WO2012081207A1 - 発電システム及びその運転方法 - Google Patents

発電システム及びその運転方法 Download PDF

Info

Publication number
WO2012081207A1
WO2012081207A1 PCT/JP2011/006869 JP2011006869W WO2012081207A1 WO 2012081207 A1 WO2012081207 A1 WO 2012081207A1 JP 2011006869 W JP2011006869 W JP 2011006869W WO 2012081207 A1 WO2012081207 A1 WO 2012081207A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
generation system
detector
flow path
control device
Prior art date
Application number
PCT/JP2011/006869
Other languages
English (en)
French (fr)
Inventor
森田 純司
龍井 洋
繁樹 保田
章典 行正
篤敬 井上
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP11849599.3A priority Critical patent/EP2639870B1/en
Priority to JP2012548635A priority patent/JP5280588B2/ja
Publication of WO2012081207A1 publication Critical patent/WO2012081207A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • F23N5/242Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/10Fuel cells in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/405Cogeneration of heat or hot water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a power generation system that supplies heat and electricity and a method for operating the power generation system, and more particularly to a structure of the power generation system.
  • the cogeneration system is a system that covers the hot water supply load of the consumer by supplying the generated power to the consumer to cover the power load, and recovering and storing the exhaust heat generated by the power generation.
  • a cogeneration system in which a fuel cell and a water heater operate with the same fuel is known (for example, see Patent Document 1).
  • the power generation device disclosed in Patent Document 2 is a fuel cell power generation device that is used by being installed inside a building having an air inlet, and air that guides air inside the building to the inside of the fuel cell power generation device It has an inlet, an air exhaust pipe that exhausts the air inside the fuel cell power generator to the outside of the building, and a ventilation means.
  • the ventilation means guides the air outside the building to the inside of the building through the air inlet. The air is further introduced into the fuel cell power generator through the air inlet, and is further discharged outside the building through the air discharge pipe.
  • a fuel cell power generation device which is intended to facilitate installation work when installed indoors and to simplify intake and exhaust ducts (see, for example, Patent Document 3).
  • the fuel cell power generator disclosed in Patent Document 3 is composed of a double pipe duct structure in which an inner pipe that discharges exhausted air and an outer pipe that introduces air from the outside are integrally coupled. Intake and exhaust devices are provided.
  • a power generation device having a duct extending in the vertical direction for the purpose of improving the exhaust performance of exhaust gas generated by a fuel cell arranged inside a building (see, for example, Patent Document 4).
  • the duct extending in the vertical direction inside the building and having the upper end located outside is a double pipe, and exhaust gas or air individually circulates inside or outside the duct.
  • the ventilation pipe and the exhaust pipe are respectively connected to the duct.
  • the present invention has been made in view of the above problems, and in the case where an exhaust passage through which exhaust gas discharged from the fuel cell system flows is blocked, by prohibiting the operation of the fuel cell system, It is an object of the present invention to provide a power generation system and an operation method thereof that can suppress an increase in temperature in the housing and suppress a decrease in efficiency of an auxiliary machine housed in the housing.
  • a power generation system includes a fuel cell that generates power using fuel gas and an oxidant gas, and a fuel cell system that includes a casing that houses the fuel cell. And a control device, wherein the power generation system is configured to discharge exhaust gas from the power generation system to the outside of the housing, and to supply air to the power generation system.
  • An air supply / exhaust mechanism configured to supply air
  • a blockage detector provided in at least one of the air supply / exhaust mechanism and the housing, and ventilates air in the housing.
  • a ventilator that exhausts the ventilated air to the discharge channel, and the control device blocks the discharge channel based on information obtained from the blockage detector while the power generation system is operating. The With knowledge, it is configured to stop the operation of the power generation system.
  • stopping the operation of the power generation system includes not only stopping the power generation system in operation but also prohibiting the start of operation of the power generation system.
  • prohibiting the operation of the power generation system means that all the devices constituting the power generation system do not need to be prohibited from operating, and are within the range where the operational effects of the present invention can be achieved among the devices constituting the power generation system. It means that the operation is prohibited.
  • blocking includes not only a case where the discharge channel is completely closed, but also a case where the flow rate of the exhaust gas flowing in the discharge channel is reduced due to the blockage of the discharge channel.
  • the blockage detector is configured by a flow rate detector
  • the control device is configured such that the flow rate detected by the flow rate detector is equal to or lower than a first flow rate set in advance. In addition, it may be determined that the discharge flow path is closed.
  • the blockage detector is configured by a flow rate detector that detects a flow rate of the air sent from the ventilator, and the control device detects the flow rate detected by the flow rate detector. Based on the above, the operation amount of the ventilator is controlled, and when the operation amount of the ventilator becomes equal to or greater than the first operation amount, it may be determined that the discharge flow path is blocked. .
  • the blockage detector is configured by a pressure detector, and the control device detects a pressure equal to or higher than a first pressure set in advance. In addition, it may be determined that the discharge flow path is closed.
  • the control device when a difference in pressure detected by the pressure detector before and after a preset predetermined time is equal to or less than a preset first pressure difference, You may judge that the said discharge flow path is obstruct
  • the fuel cell system includes: a reformer that generates fuel gas containing hydrogen from a raw material and water; and a combustor configured to heat the reformer.
  • the blockage detector is composed of a gas composition detector, and the control device is configured such that when the gas composition detector detects an abnormality in the gas composition, the discharge flow path is You may judge that it is obstruct
  • the blockage detector is constituted by an oxygen concentration detector, and the control device is configured such that the oxygen concentration detected by the oxygen concentration detector is preset with the first oxygen. If the concentration is equal to or lower than the concentration, it may be determined that the discharge channel is blocked.
  • the blockage detector is constituted by a gas concentration detector that detects a gas concentration of at least one of a carbon monoxide concentration and a carbon dioxide concentration
  • the control device includes: When the gas concentration detected by the gas concentration detector is equal to or higher than a preset first gas concentration, it may be determined that the discharge channel is closed.
  • the blockage detector is constituted by a temperature detector, and the control device detects that the temperature detected by the temperature detector is equal to or higher than a preset first temperature. In this case, it may be determined that the discharge channel is closed.
  • the blockage detector is constituted by a temperature detector, and the control device detects a difference in temperature detected by the temperature detector before and after a predetermined time set in advance.
  • the discharge flow path is determined to be blocked when it is equal to or greater than a preset first temperature difference or equal to or less than a second temperature difference that is smaller than the first temperature difference. Also good.
  • the power generation system further includes a combustion device arranged outside the housing, and the exhaust flow path has an upstream end connected to each of the combustion device and the fuel cell system.
  • the supply air flow path may be branched into at least two so that the downstream ends thereof are connected to the combustion device and the fuel cell system, respectively.
  • control device may stop at least the operation of the combustion device when the combustion device is operated to detect a blockage of the discharge passage.
  • control device may stop at least the operation of the fuel cell system when the fuel cell system detects that the discharge channel is blocked.
  • control device may perform control so as to stop the operation of the power generation system and prohibit the activation of the power generation system.
  • the air supply passage may be provided so as to be able to exchange heat with the exhaust passage.
  • an operation method of a power generation system includes a fuel cell system including a fuel cell that generates power using fuel gas and an oxidant gas, and a casing that houses the fuel cell.
  • An operation method wherein the power generation system is configured to supply exhaust air to the power generation system, a discharge flow path configured to discharge exhaust gas from the power generation system to the outside of the housing
  • the inside of the housing is suppressed from being heated, and the efficiency of the auxiliary equipment housed in the housing is suppressed from decreasing. Is possible.
  • FIG. 1 is a schematic diagram showing a schematic configuration of the power generation system according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart schematically showing the exhaust gas inflow suppressing operation of the power generation system according to the first embodiment.
  • FIG. 3 is a schematic diagram showing a schematic configuration of a power generation system according to Modification 1 of Embodiment 1.
  • FIG. 4 is a flowchart schematically showing the exhaust gas inflow suppressing operation of the power generation system of the first modification in the first embodiment.
  • FIG. 5 is a schematic diagram illustrating a schematic configuration of a power generation system according to Modification 2 of Embodiment 1. As illustrated in FIG. FIG. FIG.
  • FIG. 6 is a schematic diagram illustrating a schematic configuration of a power generation system according to Modification 3 of Embodiment 1.
  • FIG. 7 is a flowchart schematically showing the exhaust gas inflow suppressing operation of the power generation system according to the third modification example in the first embodiment.
  • FIG. 8 is a flowchart schematically showing the exhaust gas inflow suppressing operation of the power generation system according to the third modification of the first embodiment.
  • FIG. 9 is a schematic diagram showing a schematic configuration of the power generation system according to Embodiment 2 of the present invention.
  • FIG. 10 is a schematic diagram illustrating a schematic configuration of a power generation system according to Modification 1 of Embodiment 2. In FIG. FIG. FIG.
  • FIG. 11 is a flowchart schematically showing the exhaust gas inflow suppressing operation of the power generation system according to the first modification in the second embodiment.
  • FIG. 12 is a schematic diagram showing a schematic configuration of a fuel cell system according to Modification 2 of Embodiment 2.
  • FIG. 13 is a flowchart schematically showing the exhaust gas inflow suppressing operation of the power generation system according to the second modification example in the second embodiment.
  • FIG. 14 is a schematic diagram showing a schematic configuration of a fuel cell system according to Modification 3 of Embodiment 2.
  • FIG. 15 is a flowchart schematically showing the exhaust gas inflow suppressing operation of the power generation system according to the third modification example in the second embodiment.
  • FIG. 16 is a schematic diagram showing a schematic configuration of the power generation system according to Embodiment 3 of the present invention.
  • FIG. 17 is a flowchart schematically showing the exhaust gas inflow suppressing operation of the power generation system according to the third embodiment.
  • FIG. 18 is a schematic diagram illustrating a schematic configuration of a power generation system according to Modification 1 of Embodiment 3.
  • FIG. 19 is a flowchart schematically showing the exhaust gas inflow suppressing operation of the power generation system of Modification 1 in Embodiment 3.
  • FIG. 20 is a flowchart schematically showing the exhaust gas inflow suppressing operation of the power generation system of Modification 2 in Embodiment 3.
  • FIG. 21 is a schematic diagram illustrating a schematic configuration of a power generation system according to Modification 3 of Embodiment 3.
  • the power generation system includes a fuel cell system, a casing, a discharge channel, a ventilator, a blockage detector, and a control device, and the control device is based on information obtained from the blockage detector.
  • the control device is based on information obtained from the blockage detector.
  • stopping the operation of the power generation system includes not only stopping the power generation system in operation but also prohibiting the start of operation of the power generation system.
  • prohibiting the operation of the power generation system means that all the devices constituting the power generation system do not need to be prohibited from operating, and are within the range where the operational effects of the present invention can be achieved among the devices constituting the power generation system. It means that the operation is prohibited.
  • a hydrogen generator that generates fuel gas, a fan that supplies air, or a combustor such as a burner that heats the hydrogen generator can be exemplified as a device whose operation is prohibited.
  • the operation of a device that does not generate or discharge gas for example, a pump that passes cooling water that cools the fuel cell
  • a device that may be operating for example, a pump that passes cooling water that cools the fuel cell
  • FIG. 1 is a schematic diagram showing a schematic configuration of the power generation system according to Embodiment 1 of the present invention.
  • the power generation system 100 As shown in FIG. 1, the power generation system 100 according to Embodiment 1 of the present invention is disposed inside a building 200.
  • the power generation system 100 includes a fuel cell system 101 having the fuel cell 11, a discharge flow path 70, a flow rate detector 20, and a control device 102. And if the control apparatus 102 detects the obstruction
  • the power generation system 100 exemplifies a configuration arranged inside the building 200.
  • the configuration is not limited to this, and a configuration arranged outside the building 200 is adopted. Also good.
  • the fuel cell system 101 has a housing 12, in which a fuel cell 11, a ventilation fan 13, a fuel gas supply device 14, and an oxidant gas supply device 15 are arranged.
  • the control device 102 is also arranged in the housing 12. In the first embodiment, the control device 102 is arranged in the casing 12 of the fuel cell system 101. However, the present invention is not limited to this, and the control device 102 is arranged outside the casing 12. You may employ
  • An air supply port 16 penetrating in the thickness direction of the wall is provided at an appropriate position of the wall configuring the housing 12, and the piping configuring the discharge flow path 70 has a gap in the air supply port 16. And it is inserted. A gap between the air supply port 16 and the discharge channel 70 constitutes an air supply channel 78. As a result, air outside the power generation system 100 is supplied into the housing 12 via the air supply channel 78.
  • the hole through which the pipe constituting the discharge channel 70 is inserted and the air supply port 16 provided on the air supply channel and serving as an air intake port to the housing 12 are provided as one unit.
  • the housing 12 may be provided with a hole through which the pipe constituting the discharge flow path 70 is inserted and a hole constituting the air supply port 16 (the air supply flow path 78) separately.
  • the air supply port 16 may be configured by one hole in the housing 12 or may be configured by a plurality of holes.
  • the air supply passage 78 may be configured by inserting a pipe through the air supply port 16.
  • the fuel gas supply unit 14 may have any configuration as long as it can supply the fuel gas (hydrogen gas) to the fuel cell 11 while adjusting the flow rate thereof, for example, a hydrogen generator, a hydrogen cylinder, You may be comprised with the apparatus comprised so that hydrogen gas, such as a hydrogen storage alloy, might be supplied.
  • a fuel cell 11 (more precisely, the inlet of the fuel gas channel 11A of the fuel cell 11) is connected to the fuel gas supplier 14 via a fuel gas supply channel 71.
  • the oxidant gas supply unit 15 may have any configuration as long as the oxidant gas (air) can be supplied to the fuel cell 11 while adjusting the flow rate thereof.
  • fans such as fans and blowers It may be comprised.
  • the oxidant gas supply unit 15 is connected to the fuel cell 11 (more precisely, the inlet of the oxidant gas channel 11B of the fuel cell 11) via the oxidant gas supply channel 72.
  • the fuel cell 11 has an anode and a cathode (both not shown).
  • the fuel gas supplied to the fuel gas channel 11A is supplied to the anode while flowing through the fuel gas channel 11A.
  • the oxidant gas supplied to the oxidant gas flow channel 11B is supplied to the cathode while flowing through the oxidant gas flow channel 11B.
  • the fuel gas supplied to the anode and the oxidant gas supplied to the cathode react to generate electricity and heat.
  • the generated electricity is supplied to an external power load (for example, home electrical equipment) by a power regulator (not shown).
  • the generated heat is recovered by a heat medium flowing through a heat medium flow path (not shown).
  • the heat recovered by the heat medium can be used, for example, to heat water.
  • the fuel cell 11 includes various fuels such as a polymer electrolyte fuel cell, a direct internal reforming solid oxide fuel cell, and an indirect internal reforming solid oxide fuel cell.
  • a battery can be used.
  • the fuel cell 11 and the fuel gas supply unit 14 are separately configured. However, the present invention is not limited to this, and the fuel gas supply unit 14 is not limited to this. And the fuel cell 11 may be configured integrally. In this case, the fuel cell 11 and the fuel gas supply device 14 are configured as a single unit covered with a common heat insulating material, and a combustor 14b described later heats not only the reformer 14a described later but also the fuel cell 11. can do.
  • the anode of the fuel cell 11 since the anode of the fuel cell 11 has the function of the reformer 14a, the anode of the fuel cell 11 and the reformer 14a are integrally formed. May be. Furthermore, since the structure of the fuel cell 11 is the same as that of a general fuel cell, its detailed description is omitted.
  • the upstream end of the off-fuel gas channel 73 is connected to the outlet of the fuel gas channel 11A.
  • the downstream end of the off fuel gas channel 73 is connected to the discharge channel 70.
  • the upstream end of the off-oxidant gas channel 74 is connected to the outlet of the oxidant gas channel 11B.
  • the downstream end of the off-oxidant gas channel 74 is connected to the discharge channel 70.
  • off fuel gas the fuel gas that has not been used in the fuel cell 11
  • the oxidant gas hereinafter referred to as off-oxidant gas
  • off-oxidant gas the oxidant gas that has not been used in the fuel cell 11
  • the off-fuel gas discharged to the discharge channel 70 is diluted with the off-oxidant gas and discharged outside the building 200.
  • the ventilation fan (ventilator) 13 is connected to the discharge channel 70 via the ventilation channel 75.
  • the ventilation fan 13 may have any configuration as long as the inside of the housing 12 can be ventilated.
  • air outside the power generation system 100 is supplied into the housing 12 from the air supply port 16, and the ventilation fan 13 is operated, whereby the gas (mainly air) in the housing 12 is changed into the ventilation flow path 75 and It is discharged out of the building 200 through the discharge channel 70 and the inside of the housing 12 is ventilated.
  • a fan is used as a ventilator.
  • the ventilation fan 13 is configured to be disposed in the housing 12, but is not limited thereto.
  • the ventilation fan 13 may be configured to be disposed in the discharge channel 70.
  • an air supply flow path for supplying air may be connected to the ventilation fan 13.
  • the air supply flow path can be regarded as an internal space of the housing 12, and a blockage detector may be disposed in the air supply flow path.
  • the off-fuel gas, the off-oxidant gas, and the gas in the housing 12 due to the operation of the ventilation fan 13 are exemplified as the exhaust gas discharged from the power generation system 100. Is done.
  • the exhaust gas discharged from the power generation system 100 is not limited to these gases.
  • the fuel gas supply device 14 is configured by a hydrogen generator, the gas discharged from the hydrogen generator (combustion) Exhaust gas, hydrogen-containing gas, etc.).
  • the exhaust flow path 70 is configured such that its upstream end extends into the housing 12 and exhaust gas discharged from the power generation system 100 flows therethrough.
  • the discharge channel 70 is formed so as to extend to the outside of the building 200, and its downstream end (opening) is open to the atmosphere.
  • a flow rate detector 20 configured to detect the flow rate of the gas in the discharge flow channel 70 is provided at an appropriate position of the discharge flow channel 70.
  • the flow rate detector 20 may have any configuration as long as it can detect the flow rate of the gas in the discharge flow path 70, and the device to be used is not limited.
  • the flow rate detector 20 is configured to be disposed in the discharge flow path 70.
  • the present invention is not limited to this, and the sensor portion is disposed in the discharge flow path 70, and the other parts. May be arranged outside the discharge flow path 70. Further, the flow rate detector 20 may be provided at an appropriate position of any one of the off-fuel gas channel 73, the off-oxidant gas channel 74, and the ventilation channel 75 communicating with the discharge channel 70.
  • the control device 102 may be in any form as long as it is a device that controls each device constituting the power generation system 100.
  • the control device 102 includes an arithmetic processing unit exemplified by a microprocessor, a CPU, and the like, and a storage unit configured by a memory or the like that stores a program for executing each control operation. Then, in the control device 102, the arithmetic processing unit reads out a predetermined control program stored in the storage unit and executes the predetermined control program, thereby processing the information, and the power generation system 100 including these controls. Perform various controls.
  • control apparatus 102 may be configured not only with a single control apparatus but also with a control apparatus group in which a plurality of control apparatuses cooperate to execute control of the power generation system 100. Absent. Moreover, the control apparatus 102 may be comprised by the micro control, and may be comprised by MPU, PLC (Programmable Logic Controller), a logic circuit, etc.
  • FIG. 2 is a flowchart schematically showing the exhaust gas inflow suppressing operation of the power generation system according to the first embodiment.
  • the control device 102 acquires the flow rate F of the gas in the discharge flow path 70 detected by the flow rate detector 20 while the power generation system 100 is operating (step S101).
  • the operation of the power generation system 100 means a period during which exhaust gas is discharged from the power generation system 100 to the discharge flow path 70.
  • at least one device of the fuel gas supplier 14, the oxidant gas supplier 15, and the ventilation fan 13 is in operation.
  • the control device 102 determines whether or not the flow rate F acquired in step S101 is equal to or less than the first flow rate F1 (step S102).
  • the first flow rate F1 is obtained, for example, in advance by an experiment or the like as a flow rate range when the exhaust gas discharged from the power generation system 100 flows through the discharge flow path 70. Good.
  • step S101 When the flow rate F acquired in step S101 is larger than the first flow rate F1 (No in step S102), the control device 102 returns to step S101 and continues until the flow rate F becomes larger than the first flow rate F1. S101 and step S102 are repeated. On the other hand, when the flow rate F acquired in step S101 is equal to or lower than the first flow rate F1 (Yes in step S102), the control device 102 determines that the discharge flow path 70 is blocked and proceeds to step S103. .
  • step S103 the control device 102 stops the operation of the power generation system 100. Thereby, the discharge of the exhaust gas from the power generation system 100 to the discharge flow path 70 is stopped, and the backflow of the exhaust gas from the discharge flow path 70 into the housing 12 is suppressed.
  • control device 102 prohibits activation of the power generation system 100 (step S104). Specifically, the control device 102 operates, for example, a remote controller (not shown) from a user of the power generation system 100 and a start request signal is transmitted to the control device 102. Even when the start-up time is reached, the start-up process of the power generation system 100 is prohibited by not permitting the start-up process of the power generation system 100.
  • a remote controller not shown
  • the control device 102 stops the operation of the power generation system 100, thereby The exhaust gas is prevented from flowing backward. For this reason, it is suppressed that a hot exhaust gas stays in the housing
  • the auxiliary equipment such as the control device 102
  • the exhaust passage 70, the off-fuel gas passage 73, the off-oxidant gas passage 74, and the exhaust gas passage 77 have been described as different passages.
  • the present invention is not limited to this, and these flow paths may be collectively referred to as the discharge flow path 70.
  • the occlusion detector is configured with a flow rate detector that detects the flow rate of the air sent from the ventilator, and the control device detects the flow rate that is detected by the flow rate detector.
  • the operation amount of the ventilator is controlled based on the above, and when the operation amount of the ventilator becomes equal to or larger than the first operation amount, the mode of determining that the discharge flow path is blocked is illustrated. is there.
  • FIG. 3 is a schematic diagram showing a schematic configuration of a power generation system according to Modification 1 of Embodiment 1. As shown in FIG.
  • the power generation system 100 according to the first modification has the same basic configuration as the power generation system 100 according to the first embodiment, but the flow rate detector 20 detects the air sent from the ventilation fan 13. The difference is that it is provided in the vicinity of the ventilation fan 13 of the discharge channel 70 (more precisely, the ventilation channel 75) so as to detect the flow rate.
  • the ventilation channel 75 is understood as a channel constituting the discharge channel 70.
