JP2008163795A - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
JP2008163795A
JP2008163795A JP2006352523A JP2006352523A JP2008163795A JP 2008163795 A JP2008163795 A JP 2008163795A JP 2006352523 A JP2006352523 A JP 2006352523A JP 2006352523 A JP2006352523 A JP 2006352523A JP 2008163795 A JP2008163795 A JP 2008163795A
Authority
JP
Japan
Prior art keywords
reducing agent
flow path
determined
path
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006352523A
Other languages
English (en)
Inventor
Takashi Watanabe
崇司 渡邉
Susumu Suzuki
享 鈴木
Daisuke Haruhara
大輔 春原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2006352523A priority Critical patent/JP2008163795A/ja
Publication of JP2008163795A publication Critical patent/JP2008163795A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

【課題】SCRシステムにおいてOBDを好適に機能させることができる内燃機関の排気浄化装置を提供する。
【解決手段】断線検出手段(70)は、還元剤流路(58)の閉塞が検出されると還元剤流路が異常であると判定する流路異常判定手段と、還元剤流路が異常であると判定されると温度センサ(72)で検出された大気温度が所定の温度設定値以下か否かを判定する大気温度判定手段と、大気温度が温度設定値以下と判定されると還元剤が凍結していると推定し、還元剤が解凍したか否かを判定する解凍判定手段とを含み、解凍判定手段によって還元剤が解凍したと判定されたとき、流路異常判定手段によって還元剤流路が異常であるか否かを再び判定し、還元剤流路が正常であると判定されたときには、少なくともヒータ素子(A,B,C)のいずれかが断線したものと判定する。
【選択図】図2

Description

本発明は内燃機関(以下、エンジンと称する)の排気浄化装置に係り、詳しくは排気通路に選択還元型NOx触媒(以下、SCR触媒と称する)を備えた排気浄化装置に関する。
例えば排気通路にSCR触媒を備えたエンジンでは、排気通路のSCR触媒の上流側に配置した噴射ノズルから還元剤として尿素水溶液(以下、ユリアと称する)を適宜噴射し、ユリアが排気熱及び排気中の水蒸気により加水分解されて生成されるNH(アンモニア)を利用して、SCR触媒上で排気中のNOxを還元するSCRシステムが採用されている。この種のSCRシステムにおいて、ユリアは約32.5%の尿素濃度で使用され、この場合におけるユリアは約−11℃で凍結するため、ユリアの流れるユリアラインにはユリアの凍結を防止するヒータが設置されている。
そして、このようなヒータの駆動回路を流れる電流を監視することでヒータを構成するヒータ素子の断線を検出する技術が公知である(例えば、特許文献1参照)。
特開2006−292239号公報
ところで、排気による大気汚染を最小限に抑制するために、車両自体が排気浄化装置の異常を監視、検出し、異常発生時に警報表示して運転者に知らせるとともに、その異常内容をエンジン制御ユニット(ECU)に記憶保持する車載診断システム(OBD)の搭載が求められている。
しかしながら、上記従来技術では、SCRシステムにおいてOBDが好適に機能しないとの問題がある。なぜなら、ユリアラインにはユリアの供給経路や循環経路等の経路ごとに複数のヒータが設置されるため、電流を監視することによってヒータ素子のいずれかが断線したことは検出できても、複数のヒータ素子のうち断線したヒータ素子を特定することはできないからである。
また、ヒータ素子の断線によって凍結したユリアを解凍することができなくなり、ユリアラインが閉塞するが、このような閉塞はユリアラインに混入する不純物による堆積物によっても生じる可能性があるために、閉塞の原因がヒータ素子の断線によるユリアの凍結に起因するものなのか、ユリアライン中の堆積物に起因するものなのかが区別できないからである。
本発明は、このような課題に鑑みてなされたもので、SCRシステムにおいてOBDを好適に機能させることができる内燃機関の排気浄化装置を提供することを目的とする。
上記の目的を達成するべく、請求項1記載の内燃機関の排気浄化装置は、還元剤を供給することによって内燃機関の排気中のNOxを還元するNOx触媒を有する排気浄化装置であって、還元剤が流れる還元剤流路を有し、内燃機関の運転状態に応じてNOx触媒に還元剤を供給する還元剤供給手段と、還元剤流路に設けられ、還元剤流路における還元剤の閉塞を検出する閉塞検出手段と、還元剤流路に設けられ、還元剤の凍結を防止する複数のヒータ素子を有するヒータ駆動回路と、大気温度を検出する温度センサと、ヒータ素子の断線を検出する断線検出手段とを具備し、断線検出手段は、閉塞検出手段によって還元剤流路の閉塞が検出されたとき、還元剤流路が異常であると判定する流路異常判定手段と、流路異常判定手段によって還元剤流路が異常であると判定されたとき、温度センサで検出された大気温度が所定の温度設定値以下か否かを判定する大気温度判定手段と、大気温度判定手段によって大気温度が温度設定値以下と判定されたとき、還元剤が凍結していると推定し、凍結していると推定される還元剤が解凍したか否かを判定する解凍判定手段とを含み、解凍判定手段によって還元剤が解凍したと判定されたとき、流路異常判定手段によって還元剤流路が異常であるか否かを再び判定し、還元剤流路が正常であると判定されたときには、少なくともヒータ素子のいずれかが断線したものと判定することを特徴としている。
