WO2012081342A1 - 電子材料用Cu-Ni-Si-Co系銅合金及びその製造方法 - Google Patents

電子材料用Cu-Ni-Si-Co系銅合金及びその製造方法 Download PDF

Info

Publication number
WO2012081342A1
WO2012081342A1 PCT/JP2011/076082 JP2011076082W WO2012081342A1 WO 2012081342 A1 WO2012081342 A1 WO 2012081342A1 JP 2011076082 W JP2011076082 W JP 2011076082W WO 2012081342 A1 WO2012081342 A1 WO 2012081342A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
copper alloy
stage
alloy strip
strip according
Prior art date
Application number
PCT/JP2011/076082
Other languages
English (en)
French (fr)
Inventor
寛 桑垣
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to EP11848621.6A priority Critical patent/EP2641983A4/en
Priority to US13/993,648 priority patent/US9401230B2/en
Priority to KR1020137013304A priority patent/KR20130109161A/ko
Priority to CN201180059363.7A priority patent/CN103249851B/zh
Publication of WO2012081342A1 publication Critical patent/WO2012081342A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/10Alloys based on copper with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys

Definitions

  • the present invention relates to a precipitation hardening type copper alloy, and more particularly to a Cu—Ni—Si—Co based copper alloy suitable for use in various electronic components.
  • Copper alloys for electronic materials used in various electronic parts such as connectors, switches, relays, pins, terminals, and lead frames are required to have both high strength and high conductivity (or thermal conductivity) as basic characteristics. Is done. In recent years, high integration and miniaturization / thinning of electronic components have been rapidly progressing, and the level of demand for copper alloys used in electronic device components has been increased accordingly.
  • the amount of precipitation hardening type copper alloys is increasing instead of conventional solid solution strengthened copper alloys such as phosphor bronze and brass as copper alloys for electronic materials.
  • precipitation-hardened copper alloys by aging the supersaturated solid solution that has undergone solution treatment, fine precipitates are uniformly dispersed, increasing the strength of the alloy and reducing the amount of solid solution elements in the copper. Electrical conductivity is improved. For this reason, a material excellent in mechanical properties such as strength and spring property and having good electrical conductivity and thermal conductivity can be obtained.
  • Cu-Ni-Si copper alloys commonly called Corson alloys
  • Corson alloys are representative copper alloys that have relatively high electrical conductivity, strength, and bending workability, and are currently active in the industry. It is one of the alloys being developed. In this copper alloy, strength and electrical conductivity are improved by precipitating fine Ni—Si intermetallic compound particles in a copper matrix.
  • Patent Document 1 in order to improve the strength, conductivity and spring limit value of the Cu—Ni—Si—Co based copper alloy, a second particle having a particle diameter of 0.1 to 1 ⁇ m is used. An invention is described in which the number density of phase particles is controlled from 5 ⁇ 10 5 to 1 ⁇ 10 7 particles / mm 2 .
  • Step 1 of melt casting an ingot having the desired composition; Hot rolling is performed at -950 ° C or higher and 1050 ° C or lower for 1 hour or longer, and the temperature at the end of hot rolling is 850 ° C or higher, and the average cooling rate from 850 ° C to 400 ° C is 15 ° C / s or higher.
  • Step 4 for cooling at an average cooling rate of 15 ° C./s or more, A first aging treatment step 5 performed at ⁇ 425 ° C. or more and less than 475 ° C. for 1 to 24 hours; -Cold rolling process 6; A second aging treatment step 5 of 1 to 48 hours at -100 ° C. or more and less than 350 ° C .; A manufacturing method including sequentially performing the above is disclosed.
  • Patent Document 2 discloses that each annealing in the production process of a Cu—Ni—Si—Co-based copper alloy can be a stepwise annealing process, typically, stepwise annealing. It is described that the first step is at a higher temperature than the second step and that stepwise annealing can result in a better combination of strength and conductivity than annealing at a constant temperature.
  • Patent Document 3 describes a Corson (Cu—Ni—Si) copper alloy having a yield strength of 700 N / mm 2 or more, an electrical conductivity of 35% IACS or more, and excellent bending workability.
  • the copper alloy ingot is hot-rolled and rapidly cooled as necessary, then cold-rolled and continuously annealed to obtain a solution recrystallized structure, and then the processing rate Cold rolling at 20% or less and aging treatment at 400 to 600 ° C. for 1 to 8 hours, followed by final annealing at a processing rate of 1 to 20%, followed by short-time annealing at 400 to 550 ° C. for 30 seconds or less
  • a method for producing a high-strength copper alloy sheet is described.
  • a Cu—Ni—Si—Co based copper alloy having improved strength, conductivity, and spring limit value can be obtained, but the strip material is used on an industrial scale.
  • the present inventor has found that there is a problem that the shape accuracy is insufficient when manufacturing, and in particular, the drooping curl is not sufficiently controlled.
  • Drooping curl is a phenomenon in which a material warps in the rolling direction.
  • the aging treatment is usually performed in a batch furnace from the viewpoint of production efficiency and manufacturing equipment.
  • the material is wound while being wound in a coil shape. I'm stuck. As a result, the shape (drooping curl) becomes worse.
  • the present inventor has conducted extensive research, and after the solution treatment, an aging treatment and a cold rolling are performed in this order, and the aging treatment is performed in a three-stage aging according to specific temperature and time conditions. It was found that the Cu—Ni—Si—Co based copper alloy strip obtained by carrying out the above in an excellent balance between strength and conductivity, and further, it is possible to suppress drooping curl. And the copper alloy strip obtained by the method was obtained as a result of obtaining the ratio of the diffraction intensity with respect to ⁇ to the copper powder in each ⁇ of the X-ray diffraction pole figure measurement based on the rolled surface.
  • the copper alloy strip according to the present invention has a drooping curl in a direction parallel to the rolling direction of 35 mm or less.
  • the Ni content (mass%) is [Ni]
  • the Co content (mass%) is [Co]
  • the 0.2% proof stress is YS (MPa).
  • Formula a ⁇ 11 ⁇ ([Ni] + [Co]) 2 + 146 ⁇ ([Ni] + [Co]) + 564 ⁇ YS ⁇ ⁇ 21 ⁇ ([Ni] + [Co]) 2 + 202 ⁇ ([Ni] + [Co]) + 436 Meet.
  • the number density of particles having a particle size of 0.1 ⁇ m or more and 1 ⁇ m or less is 5 ⁇ 10 5 to 1 ⁇ . 10 7 pieces / mm 2 .
  • the copper alloy strip according to the present invention further contains Cr: 0.03 to 0.5 mass%.
  • the Ni content (mass%) is [Ni]
  • the Co content (mass%) is [Co]
  • the 0.2% proof stress is YS ( MPa) Formula A: ⁇ 14 ⁇ ([Ni] + [Co]) 2 + 164 ⁇ ([Ni] + [Co]) + 551 ⁇ YS ⁇ ⁇ 22 ⁇ ([Ni] + [Co]) 2 + 204 ⁇ ([Ni] + [Co]) + 447 Meet.
  • the copper alloy strip according to the present invention is still another embodiment, Furthermore, it contains at least one selected from the group consisting of Mg, P, As, Sb, Be, B, Mn, Sn, Ti, Zr, Al, Fe, Zn, and Ag in a total amount of up to 2.0% by mass.
  • Step 4 of performing solution treatment at ⁇ 850 ° C. or more and 1050 ° C. or less, and cooling at an average cooling rate up to 400 ° C. at 10 ° C.
  • the third stage is heated for 4 to 30 hours, and the cooling rate from the first stage to the second stage and the cooling speed from the second stage to the third stage are 1 to 8 ° C / min, respectively.
  • a manufacturing method of the copper alloy strips include performing a sequentially.
  • temper annealing is performed at a material temperature of 200 to 500 ° C. and heated for 1 to 1000 seconds.
  • the solution treatment in step 4 is performed under the condition that the material temperature is 650 instead of the cooling condition with the average cooling rate up to 400 ° C. being 10 ° C. or more per second.
  • the cooling is performed at an average cooling rate of 1 ° C./s or more and less than 15 ° C./s until the temperature is lowered to °C, and the average cooling rate when the temperature is decreased from 650 ° C. to 400 ° C. is 15 s / s or more.
  • the present invention is a copper-stretched product obtained by processing the copper alloy strip according to the present invention.
  • the present invention is an electronic component obtained by processing the copper alloy strip according to the present invention.
  • Invention Example No. 137-139, no. 143 to 145, no. 149-151 and Comparative Example No. 174, 178, and 182 are graphs in which the total mass% concentration of Ni and Co (Ni + Co) is plotted on the x axis and YS is plotted on the y axis.
  • Invention Example No. 140-142, no. 146-148, no. 152 to 154 and Comparative Example No. 175, 179, and 183 are graphs in which the total mass% concentration of Ni and Co (Ni + Co) is plotted on the x axis and YS is plotted on the y axis.
  • Addition amounts of Ni, Co, and Si Ni, Co, and Si form an intermetallic compound by performing an appropriate heat treatment, and can increase the strength without deteriorating conductivity.
  • the addition amounts of Ni, Co and Si are less than Ni: 1.0% by mass, Co: less than 0.5% by mass, and Si: less than 0.3% by mass, the desired strength cannot be obtained. If it exceeds 2.5% by mass, Co: more than 2.5% by mass, and Si: more than 1.2% by mass, the strength can be increased, but the electrical conductivity is remarkably lowered, and the hot workability is further deteriorated. Therefore, the addition amounts of Ni, Co, and Si were set to Ni: 1.0 to 2.5 mass%, Co: 0.5 to 2.5 mass%, and Si: 0.3 to 1.2 mass%.
  • the addition amounts of Ni, Co, and Si are preferably Ni: 1.5 to 2.0 mass%, Co: 0.5 to 2.0 mass%, and Si: 0.5 to 1.0 mass%.
  • the ratio [Ni + Co] / Si of the total mass concentration of Ni and Co with respect to the mass concentration of Si is too low, that is, if the ratio of Si to Ni and Co is too high, the conductivity will be increased by solute Si. In the annealing process, an oxide film of SiO 2 is formed on the material surface layer and the solderability is deteriorated. On the other hand, if the ratio of Ni and Co to Si is too high, the Si required for silicide formation is insufficient and it is difficult to obtain high strength.
  • the [Ni + Co] / Si ratio in the alloy composition is preferably controlled within the range of 4 ⁇ [Ni + Co] / Si ⁇ 5, and should be controlled within the range of 4.2 ⁇ [Ni + Co] /Si ⁇ 4.7. Is more preferable.
  • the added amount Cr of Cr preferentially precipitates at the grain boundaries in the cooling process during melt casting, so that the grain boundaries can be strengthened, cracks during hot working are less likely to occur, and yield reduction can be suppressed. That is, Cr that has precipitated at the grain boundaries during melt casting is re-dissolved by solution treatment or the like, but during subsequent aging precipitation, precipitated particles having a bcc structure mainly composed of Cr or a compound with Si are generated. In a normal Cu—Ni—Si alloy, Si that did not contribute to aging precipitation of the added Si amount suppresses the increase in conductivity while being dissolved in the matrix, but the silicide-forming element Cr is reduced.
  • the amount of dissolved Si can be reduced, and the conductivity can be increased without impairing the strength.
  • Cr concentration exceeds 0.5% by mass, coarse second-phase particles are easily formed, so that product characteristics are impaired. Therefore, Cr can be added to the Cu—Ni—Si—Co based copper alloy according to the present invention in a maximum amount of 0.5 mass%.
  • the effect is small if it is less than 0.03% by mass, it is preferably added in an amount of 0.03 to 0.5% by mass, more preferably 0.09 to 0.3% by mass.
  • the effect of addition is exhibited mainly by solid solution in the matrix phase, but further effects can be exhibited by inclusion in the second phase particles.
  • the total concentration of Mg, Mn, Ag and P exceeds 2.0% by mass, the effect of improving characteristics is saturated and manufacturability is impaired. Therefore, in the Cu—Ni—Si—Co based copper alloy according to the present invention, a total of one or more selected from Mg, Mn, Ag and P is 2.0 mass% in total, preferably 1 maximum. .5% by mass can be added.