  • control apparatus 102 is controlling the operation amount of the ventilation fan 13 based on the flow volume which the flow volume detector 20 detects. Specifically, for example, when the flow rate detected by the flow rate detector 20 decreases, the control device 102 increases the operation amount of the ventilation fan 13 so that the flow rate of air flowing through the ventilation flow path 75 increases. May be.
  • FIG. 4 is a flowchart schematically showing the exhaust gas inflow suppressing operation of the power generation system of the first modification in the first embodiment.
  • the exhaust gas inflow suppression operation of the power generation system 100 according to the first modification has the same basic operation as the exhaust gas inflow suppression operation of the power generation system 100 according to the first embodiment.
  • Step S101 and Step S102 of Form 1 Steps S101E and S102E are different.
  • control device 102 acquires the operation amount MV of the ventilation fan 13 (step S101E). Specifically, the control device 102 acquires the operation amount output to the ventilation fan 13 from the storage unit of the control device 102 based on the flow rate detected by the flow rate detector 20.
  • the control device 102 determines whether or not the operation amount MV acquired in step S101E is greater than or equal to the first operation amount MV1 (step S102E).
  • the first operation amount MV1 is obtained by controlling the operation amount MV of the ventilation fan 13 by the control device 102 so that the flow rate detector 20 detects a predetermined flow rate, for example, through experiments or simulations in advance.
  • the operation amount range of the ventilation fan 13 when the exhaust gas discharged from the power generation system 100 flows through the discharge flow path 70 may be obtained and set as the operation amount range.
  • step S101E When the operation amount MV acquired in step S101E is smaller than the first operation amount MV1 (No in step S102E), the control device 102 returns to step S101E and continues to step S101E until the operation amount MV becomes equal to or greater than the first operation amount MV1. And step S102E is repeated. On the other hand, when the operation amount MV acquired in step S101E is greater than or equal to the first operation amount MV1 (Yes in step S102E), the control apparatus 102 proceeds to step S103. In step S ⁇ b> 103, the control device 102 stops the operation of the power generation system 100.
  • the power generation system 100 according to the first modification configured as described above has the same effects as the power generation system 100 according to the first embodiment.
  • Modification 2 In the power generation system of Modification 2 in Embodiment 1, a hole through which a pipe constituting the discharge channel is inserted and a hole through which the pipe constituting the air supply channel is inserted are separately provided in the housing. It illustrates an embodiment.
  • FIG. 5 is a schematic diagram illustrating a schematic configuration of a power generation system according to Modification 2 of Embodiment 1. As illustrated in FIG.
  • the power generation system 100 of the second modification example has the same basic configuration as the power generation system 100 according to the first embodiment, but the housing 12 is provided with two holes 23 and 24. However, a difference is that a pipe constituting the discharge channel 70 is inserted into one hole 23 and a pipe constituting the air supply channel 78 is inserted into the other hole 24.
  • the power generation system 100 of the second modification configured as described above has the same operational effects as the power generation system 100 according to the first embodiment.
  • the air supply flow path 78 is configured by inserting a pipe into the other hole 24.
  • the present invention is not limited to this, and the hole 24 is supplied without inserting the pipe into the hole 24. It may be a vent (air supply flow path 78).
  • the occlusion detector is a pressure detector
  • the control device exemplifies an aspect configured to determine that the discharge flow path is closed when the pressure of the gas detected by the pressure detector is equal to or higher than a preset first pressure. is there.
  • FIG. 6 is a schematic diagram illustrating a schematic configuration of a power generation system according to Modification 3 of Embodiment 1. As illustrated in FIG.
  • the power generation system 100 according to the third modification has the same basic configuration as the power generation system 100 according to the first embodiment, but a pressure detector 21 is provided instead of the flow rate detector 20.
  • the pressure detector 21 may have any configuration as long as the pressure in the discharge flow path 70 can be detected, and the device used is not limited.
  • the pressure detector 21 is configured to be disposed in the discharge flow path 70, but the present invention is not limited thereto, and the sensor portion is disposed in the discharge flow path 70, and other portions are disposed. It is good also as a structure arrange
  • the pressure detector 21 may be provided at an appropriate position of any one of the off-fuel gas channel 73, the off-oxidant gas channel 74, and the ventilation channel 75 communicating with the discharge channel 70.
  • the pressure detector 21 detects before the discharge flow path 70 is closed.
  • the pressure detected by the pressure detector 21 after the discharge channel 70 is closed is smaller than the pressure that is applied. For this reason, the control device 102 has the lowest pressure detected by the pressure detector 21 in the discharge flow path 70 when the power generation system 100 is operating and the discharge flow path 70 is not closed.
  • the pressure is smaller than the second pressure, which is a value, it can be determined that the discharge flow path 70 is closed.
  • control device 102 can determine that the discharge flow path 70 is closed when the pressure detected by the pressure detector 21 is outside a predetermined pressure range set in advance.
  • the exhaust gas inflow suppression operation of the power generation system 100 by the control device 102 based on the pressure detected by the pressure detector 21 will be described with reference to FIG.
  • FIG. 7 is a flowchart schematically showing the exhaust gas inflow suppressing operation of the power generation system of the third modification in the first embodiment.
  • the exhaust gas inflow suppressing operation of the power generation system 100 according to the third modification has the same basic operation as the exhaust gas inflow suppressing operation of the power generation system 100 according to the first embodiment.
  • Step S101 and Step S102 of Form 1 Steps S101A and S102A are different.
  • control device 102 acquires the pressure P in the discharge flow path 70 detected by the pressure detector 21 (step S101A). Next, the control device 102 determines whether or not the pressure P acquired in step S101A is higher than the first pressure P1, or whether or not the pressure P acquired in step S101A is lower than the second pressure P2. Is determined (step S102A).
  • the first pressure P1 is obtained, for example, in advance by an experiment or the like to obtain a pressure range when the exhaust gas discharged from the power generation system 100 flows through the discharge passage 70, It may be a large value. Further, the first pressure P1 may be, for example, the pressure in the discharge channel 70 when all of the fuel gas supply device 14, the oxidant gas supply device 15, and the ventilation fan 13 are operated with the maximum operation amount. It may be 40 kPa.
  • the second pressure P2 is obtained by obtaining a pressure range when the exhaust gas discharged from the power generation system 100 flows through the discharge flow path 70 in advance through experiments or the like, and is the smallest of the pressure range. It may be a value. Furthermore, the second pressure P2 may be equal to or higher than the pressure at which the upper limit of operation (scavenging) among the fuel gas supplier 14, the oxidant gas supplier 15, and the ventilation fan 13, for example, is 1 kPa. Also good.
  • step S101A When the pressure P acquired in step S101A is equal to or higher than the second pressure P2 and equal to or lower than the first pressure P1 (No in step S102A), the control device 102 returns to step S101A and returns to the first pressure P1. Step S101A and step S102A are repeated until it becomes larger or smaller than the second pressure P2. On the other hand, if the pressure P acquired in step S101A is greater than the first pressure P1 or less than the second pressure P2 (Yes in step S102A), the control device 102 proceeds to step S103.
  • step S103 the control device 102 stops the operation of the power generation system 100.
  • the control device 102 closes the discharge flow path 70 when the difference in pressure detected by the pressure detector 21 before and after the set predetermined time is equal to or less than the first pressure difference set in advance. Can be determined.
  • the control apparatus 102 discharges
  • control device 102 closes the discharge passage 70 when the difference in pressure detected by the pressure detector 21 before and after the set predetermined time is outside the preset range of the specified pressure difference. Can be determined.
  • FIG. 8 is a flowchart schematically showing the exhaust gas inflow suppressing operation of the power generation system according to the third modification of the first embodiment.
  • the control apparatus 102 acquires the pressure P1 in the discharge flow path 70 detected by the pressure detector 21 (step S401).
  • the control device 102 acquires the pressure P2 in the discharge channel 70 from the pressure detector 21 again after a predetermined time has elapsed (step S402).
  • the predetermined time can be arbitrarily set.
  • the predetermined time may be several seconds, several tens of seconds, or several minutes.
  • the control device 102 determines that the pressure difference ⁇ P between the pressure P1 acquired in step S401 and the pressure P2 acquired in step S402 is equal to or less than the first pressure difference ⁇ P1 set in advance or the first pressure difference ⁇ P1. It is determined whether the pressure difference is greater than or equal to the second pressure difference ⁇ P2 (step S403).
  • the first pressure difference ⁇ P1 is obtained by, for example, an experiment or the like in advance to obtain a range of a difference between the pressure when the discharge flow path 70 is not closed and the pressure when the discharge flow path 70 is closed. Alternatively, it may be the lowest value in the range of the pressure difference.
  • the second pressure difference ⁇ P2 is obtained, for example, in advance by an experiment or the like to obtain a range of a difference between the pressure when the discharge flow path 70 is not closed and the pressure when the discharge flow path 70 is closed. Alternatively, it may be the highest value in the range of the pressure difference.
  • Step S403 When the pressure difference ⁇ P is larger than the first pressure difference ⁇ P1 and smaller than the second pressure difference ⁇ P2 (No in Step S403), the control device 102 returns to Step S401, and the pressure difference ⁇ P is the first pressure difference ⁇ P. Steps S401 to S403 are repeated until the pressure difference ⁇ P1 is less than or equal to or greater than the second pressure difference ⁇ P2. On the other hand, when the pressure difference ⁇ P is equal to or less than the first pressure difference ⁇ P1 or equal to or greater than the second pressure difference ⁇ P2 (Yes in step S403), the control device 102 determines that the discharge flow path 70 is blocked. Then, the process proceeds to step S404.
  • step S404 the control device 102 stops the operation of the power generation system 100.
  • step S405 the control apparatus 102 prohibits starting of the electric power generation system 100.
  • the power generation system according to Embodiment 2 of the present invention further includes a hydrogen generator having a reformer that generates fuel gas from a raw material and water, and a combustor configured to heat the reformer.
  • a hydrogen generator having a reformer that generates fuel gas from a raw material and water
  • a combustor configured to heat the reformer.
  • FIG. 9 is a schematic diagram showing a schematic configuration of the power generation system according to Embodiment 2 of the present invention.
  • the power generation system 100 according to the second embodiment of the present invention has the same basic configuration as the power generation system 100 according to the first embodiment, but the fuel gas supply device 14 is a hydrogen generator 14. And the point where the off-fuel gas flow path 73 is connected to the combustor 14b of the hydrogen generator 14 is different.
  • the hydrogen generator 14 includes a reformer 14a, a combustor 14b, and a combustion fan 14c.
  • the downstream end of the off-fuel gas channel 73 is connected to the combustor 14b, and off-fuel gas from the fuel cell 11 flows through the off-fuel gas channel 73 and is supplied as combustion fuel.
  • a combustion fan 14 c is connected to the combustor 14 b via an air supply flow path 79.
  • the combustion fan 14c may have any configuration as long as it can supply combustion air to the combustor 14b.
  • the combustion fan 14c may be configured by fans such as a fan and a blower.
  • the supplied off-fuel gas and combustion air are combusted to generate combustion exhaust gas, and heat is generated.
  • the combustion exhaust gas generated by the combustor 14 b is discharged to the combustion exhaust gas flow path 80 after heating the reformer 14 a and the like.
  • the combustion exhaust gas discharged to the combustion exhaust gas flow path 80 flows through the combustion exhaust gas flow path 80 and is discharged to the discharge flow path 70.
  • the combustion exhaust gas discharged to the discharge flow path 70 flows through the discharge flow path 70 and is discharged outside the power generation system 100 (building 200).
  • a raw material supply device and a water supply device are connected to the reformer 14a (not shown respectively), and the raw material and water are respectively supplied to the reformer 14a, and the supplied water is the reformer. 14a is heated to become water vapor.
  • the raw material natural gas mainly composed of methane, LP gas mainly composed of propane, or the like can be used.
  • the reformer 14a has a reforming catalyst.
  • the reforming catalyst any substance may be used as long as it can catalyze a steam reforming reaction that generates a hydrogen-containing gas from a raw material and steam, for example, ruthenium on a catalyst carrier such as alumina.
  • ruthenium catalyst supporting (Ru) or a nickel catalyst supporting nickel (Ni) on the same catalyst carrier can be used.
  • a hydrogen-containing gas is generated by a reforming reaction between the supplied raw material and steam.
  • the generated hydrogen-containing gas flows as a fuel gas through the fuel gas supply channel 71 and is supplied to the fuel gas channel 11 ⁇ / b> A of the fuel cell 11.
  • the hydrogen-containing gas generated in the reformer 14a is sent to the fuel cell 11 as fuel gas.
  • a shifter having a shift catalyst for example, a copper-zinc catalyst
  • an oxidation catalyst for example, a ruthenium catalyst
  • the configuration may be such that the hydrogen-containing gas after passing through a carbon monoxide remover having a methanation catalyst (for example, a ruthenium-based catalyst) is sent to the fuel cell 11.
  • the combustor 14b is configured so that off-fuel gas is supplied from the fuel cell 11 as combustion fuel.
  • the present invention is not limited to this, and combustion fuel is separately supplied from the combustion fuel supplier to the combustor 14b. You may comprise.
  • the power generation system 100 according to the second embodiment configured as described above has the same effects as the power generation system 100 according to the first embodiment.
  • the power generation system 100 when exhaust gas from the backflowed power generation system 100 is supplied to the combustor 14b, in the combustor 14b, incomplete combustion occurs due to lack of oxygen, There is a risk of CO generation or misfire. Furthermore, if the generated CO flows into the fuel cell 11, the catalyst of the fuel cell 11 may deteriorate, and the power generation efficiency of the fuel cell 11 may be reduced.
  • the control device 102 stops the operation of the power generation system 100, so that the amount of CO generated is reduced. Therefore, in the power generation system 100 according to the second embodiment, it is possible to suppress catalyst deterioration of the fuel cell 11 and suppress reduction in power generation efficiency of the fuel cell 11.
  • the blockage detector is a gas composition detector, and the control device blocks the discharge channel when the blockage detector detects an abnormality in the gas composition.
  • the example comprised so that it may judge that it is is illustrated.
  • abnormal gas composition refers to a case where the gas detected by the gas composition detector deviates from the gas composition region to be detected in the normal operation of the power generation system.
  • the gas composition region to be detected in normal operation is determined by experiments taking into account the composition of the fuel gas supplied to the fuel cell, the required safety standards (emission gas composition standards), etc. It can be set in advance by simulation or the like.
  • the gas composition detector include an oxygen concentration detector, a carbon monoxide concentration detector (hereinafter sometimes referred to as “CO concentration detector”), or a carbon dioxide concentration detector (hereinafter referred to as “CO”). 2 concentration detectors ”).
  • FIG. 10 is a schematic diagram illustrating a schematic configuration of a power generation system according to Modification 1 of Embodiment 2.
  • FIG. 10 is a schematic diagram illustrating a schematic configuration of a power generation system according to Modification 1 of Embodiment 2.
  • the CO concentration detector 22 is provided to detect the CO concentration, thereby detecting the blockage of the discharge flow path 70.
  • the power generation system 100 of the first modification has the same basic configuration as the power generation system 100 according to the second embodiment, but a CO concentration detector 22 is used instead of the flow rate detector 20.
  • the CO concentration detector 22 may have any configuration as long as it can detect the CO concentration, and the device used is not limited.
  • the CO concentration detector 22 is arranged in the discharge flow path 70.
  • the CO concentration detector 22 is not limited to this, and may be arranged in the housing 12, and the sensor portion. It is good also as a structure which arrange
  • the CO concentration detector 22 may be provided at an appropriate position of any one of the off-oxidant gas flow path 74, the ventilation flow path 75, and the combustion exhaust gas flow path 80 communicating with the discharge flow path 70. You may provide in the appropriate place of the air flow path 78. FIG.
  • FIG. 11 is a flowchart schematically showing the exhaust gas inflow suppressing operation of the power generation system according to the first modification in the second embodiment.
  • the exhaust gas inflow suppression operation of the power generation system 100 according to the first modification has the same basic operation as the exhaust gas inflow suppression operation of the power generation system 100 according to the first embodiment.
  • Step S101 and Step S102 of Form 1 Steps S101B and S102B are different.
  • the control device 102 acquires the CO concentration C in the discharge flow path 70 detected by the CO concentration detector 22 (step S101B). Next, the control device 102 determines whether or not the concentration C acquired in step S101B is equal to or higher than the first CO concentration (first gas concentration) C1 (step S102B).
  • the first CO concentration C1 may be the concentration range obtained by, for example, obtaining the CO concentration generated when incomplete combustion occurs in the combustor 14b in advance through experiments or the like. Further, the first CO concentration C1 may be 1000 ppm, for example.
  • step S101B When the concentration C acquired in step S101B is smaller than the first CO concentration C1 (No in step S102B), the control device 102 returns to step S101B and continues to steps S101B and S100B until the first CO concentration C1 or higher. Step S102B is repeated. On the other hand, when the concentration C acquired in step S101B is equal to or higher than the first CO concentration C1 (Yes in step S102B), the control apparatus 102 proceeds to step S103. In step S103, the control device 102 stops the operation of the power generation system 100 and prohibits the activation of the power generation system 100 (step S104).
  • the power generation system 100 according to the first modification configured as described above has the same effects as the power generation system 100 according to the second embodiment.
  • the occlusion detector is an oxygen concentration detector
  • the control device is a first oxygen whose oxygen concentration detected by the oxygen concentration detector is preset.
  • the embodiment is configured to be determined to be occluded when the concentration is equal to or lower than the concentration.
  • FIG. 12 is a schematic diagram showing a schematic configuration of a fuel cell system according to Modification 2 of Embodiment 2.
  • FIG. 12 is a schematic diagram showing a schematic configuration of a fuel cell system according to Modification 2 of Embodiment 2.
  • the power generation system 100 of the second modification has the same basic configuration as that of the power generation system 100 of the first modification in the second embodiment, but the oxygen concentration detection is performed in place of the CO concentration detector 22.
  • the device 25 is provided.
  • the oxygen concentration detector 25 may have any configuration as long as it can detect the oxygen concentration, and the device used is not limited.
  • the oxygen concentration detector 25 is configured to be disposed in the discharge flow path 70, but is not limited thereto, and may be disposed in the housing 12. It is good also as a structure which arrange
  • the oxygen concentration detector 25 may be provided at an appropriate position of any one of the off-oxidant gas channel 74, the ventilation channel 75, and the combustion exhaust gas channel 80 that communicates with the exhaust channel 70. You may provide in the appropriate place of the air flow path 78. FIG.
  • FIG. 13 is a flowchart schematically showing the exhaust gas inflow suppressing operation of the power generation system according to the second modification example in the second embodiment.
  • the exhaust gas inflow suppressing operation of the power generation system 100 according to the second modification has the same basic operation as the exhaust gas inflow suppressing operation of the power generation system 100 according to the first embodiment.
  • Step S101 and Step S102 of Form 1 Steps S101C and S102C are different.
  • the control device 102 acquires the oxygen concentration C in the discharge channel 70 detected by the oxygen concentration detector 25 (step S101C). Next, the control device 102 determines whether or not the concentration C acquired in step S101C is equal to or lower than the first oxygen concentration C1 (step S102C).
  • the first oxygen concentration C1 may be the concentration range obtained by, for example, obtaining the oxygen concentration when the discharge channel 70 is closed in advance through experiments or the like.
  • the first oxygen concentration C1 is the oxygen concentration detected by the oxygen concentration detector 25 when combustion is not performed in the combustor 14b (for example, when the power generation system 100 is stopped and only the ventilation fan 13 is operating). May be stored as the normal oxygen concentration, and a value obtained by subtracting a predetermined concentration from the normal oxygen concentration may be used as the first oxygen concentration C1. As a result, even if there is a deviation between the oxygen concentration detected by the oxygen concentration detector 25 and the actual oxygen concentration due to long-term use or the like, it is possible to suppress erroneous detection.
  • the first oxygen concentration C1 is the oxygen concentration detected by the oxygen concentration detector 25 when combustion is not performed in the combustor 14b (for example, when the power generation system 100 is stopped and only the ventilation fan 13 is operating). May be stored as a normal oxygen concentration, and a value obtained by subtracting a predetermined concentration therefrom may be used. As a result, even if there is a deviation between the oxygen concentration detected by the oxygen concentration detector 25 and the actual oxygen concentration due to long-term use or the like, it is possible to suppress erroneous detection.
  • the predetermined concentration differs depending on the oxygen concentration detection accuracy of the oxygen concentration detector to be used. Therefore, it is preferable to set the value depending on the oxygen concentration detector to be used, and set it within a range where no erroneous detection occurs. preferable. For example, when the oxygen concentration detector 25 has an accuracy of ⁇ 0.5%, the first oxygen concentration C1 may be set as ⁇ 1% from the oxygen concentration in the atmosphere.
  • step S101C If the concentration C acquired in step S101C is greater than the first oxygen concentration C1 (No in step S102C), the control device 102 returns to step S101C and continues to step S101C and until the first oxygen concentration C1 or less. Step S102C is repeated. On the other hand, when the concentration C acquired in step S101C is equal to or lower than the first oxygen concentration C1 (Yes in step S102C), the control device 102 proceeds to step S103. In step S103, the control device 102 stops the operation of the power generation system 100 and prohibits the activation of the power generation system 100 (step S104).
  • the power generation system 100 according to the second modification configured as described above has the same operational effects as the power generation system 100 according to the second embodiment.
  • the blockage detector is a carbon dioxide concentration detector
  • the control device has a preset carbon dioxide concentration detected by the carbon dioxide concentration detector. This is an example of an embodiment configured to determine that the blockage occurs when the carbon dioxide concentration is 1 or more.
  • FIG. 14 is a schematic diagram showing a schematic configuration of a fuel cell system according to Modification 3 of Embodiment 2.
  • the power generation system 100 of the third modification has the same basic configuration as the power generation system 100 of the first modification in the second embodiment, but the CO 2 concentration is replaced with the CO concentration detector 22.
  • the difference is that a detector 26 is provided.
  • the CO 2 concentration detector 26 may have any configuration as long as it can detect the CO 2 concentration, and the device used is not limited.
  • the CO 2 concentration detector 26 is configured to be disposed in the discharge flow path 70, but is not limited thereto, and may be disposed in the housing 12. It is good also as a structure which arrange
  • the CO 2 concentration detector 26 may be provided at an appropriate position of any one of the off-oxidant gas flow path 74, the ventilation flow path 75, and the combustion exhaust gas flow path 80 communicating with the discharge flow path 70. You may provide in the appropriate place of the air supply flow path 78. FIG.
  • FIG. 15 is a flowchart schematically showing the exhaust gas inflow suppressing operation of the power generation system according to the third modification example in the second embodiment.
  • the exhaust gas inflow suppression operation of the power generation system 100 according to the third modification has the same basic operation as the exhaust gas inflow suppression operation of the power generation system 100 according to the first embodiment.
