第2酢酸流のうち少なくとも1つにおけるクロトンアルデヒド濃度CCR(質量ppm)と2-エチルクロトンアルデヒド濃度CECR(質量ppm)との比(CCR/CECR)を調節するとともに、
前記分離工程の第1蒸留塔の還流比について、当該第1蒸留塔に水相のみを還流させる場合は水相の還流比を2以上とし、有機相のみを還流させる場合は有機相の還流比を1以上とし、水相及び有機相をともに還流させる場合は水相及び有機相の総和の還流比を1.5以上とし、且つ、前記脱クロトンアルデヒド工程において下記(a-i)~(a-iii)の少なくとも1つの条件を満たすように蒸留塔を操作する酢酸の製造方法。
(a-i)当該蒸留塔の還流比を0.01以上とする
(a-ii)当該蒸留塔の留出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1未満とする
(a-iii)当該蒸留塔の缶出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1より大きくする
[5]前記分液工程が下記(b-i)~(b-v)のうち少なくとも1つの条件を満たし、前記水相の少なくとも一部を前記アセトアルデヒド分離除去工程にて処理する[1]~[4]のいずれか1つに記載の酢酸の製造方法。
(b-i)水相中のアセトアルデヒド濃度が28.1質量%以下、及び/又は、有機相中のアセトアルデヒド濃度が24.8質量%以下である
(b-ii)分液時の温度が70℃以下である
(b-iii)水相中の酢酸メチル濃度が12.0質量%以下、及び/又は、有機相中の酢酸メチル濃度が47.6質量%以下、及び/又は、水相中の酢酸メチル濃度と有機相中の酢酸メチル濃度の和が59.6質量%以下である
(b-iv)アセトアルデヒド分配率[{水相のアセトアルデヒド濃度(質量%)}/{有機相のアセトアルデヒド濃度(質量%)}]が1.1以上である
(b-v)酢酸メチル分配率[{水相の酢酸メチル濃度(質量%)}/{有機相の酢酸メチル濃度(質量%)}]が0.25以上である
[6]前記(b-i)において、水相中のアセトアルデヒド濃度が28.1質量%以下、且つ、有機相中のアセトアルデヒド濃度が24.8質量%以下である、[5]記載の酢酸の製造方法。
[7]前記(b-i)において、水相中のアセトアルデヒド濃度が0.045~28.1質量%(好ましくは0.098~10質量%、さらに好ましくは0.098~3.0質量%、特に好ましくは0.098~1.0質量%(例えば0.15~0.9質量%))である、[5]又は[6]記載の酢酸の製造方法。
[8]前記(b-i)において、有機相中のアセトアルデヒド濃度が0.013~24.8質量%(好ましくは0.030~2.0質量%、さらに好ましくは0.030~0.50質量%、特に好ましくは0.030~0.24質量%)である、[5]~[7]のいずれか1つに記載の酢酸の製造方法。
[9]前記(b-i)を満たす場合、前記分液に供される液中のアセトアルデヒド濃度が26.0質量%以下(例えば0.026~26.0質量%、好ましくは0.057~10質量%、さらに好ましくは0.057~3.0質量%、特に好ましくは0.057~1.0質量%(例えば0.057~0.42質量%))である、[5]~[8]のいずれか1つに記載の酢酸の製造方法。
[10]前記(b-ii)において、分液時の温度が-5℃~70℃(好ましくは-5℃~60℃、より好ましくは-5℃~51℃(例えば、-5℃~45℃)、さらに好ましくは-5℃~41℃(例えば-5℃~31℃))である、[5]~[9]のいずれか1つに記載の酢酸の製造方法。
[11]前記(b-iii)において、水相中の酢酸メチル濃度が12.0質量%以下、且つ、有機相中の酢酸メチル濃度が47.6質量%以下である、[5]~[10]のいずれか1つに記載の酢酸の製造方法。
[12]前記(b-iii)において、水相中の酢酸メチル濃度が1.2~12.0質量%(好ましくは2.0~12.0質量%、さらに好ましくは5.0~12.0質量%(例えば6.0~12.0質量%))である、[5]~[11]のいずれか1つに記載の酢酸の製造方法。
[13]前記(b-iii)において、有機相中の酢酸メチル濃度が2.2~47.6質量%(好ましくは5.0~42質量%、さらに好ましくは8.0~35質量%(例えば10.0~30質量%))である、[5]~[12]のいずれか1つに記載の酢酸の製造方法。
[14]前記(b-iii)において、水相中の酢酸メチル濃度と有機相中の酢酸メチル濃度の和が4.2~59.6質量%(好ましくは6.0~54質量%、より好ましくは8.0~54質量%、さらに好ましくは10.0~54質量%、特に好ましくは14.0~47質量%(例えば16.0~42質量%))である、[5]~[13]のいずれか1つに記載の酢酸の製造方法。
[15]前記(b-iii)を満たす場合、前記分液に供される液中の酢酸メチル濃度が38.2質量%以下(例えば2.0~38.2質量%、好ましくは5.0~31質量%、より好ましくは8.0~25質量%、さらに好ましくは10.0~25質量%)である、[5]~[14]のいずれか1つに記載の酢酸の製造方法。
[16]前記(b-iv)において、アセトアルデヒド分配率が1.1~8.0(好ましくは1.5~6.0、さらに好ましくは1.9~5.0)である、[5]~[15]のいずれか1つに記載の酢酸の製造方法。
[17]前記(b-v)において、酢酸メチル分配率が0.26以上(例えば0.26~0.65、好ましくは0.28以上(例えば0.28~0.60))である、[5]~[16]のいずれか1つに記載の酢酸の製造方法。
[18]前記分液工程が少なくとも前記(b-i)、(b-ii)及び(b-iii)を同時に満たす[5]~[17]のいずれか1つに記載の酢酸の製造方法。
[19]前記分液工程が少なくとも前記(b-i)、(b-ii)、(b-iii)及び(b-iv)を同時に満たす[5]~[18]のいずれか1つに記載の酢酸の製造方法。
[20]前記分液工程が前記(b-i)、(b-ii)、(b-iii)、(b-iv)及び(b-v)の全ての条件を満たす[5]~[19]のいずれか1つに記載の酢酸の製造方法。
[21]前記分液工程が下記(b´-i)~(b´-v)のうち少なくとも1つの条件を満たし、前記有機相の少なくとも一部を前記アセトアルデヒド分離除去工程にて処理する[1]~[4]のいずれか1つに記載の酢酸の製造方法。