  • the effect is small if it is less than 0.01% by mass, it is preferable to add 0.01 to 1.0% by mass in total, more preferably 0.04 to 0.5% by mass in total.
  • the addition of a small amount improves product properties such as strength, stress relaxation properties, and plating properties without impairing electrical conductivity.
  • the effect of addition is exhibited mainly by solid solution in the matrix.
  • the total amount of Sn and Zn exceeds 2.0% by mass, the effect of improving characteristics is saturated and manufacturability is impaired. Therefore, the Cu—Ni—Si—Co based copper alloy according to the present invention can be added with a total of one or two selected from Sn and Zn up to a maximum of 2.0 mass%.
  • the amount is less than 0.05% by mass, the effect is small. Therefore, it is preferable to add 0.05 to 2.0% by mass in total, and more preferably 0.5 to 1.0% by mass in total.
  • Addition amounts of As, Sb, Be, B, Ti, Zr, Al, and Fe As, Sb, Be, B, Ti, Zr, Al, and Fe are also adjusted according to required product characteristics. This improves product properties such as conductivity, strength, stress relaxation properties, and plating properties.
  • the effect of addition is exhibited mainly by solid solution in the parent phase, but it can also be exhibited by forming the second phase particles having a new composition or contained in the second phase particles. However, if the total amount of these elements exceeds 2.0% by mass, the effect of improving characteristics is saturated and manufacturability is impaired.
  • the total of one or more selected from As, Sb, Be, B, Ti, Zr, Al and Fe is 2. 0% by mass can be added. However, since the effect is small if it is less than 0.001% by mass, it is preferable to add 0.001 to 2.0% by mass in total, more preferably 0.05 to 1.0% by mass in total.
  • the total amount of Mg, Mn, Ag, P, Sn, Zn, As, Sb, Be, B, Ti, Zr, Al and Fe exceeds 3.0% by mass, manufacturability is easily impaired.
  • the total of these is 2.0% by mass or less, more preferably 1.5% by mass or less.
  • the copper alloy according to the present invention has a ⁇ 200 ⁇ pole as a result of obtaining the ratio of the diffraction intensity to ⁇ to the copper powder in each ⁇ of the X-ray diffraction pole figure measurement based on the rolling surface.
  • the pure copper standard powder is defined as a copper powder having a purity of 99.5% with a 325 mesh (JIS Z8801).
  • the copper alloy according to the present invention is a ⁇ 111 ⁇ pole as a result of obtaining a ratio of diffraction intensity to ⁇ to copper powder in each ⁇ of X-ray diffraction pole figure measurement based on the rolling surface.
  • the pure copper standard powder is defined as a copper powder having a purity of 99.5% with a 325 mesh (JIS Z8801).
  • the ⁇ -axis scan is performed in steps with respect to the 2 ⁇ value of the focused ⁇ hkl ⁇ Cu surface (the scanning angle 2 ⁇ of the detector is fixed).
  • the sample is scanned on the ⁇ axis with respect to the angle ⁇ value (in-plane rotation (rotation) from 0 to 360 °).
  • the direction perpendicular to the sample surface is defined as ⁇ 90 °, which is used as a measurement reference.
  • the pole figure is measured by the reflection method ( ⁇ : ⁇ 15 ° to 90 °).
  • the copper alloy strip according to the present invention has a Ni content (mass%) of [Ni], a Co content (mass%) of [Co], and a 0.2% proof stress of YS (MPa). Then, the formula a: ⁇ 11 ⁇ ([Ni] + [Co]) 2 + 146 ⁇ ([Ni] + [Co]) + 564 ⁇ YS ⁇ ⁇ 21 ⁇ ([Ni] + [Co]) 2 +202 X ([Ni] + [Co]) + 436 can be satisfied.
  • the copper alloy strip according to the present invention has the formula a ′: ⁇ 11 ⁇ ([Ni] + [Co]) 2 + 146 ⁇ ([Ni] + [Co]) + 554 ⁇ YS ⁇ ⁇ 21 ⁇ ([[ Ni] + [Co]) 2 + 202 ⁇ ([Ni] + [Co]) + 441 can be satisfied.
  • the copper alloy strip according to the present invention has the formula a ′′: ⁇ 11 ⁇ ([Ni] + [Co]) 2 + 146 ⁇ ([Ni] + [Co]) + 544 ⁇ YS ⁇ ⁇ 21 ⁇ ( [Ni] + [Co]) 2 + 202 ⁇ ([Ni] + [Co]) + 450 can be satisfied.
  • the copper alloy strip containing 0.03 to 0.5 mass% of Cr according to the present invention has a Ni content (mass%) of [Ni] and a Co content (mass%) of [ Co], where 0.2% proof stress is YS (MPa), the formula A: ⁇ 14 ⁇ ([Ni] + [Co]) 2 + 164 ⁇ ([Ni] + [Co]) + 551 ⁇ YS ⁇ ⁇ 22 ⁇ ([Ni] + [Co]) 2 + 204 ⁇ ([Ni] + [Co]) + 447 can be satisfied.
  • a copper alloy strip containing 0.03 to 0.5% by mass of Cr according to the present invention has the formula A ′: ⁇ 14 ⁇ ([Ni] + [Co]) 2 + 164 ⁇ ([Ni] + [Co]) + 541 ⁇ YS ⁇ ⁇ 22 ⁇ ([Ni] + [Co]) 2 + 204 ⁇ ([Ni] + [Co]) + 452 can be satisfied.
  • the copper alloy strip containing 0.03 to 0.5% by mass of Cr according to the present invention is represented by the formula A ′′: ⁇ 14 ⁇ ([Ni] + [Co]) 2 + 164 ⁇ ([Ni ] + [Co]) + 531 ⁇ YS ⁇ ⁇ 21 ⁇ ([Ni] + [Co]) 2 + 198 ⁇ ([Ni] + [Co]) + 462.
  • the copper alloy strip according to the present invention has a drooping curl in a direction parallel to the rolling direction of 35 mm or less, preferably 20 mm or less, more preferably 15 mm or less, for example, 10 to 30 mm.
  • the drooping curl in the direction parallel to the rolling direction is obtained by the following procedure. A strip-shaped measurement sample having a length of 500 mm in the longitudinal direction parallel to the rolling direction and a length of 10 mm in the width direction perpendicular to the rolling direction is cut out from the strip to be tested, and one end of the sample in the longitudinal direction is gripped.
  • the other end is suspended downward, the amount of warping of the other end with respect to the vertical line is measured, and this is defined as a suspended curl.
  • the drooping curl is measured as described above.
  • the length in the longitudinal direction parallel to the rolling direction is 500 to 1000 mm, and the length in the width direction perpendicular to the rolling direction is 10 to 50 mm. If the sample is an elongated sample having a, the measurement result of the drooping curl is almost the same.
  • the copper alloy strip according to the present invention is 673 ⁇ YS ⁇ 976, 42.5 ⁇ EC ⁇ 57, where 0.2% proof stress is YS (MPa) and electrical conductivity is EC (% IACS). .5, Formula C: ⁇ 0.0563 ⁇ [YS] + 94.1972 ⁇ EC ⁇ ⁇ 0.0563 ⁇ [YS] +98.7040 is satisfied.
  • the copper alloy strip according to the present invention is 683 ⁇ YS ⁇ 966, 43 ⁇ EC ⁇ 57, formula C ′: ⁇ 0.0563 ⁇ [YS] + 94.7610 ⁇ EC ⁇ ⁇ 0.0563 ⁇ [YS ] +98.1410 is satisfied.
  • the copper alloy strip according to the present invention has 693 ⁇ YS ⁇ 956, 43.5 ⁇ EC ⁇ 56.5, formula C ”: ⁇ 0.0563 ⁇ [YS] + 955.3240 ⁇ EC ⁇ ⁇ 0. 0563 ⁇ [YS] +97.5770 is satisfied.
  • a copper alloy strip containing 0.03 to 0.5 mass% of Cr according to the present invention has a 0.2% yield strength of YS (MPa) and a conductivity of EC (% IACS). 679 ⁇ YS ⁇ 982, 43.5 ⁇ EC ⁇ 59.5, and formula D: ⁇ 0.0610 ⁇ [YS] + 99.7465 ⁇ EC ⁇ ⁇ 0.0610 ⁇ [YS] +104.6291 is satisfied.
  • a copper alloy strip containing 0.03 to 0.5% by mass of Cr according to the present invention is 689 ⁇ YS ⁇ 972, 44 ⁇ EC ⁇ 59, formula d ′: ⁇ 0.0610 ⁇ [YS + 100.3568 ⁇ EC ⁇ ⁇ 0.0610 ⁇ [YS] +104.0188.
  • 699 ⁇ YS ⁇ 962, 44.5 ⁇ EC ⁇ 58.5, formula d ”: ⁇ 0.0610 ⁇ [YS] + 100.9671 ⁇ EC ⁇ ⁇ 0 0.0610 ⁇ [YS] +103.4085 is satisfied.
  • the second-phase particle mainly refers to silicide, but is not limited to this.
  • Crystallized substances generated in the solidification process of melt casting and precipitation generated in the subsequent cooling process This refers to precipitates generated in the cooling process after hot rolling, precipitates generated in the cooling process after solution treatment, and precipitates generated in the aging process.
  • the distribution of second phase particles having a particle size of 0.1 ⁇ m or more and 1 ⁇ m or less is controlled. This further improves the balance of strength, conductivity and drooping curl.
  • the number density of the second phase particles having a particle diameter of 0.1 ⁇ m or more and 1 ⁇ m or less is 5 ⁇ 10 5 to 1 ⁇ 10 7 particles / mm 2 , preferably 1 ⁇ 10 6 to 10 ⁇ 10 6 particles. / Mm 2 , more preferably 5 ⁇ 10 6 to 10 ⁇ 10 6 / mm 2 .
  • the particle size of the second phase particles refers to the diameter of the smallest circle surrounding the particles when the second phase particles are observed under the following conditions.
  • the number density of second phase particles with a particle size of 0.1 ⁇ m or more and 1 ⁇ m or less can be observed by using an electron microscope that can observe particles at high magnification (eg, 3000 times) such as FE-EPMA and FE-SEM and image analysis software. The number and particle size can be measured.
  • the sample material may be adjusted by etching the matrix phase under the general electropolishing conditions such that the particles precipitated with the composition of the present invention are not dissolved to reveal the second phase particles.
  • the observation surface has no specified rolling surface or cross section of the specimen.
  • a Corson copper alloy In a general manufacturing process of a Corson copper alloy, first, an atmospheric melting furnace is used to melt raw materials such as electrolytic copper, Ni, Si, and Co to obtain a molten metal having a desired composition. Then, casting the molten metal into an ingot. Thereafter, hot rolling is performed, and cold rolling and heat treatment are repeated to finish a strip or foil having a desired thickness and characteristics.
  • Heat treatment includes solution treatment and aging treatment. In the solution treatment, heating is performed at a high temperature of about 700 to about 1000 ° C. to cause the second phase particles to be dissolved in the Cu matrix and simultaneously to recrystallize the Cu matrix. The solution treatment may be combined with hot rolling.
  • the second phase particles that are heated in the temperature range of about 350 to about 550 ° C. for 1 hour or more and solid-dissolved by the solution treatment are precipitated as fine particles of nanometer order.
  • This aging treatment increases strength and conductivity.
  • cold rolling may be performed before and / or after aging.
  • strain relief annealing low temperature annealing
  • grinding, polishing, shot blast pickling and the like for removing oxide scale on the surface are appropriately performed.
  • the copper alloy according to the present invention also undergoes the manufacturing process described above. However, in order for the finally obtained copper alloy to have the characteristics specified in the present invention, the solution treatment and subsequent steps are strictly performed. It is important to control. Unlike the conventional Cu-Ni-Si-based Corson alloy, the Cu-Ni-Co-Si-based alloy of the present invention is Co (which in some cases is difficult to control second phase particles as an essential component for age precipitation hardening) Further, this is because Cr) is positively added. Co forms secondary phase particles together with Ni and Si because the generation and growth rate is sensitive to the holding temperature and cooling rate during heat treatment.
  • Hot rolling is performed after holding at 950 ° C. to 1050 ° C. for 1 hour or longer, and if the temperature at the end of hot rolling is 850 ° C. or higher, even if Co and further Cr are added, it is dissolved in the matrix. be able to.
  • the temperature condition of 950 ° C. or higher is a higher temperature setting than other Corson alloys. If the holding temperature before hot rolling is less than 950 ° C., solid solution is insufficient, and if it exceeds 1050 ° C., the material may be dissolved.
  • the cooling rate when the material temperature decreases from 850 ° C. to 400 ° C. is 15 ° C./s or more, preferably 18 ° C./s or more, for example, 15 to 25 ° C./s.
  • the temperature is preferably 15 to 20 ° C./s.
  • the “average cooling rate from 850 ° C. to 400 ° C.” after hot rolling is the time when the material temperature decreases from 850 ° C. to 400 ° C., and “(850 ⁇ 400) (° C. ) / Cooling time (s) ”.
  • the purpose of the solution treatment is to increase the age-hardening ability after the solution treatment by solidifying the crystallized particles at the time of dissolution casting and the precipitated particles after hot rolling.
  • the holding temperature and time during the solution treatment and the cooling rate after holding are important.
  • the solution treatment may be carried out in either a continuous furnace or a batch furnace, but it is preferably carried out in a continuous furnace from the viewpoint of production efficiency when industrially producing the strip material as in the present invention.