  • step S101D and step S102D are performed instead of step S101 and step S102 of the first embodiment.
  • the control device 102 acquires the CO 2 concentration C in the discharge flow path 70 detected by the CO 2 concentration detector 26 (step S101D). Next, the control device 102 determines whether or not the concentration C acquired in step S101D is equal to or higher than the first CO 2 concentration (first gas concentration) C1 (step S102D).
  • the first CO 2 concentration C1 may be the concentration range obtained in advance by, for example, obtaining the CO 2 concentration when the discharge channel 70 is blocked by an experiment or the like.
  • step S101D When the concentration C acquired in step S101D is smaller than the first CO 2 concentration C1 (No in step S102D), the control device 102 returns to step S101D and continues until the first CO 2 concentration C1 is equal to or higher than step S101D. S101D and step S102D are repeated. On the other hand, when the concentration C acquired in step S101D is equal to or higher than the first CO 2 concentration C1 (Yes in step S102D), the control device 102 proceeds to step S103. In step S103, the control device 102 stops the operation of the power generation system 100 and prohibits the activation of the power generation system 100 (step S104).
  • the power generation system 100 according to the third modification configured as described above has the same effects as the power generation system 100 according to the second embodiment.
  • the blockage detector is configured by a gas composition detector (CO concentration detector 22, oxygen concentration detector 25, or CO2 concentration detector 26). Although illustrated, it is not limited to this.
  • the blockage detector may be constituted by, for example, a pressure detector, or may be constituted by a temperature detector as will be described later.
  • the power generation system according to Embodiment 3 of the present invention includes a combustion device arranged outside the housing, and the discharge flow path is at least so that the upstream end thereof is connected to each of the combustion device and the fuel cell system.
  • the aspect which branches in two is illustrated.
  • FIG. 16 is a schematic diagram showing a schematic configuration of the power generation system according to Embodiment 3 of the present invention.
  • the power generation system 100 according to Embodiment 3 of the present invention has the same basic configuration as the power generation system 100 according to Embodiment 2, but is a combustion device arranged outside the casing 12.
  • the point that 103 is further provided is different from the point that the discharge channel 70 is configured to connect the housing 12 and the exhaust port 103A.
  • the combustion device 103 includes a combustor 17 and a combustion fan (combustion air supply device) 18.
  • the combustor 17 and the combustion fan 18 are connected via a combustion air supply passage 76.
  • the combustion fan 18 may have any configuration as long as it can supply combustion air to the combustor 17.
  • the combustion fan 18 may be configured by fans such as a fan and a blower.
  • Combustion fuel such as combustible gas such as natural gas or liquid fuel such as kerosene is supplied to the combustor 17 from a combustion fuel supply unit (not shown).
  • a combustion fuel supply unit not shown
  • the combustion air supplied from the combustion fan 18 and the combustion fuel supplied from the combustion fuel supplier are burned to generate heat, and combustion exhaust gas is generated.
  • the generated heat can be used to heat water. That is, the combustion device 103 may be used as a boiler.
  • the upstream end of the exhaust gas passage 77 is connected to the combustor 17, and the downstream end of the exhaust gas passage 77 is connected to the exhaust passage 70.
  • the combustion exhaust gas generated by the combustor 17 is discharged to the discharge passage 70 via the exhaust gas passage 77. That is, the combustion exhaust gas generated by the combustor 17 is discharged to the discharge passage 70 as the exhaust gas discharged from the combustion device 103.
  • the combustion exhaust gas discharged to the discharge flow path 70 flows through the discharge flow path 70 and is discharged outside the building 200.
  • a hole 19 penetrating in the thickness direction of the wall is provided at an appropriate position of the wall constituting the combustion device 103, and the pipe constituting the discharge flow path 70 has a gap in the hole 19, It is inserted. And the clearance gap between the hole 19 and the discharge flow path 70 comprises the air supply port 19 (air supply flow path 78). Thereby, the air outside the power generation system 100 is supplied into the combustion device 103 through the air supply port 19.
  • the discharge flow path 70 is branched, and the two upstream ends are connected to the holes 16 and 19 respectively. Further, the discharge channel 70 is formed so as to extend to the outside of the building 200, and its downstream end (opening) is open to the atmosphere. Thereby, the exhaust flow path 70 communicates the housing 12 and the exhaust port 103 ⁇ / b> A of the combustion device 103.
  • the hole through which the pipe constituting the discharge flow path 70 is inserted and the hole constituting the air supply port 19 are configured by one hole 19, but the present invention is not limited to this.
  • the combustion apparatus 103 may be provided with a hole through which the pipe constituting the discharge passage 70 is inserted (connected) and a hole constituting the air supply port 19 separately.
  • the air supply port 19 may be configured by a single hole in the combustion device 103 or may be configured by a plurality of holes.
  • the air supply channel 78 may be configured by inserting a pipe through the air supply port 19.
  • FIG. 17 is a flowchart schematically showing the exhaust gas inflow suppressing operation of the power generation system according to the third embodiment.
  • the control device 102 acquires the flow rate F of the gas in the discharge flow path 70 detected by the flow rate detector 20 while the combustion device 103 is operating (step S201).
  • the operation of the combustion device 103 refers to a period during which exhaust gas is discharged from the combustion device 103 to the discharge flow path 70.
  • at least one of the combustor 17 and the combustion fan 18 is in operation. Therefore, the case where the combustor 17 is not operated and only the combustion fan 18 is operated is also included in the operation of the combustion device 103.
  • control device 102 determines whether or not the flow rate F acquired in step S201 is equal to or less than a preset second flow rate F2 (step S202).
  • the second flow rate F2 is obtained, for example, in advance by an experiment or the like to obtain a flow rate range when the exhaust gas discharged from the combustion device 103 flows through the discharge flow path 70. Good.
  • step S201 When the flow rate F acquired in step S201 is larger than the second flow rate F2 (No in step S202), the control device 102 returns to step S201 and continues to step S201 until the flow rate F becomes equal to or lower than the second flow rate F2. And step S202 is repeated. On the other hand, when the flow rate F acquired in step S201 is equal to or less than the second flow rate F2 (Yes in step S202), the control device 102 determines that the discharge flow path 70 is blocked and proceeds to step S203. .
  • step S203 the control device 102 stops the operation of the combustion device 103. Thereby, the discharge of the exhaust gas from the combustion device 103 to the discharge flow path 70 is stopped, and the backflow of the exhaust gas from the discharge flow path 70 into the housing 12 is suppressed.
  • step S204 the control device 102 checks whether or not the fuel cell system 101 is stopped.
  • the control device 102 stops the operation of the fuel cell system 101 (step S205), and proceeds to step S206. This is because the exhaust gas discharged from the fuel cell system 101 flows back into the housing 12 when the fuel cell system 101 is operating.
  • step S204 the control device 102 proceeds to step S206.
  • step S206 the control device 102 prohibits activation of the power generation system 100.
  • the control device 102 operates, for example, a remote controller (not shown) from a user of the power generation system 100 and a start request signal is transmitted to the control device 102. Even when the start-up time is reached, the start-up process of the power generation system 100 is prohibited by not permitting the start-up process of the power generation system 100. In addition, since starting of the electric power generation system 100 is prohibited, naturally starting of the combustion apparatus 103 is also prohibited.
  • the control device 102 prohibits the operation of the power generation system 100, thereby The exhaust gas is prevented from flowing backward. For this reason, it is suppressed that a hot exhaust gas stays in the housing
  • the combustion device 103 if such a desulfurizer for desulfurizing a sulfur compound contained in natural gas or the like is not provided, the combustion device 103 by performing the combustion operation, SO x is generated. Then, when the generated SO x flows back into the housing 12 through the discharge flow path 70 and is supplied to the cathode of the fuel cell 11, there is a risk of accelerating the poisoning of the catalyst contained in the cathode. .
  • the exhaust gas from the combustor 103 that has flowed backward is supplied to the combustor 14b, incomplete combustion may occur in the combustor 14b, and CO may be generated. Furthermore, if the generated CO flows into the fuel cell 11, the catalyst of the fuel cell 11 may deteriorate, and the power generation efficiency of the fuel cell 11 may be reduced.
  • the control device 102 prohibits the operation of the power generation system 100, the exhaust gas (including CO and SO x ) from the combustion device 103 is inhibited. By suppressing the backflow into the housing 12, it is possible to suppress the supply of CO and SO x to the fuel cell 11.
  • poisoning of the cathode of the fuel cell 11 can be suppressed, a decrease in power generation efficiency of the fuel cell 11 can be suppressed, and the durability of the power generation system 100 can be improved. Can be improved.
  • control device 102 performs control so that the combustion device 103 and the fuel cell system 101 are stopped separately, but the present invention is not limited to this.
  • the power generation system 100 may be controlled to be stopped at once.
  • the occlusion detector is a temperature detector
  • the control device has a temperature detected by the temperature detector higher than a preset first temperature, Or it illustrates the aspect comprised so that it may be judged that the discharge flow path is obstruct
  • FIG. 18 is a schematic diagram illustrating a schematic configuration of a power generation system according to Modification 1 of Embodiment 3.
  • the power generation system 100 according to the first modification in the third embodiment has the same basic configuration as the power generation system 100 according to the third embodiment, but the temperature detection is performed instead of the flow rate detector 20.
  • the device 27 is provided.
  • the temperature detector 27 may have any configuration as long as it can detect the temperature in the discharge channel 70, and the device to be used is not limited.
  • the temperature detector 27 is arrange
  • the temperature detector 27 is configured to be disposed in the discharge channel 70, but is not limited thereto, and may be disposed in the housing 12. It is good also as a structure arrange
  • the temperature detector 27 may be provided at an appropriate position of any one of the off-oxidant gas flow path 74, the ventilation flow path 75, and the combustion exhaust gas flow path 80 communicating with the discharge flow path 70. It may be provided at an appropriate place on the road 78.
  • the control device 102 has the highest temperature detected by the temperature detector 27 in the discharge channel 70 when the power generation system 100 is operating and the discharge channel 70 is not closed.
  • the temperature is higher than the first temperature, which is a value, it can be determined that the discharge flow path 70 is closed.
  • the temperature detector 27 detects before the discharge flow path 70 is closed. In some cases, the temperature detected by the temperature detector 27 after the discharge flow path 70 is closed is lower than the detected temperature. For example, when the temperature detector 27 is provided near the downstream end of the discharge flow path 70 and the temperature of the outside air is low, if the discharge flow path 70 is blocked, the downstream side of the closed portion of the external air and the discharge flow path 70 There is a case where the temperature detected by the temperature detector 27 is lowered due to heat exchange with the exhaust gas present in the gas.
  • the temperature detected by the temperature detector 27 is the lowest in the temperature range in the discharge flow path 70 when the power generation system 100 is operating and the discharge flow path 70 is not closed.
  • the temperature is lower than the second temperature, which is a value, it can be determined that the discharge flow path 70 is closed.
  • control device 102 can determine that the discharge flow path 70 is closed when the temperature detected by the temperature detector 27 is outside a predetermined temperature range set in advance.
  • the exhaust gas inflow suppressing operation of the power generation system 100 by the control device 102 based on the temperature detected by the temperature detector 27 will be described with reference to FIG.
  • FIG. 19 is a flowchart schematically showing the exhaust gas inflow suppression operation of the power generation system of Modification 1 in Embodiment 3.
  • the exhaust gas inflow suppression operation of the power generation system 100 according to the first modification has the same basic operation as the exhaust gas inflow suppression operation of the power generation system 100 according to the third embodiment. Instead of Step S201 and Step S202 of the third form, Steps S201A and S202A are different.
  • control device 102 acquires the temperature T in the discharge channel 70 detected by the temperature detector 27 while the combustion device 103 is operating (step S201A). Next, the control device 102 determines whether or not the temperature T acquired in step S201A is higher than the first temperature T1 or lower than the second temperature T2 (step S202A).
  • the first temperature T1 may be determined in advance by, for example, an experiment or the like in advance to obtain the temperature range of the discharge flow path 70 when the discharge flow path 70 is closed, and may be the highest temperature value in the temperature range.
  • the highest temperature among the temperatures detected by the temperature detector 27 when the combustion is performed in the combustor 14b (for example, the power generation system 100 is generating power) is stored.
  • a value obtained by adding a predetermined temperature therefrom may be used as the first temperature T1.
  • the predetermined temperature can be arbitrarily set within a range where no erroneous detection occurs.
  • the second temperature T2 may be a temperature value of the lowest temperature range by obtaining a temperature range of the discharge flow path 70 when the discharge flow path 70 is closed by an experiment or the like in advance.
  • the second temperature T2 stores the lowest temperature among the temperatures detected by the temperature detector 27 when the combustor 14b performs combustion (for example, the power generation system 100 is generating power).
  • a value obtained by subtracting a predetermined temperature therefrom may be used as the second temperature T2. It should be noted that the predetermined temperature can be arbitrarily set within a range where no erroneous detection occurs.
  • step S201A When the temperature T acquired in step S201A is equal to or higher than the second temperature T2 and equal to or lower than the first temperature T1 (No in step S202A), the control device 102 returns to step S201A and the temperature T is the first temperature T1. Step S201A and Step S202A are repeated until the temperature becomes higher than the temperature T1 or until the temperature T becomes lower than the second temperature T2. On the other hand, when the temperature T acquired in step S201A is higher than the first temperature T1, or when the temperature T acquired in step S201A is lower than the second temperature T2 (Yes in step S202A), the control device 102 Then, it is determined that the discharge channel 70 is closed, and the process proceeds to step S203. In addition, the operation
  • the power generation system 100 according to the first modification configured as described above has the same effects as the power generation system 100 according to the third embodiment.
  • the first modification the case where the combustion device 103 is in operation has been described. However, even when the combustion device 103 is stopped and the fuel cell system 101 is in operation, the combustion device 103 is in operation. As in the case of the above, the exhaust gas inflow suppressing operation of the power generation system 100 is executed.
  • the occlusion detector is a temperature detector
  • the control device has a difference in temperature detected by the temperature detector before and after a predetermined time set in advance. It is configured to determine that the discharge flow path is blocked when it is equal to or larger than the set first temperature difference or equal to or smaller than the second temperature difference that is smaller than the first temperature difference. This is an example of the embodiment.
  • the power generation system 100 of the second modification in the third embodiment is configured in the same manner as the power generation system 100 of the first modification in the third embodiment, a detailed description of the configuration is omitted.
  • the discharge channel 70 is blocked at a portion upstream of the portion where the temperature detector 27 is disposed in the discharge channel 70, temperature detection before and after the discharge channel 70 is blocked.
  • the difference in temperature detected by the device 27 may be low.
  • the temperature detector 27 is provided near the downstream end of the discharge flow path 70 and the temperature of the outside air is low, if the discharge flow path 70 is blocked, the downstream side of the closed portion of the external air and the discharge flow path 70 There is a case where the temperature difference detected by the temperature detector 27 is lowered due to heat exchange with the exhaust gas present in
  • control device 102 closes the discharge flow path 70 when the temperature difference detected by the temperature detector 27 before and after the set predetermined time is equal to or less than the preset first temperature difference. Can be determined.
  • the temperature detector 27 detects before and after the discharge flow path 70 is closed.
  • the difference in temperature is high. For this reason, when the difference between the temperatures detected by the temperature detector 27 before and after the set predetermined time is equal to or greater than the second temperature difference, which is a temperature difference larger than the first temperature difference, It can be determined that the discharge channel 70 is closed.
  • control device 102 can determine that the discharge flow path 70 is blocked when the temperature difference detected by the temperature detector 27 is outside the predetermined temperature difference range set in advance. it can.
  • the exhaust gas inflow suppression operation of the power generation system 100 by the control device 102 based on the temperature difference detected by the temperature detector 27 will be described with reference to FIG.
  • FIG. 20 is a flowchart schematically showing the exhaust gas inflow suppressing operation of the power generation system of the second modification in the third embodiment.
  • the control device 102 acquires the temperature t1 in the discharge channel 70 detected by the temperature detector 27 while the combustion device 103 is operating (step S301).
  • the control device 102 acquires the temperature t2 in the discharge channel 70 from the temperature detector 27 again after a predetermined time has elapsed (step S302).
  • the predetermined time can be arbitrarily set.
  • the predetermined time may be several seconds, several tens of seconds, or several minutes.
  • control device 102 determines whether or not the temperature difference ⁇ T between the temperature t1 acquired in step S301 and the temperature t2 acquired in step S302 is equal to or less than a preset first temperature difference ⁇ T1 or a temperature difference. It is determined whether ⁇ T is greater than or equal to the second temperature difference ⁇ T2 (step S303).
  • the first temperature difference ⁇ T1 is obtained, for example, in advance by an experiment or the like to obtain a range of a difference between the temperature when the discharge flow path 70 is not closed and the temperature when the discharge flow path 70 is closed. Alternatively, it may be the lowest value in the temperature difference range.
  • the second temperature difference ⁇ T2 is obtained, for example, by an experiment in advance to obtain a range of a difference between the temperature when the discharge flow path 70 is not closed and the temperature when the discharge flow path 70 is closed. Alternatively, it may be the highest value in the temperature difference range.
  • Step S303 When the temperature difference ⁇ T is larger than the first temperature difference ⁇ T1 and smaller than the second temperature difference ⁇ T2 (No in Step S303), the control device 102 returns to Step S301, and the temperature difference ⁇ T is the first temperature difference ⁇ T1. Steps S301 to S303 are repeated until the temperature difference ⁇ T1 or less or until the temperature difference ⁇ T becomes equal to or more than the second temperature difference ⁇ T2. On the other hand, when the temperature difference ⁇ T is equal to or smaller than the first temperature difference ⁇ T1, or when the temperature difference ⁇ T is equal to or larger than the second temperature difference ⁇ T2 (Yes in step S303), the control device 102 Then, it is determined that the discharge channel 70 is closed, and the process proceeds to step S304.
  • step S304 the control device 102 stops the operation of the combustion device 103. Thereby, the discharge of the exhaust gas from the combustion device 103 to the discharge flow path 70 is stopped, and the backflow of the exhaust gas from the discharge flow path 70 into the housing 12 is suppressed.
  • step S305 the control device 102 confirms whether or not the fuel cell system 101 is stopped.
  • the control device 102 stops the operation of the fuel cell system 101 (step S306), and proceeds to step S307. This is because the exhaust gas discharged from the fuel cell system 101 flows back into the housing 12 when the fuel cell system 101 is operating.
  • step S305 the control device 102 proceeds to step S307.
  • step S307 the control device 102 prohibits activation of the power generation system 100. Specifically, for example, even when the activation request signal is transmitted to the controller 102 by operating a remote controller (not shown) from a user of the power generation system 100, the control device 102 is also connected to the power generation system 100. Even when the start-up time is reached, the start-up process of the power generation system 100 is prohibited by not permitting the start-up process of the power generation system 100. In addition, since starting of the electric power generation system 100 is prohibited, naturally starting of the combustion apparatus 103 is also prohibited.
  • the power generation system 100 of the second modification configured as described above has the same operational effects as the power generation system 100 according to the third embodiment.
  • the supply air channel is branched into at least two so that the upstream end thereof is connected to each of the combustion device and the fuel cell system.
  • the embodiment is provided so as to be able to exchange heat with the discharge channel.
  • the fact that the air supply flow path is provided so as to be able to exchange heat with the discharge flow path does not necessarily require that the air supply flow path and the discharge flow path be in contact with each other. And a mode in which the gas in the exhaust passage is provided so as to be heat exchangeable. For this reason, the air supply channel and the discharge channel may be provided with a space therebetween. Moreover, the other channel may be provided inside one channel. That is, the piping that configures the air supply channel and the piping that configures the exhaust channel may be provided so as to form a double piping.
  • FIG. 21 is a schematic diagram illustrating a schematic configuration of a power generation system according to Modification 3 of Embodiment 3.
  • the air supply flow path is indicated by hatching.
  • the power generation system 100 according to the third modification has the same basic configuration as the power generation system 100 according to the third embodiment, but is different in the configuration of the air supply channel 78.
  • the air supply channel 78 communicates the combustion device 103 and the casing 12 of the fuel cell system 101, and communicates with the combustion device 103 and the fuel cell system 101 from the outside (here, outside the building 200). It is provided so as to supply air and surround the outer periphery of the discharge flow path 70.
  • the air supply channel 78 is branched in the middle, and the two downstream ends are connected to the hole 16 and the hole 19, respectively.
  • the air supply channel 78 is formed to extend to the outside of the building 200, and its upstream end (opening) is open to the atmosphere. Thereby, the supply air flow path 78 allows the casing 12 and the combustion device 103 to communicate with each other, and can supply air to the fuel cell system 101 and the combustion device 103 from the outside of the power generation system 100.
  • the air supply passage 78 and the discharge passage 70 are constituted by so-called double pipes.
  • combustion exhaust gas exhaust gas
  • the gas in the air supply flow path 78 is heated by heat transfer from the combustion exhaust gas.
  • the power generation system 100 according to the third modification configured as described above has the same effects as the power generation system 100 according to the third embodiment.
  • the discharge flow path 70 and the air supply flow path 78 employ
  • the air supply channel 78 is provided so as to be able to exchange heat with the discharge channel 70, the mode is not limited.
  • a wall that divides the pipe along the extending direction of the pipe is provided inside one pipe, and one of the divided spaces is used as an air supply channel 78 and the other space is used as a discharge channel 70. Good.
  • the ventilation fan 13 was used as a ventilator, it is not limited to this.
  • an oxidant gas supply device 15 may be used instead of the ventilation fan 13.
  • the fuel gas supply device 14 is constituted by a hydrogen generator, and the hydrogen generator has a combustor 14b and a combustion fan 14c, the combustion fan 14c is used instead of the ventilation fan 13 as a ventilator. May be.
  • the ventilation fan 13 and the oxidant gas supply unit 15 may be used simultaneously, the ventilation fan 13 and the combustion fan 14c may be used simultaneously, and the combustion fan 14c and the oxidant gas supply unit 15 are used simultaneously.
  • the ventilation fan 13, the combustion fan 14c, and the oxidant gas supplier 15 may be used simultaneously.
  • the inside of the casing is prevented from being heated to a high temperature, and it is possible to suppress a decrease in the efficiency of the auxiliary equipment housed in the casing. Therefore, it is useful in the field of fuel cells.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel Cell (AREA)

