WO2012077568A1 - 太陽電池及び太陽電池モジュール - Google Patents

太陽電池及び太陽電池モジュール Download PDF

Info

Publication number
WO2012077568A1
WO2012077568A1 PCT/JP2011/077787 JP2011077787W WO2012077568A1 WO 2012077568 A1 WO2012077568 A1 WO 2012077568A1 JP 2011077787 W JP2011077787 W JP 2011077787W WO 2012077568 A1 WO2012077568 A1 WO 2012077568A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
solar cell
silicon
contact
silicon substrate
Prior art date
Application number
PCT/JP2011/077787
Other languages
English (en)
French (fr)
Inventor
洋 橋上
石川 直揮
渡部 武紀
大塚 寛之
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to CA2820034A priority Critical patent/CA2820034A1/en
Priority to RU2013131017/28A priority patent/RU2571167C2/ru
Priority to EP11847500.3A priority patent/EP2650926B1/en
Priority to US13/992,015 priority patent/US9224888B2/en
Priority to JP2012547810A priority patent/JP5626361B2/ja
Priority to SG2013043849A priority patent/SG191045A1/en
Priority to CN201180065726.8A priority patent/CN103329279B/zh
Priority to KR1020137017730A priority patent/KR101847470B1/ko
Publication of WO2012077568A1 publication Critical patent/WO2012077568A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to an inexpensive and highly efficient solar cell and solar cell module.
  • Fig. 1 shows an overview of a general mass-produced solar cell using a single crystal or polycrystalline silicon substrate.
  • a diffusion layer 102 is formed by diffusing a high concentration of impurities in a silicon substrate 101, and at the same time, a pn junction is formed.
  • a plurality of collecting electrodes 105 are provided as electrodes for collecting the extraction electrodes and connecting the solar cells.
  • a method for forming this electrode in view of cost, a method is widely used in which a metal paste in which fine metal particles such as Ag are mixed with an organic binder is printed using a screen plate, and is heat-treated at several hundred degrees to adhere to the substrate. It has been.
  • a back electrode 106 having a polarity opposite to that of the light receiving surface is formed by screen printing of a metal paste in which metal fine particles such as Al are mixed with an organic binder and baking at about 700 to 850 ° C. .
  • An antireflection film 103 for more efficiently capturing light is formed in a region where light enters the solar cell.
  • the antireflection film a silicon nitride film formed by chemical vapor deposition or the like is widely used.
  • the silicon atoms in the crystal are in a stable state because they are covalently bonded with adjacent atoms.
  • an unstable energy level called a dangling bond or a dangling bond appears due to the absence of adjacent atoms to be bonded on the surface which is the terminal of the atomic arrangement. Since the dangling bond is electrically active, the charge generated in the silicon is captured and lost, and the characteristics of the solar cell are impaired. In order to suppress this loss, the solar cell is subjected to some surface termination treatment to reduce dangling bonds.
  • etching paste printing to partially remove the passivation film to expose silicon, and then deposit or print metal from above.
  • a metal film is formed on the passivation film, the metal is heated by irradiating the laser beam in a dot shape from the metal film, and a silicon / electrode contact is formed by penetrating the passivation film (for example, S. W. Glunz, R. Preu, S. Schaefer, E. Schneiderlochner, W. Pflegging, R. Ludemann, G. Willeke, Proc. The 28 IEEE v Photovoltaic.
  • the formation of the narrow contact type and the point contact type is not only in the number of steps, but also requires a new resist material and etching paste for patterning, which is costly and sufficiently gains the effect of the passivation. I can't. Further, the method using a laser is expensive, and a complicated process such as vapor deposition is required for forming a metal film, so that the cost advantage is also reduced.
  • the present invention has been made in view of the above circumstances, and can be manufactured at low cost in terms of low cost loss at the electrode / silicon interface, improved short circuit current and open voltage, improved solar cell characteristics, and cost.
  • An object of the present invention is to provide a solar cell and a solar cell module.
  • the present invention provides the following solar cell and solar cell module.
  • a solar cell in which a passivation film is formed on a crystalline silicon substrate having at least a pn junction and an electrode is formed through printing and heat treatment processes of a conductive paste, an extraction electrode for extracting photogenerated carriers from the silicon substrate is silicon.
  • a first electrode formed so as to be in contact with the substrate; and a second electrode formed such that a collecting electrode that collects carriers collected by the first electrode is in contact with the first electrode;
  • the area ratio of the non-contact portion of the second electrode and the silicon substrate excluding the area where the first electrode and the second electrode are in contact is determined from the area determined by the width and total extension of the second electrode, [1] The solar cell according to [1], which is 20% or more with respect to an area excluding an area of a portion in contact with the second electrode. [3]: The solar cell according to [1] or [2], wherein the first electrode is in partial contact with the second electrode or is entirely overlapped. [4]: The first electrode is formed of a conductive paste containing a simple substance or compound of B, Al, Ga, P, As, In, and Sb, and the element is diffused at a high concentration in the lower portion of the silicon substrate.
  • a solar cell module comprising the solar cells according to any one of [1] to [6] electrically connected thereto.
  • the passivation film By leaving the passivation film completely or partially between the collector electrode and silicon, the charge loss at the electrode / silicon interface can be reduced, the short-circuit current and the open-circuit voltage can be improved, and the solar cell characteristics can be improved. . Further, the process can be realized by a conventional screen printing technique or the like, which is extremely effective for cost reduction.
  • FIG. 1 It is the schematic perspective view which showed the structure of the general solar cell by a prior art. It is the schematic perspective view which showed an example of the structure of the general solar cell based on this invention. It is the schematic perspective view which showed the other example of the structure of the general solar cell based on this invention.
  • (A) to (c) are plan views showing examples of printing plate making used for electrode formation according to the present invention, (a) is a pattern with only an extraction electrode, (b) is a pattern with only a collecting electrode, (c) Shows an example in which both the extraction electrode and the collector electrode are patterned. It is the graph which showed the influence on the solar cell characteristic based on this invention. It is the graph which showed the influence of the glass frit addition amount based on this invention. It is a figure explaining the passivation area under an electrode based on this invention.
  • FIG. 2 shows a solar cell according to an embodiment of the present invention.
  • a pn junction is formed at the same time as a diffusion layer 202 is formed by diffusing impurities at a high concentration in a silicon substrate 201.
  • a first electrode 204 formed so as to be in contact with the silicon substrate; and a second electrode 205 formed so that a collecting electrode for collecting carriers collected by the first electrode 204 is in contact with the first electrode 204.
  • At least the second electrode 205 and the high-concentration diffusion layer 202 are only partially or wholly other than the contact point between the first electrode 204 and the second electrode 205. By not in contact, it is possible to silicon surface passivation under the second electrode 205.
  • Reference numeral 206 denotes a back electrode.
  • the area ratio of the non-contact portion between the second electrode and the silicon substrate excluding the area where the first electrode and the second electrode are in contact is first determined from the area determined by the width and total extension of the second electrode. It is preferably 20% or more, particularly 40 to 100% with respect to the area excluding the area where the electrode and the second electrode are in contact.
  • the second electrode is preferably formed of a conductive paste having a glass frit content less than the glass frit content of the conductive paste used for the first electrode, and the second electrode contains a glass frit. It is preferably formed of a conductive paste having an amount of at least 2% by mass or less, preferably 1% by mass or less, and may be 0% by mass. In this case, the glass frit content of the conductive paste used for the first electrode is preferably 8 to 20% by mass, particularly 8 to 10% by mass. If it is less than 8% by mass, the contact with the high-concentration diffusion layer becomes insufficient, and the electrical resistance may increase and the characteristics of the solar cell may deteriorate.
  • the amount is more than 20% by mass, the electrically insulating glass component becomes excessive, and the electrical conductivity of the electrode itself decreases, or the glass component excessively enters between the electrode and the high-concentration diffusion layer.
  • the resistance may increase and the characteristics of the solar cell may deteriorate.
  • the first electrode 204 is partially in contact with the second electrode 205, but as shown in FIG. 3, the entire first electrode 304 is overlapped with the second electrode 305.
  • 301 is a silicon substrate
  • 302 is a high concentration diffusion layer
  • 303 is a passivation film
  • 306 is a back electrode.
  • the first electrode is formed of a conductive paste containing a simple substance or compound of B, Al, Ga, P, As, In, and Sb, and the element is diffused at a high concentration in the lower portion of the silicon substrate. It is preferable to have a region.