(b´-i)水相中のアセトアルデヒド濃度が0.045質量%以上、及び/又は、有機相中のアセトアルデヒド濃度が0.013質量%以上である
(b´-ii)分液時の温度が-5℃以上である
(b´-iii)水相中の酢酸メチル濃度が1.2質量%以上、及び/又は、有機相中の酢酸メチル濃度が2.2質量%以上、及び/又は、水相中の酢酸メチル濃度と有機相中の酢酸メチル濃度の和が3.4質量%以上である
(b´-iv)アセトアルデヒド分配率[{水相のアセトアルデヒド濃度(質量%)}/{有機相のアセトアルデヒド濃度(質量%)}]が4.1以下である
(b´-v)酢酸メチル分配率[{水相の酢酸メチル濃度(質量%)}/{有機相の酢酸メチル濃度(質量%)}]が0.8以下である
[22]前記(b´-i)において、水相中のアセトアルデヒド濃度が0.045質量%以上、且つ、有機相中のアセトアルデヒド濃度が0.013質量%以上である、[21]記載の酢酸の製造方法。
[23]前記(b´-i)において、水相中のアセトアルデヒド濃度が0.045~35質量%(好ましくは0.15~10質量%、さらに好ましくは0.2~2.0質量%)である、[21]又は[22]記載の酢酸の製造方法。
[24]前記(b´-i)において、有機相中のアセトアルデヒド濃度が0.013~30質量%(好ましくは0.05~5.0質量%、さらに好ましくは0.1~1.0質量%)である、[21]~[23]のいずれか1つに記載の酢酸の製造方法。
[25]前記(b´-i)を満たす場合、前記分液に供される液中のアセトアルデヒド濃度が0.026質量%以上(例えば0.026~32質量%、好ましくは0.10~8.0質量%、さらに好ましくは0.15~1.8質量%)である、[21]~[24]のいずれか1つに記載の酢酸の製造方法。
[26]前記(b´-ii)において、分液時の温度が0℃以上(例えば0~90℃、好ましくは10℃以上(例えば10~90℃)、より好ましくは10℃以上(例えば10~90℃)、さらに好ましくは20℃以上(例えば25~90℃)、30℃より高い温度(例えば30℃超90℃以下))、35℃より高い温度(例えば35℃超90℃以下)、40℃より高い温度(例えば40℃超90℃以下)、特に好ましくは70℃より高い温度(例えば70℃超90℃以下)である、[21]~[25]のいずれか1つに記載の酢酸の製造方法。
[27]前記(b´-iii)において、水相中の酢酸メチル濃度が1.2質量%以上、且つ、有機相中の酢酸メチル濃度が2.2質量%以上である、[21]~[26]のいずれか1つに記載の酢酸の製造方法。
[28]前記(b´-iii)において、水相中の酢酸メチル濃度が1.2~20質量%、好ましくは2.5~18質量%、より好ましくは4.0~15質量%、さらに好ましくは6.0~13質量%、特に好ましくは7.0~12質量%)である、[21]~[27]のいずれか1つに記載の酢酸の製造方法。
[29]前記(b´-iii)において、有機相中の酢酸メチル濃度が2.2~60質量%(好ましくは5.8~48質量%、より好ましくは8.0~40質量%、さらに好ましくは10.0~30質量%、特に好ましくは11.0~25質量%)である、[21]~[28]のいずれか1つに記載の酢酸の製造方法。
[30]前記(b´-iii)において、水相中の酢酸メチル濃度と有機相中の酢酸メチル濃度の和が3.4~75質量%(好ましくは8.3~60質量%(例えば10.0~40質量%)、より好ましくは15.0~50質量%、さらに好ましくは25.0~53質量%)である、[21]~[29]のいずれか1つに記載の酢酸の製造方法。
[31]前記(b´-iii)を満たす場合、前記分液に供される液中の酢酸メチル濃度が2.0~50質量%(好ましくは5.0~38質量%、より好ましくは8.0~35質量%、さらに好ましくは10.0~32質量%、特に好ましくは15~31質量%)である、[21]~[30]のいずれか1つに記載の酢酸の製造方法。
[32]前記(b´-iv)において、アセトアルデヒド分配率が3.35以下((例えば0.6~3.35)、より好ましくは3以下(0.7~3)、さらに好ましくは2.8以下(例えば0.8~2.8)、特に好ましくは2.5以下(例えば0.8~2.5)、とりわけ2.3以下(例えば0.9~2.3)、なかんずく2.0以下(例えば1.0~2.0))である、[21]~[31]のいずれか1つに記載の酢酸の製造方法。
[33]前記(b´-v)において、酢酸メチル分配率が0.7以下((例えば0.20~0.70)、より好ましくは0.6以下(例えば、0.20~0.60)、さらに好ましくは0.44以下(例えば0.20~0.44)、特に好ましくは0.25未満(例えば0.20以上0.25未満))である、[21]~[32]のいずれか1つに記載の酢酸の製造方法。
[34]前記分液工程が少なくとも前記(b´-i)、(b´-ii)及び(b´-iii)を同時に満たす[21]~[33]のいずれか1つに記載の酢酸の製造方法。
[35]前記分液工程が少なくとも前記(b´-i)、(b´-ii)、(b´-iii)及び(b´-iv)を同時に満たす[21]~[34]のいずれか1つに記載の酢酸の製造方法。
[36]前記分液工程が前記(b´-i)、(b´-ii)、(b´-iii)、(b´-iv)及び(b´-v)の全ての条件を満たす[21]~[35]のいずれか1つに記載の酢酸の製造方法。
[37]前記分離工程は、前記カルボニル化反応工程で得られた反応混合物を蒸発槽において蒸気流と残液流とに分離する蒸発工程と、
前記蒸気流を第1蒸留塔によりヨウ化メチル及びアセトアルデヒドから選択された少なくとも一種の低沸成分に富む第1オーバーヘッド流と酢酸に富む第1酢酸流とに分離するとともに、前記第1オーバーヘッド流を凝縮、分液させて水相と有機相とを得る脱低沸工程とを有する、[1]~[36]のいずれか1つに記載の酢酸の製造方法。
[38]前記分離工程は、前記第1酢酸流を第2蒸留塔により水に富む第2オーバーヘッド流と第1酢酸流よりも酢酸に富む第2酢酸流とに分離する脱水工程を有する、[37]記載の酢酸の製造方法。
[39]第2蒸留塔の還流比を0.3以上(例えば0.32以上、好ましくは、0.35以上、より好ましくは0.4以上、さらに好ましくは1以上、特に好ましくは2以上)に制御する、[3]~[38]記載の酢酸の製造方法。
[40]第2蒸留塔の還流比の上限が3000(好ましくは1000、より好ましくは100、さらに好ましくは10程度)である、[3]~[39]記載の酢酸の製造方法。