  • the cooling after the solution treatment is preferably rapid cooling. Specifically, after solution treatment at 850 ° C. to 1050 ° C. for 10 to 3600 seconds, the average cooling rate is 10 ° C./second or more, preferably 15 ° C. or more, more preferably 20 ° C./second or more, and cooling to 400 ° C. Is effective. However, if the average cooling rate is too high, the effect of increasing the strength cannot be obtained sufficiently.
  • the “average cooling rate” is a value (° C./second) obtained by measuring the cooling time from the solution temperature to 400 ° C. and calculating “(solution temperature ⁇ 400) (° C.) / Cooling time (second)”. ).
  • the cooling condition after the solution treatment it is more preferable to use a two-stage cooling condition as described in Patent Document 1. That is, after the solution treatment, it is preferable to adopt two-stage cooling in which 850 to 650 ° C. is slowly cooled and then 650 to 400 ° C. is rapidly cooled. This further improves strength and conductivity.
  • the average cooling rate when the material temperature decreases from the solution treatment temperature to 650 ° C. is 1 ° C./s or more and less than 15 ° C./s, preferably 5 ° C.
  • the average cooling rate when the temperature is decreased from 650 ° C. to 400 ° C. is controlled to 15 ° C./s or more, preferably 18 ° C./s or more, for example, 15 to 25 ° C./s. Specifically, it is set to 15 to 20 ° C./s. Since the precipitation of the second phase particles is remarkable up to about 400 ° C., the cooling rate at less than 400 ° C. is not a problem.
  • the cooling rate after solution treatment is controlled by adjusting the holding time by providing a slow cooling zone and a cooling zone adjacent to the heating zone heated to the range of 850 ° C to 1050 ° C. can do.
  • rapid cooling water cooling may be applied to the cooling method, and in the case of slow cooling, a temperature gradient may be created in the furnace.
  • the “average cooling rate until the temperature decreases to 650 ° C.” after the solution treatment is the cooling time when the temperature decreases from the material temperature maintained in the solution treatment to 650 ° C., “(solution treatment temperature ⁇ 650) (° C.) / Cooling time (s) "means a value (° C / s) calculated.
  • the “average cooling rate when the temperature decreases from 650 ° C. to 400 ° C.” means a value (° C./s) calculated by “(650 ⁇ 400) (° C.) / Cooling time (s)”.
  • Water cooling is the most effective way to speed up cooling. However, since the cooling rate varies depending on the temperature of the water used for water cooling, the cooling can be further accelerated by managing the water temperature. Since the desired cooling rate may not be obtained when the water temperature is 25 ° C. or higher, it is preferably maintained at 25 ° C. or lower. When a material is placed in a tank in which water is stored and cooled with water, the temperature of the water rises and tends to be 25 ° C. or higher, so that the material is cooled in a mist (shower) at a constant water temperature (25 ° C. or lower).
  • the cooling rate can also be increased by adding water cooling nozzles or increasing the amount of water per unit time.
  • an aging treatment, a cold rolling and an optional temper annealing are sequentially performed after the solution treatment, and the aging treatment is performed at a specific temperature and It is effective to carry out with three-stage aging according to time conditions. That is, by adopting three-stage aging, strength and conductivity are improved, and then cold rolling is performed to reduce drooping curl.
  • the strength and conductivity were significantly improved by changing the aging treatment after solution treatment to three-stage aging.
  • the growth of the second phase particles precipitated in the first and second stages and the precipitation in the third stage This is considered to be because the work strain is easily accumulated by the rolling of the next step due to the second phase particles.
  • the material temperature is heated to 400 to 500 ° C. for 1 to 12 hours, preferably the material temperature is set to 420 to 480 ° C. and heated for 2 to 10 hours, more preferably the material temperature is set to 440 to 460 ° C. Perform the first stage of heating for 3-8 hours.
  • the purpose of the first stage is to increase the strength and conductivity by nucleation and growth of the second phase particles.
  • the volume fraction of the second phase particles is small, and it is difficult to obtain desired strength and conductivity.
  • the volume fraction of the second phase particles increases, but it tends to coarsen and the strength decreases. Becomes stronger.
  • the cooling rate is 1 to 8 ° C./min, preferably 3 to 8 ° C./min, more preferably 6 to 8 ° C./min, and the aging temperature of the second stage is shifted.
  • the reason for setting such a cooling rate is to prevent the second phase particles precipitated in the first stage from growing excessively.
  • the cooling rate here is measured by (first stage aging temperature-second stage aging temperature) (° C) / (cooling time from first stage aging temperature to second stage aging temperature (minutes)).
  • the material temperature is heated at 350 to 450 ° C. for 1 to 12 hours, preferably the material temperature is heated at 380 to 430 ° C. for 2 to 10 hours, more preferably the material temperature is heated at 400 to 420 ° C. for 3 to 8 hours.
  • the second stage In the second stage, the second phase particles precipitated in the first stage are grown within a range that contributes to strength, and the second phase particles are newly precipitated in the second stage (in the first stage). The purpose is to increase the strength and conductivity by being smaller than the precipitated second phase particles.
  • the second phase particles precipitated in the first stage cannot grow, so it is difficult to increase the conductivity. Since the second phase particles cannot be newly deposited, the strength and conductivity cannot be increased. On the other hand, when heated until the material temperature exceeds 450 ° C., or when the heating time exceeds 12 hours, the second phase particles precipitated in the first stage grow too much and become coarse, and the strength decreases. End up.
  • the temperature difference between the first stage and the second stage should be 20 to 60 ° C., preferably 20 to 50 ° C., more preferably 20 to 40 ° C.
  • the cooling rate is 1 to 8 ° C./min, preferably 3 to 8 ° C./min, more preferably 6 to 8 ° C./min. Move to temperature.
  • the cooling rate here is measured by (second stage aging temperature-third stage aging temperature) (° C) / (cooling time from second stage aging temperature to third stage aging temperature (min)).
  • the material temperature is heated to 260 to 340 ° C. for 4 to 30 hours, preferably the material temperature is heated to 290 to 330 ° C. for 6 to 25 hours, more preferably the material temperature is set to 300 to 320 ° C. and heated for 8 to 20 hours.
  • the purpose of the third stage is to slightly grow the second phase particles precipitated in the first and second stages and to newly generate second phase particles.
  • the material temperature in the third stage is less than 260 ° C. or the heating time is less than 4 hours, the second phase particles precipitated in the first stage and the second stage cannot be grown. Therefore, it is difficult to obtain desired strength, conductivity, and spring limit value.
  • the second phase particles precipitated in the first and second stages grow too much and become coarse. Therefore, it is difficult to obtain a desired strength.
  • the temperature difference between the second stage and the third stage should be 20 to 180 ° C., preferably 50 to 135 ° C., and more preferably 70 to 120 ° C.
  • each step is performed within a temperature fluctuation range of 10 ° C. or less.
  • the degree of processing (rolling ratio) at this time is preferably 10 to 80%, more preferably 20 to 60% in order to reach a desired strength level and reduce curling. If the degree of work is too high, there is a problem that bending workability is deteriorated. Conversely, if the degree of work is too low, suppression of drooping curl tends to be insufficient.
  • temper annealing a temperature range of 200 ° C. to 500 ° C. is set to 1 second to 1000 seconds. By performing the temper annealing, the effect of improving the spring property can be obtained.
  • the Cu—Ni—Si—Co based copper alloy strip of the present invention can be processed into various copper products, for example, plates, foils, tubes, bars and wires, and the Cu—Ni—Si—Co according to the present invention.
  • the copper alloy can be used after being processed into electronic parts such as lead frames, connectors, pins, terminals, relays, switches, and secondary battery foils.
  • the thickness of the copper alloy strip according to the present invention is not particularly limited, but is, for example, 0.005 mm to 1.500 mm. Further, it is preferably 0.030 mm to 0.900 mm, more preferably 0.040 mm to 0.800 mm, and particularly preferably 0.050 mm to 0.400 mm.
  • Copper alloy (10 kg) containing each additive element listed in Table 1 and the balance consisting of copper and impurities is melted at 1300 ° C. in a high-frequency melting furnace, and an ingot with a thickness of 30 mm Cast into. Next, this ingot was heated in a batch furnace at 1000 ° C. for 3 hours, then hot-rolled to a plate thickness of 10 mm at an ascending temperature (hot rolling end temperature) of 900 ° C., and immediately after completion of hot rolling, 15 ° C./s. At a cooling rate of 400 ° C. Thereafter, it was allowed to cool in the air.
  • a plate having a length of 80 m, a width of 50 mm and a thickness of 0.286 mm was formed by cold rolling.
  • solution treatment was performed at 950 ° C. for 120 seconds in a continuous furnace, and then cooled.
  • the cooling conditions were as in Example No. 1 to 136 and Comparative Example No. 1 to 173 and 186 to 191 were water-cooled with an average cooling rate from the solution temperature to 400 ° C. being 20 ° C./s. 137-154 and Comparative Example No. In 174 to 185, the cooling rate from the solution treatment temperature to 650 ° C.
  • the surface of the material is electropolished to dissolve the Cu matrix, and the second phase particles remain undissolved. did.
  • the electrolytic polishing liquid used was a mixture of phosphoric acid, sulfuric acid, and pure water in an appropriate ratio.
  • FE-EPMA electrolytic radiation type EPMA: JXA-8500F manufactured by JEOL Ltd.
  • acceleration voltage is 5 to 10 kV
  • sample current is 2 ⁇ 10 ⁇ 8 to 10 ⁇ 10 A
  • spectral crystals are LDE, TAP, PET .
  • the electrical conductivity (EC;% IACS) was determined by volume resistivity measurement using a double bridge according to JIS H0505.
  • the drooping curl was obtained by the measurement method described above.
  • Table 4 shows the test results of each test piece.
  • Comparative Example No. 7 to 12 65 to 70, 174, 175, 178, 179, 182, and 183 are examples in which the first aging is performed by one-stage aging. Comparative Example No.
  • Comparative Example No. 120 to 122 are examples in which the aging temperature in the third stage was high. Comparative Example No. 123 to 125 are examples in which the aging time of the third stage is long. Comparative Example No. Reference numerals 186 and 187 are examples in which the cooling rate from the first stage to the second stage, the second stage to the third stage is too high. Comparative Example No. 188 and 189 are examples in which the cooling rate from the first stage to the second stage, the second stage to the third stage is too low. Comparative Example No. 190 and 191 are the same as the steps of the invention example until the cold rolling is performed after the first aging treatment, but the second aging treatment and the cold rolling are performed thereafter. Comparative Example No.
  • Inventive Example was changed cooling conditions after solution treatment to the preferred conditions No. 137-154 and Comparative Example No.
  • plots of the total mass% concentration of Ni and Co (Ni + Co) on the x-axis and YS on the y-axis are shown in FIG. 1 (without Cr addition) and FIG. 2 (with Cr addition).
  • FIGS. 3 (without Cr addition) and FIG. 4 (with Cr addition) show plots of the total mass% Co concentration (Ni + Co) on the x-axis and EC on the y-axis, respectively.
  • FIG. 1 without Cr addition
  • FIG. 2 with Cr addition
  • FIGS. 3 (without Cr addition) and FIG. 4 (with Cr addition) show plots of the total mass% Co concentration (Ni + Co) on the x-axis and EC on the y-axis, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