  • the conductivity of the second electrode is preferably higher than the conductivity of the first electrode.
  • the passivation film is preferably made of silicon oxide, silicon nitride, silicon carbide, aluminum oxide, amorphous silicon, microcrystalline silicon, titanium oxide, or a combination thereof.
  • a collector electrode composed of a combination of the first electrode and the second electrode is formed on the light receiving surface, the non-light receiving surface, or both of the solar cell.
  • the single crystal silicon substrate may be manufactured by either the CZ method or the FZ method.
  • a single crystal ⁇ 100 ⁇ n-type silicon substrate having a resistivity of 0.1 to 5 ⁇ ⁇ cm by doping high purity silicon with a group V element such as P or Sb may be used.
  • a group V element such as P or Sb
  • Texture is an effective way to reduce solar cell reflectivity.
  • the texture is 10 to 10 in an alkaline solution (concentration 1 to 10% by mass, temperature 60 to 100 ° C.) such as heated sodium hydroxide, potassium hydroxide, potassium carbonate, sodium carbonate, sodium hydrogen carbonate, tetramethylammonium hydroxide. It is easily produced by dipping for about 30 minutes. In many cases, a predetermined amount of 2-propanol is dissolved in the solution to control the reaction.
  • the texture is formed, it is washed in an acidic aqueous solution of hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid, or a mixture thereof.
  • hydrochloric acid may be mixed with 0.5 to 5% by mass of hydrogen peroxide and heated to 60 to 90 ° C. for washing.
  • a high concentration diffusion layer is formed by a vapor phase diffusion method using phosphorus oxychloride.
  • the high concentration diffusion layer in the case of using an n-type substrate is formed by vapor phase diffusion of boron bromide.
  • silicon solar cells it is necessary to form a pn junction only on the light-receiving surface side, and in order to achieve this, diffusion is performed in a state where two substrates are overlapped, or a diffusion layer on one side is formed with an alkaline aqueous solution or the like. It is necessary to devise such that the pn junction cannot be formed on the back surface by etching. After diffusion, the glass formed on the surface is removed with hydrofluoric acid or the like.
  • an antireflection / passivation film for the light receiving surface is formed.
  • a silicon nitride film or the like is formed to a thickness of about 100 nm using a chemical vapor deposition apparatus.
  • the reaction gas monosilane (SiH 4 ) and ammonia (NH 3 ) are often mixed and used, but nitrogen can be used instead of NH 3 , and the film formation species can be diluted with H 2 gas. And adjusting the process pressure and diluting the reaction gas to achieve a desired refractive index.
  • silicon oxide, silicon carbide, aluminum oxide, amorphous silicon, microcrystalline silicon, titanium oxide, or the like by a method such as heat treatment or atomic layer deposition may be used instead.
  • the passivation film is not limited to a silicon nitride film, and as described above, silicon oxide, silicon carbide, aluminum oxide, amorphous silicon, microcrystalline silicon, titanium oxide, or a combination thereof may be used. obtain.
  • FIG. 4 An Ag paste in which Ag powder and glass frit are mixed with an organic binder is printed, and thereafter, the Ag powder is passed through a passivation film such as a silicon nitride film by heat treatment to make the electrode and silicon conductive.
  • 401 is a first electrode print pattern
  • 402 is a second electrode print pattern.
  • a high-concentration impurity diffusion layer may be formed in the silicon substrate under the first electrode.
  • B or Al, Ga, P, As, In, or Sb or a compound in advance to the first electrode conductive paste, a high-concentration diffusion layer is formed on the silicon substrate simultaneously with firing after electrode printing.
  • the maximum impurity concentration in a high-concentration impurity diffusion layer formed on a silicon substrate is generally 2 from the relationship between the work function of metal and silicon. ⁇ 10 19 atoms / cm 3 or more, and it is preferably adjusted to be 5 ⁇ 10 19 atoms / cm 3 or more. The upper limit is 2 ⁇ 10 22 atoms / cm 3 .
  • the collector electrode corresponding to the second electrode is screen printed.
  • the plate making of the second electrode may be a pattern having only the collector electrode as shown in FIG. 4B, or a pattern in which both the extraction electrode and the collector electrode are patterned as shown in FIG.
  • One electrode may be overcoated. In the latter case, by making the conductivity of the second electrode higher than that of the first electrode, it is possible to reduce the resistance loss of the electrode and further improve the characteristics of the solar cell.
  • the second electrode Ag paste in order to leave a passivation film other than the first electrode formation region, an additive adjusted so that the penetration performance of the passivation film is lower than that of the first electrode Ag paste is used.
  • the passivation film penetration performance of the conductive paste can be controlled by the glass frit content in the conductive paste.
  • Glass frit includes B—Pb—O, B—Si—Pb—O, B—Si—Pb—Al—O, B—Si—Bi—Pb—O, B—Si—Zn—O. It is preferable to use a glass material such as a system.
  • the back electrode is formed by screen printing a paste in which Al powder is mixed with an organic binder. After printing, the back electrode and the second electrode are formed by baking at a temperature of 700 to 850 ° C. for 5 to 30 minutes. The back electrode and the light-receiving surface electrode can be baked at the same time. The order of forming the electrodes on each surface may be changed.
  • the method for forming the electrode is not limited to screen printing, and a method such as dispenser or aerosol deposition is also possible.
  • FIG. 5 shows the relationship between the area ratio of the passivation film remaining under the electrode and the open circuit voltage.
  • the passivation film area ratio was an average value of 6 samples for each conductive paste condition, and the open circuit voltage was plotted as an average value, a maximum value, and a minimum value.
  • the increase rate of the open-circuit voltage slowed down from the vicinity of the under-electrode passivation area of 20% and almost saturated at 40% or more. From this result, it can be said that the passivation area under the second electrode is preferably 20% or more, preferably 40% or more with respect to the electrode area.
  • FIG. 6 shows the glass frit content of the Ag paste used in the above examination on the horizontal axis and the area ratio of the passivation film remaining under the second electrode on the vertical axis.
  • the glass frit contents of the Ag paste with the passivation area under the second electrode of 20% and 40% were about 2% by mass and 1% by mass, respectively.
  • FIG. 7 schematically shows the sample surface of the second electrode formation region in the solar battery cell after the electrode is dissolved.
  • the passivation area is a portion 702 where the second electrode penetrates the passivation film 705 from the area excluding the portion 704 where the first electrode and the second electrode overlap each other (net second electrode area) inside the second electrode formation region 701. Is defined as the area minus the total area.
  • the passivation area ratio is the ratio of the passivation area to the net second electrode area.
  • the measurement of the passivation area can be performed by acquiring a surface image with a digital imager and processing the image.
  • Examples and Comparative Examples In order to confirm the effectiveness of the present invention, as a comparative example, a power generation performance of a solar cell having a general electrode structure and a solar cell having an electrode structure of the present invention was compared. After removing a damaged layer with a hot concentrated potassium hydroxide aqueous solution on 100 boron-doped ⁇ 100 ⁇ p-type ascut silicon substrates having a diffusion thickness of 250 ⁇ m and a specific resistance of 1 ⁇ ⁇ cm, Immersion and texture formation were followed by washing in a hydrochloric acid / hydrogen peroxide mixed solution.
  • an Al paste was screen printed on the entire back side of all the substrates and dried. Thereafter, baking at 780 ° C. was performed in an air atmosphere, and the silicon nitride film was passed through the Ag electrode to conduct with silicon, and at the same time, the Al electrode on the back surface of the substrate was made to conduct with silicon.
  • the entire electrode surface was electrically connected to silicon, and the non-contact area between the electrode and silicon was 0%.
  • the plate making shown in FIG. 4C was used and formed so as to overlap with the first electrode.
  • the amount of glass frit added was adjusted so that the non-contact area between the second electrode and silicon was 80%, and an Ag paste formulated to have a higher conductivity than the first electrode was applied by screen printing, and then 750 A heat treatment at 0 ° C. was performed in an air atmosphere to be cured. Since A has the same thermal history as B, heat treatment was performed at 750 ° C. in an air atmosphere in the same firing furnace as B.
  • the characteristics of the solar cells A and B were measured with a current-voltage measuring machine using artificial sunlight with an air mass of 1.5, as shown in Table 1, the characteristics of B implementing the present invention were A The results superior to the characteristics of were obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 少なくともpn接合をもつ結晶シリコン基板上にパッシベーション膜が形成され、導電性ペーストの印刷と熱処理の工程を経て電極が形成される太陽電池において、光生成されたキャリアをシリコン基板から取出す取出し電極がシリコン基板に接触するように形成される第1電極と、前記第1電極で集められたキャリアを集める集電極が前記第1電極に接触するように形成される第2電極とを有し、前記第2電極とシリコン基板が、少なくとも第1電極と第2電極の接触点以外において部分的にしか又は全く接していない太陽電池に関するものであり、本発明によれば、集電極とシリコンの間にパッシベーション膜を完全又は部分的に残すことにより、電極/シリコン界面での電荷損失を低減させ、短絡電流、開放電圧が改善されて、太陽電池特性を向上させることができる。また、工程は従来のスクリーン印刷技術などで実現可能であり、コスト削減に極めて有効である。