[41]第2酢酸流におけるクロトンアルデヒド濃度が2.0質量ppm以下(好ましくは1.8質量ppm以下、より好ましくは1.5質量ppm以下、さらに好ましくは1.2質量ppm以下、特に好ましくは0.7質量ppm以下、とりわけ0.5質量ppm以下)である、[38]~[40]のいずれか1つに記載の酢酸の製造方法。
[42]第2酢酸流における2-エチルクロトンアルデヒド濃度が3.0質量ppm以下(好ましくは1.8質量ppm以下、より好ましくは1.5質量ppm以下、さらに好ましくは1.2質量ppm以下、特に好ましくは0.7質量ppm以下、とりわけ0.5質量ppm以下)である、[38]~[41]のいずれか1つに記載の酢酸の製造方法。
[43]第2酢酸流におけるクロトンアルデヒド濃度CCR(質量ppm)と2-エチルクロトンアルデヒド濃度CECR(質量ppm)との比(CCR/CECR)が50以下(好ましくは、35以下、より好ましくは25以下、さらに好ましくは20以下、特に好ましくは15以下)である、[38]~[42]のいずれか1つに記載の酢酸の製造方法。
[44]第2酢酸流における酢酸ブチル濃度が15質量ppm以下(好ましくは12質量ppm以下、より好ましくは10質量ppm以下、さらに好ましくは8質量ppm以下)である、[38]~[43]のいずれか1つに記載の酢酸の製造方法。
[45]第2酢酸流におけるクロトンアルデヒド濃度CCR(質量ppm)と酢酸ブチル濃度CBA(質量ppm)との比(CCR/CBA)が2.0以下(好ましくは1.5以下、より好ましくは1.0以下、さらに好ましくは0.6以下)である、[38]~[44]のいずれか1つに記載の酢酸の製造方法。
[46]触媒系がさらにイオン性ヨウ化物を含む、[1]~[45]のいずれか1つに記載の酢酸の製造方法。
[47]前記水相及び/又は前記有機相の少なくとも一部からアセトアルデヒドを分離除去した後の残液の少なくとも一部を反応槽にリサイクルする、[1]~[46]のいずれか1つに記載の酢酸の製造方法。
[48]反応槽の水素分圧は、例えば0.001MPa(絶対圧)以上(好ましくは、0.005MPa以上、より好ましくは0.01MPa(絶対圧)以上[例えば0.015MPa以上]、さらに好ましくは0.02MPa(絶対圧)以上、特に好ましくは0.04MPa(絶対圧)以上、とりわけ0.06MPa(絶対圧)以上[例えば0.07MPa(絶対圧)以上])である、[1]~[47]のいずれか1つに記載の酢酸の製造方法。
[49]反応槽の反応混合液中のアセトアルデヒド濃度が500質量ppm以下(好ましくは450質量ppm以下、より好ましくは400質量ppm以下、さらに好ましくは350質量ppm以下、特に好ましくは300質量ppm以下、とりわけ250質量ppm以下)である、[1]~[48]のいずれか1つに記載の酢酸の製造方法。
[50]第2酢酸流におけるクロトンアルデヒド濃度が0.98質量ppm以下(好ましくは0.80質量ppm以下、より好ましくは0.50質量ppm以下、さらに好ましくは0.30質量ppm以下)及び/又は2-エチルクロトンアルデヒド濃度が1.0質量ppm以下(好ましくは0.50質量ppm以下、より好ましくは0.30質量ppm以下、さらに好ましくは0.20質量ppm以下)及び/又は酢酸ブチル濃度が15質量ppm以下(好ましくは10質量ppm以下、より好ましくは8質量ppm以下、さらに好ましくは5質量ppm以下、特に好ましくは3質量ppm以下)である、[38]~[49]のいずれか1つに記載の酢酸の製造方法。
[51]第2酢酸流の過マンガン酸カリウム試験値が50分を超える(好ましくは60分以上、より好ましくは100分以上、さらに好ましくは120分以上、特に好ましくは180分以上、とりわけ240分以上、なかんずく360分以上である)[38]~[50]のいずれか1つに記載の酢酸の製造方法。
[52]第1蒸留塔に供給する前記蒸気流におけるクロトンアルデヒド濃度が0~5.0質量ppm(好ましくは0.01~4.0質量ppm、より好ましくは0.1~3.0質量ppm、さらに好ましくは0.2~2.0質量ppm)及び/又は2-エチルクロトンアルデヒド濃度が0~3.0質量ppm(好ましくは0.01~2.5質量ppm、より好ましくは0.02~2.0質量ppm、さらに好ましくは0.03~0.8質量ppm)及び/又は酢酸ブチル濃度が0.1~13.0質量ppm(好ましくは0.2~12.0質量ppm、より好ましくは0.3~9.0質量ppm)である、[37]~[51]のいずれか1つに記載の酢酸の製造方法。
[53]第1酢酸流におけるクロトンアルデヒド濃度が1.3質量ppm以下(好ましくは1.0質量ppm以下、より好ましくは0.85質量ppm以下、さらに好ましくは0.5質量ppm以下、特に好ましくは0.25質量ppm以下)及び/又は2-エチルクロトンアルデヒド濃度が1.0質量ppm以下(好ましくは0.50質量ppm以下)及び/又は酢酸ブチル濃度が15質量ppm以下(好ましくは10質量ppm以下、より好ましくは8質量ppm以下、さらに好ましくは5質量ppm以下、特に好ましくは3質量ppm以下)である、[1]~[52]のいずれか1つに記載の酢酸の製造方法。
[54]前記脱クロトンアルデヒド工程における蒸留塔仕込液中のクロトンアルデヒド濃度が0.01~50質量ppm(好ましくは0.1~50質量ppm、より好ましくは0.3~30質量ppm、さらに好ましくは0.5~10質量ppm、特に好ましくは0.8~7.0質量ppm、とりわけ1.0~5.0質量ppm)である、[1]~[53]のいずれか1つに記載の酢酸の製造方法。
[55]前記脱クロトンアルデヒド工程において、前記(a-i)~(a-iii)の全ての条件を満たすように蒸留塔を操作する、[1]~[54]のいずれか1つに記載の酢酸の製造方法。
[56]前記脱クロトンアルデヒド工程において、蒸留をバッチ処理で行う[1]~[55]のいずれか1つに記載の酢酸の製造方法。
[57]脱クロトンアルデヒド工程における蒸留塔の処理量が、第1蒸留塔に供給する蒸気流の量100質量部に対して、0.0001~50質量部(好ましくは0.001~30質量部、より好ましくは0.01~10質量部、さらに好ましくは0.1~5質量部)である、[1]~[56]のいずれか1つに記載の酢酸の製造方法。