また、請求項2記載の発明では、請求項1において、還元剤流路は、還元剤が貯留されるタンク、タンクから還元剤が送出される送出経路、送出経路を経た還元剤が流入するポンプ、ポンプから送出された還元剤をNOx触媒に供給する供給経路を含み、閉塞検出手段は、供給経路の出口近傍における還元剤の圧力を検出する圧力センサ、ポンプの駆動電流を検出する電流センサを含み、ヒータ素子は、送出経路及び供給経路にそれぞれ設けられた第1及び第2のヒータ素子を含み、内燃機関の運転時において、流路異常判定手段は、圧力センサで検出された還元剤の圧力が所定の圧力設定値以下であるとき、又は電流センサで検出されたポンプの駆動電流が所定の電流設定値以上であるときに、少なくとも送出経路又は供給経路のいずれか一方が閉塞していると判定し、流路異常判定手段によって少なくとも送出経路又は供給経路のいずれか一方が閉塞していると判定されたとき、断線検出手段はヒータ駆動回路を駆動させ、解凍判定手段は、ヒータ駆動回路を駆動させてから所定の時間経過後の圧力センサで検出され還元剤の圧力が上昇傾向を示さないとき、閉塞が解消されていないと判定すると共に、温度センサで検出された大気温度が温度設定値より大きいとき、還元剤がヒータ素子によらないで自然解凍したと判定し、断線検出手段は、解凍判定手段によって還元剤が自然解凍したと判定されたとき、流路異常判定手段によって還元剤流路が異常であるか否かを再び判定し、還元剤流路が正常であると判定されたときには、少なくとも第1又は第2のヒータ素子のいずれか一方が断線したものと判定することを特徴としている。
更に、請求項3記載の発明では、請求項2において、断線検出手段は、電流センサで検出されたポンプの駆動電流が電流設定値より大きな所定の過電流設定値より大きいときには第2のヒータ素子が断線していると判定することを特徴としている。
更にまた、請求項4記載の発明では、請求項2又は3において、還元剤流路は、ポンプから送出された還元剤をタンクに帰還させる帰還経路を更に含むと共に、ヒータ素子は帰還経路に設けられた第3のヒータ素子を更に含み、内燃機関の停止時に、流路異常判定手段は、圧力センサで検出された還元剤の圧力が所定の第2圧力設定値より大きいとき、帰還経路が閉塞していると判定し、断線検出手段は、解凍判定手段によって還元剤が自然解凍したと判定されたとき、流路異常判定手段によって還元剤流路が異常であるか否かを再び判定し、還元剤流路が正常であると判定されたときには、第3のヒータ素子が断線したものと判定することを特徴としている。
また、請求項5記載の発明では、請求項1から4のいずれかにおいて、NOx触媒は選択還元型NOx触媒であって還元剤は尿素水溶液であることを特徴としている。
従って、請求項1記載の本発明の内燃機関の排気浄化装置によれば、複数のヒータ素子の断線を検出する断線検出手段を備え、この断線検出手段は、流路異常判定手段によって還元剤流路の閉塞が検出されていると判定され、大気温度判定手段によって大気温度が所定の温度設定値以下と判定されたとき、還元剤が凍結していると推定し、該凍結していると推定される還元剤が解凍したか否かを判定する解凍判定手段を備えている。そして、この解凍判定手段によって還元剤が解凍したと判定されたとき、流路異常判定手段において還元剤流路の閉塞が検出されるか否かを再び判定し、還元剤流路の閉塞が検出されなければ少なくともヒータ素子のいずれかが断線したものと判定する。これにより、還元剤流路の閉塞がヒータ素子の断線による還元剤の凍結に起因することを即座に検出可能となり、排気浄化装置の異常原因を迅速に特定できる。
また、請求項2記載の発明によれば、内燃機関の運転時において、流路異常判定手段は、供給経路の出口近傍における還元剤の圧力が所定の圧力設定値以下であるとき、又はポンプの駆動電流が所定の電流設定値以上であるときに、少なくとも送出経路又は供給経路のいずれか一方が閉塞していると判定する。また、解凍判定手段は、ヒータ駆動回路を駆動させてから所定の時間経過後の圧力センサで検出され還元剤の圧力が上昇傾向を示さないとき、閉塞が解消されていないと判定すると共に、大気温度が所定の温度設定値より大きいときに、凍還元剤がヒータ素子によらないで自然解凍したと判定する。
そして、この解凍判定手段によって還元剤が自然解凍したと判定されたとき、流路異常判定手段において還元剤流路の閉塞が検出されるか否かを再び判定し、還元剤流路の閉塞が検出されなければ少なくとも第1又は第2のヒータ素子のいずれか一方が断線したものと判定する。これにより、少なくとも第1又は第2のヒータ素子のどちらかの断線によって還元剤流路の閉塞が生じていることが即座に検出され、排気浄化装置の異常箇所を迅速に特定できる。
更に、請求項3記載の発明によれば、断線検出手段は、電流センサで検出されたポンプの駆動電流が電流設定値より大きな所定の過電流設定値より大きいときには第2のヒータ素子が断線したものと判定する。これにより、第1又は第2のヒータ素子のうちのいずれが断線したかが即座に検出され、排気浄化装置の異常箇所を迅速に且つ確実に特定できる。
更にまた、請求項4記載の発明によれば、流路異常判定手段は、内燃機関が停止しているにも拘らず、供給経路の還元剤の圧力が所定の第2圧力設定値より大きいままで降下しないときに、帰還経路が閉塞していると判定する。そして、断線検出手段は、解凍判定手段によって還元剤が解凍したと判定されたとき、流路異常判定手段によって還元剤流路が異常であるか否かを再び判定し、還元剤流路が正常であると判定されたときには、第3のヒータ素子が断線したものと判定する。これにより、第3のヒータ素子が断線したことが即座に検出され、排気浄化装置の異常箇所を迅速に且つ更に確実に特定できる。
また、請求項5記載の発明によれば、選択還元型NOx触媒を用いた尿素供給手段、換言すると、SCR触媒を用いた尿素SCRシステムにおいて上記構成を適用することにより、排気浄化装置におけるOBDを好適に機能させることができる。