Description

太陽電池及び太陽電池モジュール
 本発明は、安価で高効率な太陽電池及び太陽電池モジュールに関する。
 単結晶や多結晶シリコン基板を用いた一般的な量産型太陽電池の概観を図1に示す。この太陽電池は、シリコン基板101に不純物を高濃度拡散して拡散層102を形成すると同時にpn接合が形成され、受光面の電極として、取出し電極104とよばれる数百~数十μm幅の電極を多数有し、また、取出し電極を集約し太陽電池セルを連結するための電極として集電極105を数本有する。この電極の形成方法としては、コストの面からAg等の金属微粒子を有機バインダーに混ぜた金属ペーストをスクリーン版などを用いて印刷し、数百度で熱処理を行って基板と接着する方法が広く用いられている。また受光面の反対面には、受光面と逆極性となる裏面電極106が、Al等の金属微粒子を有機バインダーに混ぜた金属ペーストのスクリーン印刷と700~850℃程度での焼成により形成される。光が太陽電池に入射する領域にはより効率よく光を取り込むための反射防止膜103が形成されている。反射防止膜は化学気相堆積などで形成されるシリコン窒化膜などが広く用いられる。
 反射防止膜に用いる材料の更に重要な機能として、シリコン表面の終端化がある。結晶内部のシリコン原子は隣接する原子同士で共有結合し、安定な状態にある。しかしながら、原子配列の末端である表面では結合すべき隣接原子が不在となることで、未結合手又はダングリングボンドといわれる不安定なエネルギー準位が出現する。ダングリングボンドは電気的に活性であるため、シリコン内部で光生成された電荷を捕らえて消滅させてしまい、太陽電池の特性が損なわれる。この損失を抑制するため、太陽電池では何らかの表面終端化処理を施してダングリングボンドを低減している。
 一方、金属とシリコンが接触する界面では、ダングリングボンドが終端化されず、キャリアの再結合速度が非常に大きいことが知られている。即ち、シリコン表面には光生成したキャリアを取り出すための電極を接触させる必要があるが、このシリコン/電極界面は太陽電池特性の大きな損失要素になっている。そのため、高効率太陽電池ではシリコンと電極の接触面積を最小限にする工夫が試みられている。具体的には、ナロー接触型やポイント接触型などの構造である。これらの構造を作る場合、フォトリソグラフィー(例えば、J.Knobloch, A.Noel, E.Schaffer, U.Schubert, F.J.Kamerewerd, S.Klussmann, W.Wettling, Proc.the 23rd IEEE Photovoltaic Specialists Conference, p.271,1993.)やエッチングペースト印刷によりパッシベーション膜を部分的に除去してシリコンを露出させ、その上から金属の蒸着又は印刷などを行う。また別の方法では、パッシベーション膜上に金属膜を形成し、その上からレーザー光を点状に照射することによって金属を加熱し、パッシベーション膜を貫通させることでシリコン/電極接触を形成する(例えば、S.W.Glunz, R.Preu, S.Schaefer, E.Schneiderlochner, W.Pfleging, R.Ludemann, G.Willeke, Proc. the 28th IEEE Photovoltaic Specialists Conference, p.168,2000.)。
 しかしながら、ナロー接触型やポイント接触型の形成は工程数のみならず、パターニングのためにレジスト材料やエッチングペーストなどが新たに必要になることからコスト高であり、パッシベーションの効果による利得を十分に得ることができない。またレーザーを使用する方法は装置が高価であり、また金属膜の形成に蒸着などの煩雑な工程が必要になるので、やはりコスト的メリットが低減されてしまう。
 本発明は、上記事情に鑑みなされたもので、電極/シリコン界面での電荷損失が少なく、短絡電流、開放電圧が改善されて、太陽電池特性の向上した、コスト的に安価に製造することができる太陽電池及び太陽電池モジュールを提供することを目的とする。
 本発明は、上記目的を達成するため、下記太陽電池及び太陽電池モジュールを提供する。
[1]:
 少なくともpn接合をもつ結晶シリコン基板上にパッシベーション膜が形成され、導電性ペーストの印刷と熱処理の工程を経て電極が形成される太陽電池において、光生成されたキャリアをシリコン基板から取出す取出し電極がシリコン基板に接触するように形成される第1電極と、前記第1電極で集められたキャリアを集める集電極が前記第1電極に接触するように形成される第2電極とを有し、前記第2電極とシリコン基板が、少なくとも第1電極と第2電極の接触点以外において部分的にしか又は全く接していないことを特徴とする太陽電池。
[2]:
 前記第1電極と前記第2電極が接触する部分の面積を除いた第2電極とシリコン基板の非接触部の面積割合が、第2電極の幅と総延長で決まる面積から第1電極と該第2電極が接触する部分の面積を除いた面積に対して20%以上である[1]記載の太陽電池。
[3]:
 前記第1電極は、第2電極と部分的に接触しているか、又は全体が重なり合っている[1]又は[2]記載の太陽電池。
[4]:
 前記第1電極は、B、Al、Ga、P、As、In、Sbの単体又は化合物を含有する導電性ペーストで形成され、前記シリコン基板の該電極下部分に該元素が高濃度に拡散された領域を有する[1]~[3]のいずれかに記載の太陽電池。
[5]:
 前記パッシベーション膜は、酸化シリコン、窒化シリコン、炭化シリコン、酸化アルミニウム、アモルファスシリコン、微結晶シリコン、酸化チタンのいずれか又はその組み合わせからなる[1]~[4]のいずれかに記載の太陽電池。
[6]:
 前記第1電極と前記第2電極の組み合わせでなる集電極が、太陽電池の受光面又は非受光面あるいはその両方に形成されている[1]~[5]のいずれかに記載の太陽電池。
[7]:
 [1]~[6]のいずれかに記載の太陽電池を電気的に接続してなることを特徴とする太陽電池モジュール。
 集電極とシリコンの間にパッシベーション膜を完全又は部分的に残すことにより、電極/シリコン界面での電荷損失を低減させ、短絡電流、開放電圧が改善されて、太陽電池特性を向上させることができる。また、工程は従来のスクリーン印刷技術などで実現可能であり、コスト削減に極めて有効である。
従来技術による、一般的な太陽電池の構造を示した概略斜視図である。 本発明に係る、一般的な太陽電池の構造の一例を示した概略斜視図である。 本発明に係る、一般的な太陽電池の構造の他の例を示した概略斜視図である。 (a)~(c)はそれぞれ本発明の電極形成に用いる印刷製版の例を示した平面図で、(a)は取出し電極のみのパターン、(b)は集電極のみのパターン、(c)は取出し電極と集電極の両方がパターニングされた例を示す。 本発明に係る、太陽電池特性への影響を示したグラフである。 本発明に係る、ガラスフリット添加量の影響を示したグラフである。 本発明に係る、電極下におけるパッシベーション面積を説明した図である。