[58]脱クロトンアルデヒド工程における蒸留塔の塔頂凝縮液を前記水相及び/又は有機相及び/又は反応槽にリサイクルする、[1]~[57]のいずれか1つに記載の酢酸の製造方法。
[59]第1蒸留塔の還流比について、当該第1蒸留塔に水相のみを還流させる場合は水相の還流比を3以上(好ましくは5以上、より好ましくは8以上、さらに好ましくは12以上)とする、[1]~[58]のいずれか1つに記載の酢酸の製造方法。
[60]第1蒸留塔の還流比について、当該第1蒸留塔に有機相のみを還流させる場合は有機相の還流比を1.5以上(好ましくは2以上、より好ましくは4以上、さらに好ましくは5以上)とする、[1]~[59]のいずれか1つに記載の酢酸の製造方法。
[61]第1蒸留塔の還流比について、当該第1蒸留塔に水相及び有機相をともに還流させる場合は水相及び有機相の総和の還流比を2.3以上(好ましくは3.5以上、より好ましくは6以上、さらに好ましくは8.5以上)とする、[1]~[60]のいずれか1つに記載の酢酸の製造方法。
[62]第1蒸留塔の還流比の上限が3000(好ましく1000、より好ましくは100、さらに好ましくは30)である、[1]~[61]のいずれか1つに記載の酢酸の製造方法。
[63]前記(a-i)において、蒸留塔の還流比を0.05以上(好ましくは0.5以上、より好ましくは5以上、さらに好ましくは20以上、特に好ましくは30以上)とする、[1]~[62]のいずれか1つに記載の酢酸の製造方法。
[64]前記(a-i)において、蒸留塔の還流比の上限が1000である、[1]~[63]のいずれか1つに記載の酢酸の製造方法。
[65]前記(a-ii)において、蒸留塔の留出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を0.95以下(好ましくは0.80以下、より好ましくは0.70以下、さらに好ましくは0.60以下、特に好ましくは0.50以下、とりわけ0.30以下、なかんずく0.20以下)とする、[1]~[64]のいずれか1つに記載の酢酸の製造方法。
[66]前記(a-iii)において、蒸留塔の缶出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1.2以上(好ましくは1.5以上、より好ましくは2.0以上、さらに好ましくは3.0以上、特に好ましくは4.0以上、とりわけ5.0以上、なかんずく10以上、中でも20以上)とする、[1]~[65]のいずれか1つに記載の酢酸の製造方法。
[67]脱クロトンアルデヒド工程における蒸留塔の塔底にクロトンアルデヒドを濃縮し、酢酸とともに缶出液として系外に排出する[1]~[66]のいずれか1つに記載の酢酸の製造方法。
[68]反応槽における水素分圧の上限が0.5MPa(絶対圧)(好ましくは0.2MPa(絶対圧))である、[1]~[67]のいずれか1つに記載の酢酸の製造方法。
[69]脱クロトンアルデヒド工程において蒸留を連続式で行う際の蒸留塔への供給液の仕込み位置が、蒸留塔の高さ方向の上方から20%下~80%下(2/10~8/10)である、[1]~[68]のいずれか1つに記載の酢酸の製造方法。
[70]脱クロトンアルデヒド工程において蒸留塔の塔頂蒸気の凝縮液の少なくとも一部を蒸留塔に還流し、前記凝縮液の少なくとも他の一部を留出液として抜き取り前記水相及び/又は有機相及び/又は反応槽にリサイクルする、[1]~[69]のいずれか1つに記載の酢酸の製造方法。
[71]脱クロトンアルデヒド工程において蒸留塔の塔底からクロトンアルデヒドを含む缶出液を抜き取る、[1]~[70]のいずれか1つに記載の酢酸の製造方法。
[72]反応槽の反応混合液中のクロトンアルデヒド濃度が5質量ppm以下(好ましくは3質量ppm以下、より好ましくは2質量ppm以下)である、[1]~[71]のいずれか1つに記載の酢酸の製造方法。
[73]反応槽の反応混合液中の2-エチルクロトンアルデヒド濃度が5質量ppm以下(好ましくは3質量ppm以下、より好ましくは2質量ppm以下)である、[1]~[72]のいずれか1つに記載の酢酸の製造方法。
[74]反応槽の反応混合液中の酢酸ブチル濃度が0.1~15質量ppm(好ましくは1~12質量ppm、より好ましくは2~9質量ppm)である、[1]~[73]のいずれか1つに記載の酢酸の製造方法。
[75]蒸気流中のクロトンアルデヒド濃度が0~5質量ppm(好ましくは0.1~3質量ppm、より好ましくは0.2~2質量ppm)である[37]~[74]のいずれか1つに記載の酢酸の製造方法。
[76]蒸気流中の2-エチルクロトンアルデヒド濃度が0~3質量ppm(好ましくは0.02~2質量ppm、より好ましくは0.03~0.8質量ppm)である、[37]~[75]のいずれか1つに記載の酢酸の製造方法。
[77]蒸気流中の酢酸ブチル濃度が0.1~13質量ppm(好ましくは0.2~12質量ppm、より好ましくは0.3~9質量ppm)である[37]~[76]のいずれか1つに記載の酢酸の製造方法。
[78]さらに、プロセスからのオフガスを、少なくとも酢酸を含む吸収溶媒で吸収処理して、一酸化炭素に富むストリームと酢酸に富むストリームとに分離するスクラバー工程を有する[1]~[77]のいずれか1つに記載の酢酸の製造方法。
本発明の酢酸の製造方法は、メタノール法カルボニル化プロセス(メタノール法酢酸プロセス)による酢酸の工業的製造法として利用可能である。
1 反応槽
2 蒸発槽
3,5,6,10 蒸留塔
4 デカンタ
7 イオン交換樹脂塔
8 スクラバーシステム
9 アセトアルデヒド分離除去システム
16 反応混合物供給ライン
17 蒸気流排出ライン
18,19 残液流リサイクルライン
54 一酸化炭素含有ガス導入ライン
55,56 水酸化カリウム導入ライン
57 触媒循環ポンプ
91 蒸留塔(第1脱アセトアルデヒド塔)
92 抽出塔
93 蒸留塔(第2脱アセトアルデヒド塔)
94 蒸留塔(抽出蒸留塔)
95 デカンタ
96 デカンタ
97 蒸留塔(脱アセトアルデヒド塔)
98 蒸留塔(抽出蒸留塔)
99 デカンタ
200 チムニートレイ
300 液液平衡測定装置
2 蒸発槽
3,5,6,10 蒸留塔
4 デカンタ
7 イオン交換樹脂塔
8 スクラバーシステム
9 アセトアルデヒド分離除去システム
16 反応混合物供給ライン
17 蒸気流排出ライン
18,19 残液流リサイクルライン
54 一酸化炭素含有ガス導入ライン
55,56 水酸化カリウム導入ライン