以下、図面により本発明の実施形態について説明する。
図1には一実施形態に係るエンジンの排気浄化装置を示す全体構成図が示されており、当該エンジン2はコモンレール式のディーゼルエンジンである。このエンジン2には気筒毎に燃料インジェクタ4が備えられ、各インジェクタ4は燃料通路6を介してコモンレール8に接続されている。
また、エンジン2は、吸気マニホールドに接続された吸気通路12を含むエンジン吸気系と、排気マニホールドに接続された排気通路14を含むエンジン排気系とを有している。吸気通路12の適宜位置には、過給機16のコンプレッサ17、インタークーラ20及び吸気スロットル弁22が順次介装されている。このスロットル弁22の開度は、車室内等に設置されたECU(コントローラ)10の制御下で動作するアクチュエータ24によって可変に調節されている。
一方、排気通路14の適宜位置には、過給機16のタービン18、排気ブレーキ弁26、排気浄化装置30及び図示しないマフラが順次介装されている。上記排気ブレーキ弁26の開度は、ECU10の制御下で動作するアクチュエータ28によって可変に調節されている。また、上記コンプレッサ17とタービン18とは、図示しない連結シャフトによって同期回転可能に連結され、エンジン2の各気筒から排出された排気の流れによってタービン18の回転力を発生させる。そして、このタービン18の回転力によってコンプレッサ17を回転させて吸気を加圧し、この吸気がエンジン2に向けて供給されている。更に、この加圧された吸気はインタークーラ20で冷却される。
また、上記エンジン吸気系とエンジン排気系との間はEGR通路32にて接続されており、このEGR通路32を介して排気の一部が再還流ガスとして各気筒内に向けて供給されている。EGR通路32の適宜位置には、再還流ガスを冷却して各気筒内へのガス充填密度を高めるEGRクーラ34、このガスの各気筒内への供給及び供給を遮断するEGR弁36が設けられている。このEGR弁36の開度は、ECU10の制御下で動作するアクチュエータ38によって可変に調節される。
ここで、上記排気浄化装置30では、排気に含まれるNOxやPM(パティキュレートマター)を浄化する。詳しくは、本実施形態の排気浄化装置30は、ディーゼルパティキュレートフィルタ(以下、DPFと称する)40と、その下流側に配されたSCR触媒42とを有している。
DPF40では排気中のPMを捕捉する。具体的には、DPF40の内部には、排気の上流側と下流側とを連通させる複数個の通路が並設されており、これら各通路の上流側の開口部分と下流側の開口部分とが交互に閉鎖されている。そして、DPF40では排気の昇温によって捕捉したPMの焼却が行われる。
また、SCR触媒42はユリアを用いて排ガス中のNOxを選択還元する。具体的には、当該排気浄化装置30には、排気通路14のSCR触媒42の上流側に配置した噴射ノズル50からECU10からの指令に応じてユリアを適宜噴射するSCRシステム(還元剤供給手段)52が設けられている。これにより、噴射されたユリアは加水分解されてNHに変化し、排ガス中のNOxがSCR触媒42内にて該NHと結びついて水とNとに分解され、NOxの浄化が行われる。 詳しくは、図2のSCRシステム52の全体構成図に示されるように、ユリアはユリアタンク(タンク)54に貯蔵されており、このタンク54のユリアは、ユリアポンプ(ポンプ)56で汲み上げられてユリアライン(還元剤流路)58を経由し噴射ノズル50に供給される。
ユリアライン58は、タンク54からユリアが送出される送出経路58aと、ポンプ56から送出されたユリアをタンク54に帰還させる帰還経路58bと、ポンプ56から送出されたユリアをノズル50に供給する供給経路58cとから構成されている。供給経路58cのノズル50近傍(出口近傍)には、ノズル50から噴射されるユリアの温度を検出するユリア温度センサ62、ユリアの圧力を検出するユリア圧力センサ(閉塞検出手段)64が設置されている。
ポンプ56は、ECU10内において可動接点56bが閉接されると、ポンプ56の駆動回路56aが閉成され、図2中の点線矢印方向にポンプ駆動電流が流れ、ポンプ56が駆動されて、ユリアは送出経路58aから供給経路58cに送出される。また、ポンプ56の駆動電流はポンプ駆動電流センサ(電流センサ、閉塞検出手段)56cで検出されている。更に、タンク54には、タンク54内のユリア温度を検出するタンク温度センサ60が設置されている。
ところで、送出経路58a、帰還経路58b、供給経路58cには、それぞれユリアライン中のユリアの凍結を防止するヒータ66a,66b,66cが設置されている。
詳しくは、ヒータ66a〜66cは、同一のヒータ駆動回路66で駆動され、各ヒータ66a〜66cのそれぞれの発熱体となるヒータ素子(第1のヒータ素子)A、ヒータ素子(第2のヒータ素子)B、ヒータ素子(第3のヒータ素子)Cは、駆動回路66において並列に配されるとともに、各経路58a,58b,58cにそれぞれ巻回されている。
また、この駆動回路66にはリレー66dが配され、ECU10内における可動接点66eの閉接によって図2中の点線矢印方向に電流が流れることにより、リレー66dのコイルが励磁されてリレー接点が閉接し、ECU10から駆動回路66に図2中の一点鎖線矢印方向に駆動回路66の駆動電流が流れ、ヒータ素子A,B,Cが通電されて発熱する。すなわち、駆動回路66は、ECU10からの指令に応じ、リレー66dを介して間接的にオンオフ駆動される。
ここで、ECU10には、図示しない入出力装置、制御プログラムや制御マップ等の記憶に供される記憶装置(ROM,RAM等)、中央処理装置(CPU)及びタイマカウンタ等が備えられている。具体的には、ECU10は、エンジン制御部68とヒータ制御部70(断線検出手段、流路異常判定手段、大気温度判定手段、解凍判定手段)とを備え、エンジン制御部68はエンジン2の気筒から排出されたNOx排出量、換言すれば、SCR触媒42の上流側に存在するNOx量を演算可能に構成されており、このNOx量に応じてSCR触媒42に対するユリアの添加量制御を実施すべく、ポンプ駆動回路56aの可動接点56bを開閉し、ノズル50へ加圧されたユリアを供給する。