 強度及び導電率のバランスに優れ、しかも、垂下カールが抑制されたCu-Ni-Si-Co系合金条を提供する。Ni:1.0~2.5質量%、Co:0.5~2.5質量%、Si:0.3~1.2質量%を含有し、残部がCu及び不可避不純物からなる電子材料用銅合金条であって、圧延面を基準としたX線回折極点図測定により得られる結果で、下記の(a)及び(b)の両方を満たす銅合金条: (a){200}極点図においてα=20°におけるβ走査による回折ピーク強度のうち、β角度145°のピーク高さが標準銅粉末のそれに対して5.2倍以下であること; (b){111}極点図においてα=75°におけるβ走査による回折ピーク強度のうち、β角度185°のピーク高さが標準銅粉末のそれに対して3.4倍以上であること。

Description

電子材料用Cu-Ni-Si-Co系銅合金及びその製造方法
 本発明は析出硬化型銅合金に関し、とりわけ各種電子部品に用いるのに好適なCu-Ni-Si-Co系銅合金に関する。
 コネクタ、スイッチ、リレー、ピン、端子、リードフレーム等の各種電子部品に使用される電子材料用銅合金には、基本特性として高強度及び高導電性(又は熱伝導性)を両立させることが要求される。近年、電子部品の高集積化及び小型化・薄肉化が急速に進み、これに対応して電子機器部品に使用される銅合金に対する要求レベルはますます高度化している。
 高強度及び高導電性の観点から、電子材料用銅合金として従来のりん青銅、黄銅等に代表される固溶強化型銅合金に替わり、析出硬化型の銅合金の使用量が増加している。析出硬化型銅合金では、溶体化処理された過飽和固溶体を時効処理することにより、微細な析出物が均一に分散して、合金の強度が高くなると同時に、銅中の固溶元素量が減少し電気伝導性が向上する。このため、強度、ばね性などの機械的性質に優れ、しかも電気伝導性、熱伝導性が良好な材料が得られる。
 析出硬化型銅合金のうち、コルソン系合金と一般に呼ばれるCu-Ni-Si系銅合金は比較的高い導電性、強度、及び曲げ加工性を兼備する代表的な銅合金であり、業界において現在活発に開発が行われている合金の一つである。この銅合金では、銅マトリックス中に微細なNi-Si系金属間化合物粒子を析出させることによって強度と導電率の向上が図られる。
 最近ではCu-Ni-Si系銅合金にCoを添加したCu-Ni-Si-Co系銅合金が注目されており、技術改良が進められている。特開2009-242890号公報(特許文献1)では、Cu-Ni-Si-Co系銅合金の強度、導電性及びばね限界値を向上させるため、0.1~1μmの粒径をもつ第二相粒子の個数密度を5×105~1×107個/mm2制御した発明が記載されている。
 当該文献に記載の銅合金を製造する方法として、
-所望の組成をもつインゴットを溶解鋳造する工程1と、
-950℃以上1050℃以下で1時間以上加熱後に熱間圧延を行い、熱間圧延終了時の温度を850℃以上とし、850℃から400℃までの平均冷却速度を15℃/s以上として冷却する工程2と、
-冷間圧延工程3と、
-850℃以上1050℃以下で溶体化処理を行い、材料温度が650℃に低下するまでの平均冷却速度を1℃/s以上15℃/s未満として冷却し、650℃から400℃まで低下するときの平均冷却速度を15℃/s以上として冷却する工程4と、
-425℃以上475℃未満で1~24時間行う第一の時効処理工程5と、
-冷間圧延工程6と、
-100℃以上350℃未満で1~48時間行う第二の時効処理工程5と、
を順に行なうことを含む製造方法が開示されている。
 特表2005-532477号公報(特許文献2)には、Cu-Ni-Si-Co系銅合金の製造工程における各焼鈍を段階的焼鈍プロセスとすることができ、典型的には、段階的焼鈍において、第一工程は、第二工程よりも高い温度であり、段階的焼鈍は、一定温度での焼鈍に比べて、強度と導電性のより良好な組合せをもたらしうることが記載されている。
 特開2006-283059号公報(特許文献3)には、耐力が700N/mm2以上、導電率が35%IACS以上、かつ曲げ加工性にも優れたコルソン(Cu-Ni-Si系)銅合金板を得ることを目的として、銅合金鋳塊に対し、必要に応じて熱間圧延し急冷した後、冷間圧延を行い、連続焼鈍を行って溶体化再結晶組織を得た後、加工率20%以下の冷間圧延及び400~600℃×1~8時間の時効処理を行い、続いて加工率1~20%の最終冷間圧延後、400~550℃×30秒以下の短時間焼鈍を行う高強度銅合金板の製造方法が記載されている。
特開2009-242890号公報 特表2005-532477号公報 特開2006-283059号公報
 特許文献1及び2に記載の銅合金製造方法によれば、強度、導電性、及びばね限界値が向上したCu-Ni-Si-Co系銅合金が得られるものの、工業的規模で条材を製造する場合には形状精度が不十分であり、とりわけ垂下カールが十分に制御できていないという問題があることを本発明者は見出した。垂下カールとは、材料が圧延方向に反るという現象である。条製品を製造する場合には、生産効率や製造設備の観点から、時効処理はバッチ炉で行うのが通常であるが、バッチ式だと材料をコイル状に巻いたままで加熱処理するため、巻き癖がついてしまう。その結果、形状(垂下カール)が悪くなってしまうのである。垂下カールが発生すると、電子材料用の端子をプレス加工する際、プレス加工後の形状が安定しない、すなわち寸法精度が低下するという問題が生じるので、極力抑制することが望まれる。
 一方、特許文献3に記載の銅合金製造方法をCu-Ni-Si-Co系銅合金条の工業的生産に応用した場合、垂下カールの問題は生じないが、強度及び導電率のバランスが不十分であることを見出した。
 そこで、本発明は、強度及び導電率のバランスに優れ、しかも、垂下カールが抑制されたCu-Ni-Si-Co系銅合金条を提供することを課題とする。また、本発明は当該Cu-Ni-Si-Co系銅合金条の製造方法を提供することを別の課題とする。
 本発明者は、上記課題を解決するために、鋭意研究を重ねたところ、溶体化処理後に時効処理、冷間圧延を順に実施し、しかも、時効処理を特定の温度及び時間条件による3段階時効で実施して得られるCu-Ni-Si-Co系銅合金条は、強度及び導電性のバランスに優れ、しかも、垂下カールの抑制が可能となることを見出した。
 そして、当該方法によって得られた銅合金条は、圧延面を基準としたX線回折極点図測定の各αにおいて、βに対する回折強度の銅粉末に対する比を求めた結果、{200}極点図においてα=20°、β=145°に見られるピーク高さの標準銅粉末のそれに対する比率が5.2倍以下であり、なおかつ、{111}極点図においてα=75°、β=185°に見られるピーク高さの標準銅粉末のそれに対する比率が3.4倍以上であるという特異性を有することを見出した。このような回折ピークが得られた理由は不明であるが、第二相粒子の微細な分布状態が影響を与えていると考えられる。
 上記の知見を基礎として完成した本発明は一側面において、Ni:1.0~2.5質量%、Co:0.5~2.5質量%、Si:0.3~1.2質量%を含有し、残部がCu及び不可避不純物からなる電子材料用銅合金条であって、圧延面を基準としたX線回折極点図測定により得られる結果で、下記の(a)及び(b)の両方を満たす銅合金条である。
(a){200}極点図においてα=20°におけるβ走査による回折ピーク強度のうち、β角度145°のピーク高さが標準銅粉末のそれに対して5.2倍以下であること;
(b){111}極点図においてα=75°におけるβ走査による回折ピーク強度のうち、β角度185°のピーク高さが標準銅粉末のそれに対して3.4倍以上であること。
 本発明に係る銅合金条は一実施形態において、圧延方向に平行な方向における垂下カールが35mm以下である。
 本発明に係る銅合金条は別の一実施形態において、Niの含有量(質量%)を[Ni]、Coの含有量(質量%)を[Co]、0.2%耐力をYS(MPa)としたときに、
式ア:-11×([Ni]+[Co])2+146×([Ni]+[Co])+564≧YS≧-21×([Ni]+[Co])2+202×([Ni]+[Co])+436
を満たす。
 本発明に係る銅合金条は更に別の一実施形態において、0.2%耐力をYS(MPa)、導電率をEC(%IACS)としたときに、
673≦YS≦976、42.5≦EC≦57.5、式ウ:-0.0563×〔YS〕+94.1972≦EC≦-0.0563×〔YS〕+98.7040
を満たす。
 本発明に係る銅合金条は更に別の一実施形態において、母相中に析出した第二相粒子のうち、粒径が0.1μm以上1μm以下のものの個数密度が5×105~1×107個/mm2である。
 本発明に係る銅合金条は更に別の一実施形態において、更にCr:0.03~0.5質量%を含有する。
 本発明に係る銅合金条は更に別の一実施形態において、Niの含有量(質量%)を[Ni]、Coの含有量(質量%)を[Co]、0.2%耐力をYS(MPa)としたときに、
式イ:-14×([Ni]+[Co])2+164×([Ni]+[Co])+551≧YS≧-22×([Ni]+[Co])2+204×([Ni]+[Co])+447
を満たす。
 本発明に係る銅合金条は更に別の一実施形態において、0.2%耐力をYS(MPa)、導電率をEC(%IACS)としたときに、
679≦YS≦982、43.5≦EC≦59.5、式エ:-0.0610×〔YS〕+99.7465≦EC≦-0.0610×〔YS〕+104.6291
を満たす。
 本発明に係る銅合金条は更に別の一実施形態において、
 更にMg、P、As、Sb、Be、B、Mn、Sn、Ti、Zr、Al、Fe、Zn及びAgの群から選ばれる少なくとも1種を総計で最大2.0質量%含有する。
 本発明は別の一側面において、
-以下の(1)~(3)から選ばれる組成をもつインゴットを溶解鋳造する工程1と、
 (1)Ni:1.0~2.5質量%、Co:0.5~2.5質量%、Si:0.3~1.2質量%を含有し、残部がCu及び不可避不純物からなる組成
 (2)Ni:1.0~2.5質量%、Co:0.5~2.5質量%、Si:0.3~1.2質量%、Cr:0.03~0.5質量%を含有し、残部がCu及び不可避不純物からなる組成
 (3)(1)又は(2)に、更にMg、P、As、Sb、Be、B、Mn、Sn、Ti、Zr、Al、Fe、Zn及びAgの群から選ばれる少なくとも1種を総計で最大2.0質量%含有する組成
-950℃以上1050℃以下で1時間以上加熱後に熱間圧延を行い、熱間圧延終了時の温度を850℃以上とし、850℃から400℃までの平均冷却速度を15℃/s以上として冷却する工程2と、
-冷間圧延工程3と、
-850℃以上1050℃以下で溶体化処理を行い、400℃までの平均冷却速度を毎秒10℃以上として冷却する工程4と、
-材料温度を400~500℃として1~12時間加熱する1段目と、次いで、材料温度を350~450℃として1~12時間加熱する2段目と、次いで、材料温度を260~340℃として4~30時間加熱する3段目を有し、1段目から2段目までの冷却速度及び2段目から3段目までの冷却速度はそれぞれ1~8℃/分とし、1段目と2段目の温度差を20~60℃とし、2段目と3段目の温度差を20~180℃としてバッチ炉で材料をコイル状に巻いたまま多段時効する時効処理工程5と、
-冷間圧延工程6と、
を順に行うことを含む上記銅合金条の製造方法である。
 本発明に係る銅合金条の製造方法は一実施形態において、工程6の後に、材料温度を200~500℃として1秒~1000秒加熱する調質焼鈍を実施する。
 本発明に係る銅合金条の製造方法は別の一実施形態において、工程4における溶体化処理は、400℃までの平均冷却速度を毎秒10℃以上として冷却する条件に替えて、材料温度が650℃に低下するまでの平均冷却速度を1℃/s以上15℃/s未満として冷却し、650℃から400℃まで低下するときの平均冷却速度を15℃/s以上として冷却する。
 本発明は更に別の一側面において、本発明に係る銅合金条を加工して得られた伸銅品である。
 本発明は更に別の一側面において、本発明に係る銅合金条を加工して得られた電子部品である。
 本発明によって、強度及び導電率のバランスに優れ、しかも、垂下カールが抑制されたCu-Ni-Si-Co系銅合金条が得られる。
発明例No.137~139、No.143~145、No.149~151及び比較例No.174、178、182について、Ni及びCoの合計質量%濃度(Ni+Co)をx軸に、YSをy軸にしてプロットした図である。 発明例No.140~142、No.146~148、No.152~154及び比較例No.175、179、183について、Ni及びCoの合計質量%濃度(Ni+Co)をx軸に、YSをy軸にしてプロットした図である。 発明例No.137~139、No.143~145、No.149~151及び比較例No.174、178、182について、YSをx軸に、ECをy軸にしてプロットした図である。 発明例No.140~142、No.146~148、No.152~154及び比較例No.175、179、183について、YSをx軸に、ECをy軸にしてプロットした図である。
Ni、Co及びSiの添加量
 Ni、Co及びSiは、適当な熱処理を施すことにより金属間化合物を形成し、導電率を劣化させずに高強度化が図れる。
 Ni、Co及びSiの添加量がそれぞれNi:1.0質量%未満、Co:0.5質量%未満、Si:0.3質量%未満では所望の強度が得られず、逆に、Ni:2.5質量%超、Co:2.5質量%超、Si:1.2質量%超では高強度化は図れるが導電率が著しく低下し、更には熱間加工性が劣化する。よってNi、Co及びSiの添加量はNi:1.0~2.5質量%、Co:0.5~2.5質量%、Si:0.3~1.2質量%とした。Ni、Co及びSiの添加量は好ましくは、Ni:1.5~2.0質量%、Co:0.5~2.0質量%、Si:0.5~1.0質量%である。
 また、Siの質量濃度に対してNiとCoの合計質量濃度の比[Ni+Co]/Siが低すぎる、すなわち、NiとCoに対してSiの比率が高過ぎると、固溶Siにより導電率が低下したり、焼鈍工程において材料表層にSiO2の酸化皮膜を形成して半田付け性が劣化したりする。一方、Siに対するNi及びCoの割合が高くすぎると、シリサイド形成に必要なSiが不足して高い強度が得られにくい。
 そのため、合金組成中の[Ni+Co]/Si比は4≦[Ni+Co]/Si≦5の範囲に制御することが好ましく、4.2≦[Ni+Co]/Si≦4.7の範囲に制御することがより好ましい。
Crの添加量
 Crは溶解鋳造時の冷却過程において結晶粒界に優先析出するため粒界を強化でき、熱間加工時の割れが発生しにくくなり、歩留低下を抑制できる。すなわち、溶解鋳造時に粒界析出したCrは溶体化処理などで再固溶するが、続く時効析出時にCrを主成分としたbcc構造の析出粒子またはSiとの化合物を生成する。通常のCu-Ni-Si系合金では添加したSi量のうち、時効析出に寄与しなかったSiは母相に固溶したまま導電率の上昇を抑制するが、珪化物形成元素であるCrを添加して、珪化物をさらに析出させることにより、固溶Si量を低減でき、強度を損なわずに導電率を上昇できる。しかしながら、Cr濃度が0.5質量%を超えると粗大な第二相粒子を形成しやすくなるため、製品特性を損なう。従って、本発明に係るCu-Ni-Si-Co系銅合金には、Crを最大で0.5質量%添加することができる。但し、0.03質量%未満ではその効果が小さいので、好ましくは0.03~0.5質量%、より好ましくは0.09~0.3質量%添加するのがよい。
Mg、Mn、Ag及びPの添加量
 Mg、Mn、Ag及びPは、微量の添加で、導電率を損なわずに強度、応力緩和特性等の製品特性を改善する。添加の効果は主に母相への固溶により発揮されるが、第二相粒子に含有されることで一層の効果を発揮させることもできる。しかしながら、Mg、Mn、Ag及びPの濃度の総計が2.0質量%を超えると特性改善効果が飽和するうえ、製造性を損なう。従って、本発明に係るCu-Ni-Si-Co系銅合金には、Mg、Mn、Ag及びPから選択される1種又は2種以上を総計で最大2.0質量%、好ましくは最大1.5質量%添加することができる。但し、0.01質量%未満ではその効果が小さいので、好ましくは総計で0.01~1.0質量%、より好ましくは総計で0.04~0.5質量%添加するのがよい。