57 触媒循環ポンプ
91 蒸留塔(第1脱アセトアルデヒド塔)
92 抽出塔
93 蒸留塔(第2脱アセトアルデヒド塔)
94 蒸留塔(抽出蒸留塔)
95 デカンタ
96 デカンタ
97 蒸留塔(脱アセトアルデヒド塔)
98 蒸留塔(抽出蒸留塔)
99 デカンタ
200 チムニートレイ
300 液液平衡測定装置
Claims (30)
- 金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水の存在下、メタノールと一酸化炭素とを反応槽で反応させて酢酸を生成させるカルボニル化反応工程と、
前記カルボニル化反応工程で得られた反応混合物から、1以上の蒸発槽及び/又は蒸留塔を用いて、金属触媒を含む流れと、酢酸に富む酢酸流と、前記酢酸流よりも低沸成分に富む流れとを分離取得する分離工程と、
水、酢酸、ヨウ化メチル及びアセトアルデヒドを少なくとも含むプロセス流を水相と有機相とに分液させる分液工程と、
前記プロセス流に由来するアセトアルデヒドを分離除去する工程であって、
前記分液工程における分液時の液温、水相及び/又は有機相のアセトアルデヒド濃度、アセトアルデヒド分配率、水相及び/又は有機相の酢酸メチル濃度、又は酢酸メチル分配率に基づいてその処理対象を、水相及び/又は有機相の少なくとも一部から選択して処理するアセトアルデヒド分離除去工程と、
前記水相及び/又は有機相の少なくとも一部を反応槽にリサイクルするリサイクル工程と、
前記水相及び/又は有機相の少なくとも他の一部を蒸留塔で処理してクロトンアルデヒドを分離除去する脱クロトンアルデヒド工程と、
を備えた酢酸の製造方法であって、
前記分離工程が、第1蒸留塔により、酢酸に富む第1酢酸流と、前記第1酢酸流よりも低沸成分に富むオーバーヘッド流とを分離取得する工程を有しており、
当該工程において前記第1酢酸流におけるクロトンアルデヒド濃度を2.2質量ppm以下に制御するとともに、
前記分離工程の第1蒸留塔の還流比について、当該第1蒸留塔に水相のみを還流させる場合は水相の還流比を2以上とし、有機相のみを還流させる場合は有機相の還流比を1以上とし、水相及び有機相をともに還流させる場合は水相及び有機相の総和の還流比を1.5以上とし、且つ、前記脱クロトンアルデヒド工程において下記(a-i)~(a-iii)の少なくとも1つの条件を満たすように蒸留塔を操作する酢酸の製造方法。
(a-i)当該蒸留塔の還流比を0.01以上とする
(a-ii)当該蒸留塔の留出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1未満とする
(a-iii)当該蒸留塔の缶出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1より大きくする - 金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水の存在下、メタノールと一酸化炭素とを反応槽で反応させて酢酸を生成させるカルボニル化反応工程と、
前記カルボニル化反応工程で得られた反応混合物から、1以上の蒸発槽及び/又は蒸留塔を用いて、金属触媒を含む流れと、酢酸に富む酢酸流と、前記酢酸流よりも低沸成分に富む流れとを分離取得する分離工程と、
水、酢酸、ヨウ化メチル及びアセトアルデヒドを少なくとも含むプロセス流を水相と有機相とに分液させる分液工程と、
前記プロセス流に由来するアセトアルデヒドを分離除去する工程であって、
前記分液工程における分液時の液温、水相及び/又は有機相のアセトアルデヒド濃度、アセトアルデヒド分配率、水相及び/又は有機相の酢酸メチル濃度、又は酢酸メチル分配率に基づいてその処理対象を、水相及び/又は有機相の少なくとも一部から選択して処理するアセトアルデヒド分離除去工程と、
前記水相及び/又は有機相の少なくとも一部を反応槽にリサイクルするリサイクル工程と、
前記水相及び/又は有機相の少なくとも他の一部を蒸留塔で処理してクロトンアルデヒドを分離除去する脱クロトンアルデヒド工程と、
を備えた酢酸の製造方法であって、
前記分離工程が、第1蒸留塔により酢酸に富む第1酢酸流と前記第1酢酸流よりも低沸成分に富む第1オーバーヘッド流とを分離取得する工程、及び、前記第1酢酸流を第2蒸留塔により、水に富む第2オーバーヘッド流と第1酢酸流よりも酢酸に富む第2酢酸流とを分離取得する工程を有しており、
前記各工程において前記第1酢酸流におけるクロトンアルデヒド濃度を2.2質量ppm以下に制御する、及び/又は、第2蒸留塔の還流比を0.1以上に制御するとともに、
前記分離工程の第1蒸留塔の還流比について、当該第1蒸留塔に水相のみを還流させる場合は水相の還流比を2以上とし、有機相のみを還流させる場合は有機相の還流比を1以上とし、水相及び有機相をともに還流させる場合は水相及び有機相の総和の還流比を1.5以上とし、且つ、前記脱クロトンアルデヒド工程において下記(a-i)~(a-iii)の少なくとも1つの条件を満たすように蒸留塔を操作する酢酸の製造方法。
(a-i)当該蒸留塔の還流比を0.01以上とする
(a-ii)当該蒸留塔の留出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1未満とする
(a-iii)当該蒸留塔の缶出液中のクロトンアルデヒド濃度(質量ppm)と仕込液中のクロトンアルデヒド濃度(質量ppm)との比(前者/後者)を1より大きくする - 前記分液工程が下記(b-i)~(b-v)のうち少なくとも1つの条件を満たし、前記水相の少なくとも一部を前記アセトアルデヒド分離除去工程にて処理する請求項1又は2記載の酢酸の製造方法。
(b-i)水相中のアセトアルデヒド濃度が28.1質量%以下、及び/又は、有機相中のアセトアルデヒド濃度が24.8質量%以下である
(b-ii)分液時の温度が70℃以下である
(b-iii)水相中の酢酸メチル濃度が12.0質量%以下、及び/又は、有機相中の酢酸メチル濃度が47.6質量%以下、及び/又は、水相中の酢酸メチル濃度と有機相中の酢酸メチル濃度の和が59.6質量%以下である
(b-iv)アセトアルデヒド分配率[{水相のアセトアルデヒド濃度(質量%)}/{有機相のアセトアルデヒド濃度(質量%)}]が1.1以上である
(b-v)酢酸メチル分配率[{水相の酢酸メチル濃度(質量%)}/{有機相の酢酸メチル濃度(質量%)}]が0.25以上である - 前記分液工程が前記(b-i)、(b-ii)、(b-iii)、(b-iv)及び(b-v)の全ての条件を満たす請求項3記載の酢酸の製造方法。