Abstract

 本発明の発電システムは、燃料電池(11)と、燃料電池(11)を収納する筐体(12)と、を有する燃料電池システム(101)と、制御装置(102)と、発電システムからの排出ガスを筐体(12)の外部へ排出するように構成された排出流路(70)と、発電システムに空気を供給するように構成された給気流路(78)と、給排気機構内及び筐体(12)内のうちの少なくとも一方に設けられた閉塞検知器と、筐体(12)内の空気を換気し、排出流路(70)に換気した空気を排出する換気器と、を備え、制御装置(102)は、発電システムが作動中に、閉塞検知器から得られる情報に基づいて排出流路(70)の閉塞を検知すると、発電システムの運転を停止するように構成されている。

Description

発電システム及びその運転方法
 本発明は、熱と電気を供給する発電システム及びその運転方法に関し、特に、発電システムの構造に関する。
 コージェネレーションシステムは、発電した電力を需要家へ供給し電力負荷を賄うとともに、発電に伴う排熱を回収して蓄熱することで需要家の給湯負荷を賄うシステムである。このようなコージェネレーションシステムとして、燃料電池と給湯器が同一の燃料で動作するコージェネレーションシステムが知られている(例えば、特許文献1参照)。特許文献1に開示されているコージェネレーションシステムでは、燃料電池と、燃料電池の動作に伴って発生する熱を回収する熱交換器と、熱交換器を循環して加熱された水を貯蔵する貯湯槽と、貯湯槽から流出する水を所定の温度まで加温する機能を有する給湯器を有し、燃料電池と給湯器が同一の燃料で動作するように構成されている。
 また、建物内部に配置する燃料電池発電装置の排気性能を向上させることを目的とした燃料電池発電装置が知られている(例えば、特許文献2参照)。特許文献2に開示されている発電装置は、吸気口を備えた建物の内部に設置して使用される燃料電池発電装置であって、建物の内部の空気を燃料電池発電装置の内部へ導く空気導入口と、燃料電池発電装置の内部の空気を建物の外部へ排出する空気排出管と、換気手段を備えていて、換気手段が、建物外部の空気を吸気口を介して建物の内部に導き、さらに空気導入口を通して燃料電池発電装置の内部に導入し、さらに空気排出管を通して建物の外部へと排出する。
 また、屋内に設置するときに設置作業を容易にし、吸気及び排気用ダクトを簡単化することを目的とした燃料電池発電装置が知られている(例えば、特許文献3参照)。特許文献3に開示されている燃料電池発電装置では、排気される空気を外部に放出する内管と外部から空気を導入する外管とが一体的に結合された2重管ダクト構造から構成された吸排気装置が設けられている。
 さらに、建物内部に配置した燃料電池で生じた排ガスの排気性能を向上することを目的として、上下方向に延びるダクトを具備する発電装置が知られている(例えば、特許文献4参照)。特許文献4に開示されている発電装置では、建物内部を上下方向に延び、上端部が外部に位置するダクトが、二重管であり、排ガス又は空気がダクトの内側又は外側を個別に流通するように、換気管及び排気管がダクトにそれぞれ連結されている。
特開2007-248009号公報 特開2006-73446号公報 特開2006-253020号公報 特開2008-210631号公報
 ところで、特許文献2乃至特許文献4に開示されている発電装置では、発電装置から排出される排ガスを排出する配管(空気排出管、ダクト)が閉塞したような場合、燃料電池システムを作動させると、バーナで生成された燃焼排ガス等の燃料電池システムから排出される排出ガスが建物の外部へ排出することができず、発電装置を収容している外装容器内に逆流するという課題が生じる。そして、排出ガスが逆流することにより、外装容器内に高温の排出ガスが滞留し、外装容器内が高温化する。これにより、外装容器内に収納した補機(例えば、制御装置等)の温度を正常動作可能な温度に保つことができず、補機の効率低下が生じるおそれがある。
 本発明は、上記課題を鑑みてなされたものであり、燃料電池システムから排出される排出ガスが通流する排出流路が閉塞したような場合に、燃料電池システムの作動を禁止することにより、筐体内の高温化を抑制し、筐体内に収納された補機の効率低下を抑制することができる発電システム及びその運転方法を提供することを目的とする。
 上記従来の課題を解決するために、本発明に係る発電システムは、燃料ガスと酸化剤ガスとを用いて発電する燃料電池と、前記燃料電池を収納する筐体と、を有する燃料電池システムと、制御装置と、を備える発電システムであって、前記発電システムは、前記発電システムからの排出ガスを前記筐体の外部へ排出するように構成された排出流路と、前記発電システムに空気を供給するように構成された給気流路と、を有する給排気機構と、前記給排気機構内及び前記筐体内のうちの少なくとも一方に設けられた閉塞検知器と、前記筐体内の空気を換気し、前記排出流路に換気した空気を排出する換気器と、をさらに備え、前記制御装置は、前記発電システムが作動中に、前記閉塞検知器から得られる情報に基づいて前記排出流路の閉塞を検知すると、前記発電システムの運転を停止するように構成されている。
 ここで、発電システムの運転を停止するとは、作動中の発電システムを停止することだけでなく、発電システムの作動開始を禁止することも含まれる。また、発電システムの作動を禁止するとは、発電システムを構成する全ての機器が、その作動を禁止される必要がなく、発電システムを構成する各機器のうち、本発明の作用効果を奏する範囲内で、その作動が禁止されることをいう。
 これにより、排出流路が閉塞したような場合に、筐体内が高温化することが抑制され、筐体内に収納された補機の効率低下を抑制することができる。なお、ここでいう「閉塞」とは、排出流路が完全に閉じている場合に限らず、排出流路が詰まって排出流路に流れる排ガスの流量が減少する場合も含まれる。
 また、本発明に係る発電システムでは、前記閉塞検知器は、流量検知器で構成されており、前記制御装置は、前記流量検知器が検知した流量が予め設定された第1の流量以下の場合に、前記排出流路が閉塞していると判断してもよい。
 また、本発明に係る発電システムでは、前記閉塞検知器は、前記換気器が送出する空気の流量を検知する流量検知器で構成されており、前記制御装置は、前記流量検知器が検知する流量に基づいて、前記換気器の操作量を制御しており、前記換気器の操作量が第1の操作量以上になった場合に、前記排出流路が閉塞していると判断してもよい。
 また、本発明に係る発電システムでは、前記閉塞検知器は、圧力検知器で構成されており、前記制御装置は、前記圧力検知器が予め設定された第1の圧力以上の圧力を検知した場合に、前記排出流路が閉塞していると判断してもよい。
 また、本発明に係る発電システムでは、前記制御装置は、予め設定された所定時間の前後における前記圧力検知器が検知した圧力の差分が、予め設定された第1の圧力差以下の場合に、前記排出流路が閉塞していると判断してもよい。
 また、本発明に係る発電システムでは、前記燃料電池システムが、原料と水から水素を含む燃料ガスを生成する改質器と、該改質器を加熱するように構成された燃焼器と、を有する水素生成装置をさらに備え、前記閉塞検知器は、ガス組成検知器で構成されており、前記制御装置は、前記ガス組成検知器がガス組成の異常を検知した場合に、前記排出流路が閉塞していると判断してもよい。
 また、本発明に係る発電システムでは、前記閉塞検知器は、酸素濃度検知器で構成されており、前記制御装置は、前記酸素濃度検知器が検知した酸素濃度が予め設定された第1の酸素濃度以下の場合に、前記排出流路が閉塞していると判断してもよい。
 また、本発明に係る発電システムでは、前記閉塞検知器は、一酸化炭素濃度及び二酸化炭素濃度のうちの少なくとも一方のガス濃度を検知するガス濃度検知器で構成されており、前記制御装置は、前記ガス濃度検知器が検知したガス濃度が予め設定された第1のガス濃度以上の場合に、前記排出流路が閉塞されていると判断してもよい。
 また、本発明に係る発電システムでは、前記閉塞検知器は、温度検知器で構成されており、前記制御装置は、前記温度検知器が検知した温度が、予め設定された第1の温度以上の場合に、前記排出流路が閉塞されていると判断してもよい。
 また、本発明に係る発電システムでは、前記閉塞検知器は、温度検知器で構成されており、前記制御装置は、予め設定された所定時間の前後における前記温度検知器が検知した温度の差分が、予め設定された第1の温度差以上の場合又は前記第1の温度差よりも小さい温度差である第2の温度差以下の場合に、前記排出流路が閉塞されていると判断してもよい。
 また、本発明に係る発電システムでは、前記筐体の外部に配置された燃焼装置をさらに備え、前記排出流路は、その上流端が前記燃焼装置及び前記燃料電池システムのそれぞれに連結するように、少なくとも二つに分岐しており、前記給気流路は、その下流端が前記燃焼装置及び前記燃料電池システムのそれぞれに連結するように、少なくとも二つに分岐していてもよい。
 また、本発明に係る発電システムでは、前記制御装置は、前記燃焼装置が作動することにより、前記排出流路の閉塞を検知した場合に、少なくとも前記燃焼装置の作動を停止してもよい。
 また、本発明に係る発電システムでは、前記制御装置は、前記燃料電池システムが作動することにより、前記排出流路の閉塞を検知した場合、少なくとも前記燃料電池システムの運転を停止してもよい。
 また、本発明に係る発電システムでは、前記制御装置は、前記発電システムの作動を停止させ、前記発電システムの起動を禁止するように制御してもよい。
 さらに、本発明に係る発電システムでは、前記給気流路は、前記排気流路と熱交換可能なように設けられていてもよい。
 また、本発明に係る発電システムの運転方法は、燃料ガスと酸化剤ガスとを用いて発電する燃料電池と、前記燃料電池を収納する筐体と、を有する燃料電池システムを備える、発電システムの運転方法であって、前記発電システムは、前記発電システムからの排出ガスを前記筐体の外部へ排出するように構成された排出流路と、前記発電システムに空気を供給するように構成された給気流路と、を有する給排気機構と、前記給排気機構内及び前記筐体内のうちの少なくとも一方に設けられた閉塞検知器と、前記筐体内の空気を換気し、前記排出流路に換気した空気を排出する換気器と、をさらに備え、前記発電システムが作動中に、前記閉塞検知器から得られる情報に基づいて前記排出流路の閉塞を検知するステップと、前記発電システムの運転を停止するステップと、を備えている。
 これにより、排出流路が閉塞したような場合に、筐体内が高温化することが抑制され、筐体内に収納された補機の効率低下を抑制することができる。
 本発明の発電システム及びその運転方法によれば、排出流路が閉塞したような場合に、筐体内が高温化することが抑制され、筐体内に収納された補機の効率低下を抑制することが可能となる。
図1は、本発明の実施の形態1に係る発電システムの概略構成を示す模式図である。 図2は、本実施の形態1に係る発電システムの排出ガス流入抑制動作を模式的に示すフローチャートである。 図3は、本実施の形態1における変形例1の発電システムの概略構成を示す模式図である。 図4は、本実施の形態1における変形例1の発電システムの排出ガス流入抑制動作を模式的に示すフローチャートである。 図5は、本実施の形態1における変形例2の発電システムの概略構成を示す模式図である。 図6は、本実施の形態1における変形例3の発電システムの概略構成を示す模式図である。 図7は、本実施の形態1における変形例3の発電システムの排出ガス流入抑制動作を模式的に示すフローチャートである。 図8は、本実施の形態1における変形例3の発電システムの排出ガス流入抑制動作を模式的に示すフローチャートである。 図9は、本発明の実施の形態2に係る発電システムの概略構成を示す模式図である。 図10は、本実施の形態2における変形例1の発電システムの概略構成を示す模式図である。 図11は、本実施の形態2における変形例1の発電システムの排出ガス流入抑制動作を模式的に示すフローチャートである。 図12は、本実施の形態2における変形例2の燃料電池システムの概略構成を示す模式図である。 図13は、本実施の形態2における変形例2の発電システムの排出ガス流入抑制動作を模式的に示すフローチャートである。 図14は、本実施の形態2における変形例3の燃料電池システムの概略構成を示す模式図である。 図15は、本実施の形態2における変形例3の発電システムの排出ガス流入抑制動作を模式的に示すフローチャートである。 図16は、本発明の実施の形態3に係る発電システムの概略構成を示す模式図である。 図17は、本実施の形態3に係る発電システムの排出ガス流入抑制動作を模式的に示すフローチャートである。 図18は、本実施の形態3における変形例1の発電システムの概略構成を示す模式図である。 図19は、本実施の形態3における変形例1の発電システムの排出ガス流入抑制動作を模式的に示すフローチャートである。 図20は、本実施の形態3における変形例2の発電システムの排出ガス流入抑制動作を模式的に示すフローチャートである。 図21は、本実施の形態3における変形例3の発電システムの概略構成を示す模式図である。
 以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。なお、全ての図面において、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、全ての図面において、本発明を説明するために必要となる構成要素のみを抜粋して図示しており、その他の構成要素については図示を省略している。さらに、本発明は以下の実施の形態に限定されない。
 (実施の形態1)
 本発明の実施の形態1に係る発電システムは、燃料電池システム、筐体、排出流路、換気器、閉塞検知器、及び制御装置を備え、制御装置が、閉塞検知器から得られる情報に基づいて排出流路の閉塞を検知すると、発電システムの運転を停止するように構成されている態様を例示するものである。
 ここで、発電システムの運転を停止するとは、作動中の発電システムを停止することだけでなく、発電システムの作動開始を禁止することも含まれる。また、発電システムの作動を禁止するとは、発電システムを構成する全ての機器が、その作動を禁止される必要がなく、発電システムを構成する各機器のうち、本発明の作用効果を奏する範囲内で、その作動が禁止されることをいう。燃料ガスを生成する水素生成装置、空気を供給するファン類、又は水素生成装置を加熱するバーナ等の燃焼器は、その作動が禁止される機器として、例示することができる。一方、ガスを生成又は排出しない機器(例えば、燃料電池を冷却する冷却水を通流させるポンプ等)は、その作動は禁止されず、作動していてもよい機器として例示することができる。
 [発電システムの構成]
 図1は、本発明の実施の形態1に係る発電システムの概略構成を示す模式図である。
 図1に示すように、本発明の実施の形態1に係る発電システム100は、建物200の内部に配置されている。発電システム100は、燃料電池11を有する燃料電池システム101と、排出流路70と、流量検知器20と、制御装置102と、を備えている。そして、制御装置102は、閉塞検知器(本実施の形態1では、流量検知器20)から得られる情報に基づいて排出流路70の閉塞を検知すると、発電システム100の作動を禁止するように制御する。
 なお、本実施の形態1においては、発電システム100は、建物200の内部に配置されている構成を例示したが、これに限定されず、建物200の外部に配置されている構成を採用してもよい。
 燃料電池システム101は、筐体12を有している、筐体12内には、燃料電池11、換気ファン13、燃料ガス供給器14、及び酸化剤ガス供給器15が配置されている。また、制御装置102も筐体12内に配置されている。なお、本実施の形態1においては、制御装置102は、燃料電池システム101の筐体12内に配置する構成を採用したが、これに限定されず、制御装置102は、筐体12外に配置する構成を採用してもよい。
 筐体12を構成する壁の適所には、壁の厚み方向に貫通する給気口16が設けられていて、給気口16には、排出流路70を構成する配管が、隙間を有するようにして、挿通されている。そして、給気口16と排出流路70との隙間が、給気流路78を構成する。これにより、給気流路78を介して、筐体12内部に、発電システム100外の空気が供給される。
 なお、本実施の形態1においては、排出流路70を構成する配管が挿通する孔と、給気流路上に設けられ、筐体12への空気取り込み口となる給気口16と、を1つの孔で構成したが、これに限定されない。排出流路70を構成する配管が挿通する孔と、給気口16(給気流路78)を構成する孔と、を別々に筐体12に設けてもよい。また、給気口16は、筐体12に1つの孔によって構成されてもよく、また、複数の孔によって構成されていてもよい。さらに、給気口16に配管を挿通して、給気流路78を構成してもよい。
 燃料ガス供給器14は、燃料電池11に燃料ガス(水素ガス)をその流量を調整しながら供給することができれば、どのような構成であってもよく、例えば、水素生成装置、水素ボンベ、又は水素吸蔵合金等の水素ガスを供給するように構成された機器で構成されていてもよい。燃料ガス供給器14には、燃料ガス供給流路71を介して、燃料電池11(正確には、燃料電池11の燃料ガス流路11Aの入口)が接続されている。
 酸化剤ガス供給器15は、燃料電池11に酸化剤ガス(空気)をその流量を調整しながら供給することができれば、どのような構成であってもよく、例えば、ファンやブロワ等のファン類で構成されていてもよい。酸化剤ガス供給器15には、酸化剤ガス供給流路72を介して、燃料電池11(正確には、燃料電池11の酸化剤ガス流路11Bの入口)が接続されている。
 燃料電池11は、アノードとカソードを有している(いずれも図示せず)。燃料電池11では、燃料ガス流路11Aに供給された燃料ガスが、燃料ガス流路11Aを通流する間に、アノードに供給される。また、酸化剤ガス流路11Bに供給された酸化剤ガスが、酸化剤ガス流路11Bを通流する間に、カソードに供給される。そして、アノードに供給された燃料ガスとカソードに供給された酸化剤ガスとが、反応して電気と熱が発生する。
 なお、発生した電気は、図示されない電力調整器により、外部電力負荷(例えば、家庭の電気機器)に供給される。また、発生した熱は、図示されない熱媒体流路を通流する熱媒体が回収する。熱媒体が回収した熱は、例えば、水を加熱するのに使用することができる。
 また、本実施の形態1においては、燃料電池11は、高分子電解質形燃料電池や直接内部改質型固体酸化物形燃料電池や間接内部改質型固体酸化物形燃料電池等の各種の燃料電池を用いることができる。また、本実施の形態1においては、燃料電池11と燃料ガス供給器14を別々に構成する態様を採用したが、これに限定されず、固体酸化物形燃料電池のように燃料ガス供給器14と燃料電池11とが一体で構成されていてもよい。この場合、燃料電池11と燃料ガス供給器14とが共通の断熱材で覆われた一つのユニットとして構成され、後述する燃焼器14bは、後述する改質器14aだけでなく燃料電池11も加熱することができる。また、直接内部改質型固体酸化物形燃料電池においては、燃料電池11のアノードが改質器14aの機能を有することから、燃料電池11のアノードと改質器14aとが一体で構成されていてもよい。さらに、燃料電池11の構成は、一般的な燃料電池と同様に構成されているため、その詳細な説明は省略する。
 燃料ガス流路11Aの出口には、オフ燃料ガス流路73の上流端が接続されている。オフ燃料ガス流路73の下流端は、排出流路70に接続されている。また、酸化剤ガス流路11Bの出口には、オフ酸化剤ガス流路74の上流端が接続されている。オフ酸化剤ガス流路74の下流端は、排出流路70に接続されている。
 これにより、燃料電池11で使用されなかった燃料ガス(以下、オフ燃料ガス)は、燃料ガス流路11Aの出口からオフ燃料ガス流路73を介して、排出流路70に排出される。また、燃料電池11で使用されなかった酸化剤ガス(以下、オフ酸化剤ガス)は、酸化剤ガス流路11Bの出口からオフ酸化剤ガス流路74を介して、排出流路70に排出される。排出流路70に排出されたオフ燃料ガスは、オフ酸化剤ガスにより希釈されて、建物200外に排出される。
 換気ファン(換気器)13は、換気流路75を介して排出流路70と接続されている。換気ファン13としては、筐体12内を換気することができれば、どのような構成であってもよい。これにより、給気口16から発電システム100外の空気が筐体12内に給気され、換気ファン13を作動させることにより、筐体12内のガス(主として、空気)が換気流路75及び排出流路70を介して、建物200外に排出され、筐体12内が換気される。