一方、ヒータ制御部70には、上記した温度センサ60,62、圧力センサ64、電流センサ56bに加え、大気温度を検出する大気温度センサ(温度センサ)72等が電気的に接続されている。ヒータ制御部70は、これら各センサの信号やエンジン制御部68からの指令に応じてヒータ駆動制御を実施すべく、ヒータ駆動回路66の可動接点66eを開閉し、ひいてはリレー66dをオンオフ駆動させる。
そして、ヒータ制御部70は上記各センサからの信号を利用してユリアライン58の閉塞を検出することにより、ヒータ駆動回路66におけるヒータ66a〜66cのヒータ素子A〜Cの断線を検出可能に構成されている(断線検出手段)。
以下、図3から図5に示されるフローチャート、及び図6に示される表を参照してヒータ素子A〜Cの断線検出制御について説明する。
先ず、図3にはヒータ素子A又はCの断線検出制御(以下、AorC断線検出制御と称す)のフローチャートが示され、この制御ルーチンはS0(以下、Sはステップを表す)で開始(START)された後、S1に移行する。なお、このAorC断線検出制御はエンジン2が運転中であって且つECU10が起動しているときに実施され、この場合にはタンク54のユリアは送出経路58aから供給経路58cに向けて供給されるため、ユリアライン58の正常時にはポンプ56の駆動圧により供給経路58cにおいて圧力センサ64で検出されるユリア圧力は上昇し、電流センサ56cで検出されるポンプ電流は定常電流となる。
S1では、ユリアライン58が異常か否かを判定する。具体的には、圧力センサ64で検出されたユリア圧力Puがエンジン2の運転中における定常ユリア圧力となる所定の圧力設定値Ps以下であるか否か、又はポンプ駆動回路56aの電流センサ56cで検出されたポンプ電流Ipがポンプ56の定常電流となる所定の電流設定値Isより大きいか否かを判定することにより、ユリアが流れる送出経路58a又は供給経路59cの閉塞を検出している。好ましくは、予め温度センサ62で検出されたユリア温度Tuに基づいてユリアの温度補正圧力値Pcを算出し、圧力Puに代えて圧力値Pcが圧力設定値Ps以下であるか否かを判定すると温度Tuに応じて補正されたユリア圧力を判定条件に使用できる。
そして、判定結果が真(Yes)でPu≦Ps、又はIp>Isが成立し、送出経路58a又は供給経路58cが閉塞していると判定された場合にはS2に移行し、判定結果が偽(No)でPu>Ps、又はIp≦Isが成立し、送出経路58a又は供給経路58cが閉塞していないと判定された場合にはS10に移行して本制御ルーチンを終了(END)する(流路異常判定手段)。
S2に移行した場合には、温度センサ72によって検出された大気温度Taが所定の設定温度Ts以下であるか否かが判定される。設定温度Tsは、例えば使用されるユリアの凍結温度となる値が用いられる。そして、判定結果が真(Yes)でTa≦Tsが成立し、ユリアが凍結していると判定された場合にはS3に移行する。一方、判定結果が偽(No)でTa>Tsが成立し、ユリアが凍結していないと判定された場合には、送出経路58a又は供給経路58cの閉塞はユリアの凍結によらない不純物等の堆積による詰まりと判定され、S9に移行して“AorC詰まり警告”を発報した後、S10に移行して本制御ルーチンを終了する(大気温度判定手段)。
S3に移行した場合には、ヒータ駆動回路66を駆動すべく可動接点66dが閉接され、これよりヒータ66a〜66cが作動し、S4に移行する。
S4では、ユリアが解凍したか否かが判定される。具体的には、ヒータ駆動回路66を駆動させてからユリアの解凍に要する所定の時間経過後にPu>Psが成立するか否かによるユリア圧力判定によってユリアの解凍が判定される。判定結果が真(Yes)でPu>Psが成立するときには、ユリアが解凍したと推定されて送出経路58a又は供給経路58cの閉塞も解消したと判定され、S10に移行して本制御ルーチンを終了する。
一方、判別結果が偽(No)で依然としてPu≦Psが成立するときには、ユリアが解凍していないと推定されて送出経路58a又は供給経路58cの閉塞も解消していないと判定され、S5に移行して“AorC詰まりor断線警告”が発報される(解凍判定手段)。
S5に移行した後、S6に移行し、再びユリアが解凍したか否かが判定される。この場合には、上記S4のユリア圧力Puによる解凍判定とは異なり、Ta>Tsがユリアの自然解凍に要する所定の時間継続して成立するか否かによる大気温度判定によりユリアの自然解凍が判定される。判定結果が真(Yes)でTa>Tsが所定の時間継続して成立し、ユリアが自然解凍したと推定されるとS7に移行し、判別結果が偽(No)でTa>Tsが所定の時間継続して成立せず、未だユリアが自然解凍していないと推定されると再びS5に移行し、“AorC詰まりor断線警告”が再び発報される(解凍判定手段)。
S7に移行した場合には、S1と同様にユリアライン58が異常か否かを再び判定する。判定結果が真(Yes)でPu≦Ps、又はIp>Isが成立し、ユリアが自然解凍していると推定されるにも拘らず、送出経路58a又は供給経路58cが閉塞していると判定された場合にはS9に移行して“AorC詰まり警告”が発報される。
一方、判定結果が偽(No)でPu>Ps、又はIp≦Isが成立し、送出経路58a又は供給経路58cが閉塞していないと判定された場合には、ユリアが自然解凍したために送出経路58a又は供給経路58cの閉塞が解消したものと推定される。すなわち、上記S3において駆動されたヒータ66c又はヒータ66cが機能していないと判定され、S8に移行して“AorC断線警告”が発報される。そして、これらS8及びS9での発報が完了するとS10に移行してAorC断線検出制御に係る制御ルーチンを終了する。
次に、図4及び図5にはヒータ素子Bの断線検出制御(以下、B断線検出制御と称す)のフローチャートが示され、この制御ルーチンはS00で開始(START)された後、S10に移行する。