Sn及びZnの添加量
 Sn及びZnにおいても、微量の添加で、導電率を損なわずに強度、応力緩和特性、めっき性等の製品特性を改善する。添加の効果は主に母相への固溶により発揮される。しかしながら、Sn及びZnの総計が2.0質量%を超えると特性改善効果が飽和するうえ、製造性を損なう。従って、本発明に係るCu-Ni-Si-Co系銅合金には、Sn及びZnから選択される1種又は2種を総計で最大2.0質量%添加することができる。但し、0.05質量%未満ではその効果が小さいので、好ましくは総計で0.05~2.0質量%、より好ましくは総計で0.5~1.0質量%添加するのがよい。
As、Sb、Be、B、Ti、Zr、Al及びFeの添加量
 As、Sb、Be、B、Ti、Zr、Al及びFeにおいても、要求される製品特性に応じて、添加量を調整することで、導電率、強度、応力緩和特性、めっき性等の製品特性を改善する。添加の効果は主に母相への固溶により発揮されるが、第二相粒子に含有され、若しくは新たな組成の第二相粒子を形成することで一層の効果を発揮させることもできる。しかしながら、これらの元素の総計が2.0質量%を超えると特性改善効果が飽和するうえ、製造性を損なう。従って、本発明に係るCu-Ni-Si-Co系銅合金には、As、Sb、Be、B、Ti、Zr、Al及びFeから選択される1種又は2種以上を総計で最大2.0質量%添加することができる。但し、0.001質量%未満ではその効果が小さいので、好ましくは総計で0.001~2.0質量%、より好ましくは総計で0.05~1.0質量%添加するのがよい。
 上記したMg、Mn、Ag、P、Sn、Zn、As、Sb、Be、B、Ti、Zr、Al及びFeの添加量が合計で3.0質量%を超えると製造性を損ないやすいので、好ましくはこれらの合計は2.0質量%以下とし、より好ましくは1.5質量%以下とする。
結晶方位
 本発明に係る銅合金は一実施形態において、圧延面を基準としたX線回折極点図測定の各αにおいて、βに対する回折強度の銅粉末に対する比を求めた結果で、{200}極点図においてα=20°、β=145°に見られるピーク高さの標準銅粉末のそれに対する比率が(以下、「α=20°におけるβ角度145°のピーク高さ比率」という。)が5.2倍以下である。
 α=20°におけるβ角度145°のピーク高さ比率は好ましくは5.0倍以下であり、より好ましくは4.8倍以下であり、典型的には3.5~5.2である。純銅標準粉末は325メッシュ(JIS Z8801)の純度99.5%の銅粉末で定義される。
 また、本発明に係る銅合金は一実施形態において、圧延面を基準としたX線回折極点図測定の各αにおいて、βに対する回折強度の銅粉末に対する比を求めた結果で、{111}極点図においてα=75°、β=185°に見られるピーク高さの標準銅粉末のそれに対する比率が(以下、「α=75°におけるβ角度185°のピーク高さ比率」という。)が3.4倍以上である。
 α=75°におけるβ角度185°のピーク高さ比率は好ましくは3.6倍以上であり、より好ましくは3.8倍以上であり、典型的には3.4~5.0である。純銅標準粉末は325メッシュ(JIS Z8801)の純度99.5%の銅粉末で定義される。
 {200}Cu面の回折ピークでのα=20°におけるβ角度145°のピーク高さ、及び、{111}Cu面の回折ピークでのα=75°におけるβ角度185°のピーク高さを制御することによって強度及び導電率のバランスに優れ、しかも、垂下カールが抑制される理由は必ずしも明らかではなく、あくまでも推定であるが、1回目の時効処理を3段時効にすることで、1段目及び2段目で析出した第2相粒子の成長及び3段目で析出した第2相粒子により、次工程の圧延で加工歪が蓄積されやすくなったためと考えられる。
 {111}Cu面の回折ピークでのα=75°におけるβ角度185°のピーク高さ、及び、{200}Cu面の回折ピークでのα=20°におけるβ角度145°のピーク高さは極点図測定で測定する。極点図測定は、ある1つの回折面{hkl}Cuに着目して、着目した{hkl}Cu面の2θ値に対し(検出器の走査角2θを固定し)、α軸走査をステップで行い、角α値に対して試料をβ軸走査(0~360°まで面内回転(自転))させる測定方法である。なお、本発明のXRD極点図測定では、試料面に垂直方向をα90°と定義し、測定の基準とする。また、極点図測定は、反射法(α:-15°~90°)で測定する。
 {111}Cu面の回折ピークでのα=75°におけるβ角度185°のピーク高さは、α=75°においてβ角度に対する強度をプロットして、β=185°のピーク値を読み取ることで測定でき、{200}Cu面の回折ピークでのα=20°におけるβ角度145°のピーク高さは、α=20°においてβ角度に対する強度をプロットして、β=145°のピーク値を読み取ることで測定できる。
特性
 本発明に係る銅合金条は一実施形態において、Niの含有量(質量%)を[Ni]、Coの含有量(質量%)を[Co]、0.2%耐力をYS(MPa)としたときに、式ア:-11×([Ni]+[Co])2+146×([Ni]+[Co])+564≧YS≧-21×([Ni]+[Co])2+202×([Ni]+[Co])+436を満たすことができる。
 本発明に係る銅合金条は好ましい実施形態において、式ア’:-11×([Ni]+[Co])2+146×([Ni]+[Co])+554≧YS≧-21×([Ni]+[Co])2+202×([Ni]+[Co])+441を満たすことができる。
 本発明に係る銅合金条は更に好ましい実施形態において、式ア”:-11×([Ni]+[Co])2+146×([Ni]+[Co])+544≧YS≧-21×([Ni]+[Co])2+202×([Ni]+[Co])+450を満たすことができる。
 本発明に係るCrを0.03~0.5質量%を含有する銅合金条は一実施形態において、Niの含有量(質量%)を[Ni]、Coの含有量(質量%)を[Co]、0.2%耐力をYS(MPa)としたときに、式イ:-14×([Ni]+[Co])2+164××([Ni]+[Co])+551≧YS≧-22×([Ni]+[Co])2+204×([Ni]+[Co])+447を満たすことができる。
 本発明に係るCrを0.03~0.5質量%を含有する銅合金条は好ましい実施形態において、式イ’:-14×([Ni]+[Co])2+164×([Ni]+[Co])+541≧YS≧-22×([Ni]+[Co])2+204×([Ni]+[Co])+452を満たすことができる。
 本発明に係るCrを0.03~0.5質量%を含有する銅合金条は更に好ましい実施形態において、式イ”: -14×([Ni]+[Co])2+164×([Ni]+[Co])+531≧YS≧-21×([Ni]+[Co])2+198×([Ni]+[Co])+462を満たすことができる。
 本発明に係る銅合金条は一実施形態において、圧延方向に平行な方向における垂下カールが35mm以下であり、好ましくは20mm以下であり、より好ましくは15mm以下であり、例えば10~30mmである。
 本発明において、圧延方向に平行な方向における垂下カールは以下の手順で求める。試験対象となる条材から、圧延方向に平行な長手方向に500mm×圧延方向に直角な幅方向に10mmの長さをもつ細長形状の測定用サンプルを切り出し、このサンプルの長手方向の一端を把持し、他端を下方へと垂下し、この他端の鉛直線に対する反り量を測定し、これを垂下カールとする。なお、本発明においては垂下カールを上記のように測定することとしているが、圧延方向に平行な長手方向の長さが500~1000mmで、圧延方向に直角な幅方向に10~50mmの長さをもつ細長形状のサンプルであれば、垂下カールの測定結果はほとんど変わらない。
 本発明に係る銅合金条は一実施形態において、0.2%耐力をYS(MPa)、導電率をEC(%IACS)としたときに、673≦YS≦976、42.5≦EC≦57.5、式ウ:-0.0563×〔YS〕+94.1972≦EC≦-0.0563×〔YS〕+98.7040を満たす。本発明に係る銅合金条は好ましい実施形態において、683≦YS≦966、43≦EC≦57、式ウ’:-0.0563×〔YS〕+94.7610≦EC≦-0.0563×〔YS〕+98.1410を満たす。本発明に係る銅合金条は更に好ましい実施形態において、693≦YS≦956、43.5≦EC≦56.5、式ウ”:-0.0563×〔YS〕+95.3240≦EC≦-0.0563×〔YS〕+97.5770を満たす。
 本発明に係るCrを0.03~0.5質量%を含有する銅合金条は一実施形態において、0.2%耐力をYS(MPa)、導電率をEC(%IACS)としたときに、679≦YS≦982、43.5≦EC≦59.5、式エ:-0.0610×〔YS〕+99.7465≦EC≦-0.0610×〔YS〕+104.6291を満たす。本発明に係るCrを0.03~0.5質量%を含有する銅合金条は好ましい実施形態において、689≦YS≦972、44≦EC≦59、式エ’:-0.0610×〔YS〕+100.3568≦EC≦-0.0610×〔YS〕+104.0188を満たす。本発明に係る銅合金条は更に好ましい実施形態において、699≦YS≦962、44.5≦EC≦58.5、式エ”:-0.0610×〔YS〕+100.9671≦EC≦-0.0610×〔YS〕+103.4085を満たす。
第二相粒子の分布条件
 本発明において、第二相粒子とは主にシリサイドを指すが、これに限られるものではなく、溶解鋳造の凝固過程に生ずる晶出物及びその後の冷却過程で生ずる析出物、熱間圧延後の冷却過程で生ずる析出物、溶体化処理後の冷却過程で生ずる析出物、及び時効処理過程で生ずる析出物のことを言う。
 本発明に係るCu-Ni-Si-Co系銅合金の好ましい実施形態では、0.1μm以上1μm以下の粒径をもつ第二相粒子の分布を制御している。これにより、更に強度、導電率及び垂下カールのバランスが向上する。具体的には、0.1μm以上1μm以下の粒径をもつ第二相粒子の個数密度を5×105~1×107個/mm2、好ましくは1×106~10×106個/mm2、より好ましくは5×106~10×106個/mm2とすることが望ましい。
 本発明においては、第二相粒子の粒径とは、下記条件で第二相粒子を観察したときの、該粒子を取り囲む最小円の直径のことを指す。
 粒径が0.1μm以上1μm以下の第二相粒子の個数密度はFE-EPMAやFE-SEMなどの高倍率(例えば3000倍)で粒子を観察できる電子顕微鏡と画像解析ソフトの併用により観察可能であり、個数や粒径の測定が可能である。供試材の調整は、本発明組成で析出する粒子が溶解しないような一般的な電解研磨条件に従って母相をエッチングし、第二相粒子を現出させればよい。観察面は供試材の圧延面、断面の指定はない。
製造方法
 コルソン系銅合金の一般的な製造プロセスでは、まず大気溶解炉を用い、電気銅、Ni、Si、Co等の原料を溶解し、所望の組成の溶湯を得る。そして、この溶湯をインゴットに鋳造する。その後、熱間圧延を行い、冷間圧延と熱処理を繰り返して、所望の厚み及び特性を有する条や箔に仕上げる。熱処理には溶体化処理と時効処理がある。溶体化処理では、約700~約1000℃の高温で加熱して、第二相粒子をCu母地中に固溶させ、同時にCu母地を再結晶させる。溶体化処理を、熱間圧延で兼ねることもある。時効処理では、約350~約550℃の温度範囲で1時間以上加熱し、溶体化処理で固溶させた第二相粒子をナノメートルオーダーの微細粒子として析出させる。この時効処理で強度と導電率が上昇する。より高い強度を得るために、時効前及び/又は時効後に冷間圧延を行なうことがある。また、時効後に冷間圧延を行なう場合には、冷間圧延後に歪取焼鈍(低温焼鈍)を行なうことがある。
 上記各工程の合間には適宜、表面の酸化スケール除去のための研削、研磨、ショットブラスト酸洗等が適宜行なわれる。
 本発明に係る銅合金においても上記の製造プロセスを経るが、最終的に得られる銅合金の特性が本発明で規定するような範囲となるためには、溶体化処理及びその後の工程を厳密に制御して行なうことが重要である。従来のCu-Ni-Si系コルソン合金とは異なり、本発明のCu-Ni-Co-Si系合金は、時効析出硬化のための必須成分として第二相粒子の制御が難しいCo(場合によっては更にCr)を積極的に添加しているためである。CoはNiやSiと共に第二相粒子を形成するが、その生成及び成長速度が、熱処理の際の保持温度と冷却速度に敏感なためである。
 まず、鋳造時の凝固過程では粗大な晶出物が、その冷却過程では粗大な析出物が不可避的に生成するため、その後の工程においてこれらの第二相粒子を母相中に固溶する必要がある。950℃~1050℃で1時間以上保持後に熱間圧延を行い、熱間圧延終了時の温度を850℃以上とすればCo、更にCrを添加した場合であっても母相中に固溶することができる。950℃以上という温度条件は他のコルソン系合金の場合に比較して高い温度設定である。熱間圧延前の保持温度が950℃未満では固溶が不十分であり、1050℃を超えると材料が溶解する可能性がある。また、熱間圧延終了時の温度が850℃未満では固溶した元素が再び析出するため、高い強度を得ることが困難となる。よって高強度を得るためには850℃以上で熱間圧延を終了し、速やかに冷却することが望ましい。
 具体的には、熱間圧延の後、材料温度が850℃から400℃まで低下するときの冷却速度を15℃/s以上、好ましくは18℃/s以上、例えば15~25℃/s、典型的には15~20℃/sとするのがよい。本発明においては、熱間圧延後の、「850℃から400℃までの平均冷却速度」は材料温度が850℃から400℃まで低下するときの時間を計測し、“(850-400)(℃)/冷却時間(s)”によって算出した値(℃/s)をいう。
 溶体化処理では、溶解鋳造時の晶出粒子や、熱延後の析出粒子を固溶させ、溶体化処理以降の時効硬化能を高めることが目的である。このとき、第二相粒子の個数密度を制御するには、溶体化処理時の保持温度と時間、および保持後の冷却速度が重要となる。保持時間が一定の場合には、保持温度を高くすると、溶解鋳造時の晶出粒子や、熱延後の析出粒子を固溶させることが可能となり、面積率を低減することが可能となる。
 溶体化処理は連続炉及びバッチ炉の何れで実施しても良いが、本発明のような条材を工業的に生産する上では、生産効率の観点から連続炉で実施することが好ましい。
 溶体化処理後の冷却速度は速いほど冷却中の析出を抑制できる。冷却速度が遅すぎる場合には、冷却中に第二相粒子が粗大化して、第二相粒子中のNi、Co、Si含有量が増加するため、溶体化処理で十分な固溶を行えず、時効硬化能が低減する。よって、溶体化処理後の冷却は急冷却とするのが好ましい。具体的には、850℃~1050℃で10~3600秒の溶体化処理後、平均冷却速度を毎秒10℃以上、好ましくは15℃以上、より好ましくは毎秒20℃以上として400℃まで冷却するのが効果的である。但し、平均冷却速度をあまりに高くすると、逆に強度上昇の効果が十分に得られなくなるため、好ましくは毎秒30℃以下、より好ましくは毎秒25℃以下である。ここでの、“平均冷却速度”は溶体化温度から400℃までの冷却時間を計測し、“(溶体化温度-400)(℃)/冷却時間(秒)”によって算出した値(℃/秒)をいう。
 溶体化処理後の冷却条件については特許文献1に記載のように2段階冷却条件とするとすることがより好ましい。すなわち、溶体化処理後、850~650℃までは緩冷却とし、その後の650℃~400℃までは、急冷却とする2段階冷却を採用するのがよい。これにより更に強度、及び導電率が向上する。
 具体的には、850℃~1050℃で溶体化処理後、材料温度が溶体化処理温度から650℃まで低下するときの平均冷却速度を1℃/s以上15℃/s未満、好ましくは5℃/s以上12℃/s以下に制御して、650℃から400℃まで低下するときの平均冷却速度を15℃/s以上、好ましくは18℃/s以上、例えば15~25℃/s、典型的には15~20℃/sとする。なお、第二相粒子の析出が著しいのは400℃程度までなので、400℃未満における冷却速度は問題とならない。