 なお、本実施の形態1においては、換気器としてファンを用いたが、これに限定されず、ブロワを用いてもよい。換気ファン13は、筐体12内に配置するように構成したが、これに限定されない。換気ファン13は、排出流路70内に配置するように構成してもよい。また、換気ファン13に、空気を供給する空気供給流路を接続してもよい。この場合、空気供給流路は、筐体12の内部空間とみなすことができ、当該空気供給流路内に、閉塞検知器を配置してもよい。
 このように、本実施の形態1においては、オフ燃料ガス、オフ酸化剤ガス、及び換気ファン13が作動することによる筐体12内のガスが、発電システム100から排出される排出ガスとして、例示される。なお、発電システム100から排出される排出ガスは、これらのガスに限定されず、例えば、燃料ガス供給器14が水素生成装置で構成されている場合、該水素生成装置から排出されるガス(燃焼排ガス、水素含有ガス等)であってもよい。
 排出流路70は、その上流端が筐体12内に延出し、発電システム100から排出される排出ガスが通流するように構成されている。排出流路70は、建物200の外側にまで延びるように形成されていて、その下流端(開口)は、大気に開放されている。また、排出流路70の適所には、排出流路70内のガスの流量を検知するように構成された流量検知器20が設けられている。流量検知器20は、排出流路70内のガスの流量を検知することができれば、どのような構成であってもよく、使用される機器は限定されない。
 なお、本実施の形態1においては、流量検知器20は、排出流路70内に配置する構成としたが、これに限定されず、センサ部分を排出流路70内に配置し、他の部分を排出流路70外に配置する構成としてもよい。また、流量検知器20は、排出流路70と連通するオフ燃料ガス流路73、オフ酸化剤ガス流路74、及び換気流路75のいずれかの流路の適所に設けてもよい。
 制御装置102は、発電システム100を構成する各機器を制御する機器であれば、どのような形態であってもよい。制御装置102は、マイクロプロセッサ、CPU等に例示される演算処理部と、各制御動作を実行するためのプログラムを格納した、メモリ等から構成される記憶部を備えている。そして、制御装置102は、演算処理部が、記憶部に格納された所定の制御プログラムを読み出し、これを実行することにより、これらの情報を処理し、かつ、これらの制御を含む発電システム100に関する各種の制御を行う。
 なお、制御装置102は、単独の制御装置で構成される形態だけでなく、複数の制御装置が協働して発電システム100の制御を実行する制御装置群で構成される形態であっても構わない。また、制御装置102は、マイクロコントロールで構成されていてもよく、MPU、PLC(Programmable Logic Controller)、論理回路等によって構成されていてもよい。
 [発電システムの動作]
 次に、本実施の形態1に係る発電システム100の動作について、図1及び図2を参照しながら説明する。なお、発電システム100の燃料電池システム101における発電動作は、一般的な燃料電池システムの発電動作と同様に行われるので、その詳細な説明は省略する。
 図2は、本実施の形態1に係る発電システムの排出ガス流入抑制動作を模式的に示すフローチャートである。
 図2に示すように、制御装置102は、発電システム100が作動中に、流量検知器20が検知した排出流路70内のガスの流量Fを取得する(ステップS101)。ここで、発電システム100の作動中とは、発電システム100から排出ガスが排出流路70に排出されている期間をいう。本実施の形態1においては、燃料ガス供給器14、酸化剤ガス供給器15、及び換気ファン13の少なくとも1の機器が作動中をいう。
 ついで、制御装置102は、ステップS101で取得した流量Fが、第1の流量F1以下であるか否かを判断する(ステップS102)。ここで、第1の流量F1は、例えば、予め実験等により、発電システム100から排出された排出ガスが、排出流路70を通流するときの流量範囲を求めておき、当該流量範囲としてもよい。
 制御装置102は、ステップS101で取得した流量Fが第1の流量F1より大きい場合(ステップS102でNo)には、ステップS101に戻り、流量Fが第1の流量F1よりも大きくなるまで、ステップS101及びステップS102を繰り返す。一方、制御装置102は、ステップS101で取得した流量Fが第1の流量F1以下である場合(ステップS102でYes)には、排出流路70が閉塞していると判断し、ステップS103に進む。
 ステップS103では、制御装置102は、発電システム100の作動を停止する。これにより、発電システム100から排出流路70への排出ガスの排出が停止し、排出流路70から筐体12内への排出ガスの逆流が抑制される。
 次に、制御装置102は、発電システム100の起動を禁止する(ステップS104)。具体的には、制御装置102は、例えば、発電システム100の使用者から図示されないリモコンを操作して、起動要求信号が制御装置102に送信された場合であっても、また、発電システム100の起動時間になっても、発電システム100の起動処理を許可しないようにすることで、発電システム100の起動を禁止する。
 このように、本実施の形態1に係る発電システム100では、閉塞検知器が、排出流路70の閉塞を検知すると、制御装置102が発電システム100の運転を停止することにより、筐体12内に排出ガスが逆流することが抑制される。このため、筐体12内に高温の排出ガスが滞留することが抑制され、筐体12内の温度上昇が抑制される。したがって、筐体12内に収納された補機(制御装置102等)の効率低下を抑制することができ、発電システム100の耐久性を向上させることができる。
 なお、本実施の形態1においては、排出流路70と、オフ燃料ガス流路73、オフ酸化剤ガス流路74、及び排出ガス流路77と、をそれぞれ、異なる流路として説明したが、これに限定されず、これらの流路を纏めて、排出流路70と解してもよい。
 [変形例1]
 次に、本実施の形態1における変形例1の発電システムについて説明する。
 本実施の形態1における変形例1の発電システムは、閉塞検知器が、換気器が送出する空気の流量を検知する流量検知器で構成されており、制御装置は、流量検知器が検知する流量に基づいて、換気器の操作量を制御しており、換気器の操作量が第1の操作量以上になった場合に、排出流路が閉塞していると判断する態様を例示するものである。
 [発電システムの構成]
 図3は、本実施の形態1における変形例1の発電システムの概略構成を示す模式図である。
 図3に示すように、本変形例1の発電システム100は、実施の形態1に係る発電システム100と基本的構成は同じであるが、流量検知器20が、換気ファン13が送出する空気の流量を検知するように、排出流路70(正確には、換気流路75)の換気ファン13の近接部分に設けられている点が異なる。なお、ここでは、換気流路75は、排出流路70を構成する流路と解される。
 そして、制御装置102は、流量検知器20が検知する流量に基づいて、換気ファン13の操作量を制御している。具体的には、制御装置102は、例えば、流量検知器20が検知する流量が低下すると、換気流路75を通流する空気の流量が増加するように、換気ファン13の操作量を増大させてもよい。
 [発電システムの動作]
 図4は、本実施の形態1における変形例1の発電システムの排出ガス流入抑制動作を模式的に示すフローチャートである。
 図4に示すように、本変形例1の発電システム100の排出ガス流入抑制動作では、実施の形態1に係る発電システム100の排出ガス流入抑制動作と基本的動作は同じであるが、実施の形態1のステップS101とステップS102に代えて、ステップS101E及びステップS102Eが行われる点が異なる。
 具体的には、制御装置102は、換気ファン13の操作量MVを取得する(ステップS101E)。具体的には、制御装置102は、流量検知器20が検知した流量に基づいて、換気ファン13に出力した操作量を制御装置102の記憶部から取得する。
 次に、制御装置102は、ステップS101Eで取得した操作量MVが、第1の操作量MV1以上であるか否かを判断する(ステップS102E)。ここで、第1の操作量MV1は、例えば、予め実験やシミュレーション等により、流量検知器20が予め定められた流量を検知するように制御装置102が換気ファン13の操作量MVを制御している場合において、発電システム100から排出された排出ガスが、排出流路70を通流するときの換気ファン13の操作量範囲を求めておき、当該操作量範囲としてもよい。
 制御装置102は、ステップS101Eで取得した操作量MVが第1の操作量MV1より小さい場合(ステップS102EでNo)には、ステップS101Eに戻り、第1の操作量MV1以上になるまで、ステップS101E及びステップS102Eを繰り返す。一方、制御装置102は、ステップS101Eで取得した操作量MVが第1の操作量MV1以上である場合(ステップS102EでYes)には、ステップS103に進む。ステップS103では、制御装置102は発電システム100の作動を停止させる。
 このように構成された本変形例1の発電システム100であっても、実施の形態1に係る発電システム100と同様の作用効果を奏する。
 [変形例2]
 本実施の形態1における変形例2の発電システムは、排出流路を構成する配管が挿通する孔と、給気流路を構成する配管が挿通する孔と、が別々に筐体に設けられている態様を例示するものである。
 [発電システムの構成]
 図5は、本実施の形態1における変形例2の発電システムの概略構成を示す模式図である。
 図5に示すように、本変形例2の発電システム100は、実施の形態1に係る発電システム100と基本的構成は同じであるが、筐体12に2つの孔23、24が設けられており、一方の孔23に排出流路70を構成する配管が挿通され、他方の孔24に給気流路78を構成する配管が挿通されている点が異なる。
 このように構成された本変形例2の発電システム100であっても、実施の形態1に係る発電システム100と同様の作用効果を奏する。なお、本変形例2においては、他方の孔24に配管を挿通させて、給気流路78を構成したが、これに限定されず、孔24に配管を挿通させずに、当該孔24を給気口(給気流路78)としてもよい。
 [変形例3]
 次に、本実施の形態1における変形例3の発電システムについて説明する。
 本実施の形態1における変形例3の発電システムは、閉塞検知器が、圧力検知器であり、
制御装置は、圧力検知器が検知したガスの圧力が予め設定された第1の圧力以上の場合に、排出流路が閉塞されていると判断するように構成されている態様を例示するものである。
 [発電システムの構成]
 図6は、本実施の形態1における変形例3の発電システムの概略構成を示す模式図である。
 図6に示すように、本変形例3の発電システム100は、実施の形態1に係る発電システム100と基本的構成は同じであるが、流量検知器20に代えて、圧力検知器21が設けられている点が異なる。なお、圧力検知器21は、排出流路70内の圧力を検知することができれば、どのような構成であってもよく、使用される機器は限定されない。また、圧力検知器21は、本変形例3においては、排出流路70内に配置する構成としたが、これに限定されず、センサ部分を排出流路70内に配置し、他の部分を排出流路70外に配置する構成としてもよい。また、圧力検知器21は、排出流路70と連通するオフ燃料ガス流路73、オフ酸化剤ガス流路74、及び換気流路75のいずれかの流路の適所に設けてもよい。
 [発電システムの動作]
 ところで、図6において、排出流路70における圧力検知器21が配置されている部分よりも下流側の部分で、排出流路70が閉塞したとすると、排出流路70が閉塞する前における圧力検知器21で検知される圧力よりも排出流路70が閉塞した後における圧力検知器21で検知される圧力は大きくなる。このため、制御装置102は、圧力検知器21が検知した圧力が、発電システム100が作動中で、かつ、排出流路70が閉塞していない場合における排出流路70内の圧力範囲の最も高い値である第1の圧力よりも大きい場合に、排出流路70が閉塞されていると判断することができる。
 また、排出流路70における圧力検知器21が配置されている部分よりも上流側の部分で、排出流路70が閉塞したとすると、排出流路70が閉塞する前における圧力検知器21で検知される圧力よりも排出流路70が閉塞した後における圧力検知器21で検知される圧力は小さくなる。このため、制御装置102は、圧力検知器21が検知した圧力が、発電システム100が作動中で、かつ、排出流路70が閉塞していない場合における排出流路70内の圧力範囲の最も低い値である第2の圧力よりも小さい場合に、排出流路70が閉塞されていると判断することができる。
 すなわち、制御装置102は、圧力検知器21が検知した圧力が、予め設定された所定の圧力範囲外である場合には、排出流路70が閉塞されていると判断することができる。以下、以下、図7を参照しながら、圧力検知器21が検知した圧力に基づく、制御装置102による発電システム100の排出ガス流入抑制動作を説明する。
 図7は、本実施の形態1における変形例3の発電システムの排出ガス流入抑制動作を模式的に示すフローチャートである。
 図7に示すように、本変形例3の発電システム100の排出ガス流入抑制動作では、実施の形態1に係る発電システム100の排出ガス流入抑制動作と基本的動作は同じであるが、実施の形態1のステップS101とステップS102に代えて、ステップS101A及びステップS102Aが行われる点が異なる。
 具体的には、制御装置102は、圧力検知器21が検知した排出流路70内の圧力Pを取得する(ステップS101A)。ついで、制御装置102は、ステップS101Aで取得した圧力Pが第1の圧力P1より大きい圧力であるか否か、又はステップS101Aで取得した圧力Pが第2の圧力P2より小さい圧力であるか否かを判断する(ステップS102A)。
 ここで、第1の圧力P1は、例えば、予め実験等により、発電システム100から排出された排出ガスが、排出流路70を通流するときの圧力範囲を求めておき、当該圧力範囲の最も大きい値としてもよい。また、第1の圧力P1は、例えば、燃料ガス供給器14、酸化剤ガス供給器15、及び換気ファン13の全てが最大操作量で作動したときの排出流路70内の圧力であってもよく、40kPaであってもよい。また、第2の圧力P2は、例えば、予め実験等により、発電システム100から排出された排出ガスが、排出流路70を通流するときの圧力範囲を求めておき、当該圧力範囲の最も小さい値としてもよい。さらに、第2の圧力P2は、例えば、燃料ガス供給器14、酸化剤ガス供給器15、及び換気ファン13のうち動作(掃気)上限が最も小さい圧力以上であってもよく、1kPaであってもよい。
 制御装置102は、ステップS101Aで取得した圧力Pが第2の圧力P2以上、かつ、第1の圧力P1以下である場合(ステップS102AでNo)には、ステップS101Aに戻り、第1の圧力P1より大きくなるまで、又は第2の圧力P2より小さくなるまで、ステップS101A及びステップS102Aを繰り返す。一方、制御装置102は、ステップS101Aで取得した圧力Pが第1の圧力P1より大きい、又は第2の圧力P2より小さい場合(ステップS102AでYes)には、ステップS103に進む。
 ステップS103では、制御装置102は発電システム100の作動を停止させる。
 また、図6において、排出流路70における圧力検知器21が配置されている部分よりも上流側の部分で、排出流路70が閉塞したとすると、排出流路70が閉塞する前後における圧力検知器21で検知される圧力の圧力差は低くなる。このため、制御装置102は、設定された所定時間の前後における圧力検知器21が検知した圧力の差分が、予め設定された第1の圧力差以下の場合に、排出流路70が閉塞されていると判断することができる。
 また、排出流路70における圧力検知器21が配置されている部分よりも下流側の部分で、排出流路70が閉塞したとすると、排出流路70が閉塞する前後における圧力検知器21で検知される圧力の圧力差は高くなる。このため、制御装置102は、設定された所定時間の前後における圧力検知器21が検知した圧力の差分が、第1の圧力差よりも大きい差分である第2の圧力差以上の場合に、排出流路70が閉塞されていると判断することができる。
 すなわち、制御装置102は、設定された所定時間の前後における圧力検知器21が検知した圧力の差分が、予め設定された所定の圧力差の範囲以外である場合には、排出流路70が閉塞されていると判断することができる。
 以下、図8を参照しながら、圧力検知器21が検知した圧力の圧力差に基づく、制御装置102による発電システム100の排出ガス流入抑制動作を説明する。
 図8は、本実施の形態1における変形例3の発電システムの排出ガス流入抑制動作を模式的に示すフローチャートである。
 図8に示すように、制御装置102は、圧力検知器21が検知した排出流路70内の圧力P1を取得する(ステップS401)。ついで、制御装置102は、所定時間経過後に、再び圧力検知器21から排出流路70内の圧力P2を取得する(ステップS402)。ここで、所定の時間は、任意に設定することができ、例えば、数秒であってもよく、数十秒であってもよく、数分であってもよい。
 次に、制御装置102は、ステップS401で取得した圧力P1とステップS402で取得した圧力P2との圧力差分ΔPが、予め設定された第1の圧力差ΔP1以下、又は第1の圧力差ΔP1よりも大きい圧力差である第2の圧力差ΔP2以上であるか否かを判断する(ステップS403)。ここで、第1の圧力差ΔP1は、例えば、予め実験等により、排出流路70が閉塞していないときの圧力と、排出流路70が閉塞したときの圧力との差分の範囲を求めておき、当該圧力差分の範囲の最も低い値としてもよい。同様に、第2の圧力差ΔP2は、例えば、予め実験等により、排出流路70が閉塞していないときの圧力と、排出流路70が閉塞したときの圧力との差分の範囲を求めておき、当該圧力差分の範囲の最も高い値としてもよい。
 制御装置102は、圧力差分ΔPが第1の圧力差ΔP1より大きく、かつ、第2の圧力差ΔP2よりも小さい場合(ステップS403でNo)には、ステップS401に戻り、圧力差分ΔPが第1の圧力差ΔP1以下、又は第2の圧力差ΔP2以上になるまで、ステップS401~ステップS403を繰り返す。一方、制御装置102は、圧力差分ΔPが第1の圧力差ΔP1以下、又は第2の圧力差ΔP2以上である場合(ステップS403でYes)には、排出流路70が閉塞していると判断し、ステップS404に進む。
 ステップS404では、制御装置102は発電システム100の作動を停止させる。次に、制御装置102は、発電システム100の起動を禁止する(ステップS405)。
 このように構成された本変形例3の発電システム100であっても、実施の形態1に係る発電システム100と同様の作用効果を奏する。
 (実施の形態2)
 本発明の実施の形態2に係る発電システムは、原料と水から燃料ガスを生成する改質器と、該改質器を加熱するように構成された燃焼器と、を有する水素生成装置をさらに備えている態様を例示するものである。
 [発電システムの構成]
 図9は、本発明の実施の形態2に係る発電システムの概略構成を示す模式図である。
 図9に示すように、本発明の実施の形態2に係る発電システム100は、実施の形態1に係る発電システム100と基本的構成は同じであるが、燃料ガス供給器14が水素生成装置14で構成されている点と、オフ燃料ガス流路73が水素生成装置14の燃焼器14bに接続されている点と、が異なる。具体的には、水素生成装置14は、改質器14aと燃焼器14bと燃焼ファン14cを有している。
 燃焼器14bには、オフ燃料ガス流路73の下流端が接続されていて、燃料電池11からオフ燃料ガスが、オフ燃料ガス流路73を通流して、燃焼用燃料として供給される。また、燃焼器14bには、空気供給流路79を介して、燃焼ファン14cが接続されている。燃焼ファン14cは、燃焼器14bに燃焼用空気を供給することができれば、どのような構成であってもよく、例えば、ファンやブロワ等のファン類で構成されていてもよい。
 燃焼器14bでは、供給されたオフ燃料ガスと燃焼用空気が燃焼して、燃焼排ガスが生成され、熱が発生する。燃焼器14bで生成された燃焼排ガスは、改質器14a等を加熱した後、燃焼排ガス流路80に排出される。燃焼排ガス流路80に排出された燃焼排ガスは、燃焼排ガス流路80を通流して、排出流路70に排出される。排出流路70に排出された燃焼排ガスは、排出流路70を通流して、発電システム100(建物200)外に排出される。