- 前記分液工程が下記(b´-i)~(b´-v)のうち少なくとも1つの条件を満たし、前記有機相の少なくとも一部を前記アセトアルデヒド分離除去工程にて処理する請求項1又は2記載の酢酸の製造方法。
(b´-i)水相中のアセトアルデヒド濃度が0.045質量%以上、及び/又は、有機相中のアセトアルデヒド濃度が0.013質量%以上である
(b´-ii)分液時の温度が-5℃以上である
(b´-iii)水相中の酢酸メチル濃度が1.2質量%以上、及び/又は、有機相中の酢酸メチル濃度が2.2質量%以上、及び/又は、水相中の酢酸メチル濃度と有機相中の酢酸メチル濃度の和が3.4質量%以上である
(b´-iv)アセトアルデヒド分配率[{水相のアセトアルデヒド濃度(質量%)}/{有機相のアセトアルデヒド濃度(質量%)}]が4.1以下である
(b´-v)酢酸メチル分配率[{水相の酢酸メチル濃度(質量%)}/{有機相の酢酸メチル濃度(質量%)}]が0.8以下である - 前記分液工程が前記(b´-i)、(b´-ii)、(b´-iii)、(b´-iv)及び(b´-v)の全ての条件を満たす請求項5記載の酢酸の製造方法。
- 前記分離工程は、前記カルボニル化反応工程で得られた反応混合物を蒸発槽において蒸気流と残液流とに分離する蒸発工程と、
前記蒸気流を第1蒸留塔によりヨウ化メチル及びアセトアルデヒドから選択された少なくとも一種の低沸成分に富む第1オーバーヘッド流と酢酸に富む第1酢酸流とに分離するとともに、前記第1オーバーヘッド流を凝縮、分液させて水相と有機相とを得る脱低沸工程と、を有する請求項1~6のいずれか1項に記載の酢酸の製造方法。 - 前記分離工程は、前記第1酢酸流を第2蒸留塔により水に富む第2オーバーヘッド流と第1酢酸流よりも酢酸に富む第2酢酸流とに分離する脱水工程を有する請求項7記載の酢酸の製造方法。
- 第2酢酸流におけるクロトンアルデヒド濃度が2.0質量ppm以下である請求項8記載の酢酸の製造方法。
- 第2酢酸流における2-エチルクロトンアルデヒド濃度が3.0質量ppm以下である請求項8又は9記載の酢酸の製造方法。
- 第2酢酸流におけるクロトンアルデヒド濃度CCR(質量ppm)と2-エチルクロトンアルデヒド濃度CECR(質量ppm)との比(CCR/CECR)が50以下である請求項8~10のいずれか1項に記載の酢酸の製造方法。
- 第2酢酸流における酢酸ブチル濃度が15質量ppm以下である請求項8~11のいずれか1項に記載の酢酸の製造方法。
- 第2酢酸流におけるクロトンアルデヒド濃度CCR(質量ppm)と酢酸ブチル濃度CBA(質量ppm)との比(CCR/CBA)が2.0以下である請求項8~12のいずれか1項に記載の酢酸の製造方法。
- 触媒系がさらにイオン性ヨウ化物を含む請求項1~13のいずれか1項に記載の酢酸の製造方法。
- 前記水相及び/又は前記有機相の少なくとも一部からアセトアルデヒドを分離除去した後の残液の少なくとも一部を反応槽にリサイクルする請求項1~14のいずれか1項に記載の酢酸の製造方法。
- 反応槽の水素分圧が0.001MPa(絶対圧)以上である請求項1~15のいずれか1項に記載の酢酸の製造方法。
- 反応槽の反応混合液中のアセトアルデヒド濃度が500質量ppm以下である請求項1~16のいずれか1項に記載の酢酸の製造方法。
- 第2酢酸流におけるクロトンアルデヒド濃度が0.98質量ppm以下及び/又は2-エチルクロトンアルデヒド濃度が1.0質量ppm以下及び/又は酢酸ブチル濃度が15質量ppm以下である請求項8~17のいずれか1項に記載の酢酸の製造方法。
- 第2酢酸流の過マンガン酸カリウム試験値が50分を超える請求項8~18のいずれか1項に記載の酢酸の製造方法。
- 第1蒸留塔に供給する前記蒸気流におけるクロトンアルデヒド濃度が0~5.0質量ppm及び/又は2-エチルクロトンアルデヒド濃度が0~3.0質量ppm及び/又は酢酸ブチル濃度が0.1~13.0質量ppmである請求項7~19のいずれか1項に記載の酢酸の製造方法。
- 第1酢酸流における2-エチルクロトンアルデヒド濃度が3.0質量ppm以下である請求項1~20のいずれか1項に記載の酢酸の製造方法。
- 第1酢酸流におけるクロトンアルデヒド濃度CCR(質量ppm)と2-エチルクロトンアルデヒド濃度CECR(質量ppm)との比(CCR/CECR)が50以下である請求項1~21のいずれか1項に記載の酢酸の製造方法。
- 第1酢酸流における酢酸ブチル濃度が15質量ppm以下である請求項1~22のいずれか1項に記載の酢酸の製造方法。
- 第1酢酸流におけるクロトンアルデヒド濃度CCR(質量ppm)と酢酸ブチル濃度CBA(質量ppm)との比(CCR/CBA)が2.0以下である請求項1~23のいずれか1項に記載の酢酸の製造方法。
- 第1酢酸流におけるクロトンアルデヒド濃度が1.3質量ppm以下及び/又は2-エチルクロトンアルデヒド濃度が1.0質量ppm以下及び/又は酢酸ブチル濃度が15質量ppm以下である請求項1~24のいずれか1項に記載の酢酸の製造方法。
- 前記脱クロトンアルデヒド工程における蒸留塔仕込液中のクロトンアルデヒド濃度が0.01~50質量ppmである請求項1~25のいずれか1項に記載の酢酸の製造方法。
- 前記脱クロトンアルデヒド工程において、前記(a-i)~(a-iii)の全ての条件を満たすように蒸留塔を操作する請求項1~26のいずれか1項に記載の酢酸の製造方法。
- 前記脱クロトンアルデヒド工程において、蒸留をバッチ処理で行う請求項1~27のいずれか1項に記載の酢酸の製造方法。
- 脱クロトンアルデヒド工程における蒸留塔の処理量が、第1蒸留塔に供給する蒸気流の量100質量部に対して、0.0001~50質量部である請求項1~28のいずれか1項に記載の酢酸の製造方法。
- さらに、プロセスからのオフガスを、少なくとも酢酸を含む吸収溶媒で吸収処理して、一酸化炭素に富むストリームと酢酸に富むストリームとに分離するスクラバー工程を有する請求項1~29のいずれか1項に記載の酢酸の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880006853.2A CN110869342B (zh) | 2018-05-29 | 2018-07-25 | 乙酸的制备方法 |