S10では、エンジン2が停止したか否かが判定される。ここで、ECU10内において、エンジン2の停止信号はエンジン制御部68から送信されヒータ制御部70で受信可能に構成され、エンジン2の始動信号も同様である。そして、判定結果が真(Yes)でエンジン2が停止したと判定された場合にはS20に移行し、判定結果が偽(No)でエンジン2が停止していないと判定された場合には再びS10でエンジンの停止を継続して監視する。なお、このB断線検出制御の主たる判定はエンジン2の停止中に実施され、この場合にはポンプ56も停止するため、ユリアライン58の正常時には供給経路58cにおけるユリアは帰還経路58bからタンク54に抜けて脱圧される。
S20に移行した場合には、ユリアライン58が異常か否かを判定する。具体的には、AorC断線検出制御におけるS1、S7とは異なり、圧力センサ64で検出されたユリア圧力Puが所定の第2圧力設定値Ps1より大きいか否かを判定し、供給経路58cにおけるユリアの脱圧の有無を検出することにより帰還経路58bの閉塞が検出される。なお、Ps1=Psが成立しても良い。
そして、判定結果が真(Yes)でPu>Ps1が成立し、帰還経路58bが閉塞していると判定された場合にはS30に移行し、判定結果が偽(No)でPu≦Ps1が成立し、帰還経路58bが閉塞していないと判定された場合にはS180に移行して本制御ルーチンを終了(END)する(流路異常判定手段)。
S30に移行した場合には、AorC断線検出制御のS2と同様にTa≦Tsが成立するか否かが判定される。判定結果が真(Yes)でTa≦Tsが成立し、ユリアが凍結していると判定された場合にはS40に移行する。一方、判定結果が偽(No)でTa>Tsが成立し、ユリアが凍結していないと判定された場合には、帰還経路58bの閉塞は帰還経路58b中に不純物等が堆積した詰まりによるものと判定され、S190に移行してECU10の記憶装置に“B詰まり”のエラーコードが記憶された後、S200に移行してECU10を停止する(大気温度判定手段)。
その後、S210に移行してエンジン2の始動に伴うECU10の起動を判定する。ここで判定結果が真(Yes)でエンジン2が始動したと判定された場合にはS220に移行し、S220ではエラーコード“B詰まり”の読み出しが実施され、S230に移行して “B詰まり警告”を発報した後、S180に移行して本制御ルーチンを終了する。
一方、判定結果が偽(No)でエンジン2が始動していないと判定された場合には再びS210でエンジンの始動を継続して監視する。
S40に移行した場合には、ECU10の記憶装置に“B詰まりor断線”のエラーコードが記憶された後、S50に移行してECU10を停止する。
S50に移行した後、S60に移行してエンジン2の始動に伴うECU10の起動を判定する。ここで判定結果が真(Yes)でエンジン2が始動したと判定された場合にはS70に移行し、エラーコード“B詰まりor断線”の読み出しが実施され、更にS80に移行して “B詰まりor断線警告”が発報された後にS90に移行する。
S90では、ユリアが解凍したか否かが判定される。具体的には、AorC断線検出制御のS6と同様に、Ta>Tsがユリアの自然解凍に要する所定の時間継続して成立するか否かによる大気温度判定によりユリアの自然解凍が判定される。判定結果が真(Yes)でユリアが自然解凍したと推定されるとS110に移行し、一方、判定結果が偽(No)でユリアが自然解凍していないと推定されるとS100に移行する(解凍判定手段)。
S110及びS100では、いずれも上記S10と同様にエンジン2が停止されたか否かが判定される。S100では、判定結果が真(Yes)でエンジン2が停止したと判定された場合にはS40に再び戻り、ECU10の記憶装置に“B詰まりor断線”のエラーコードが記憶された後にS50に移行してECU10を停止する。一方、判定結果が偽(No)でエンジン2が停止していないと判定された場合にはS90で再びユリアの自然解凍を判定する。
また、S110では、判定結果が真(Yes)でエンジン2が停止したと判定された場合には上記S20と同様にユリアライン58が異常か否かを判定する。判定結果が真(Yes)でPu>Ps1が成立し、帰還経路58bが未だ閉塞していると判定された場合にはS190に移行し、一方、判定結果が偽(No)でPu≦Ps1が成立し、帰還経路58bが閉塞していないと判定された場合にはS130に移行する(流路異常判定手段)。
これらS130及びS190では、ECU10の記憶装置にそれぞれ“B断線”、“B詰まり”のエラーコードが記憶され、それぞれS140、S200でECU10を停止する。
そして、S140、S200からはそれぞれS150、S210に移行し、エンジン2の始動に伴うECU10の起動を判定する。ここで、判定結果が偽(No)でエンジン2が始動していないと判定された場合にはそれぞれS150、S210でエンジンの始動を継続して監視する。
一方、判定結果が真(Yes)でエンジン2が始動したと判定された場合には、それぞれS160、S220に移行し、S160ではエラーコード“B断線”の読み出しが実施され、S220ではエラーコード“B詰まり”の読み出しが実施される。そして、それぞれS170、S230に移行して“B断線警告”、“B詰まり警告”を発報した後、ともにS180に移行してB断線検出制御に係る制御ルーチンを終了する。
以上について図6に示されるヒータ素子A,B,Cの断線パターンに対する判定条件を示す表を参照して纏めると、AorC断線検出制御では、エンジン2の作動時にユリア圧力Puの低下を検出することにより、ユリアライン58の閉塞、ひいてはヒータ素子A又はヒータ素子Cの断線を検出する。
一方、B断線検出制御では、エンジン2の停止時にユリア圧力Puが降下しないことを検出することにより、ユリアライン58の閉塞、ひいてはヒータ素子Cの断線を検出する。
ここで、AorC断線検出制御において、ポンプ駆動電流Ipが上記電流設定値Isより大きな所定の過大電流設定値IsLよりも大きいとき、すなわちIp>IsL>Isが成立するときには、ユリアライン58の閉塞が供給経路58cで生じていると判定することができる。