 改質器14aには、原料供給器及び水供給器が接続されていて(それぞれ、図示せず)、原料及び水が、それぞれ、改質器14aに供給され、供給された水は改質器14a内において加熱されて水蒸気になる。原料としては、メタンを主成分とする天然ガスやプロパンを主成分とするLPガス等を用いることができる。
 また、改質器14aは、改質触媒を有している。改質触媒としては、例えば、原料と水蒸気とから水素含有ガスを発生させる水蒸気改質反応を触媒することができれば、どの様な物質を使用してもよく、例えば、アルミナ等の触媒担体にルテニウム(Ru)を担持させたルテニウム系触媒や同様の触媒担体にニッケル(Ni)を担持させたニッケル系触媒等を使用することができる。
 そして、改質器14aでは、供給された原料と水蒸気との改質反応により、水素含有ガスが生成される。生成された水素含有ガスは、燃料ガスとして、燃料ガス供給流路71を通流して、燃料電池11の燃料ガス流路11Aに供給される。
 なお、本実施の形態2においては、改質器14aで生成された水素含有ガスが、燃料ガスとして、燃料電池11に送出される構成としたが、これに限定されず、水素生成装置14内に改質器14aより送出された水素含有ガス中の一酸化炭素を低減するための変成触媒(例えば、銅-亜鉛系触媒)を有する変成器や、酸化触媒(例えば、ルテニウム系触媒)や、メタン化触媒(例えば、ルテニウム系触媒)を有する一酸化炭素除去器を通過した後の水素含有ガスが燃料電池11に送出される構成であってもよい。
 また、燃焼器14bを燃料電池11からオフ燃料ガスが燃焼用燃料として供給されるように構成したが、これに限定されず、燃焼器14bに燃焼用燃料供給器から燃焼用燃料が別途供給されるように構成してもよい。
 このように構成された本実施の形態2に係る発電システム100であっても、実施の形態1に係る発電システム100と同様の作用効果を奏する。
 ここで、本実施の形態2に係る発電システム100では、逆流した発電システム100からの排出ガスが、燃焼器14bに供給されると、燃焼器14bでは、酸素不足により不完全燃焼が生じて、COが生成されたり失火したりするおそれがある。さらに、生成されたCOが燃料電池11内に流入すると、燃料電池11の触媒が劣化し、燃料電池11の発電効率が低下するおそれがある。
 しかしながら、本実施の形態2においては、閉塞検知器が、排出流路70の閉塞を検知すると、制御装置102が、発電システム100の運転を停止するため、COの生成量が低減される。したがって、本実施の形態2に係る発電システム100においては、燃料電池11の触媒劣化を抑制し、燃料電池11の発電効率低下を抑制することができる。
 [変形例1]
 次に、本実施の形態2に係る発電システム100の変形例について説明する。
 本実施の形態2における変形例1の発電システムは、閉塞検知器が、ガス組成検知器であり、制御装置は、閉塞検知器がガス組成の異常を検知した場合に、排出流路が閉塞されていると判断するように構成されている態様を例示するものである。
 ここで、「ガス組成の異常」とは、ガス組成検知器で検知されるガスが、発電システムの通常運転で検出されるべきガス組成領域から外れた場合をいう。また、通常運転で検出されるべきガス組成領域は、発電システムの設置場所における、燃料電池へ供給される燃料ガスの組成、求められる安全基準(排出ガス組成の基準)等を考慮して実験やシミュレーション等により予め設定することができる。なお、ガス組成検知器としては、例えば、酸素濃度検知器、一酸化炭素濃度検知器(以下、「CO濃度検知器」と表現することがある)、又は二酸化炭素濃度検知器(以下、「CO濃度検知器」と表現することがある)が挙げられる。
 [発電システムの構成]
 図10は、本実施の形態2における変形例1の発電システムの概略構成を示す模式図である。
 ところで、排出流路70が閉塞して、発電システム100からの排出ガスが、筐体12内に流入した場合、燃焼ファン14cから燃焼器14bに供給される空気の組成が変わるため、燃焼器14bで不完全燃焼が生じ、一酸化炭素が生成される場合がある。このため、本実施の形態2における変形例1の発電システム100では、CO濃度検知器22を設けて、CO濃度を検知することで、排出流路70の閉塞を検知する。
 図10に示すように、本変形例1の発電システム100は、実施の形態2に係る発電システム100と基本的構成は同じであるが、流量検知器20に代えて、CO濃度検知器22が設けられている点が異なる。なお、CO濃度検知器22は、CO濃度を検知することができれば、どのような構成であってもよく、使用される機器は限定されない。また、CO濃度検知器22は、本変形例1においては、排出流路70内に配置する構成としたが、これに限定されず、筐体12内に配置してもよく、また、センサ部分を排出流路70内に配置し、他の部分を排出流路70外に配置する構成としてもよい。さらに、CO濃度検知器22は、排出流路70と連通するオフ酸化剤ガス流路74、換気流路75、及び燃焼排ガス流路80のいずれかの流路の適所に設けてもよく、給気流路78の適所に設けてもよい。
 [発電システムの動作]
 図11は、本実施の形態2における変形例1の発電システムの排出ガス流入抑制動作を模式的に示すフローチャートである。
 図11に示すように、本変形例1の発電システム100の排出ガス流入抑制動作では、実施の形態1に係る発電システム100の排出ガス流入抑制動作と基本的動作は同じであるが、実施の形態1のステップS101とステップS102に代えて、ステップS101B及びステップS102Bが行われる点が異なる。
 具体的には、制御装置102は、CO濃度検知器22が検知した排出流路70内のCO濃度Cを取得する(ステップS101B)。ついで、制御装置102は、ステップS101Bで取得した濃度Cが、第1のCO濃度(第1のガス濃度)C1以上であるか否かを判断する(ステップS102B)。ここで、第1のCO濃度C1は、例えば、予め実験等により、燃焼器14bで不完全燃焼が生じたときに生成されるCO濃度を求めておき、当該濃度範囲としてもよい。また、第1のCO濃度C1は、例えば、1000ppmであってもよい。
 制御装置102は、ステップS101Bで取得した濃度Cが第1のCO濃度C1より小さい場合(ステップS102BでNo)には、ステップS101Bに戻り、第1のCO濃度C1以上になるまで、ステップS101B及びステップS102Bを繰り返す。一方、制御装置102は、ステップS101Bで取得した濃度Cが第1のCO濃度C1以上である場合(ステップS102BでYes)には、ステップS103に進む。ステップS103では、制御装置102は発電システム100の作動を停止させ、発電システム100の起動を禁止する(ステップS104)。
 このように構成された本変形例1の発電システム100であっても、実施の形態2に係る発電システム100と同様の作用効果を奏する。
 [変形例2]
 本発明の実施の形態2における変形例2の発電システムは、閉塞検知器が、酸素濃度検知器であり、制御装置は、酸素濃度検知器が検知した酸素濃度が予め設定された第1の酸素濃度以下の場合に閉塞と判断するように構成されている態様を例示するものである。
 [発電システムの構成]
 図12は、本実施の形態2における変形例2の燃料電池システムの概略構成を示す模式図である。
 図12に示すように、本変形例2の発電システム100は、実施の形態2における変形例1の発電システム100と基本的構成は同じであるが、CO濃度検知器22に代えて酸素濃度検知器25が設けられている点が異なる。なお、酸素濃度検知器25は、酸素濃度を検知することができれば、どのような構成であってもよく、使用される機器は限定されない。また、酸素濃度検知器25は、本変形例2においては、排出流路70内に配置する構成としたが、これに限定されず、筐体12内に配置してもよく、また、センサ部分を排出流路70内に配置し、他の部分を排出流路70外に配置する構成としてもよい。さらに、酸素濃度検知器25は、排出流路70と連通するオフ酸化剤ガス流路74、換気流路75、及び燃焼排ガス流路80のいずれかの流路の適所に設けてもよく、給気流路78の適所に設けてもよい。
 [発電システムの動作]
 図13は、本実施の形態2における変形例2の発電システムの排出ガス流入抑制動作を模式的に示すフローチャートである。
 図13に示すように、本変形例2の発電システム100の排出ガス流入抑制動作では、実施の形態1に係る発電システム100の排出ガス流入抑制動作と基本的動作は同じであるが、実施の形態1のステップS101とステップS102に代えて、ステップS101C及びステップS102Cが行われる点が異なる。
 具体的には、制御装置102は、酸素濃度検知器25が検知した排出流路70内の酸素濃度Cを取得する(ステップS101C)。ついで、制御装置102は、ステップS101Cで取得した濃度Cが、第1の酸素濃度C1以下であるか否かを判断する(ステップS102C)。ここで、第1の酸素濃度C1は、例えば、予め実験等により、排出流路70が閉塞したときの酸素濃度を求めておき、当該濃度範囲としてもよい。
 また、第1の酸素濃度C1は、燃焼器14bで燃焼を行わないとき(例えば、発電システム100が停止中で換気ファン13のみ作動しているとき)に酸素濃度検知器25が検知した酸素濃度を通常時の酸素濃度として記憶しておき、そこから所定の濃度を引いた値を第1の酸素濃度C1としてもよい。これにより、長期の使用等により、酸素濃度検知器25の検知する酸素濃度と実際の酸素濃度との間にずれが生じても、誤検知することを抑制することが可能である。
 また、第1の酸素濃度C1は、燃焼器14bで燃焼を行わないとき(例えば、発電システム100が停止中で換気ファン13のみ作動しているとき)に酸素濃度検知器25が検知した酸素濃度を通常時の酸素濃度として記憶しておき、そこから所定の濃度を引いた値としてもよい。これにより、長期の使用等により、酸素濃度検知器25の検知する酸素濃度と実際の酸素濃度との間にずれが生じても、誤検知することを抑制することが可能である。なお、所定の濃度は、使用する酸素濃度検知器の酸素濃度検知精度によって異なるため、使用する酸素濃度検知器によって、その値を設定するのが好ましく、誤検知が生じない範囲で設定するのが好ましい。例えば、酸素濃度検知器25が、±0.5%の精度である場合には、第1の酸素濃度C1を、大気中の酸素濃度から-1%として設定してもよい。
 制御装置102は、ステップS101Cで取得した濃度Cが第1の酸素濃度C1より大きい場合(ステップS102CでNo)には、ステップS101Cに戻り、第1の酸素濃度C1以下になるまで、ステップS101C及びステップS102Cを繰り返す。一方、制御装置102は、ステップS101Cで取得した濃度Cが第1の酸素濃度C1以下である場合(ステップS102CでYes)には、ステップS103に進む。ステップS103では、制御装置102は発電システム100の作動を停止させ、発電システム100の起動を禁止する(ステップS104)。
 このように構成された本変形例2の発電システム100であっても、実施の形態2に係る発電システム100と同様の作用効果を奏する。
 [変形例3]
 本発明の実施の形態2における変形例3の発電システムは、閉塞検知器が、二酸化炭素濃度検知器であり、制御装置は、二酸化炭素濃度検知器が検知した二酸化炭素濃度が予め設定された第1の二酸化炭素濃度以上の場合に閉塞と判断するように構成されている態様を例示するものである。
 [発電システムの構成]
 図14は、本実施の形態2における変形例3の燃料電池システムの概略構成を示す模式図である。
 図14に示すように、本変形例3の発電システム100は、実施の形態2における変形例1の発電システム100と基本的構成は同じであるが、CO濃度検知器22に代えてCO濃度検知器26が設けられている点が異なる。なお、CO濃度検知器26は、CO濃度を検知することができれば、どのような構成であってもよく、使用される機器は限定されない。また、CO濃度検知器26は、本変形例3においては、排出流路70内に配置する構成としたが、これに限定されず、筐体12内に配置してもよく、また、センサ部分を排出流路70内に配置し、他の部分を排出流路70外に配置する構成としてもよい。さらに、CO濃度検知器26は、排出流路70と連通するオフ酸化剤ガス流路74、換気流路75、及び燃焼排ガス流路80のいずれかの流路の適所に設けてもよく、給気流路78の適所に設けてもよい。
 [発電システムの動作]
 図15は、本実施の形態2における変形例3の発電システムの排出ガス流入抑制動作を模式的に示すフローチャートである。
 図15に示すように、本変形例3の発電システム100の排出ガス流入抑制動作では、実施の形態1に係る発電システム100の排出ガス流入抑制動作と基本的動作は同じであるが、実施の形態1のステップS101とステップS102に代えて、ステップS101D及びステップS102Dが行われる点が異なる。
 具体的には、制御装置102は、CO濃度検知器26が検知した排出流路70内のCO濃度Cを取得する(ステップS101D)。ついで、制御装置102は、ステップS101Dで取得した濃度Cが、第1のCO濃度(第1のガス濃度)C1以上であるか否かを判断する(ステップS102D)。ここで、第1のCO濃度C1は、例えば、予め実験等により、排出流路70が閉塞したときのCO濃度を求めておき、当該濃度範囲としてもよい。
 制御装置102は、ステップS101Dで取得した濃度Cが第1のCO濃度C1より小さい場合(ステップS102DでNo)には、ステップS101Dに戻り、第1のCO濃度C1以上になるまで、ステップS101D及びステップS102Dを繰り返す。一方、制御装置102は、ステップS101Dで取得した濃度Cが第1のCO濃度C1以上である場合(ステップS102DでYes)には、ステップS103に進む。ステップS103では、制御装置102は発電システム100の作動を停止させ、発電システム100の起動を禁止する(ステップS104)。
 このように構成された本変形例3の発電システム100であっても、実施の形態2に係る発電システム100と同様の作用効果を奏する。
 なお、本変形例1~3の発電システム100では、閉塞検知器がガス組成検知器(CO濃度検知器22、酸素濃度検知器25、又は、CO2濃度検知器26)で構成されている態様を例示したが、これに限定されない。閉塞検知器は、例えば、圧力検知器で構成されていてもよく、後述するように、温度検知器で構成されていてもよい。
 (実施の形態3)
 本発明の実施の形態3に係る発電システムは、筐体の外部に配置された燃焼装置を備え、排出流路が、その上流端が燃焼装置及び燃料電池システムのそれぞれに連結するように、少なくとも二つに分岐している態様を例示するものである。
 [発電システムの構成]
 図16は、本発明の実施の形態3に係る発電システムの概略構成を示す模式図である。
 図16に示すように、本発明の実施の形態3に係る発電システム100は、実施の形態2に係る発電システム100と基本的構成は同じであるが、筐体12外に配置された燃焼装置103をさらに備えている点と、排出流路70が筐体12と排気口103Aを接続するように構成されている点と、が異なる。
 具体的には、燃焼装置103は、燃焼器17と燃焼ファン(燃焼空気供給器)18を有している。燃焼器17と燃焼ファン18は、燃焼空気供給流路76を介して接続されている。燃焼ファン18は、燃焼器17に燃焼空気を供給することができれば、どのような構成であってもよく、例えば、ファンやブロワ等のファン類で構成されていてもよい。
 燃焼器17には、図示されない燃焼燃料供給器から天然ガス等の可燃性ガスや灯油等の液体燃料等の燃焼燃料が供給される。そして、燃焼器17では、燃焼ファン18から供給された燃焼空気と、燃焼燃料供給器から供給された燃焼燃料と、を燃焼して、熱が発生し、燃焼排ガスが生成される。なお、発生した熱は、水を加熱するのに使用することができる。すなわち、燃焼装置103は、ボイラとして使用してもよい。
 また、燃焼器17には、排出ガス流路77の上流端が接続されていて、排出ガス流路77の下流端は、排出流路70に接続されている。これにより、燃焼器17で生成された燃焼排ガスは、排出ガス流路77を介して、排出流路70に排出される。すなわち、燃焼器17で生成された燃焼排ガスが、燃焼装置103から排出される排出ガスとして、排出流路70に排出される。そして、排出流路70に排出された燃焼排ガスは、排出流路70を通流して、建物200外に排出される。
 燃焼装置103を構成する壁の適所には、壁の厚み方向に貫通する孔19が設けられていて、該孔19には、排出流路70を構成する配管が、隙間を有するようにして、挿通されている。そして、孔19と排出流路70との隙間が、給気口19(給気流路78)を構成する。これにより、給気口19を介して、燃焼装置103内部に、発電システム100外の空気が供給される。
 すなわち、排出流路70は、分岐されていて、2つの上流端は、孔16及び孔19のそれぞれに、接続されている。また、排出流路70は、建物200の外側にまで延びるように形成されていて、その下流端(開口)は、大気に開放されている。これにより、排出流路70は、筐体12と燃焼装置103の排気口103Aを連通する。
 なお、本実施の形態3においては、排出流路70を構成する配管が挿通する孔と、給気口19を構成する孔と、を1つの孔19で構成したが、これに限定されない。排出流路70を構成する配管が挿通する(接続する)孔と、給気口19を構成する孔と、を別々に燃焼装置103に設けてもよい。また、給気口19は、燃焼装置103に1つの孔によって構成されてもよく、また、複数の孔によって構成されていてもよい。さらに、給気口19に配管を挿通して、給気流路78を構成してもよい。
 [発電システムの動作]
 本実施の形態3に係る発電システム100では、燃焼装置103が作動しているときに、閉塞検知器が排出流路70の閉塞を検知した場合の動作を説明する。なお、燃焼装置103が作動しておらず、燃料電池システム101が作動している場合は、上記実施の形態1と同様にして、発電システム100の排出ガス流入抑制動作が実行される。
 図17は、本実施の形態3に係る発電システムの排出ガス流入抑制動作を模式的に示すフローチャートである。
 図17に示すように、制御装置102は、燃焼装置103が作動中に、流量検知器20が検知した排出流路70内のガスの流量Fを取得する(ステップS201)。ここで、燃焼装置103の作動中とは、燃焼装置103から排出ガスが排出流路70に排出されている期間をいう。本実施の形態3においては、燃焼器17及び燃焼ファン18の少なくとも1の機器が作動中をいう。したがって、燃焼器17が作動せず、燃焼ファン18のみが作動している場合も、燃焼装置103の作動中に含まれる。
 ついで、制御装置102は、ステップS201で取得した流量Fが、予め設定された第2の流量F2以下であるか否かを判断する(ステップS202)。ここで、第2の流量F2は、例えば、予め実験等により、燃焼装置103から排出された排出ガスが、排出流路70を通流するときの流量範囲を求めておき、当該流量範囲としてもよい。
 制御装置102は、ステップS201で取得した流量Fが第2の流量F2より大きい場合(ステップS202でNo)には、ステップS201に戻り、流量Fが第2の流量F2以下になるまで、ステップS201及びステップS202を繰り返す。一方、制御装置102は、ステップS201で取得した流量Fが第2の流量F2以下である場合(ステップS202でYes)には、排出流路70が閉塞していると判断し、ステップS203に進む。
 ステップS203では、制御装置102は、燃焼装置103の作動を停止する。これにより、燃焼装置103から排出流路70への排出ガスの排出が停止し、排出流路70から筐体12内への排出ガスの逆流が抑制される。
 次に、制御装置102は、燃料電池システム101が停止中かどうかを確認する(ステップS204)。制御装置102は、燃料電池システム101が作動中である場合(ステップS204でNo)には、燃料電池システム101の作動を停止させて(ステップS205)、ステップS206に進む。燃料電池システム101が作動していると、燃料電池システム101から排出される排出ガスが筐体12内に逆流するためである。一方、制御装置102は、燃料電池システム101が停止中である場合(ステップS204でYes)には、ステップS206に進む。