 溶体化処理後の冷却速度の制御は、850℃~1050℃の範囲に加熱した加熱帯に隣接して、徐冷帯および冷却帯を設けて各々の保持時間を調整することで冷却速度を調整することができる。急冷が必要な場合には冷却方法に水冷を施せばよく、緩冷却の場合には炉内に温度勾配をつくればよい。
 溶体化処理後の「650℃に低下するまでの平均冷却速度」は溶体化処理で保持した材料温度から650℃まで低下する冷却時間を計測し、“(溶体化処理温度-650)(℃)/冷却時間(s)”によって算出した値(℃/s)をいう。「650℃から400℃まで低下するときの平均冷却速度”とは同様に、“(650-400)(℃)/冷却時間(s)”によって算出した値(℃/s)をいう。
 熱間圧延後の冷却速度を管理せずに、溶体化処理後の冷却速度のみを制御しても、後の時効処理で粗大な第二相粒子を充分に抑制することはできない。熱間圧延後の冷却速度、及び溶体化処理後の冷却速度は共に制御する必要がある。
 冷却を速くする方法としては水冷が最も効果的である。ただし、水冷に使用する水の温度により冷却速度が変わるため、水温の管理をすることでより冷却を速くすることができる。水温が25℃以上だと所望の冷却速度を得ることができない場合があるため、25℃以下に保持するのが好ましい。水を溜めた槽内に材料を入れて水冷すると、水の温度は上昇し25℃以上になり易いため、材料が一定の水の温度(25℃以下)で冷却されるように霧状(シャワー状又はミスト状)にして噴霧したり、水槽に常時冷たい水を流すようにしたりして水温上昇を防ぐのが好ましい。また、水冷ノズルの増設や単位時間当たりにおける水量を増加することによっても冷却速度の上昇させることができる。
 本発明に係るCu-Ni-Co-Si系合金を製造する上では、溶体化処理後に時効処理、冷間圧延及び随意的な調質焼鈍を順に実施し、しかも、時効処理を特定の温度及び時間条件による3段階時効で実施することが有効である。すなわち、3段時効を採用することによって強度及び導電率を向上させ、その後に冷間圧延を実施することで垂下カールを低減する。溶体化処理後の時効処理を3段時効にすることで強度及び導電率が有意に向上したのは、1段目及び2段目で析出した第2相粒子の成長及び3段目で析出した第2相粒子により、次工程の圧延で加工歪が蓄積されやすくなったからと考えられる。
 3段時効では、まず、材料温度を400~500℃として1~12時間加熱する、好ましくは材料温度を420~480℃として2~10時間加熱する、より好ましくは材料温度を440~460℃として3~8時間加熱する1段目を行う。1段目では第二相粒子の核生成及び成長による強度・導電率を高めるのが目的である。
 1段目における材料温度が400℃未満であったり、加熱時間が1時間未満であったりすると、第二相粒子の体積分率が小さく、所望の強度、導電率が得られにくい。一方、材料温度が500℃超になるまで加熱した場合や、加熱時間が12時間を超えた場合には、第二相粒子の体積分率は大きくなるが、粗大化してしまい強度が低下する傾向が強くなる。
 1段目の終了後、冷却速度を1~8℃/分、好ましくは3~8℃/分、より好ましくは6~8℃/分として、2段目の時効温度に移行する。このような冷却速度に設定したのは1段目で析出した第二相粒子を過剰に成長させないための理由による。ここでの冷却速度は、(1段目時効温度-2段目時効温度)(℃)/(1段目時効温度から2段目時効温度に到達するまでの冷却時間(分))で測定される。
 次いで、材料温度を350~450℃として1~12時間加熱する、好ましくは材料温度を380~430℃として2~10時間加熱する、より好ましくは材料温度を400~420℃として3~8時間加熱する2段目を行う。2段目では1段目で析出した第二相粒子を強度に寄与する範囲で成長させることにより導電率を高めることと、2段目で新たに第二相粒子を析出させる(1段目で析出した第二相粒子より小さい)ことで強度、導電率を高めることが目的である。
 2段目における材料温度が350℃未満であったり、加熱時間が1時間未満であったりすると1段目で析出した第二相粒子が成長できないため、導電率を高めにくく、また2段目で新たに第二相粒子を析出させることができないため、強度、導電率を高めることができない。一方、材料温度が450℃超になるまで加熱した場合や、加熱時間が12時間を超えた場合1段目で析出した第二相粒子が成長しすぎて粗大化していまい、強度が低下してしまう。
 1段目と2段目の温度差は、小さすぎると1段目で析出した第二相粒子が粗大化して強度低下を招く一方で、大きすぎると1段目で析出した第二相粒子がほとんど成長せず導電率を高めることができない。また、2段目で第二相粒子が析出しにくくなるので、強度及び導電率をたかめることができない。そのため、1段目と2段目の温度差は20~60℃とすべきであり、20~50℃とするのが好ましく、20~40℃とするのがより好ましい。
 2段目の終了後は、先と同様の理由から、冷却速度を1~8℃/分、好ましくは3~8℃/分、より好ましくは6~8℃/分として、3段目の時効温度に移行する。ここでの冷却速度は、(2段目時効温度-3段目時効温度)(℃)/(2段目時効温度から3段目時効温度に到達するまでの冷却時間(分))で測定される。
 次いで、材料温度を260~340℃として4~30時間加熱する、好ましくは材料温度を290~330℃として6~25時間加熱する、より好ましくは材料温度を300~320℃として8~20時間加熱する3段目を行う。3段目では1段目と2段目で析出した第二相粒子を少し成長させるためと、新たに第二相粒子を生成させることが目的である。
 3段目における材料温度が260℃未満であったり、加熱時間が4時間未満であったりすると、1段目と2段目で析出した第二相粒子を成長させることができず、また、新たに第二相粒子を生成させることができないため、所望の強度、導電率及びばね限界値が得られにくい。一方、材料温度が340℃超になるまで加熱した場合や、加熱時間が30時間を超えた場合には1段目と2段目で析出した第二相粒子が成長しすぎて粗大化してしまうため、所望の強度が得られにくい。
 2段目と3段目の温度差は、小さすぎると1段目、2段目で析出した第二相粒子が粗大化して強度の低下を招く一方で、大きすぎると1段目、2段目で析出した第二相粒子がほとんど成長せず導電率を高めることができない。また、3段目で第二相粒子が析出しにくくなるので、強度及び導電率をたかめることができない。そのため、2段目と3段目の温度差は、20~180℃とすべきであり、50~135℃とするのが好ましく、70~120℃とするのがより好ましい。
 一つの段における時効処理では、第二相粒子の分布が変化してしまうことから、温度は一定とするのが原則であるが、設定温度に対して±5℃程度の変動があっても差し支えない。そこで、各ステップは温度の振れ幅が10℃以内で行う。
 時効処理後には冷間圧延を行う。この冷間圧延では時効処理での不十分な時効硬化を加工硬化により補うことができると共に、時効処理によって生じる垂下カールの原因となる巻き癖を低減する効果がある。このときの加工度(圧下率)は所望の強度レベルに到達させ、そして、巻き癖を低減するために10~80%とするのが好ましく、より好ましくは20~60%である。加工度が高すぎると曲げ加工性が悪くなるという弊害が生じ、逆に低すぎると垂下カールの抑制が不十分となりやすい。
 冷間圧延後は、それ以上熱処理を行う必要はない。再度時効処理を行うと、冷間圧延によって低減した巻き癖が復活してしまうおそれがあるからである。ただし、調質焼鈍を実施することは許容される。
 調質焼鈍を行う場合は200℃~500℃の温度範囲で1秒~1000秒の条件とする。調質焼鈍を実施することにより、ばね性の向上の効果が得られる。
 本発明のCu-Ni-Si-Co系銅合金条は種々の伸銅品、例えば板、箔、管、棒及び線に加工することができ、更に、本発明によるCu-Ni-Si-Co系銅合金は、リードフレーム、コネクタ、ピン、端子、リレー、スイッチ、二次電池用箔材等の電子部品等に加工して使用することができる。
 本発明に係る銅合金条の板厚は特に限定はされないが、例えば0.005mm~1.500mmである。また、好ましくは0.030mm~0.900mm、更に好ましくは0.040mm~0.800mm、特に好ましくは0.050mm~0.400mmである。
 以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。
時効条件が合金特性に与える影響
 表1に記載の各添加元素を含有し、残部が銅及び不純物からなる銅合金(10kg)を、高周波溶解炉で1300℃で溶製し、厚さ30mmのインゴットに鋳造した。次いで、このインゴットをバッチ炉で1000℃で3時間加熱後、上り温度(熱間圧延終了温度)を900℃として板厚10mmまで熱間圧延し、熱間圧延終了後は速やかに15℃/sの冷却速度で400℃まで冷却した。その後は空気中に放置して冷却した。次いで、表面のスケール除去のため厚さ9mmまで面削を施した後、冷間圧延により長さ80m×幅50mm×厚さ0.286mmの板とした。次に連続炉で950℃で溶体化処理を120秒行い、その後冷却した。冷却条件は発明例No.1~136及び比較例No.1~173、186~191では溶体化温度から400℃までの平均冷却速度を20℃/sとして水冷し、発明例No.137~154及び比較例No.174~185では溶体化処理温度から650℃までの冷却速度を5℃/s、650℃から400℃までの平均冷却速度を18℃/sとした。その後は空気中に放置して冷却した。次いで、不活性雰囲気中、表2に記載の各条件で第一の時効処理を施した。その後、0.20mmまで冷間圧延した(圧下率:30%)。最後に、試験条によっては、バッチ炉でコイル状に巻いた材料を不活性雰囲気中、表3に記載の各条件で調質焼鈍を実施するか、又は第二の時効処理を順に実施して、各試験条を製造した。比較例No.190及び191については第二の時効処理の後に冷間圧延(圧下率:20%)を更に実施した。なお、多段時効を行う場合の各段における材料温度は表2及び表3に記載された設定温度±3℃以内に維持した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
 このようにして得られた各試験条につき、第二相粒子の個数密度、合金特性を以下のようにして測定した。
 粒径0.1μm以上1μm以下の第二相粒子を観察するときは、まず、材料表面(圧延面)を電解研磨してCuの母地を溶解し、第二相粒子を溶け残して現出した。電解研磨液はリン酸、硫酸、純水を適当な比率で混合したものを使用した。FE-EPMA(電解放射型EPMA:日本電子(株)製JXA-8500F)により、加速電圧を5~10kV、試料電流を2×10-8~10-10A、分光結晶はLDE、TAP、PET、LIFを使用して、観察倍率3000倍(観察視野30μm×30μm)で任意の10箇所に分散する粒径0.1~1μmの第二相粒子全てを観察および分析し、析出物の個数を数え、1mm2当たりの個数を算出した。
 強度についてはJIS Z2241に準拠して圧延平行方向の引っ張り試験を行って0.2%耐力(YS:MPa)を測定した。
 導電率(EC;%IACS)についてはJIS H0505に準拠してダブルブリッジによる体積抵抗率測定により求めた。
 「α=20°におけるβ角度145°のピーク高さ比率」及び「α=75°におけるβ角度185°のピーク高さ比率」については、先述した測定方法により、リガク社製型式RINT-2500VのX線回折装置を使用して求めた。
 垂下カールについては、先述した測定方法により求めた。
 曲げ加工性については、Badway(曲げ軸が圧延方向と同一方向)のW曲げ試験として、W字型の金型を用いて試料板厚と曲げ半径の比が3となる条件で90°曲げ加工を行った。続いて、曲げ加工部表面を光学顕微鏡で観察し、クラックが観察されない場合を実用上問題ないと判断して○(良好)とし、クラックが認められた場合を×(不良)とした。
 各試験片の試験結果を表4に示す。
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
<考察>
 発明例No.1~154は、「α=20°におけるβ角度145°のピーク高さ比率」が5.2倍以下であり、「α=75°におけるβ角度185°のピーク高さ比率」が3.4倍以上であり、強度及び導電率のバランスに優れ、しかも、垂下カールが抑制されていることが分かる。更に、曲げ加工性も優れていることが分かる。また、溶体化処理後の冷却条件を好ましい条件に変更した発明例No.137~154では、母相中に析出した第二相粒子のうち、粒径が0.1μm以上1μm以下のものの個数密度が5×105~1×107個/mm2の範囲にあり、より優れた特性のバランスを達成した。
 比較例No.7~12、65~70、174、175、178、179、182、183は、第一の時効を1段時効で行った例である。
 比較例No.1~6、13、59~64、71、129、133、137、141、145、149、153、157、161、165、169、173、176、177、180、181、184、185は第一の時効を2段時効で行った例である。
 比較例No.14~58、72~116、126~128、130~132、134~136、138~140、142~144、146~148、150~152、154~156、158~160、162~164、166~168、170~172は3段目の時効時間が短かった例である。
 比較例No.117~119は3段目の時効温度が低かった例である。
 比較例No.120~122は3段目の時効温度が高かった例である。
 比較例No.123~125は3段目の時効時間が長かった例である。
 比較例No.186及び187は1段目から2段目、2段目から3段目への冷却速度が高すぎた例である。
 比較例No.188及び189は1段目から2段目、2段目から3段目への冷却速度が低すぎた例である。
 比較例No.190及び191は第1の時効処理後に冷間圧延を実施するまでは発明例の工程と同じであるが、その後に第二の時効処理及び冷間圧延を行った例である。
 比較例No.13、71、129、133、137、141、145、149、153、157、161、165、169、173、176、177、180、181、184、185、190、191においては第二の時効処理も実施した。
 比較例は何れも「α=20°におけるβ角度145°のピーク高さ比率」が5.2倍を超え、「α=75°におけるβ角度185°のピーク高さ比率」が3.4倍未満であり、発明例に比べて強度、導電性及び垂下カールのバランスに劣っていることが分かる。
 溶体化処理後の冷却条件を好ましい条件に変更した発明例No.137~154及び比較例No.174~185に関して、Ni及びCoの合計質量%濃度(Ni+Co)をx軸に、YSをy軸にしてプロットした図を図1(Cr添加無し)及び図2(Cr添加有り)に、Ni及びCoの合計質量%濃度(Ni+Co)をx軸に、ECをy軸にしてプロットした図を図3(Cr添加無し)及び図4(Cr添加有り)にそれぞれ示す。
 図1より、Crを添加しない発明例では、式ア:-11×([Ni]+[Co])2+146×([Ni]+[Co])+564≧YS≧-21×([Ni]+[Co])2+202×([Ni]+[Co])+436の関係を満たすことが分かる。
 図2より、Crを添加した発明例では、式イ:-14×([Ni]+[Co])2+164×([Ni]+[Co])+551≧YS≧-22×([Ni]+[Co])2+204×([Ni]+[Co])+447の関係を満たすことが分かる。
 図3より、Crを添加しない発明例では、式ウ:-0.0563×〔YS〕+94.1972≦EC≦-0.0563×〔YS〕+98.7040の関係を満たすことが分かる。
 図4より、Crを添加した発明例では、式エ:-0.0610×〔YS〕+99.7465≦EC≦-0.0610×〔YS〕+104.6291の関係を満たすことが分かる。