 図2は、本発明の一実施例を示す太陽電池であり、この太陽電池は、シリコン基板201に不純物を高濃度拡散して拡散層202を形成すると同時にpn接合が形成され、これによって少なくともpn接合をもつシリコン基板201上にパッシベーション膜203が形成され、導電性ペーストの印刷と熱処理の工程を経て電極が形成される太陽電池であって、光生成されたキャリアをシリコン基板から取出す取出し電極がシリコン基板に接触するように形成される第1電極204と、第1電極204で集められたキャリアを集める集電極が第1電極204に接触するように形成される第2電極205とを有し、少なくとも第2電極205と高濃度拡散層202が、第1電極204と第2電極205の接触点以外において部分的にしか又は全く接していないことで、第2電極205下におけるシリコン表面パッシベーションが可能となる。なお、206は裏面電極である。
 この場合、前記第1電極と前記第2電極が接触する部分の面積を除いた第2電極とシリコン基板の非接触部の面積割合が、第2電極の幅と総延長で決まる面積から第1電極と該第2電極が接触する部分の面積を除いた面積に対して20%以上、特に40~100%であることが好ましい。
 また、前記第2電極は、前記第1電極に用いる導電性ペーストのガラスフリット含有割合よりも少ないガラスフリット含有量の導電性ペーストで形成されることが好ましく、前記第2電極は、ガラスフリット含有量が少なくとも2質量%以下、好ましくは1質量%以下である導電性ペーストで形成されることが好ましく、0質量%でもよい。
 この場合、第1電極に用いる導電性ペーストのガラスフリット含有量は、8~20質量%、特に8~10質量%とすることが好ましい。8質量%より少ないと高濃度拡散層との接触が不十分になり、電気抵抗が増加して太陽電池の特性が低下することがある。また20質量%より多いと電気的に絶縁物であるガラス成分が過剰になり、電極自体の導電率が低下したり、電極と高濃度拡散層の間にガラス成分が過剰に入り込んだりして電気抵抗が増加して太陽電池の特性が低下することがある。
 図2の太陽電池は、第1電極204が第2電極205と部分的に接触されているものであるが、図3に示すように、第1電極304全体を第2電極305と重なり合うように形成することができる。なお、図3において、301はシリコン基板、302は高濃度拡散層、303はパッシベーション膜であり、306は裏面電極である。
 前記第1電極は、B、Al、Ga、P、As、In、Sbの単体又は化合物を含有する導電性ペーストで形成され、前記シリコン基板の該電極下部分に該元素が高濃度に拡散された領域を有することが好ましい。
 前記第2電極の導電率は前記第1電極の導電率よりも高いことが好ましい。
 なお、前記パッシベーション膜は、酸化シリコン、窒化シリコン、炭化シリコン、酸化アルミニウム、アモルファスシリコン、微結晶シリコン、酸化チタンのいずれか又はその組み合わせからなることが好ましい。
 前記第1電極と前記第2電極の組み合わせでなる集電極が、太陽電池の受光面又は非受光面あるいはその両方に形成されていることが好ましい。
 本発明の太陽電池の作製方法の一例を以下に述べる。但し、本発明はこの方法で作製された太陽電池に限られるものではない。
 高純度シリコンにBあるいはGaのようなIII族元素をドープし、抵抗率0.1~5Ω・cmとしたアズカット単結晶{100}p型シリコン基板表面のスライスダメージを、濃度5~60質量%の水酸化ナトリウムや水酸化カリウムのような高濃度のアルカリ、もしくは、フッ酸と硝酸の混酸などを用いてエッチングする。単結晶シリコン基板は、CZ法、FZ法いずれの方法によって作製されてもよい。また、高純度シリコンにPあるいはSbのようなV族元素をドープし、抵抗率0.1~5Ω・cmとした単結晶{100}n型シリコン基板を用いても良い。さらに単結晶シリコンに限らず、キャスト法やリボン成長法などで得られる多結晶シリコン基板を用いることもできる。
 引き続き、基板表面にテクスチャとよばれる微小な凹凸形成を行う。テクスチャは太陽電池の反射率を低下させるための有効な方法である。テクスチャは、加熱した水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウム、テトラメチルアンモニウムハイドロオキサイド等のアルカリ溶液(濃度1~10質量%、温度60~100℃)中に10~30分程度浸漬することで容易に作製される。上記溶液中に、所定量の2-プロパノールを溶解させ、反応を制御することが多い。
 テクスチャ形成後、塩酸、硫酸、硝酸、フッ酸など、もしくはこれらの混合液の酸性水溶液中で洗浄する。コスト的及び特性的観点から、塩酸中での洗浄が好ましい。清浄度を向上するため、塩酸溶液中に、0.5~5質量%の過酸化水素を混合させ、60~90℃に加温して洗浄してもよい。
 この基板上に、オキシ塩化リンを用いた気相拡散法により高濃度拡散層を形成する。一方、n型基板を使用する場合の高濃度拡散層は、臭化ホウ素の気相拡散などにより形成する。一般的なシリコン太陽電池は、pn接合を受光面側にのみ形成する必要があり、これを達成するために基板同士を2枚重ね合わせた状態で拡散したり、片面の拡散層をアルカリ水溶液などでエッチングしたりして、裏面にpn接合ができないような工夫を施す必要がある。拡散後、表面にできたガラスをフッ酸などで除去する。
 次に、受光面の反射防止・パッシベーション膜を形成する。成膜には化学気相堆積装置を用い窒化シリコン膜などを約100nm程度成膜する。反応ガスとして、モノシラン(SiH4)及びアンモニア(NH3)を混合して用いることが多いが、NH3の代わりに窒素を用いることも可能であり、また、H2ガスによる成膜種の希釈やプロセス圧力の調整、反応ガスの希釈を行い、所望の屈折率を実現する。窒化シリコンに限らず、熱処理や原子層堆積などの方法による酸化シリコン、炭化シリコン、酸化アルミニウム、アモルファスシリコン、微結晶シリコン、酸化チタンなどを替わりに用いてもよい。
 パッシベーション膜は、窒化シリコン膜に限られず、上述したように、酸化シリコン、炭化シリコン、酸化アルミニウム、アモルファスシリコン、微結晶シリコン、酸化チタン等やこれらの組み合わせでもよく、これらは常法によって成膜し得る。
 次いで、上記基板の受光面に、第1電極に該当する取出し電極のみを図4(a)に示すようなパターニングの製版でスクリーン印刷する。Ag粉末とガラスフリットを有機バインダーと混合したAgペーストを印刷し、この後、熱処理によりシリコン窒化膜等のパッシベーション膜にAg粉末を貫通させ、電極とシリコンを導通させる。なお、図4中、401は第1電極印刷パターンであり、402は第2電極印刷パターンである。