 ステップS206では、制御装置102は、発電システム100の起動を禁止する。具体的には、制御装置102は、例えば、発電システム100の使用者から図示されないリモコンを操作して、起動要求信号が制御装置102に送信された場合であっても、また、発電システム100の起動時間になっても、発電システム100の起動処理を許可しないようにすることで、発電システム100の起動を禁止する。なお、発電システム100の起動を禁止するのであるから、当然に、燃焼装置103の起動も禁止される。
 このように、本実施の形態3に係る発電システム100では、閉塞検知器が、排出流路70の閉塞を検知すると、制御装置102が発電システム100の作動を禁止することにより、筐体12内に排出ガスが逆流することが抑制される。このため、筐体12内に高温の排出ガスが滞留することが抑制され、筐体12内の温度上昇が抑制される。したがって、筐体12内に収納された補機(制御装置102等)の効率低下を抑制することができ、発電システム100の耐久性を向上させることができる。
 ところで、燃焼装置103に、天然ガス等に含まれる硫黄化合物を脱硫する脱硫器が設けられていないような場合には、燃焼装置103が燃焼動作を行うことにより、SOが生成される。そして、生成されたSOが、排出流路70を介して、筐体12内に逆流し、燃料電池11のカソードに供給されると、カソードに含まれる触媒の被毒を加速するおそれがある。
 また、逆流した燃焼装置103からの排出ガスが、燃焼器14bに供給されると、燃焼器14bでは、不完全燃焼が生じて、COが生成されるおそれがある。さらに、生成されたCOが燃料電池11内に流入すると、燃料電池11の触媒が劣化し、燃料電池11の発電効率が低下するおそれがある。
 しかしながら、本実施の形態3に係る発電システム100では、上述したように、制御装置102が、発電システム100の作動を禁止するため、燃焼装置103からの排出ガス(CO及びSOを含む)の筐体12内への逆流を抑制することにより、CO及びSOが燃料電池11に供給されることを抑制することができる。
 したがって、本実施の形態3に係る発電システム100では、燃料電池11のカソードの被毒化を抑制することができ、燃料電池11の発電効率低下を抑制することができ、発電システム100の耐久性を向上させることができる。
 なお、本実施の形態3においては、上記のように、制御装置102は、燃焼装置103の停止と燃料電池システム101の停止を別々に行うように制御したが、これに限定されず、実施の形態1及び実施の形態2(これらの変形例を含む)のように、発電システム100の停止として一度に行うように制御してもよい。
 [変形例1]
 次に、本実施の形態3における変形例1の発電システムについて説明する。
 本実施の形態3における変形例1の発電システムは、閉塞検知器が、温度検知器であり、制御装置は、温度検知器が検知した温度が予め設定された第1の温度よりも高い場合、又は前記第1の温度よりも低い温度である第2の温度よりも低い場合に、排出流路が閉塞されていると判断するように構成されている態様を例示するものである。
 [発電システムの構成]
 図18は、本実施の形態3における変形例1の発電システムの概略構成を示す模式図である。
 図18に示すように、本実施の形態3における変形例1の発電システム100は、実施の形態3に係る発電システム100と基本的構成は同じであるが、流量検知器20に代えて温度検知器27が設けられている点が異なる。なお、温度検知器27は、排出流路70内の温度を検知することができれば、どのような構成であってもよく、使用される機器は限定されない。また、温度検知器27は、排出流路70が閉塞したことを検知する観点から、排出流路70における燃焼装置103側への分岐点よりも上流側に配置されていることが好ましい。
 また、温度検知器27は、本変形例1においては、排出流路70内に配置する構成としたが、これに限定されず、筐体12内に配置してもよく、また、センサ部分を排出流路70内に配置し、他の部分を排出流路70外に配置する構成としてもよい。さらに、温度検知器27は、排出流路70と連通するオフ酸化剤ガス流路74、換気流路75、及び燃焼排ガス流路80のいずれかの流路の適所に設けてもよく、給気流路78の適所に設けてもよい。
 [発電システムの動作]
 本実施の形態3における変形例1の発電システム100では、燃焼装置103が作動しているときに、閉塞検知器が排出流路70の閉塞を検知した場合の動作を説明する。
 ところで、図18において、排出流路70における温度検知器27が配置されている部分よりも下流側の部分で、排出流路70が閉塞したとすると、排出流路70が閉塞する前における温度検知器27で検知される温度よりも排出流路70が閉塞した後における温度検知器27で検知される温度は高くなる。このため、制御装置102は、温度検知器27が検知した温度が、発電システム100が作動中で、かつ、排出流路70が閉塞していない場合における排出流路70内の温度範囲の最も高い値である第1の温度よりも高い場合に、排出流路70が閉塞されていると判断することができる。
 また、排出流路70における温度検知器27が配置されている部分よりも上流側の部分で、排出流路70が閉塞したとすると、排出流路70が閉塞する前における温度検知器27で検知される温度よりも排出流路70が閉塞した後における温度検知器27で検知される温度が低くなる場合がある。例えば、温度検知器27が排出流路70の下流端近くに設けられていて、外気の温度が低い場合、排出流路70が閉塞すると、外気と排出流路70の閉塞した部分よりも下流側に存在する排出ガスとが熱交換して、温度検知器27で検知する温度が低くなる場合がある。
 このため、制御装置102は、温度検知器27が検知した温度が、発電システム100が作動中で、かつ、排出流路70が閉塞していない場合における排出流路70内の温度範囲の最も低い値である第2の温度よりも小さい場合に、排出流路70が閉塞されていると判断することができる。
 すなわち、制御装置102は、温度検知器27が検知した温度が、予め設定された所定の温度範囲外である場合には、排出流路70が閉塞されていると判断することができる。以下、以下、図19を参照しながら、温度検知器27が検知した温度に基づく、制御装置102による発電システム100の排出ガス流入抑制動作を説明する。
 図19は、本実施の形態3における変形例1の発電システムの排出ガス流入抑制動作を模式的に示すフローチャートである。
 図19に示すように、本変形例1の発電システム100の排出ガス流入抑制動作では、実施の形態3に係る発電システム100の排出ガス流入抑制動作と基本的動作は同じであるが、実施の形態3のステップS201とステップS202に代えて、ステップS201A及びステップS202Aが行われる点が異なる。
 具体的には、制御装置102は、燃焼装置103が作動中に、温度検知器27が検知した排出流路70内の温度Tを取得する(ステップS201A)。ついで、制御装置102は、ステップS201Aで取得した温度Tが、第1の温度T1より高いか否か、又は第2の温度T2より低いか否かを判断する(ステップS202A)。
 ここで、第1の温度T1は、例えば、予め実験等により、排出流路70が閉塞したときの排出流路70の温度範囲を求めておき、当該温度範囲の最も高い温度値としてもよい。また、第1の温度T1は、燃焼器14bで燃焼を行っているとき(例えば、発電システム100が発電中)に温度検知器27が検知した温度のうち、最も高い温度を記憶しておき、そこから所定の温度を足した値を第1の温度T1としてもよい。なお、所定の温度は、誤検知が生じない範囲で任意に設定することができる。
 また、第2の温度T2は、例えば、予め実験等により、排出流路70が閉塞したときの排出流路70の温度範囲を求めておき、当該温度範囲の最も低い温度値としてもよい。また、第2の温度T2は、燃焼器14bで燃焼を行っているとき(例えば、発電システム100が発電中)に温度検知器27が検知した温度のうち、最も低い温度を記憶しておき、そこから所定の温度を引いた値を第2の温度T2としてもよい。なお、所定の温度は、誤検知が生じない範囲で任意に設定することができる。
 制御装置102は、ステップS201Aで取得した温度Tが第2の温度T2以上、かつ、第1の温度T1以下である場合(ステップS202AでNo)には、ステップS201Aに戻り、温度Tが第1の温度T1より高くなるまで、又は温度Tが第2の温度T2よりも低くなるまで、ステップS201A及びステップS202Aを繰り返す。一方、制御装置102は、ステップS201Aで取得した温度Tが第1の温度T1より高い場合、又はステップS201Aで取得した温度Tが第2の温度T2よりも低い場合(ステップS202AでYes)には、排出流路70が閉塞していると判断し、ステップS203に進む。なお、ステップS203以降の動作は、実施の形態3に係る発電システム100と同様に行われる。
 このように構成された本変形例1の発電システム100であっても、実施の形態3に係る発電システム100と同様の作用効果を奏する。なお、本変形例1では、燃焼装置103の作動中である場合について、説明したが、燃焼装置103が停止中で、燃料電池システム101が作動中である場合にも、燃焼装置103の作動中である場合と同様に、発電システム100の排出ガス流入抑制動作が実行される。
 [変形例2]
 本実施の形態3における変形例2の発電システムは、閉塞検知器が、温度検知器であり、制御装置は、予め設定された所定時間の前後における温度検知器が検知した温度の差分が、予め設定された第1の温度差以上の場合又は前記第1の温度差よりも小さい温度差である第2の温度差以下の場合に、排出流路が閉塞されていると判断するように構成されている態様を例示するものである。
 本実施の形態3における変形例2の発電システム100は、実施の形態3における変形例1の発電システム100と同様に構成されているため、構成の詳細な説明は省略する。
 [発電システムの動作]
 本実施の形態3における変形例2の発電システム100では、燃焼装置103が作動しているときに、閉塞検知器が排出流路70の閉塞を検知した場合の動作を説明する。
 ところで、図18において、排出流路70における温度検知器27が配置されている部分よりも上流側の部分で、排出流路70が閉塞したとすると、排出流路70が閉塞する前後における温度検知器27で検知される温度の差分は低くなる場合がある。例えば、温度検知器27が排出流路70の下流端近くに設けられていて、外気の温度が低い場合、排出流路70が閉塞すると、外気と排出流路70の閉塞した部分よりも下流側に存在する排出ガスとが熱交換して、温度検知器27で検知する温度の差分が低くなる場合がある。
 このため、制御装置102は、設定された所定時間の前後における温度検知器27が検知した温度の差分が、予め設定された第1の温度差以下の場合に、排出流路70が閉塞されていると判断することができる。
 また、排出流路70における温度検知器27が配置されている部分よりも下流側の部分で、排出流路70が閉塞したとすると、排出流路70が閉塞する前後における温度検知器27で検知される温度の差分は高くなる。このため、制御装置102は、設定された所定時間の前後における温度検知器27が検知した温度の差分が、第1の温度差よりも大きい温度差である第2の温度差以上の場合に、排出流路70が閉塞されていると判断することができる。
 すなわち、制御装置102は、温度検知器27が検知した温度の差分が、予め設定された所定の温度の差分範囲外である場合には、排出流路70が閉塞されていると判断することができる。以下、以下、図20を参照しながら、温度検知器27が検知した温度の差分に基づく、制御装置102による発電システム100の排出ガス流入抑制動作を説明する。
 図20は、本実施の形態3における変形例2の発電システムの排出ガス流入抑制動作を模式的に示すフローチャートである。
 図20に示すように、制御装置102は、燃焼装置103が作動中に、温度検知器27が検知した排出流路70内の温度t1を取得する(ステップS301)。ついで、制御装置102は、所定の時間経過後に、再び温度検知器27から排出流路70内の温度t2を取得する(ステップS302)。ここで、所定の時間は、任意に設定することができ、例えば、数秒であってもよく、数十秒であってもよく、数分であってもよい。
 次に、制御装置102は、ステップS301で取得した温度t1とステップS302で取得した温度t2との温度差分ΔTが、予め設定された第1の温度差ΔT1以下であるか否か、又は温度差分ΔTが第2の温度差ΔT2以上であるか否かを判断する(ステップS303)。
 ここで、第1の温度差ΔT1は、例えば、予め実験等により、排出流路70が閉塞していないときの温度と、排出流路70が閉塞したときの温度との差分の範囲を求めておき、当該温度差分の範囲の最も低い値としてもよい。同様に、第2の温度差ΔT2は、例えば、予め実験等により、排出流路70が閉塞していないときの温度と、排出流路70が閉塞したときの温度との差分の範囲を求めておき、当該温度差分の範囲の最も高い値としてもよい。
 制御装置102は、温度差分ΔTが第1の温度差ΔT1より大きく、かつ、第2の温度差ΔT2より小さい場合(ステップS303でNo)には、ステップS301に戻り、温度差分ΔTが第1の温度差ΔT1以下になるまで、又は温度差分ΔTが第2の温度差ΔT2以上になるまで、ステップS301~ステップS303を繰り返す。一方、制御装置102は、温度差分ΔTが、温度差分ΔTが第1の温度差ΔT1以下である場合、又は温度差分ΔTが第2の温度差ΔT2以上である場合(ステップS303でYes)には、排出流路70が閉塞していると判断し、ステップS304に進む。
 ステップS304では、制御装置102は、燃焼装置103の作動を停止する。これにより、燃焼装置103から排出流路70への排出ガスの排出が停止し、排出流路70から筐体12内への排出ガスの逆流が抑制される。
 次に、制御装置102は、燃料電池システム101は停止中かどうかを確認する(ステップS305)。制御装置102は、燃料電池システム101が作動中である場合(ステップS305でNo)には、燃料電池システム101の作動を停止させて(ステップS306)、ステップS307に進む。燃料電池システム101が作動していると、燃料電池システム101から排出される排出ガスが筐体12内に逆流するためである。一方、制御装置102は、燃料電池システム101が停止中である場合(ステップS305でYes)には、ステップS307に進む。
 ステップS307では、制御装置102は、発電システム100の起動を禁止する。具体的には、制御装置102は、例えば、発電システム100の使用者から図示されないリモコンを操作して、起動要求信号が制御器102に送信された場合であっても、また、発電システム100の起動時間になっても、発電システム100の起動処理を許可しないようにすることで、発電システム100の起動を禁止する。なお、発電システム100の起動を禁止するのであるから、当然に、燃焼装置103の起動も禁止される。
 このように構成された本変形例2の発電システム100であっても、実施の形態3に係る発電システム100と同様の作用効果を奏する。
 なお、本変形例2では、燃焼装置103の作動中である場合について、説明したが、燃焼装置103が停止中で、燃料電池システム101が作動中である場合にも、燃焼装置103の作動中である場合と同様に、発電システム100の排出ガス流入抑制動作が実行される。
 [変形例3]
 次に、本実施の形態3における変形例3の発電システムについて説明する。
 本実施の形態3における変形例3の発電システムは、給気流路は、その上流端が燃焼装置及び燃料電池システムのそれぞれに連結するように、少なくとも二つに分岐していて、給気流路は、排出流路と熱交換可能なように設けられている態様を例示するものである。
 ここで、給気流路が排出流路に熱交換可能なように設けられているとは、必ずしも給気流路と排出流路が接触して設けられている必要がなく、給気流路内のガスと排気流路内のガスとが熱交換可能な程度に離間して設けられている態様をも含む。このため、給気流路と排出流路が空間を挟んで設けられていてもよい。また、一方の流路の内側に他方の流路が設けられていてもよい。すなわち、給気流路を構成する配管と排気流路を構成する配管が、二重配管となるように設けられていてもよい。
 [発電システムの構成]
 図21は、本実施の形態3における変形例3の発電システムの概略構成を示す模式図である。なお、図21においては、給気流路をハッチングで示している。
 図21に示すように、本変形例3の発電システム100は、実施の形態3に係る発電システム100と基本的構成は同じであるが、給気流路78の構成が異なる。
 具体的には、給気流路78は、燃焼装置103と燃料電池システム101の筐体12を連通し、かつ、燃焼装置103及び燃料電池システム101のそれぞれに外部(ここでは、建物200外)から空気を供給し、かつ、排出流路70の外周を囲むように設けられている。
 より詳しくは、給気流路78は、途中で分岐されていて、2つの下流端は、孔16及び孔19のそれぞれに、接続されている。また、給気流路78は、建物200の外側にまで延びるように形成されていて、その上流端(開口)は、大気に開放されている。これにより、給気流路78は、筐体12と燃焼装置103を連通し、発電システム100の外部から空気を燃料電池システム101及び燃焼装置103に供給することができる。
 また、給気流路78と排出流路70は、いわゆる二重配管で構成されている。これにより、排出流路70に燃焼装置103から燃焼排ガス(排出ガス)が排出されると、給気流路78内のガスは、燃焼排ガスからの伝熱により、加熱される。
 このように構成された本変形例3の発電システム100であっても、実施の形態3に係る発電システム100と同様の作用効果を奏する。
 なお、本変形例3においては、排出流路70と給気流路78が二重配管である形態を採用したが、これに限定されない。給気流路78が排出流路70と熱交換可能なように設けられていれば、その態様は限定されない。例えば、1つの配管の内部に、配管の延伸方向に沿って、該配管を分割する壁を設けて、分割された一方の空間を給気流路78とし、他方の空間を排出流路70としてもよい。
 なお、上記実施の形態1乃至3(変形例を含む)においては、換気器として、換気ファン13を使用したが、これに限定されない。例えば、換気ファン13の代わりに酸化剤ガス供給器15を用いてもよい。また、燃料ガス供給器14が、水素生成装置で構成されていて、該水素生成装置が、燃焼器14b及び燃焼ファン14cを有する場合、換気器として、換気ファン13の代わりに燃焼ファン14cを用いてもよい。
 さらに、換気器として、換気ファン13と酸化剤ガス供給器15を同時に用いてもよく、換気ファン13と燃焼ファン14cを同時に用いてもよく、燃焼ファン14cと酸化剤ガス供給器15を同時に用いてもよく、換気ファン13、燃焼ファン14c、及び酸化剤ガス供給器15を同時に用いてもよい。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。したがって、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の要旨を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。また、上記実施形態に開示されている複数の構成要素の適宜な組合せにより種々の発明を形成できる。
 本発明の発電システム及びその運転方法では、排出流路が閉塞したような場合に、筐体内が高温化することが抑制され、筐体内に収納された補機の効率低下を抑制することが可能であるので、燃料電池の分野において有用である。
 11 燃料電池
 11A 燃料ガス流路
 11B 酸化剤ガス流路
 12 筐体
 13 換気ファン
 14 燃料ガス供給器(水素生成装置)
 14a 改質器
 14b 燃焼器
 14c 燃焼ファン
 15 酸化剤ガス供給器
 16 給気口
 17 燃焼器
 18 燃焼ファン
 19 給気口
 20 流量検知器
 21 圧力検知器
 22 CO濃度検知器
 23 孔
 24 孔
 25 酸素濃度検知器
 26 CO濃度検知器
 27 温度検知器
 70 排出流路
 71 燃料ガス供給流路
 72 酸化剤ガス供給流路
 73 オフ燃料ガス流路
 74 オフ酸化剤ガス流路
 75 換気流路
 76 燃焼空気供給流路
 77 排出ガス流路
 78 給気流路
 79 空気供給流路
 80 燃焼排ガス流路
 100 発電システム
 101 燃料電池システム
 102 制御装置
 103 燃焼装置
 103A 排気口
 200 建物