Claims (14)

  1.  Ni:1.0~2.5質量%、Co:0.5~2.5質量%、Si:0.3~1.2質量%を含有し、残部がCu及び不可避不純物からなる電子材料用銅合金条であって、圧延面を基準としたX線回折極点図測定により得られる結果で、下記の(a)及び(b)の両方を満たす銅合金条:
    (a){200}極点図においてα=20°におけるβ走査による回折ピーク強度のうち、β角度145°のピーク高さが標準銅粉末のそれに対して5.2倍以下であること;
    (b){111}極点図においてα=75°におけるβ走査による回折ピーク強度のうち、β角度185°のピーク高さが標準銅粉末のそれに対して3.4倍以上であること。
  2.  圧延方向に平行な方向における垂下カールが35mm以下である請求項1に記載の銅合金条。
  3.  Niの含有量(質量%)を[Ni]、Coの含有量(質量%)を[Co]、0.2%耐力をYS(MPa)としたときに、
    式ア:-11×([Ni]+[Co])2+146×([Ni]+[Co])+564≧YS≧-21×([Ni]+[Co])2+202×([Ni]+[Co])+436
    を満たす請求項1又は2に記載の銅合金条。
  4.  0.2%耐力をYS(MPa)、導電率をEC(%IACS)としたときに、
    673≦YS≦976、42.5≦EC≦57.5、式ウ:-0.0563×〔YS〕+94.1972≦EC≦-0.0563×〔YS〕+98.7040
    を満たす請求項1~3の何れか一項に記載の銅合金条。
  5.  母相中に析出した第二相粒子のうち、粒径が0.1μm以上1μm以下のものの個数密度が5×105~1×107個/mm2である請求項1~4の何れか一項に記載の銅合金条。
  6.  更にCr:0.03~0.5質量%を含有する請求項1、2又は5に記載の銅合金条。
  7.  Niの含有量(質量%)を[Ni]、Coの含有量(質量%)を[Co]、0.2%耐力をYS(MPa)としたときに、
    式イ:-14×([Ni]+[Co])2+164×([Ni]+[Co])+551≧YS≧-22×([Ni]+[Co])2+204×([Ni]+[Co])+447
    を満たす請求項6に記載の銅合金条。
  8.  0.2%耐力をYS(MPa)、導電率をEC(%IACS)としたときに、
    679≦YS≦982、43.5≦EC≦59.5、式エ:-0.0610×〔YS〕+99.7465≦EC≦-0.0610×〔YS〕+104.6291
    を満たす請求項6又は7に記載の銅合金条。
  9.  更にMg、P、As、Sb、Be、B、Mn、Sn、Ti、Zr、Al、Fe、Zn及びAgの群から選ばれる少なくとも1種を総計で最大2.0質量%含有する請求項1~8何れか一項記載の銅合金条。
  10. -以下の(1)~(3)から選ばれる組成をもつインゴットを溶解鋳造する工程1と、
     (1)Ni:1.0~2.5質量%、Co:0.5~2.5質量%、Si:0.3~1.2質量%を含有し、残部がCu及び不可避不純物からなる組成
     (2)Ni:1.0~2.5質量%、Co:0.5~2.5質量%、Si:0.3~1.2質量%、Cr:0.03~0.5質量%を含有し、残部がCu及び不可避不純物からなる組成
     (3)(1)又は(2)に、更にMg、P、As、Sb、Be、B、Mn、Sn、Ti、Zr、Al、Fe、Zn及びAgの群から選ばれる少なくとも1種を総計で最大2.0質量%含有する組成
    -950℃以上1050℃以下で1時間以上加熱後に熱間圧延を行い、熱間圧延終了時の温度を850℃以上とし、850℃から400℃までの平均冷却速度を15℃/s以上として冷却する工程2と、
    -冷間圧延工程3と、
    -850℃以上1050℃以下で溶体化処理を行い、400℃までの平均冷却速度を毎秒10℃以上として冷却する工程4と、
    -材料温度を400~500℃として1~12時間加熱する一段目と、次いで、材料温度を350~450℃として1~12時間加熱する二段目と、次いで、材料温度を260~340℃として4~30時間加熱する三段目を有し、一段目から二段目までの冷却速度及び二段目から三段目までの冷却速度はそれぞれ1~8℃/分とし、一段目と二段目の温度差を20~60℃とし、二段目と三段目の温度差を20~180℃としてバッチ炉で材料をコイル状に巻いたまま多段時効する時効処理工程5と、
    -冷間圧延工程6と、
    を順に行うことを含む請求項1~9の何れか一項に記載の銅合金条の製造方法。
  11.  工程6の後に、材料温度を200~500℃として1秒~1000秒加熱する調質焼鈍を実施する請求項10に記載の製造方法。
  12.  工程4における溶体化処理は、400℃までの平均冷却速度を毎秒10℃以上として冷却する条件に替えて、材料温度が650℃に低下するまでの平均冷却速度を1℃/s以上15℃/s未満として冷却し、650℃から400℃まで低下するときの平均冷却速度を15℃/s以上として冷却する請求項10又は11に記載の製造方法。
  13.  請求項1~9の何れか一項に記載の銅合金条を加工して得られた伸銅品。
  14.  請求項1~9の何れか一項に記載の銅合金条を加工して得られた電子部品。
PCT/JP2011/076082 2010-12-13 2011-11-11 電子材料用Cu-Ni-Si-Co系銅合金及びその製造方法 WO2012081342A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11848621.6A EP2641983A4 (en) 2010-12-13 2011-11-11 COUPLER ALLOY ON CU-NI-SI-CO BASE FOR ELECTRONIC MATERIAL AND METHOD OF MANUFACTURING THEREOF
US13/993,648 US9401230B2 (en) 2010-12-13 2011-11-11 Cu-Ni-Si-Co copper alloy for electronic materials and manufacturing method thereof
KR1020137013304A KR20130109161A (ko) 2010-12-13 2011-11-11 전자 재료용 Cu-Ni-Si-Co 계 구리 합금 및 그 제조 방법
CN201180059363.7A CN103249851B (zh) 2010-12-13 2011-11-11 电子材料用Cu-Ni-Si-Co系铜合金及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010277279A JP5441876B2 (ja) 2010-12-13 2010-12-13 電子材料用Cu−Ni−Si−Co系銅合金及びその製造方法
JP2010-277279 2010-12-13