詳しくは、閉塞が送出経路58aで生じている場合には、ポンプ56にはタンク54からのユリアが供給されず、ポンプ56は空引き状態を呈し、その吸入側は真空に近づき、ポンプ56には高負荷がかかる。
一方、閉塞が供給経路58cで生じている場合には、供給経路58cはポンプ56から吐出されるユリアの吐出圧によって高圧となり、ポンプ56の図示しないインペラーを逆回転方向に作用する力が生じ、いわゆるリバース状態を呈し、ポンプ56には高負荷がかかる。そして、一般的には、ポンプ56の空引き状態よりリバース状態の方がポンプ56の駆動回路56aを流れる過電流は過大となることから、上記過大電流設定値IsLを設定することにより、閉塞の発生場所を送出経路58aか供給経路58cかを区別可能となり、ひいてはヒータ素子Aが断線したか、ヒータ素子Cが断線したかの判定も可能となる。
なお、好ましくは、これら判定に係る判定時間は所定のしきい値が設定され、判定条件がしきい値以上継続して成立しない限り判定しないのが良い。また、判定条件として、他の条件、例えば温度センサ60,62で検出されるユリア温度が正常であって、且つノズル50やタンク54の図示しないヒータなどが正常に機能していることを前提条件とするのが好ましい。
以上のように、本実施形態のSCRシステム52では、AorC断線検出制御及びB断線検出制御を実施することにより、ユリアライン58の閉塞がヒータ素子A〜Cの断線によるユリアの凍結に起因するか、ユリアライン58中の堆積物によるものかを即座に検出できる。
エンジン2の運転中においては、AorC断線検出制御を実施することにより、少なくともヒータ素子A又はヒータ素子Cのどちらかが断線していることが即座に検出され、更には、Ip>IsL>Isが成立するときには、ヒータ素子Cが断線したことを特定できる。
一方、エンジン2が停止中においては、B断線検出制御を実施することにより、ヒータ素子Bが断線したことが特定できる。
このように、SCRシステム52において上記断線検出制御を実施することにより、ヒータ素子の断線によって生じるユリアの凍結とユリア凍結以外に起因するユリアライン58の詰まりとを区別でき、しかも、ヒータ素子の断線、又は詰まりが発生している部位を迅速に且つ確実に特定することができるため、選択還元型NOx触媒を用いた尿素供給手段、換言すると、SCR触媒42を用いたSCRシステム52において排気浄化装置30におけるOBDを好適に機能させることができる。
以上により、ECU10においてリレー66dを介したヒータ素子の断線検出が可能となる。また、電流を直接検出できるシステムに対しても、本手法によって断線箇所の特定が可能となるため、異常内容を記憶保持する間接的な手段が要求されるOBD等に対応できる。
更に、リレー66dを介することにより、ECU10や各ヒータ66a〜66cの仕様が変更された場合でも、SCRシステム52にそのまま使用可能となるため、仕様変更や改造に対して柔軟に対応できるために長期的なコスト削減をも実現できる。
以上で本発明の一実施形態についての説明を終えるが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更ができるものである。
例えば、上記実施形態では、還元剤にユリアを使用しているが、これに限定されず、還元剤に例えば直接アンモニアを使用しても或いは他の還元剤を使用しても上記と同様にSCRシステム52において排気浄化装置30におけるOBDを好適に機能させることができる。
本実施形態のディーゼルエンジンの排気浄化装置を示す全体構成図である。 図1のSCRシステムを示す全体構成図である。 ECUが実行するヒータA又はヒータCの断線検出制御ルーチンを示すフローチャートである。 ECUが実行するヒータBの断線検出制御ルーチンを示すフローチャートの一部である。 図4に続くヒータBの断線検出制御ルーチンを示すフローチャートの残部である。 ヒータ素子A〜Cの断線パターンに対する判定条件を示す表である。
符号の説明
2 エンジン(内燃機関)
30 排気浄化装置
42 SCR触媒(NOx触媒、選択還元型NOx触媒)
52 SCRシステム(還元剤供給手段)
54 ユリアタンク(タンク)
56 ユリアポンプ(ポンプ)
56c ポンプ駆動電流センサ(電流センサ、閉塞検出手段)
58 ユリアライン(還元剤流路)
58a 送出経路
58b 帰還経路
58c 供給経路
64 ユリア圧力センサ(圧力センサ、閉塞検出手段)
66 ヒータ駆動回路
70 ヒータ制御部(断線検出手段)
72 大気温度センサ(温度センサ)
A ヒータ素子(第1のヒータ素子)
B ヒータ素子(第2のヒータ素子)
C ヒータ素子(第3のヒータ素子)

Claims (5)

  1. 還元剤を供給することによって内燃機関の排気中のNOxを還元するNOx触媒を有する排気浄化装置であって、
    前記還元剤が流れる還元剤流路を有し、前記内燃機関の運転状態に応じて前記NOx触媒に前記還元剤を供給する還元剤供給手段と、
    前記還元剤流路に設けられ、該還元剤流路における前記還元剤の閉塞を検出する閉塞検出手段と、
    前記還元剤流路に設けられ、前記還元剤の凍結を防止する複数のヒータ素子を有するヒータ駆動回路と、
    大気温度を検出する温度センサと、
    前記ヒータ素子の断線を検出する断線検出手段とを具備し、
    前記断線検出手段は、
    前記閉塞検出手段によって前記還元剤流路の閉塞が検出されたとき、前記還元剤流路が異常であると判定する流路異常判定手段と、
    前記流路異常判定手段によって前記還元剤流路が異常であると判定されたとき、前記温度センサで検出された大気温度が所定の温度設定値以下か否かを判定する大気温度判定手段と、
    前記大気温度判定手段によって前記大気温度が前記温度設定値以下と判定されたとき、前記還元剤が凍結していると推定し、該凍結していると推定される還元剤が解凍したか否かを判定する解凍判定手段とを含み、
    前記解凍判定手段によって前記還元剤が解凍したと判定されたとき、前記流路異常判定手段によって前記還元剤流路が異常であるか否かを再び判定し、前記還元剤流路が正常であると判定されたときには、少なくとも前記ヒータ素子のいずれかが断線したものと判定することを特徴とする内燃機関の排気浄化装置。