 第1電極とシリコン基板のオーミック接触をより低抵抗にして太陽電池の曲線因子を高めるためには、第1電極下のシリコン基板に高濃度の不純物拡散層を形成するとよい。第1電極用導電性ペーストにB、Al、Ga、P、As、In、Sbの単体又は化合物を予め添加しておくことで、電極印刷後の焼成と同時にシリコン基板に高濃度拡散層を形成することが可能である。導電性ペーストへの不純物添加量は、導電性ペーストの組成により異なるが、金属とシリコンの仕事関数の関係から、一般的にはシリコン基板に形成される高濃度不純物拡散層における最大不純物濃度が2×1019atoms/cm3以上、好ましくは5×1019atoms/cm3以上になるように調整するのがよい。なお、その上限は2×1022atoms/cm3である。
 第1電極を形成した上に、第2電極に該当する集電極をスクリーン印刷する。第2電極の製版は、図4(b)に示すような集電極のみのパターンでもよいし、図4(c)のように取出し電極と集電極両方のパターニングがされているものを使い、第1電極を重ね塗りしてもよい。後者の場合において、第2電極の導電率を第1電極の導電率より高くすることにより、電極の抵抗損を低減させ、太陽電池の特性を更に改善することが可能である。
 第2電極用Agペーストには、第1電極形成領域以外のパッシベーション膜を残すため、第1電極用Agペーストに比べてパッシベーション膜の貫通性能が低くなるように添加物を調整したものを使う。
 導電性ペーストのパッシベーション膜貫通性能は、導電性ペースト中のガラスフリット含有量により制御が可能である。ガラスフリットには、B-Pb-O系、B-Si-Pb-O系、B-Si-Pb-Al-O系、B-Si-Bi-Pb-O系、B-Si-Zn-O系等のガラス材料を用いるのが好ましい。
 裏面電極は、Al粉末を有機物バインダーで混合したペーストをスクリーン印刷して形成する。印刷後、5~30分間,700~850℃の温度で焼成して、裏面電極と第2電極が形成される。裏面電極及び受光面電極の焼成は一度に行うことも可能である。また各面の電極を形成する順番は入れ替えてもよい。
 また、電極の形成方法は、スクリーン印刷に限らず、ディスペンサーやエアゾル堆積などの方法でも可能である。
 以下、実験例と実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
  [実験例]
<第2電極下パッシベーション膜面積及び導電性ペーストのガラスフリット含有量の検討>
 第2電極下に残るパッシベーション膜の面積(即ち、該電極とシリコンの非接触面積)と太陽電池特性の関係を調べた。
 Ag粉末と有機バインダーとB-Pb-O系ガラスフリットとを混合して作製したペーストを、高濃度拡散層とその上にシリコン窒化膜(パッシベーション膜)を100nm形成したシリコン基板上へ印刷し、焼成を行った。このようにしてできた太陽電池セルから全ての電極を王水で溶解し、電極形成領域をダイシングで切り出し、評価試料とした。該試料両面にプローブを当て、受光面にエアマス1.5の擬似太陽光を照射し、開放電圧を測定した。
 図5は、電極下に残るパッシベーション膜の面積割合と開放電圧との関係を示す。該パッシベーション膜面積割合は導電性ペースト条件毎に6サンプルの平均値とし、開放電圧は平均値及び最大値と最小値をプロットした。
 図5に示すように、電極下パッシベーション面積が20%の付近から開放電圧の上昇率は鈍化し、40%以上でほぼ飽和した。この結果から、第2電極下パッシベーション面積は、該電極面積に対して20%以上、好ましくは40%以上であることが好ましいといえる。
 図6は、上記検討に用いたAgペーストのガラスフリット含有量を横軸にとり、第2電極下に残るパッシベーション膜の面積割合を縦軸に示す。第2電極下パッシベーション面積が20%及び40%となるAgペーストのガラスフリット含有量はそれぞれ約2質量%及び1質量%であった。
 なお、上記第2電極下におけるパッシベーション面積は、図7で説明される。
 図7は、上記電極溶解後の太陽電池セルにおける第2電極形成領域の試料表面を模式的に示す。該パッシベーション面積は、第2電極形成領域701の内側において、第1電極と第2電極が重なる部分704を除いた面積(正味第2電極面積)から第2電極がパッシベーション膜705を貫通した部分702の総面積を引いた面積で定義される。
 パッシベーション面積割合はパッシベーション面積と正味第2電極面積の比である。パッシベーション面積の測定は、デジタル撮像機による表面画像取得と、その画像処理などで可能である。
  [実施例、比較例]
 本発明の有効性を確認するため、比較例として一般的な電極構造の太陽電池と、本発明の電極構造の太陽電池の発電性能比較を行った。
 拡散厚さ250μm、比抵抗1Ω・cmの、ボロンドープ{100}p型アズカットシリコン基板100枚に対し、熱濃水酸化カリウム水溶液によりダメージ層を除去後、水酸化カリウム/2-プロパノール水溶液中に浸漬し、テクスチャ形成を行い、引き続き塩酸/過酸化水素混合溶液中で洗浄を行った。次に、オキシ塩化リン雰囲気下、870℃で裏面同士を重ねた状態で熱処理し、pn接合を形成した。拡散後、フッ酸にてリンガラスを除去し、純水洗浄の後、乾燥させた。
 以上の処理の後、プラズマCVD装置を用いてシリコン窒化膜を受光面反射防止・パッシベーション膜として試料全面に形成した。
 ここで、上記基板を50枚ずつAとBに分けて受光面の電極印刷を行った。Aには、第1電極と第2電極が同一スクリーンにパターニングされた製版(図4(c))を使用し、第1電極と第2電極を同時に1回印刷し、乾燥した。Bには、第1電極のみがスクリーンにパターニングされた製版(図4(a))を使用し、第1電極のみを印刷し、乾燥した。AとBで使用したAgペーストは同一のもので、B-Si-Bi-Pb-O系ガラスフリットを3質量%添加し、更に高濃度拡散層形成のためリン化合物を3質量%添加したものを用いた。
 次に、全基板の裏側全面にAlペーストをスクリーン印刷し、乾燥した。
 この後、780℃の焼成を空気雰囲気下に行い、Ag電極にシリコン窒化膜を貫通させてシリコンと導通させると同時に、基板裏面のAl電極をシリコンと導通させた。Aは電極全面がシリコンと導通し、電極とシリコンの非接触面積が0%であった。一方、Bには第2電極を形成するため、図4(c)の製版を使用し、第1電極と重なり合うように形成した。第2電極とシリコンの非接触面積が80%になるようにガラスフリット添加量を調整し、かつ第1電極より高い導電率を持つように調合されたAgペーストをスクリーン印刷で塗付後、750℃の熱処理を空気雰囲気下で行い硬化させた。
 AはBと熱履歴を同じくするため、Bと同じ焼成炉において空気雰囲気下で750℃の熱処理を行った。
 A、B両者の太陽電池セルを、エアマス1.5の擬似太陽光を用いた電流電圧測定機で特性測定を行ったところ、表1に示すように、本発明を実施したBの特性がAの特性を優越する結果が得られた。
Figure JPOXMLDOC01-appb-T000001