Publications (1)

Publication Number Publication Date
WO2012081342A1 true WO2012081342A1 (ja) 2012-06-21

Family

ID=46244455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076082 WO2012081342A1 (ja) 2010-12-13 2011-11-11 電子材料用Cu-Ni-Si-Co系銅合金及びその製造方法

Country Status (7)

Country Link
US (1) US9401230B2 (ja)
EP (1) EP2641983A4 (ja)
JP (1) JP5441876B2 (ja)
KR (1) KR20130109161A (ja)
CN (1) CN103249851B (ja)
TW (1) TWI447240B (ja)
WO (1) WO2012081342A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140056003A (ko) * 2012-10-31 2014-05-09 도와 메탈테크 가부시키가이샤 Cu-Ni-Co-Sⅰ계 구리 합금 판재 및 이의 제조법
JP2021046590A (ja) * 2019-09-19 2021-03-25 Jx金属株式会社 銅合金、伸銅品及び電子機器部品

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4677505B1 (ja) * 2010-03-31 2011-04-27 Jx日鉱日石金属株式会社 電子材料用Cu−Ni−Si−Co系銅合金及びその製造方法
JP5451674B2 (ja) * 2011-03-28 2014-03-26 Jx日鉱日石金属株式会社 電子材料用Cu−Si−Co系銅合金及びその製造方法
JP4799701B1 (ja) * 2011-03-29 2011-10-26 Jx日鉱日石金属株式会社 電子材料用Cu−Co−Si系銅合金条及びその製造方法
JP5623960B2 (ja) * 2011-03-30 2014-11-12 Jx日鉱日石金属株式会社 電子材料用Cu−Ni−Si系銅合金条及びその製造方法
KR101274063B1 (ko) * 2013-01-22 2013-06-12 한국기계연구원 배향된 석출물을 가지는 금속복합재료 및 이의 제조방법
JP6366298B2 (ja) * 2014-02-28 2018-08-01 Dowaメタルテック株式会社 高強度銅合金薄板材およびその製造方法
JP6573503B2 (ja) * 2015-08-24 2019-09-11 Dowaメタルテック株式会社 Cu−Ni−Co−Si系高強度銅合金薄板材およびその製造方法並びに導電ばね部材
WO2017168803A1 (ja) 2016-03-31 2017-10-05 Dowaメタルテック株式会社 Cu-Ni-Si系銅合金板材および製造法
JP6385383B2 (ja) * 2016-03-31 2018-09-05 Jx金属株式会社 銅合金板材および銅合金板材の製造方法
US10648067B2 (en) * 2016-12-15 2020-05-12 Materion Corporation Precipitation strengthened metal alloy article
CN108927518A (zh) * 2018-07-31 2018-12-04 西安理工大学 快速制备Cu-Ni-Si合金薄板的直接粉末轧制方法
CN112680627B (zh) * 2020-12-21 2022-05-13 无锡天宝电机有限公司 一种转子导条及其制备方法
CN112921257B (zh) * 2021-01-25 2022-02-01 安德伦(重庆)材料科技有限公司 一种无铍高强度铜合金零件的热处理方法及其成形方法
JP7538775B2 (ja) * 2021-05-27 2024-08-22 日本碍子株式会社 銅合金
KR102405236B1 (ko) * 2022-05-11 2022-06-07 고려아연 주식회사 전해 동박의 제조방법
CN115094258B (zh) * 2022-07-13 2023-02-17 浙江惟精新材料股份有限公司 一种高强高塑高折弯Cu-Ni-Si-Co合金及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013836A (ja) * 2006-07-10 2008-01-24 Dowa Holdings Co Ltd 異方性の少ない高強度銅合金板材およびその製造法
JP2009242890A (ja) * 2008-03-31 2009-10-22 Nippon Mining & Metals Co Ltd 電子材料用Cu−Ni−Si−Co系銅合金及びその製造方法
JP2009242921A (ja) * 2008-03-31 2009-10-22 Nippon Mining & Metals Co Ltd 電子材料用Cu−Ni−Si−Co−Cr系合金
JP2010215976A (ja) * 2009-03-17 2010-09-30 Furukawa Electric Co Ltd:The 銅合金板材

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7182823B2 (en) 2002-07-05 2007-02-27 Olin Corporation Copper alloy containing cobalt, nickel and silicon
CA2559103A1 (en) * 2004-03-12 2005-09-22 Sumitomo Metal Industries, Ltd. Copper alloy and method for production thereof
JP4809602B2 (ja) * 2004-05-27 2011-11-09 古河電気工業株式会社 銅合金
JP2006097113A (ja) * 2004-09-30 2006-04-13 Nippon Mining & Metals Co Ltd 析出硬化型銅合金の製造方法、析出硬化型銅合金及び伸銅品
JP4566048B2 (ja) 2005-03-31 2010-10-20 株式会社神戸製鋼所 曲げ加工性に優れた高強度銅合金板及びその製造方法
JP4937815B2 (ja) * 2007-03-30 2012-05-23 Jx日鉱日石金属株式会社 電子材料用Cu−Ni−Si−Co系銅合金及びその製造方法
JP4981748B2 (ja) * 2007-05-31 2012-07-25 古河電気工業株式会社 電気・電子機器用銅合金
WO2010064547A1 (ja) * 2008-12-01 2010-06-10 日鉱金属株式会社 電子材料用Cu-Ni-Si-Co系銅合金及びその製造方法
JP4930527B2 (ja) * 2009-03-05 2012-05-16 日立電線株式会社 銅合金材及び銅合金材の製造方法
JP4677505B1 (ja) * 2010-03-31 2011-04-27 Jx日鉱日石金属株式会社 電子材料用Cu−Ni−Si−Co系銅合金及びその製造方法
JP5451674B2 (ja) * 2011-03-28 2014-03-26 Jx日鉱日石金属株式会社 電子材料用Cu−Si−Co系銅合金及びその製造方法
JP4799701B1 (ja) * 2011-03-29 2011-10-26 Jx日鉱日石金属株式会社 電子材料用Cu−Co−Si系銅合金条及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013836A (ja) * 2006-07-10 2008-01-24 Dowa Holdings Co Ltd 異方性の少ない高強度銅合金板材およびその製造法
JP2009242890A (ja) * 2008-03-31 2009-10-22 Nippon Mining & Metals Co Ltd 電子材料用Cu−Ni−Si−Co系銅合金及びその製造方法
JP2009242921A (ja) * 2008-03-31 2009-10-22 Nippon Mining & Metals Co Ltd 電子材料用Cu−Ni−Si−Co−Cr系合金
JP2010215976A (ja) * 2009-03-17 2010-09-30 Furukawa Electric Co Ltd:The 銅合金板材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2641983A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140056003A (ko) * 2012-10-31 2014-05-09 도와 메탈테크 가부시키가이샤 Cu-Ni-Co-Sⅰ계 구리 합금 판재 및 이의 제조법
EP2728025A3 (en) * 2012-10-31 2017-11-01 Dowa Metaltech Co., Ltd. Cu-Ni-Co-Si based copper alloy sheet material and method for producing the same
KR102222540B1 (ko) * 2012-10-31 2021-03-05 도와 메탈테크 가부시키가이샤 Cu-Ni-Co-Sⅰ계 구리 합금 판재 및 이의 제조법
JP2021046590A (ja) * 2019-09-19 2021-03-25 Jx金属株式会社 銅合金、伸銅品及び電子機器部品
JP7430502B2 (ja) 2019-09-19 2024-02-13 Jx金属株式会社 銅合金線材及び電子機器部品

Also Published As

Publication number Publication date
US9401230B2 (en) 2016-07-26
EP2641983A1 (en) 2013-09-25
US20130263978A1 (en) 2013-10-10
EP2641983A4 (en) 2016-04-13
JP5441876B2 (ja) 2014-03-12
TWI447240B (zh) 2014-08-01
TW201229256A (en) 2012-07-16
JP2012126934A (ja) 2012-07-05
CN103249851B (zh) 2015-06-17
CN103249851A (zh) 2013-08-14
KR20130109161A (ko) 2013-10-07

Similar Documents

Publication Publication Date Title
JP5441876B2 (ja) 電子材料用Cu−Ni−Si−Co系銅合金及びその製造方法
JP4677505B1 (ja) 電子材料用Cu−Ni−Si−Co系銅合金及びその製造方法
JP4799701B1 (ja) 電子材料用Cu−Co−Si系銅合金条及びその製造方法
JP4937815B2 (ja) 電子材料用Cu−Ni−Si−Co系銅合金及びその製造方法
JP4837697B2 (ja) 電子材料用Cu−Ni−Si−Co系銅合金及びその製造方法
JP5506806B2 (ja) 電子材料用Cu−Ni−Si−Co系銅合金及びその製造方法
JP5451674B2 (ja) 電子材料用Cu−Si−Co系銅合金及びその製造方法
WO2009122869A1 (ja) 電子材料用Cu-Ni-Si-Co系銅合金及びその製造方法
JP4708485B2 (ja) 電子材料用Cu−Co−Si系銅合金及びその製造方法
WO2012043170A1 (ja) 電子材料用Cu-Co-Si系銅合金及びその製造方法
WO2012026488A1 (ja) 電子材料用Cu-Co-Si系合金
JP2012193408A (ja) 曲げ加工性に優れたCu−Ni−Si系合金
JP6222885B2 (ja) 電子材料用Cu−Ni−Si−Co系銅合金
JP2012229467A (ja) 電子材料用Cu−Ni−Si系銅合金
JP5524901B2 (ja) 電子材料用Cu−Ni−Si−Co系銅合金
JP5623960B2 (ja) 電子材料用Cu−Ni−Si系銅合金条及びその製造方法
JP2012229469A (ja) 電子材料用Cu−Si−Co系銅合金及びその製造方法
JP2016183418A (ja) 電子材料用Cu−Ni−Si−Co系銅合金
JP5595961B2 (ja) 電子材料用Cu−Ni−Si系銅合金及びその製造方法
TWI391952B (zh) Cu-Ni-Si-Co based copper alloy for electronic materials and its manufacturing method
JP2012046804A (ja) 銅合金材料及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11848621

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137013304

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13993648

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011848621

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011848621

Country of ref document: EP