  2. 前記還元剤流路は、前記還元剤が貯留されるタンク、該タンクから還元剤が送出される送出経路、該送出経路を経た還元剤が流入するポンプ、該ポンプから送出された還元剤を前記NOx触媒に供給する供給経路を含み、
    前記閉塞検出手段は、前記供給経路の出口近傍における還元剤の圧力を検出する圧力センサ、前記ポンプの駆動電流を検出する電流センサを含み、
    前記ヒータ素子は、前記送出経路及び前記供給経路にそれぞれ設けられた第1及び第2のヒータ素子を含み、
    前記内燃機関の運転時において、
    前記流路異常判定手段は、前記圧力センサで検出された還元剤の圧力が所定の圧力設定値以下であるとき、又は前記電流センサで検出された前記ポンプの駆動電流が所定の電流設定値より大きいときに、少なくとも前記送出経路又は前記供給経路のいずれか一方が閉塞していると判定し、
    前記流路異常判定手段によって少なくとも前記送出経路又は前記供給経路のいずれか一方が閉塞していると判定されたとき、前記断線検出手段は前記ヒータ駆動回路を駆動させ、
    前記解凍判定手段は、前記ヒータ駆動回路を駆動させてから所定の時間経過後の前記圧力センサで検出され還元剤の圧力が上昇傾向を示さないとき、前記閉塞が解消されていないと判定すると共に、前記温度センサで検出された大気温度が前記温度設定値より大きいとき、還元剤が前記ヒータ素子によらないで自然解凍したと判定し、
    前記断線検出手段は、前記解凍判定手段によって前記還元剤が自然解凍したと判定されたとき、前記流路異常判定手段によって前記還元剤流路が異常であるか否かを再び判定し、前記還元剤流路が正常であると判定されたときには、少なくとも前記第1又は第2のヒータ素子のいずれか一方が断線したものと判定することを特徴とする請求項1に記載の内燃機関の排気浄化装置。
  3. 前記断線検出手段は、前記電流センサで検出された前記ポンプの駆動電流が前記電流設定値より大きい所定の過電流設定値より大きくなるときには、前記第2のヒータ素子が断線していると判定することを特徴とする請求項2に記載の内燃機関の排気浄化装置。
  4. 前記還元剤流路は、前記ポンプから送出された還元剤を前記タンクに帰還させる帰還経路を更に含むと共に、前記ヒータ素子は、前記帰還経路に設けられた第3のヒータ素子を更に含み、
    前記内燃機関の停止時において、
    前記流路異常判定手段は、前記圧力センサで検出された還元剤の圧力が所定の第2圧力設定値より大きいとき、前記帰還経路が閉塞していると判定し、
    前記断線検出手段は、前記解凍判定手段によって前記還元剤が自然解凍したと判定されたとき、前記流路異常判定手段によって前記還元剤流路が異常であるか否かを再び判定し、前記還元剤流路が正常であると判定されたときには、前記第3のヒータ素子が断線したものと判定することを特徴とする請求項2又は3に記載の内燃機関の排気浄化装置。
  5. 前記NOx触媒は選択還元型NOx触媒であって前記還元剤は尿素水溶液であることを特徴とする請求項1から4のいずれか一項に記載の内燃機関の排気浄化装置。
JP2006352523A 2006-12-27 2006-12-27 内燃機関の排気浄化装置 Withdrawn JP2008163795A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006352523A JP2008163795A (ja) 2006-12-27 2006-12-27 内燃機関の排気浄化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006352523A JP2008163795A (ja) 2006-12-27 2006-12-27 内燃機関の排気浄化装置

Publications (1)

Publication Number Publication Date
JP2008163795A true JP2008163795A (ja) 2008-07-17

Family

ID=39693601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006352523A Withdrawn JP2008163795A (ja) 2006-12-27 2006-12-27 内燃機関の排気浄化装置

Country Status (1)

Country Link
JP (1) JP2008163795A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180801A (ja) * 2009-02-06 2010-08-19 Denso Corp 排気浄化システムの異常診断装置
JP2011117441A (ja) * 2009-11-06 2011-06-16 Bosch Corp 還元剤噴射弁の異常検出装置及び異常検出方法
JP2011241775A (ja) * 2010-05-19 2011-12-01 Isuzu Motors Ltd Scrシステム
WO2012081207A1 (ja) * 2010-12-13 2012-06-21 パナソニック株式会社 発電システム及びその運転方法
JP2013147982A (ja) * 2012-01-18 2013-08-01 Toyota Motor Corp 内燃機関の排気浄化装置
WO2014024307A1 (ja) * 2012-08-10 2014-02-13 トヨタ自動車 株式会社 内燃機関の添加剤供給装置
WO2014027394A1 (ja) * 2012-08-13 2014-02-20 トヨタ自動車 株式会社 内燃機関の添加剤供給装置
US10408111B2 (en) 2015-05-28 2019-09-10 Cummins Inc. System and method to detect and respond to iced sensors in exhaust after-treatment system