Claims (7)

  1.  少なくともpn接合をもつ結晶シリコン基板上にパッシベーション膜が形成され、導電性ペーストの印刷と熱処理の工程を経て電極が形成される太陽電池において、光生成されたキャリアをシリコン基板から取出す取出し電極がシリコン基板に接触するように形成される第1電極と、前記第1電極で集められたキャリアを集める集電極が前記第1電極に接触するように形成される第2電極とを有し、前記第2電極とシリコン基板が、少なくとも第1電極と第2電極の接触点以外において部分的にしか又は全く接していないことを特徴とする太陽電池。
  2.  前記第1電極と前記第2電極が接触する部分の面積を除いた第2電極とシリコン基板の非接触部の面積割合が、第2電極の幅と総延長で決まる面積から第1電極と該第2電極が接触する部分の面積を除いた面積に対して20%以上である請求項1記載の太陽電池。
  3.  前記第1電極は、第2電極と部分的に接触しているか、又は全体が重なり合っている請求項1又は2記載の太陽電池。
  4.  前記第1電極は、B、Al、Ga、P、As、In、Sbの単体又は化合物を含有する導電性ペーストで形成され、前記シリコン基板の該電極下部分に該元素が高濃度に拡散された領域を有する請求項1乃至3のいずれか1項記載の太陽電池。
  5.  前記パッシベーション膜は、酸化シリコン、窒化シリコン、炭化シリコン、酸化アルミニウム、アモルファスシリコン、微結晶シリコン、酸化チタンのいずれか又はその組み合わせからなる請求項1乃至4のいずれか1項記載の太陽電池。
  6.  前記第1電極と前記第2電極の組み合わせでなる集電極が、太陽電池の受光面又は非受光面あるいはその両方に形成されている請求項1乃至5のいずれか1項記載の太陽電池。
  7.  請求項1乃至6のいずれか1項に記載の太陽電池を電気的に接続してなることを特徴とする太陽電池モジュール。
PCT/JP2011/077787 2010-12-06 2011-12-01 太陽電池及び太陽電池モジュール WO2012077568A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA2820034A CA2820034A1 (en) 2010-12-06 2011-12-01 Solar cell and solar-cell module
RU2013131017/28A RU2571167C2 (ru) 2010-12-06 2011-12-01 Солнечный элемент и модуль солнечного элемента
EP11847500.3A EP2650926B1 (en) 2010-12-06 2011-12-01 Solar cell and method of making a solar cell
US13/992,015 US9224888B2 (en) 2010-12-06 2011-12-01 Solar cell and solar-cell module
JP2012547810A JP5626361B2 (ja) 2010-12-06 2011-12-01 太陽電池及び太陽電池モジュール、並びに太陽電池の製造方法
SG2013043849A SG191045A1 (en) 2010-12-06 2011-12-01 Solar cell and solar-cell module
CN201180065726.8A CN103329279B (zh) 2010-12-06 2011-12-01 太阳能电池和太阳能电池模件
KR1020137017730A KR101847470B1 (ko) 2010-12-06 2011-12-01 태양전지 및 태양전지 모듈