EP18903038.0A EP3604266B1 (en) | 2018-05-29 | 2018-07-25 | Acetic acid production method |
US16/483,808 US11485698B2 (en) | 2018-05-29 | 2018-07-25 | Method for producing acetic acid |
JP2018545386A JP6588656B1 (ja) | 2018-05-29 | 2018-07-25 | 酢酸の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPPCT/JP2018/020603 | 2018-05-29 | ||
PCT/JP2018/020603 WO2019229857A1 (ja) | 2018-05-29 | 2018-05-29 | 酢酸の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019230007A1 true WO2019230007A1 (ja) | 2019-12-05 |
Family
ID=68697235
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/020603 WO2019229857A1 (ja) | 2018-05-29 | 2018-05-29 | 酢酸の製造方法 |
PCT/JP2018/027894 WO2019230007A1 (ja) | 2018-05-29 | 2018-07-25 | 酢酸の製造方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/020603 WO2019229857A1 (ja) | 2018-05-29 | 2018-05-29 | 酢酸の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11485698B2 (ja) |
EP (1) | EP3604266B1 (ja) |
CN (1) | CN110869342B (ja) |
AR (1) | AR115430A1 (ja) |
TW (1) | TWI776058B (ja) |
WO (2) | WO2019229857A1 (ja) |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53116314A (en) * | 1977-03-19 | 1978-10-11 | Mitsui Petrochem Ind Ltd | Separation of acetic acid and water |
JPH04295445A (ja) | 1991-01-28 | 1992-10-20 | Hoechst Celanese Corp | カルボニル化プロセス流からのカルボニル不純物の除去 |
JPH0725813A (ja) | 1993-07-08 | 1995-01-27 | Daicel Chem Ind Ltd | 高純度酢酸の製造方法 |
JPH07133249A (ja) * | 1993-09-17 | 1995-05-23 | Daicel Chem Ind Ltd | 高純度酢酸の製造方法 |
JPH0867650A (ja) * | 1994-06-15 | 1996-03-12 | Daicel Chem Ind Ltd | 高純度酢酸の製造方法 |
WO1996033965A1 (fr) * | 1995-04-27 | 1996-10-31 | Daicel Chemical Industries, Ltd. | Procede de production d'acide acetique |
JP2001508405A (ja) | 1996-10-18 | 2001-06-26 | セラニーズ・インターナショナル・コーポレーション | カルボニル化処理の流れからの過マンガン酸塩還元化合物及びアルキルヨウ化物の除去 |
JP2006182691A (ja) | 2004-12-27 | 2006-07-13 | Daicel Chem Ind Ltd | 酢酸の製造方法 |
WO2013137236A1 (ja) * | 2012-03-14 | 2013-09-19 | 株式会社ダイセル | 酢酸の製造方法 |
JP2016117709A (ja) * | 2014-11-14 | 2016-06-30 | セラニーズ・インターナショナル・コーポレーション | 低い酢酸ブチル含量を有する酢酸生成物の製造方法 |
WO2018078924A1 (ja) * | 2016-10-28 | 2018-05-03 | 株式会社ダイセル | 酢酸の製造方法 |
WO2018135016A1 (ja) * | 2017-01-18 | 2018-07-26 | 株式会社ダイセル | 酢酸の製造方法 |
WO2018135015A1 (ja) * | 2017-01-18 | 2018-07-26 | 株式会社ダイセル | 酢酸の製造方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0645362A1 (en) | 1993-09-17 | 1995-03-29 | Daicel Chemical Industries, Ltd. | Process for producing highly purified acetic acid |
SG44317A1 (en) | 1994-06-15 | 1997-12-19 | Daicel Chem | Process for producing high purity acetic acid |
US9260369B1 (en) * | 2014-11-14 | 2016-02-16 | Celanese International Corporation | Processes for producing acetic acid product having low butyl acetate content |
-
2018
- 2018-05-29 WO PCT/JP2018/020603 patent/WO2019229857A1/ja active Application Filing