CN111956086A (zh) * 2020-07-13 2020-11-20 华帝股份有限公司 一种烹饪设备的缺水检测方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180801A (ja) * 2009-02-06 2010-08-19 Denso Corp 排気浄化システムの異常診断装置
JP2011117441A (ja) * 2009-11-06 2011-06-16 Bosch Corp 還元剤噴射弁の異常検出装置及び異常検出方法
JP2011241775A (ja) * 2010-05-19 2011-12-01 Isuzu Motors Ltd Scrシステム
JPWO2012081207A1 (ja) * 2010-12-13 2014-05-22 パナソニック株式会社 発電システム及びその運転方法
WO2012081207A1 (ja) * 2010-12-13 2012-06-21 パナソニック株式会社 発電システム及びその運転方法
JP5280588B2 (ja) * 2010-12-13 2013-09-04 パナソニック株式会社 発電システム及びその運転方法
JP2013147982A (ja) * 2012-01-18 2013-08-01 Toyota Motor Corp 内燃機関の排気浄化装置
WO2014024307A1 (ja) * 2012-08-10 2014-02-13 トヨタ自動車 株式会社 内燃機関の添加剤供給装置
JP5871072B2 (ja) * 2012-08-10 2016-03-01 トヨタ自動車株式会社 内燃機関の添加剤供給装置
WO2014027394A1 (ja) * 2012-08-13 2014-02-20 トヨタ自動車 株式会社 内燃機関の添加剤供給装置
JP5871074B2 (ja) * 2012-08-13 2016-03-01 トヨタ自動車株式会社 内燃機関の添加剤供給装置
EP2910748A4 (en) * 2012-08-13 2016-07-13 Toyota Motor Co Ltd ADDITIVE FEEDING DEVICE FOR INTERNAL COMBUSTION ENGINES
US10408111B2 (en) 2015-05-28 2019-09-10 Cummins Inc. System and method to detect and respond to iced sensors in exhaust after-treatment system
CN111956086A (zh) * 2020-07-13 2020-11-20 华帝股份有限公司 一种烹饪设备的缺水检测方法
CN111956086B (zh) * 2020-07-13 2024-04-19 华帝股份有限公司 一种烹饪设备的缺水检测方法

Similar Documents

Publication Publication Date Title
US8387366B2 (en) Reducing agent injection valve abnormality detection device and abnormality detection method, and internal combustion engine exhaust gas purification system
JP2008163795A (ja) 内燃機関の排気浄化装置
US7685810B2 (en) Engine control apparatus and engine operating method
JP5671840B2 (ja) Scr解凍制御システム
JP3718209B2 (ja) エンジンの排気浄化装置
US10138793B2 (en) Exhaust gas purification system and method for controlling the same
US8375702B2 (en) Exhaust emission control system for engine and control method therefor
US8307629B2 (en) Control method of exhaust emission purification system and exhaust emission purification system
WO2012005321A1 (ja) NOxセンサ診断装置及びSCRシステム
JP5786280B2 (ja) 尿素水温度センサの妥当性診断システム
US20100229532A1 (en) Control unit and control method for reductant supply system
JP4895888B2 (ja) 還元剤添加システムの解凍判定装置及びエンジンの排気浄化装置
US20160356193A1 (en) Method For Checking A Temperature Sensor In An SCR Exhaust Gas Post-Treatment System
JP5573352B2 (ja) 尿素水温度センサの妥当性診断システム
JP5136450B2 (ja) 排気浄化システムの異常診断装置
JP2008138583A (ja) エンジンの排気浄化装置
CN104131871A (zh) 柴油机尾气处理液控制系统
JP2010019134A (ja) 内燃機関の排気浄化装置
KR100792927B1 (ko) Scr 후처리용 요소 공급 장치
JP5118460B2 (ja) 排気浄化装置
JP3683175B2 (ja) 内燃機関の排気浄化装置
JP5871072B2 (ja) 内燃機関の添加剤供給装置
JP5871074B2 (ja) 内燃機関の添加剤供給装置
WO2018047554A1 (ja) 制御装置
JP2010261330A (ja) 排気浄化装置

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100302