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010271659 2010-12-06
JP2010-271659 2010-12-06

Publications (1)

Publication Number Publication Date
WO2012077568A1 true WO2012077568A1 (ja) 2012-06-14

Family

ID=46207058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077787 WO2012077568A1 (ja) 2010-12-06 2011-12-01 太陽電池及び太陽電池モジュール

Country Status (11)

Country Link
US (1) US9224888B2 (ja)
EP (1) EP2650926B1 (ja)
JP (1) JP5626361B2 (ja)
KR (1) KR101847470B1 (ja)
CN (1) CN103329279B (ja)
CA (1) CA2820034A1 (ja)
MY (1) MY164543A (ja)
RU (1) RU2571167C2 (ja)
SG (1) SG191045A1 (ja)
TW (1) TWI521724B (ja)
WO (1) WO2012077568A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004831A (ja) * 2011-06-20 2013-01-07 Sharp Corp 結晶太陽電池セルおよび結晶太陽電池セルの製造方法
JP2013048306A (ja) * 2012-12-07 2013-03-07 Sharp Corp 結晶太陽電池セル
JP2015130406A (ja) * 2014-01-07 2015-07-16 三菱電機株式会社 光起電力装置およびその製造方法、光起電力モジュール
JP2016092238A (ja) * 2014-11-05 2016-05-23 信越化学工業株式会社 太陽電池及びその製造方法
JPWO2017119036A1 (ja) * 2016-01-05 2018-10-04 パナソニックIpマネジメント株式会社 太陽電池モジュール
JP7075535B1 (ja) 2021-08-27 2022-05-25 上海晶科緑能企業管理有限公司 光起電力電池セル、電池モジュール及び製造プロセス

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102018652B1 (ko) * 2012-08-29 2019-09-05 엘지전자 주식회사 태양 전지
KR101867855B1 (ko) 2014-03-17 2018-06-15 엘지전자 주식회사 태양 전지
JP7064823B2 (ja) * 2016-08-31 2022-05-11 株式会社マテリアル・コンセプト 太陽電池及びその製造方法
CN108074999A (zh) * 2016-11-16 2018-05-25 镇江大全太阳能有限公司 一种选择性发射极黑硅电池及其制作方法
RU172396U1 (ru) * 2016-12-28 2017-07-06 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук Солнечный элемент
CN110337423A (zh) 2017-03-24 2019-10-15 贺利氏贵金属北美康舍霍肯有限责任公司 用于导电膏组合物的低蚀刻和非接触式玻璃
CN109065639A (zh) * 2018-06-22 2018-12-21 晶澳(扬州)太阳能科技有限公司 N型晶体硅太阳能电池及制备方法、光伏组件
CN112786734A (zh) * 2019-11-08 2021-05-11 泰州隆基乐叶光伏科技有限公司 太阳能电池组件生产方法及太阳能电池组件
CN114284381A (zh) * 2020-09-18 2022-04-05 嘉兴阿特斯技术研究院有限公司 异质结太阳能电池及其制作方法
CN113921622B (zh) * 2021-09-30 2024-04-05 中国科学院苏州纳米技术与纳米仿生研究所 电池片基板、光伏电池、光伏电池组件及其组装方法
CN115579423B (zh) * 2022-10-19 2024-07-09 通威太阳能(安徽)有限公司 丝网印刷不良电池片的处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11512886A (ja) * 1995-10-05 1999-11-02 エバラ・ソーラー・インコーポレーテッド 自己整列的に部分的に深く拡散したエミッタの太陽電池
JP2004273826A (ja) * 2003-03-10 2004-09-30 Sharp Corp 光電変換装置及びその製造方法
JP2006156693A (ja) * 2004-11-29 2006-06-15 Kyocera Corp 太陽電池素子及び、これを用いた太陽電池モジュール
JP2007096040A (ja) * 2005-09-29 2007-04-12 Sharp Corp 太陽電池の製造方法および太陽電池
WO2009128679A2 (en) * 2008-04-17 2009-10-22 Lg Electronics Inc. Solar cell, method of forming emitter layer of solar cell, and method of manufacturing solar cell
JP2009295715A (ja) * 2008-06-04 2009-12-17 Sharp Corp 光電変換装置およびその製造方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU1648224C (ru) * 1988-12-20 1995-01-09 Научно-производственное предприятие "Сатурн" Способ изготовления фотопреобразователя
JPH0536998A (ja) 1991-07-30 1993-02-12 Sharp Corp 電極の形成方法
JP2928433B2 (ja) 1993-02-23 1999-08-03 シャープ株式会社 光電変換素子の製造方法
JP2000138386A (ja) 1998-11-04 2000-05-16 Shin Etsu Chem Co Ltd 太陽電池の製造方法およびこの方法で製造された太陽電池
US6632730B1 (en) 1999-11-23 2003-10-14 Ebara Solar, Inc. Method for self-doping contacts to a semiconductor
AU2001242510B2 (en) 2000-04-28 2006-02-23 Merck Patent Gmbh Etching pastes for inorganic surfaces
JP2002217434A (ja) * 2001-01-19 2002-08-02 Sharp Corp 太陽電池、太陽電池用インターコネクターおよびストリング
JP4121928B2 (ja) 2003-10-08 2008-07-23 シャープ株式会社 太陽電池の製造方法
JP4557622B2 (ja) 2004-07-29 2010-10-06 京セラ株式会社 太陽電池素子の接続構造及びこれを含む太陽電池モジュール
JP2008204967A (ja) 2005-05-31 2008-09-04 Naoetsu Electronics Co Ltd 太陽電池素子及びその製造方法
US7765949B2 (en) * 2005-11-17 2010-08-03 Palo Alto Research Center Incorporated Extrusion/dispensing systems and methods
JP4963866B2 (ja) 2006-04-28 2012-06-27 シャープ株式会社 光電変換素子の製造方法
TWI487124B (zh) 2006-08-25 2015-06-01 Sanyo Electric Co 太陽電池模組及太陽電池模組的製造方法
US20100018565A1 (en) * 2007-01-25 2010-01-28 Yasushi Funakoshi Solar cell, solar cell array and solar cell module, and method of fabricating solar cell array
ES2505322T3 (es) * 2007-07-26 2014-10-09 Universität Konstanz Método para producir una célula solar de silicio con un emisor decapado por grabado así como una célula solar correspondiente
RU2357325C1 (ru) * 2007-10-29 2009-05-27 Российская академия Сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ) Полупроводниковый фотоэлектрический генератор и способ его изготовления
JP4610630B2 (ja) 2008-03-31 2011-01-12 三菱電機株式会社 太陽電池用拡散層の製造方法および太陽電池セルの製造方法
US20090250108A1 (en) 2008-04-02 2009-10-08 Applied Materials, Inc. Silicon carbide for crystalline silicon solar cell surface passivation
KR100994924B1 (ko) * 2008-04-17 2010-11-19 엘지전자 주식회사 태양전지 및 그 제조방법
TWI423462B (zh) * 2008-10-22 2014-01-11 Ind Tech Res Inst 矽晶太陽電池之背面電極製造方法
KR100993511B1 (ko) 2008-11-19 2010-11-12 엘지전자 주식회사 태양 전지 및 그 제조 방법
KR101002282B1 (ko) 2008-12-15 2010-12-20 엘지전자 주식회사 태양 전지 및 그 제조 방법
JP2010251343A (ja) * 2009-04-10 2010-11-04 Mitsubishi Electric Corp 太陽電池およびその製造方法
CN102396073B (zh) 2009-04-14 2015-09-09 三菱电机株式会社 光电动势装置及其制造方法
US8586129B2 (en) * 2010-09-01 2013-11-19 Solarworld Innovations Gmbh Solar cell with structured gridline endpoints and vertices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11512886A (ja) * 1995-10-05 1999-11-02 エバラ・ソーラー・インコーポレーテッド 自己整列的に部分的に深く拡散したエミッタの太陽電池
JP2004273826A (ja) * 2003-03-10 2004-09-30 Sharp Corp 光電変換装置及びその製造方法
JP2006156693A (ja) * 2004-11-29 2006-06-15 Kyocera Corp 太陽電池素子及び、これを用いた太陽電池モジュール
JP2007096040A (ja) * 2005-09-29 2007-04-12 Sharp Corp 太陽電池の製造方法および太陽電池
WO2009128679A2 (en) * 2008-04-17 2009-10-22 Lg Electronics Inc. Solar cell, method of forming emitter layer of solar cell, and method of manufacturing solar cell
JP2009295715A (ja) * 2008-06-04 2009-12-17 Sharp Corp 光電変換装置およびその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
J. KNOBLOCH; A. NOEL; E. SCHAFFER; U. SCHUBERT; F. J. KAMEREWERD; S. KLUSSMANN; W. WETTLING, PROC. THE 23RD IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, 1993, pages 271
S. W. GLUNZ; R. PREU; S. SCHAEFER; E. SCHNEIDERLOCHNER; W. PFLEGING; R. LUDEMANN; G. WILLEKE, PROC. THE 28TH IEEE PHOTOVOLTAIC SHEPCIALISTS CONFERENCE, 2000, pages 168
See also references of EP2650926A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004831A (ja) * 2011-06-20 2013-01-07 Sharp Corp 結晶太陽電池セルおよび結晶太陽電池セルの製造方法
JP2013048306A (ja) * 2012-12-07 2013-03-07 Sharp Corp 結晶太陽電池セル
JP2015130406A (ja) * 2014-01-07 2015-07-16 三菱電機株式会社 光起電力装置およびその製造方法、光起電力モジュール
JP2016092238A (ja) * 2014-11-05 2016-05-23 信越化学工業株式会社 太陽電池及びその製造方法
JPWO2017119036A1 (ja) * 2016-01-05 2018-10-04 パナソニックIpマネジメント株式会社 太陽電池モジュール
JP7075535B1 (ja) 2021-08-27 2022-05-25 上海晶科緑能企業管理有限公司 光起電力電池セル、電池モジュール及び製造プロセス
JP2023033059A (ja) * 2021-08-27 2023-03-09 上海晶科緑能企業管理有限公司 光起電力電池セル、電池モジュール及び製造プロセス
US11764313B2 (en) 2021-08-27 2023-09-19 Shanghai Jinko Green Energy Enterprise Management Co., Ltd. Photovoltaic solar cell, solar cell module and manufacturing process

Also Published As

Publication number Publication date
SG191045A1 (en) 2013-08-30
US20130255747A1 (en) 2013-10-03
JPWO2012077568A1 (ja) 2014-05-19
CN103329279B (zh) 2016-11-02
KR101847470B1 (ko) 2018-04-10
TWI521724B (zh) 2016-02-11
RU2571167C2 (ru) 2015-12-20
CN103329279A (zh) 2013-09-25
EP2650926A4 (en) 2017-11-22
TW201236171A (en) 2012-09-01
JP5626361B2 (ja) 2014-11-19
KR20130140106A (ko) 2013-12-23
CA2820034A1 (en) 2012-06-14
EP2650926B1 (en) 2021-03-31
US9224888B2 (en) 2015-12-29
MY164543A (en) 2018-01-15
RU2013131017A (ru) 2015-01-20
EP2650926A1 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
JP5626361B2 (ja) 太陽電池及び太陽電池モジュール、並びに太陽電池の製造方法
US11545588B2 (en) Solar cell, method for manufacturing solar cell, and solar cell module
JP5541370B2 (ja) 太陽電池の製造方法、太陽電池及び太陽電池モジュール
US20100084009A1 (en) Solar Cells
US20160197207A1 (en) Solar cell, solar cell module, and manufacturing method of solar cell
KR20130092494A (ko) 태양 전지의 제조 방법 및 태양 전지
Hörteis et al. Fine line printed and plated contacts on high ohmic emitters enabling 20% cell efficiency
JP6405292B2 (ja) 太陽電池の製造方法及び太陽電池
JP5316491B2 (ja) 太陽電池の製造方法
JP5994895B2 (ja) 太陽電池の製造方法
JP2003282907A (ja) 太陽電池素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847500

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012547810

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2820034

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13992015

Country of ref document: US

Ref document number: 12013501161

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 20137017730

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013131017

Country of ref document: RU

Kind code of ref document: A