Claims (16)

  1.  燃料ガスと酸化剤ガスとを用いて発電する燃料電池と、前記燃料電池を収納する筐体と、を有する燃料電池システムと、制御装置と、を備える発電システムであって、
     前記発電システムは、
     前記発電システムからの排出ガスを前記筐体の外部へ排出するように構成された排出流路と、前記発電システムに空気を供給するように構成された給気流路と、を有する給排気機構と、
     前記給排気機構内及び前記筐体内のうちの少なくとも一方に設けられた閉塞検知器と、
     前記筐体内の空気を換気し、前記排出流路に換気した空気を排出する換気器と、をさらに備え、
     前記制御装置は、前記発電システムが作動中に、前記閉塞検知器から得られる情報に基づいて前記排出流路の閉塞を検知すると、前記発電システムの運転を停止するように構成されていることを特徴とする、発電システム。
  2.  前記閉塞検知器は、流量検知器で構成されており、
     前記制御装置は、前記流量検知器が検知した流量が予め設定された第1の流量以下の場合に、前記排出流路が閉塞していると判断することを特徴とする、請求項1に記載の発電システム。
  3.  前記閉塞検知器は、前記換気器が送出する空気の流量を検知する流量検知器で構成されており、
     前記制御装置は、前記流量検知器が検知する流量に基づいて、前記換気器の操作量を制御しており、前記換気器の操作量が第1の操作量以上になった場合に、前記排出流路が閉塞していると判断することを特徴とする、請求項1に記載の発電システム。
  4.  前記閉塞検知器は、圧力検知器で構成されており、
     前記制御装置は、前記圧力検知器が予め設定された第1の圧力よりも大きい圧力を検知した場合、又は前記第1の圧力よりも小さい圧力である第2の圧力よりも小さい圧力を検知した場合に、前記排出流路が閉塞していると判断することを特徴とする、請求項1~3のいずれか1項に記載の発電システム。
  5.  前記制御装置は、予め設定された所定時間の前後における前記圧力検知器が検知した圧力の差分が、予め設定された第1の圧力差以下の場合又は前記第1の圧力差よりも大きい圧力差である第2の圧力差以上の場合に、前記排出流路が閉塞していると判断することを特徴とする、請求項1~4のいずれか1項に記載の発電システム。
  6.  前記燃料電池システムは、原料と水から水素を含む燃料ガスを生成する改質器と、該改質器を加熱するように構成された燃焼器と、を有する水素生成装置をさらに備え、
     前記閉塞検知器は、ガス組成検知器で構成されており、
     前記制御装置は、前記ガス組成検知器がガス組成の異常を検知した場合に、前記排出流路が閉塞していると判断する、請求項1~5のいずれか1項に記載の発電システム。
  7.  前記閉塞検知器は、酸素濃度検知器で構成されており、
     前記制御装置は、前記酸素濃度検知器が検知した酸素濃度が予め設定された第1の酸素濃度以下の場合に、前記排出流路が閉塞していると判断する、請求項6に記載の発電システム。
  8.  前記閉塞検知器は、一酸化炭素濃度及び二酸化炭素濃度のうちの少なくとも一方のガス濃度を検知するガス濃度検知器で構成されており、
     前記制御装置は、前記ガス濃度検知器が検知したガス濃度が予め設定された第1のガス濃度以上の場合に、前記排出流路が閉塞されていると判断することを特徴とする、請求項6又は7に記載の発電システム。
  9.  前記閉塞検知器は、温度検知器で構成されており、
     前記制御装置は、前記温度検知器が検知した温度が、予め設定された第1の温度よりも高い場合又は前記第1の温度よりも低い温度である第2の温度よりも低い場合に、前記排出流路が閉塞されていると判断することを特徴とする、請求項1~8のいずれか1項に記載の発電システム。
  10.  前記閉塞検知器は、温度検知器で構成されており、
     前記制御装置は、予め設定された所定時間の前後における前記温度検知器が検知した温度の差分が、予め設定された第1の温度差以上の場合又は前記第1の温度差よりも小さい温度差である第2の温度差以下の場合に、前記排出流路が閉塞されていると判断することを特徴とする、請求項1~8のいずれか1項に記載の発電システム。
  11.  前記筐体の外部に配置された燃焼装置をさらに備え、
     前記排出流路は、その上流端が前記燃焼装置及び前記燃料電池システムのそれぞれに連結するように、少なくとも二つに分岐しており、
     前記給気流路は、その下流端が前記燃焼装置及び前記燃料電池システムのそれぞれに連結するように、少なくとも二つに分岐していることを特徴とする、請求項1~10のいずれか1項に記載の発電システム。
  12.  前記制御装置は、前記燃焼装置が作動することにより、前記排出流路の閉塞を検知した場合に、少なくとも前記燃焼装置の作動を停止させることを特徴とする、請求項11に記載の発電システム。
  13.  前記制御装置は、前記燃料電池システムが作動することにより、前記排出流路の閉塞を検知した場合、少なくとも前記燃料電池システムの運転を停止させることを特徴とする、請求項1~12のいずれか1項に記載の発電システム。
  14.  前記制御装置は、前記発電システムの作動を停止させ、前記発電システムの起動を禁止するように制御することを特徴とする、請求項1~13のいずれか1項に記載の発電システム。
  15.  前記給気流路は、前記排気流路と熱交換可能なように設けられていることを特徴とする、請求項1~14のいずれか1項に記載の発電システム。
  16.  燃料ガスと酸化剤ガスとを用いて発電する燃料電池と、前記燃料電池を収納する筐体と、を有する燃料電池システムを備える、発電システムの運転方法であって、
     前記発電システムは、
     前記発電システムからの排出ガスを前記筐体の外部へ排出するように構成された排出流路と、前記発電システムに空気を供給するように構成された給気流路と、を有する給排気機構と、
     前記給排気機構内及び前記筐体内のうちの少なくとも一方に設けられた閉塞検知器と、
     前記筐体内の空気を換気し、前記排出流路に換気した空気を排出する換気器と、をさらに備え、
     前記発電システムが作動中に、前記閉塞検知器から得られる情報に基づいて前記排出流路の閉塞を検知するステップと、
     前記発電システムの運転を停止するステップと、を備えていることを特徴とする、発電システムの運転方法。
PCT/JP2011/006869 2010-12-13 2011-12-08 発電システム及びその運転方法 WO2012081207A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11849599.3A EP2639870B1 (en) 2010-12-13 2011-12-08 Electricity-generation system and method for operating same
JP2012548635A JP5280588B2 (ja) 2010-12-13 2011-12-08 発電システム及びその運転方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010276955 2010-12-13
JP2010-276955 2010-12-13

Publications (1)

Publication Number Publication Date
WO2012081207A1 true WO2012081207A1 (ja) 2012-06-21

Family

ID=46244326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006869 WO2012081207A1 (ja) 2010-12-13 2011-12-08 発電システム及びその運転方法

Country Status (3)

Country Link
EP (1) EP2639870B1 (ja)
JP (1) JP5280588B2 (ja)
WO (1) WO2012081207A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015088258A (ja) * 2013-10-29 2015-05-07 パナソニックIpマネジメント株式会社 発電システム及びその運転方法
EP3026342A4 (en) * 2013-07-22 2017-03-22 Rinnai Corporation Composite combustion device
JP2018037346A (ja) * 2016-09-01 2018-03-08 東芝燃料電池システム株式会社 燃料電池発電システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6318917B2 (ja) * 2014-06-30 2018-05-09 アイシン精機株式会社 燃料電池システム
DE102020110475A1 (de) 2020-04-17 2021-10-21 Vaillant Gmbh Verfahren zum Erkennen einer vorliegenden oder drohenden Blockade mindestens eines Strömungswegs

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06152171A (ja) * 1992-11-05 1994-05-31 Mitsubishi Electric Corp 流路閉塞検出装置
JP2002184435A (ja) * 2000-12-18 2002-06-28 Nissan Motor Co Ltd 燃料電池システムの保護装置
JP2002349844A (ja) * 2001-05-25 2002-12-04 Tokyo Gas Co Ltd 湯沸器用排気フード部
JP2003262333A (ja) * 2002-03-06 2003-09-19 Noritz Corp 燃焼装置
JP2004342596A (ja) * 2003-04-23 2004-12-02 Nissan Motor Co Ltd 固体高分子型燃料電池スタック
JP2005063697A (ja) * 2003-08-19 2005-03-10 Fuji Electric Holdings Co Ltd 燃料電池発電装置
JP2006164685A (ja) * 2004-12-06 2006-06-22 Nissan Motor Co Ltd 燃料電池システム
JP2007095542A (ja) * 2005-09-29 2007-04-12 Kyocera Corp 燃料電池の排気システム
JP2008163795A (ja) * 2006-12-27 2008-07-17 Mitsubishi Fuso Truck & Bus Corp 内燃機関の排気浄化装置
JP2008210631A (ja) * 2007-02-26 2008-09-11 Kyocera Corp 発電装置
JP2009021047A (ja) * 2007-07-10 2009-01-29 Toshiba Corp 屋内設置式燃料電池発電システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT411387B (de) * 1999-01-11 2003-12-29 Vaillant Gmbh Heizeinrichtung
AT503130B1 (de) * 2006-03-15 2007-08-15 Vaillant Austria Gmbh Kombination eines heizgerätes mit einer brennstoffzellenanlage sowie ein verfahren zum betreiben dieser kombination
JP2008262849A (ja) * 2007-04-13 2008-10-30 Ebara Ballard Corp 燃料電池システム
JP2010272310A (ja) * 2009-05-20 2010-12-02 Aisin Seiki Co Ltd 燃料電池装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06152171A (ja) * 1992-11-05 1994-05-31 Mitsubishi Electric Corp 流路閉塞検出装置
JP2002184435A (ja) * 2000-12-18 2002-06-28 Nissan Motor Co Ltd 燃料電池システムの保護装置
JP2002349844A (ja) * 2001-05-25 2002-12-04 Tokyo Gas Co Ltd 湯沸器用排気フード部
JP2003262333A (ja) * 2002-03-06 2003-09-19 Noritz Corp 燃焼装置
JP2004342596A (ja) * 2003-04-23 2004-12-02 Nissan Motor Co Ltd 固体高分子型燃料電池スタック
JP2005063697A (ja) * 2003-08-19 2005-03-10 Fuji Electric Holdings Co Ltd 燃料電池発電装置
JP2006164685A (ja) * 2004-12-06 2006-06-22 Nissan Motor Co Ltd 燃料電池システム
JP2007095542A (ja) * 2005-09-29 2007-04-12 Kyocera Corp 燃料電池の排気システム
JP2008163795A (ja) * 2006-12-27 2008-07-17 Mitsubishi Fuso Truck & Bus Corp 内燃機関の排気浄化装置
JP2008210631A (ja) * 2007-02-26 2008-09-11 Kyocera Corp 発電装置
JP2009021047A (ja) * 2007-07-10 2009-01-29 Toshiba Corp 屋内設置式燃料電池発電システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2639870A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3026342A4 (en) * 2013-07-22 2017-03-22 Rinnai Corporation Composite combustion device
JP2015088258A (ja) * 2013-10-29 2015-05-07 パナソニックIpマネジメント株式会社 発電システム及びその運転方法
JP2018037346A (ja) * 2016-09-01 2018-03-08 東芝燃料電池システム株式会社 燃料電池発電システム

Also Published As

Publication number Publication date
EP2639870A4 (en) 2013-11-20
JP5280588B2 (ja) 2013-09-04
JPWO2012081207A1 (ja) 2014-05-22
EP2639870A1 (en) 2013-09-18
EP2639870B1 (en) 2016-03-02

Similar Documents

Publication Publication Date Title
JP5190561B2 (ja) 発電システム及びその運転方法
JP5089829B2 (ja) 発電システム及びその運転方法
JP5336022B2 (ja) 発電システム及びその運転方法
JP6048680B2 (ja) 発電システム及びその運転方法
JP5280588B2 (ja) 発電システム及びその運転方法
JP5075297B2 (ja) 発電システム及びその運転方法
JP5132839B2 (ja) 発電システム及びその運転方法
JP5874022B2 (ja) 発電システムおよびその運転方法
JP2013161754A (ja) 燃料電池システム
JP2010262746A (ja) 燃料電池発電システム
WO2015129261A1 (ja) 発電システムおよび発電システムの運転方法
WO2012081214A1 (ja) 発電システム及びその運転方法
JP5895245B2 (ja) 発電システム及び発電システムの運転方法
JP2015113987A (ja) 発電システム
JP2016213036A (ja) 発電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11849599

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012548635

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011849599

Country of ref document: EP