- 2018-07-25 CN CN201880006853.2A patent/CN110869342B/zh active Active
- 2018-07-25 US US16/483,808 patent/US11485698B2/en active Active
- 2018-07-25 EP EP18903038.0A patent/EP3604266B1/en active Active
- 2018-07-25 WO PCT/JP2018/027894 patent/WO2019230007A1/ja unknown
-
2019
- 2019-05-16 TW TW108116881A patent/TWI776058B/zh active
- 2019-05-27 AR ARP190101424A patent/AR115430A1/es unknown
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53116314A (en) * | 1977-03-19 | 1978-10-11 | Mitsui Petrochem Ind Ltd | Separation of acetic acid and water |
JPH04295445A (ja) | 1991-01-28 | 1992-10-20 | Hoechst Celanese Corp | カルボニル化プロセス流からのカルボニル不純物の除去 |
JPH0725813A (ja) | 1993-07-08 | 1995-01-27 | Daicel Chem Ind Ltd | 高純度酢酸の製造方法 |
JPH07133249A (ja) * | 1993-09-17 | 1995-05-23 | Daicel Chem Ind Ltd | 高純度酢酸の製造方法 |
JPH0867650A (ja) * | 1994-06-15 | 1996-03-12 | Daicel Chem Ind Ltd | 高純度酢酸の製造方法 |
WO1996033965A1 (fr) * | 1995-04-27 | 1996-10-31 | Daicel Chemical Industries, Ltd. | Procede de production d'acide acetique |
JP2001508405A (ja) | 1996-10-18 | 2001-06-26 | セラニーズ・インターナショナル・コーポレーション | カルボニル化処理の流れからの過マンガン酸塩還元化合物及びアルキルヨウ化物の除去 |
JP2006182691A (ja) | 2004-12-27 | 2006-07-13 | Daicel Chem Ind Ltd | 酢酸の製造方法 |
WO2013137236A1 (ja) * | 2012-03-14 | 2013-09-19 | 株式会社ダイセル | 酢酸の製造方法 |
JP2016117709A (ja) * | 2014-11-14 | 2016-06-30 | セラニーズ・インターナショナル・コーポレーション | 低い酢酸ブチル含量を有する酢酸生成物の製造方法 |
WO2018078924A1 (ja) * | 2016-10-28 | 2018-05-03 | 株式会社ダイセル | 酢酸の製造方法 |
WO2018135016A1 (ja) * | 2017-01-18 | 2018-07-26 | 株式会社ダイセル | 酢酸の製造方法 |
WO2018135015A1 (ja) * | 2017-01-18 | 2018-07-26 | 株式会社ダイセル | 酢酸の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3604266A4 |
Also Published As
Publication number | Publication date |
---|---|
EP3604266A1 (en) | 2020-02-05 |
WO2019229857A1 (ja) | 2019-12-05 |
AR115430A1 (es) | 2021-01-20 |
EP3604266A4 (en) | 2020-06-24 |
US11485698B2 (en) | 2022-11-01 |
CN110869342B (zh) | 2022-07-12 |
US20210355063A1 (en) | 2021-11-18 |
TWI776058B (zh) | 2022-09-01 |
TW202003439A (zh) | 2020-01-16 |
EP3604266B1 (en) | 2021-09-08 |
CN110869342A (zh) | 2020-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019229859A1 (ja) | 酢酸の製造方法 | |
JP6481042B2 (ja) | 酢酸の製造方法 | |
WO2018135015A1 (ja) | 酢酸の製造方法 | |
JP6481040B2 (ja) | 酢酸の製造方法 | |
JP6588656B1 (ja) | 酢酸の製造方法 | |
WO2019230007A1 (ja) | 酢酸の製造方法 | |
WO2019229858A1 (ja) | 酢酸の製造方法 | |
JP6588658B1 (ja) | 酢酸の製造方法 | |
KR102600551B1 (ko) | 아세트산의 제조 방법 | |
JP6481043B1 (ja) | 酢酸の製造方法 | |
WO2018163449A1 (ja) | 酢酸の製造方法 | |
WO2020008506A1 (ja) | 酢酸の製造方法 | |
JPWO2019211904A1 (ja) | 酢酸の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018545386 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018903038 Country of ref document: EP Effective date: 20190808 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |