WO2012077520A1 - 有機電界発光素子 - Google Patents

有機電界発光素子 Download PDF

Info

Publication number
WO2012077520A1
WO2012077520A1 PCT/JP2011/077384 JP2011077384W WO2012077520A1 WO 2012077520 A1 WO2012077520 A1 WO 2012077520A1 JP 2011077384 W JP2011077384 W JP 2011077384W WO 2012077520 A1 WO2012077520 A1 WO 2012077520A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
compound
group
general formula
integer
Prior art date
Application number
PCT/JP2011/077384
Other languages
English (en)
French (fr)
Inventor
淳也 小川
孝弘 甲斐
松本 めぐみ
Original Assignee
新日鐵化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵化学株式会社 filed Critical 新日鐵化学株式会社
Priority to EP11846896.6A priority Critical patent/EP2650941B1/en
Priority to CN201180059022.XA priority patent/CN103262283B/zh
Priority to JP2012547786A priority patent/JP5834023B2/ja
Priority to US13/990,511 priority patent/US9337432B2/en
Priority to KR1020137017654A priority patent/KR101838675B1/ko
Publication of WO2012077520A1 publication Critical patent/WO2012077520A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/865Intermediate layers comprising a mixture of materials of the adjoining active layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes

Definitions

  • the present invention relates to an organic electroluminescent element containing a carbazole compound having a specific structure, and more particularly to a thin film device that emits light by applying an electric field to a light emitting layer made of an organic compound.
  • an organic electroluminescence element (hereinafter referred to as an organic EL element) has a light emitting layer and a pair of counter electrodes sandwiching the layer as its simplest structure. That is, in an organic EL element, when an electric field is applied between both electrodes, electrons are injected from the cathode, holes are injected from the anode, and these are recombined in the light emitting layer to emit light. .
  • CBP 4,4′-bis (9-carbazolyl) biphenyl
  • Ir (ppy) 3 2,4′-bis (9-carbazolyl) biphenyl
  • a host material having high triplet excitation energy and balanced in both charge (hole / electron) injection and transport characteristics is required. Further, a compound that is electrochemically stable and has high heat resistance and excellent amorphous stability is desired, and further improvement is required.
  • Patent Document 3 the following carbazole compounds are disclosed.
  • the disclosure is not limited to the disclosure of an organic EL device using a compound substituted by the 4-position of carbazole, and does not indicate the usefulness of the organic EL device using a compound in which the 9-position of carbazole is substituted at the 4-position of the carbazole compound. .
  • Patent Document 4 discloses an organic EL element using a compound as shown below.
  • Patent Document 5 discloses a compound as shown below and an organic EL device using the compound.
  • An object of this invention is to provide the practically useful organic EL element which has high efficiency and high drive stability in view of the said present condition, and a compound suitable for it.
  • the present invention relates to an organic electroluminescent device in which an anode, a plurality of organic layers and a cathode are laminated on a substrate, and is generally used as at least one layer selected from the group consisting of a light emitting layer, a hole transport layer and an electron blocking layer.
  • the present invention relates to an organic electroluminescent device comprising a carbazole compound represented by the formula (1).
  • L is an m-valent aromatic hydrocarbon group having 6 to 30 carbon atoms in total or an aromatic heterocyclic group having 3 to 30 carbon atoms in total, but is not a carbazole ring-containing group.
  • N is an integer of 1 to 3, and each n is independently an integer of 1 to 4, but at least one n is an integer of 2 to 4, and is represented by at least one formula (1a) in the formula (In general formulas (1) and (1a), each R is independently hydrogen, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group having 3 to 11 carbon atoms.)
  • n is independently an integer of 1 to 3
  • at least one n is preferably an integer of 2 to 3.
  • L is preferably an m-valent group generated by removing m hydrogen atoms from any one of the formulas (2) to (5).
  • each X independently represents CH or nitrogen
  • each R independently represents hydrogen, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group having 3 to 11 carbon atoms.
  • Y represents oxygen or sulfur
  • p represents an integer of 0 to 2.
  • L is an m-valent group generated by removing m hydrogen atoms from any one of the formulas (2), (3), or (4).
  • the total sum of n is preferably an integer of 2 to 6.
  • the present invention relates to the organic electroluminescent element, wherein the organic layer containing a carbazole compound is a light emitting layer containing a phosphorescent dopant.
  • the organic electroluminescent device of the present invention contains the carbazole compound represented by the general formula (1) (hereinafter also referred to as the compound represented by the general formula (1)) in the organic layer.
  • This carbazole compound has a 4- (9-carbazolyl) carbazole structure, and is considered to bring about the excellent effects as described above.
  • L represents an m-valent group formed by removing m hydrogen atoms from an aromatic hydrocarbon having 6 to 30 carbon atoms or an aromatic heterocyclic compound having 3 to 30 carbon atoms.
  • L is preferably an m-valent group formed by removing m hydrogen atoms from an aromatic hydrocarbon or aromatic heterocyclic compound having 6 to 18 carbon atoms in total.
  • L is not a carbazole ring-containing group.
  • the carbazole ring-containing group here is an m-valent group generated by removing m hydrogen atoms from a substituted or unsubstituted carbazole. Specifically, it is an m-valent group generated by removing m hydrogen atoms from N or C constituting the carbazole ring.
  • aromatic hydrocarbon or aromatic heterocyclic compound examples include benzene, pentalene, indene, naphthalene, azulene, heptalene, octalene, indacene, acenaphthylene, phenalene, phenanthrene, anthracene, tridene, fluoranthene, acephenanthrylene, and ASEAN.
  • Tolylene Triphenylene, Pyrene, Chrysene, Tetraphen, Tetracene, Preaden, Picene, Perylene, Pentaphene, Pentacene, Tetraphenylene, Collanthrylene, Helicene, Hexaphene, Rubicene, Coronene, Trinaphthylene, Heptaphene, Pyrantrene, Furan, Benzofuran, Isobenzofuran , Xanthene, oxatolene, dibenzofuran, perixanthenoxanthene, thiophene, thioxanthene, thianthrene, phen Noxatiin, thionaphthene, isothianaphthene, thiobutene, thiophanthrene, dibenzothiophene, pyrrole, pyrazole, tellurazole, selenazole, thiazole, isothiazole, ox
  • the number to be connected is preferably 2 to 10, more preferably 2 to 7, and the connected aromatic rings may be the same or different. Also good.
  • the bonding position for bonding to m carbazolyl groups is not limited, and it may be a ring at a terminal portion or a central ring of a linked aromatic ring.
  • the aromatic ring is a generic term for an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
  • the linked aromatic rings include at least one heterocyclic ring, it is included in the aromatic heterocyclic ring.
  • the m-valent group generated from the aromatic compound in which a plurality of aromatic rings are connected is a monovalent group, it is represented by the following formula, for example.
  • Ar 1 to Ar 6 represent a substituted or unsubstituted aromatic ring.
  • Specific examples of the group formed by connecting a plurality of the aromatic rings include, for example, biphenyl, terphenyl, bipyridine, bipyrimidine, bitriazine, terpyridine, bistriazylbenzene, phenylterphenyl, binaphthalene, phenylpyridine, diphenylpyridine, phenylpyrimidine, diphenyl. And monovalent groups generated by removing hydrogen from pyrimidine, phenyltriazine, diphenyltriazine, phenylnaphthalene, diphenylnaphthalene and the like.
  • preferable L forms include m-valent groups generated from the aromatic compounds represented by the formulas (2) to (5), preferably the formulas (2) to (4). These m-valent groups are valent groups generated by removing m hydrogen atoms from the carbon forming the ring appearing in the formulas (2) to (5). When m is 2 or more, the hydrogen atoms to be removed are The same ring may be different.
  • each X independently represents methine or nitrogen. Of the Xs constituting each 6-membered ring, 0 to 3 Xs are preferably nitrogen, and more preferably all are methine.
  • Y represents oxygen or sulfur.
  • p represents an integer of 0 to 2, preferably 0 or 1.
  • aromatic compound giving preferable L examples include benzene, pyridine, pyrazine, pyrimidine, pyridazine, triazine, dibenzofuran, dibenzothiophene, biphenyl, terphenyl, bipyridine, bipyrimidine, vitriazine, terpyridine, bistrine.
  • Examples include azylbenzene, phenylpyridine, diphenylpyridine, phenylpyrimidine, diphenylpyrimidine, phenyltriazine, diphenyltriazine, phenyldibenzofuran, phenyldibenzothiophene, dibenzofuranylpyridine, and dibenzothienylpyridine. More preferably, benzene, dibenzofuran, dibenzothiophene, biphenyl, terphenyl, bistriazylbenzene, phenyldibenzofuran, and phenyldibenzothiophene are mentioned.
  • m represents an integer of 1 to 3.
  • m is 1 or 2, more preferably m is 1.
  • each n independently represents an integer of 1 to 4.
  • n is 1 to 3.
  • at least one n is an integer of 2 to 4, and has a bond structure represented by at least one formula (1a) in the formula.
  • all the bond structures between carbazole rings are the bond structures represented by the formula (1a) or the formulas (1a) and (1b).
  • the carbazole ring refers to a three condensed ring appearing in the general formula (1).
  • the total sum of n is an integer of 2 to 12, preferably 2 to 9, and more preferably 2 to 6.
  • each R is independently hydrogen, an alkyl group having 1 to 10 carbon atoms, or cycloalkyl having 3 to 11 carbon atoms. Represents a group. Preferred is hydrogen, an alkyl group having 1 to 8 carbon atoms, or a cycloalkyl group having 3 to 8 carbon atoms, and more preferred is hydrogen, an alkyl group having 1 to 4 carbon atoms, or a cycloalkyl group having 5 to 7 carbon atoms. .
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and a decyl group, preferably a methyl group, an ethyl group, and a propyl group.
  • a decyl group preferably a methyl group, an ethyl group, and a propyl group.
  • the alkyl group may be linear or branched.
  • cycloalkyl group examples include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and a methylcyclohexyl group, preferably a cyclohexyl group and a methylcyclohexyl group.
  • the carbazole compound of the present invention can be synthesized using a carbazole derivative substituted at the 4-position with a halogen atom, using a known method by selecting a raw material according to the structure of the target compound.
  • the 4-fluorocarbazole skeleton of a carbazole derivative substituted at the 4-position with a fluorine atom is described in Journal of Organic Chemistry, 2008, No. 73, p7603 to p7610, and can be synthesized by the following reaction formula with reference to the synthesis examples.
  • carbazole compound represented by the general formula (1) Specific examples of the carbazole compound represented by the general formula (1) are shown below, but the material used for the organic electroluminescence device of the present invention is not limited thereto.
  • the carbazole compound represented by the general formula (1) includes at least one of a light emitting layer, a hole transport layer, and an electron blocking layer in an organic EL device in which an anode, a plurality of organic layers, and a cathode are stacked on a substrate. By containing it in the organic layer, an excellent organic electroluminescent element is provided.
  • a light emitting layer and a positive hole transport layer are preferable. More preferably, it may be contained as a host material of a light emitting layer containing a phosphorescent dopant.
  • the organic EL device of the present invention has an organic layer having at least one light emitting layer between an anode and a cathode laminated on a substrate, and at least one of a light emitting layer, a hole transport layer and an electron blocking layer.
  • the organic layer contains a compound represented by the general formula (1).
  • the light-emitting layer or the hole transport layer contains a compound represented by the general formula (1), and more preferably a compound represented by the general formula (1) together with a phosphorescent dopant is contained in the light-emitting layer. .
  • the structure of the organic EL element of the present invention will be described with reference to the drawings.
  • the structure of the organic EL element of the present invention is not limited to the illustrated one.
  • FIG. 1 is a cross-sectional view showing a structural example of a general organic EL device used in the present invention, wherein 1 is a substrate, 2 is an anode, 3 is a hole injection layer, 4 is a hole transport layer, and 5 is a light emitting layer. , 6 represents an electron transport layer, and 7 represents a cathode.
  • the organic EL device of the present invention may have an exciton blocking layer adjacent to the light emitting layer, and may have an electron blocking layer between the light emitting layer and the hole injection layer.
  • the exciton blocking layer can be inserted on either the anode side or the cathode side of the light emitting layer, or both can be inserted simultaneously.
  • the organic EL device of the present invention has a substrate, an anode, a light emitting layer and a cathode as essential layers, but it is preferable to have a hole injecting and transporting layer and an electron injecting and transporting layer in layers other than the essential layers, and further emit light. It is preferable to have a hole blocking layer between the layer and the electron injecting and transporting layer.
  • the hole injection / transport layer means either or both of a hole injection layer and a hole transport layer
  • the electron injection / transport layer means either or both of an electron injection layer and an electron transport layer.
  • the organic EL element of the present invention is preferably supported on a substrate.
  • the substrate is not particularly limited as long as it is conventionally used for an organic EL element.
  • a substrate made of glass, transparent plastic, quartz, or the like can be used.
  • an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) that can form a transparent conductive film may be used.
  • these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when the pattern accuracy is not so high (about 100 ⁇ m or more) ), A pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered. Or when using the substance which can be apply
  • the transmittance is greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
  • the cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • an electron injecting metal a material having a low work function (4 eV or less) metal
  • an alloy a material having a low work function (4 eV or less) metal
  • an alloy a material having a low work function (4 eV or less) metal
  • an alloy referred to as an electron injecting metal
  • an alloy referred to as an electron injecting metal
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture
  • Suitable are a magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum and the like.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the light emission luminance is improved, which is convenient.
  • a transparent or semi-transparent cathode can be produced by producing the conductive transparent material mentioned in the description of the anode on the cathode after producing the metal with a thickness of 1 to 20 nm on the cathode.
  • an element in which both the anode and the cathode are transmissive can be manufactured.
  • the light emitting layer is a phosphorescent light emitting layer and includes a phosphorescent dopant and a host material.
  • the phosphorescent dopant material preferably contains an organometallic complex containing at least one metal selected from ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum and gold. Such organometallic complexes are known in the prior art documents and the like, and these can be selected and used.
  • the emission wavelength of the phosphorescent dopant preferably has a maximum emission wavelength of 550 nm or less.
  • Preferred phosphorescent dopants include complexes such as Ir (ppy) 3 having a noble metal element such as Ir as a central metal, complexes such as (Bt) 2 Iracac, and complexes such as (Btp) Ptacac. Specific examples of these complexes are shown below, but are not limited to the following compounds.
  • the amount of phosphorescent dopant contained in the light emitting layer is preferably in the range of 1 to 50% by weight. More preferably, it is 5 to 30% by weight.
  • the host material in the emissive layer it is preferable to use the compound represented by the general formula (1).
  • the material used for the light emitting layer may be a host material other than the compound represented by the general formula (1). .
  • a plurality of known host materials may be used in combination.
  • a known host compound that can be used is preferably a compound that has a hole transporting ability or an electron transporting ability, prevents the emission of light from becoming longer, and has a high glass transition temperature.
  • host materials are known from a large number of patent documents and can be selected from them.
  • Specific examples of the host material are not particularly limited, but include indole derivatives, carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine.
  • arylamine derivatives amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidene compounds, porphyrin compounds, anthraquino Heterocyclic tetracarboxylic acid anhydrides such as dimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, naphthalene perylene,
  • the injection layer is a layer provided between the electrode and the organic layer for lowering the driving voltage and improving the luminance of light emission.
  • the injection layer can be provided as necessary.
  • the hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking.
  • a known hole blocking layer material can be used for the hole blocking layer. Moreover, as a hole-blocking layer material, the material of the electron carrying layer mentioned later can be used as needed.
  • the electron blocking layer is made of a material that has a function of transporting holes and has a very small ability to transport electrons.
  • the electron blocking layer blocks the electrons while transporting holes, and the probability of recombination of electrons and holes. Can be improved.
  • the compound represented by the general formula (1) is preferably used. However, when the compound is used for any other organic layer, the material for the hole transport layer described later is used. Can be used as needed.
  • the thickness of the electron blocking layer is preferably 3 to 100 nm, more preferably 5 to 30 nm.
  • the exciton blocking layer is a layer for preventing excitons generated by recombination of holes and electrons in the light emitting layer from diffusing into the charge transport layer. It becomes possible to efficiently confine in the light emitting layer, and the light emission efficiency of the device can be improved.
  • the exciton blocking layer can be inserted on either the anode side or the cathode side adjacent to the light emitting layer, or both can be inserted simultaneously.
  • Examples of the material for the exciton blocking layer include 1,3-dicarbazolylbenzene (mCP) and bis (2-methyl-8-quinolinolato) -4-phenylphenolato aluminum (III) (BAlq). It is done.
  • mCP 1,3-dicarbazolylbenzene
  • BAlq bis (2-methyl-8-quinolinolato) -4-phenylphenolato aluminum
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic.
  • As the hole transport material it is preferable to use the compound represented by the general formula (1). However, when the compound is used in any other organic layer, any one of conventionally known compounds can be used. A thing can be selected and used.
  • Examples of known hole transport materials that can be used include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, Examples include styryl anthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers. Porphyrin compounds, aromatic tertiary amine compounds, and styryl. It is preferable to use an amine compound, and it is more preferable to use an aromatic tertiary amine compound.
  • the electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer can be provided as a single layer or a plurality of layers.
  • an electron transport material which may also serve as a hole blocking material
  • any conventionally known compounds can be selected and used.
  • nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthra examples include quinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • intermediate C is 6.4 g (0.034 mol)
  • 2-iododibenzofuran is 21.5 g (0.073 mol)
  • copper iodide is 36.2 g (0.19 mol)
  • trans- 1,2-cyclohexanediamine (23.1 ml, 0.19 mol)
  • 1,4-dioxane (162 ml) were added, and the mixture was stirred at 120 ° C overnight.
  • the precipitated crystals were collected by filtration, and the solvent was distilled off under reduced pressure.
  • the obtained residue was purified by silica gel column chromatography to obtain 7.0 g (0.020 mol, yield 58%) of intermediate D as a white solid.
  • Example 1 In the organic EL device shown in FIG. 1, a device in which an electron injection layer was added between the electron transport layer and the cathode was produced. Each thin film was laminated at a vacuum degree of 2.0 ⁇ 10 ⁇ 5 Pa by a vacuum deposition method on a glass substrate on which an anode made of indium tin oxide (ITO) having a thickness of 110 nm was formed. First, copper phthalocyanine (CuPC) was formed to a thickness of 25 nm on ITO as a hole injection layer. Next, N, N-di (naphthalen-1-yl) -N, N-diphenyl-benzidene (NPB) was formed to a thickness of 90 nm as a hole transport layer.
  • ITO indium tin oxide
  • compound 1-3 as a host material of the light emitting layer and an iridium complex [iridium (III) bis (4,6-di-fluorophenyl) -pyridinate as a blue phosphorescent material as a dopant -N, C2 ′] picolinate] (FIrpic) were co-deposited from different deposition sources to form a light emitting layer with a thickness of 30 nm. The concentration of FIrpic was 10%.
  • Alq3 was formed to a thickness of 30 nm as an electron transport layer.
  • lithium fluoride (LiF) was formed to a thickness of 1.0 nm as an electron injection layer.
  • Al aluminum
  • Al was formed as an electrode to a thickness of 70 nm on the electron injection layer, and an organic EL element was produced.
  • Examples 2 to 11 As a host material of the light emitting layer, compound 1-8, compound 1-11, compound 1-15, compound 1-17, compound 1-21, compound 1-27, compound 1-30, compound 2-13, compound 2- An organic EL device was produced in the same manner as in Example 1 except that 23 or Compound 3-6 was used.
  • Comparative Examples 1 and 2 An organic EL device was produced in the same manner as in Example 1 except that mCP or the following compound H-1 was used as the host material of the light emitting layer.
  • the organic EL elements When an external power source was connected to the organic EL elements obtained in the above Examples and Comparative Examples and a direct current voltage was applied, it was confirmed that the organic EL elements had light emission characteristics (initial characteristics) as shown in Table 1.
  • the maximum wavelength of the device emission spectrum was 475 nm, indicating that light emission from FIrpic was obtained.
  • the compound is a compound used as a host material, and luminance, voltage, and luminous efficiency show values at 2.5 mA / cm 2 .
  • Example 12 Each thin film was laminated at a vacuum degree of 2.0 ⁇ 10 ⁇ 5 Pa by a vacuum deposition method on a glass substrate on which an anode made of an ITO substrate having a thickness of 110 nm was formed.
  • CuPC was formed to a thickness of 25 nm on ITO as a hole injection layer.
  • NPB was formed to a thickness of 40 nm as a hole transport layer.
  • Compound 1-3 as a host material and Ir (ppy) 3 as a dopant were co-deposited from different vapor deposition sources on the hole transport layer to form a light emitting layer having a thickness of 40 nm. At this time, the concentration of Ir (ppy) 3 was 10 wt%.
  • Alq3 was formed to a thickness of 20 nm as an electron transport layer. Further, LiF was formed to a thickness of 1 nm as an electron injection layer on the electron transport layer. Finally, on the electron injection layer, Al was formed to a thickness of 70 nm as an electrode to produce an organic EL device.
  • Examples 13-25 As a host material of the light emitting layer, compound 1-8, compound 1-11, compound 1-15, compound 1-17, compound 1-21, compound 1-25, compound 1-27, compound 1-28, compound 1- 30, an organic EL device was produced in the same manner as in Example 12 except that Compound 2-13, Compound 2-22, Compound 2-23, or Compound 3-6 was used.
  • Comparative Examples 3-4 An organic EL device was produced in the same manner as in Example 12 except that CBP or H-1 was used as the host material of the light emitting layer.
  • Examples 12 to 25 using the compound represented by the general formula (1) in the light-emitting layer are different in CBP generally known as a phosphorescent host material and H-1 having different carbazole substitution positions. It can be seen that it has higher luminous efficiency characteristics than the case of using. It also shows that the drive life characteristics are good and the stability is high.
  • the carbazole compound represented by the general formula (1) has a 4- (9-carbazolyl) carbazole structure, so that it is possible to control the spread of molecular orbitals, to optimize charge balance and to stabilize both charges. Is considered to have an improved effect. Further, it is clear that a highly efficient organic EL phosphor element is realized by using the compound for the light emitting layer.
  • the carbazole compound used in the present invention has a 4- (9-carbazolyl) carbazole structure.
  • a compound having only a 3- (9-carbazolyl) carbazole structure as shown in Patent Document 5 is known. Since the compound of the present invention has a 4- (9-carbazolyl) carbazole structure, the compound of the present invention exhibits higher hole transportability than the case where carbazole is linked only at other positions. Further, it is considered that the electron transporting property can be improved while ensuring high hole transporting property by substituting the linking group with a specific aromatic group.
  • the carbazole compound used in the present invention when used as a host material, it is considered that the transport property of both charges is increased and the recombination probability in the light emitting layer is increased. Due to the above effects, it is considered that the organic EL element of the present invention can achieve a high light emission efficiency, a long driving life, and a highly durable organic EL element.
  • the organic EL device according to the present invention has practically satisfactory levels in terms of light emission characteristics, driving life and durability, flat panel display (mobile phone display device, in-vehicle display device, OA computer display device, television, etc.), surface light emission, etc. Its technical value is great in applications to light sources (lighting, light sources for copying machines, backlight light sources for liquid crystal displays and instruments), display boards, and sign lamps that make use of the characteristics of the body.

Abstract

 素子の発光効率を改善し、駆動安定性を充分に確保し、かつ簡略な構成をもつ有機電界発光素子(有機EL素子)を提供する。 基板上に、陽極、複数の有機層及び陰極が積層されてなる有機電界発光素子において、発光層、正孔輸送層及び電子阻止層からなる群れから選ばれる少なくとも一つの層に一般式(1)で表されるカルバゾール化合物を含有させる。(ここで、Lはm価の芳香族炭化水素基又は芳香族複素環基であり、Rは水素、アルキル基又はシクロアルキル基であり、mは1~3の整数であり、nは1~4の整数であるが、少なくとも1つのnは2~4の整数であり、式中に少なくとも1つの式(1a)で表される結合構造を有する。)

Description

有機電界発光素子
  本発明は特定構造を有するカルバゾール化合物を含有する有機電界発光素子に関するものであり、詳しくは、有機化合物からなる発光層に電界をかけて光を放出する薄膜型デバイスに関するものである。
  一般に、有機電界発光素子(以下、有機EL素子という)は、その最も簡単な構造としては発光層及び該層を挟んだ一対の対向電極から構成されている。すなわち、有機EL素子では、両電極間に電界が印加されると、陰極から電子が注入され、陽極から正孔が注入され、これらが発光層において再結合し、光を放出する現象を利用する。
  近年、有機薄膜を用いた有機EL素子の開発が行われるようになった。特に、発光効率を高めるため、電極からキャリアー注入の効率向上を目的として電極の種類の最適化を行い、芳香族ジアミンからなる正孔輸送層と8-ヒドロキシキノリンアルミニウム錯体(以下、Alq3という)からなる発光層とを電極間に薄膜として設けた素子の開発により、従来のアントラセン等の単結晶を用いた素子と比較して大幅な発光効率の改善がなされたことから、自発光・高速応答性といった特徴を持つ高性能フラットパネルへの実用化を目指して進められてきた。
  また、素子の発光効率を上げる試みとして、蛍光ではなく燐光を用いることも検討されている。上記の芳香族ジアミンからなる正孔輸送層とAlq3からなる発光層とを設けた素子をはじめとした多くの素子が蛍光発光を利用したものであったが、燐光発光を用いる、すなわち、三重項励起状態からの発光を利用することにより、従来の蛍光(一重項)を用いた素子と比べて、3~4倍程度の効率向上が期待される。この目的のためにクマリン誘導体やベンゾフェノン誘導体を発光層とすることが検討されてきたが、極めて低い輝度しか得られなかった。また、三重項状態を利用する試みとして、ユーロピウム錯体を用いることが検討されてきたが、これも高効率の発光には至らなかった。近年では、特許文献1に挙げられるように発光の高効率化や長寿命化を目的にイリジウム錯体等の有機金属錯体を中心に研究が多数行われている。
特表2003-515897号公報 特開2001-313178号公報 US特許公開2006/054861号公報 特開2008-195841号公報 WO2009/086028号公報
  高い発光効率を得るには、前記ドーパント材料と同時に、使用するホスト材料が重要になる。ホスト材料として提案されている代表的なものとして、特許文献2で紹介されているカルバゾール化合物の4,4'-ビス(9-カルバゾリル)ビフェニル(以下、CBPという)が挙げられる。CBPはトリス(2-フェニルピリジン)イリジウム錯体(以下、Ir(ppy)3という)に代表される緑色燐光発光材料のホスト材料として使用した場合、CBPの正孔を流し易く電子を流しにくい特性上、電荷バランスが崩れ、過剰の正孔は電子輸送層側に流出し、結果としてIr(ppy)3からの発光効率が低下する。
  有機EL素子で高い発光効率を得るには、高い三重項励起エネルギーを有し、かつ両電荷(正孔・電子)注入輸送特性においてバランスがとれたホスト材料が必要である。更に、電気化学的に安定であり、高い耐熱性と共に優れたアモルファス安定性を備える化合物が望まれており、更なる改良が求められている。
  特許文献3においては、以下に示すようなカルバゾール化合物が開示されている。しかしながら、カルバゾールの4位により置換された化合物を用いた有機EL素子の開示に留まり、カルバゾール化合物の4位にカルバゾールの9位が置換した化合物を用いた有機EL素子の有用性を示すものではない。
Figure JPOXMLDOC01-appb-I000005
 
  また、特許文献4においては、以下に示すような化合物を用いた有機EL素子が開示されている。
Figure JPOXMLDOC01-appb-I000006
 
  しかしながら、これはカルバゾールの4位にジフェニルアミンが置換した化合物の有機EL素子としての有用性を開示するのみであり、4位にカルバゾールが置換した化合物を用いた有機EL素子の有用性を示すものではない。
  また、特許文献5においては、以下に示すような化合物と、該化合物を用いた有機EL素子が開示されている。
Figure JPOXMLDOC01-appb-I000007
 
  しかしながら、これはカルバゾール化合物の3位にカルバゾールが置換した化合物の有機EL素子としての有用性を開示するのみであり、4位にカルバゾールが置換した化合物を用いた有機EL素子の有用性を示すものではない。
  有機EL素子をフラットパネルディスプレイ等の表示素子に応用するためには、素子の発光効率を改善すると同時に駆動時の安定性を十分に確保する必要がある。本発明は、上記現状に鑑み、高効率かつ高い駆動安定性を有した実用上有用な有機EL素子及びそれに適する化合物を提供することを目的とする。
  本発明者らは、鋭意検討した結果、特定骨格のカルバゾール化合物を有機EL素子として用いることで優れた特性を示すことを見出し、本発明を完成するに至った。
  本発明は、基板上に、陽極、複数の有機層及び陰極が積層されてなる有機電界発光素子において、発光層、正孔輸送層及び電子阻止層からなる群れから選ばれる少なくとも一つの層に一般式(1)で表されるカルバゾール化合物を含有することを特徴とする有機電界発光素子に関する。
Figure JPOXMLDOC01-appb-I000008
 
Figure JPOXMLDOC01-appb-I000009
 
(ここで、Lはm価の総炭素数6~30の芳香族炭化水素基又は総炭素数3~30の芳香族複素環基であるが、カルバゾール環含有基であることはない。mは1~3の整数であり、nはそれぞれ独立して1~4の整数であるが、少なくとも1つのnは2~4の整数であり、式中に少なくとも1つの式(1a)で表される結合構造を有する。一般式(1)及び式(1a)中、Rはそれぞれ独立して水素、炭素数1~10のアルキル基又は炭素数3~11のシクロアルキル基である。)
  一般式(1)において、mは1~2の整数であり、nはそれぞれ独立して1~3の整数であり、少なくとも1つのnは2~3の整数であることが好ましい。
  また、一般式(1)において、カルバゾール環間の全ての結合構造が式(1a)、又は式(1a)及び下記式(1b)で表される結合構造であることが好ましい。
Figure JPOXMLDOC01-appb-I000010
 
(ここで、Rは式(1a)と同意である。)
  一般式(1)において、Lが式(2)~(5)のいずれか1つからm個の水素を除いて生じるm価の基であることが好ましい。
Figure JPOXMLDOC01-appb-I000011
 
(式(2)~(5)中、Xはそれぞれ独立してCH又は窒素を表し、Rはそれぞれ独立して水素、炭素数1~10のアルキル基又は炭素数3~11のシクロアルキル基を表す。式(3)及び(5)中、Yは酸素又は硫黄を表し、式(4)中、pは0~2の整数を表す。)
  より好ましくは、一般式(1)において、Lが式(2)、(3)又は(4)のいずれか1つからm個の水素を除いて生じるm価の基である。
  また、一般式(1)において、nの総和が2~6の整数であることが好ましい。
  また、本発明は、カルバゾール化合物を含む有機層が、燐光発光ドーパントを含有する発光層であることを特徴とする上記の有機電界発光素子に関する。
有機EL素子の構造例を示す断面図である。 化合物1-3の1H-NMRチャートを示す。 化合物1-15の1H-NMRチャートを示す。 化合物1-21の1H-NMRチャートを示す。 化合物1-27の1H-NMRチャートを示す。
  本発明の有機電界発光素子は、前記一般式(1)で表されるカルバゾール化合物(以下、一般式(1)で表される化合物ともいう)を有機層に含有する。このカルバゾール化合物は4-(9-カルバゾリル)カルバゾール構造を有することにより、上記のような優れた効果をもたらすと考えられる。
  一般式(1)において、Lは総炭素数6~30の芳香族炭化水素又は総炭素数3~30の芳香族複素環化合物からm個の水素をとって生じるm価の基を表す。好ましくはLは総炭素数6~18の芳香族炭化水素又は芳香族複素環化合物からm個の水素をとって生じるm価の基である。ここで、Lはカルバゾール環含有基であることはない。ここでいうカルバゾール環含有基は、置換若しくは未置換のカルバゾールからm個の水素をとって生じるm価の基である。詳しくは、カルバゾール環を構成するN又はCからm個の水素をとって生じるm価の基である。
  芳香族炭化水素又は芳香族複素環化合物の具体例としては、ベンゼン、ペンタレン、インデン、ナフタレン、アズレン、ヘプタレン、オクタレン、インダセン、アセナフチレン、フェナレン、フェナンスレン、アントラセン、トリンデン、フルオランテン、アセフェナントリレン、アセアントリレン、トリフェニレン、ピレン、クリセン、テトラフェン、テトラセン、プレイアデン、ピセン、ペリレン、ペンタフェン、ペンタセン、テトラフェニレン、コラントリレン、ヘリセン、ヘキサフェン、ルビセン、コロネン、トリナフチレン、ヘプタフェン、ピラントレン、フラン、ベンゾフラン、イソベンゾフラン、キサンテン、オキサトレン、ジベンゾフラン、ペリキサンテノキサンテン、チオフェン、チオキサンテン、チアントレン、フェノキサチイン、チオナフテン、イソチアナフテン、チオフテン、チオファントレン、ジベンゾチオフェン、ピロール、ピラゾール、テルラゾール、セレナゾール、チアゾール、イソチアゾール、オキサゾール、フラザン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、インドリジン、インドール、イソインドール、インダゾール、プリン、キノリジン、イソキノリン、イミダゾール、ナフチリジン、フタラジン、キナゾリン、ベンゾジアゼピン、キノキサリン、シンノリン、キノリン、プテリジン、フェナントリジン、アクリジン、ペリミジン、フェナントロリン、フェナジン、カルボリン、フェノテルラジン、フェノセレナジン、フェノチアジン、フェノキサジン、アンチリジン、ベンゾチアゾール、ベンゾイミダゾール、ベンゾオキサゾール、ベンゾイソオキサゾール、ベンゾイソチアゾール又はこれら芳香環が複数連結された芳香族化合物等が挙げられる。
  なお、芳香環が複数連結された芳香族化合物である場合、連結される数は2~10が好ましく、より好ましくは2~7であり、連結される芳香環は同一であっても異なっていても良い。その場合、式(1)中、m個のカルバゾリル基と結合する結合位置は限定されず、連結された芳香環の末端部の環であっても中央部の環であってもよい。ここで、芳香環は芳香族炭化水素環及び芳香族複素環を総称する意味である。また、連結された芳香環に少なくとも1つの複素環が含まれる場合は芳香族複素環に含める。
  ここで、芳香環が複数連結された芳香族化合物から生じるm価の基が1価の基の場合は、例えば、下記式で表わされる。
Figure JPOXMLDOC01-appb-I000012
 
(式(11)~(13)中、Ar1~Ar6は、置換又は無置換の芳香環を示す。)
  上記芳香環が複数連結されて生じる基の具体例としては、例えばビフェニル、ターフェニル、ビピリジン、ビピリミジン、ビトリアジン、ターピリジン、ビストリアジルベンゼン、フェニルターフェニル、ビナフタレン、フェニルピリジン、ジフェニルピリジン、フェニルピリミジン、ジフェニルピリミジン、フェニルトリアジン、ジフェニルトリアジン、フェニルナフタレン、ジフェニルナフタレン等から水素を除いて生じる1価の基が挙げられる。
  一般式(1)において、好ましいLの形態としては、式(2)~(5)、好ましくは式(2)~(4)で表される芳香族化合物から生じるm価の基が挙げられる。これらのm価の基は、式(2)~(5)中に現れる環を形成する炭素からm個の水素を除いて生じる価の基であり、mが2以上の場合、除かれる水素は同一の環でも異なっていても良い。
  式(2)~(5)において、Xはそれぞれ独立してメチン又は窒素を表す。それぞれの六員環を構成するXのうち、0~3個のXが窒素であることが好ましく、より好ましくは全てがメチンである。式(3)及び(5)中、Yは酸素又は硫黄を表す。式(4)中、pは0~2の整数を表すが、好ましくは0又は1である。
  一般式(1)において、好ましいLを与える芳香族化合物の具体例は、ベンゼン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、ジベンゾフラン、ジベンゾチオフェン、ビフェニル、ターフェニル、ビピリジン、ビピリミジン、ビトリアジン、ターピリジン、ビストリアジルベンゼン、フェニルピリジン、ジフェニルピリジン、フェニルピリミジン、ジフェニルピリミジン、フェニルトリアジン、ジフェニルトリアジン、フェニルジベンゾフラン、フェニルジベンゾチオフェン、ジベンゾフラニルピリジン、ジベンゾチエニルピリジンが挙げられる。より好ましくは、ベンゼン、ジベンゾフラン、ジベンゾチオフェン、ビフェニル、ターフェニル、ビストリアジルベンゼン、フェニルジベンゾフラン、フェニルジベンゾチオフェンが挙げられる。
  一般式(1)において、mは1~3の整数を表す。好ましくはmは1又は2であり、より好ましくはmは1である。
  一般式(1)において、nはそれぞれ独立して1~4の整数を表す。好ましくはnは1~3である。しかし、少なくとも1つのnは2~4の整数であり、式中に少なくとも1つの式(1a)で表される結合構造を有する。カルバゾール環間の全ての結合構造が式(1a)、又は式(1a)及び式(1b)で表される結合構造であることが好ましい。ここで、カルバゾール環は、一般式(1)中に現れる3環の縮合環をいう。nの総和(カルバゾール環の総数)は2~12の整数であるが、好ましくは2~9であり、より好ましくは2~6である。
  一般式(1)において、式(1a)で表される結合構造を1以上有する必要がある。mが2以上で、nが2以上の場合、全部が式(1a)で表される結合構造であるか、式(1a)及び式(1b)で表される結合構造の両者であることが好ましい。ここで、nが3以上の場合、結合構造が2以上存在することになるが、それぞれが上記結合構造であることが好ましい。なお、式(1a)及び式(1b)で表される結合構造において、一方のカルバゾール環が末端のカルバゾール環である場合は、一つの結合は水素と結合し、N-はL又は他のカルバゾール環と結合することが好ましい。
  一般式(1)、式(2)~(5)、式(1a)~(1b)において、Rはそれぞれ独立して水素、炭素数1~10のアルキル基又は炭素数3~11のシクロアルキル基を表す。好ましくは水素、炭素数1~8のアルキル基又は炭素数3~8のシクロアルキル基であり、より好ましくは水素、炭素数1~4のアルキル基又は炭素数5~7のシクロアルキル基である。
  アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基が挙げられ、好ましくはメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基が挙げられる。上記アルキル基は直鎖であっても、分岐していても構わない。
  シクロアルキル基の具体例としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、メチルシクロヘキシル基が挙げられ、好ましくはシクロヘキシル基、メチルシクロヘキシル基が挙げられる。
  一般式(1)及び式(2)~(5)、式(1a)~(1b)において、それぞれ同一の記号及び式は特に断らない限り同一の意味を有すると解される。
  本発明のカルバゾール化合物は、4位がハロゲン原子で置換されたカルバゾール誘導体を出発原料とし、目的とする化合物の構造に応じて原料を選択し、公知の手法を用いて合成することができる。
  例えば、4位がフッ素原子で置換されたカルバゾール誘導体の4‐フルオロカルバゾール骨格は、Journal of Organic Chemistry,2008,No.73,p7603-p7610に示される合成例を参考にして以下の反応式により合成することができる。
Figure JPOXMLDOC01-appb-I000013
 
  前述の反応式で得られるカルバゾール化合物の窒素上の水素を、例えばウルマン反応などのカップリング反応により、対応する置換基に置換させることで、一般式(1)で表される化合物を合成することができる。
  一般式(1)で表されるカルバゾール化合物の具体例を以下に示すが、本発明の有機電界発光素子に用いられる材料はこれらに限定されない。
Figure JPOXMLDOC01-appb-I000014
 
Figure JPOXMLDOC01-appb-I000015
 
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000017
 
Figure JPOXMLDOC01-appb-I000018
 
Figure JPOXMLDOC01-appb-I000019
 
  一般式(1)で表されるカルバゾール化合物は、基板上に、陽極、複数の有機層及び陰極が積層されてなる有機EL素子において、発光層、正孔輸送層及び電子阻止層の少なくとも1つの有機層に含有させることにより、優れた有機電界発光素子を与える。含有させる有機層としては発光層、正孔輸送層が好ましい。より好ましくは、燐光発光ドーパントを含有する発光層のホスト材料として含有させることがよい。
  次に、本発明の有機EL素子について説明する。
  本発明の有機EL素子は、基板上に積層された陽極と陰極の間に、少なくとも一つの発光層を有する有機層を有し、且つ発光層、正孔輸送層及び電子阻止層の少なくとも一つの有機層は、一般式(1)で表される化合物を含む。有利には、発光層又は正孔輸送層中に一般式(1)で表される化合物を含み、更に有利には燐光発光ドーパントと共に一般式(1)で表される化合物を発光層中に含む。
  次に、本発明の有機EL素子の構造について、図面を参照しながら説明するが、本発明の有機EL素子の構造は何ら図示のものに限定されるものではない。
  図1は本発明に用いられる一般的な有機EL素子の構造例を示す断面図であり、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は電子輸送層、7は陰極を各々表わす。本発明の有機EL素子では発光層と隣接して励起子阻止層を有してもよく、また、発光層と正孔注入層との間に電子阻止層を有しても良い。励起子阻止層は発光層の陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。本発明の有機EL素子では、基板、陽極、発光層及び陰極を必須の層として有するが、必須の層以外の層に、正孔注入輸送層、電子注入輸送層を有することがよく、更に発光層と電子注入輸送層の間に正孔阻止層を有することがよい。なお、正孔注入輸送層は、正孔注入層と正孔輸送層のいずれか又は両者を意味し、電子注入輸送層は、電子注入層と電子輸送層のいずれか又は両者を意味する。
  なお、図1とは逆の構造、すなわち、基板1上に陰極7、電子輸送層6、発光層5、正孔輸送層4、陽極2の順に積層することも可能であり、この場合も、必要により層を追加したり、省略したりすることが可能である。
-基板-
  本発明の有機EL素子は、基板に支持されていることが好ましい。この基板については、特に制限はなく、従来から有機EL素子に慣用されているものであればよく、例えば、ガラス、透明プラスチック、石英などからなるものを用いることができる。
-陽極-
  有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In23-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
-陰極-
  一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が、透明又は半透明であれば発光輝度が向上し好都合である。
  また、陰極に上記金属を1~20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
-発光層-
  発光層は燐光発光層であり、燐光発光ドーパントとホスト材料を含む。燐光発光ドーパント材料としては、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金及び金から選ばれる少なくとも1つの金属を含む有機金属錯体を含有するものがよい。かかる有機金属錯体は、前記先行技術文献等で公知であり、これらが選択されて使用可能である。燐光発光ドーパントの発光波長は550nm以下に発光極大波長を有することが望ましい。
  好ましい燐光発光ドーパントとしては、Ir等の貴金属元素を中心金属として有するIr(ppy)3等の錯体類、 (Bt)2Iracac等の錯体類、(Btp)Ptacac等の錯体類が挙げられる。これらの錯体類の具体例を以下に示すが、下記の化合物に限定されない。
Figure JPOXMLDOC01-appb-I000020
 
Figure JPOXMLDOC01-appb-I000021
 
  前記燐光発光ドーパントが発光層中に含有される量は、1~50重量%の範囲にあることが好ましい。より好ましくは5~30重量%である。
  発光層におけるホスト材料としては、前記一般式(1)で表される化合物を用いることが好ましい。しかし、該化合物を発光層以外の他の何れかの有機層に使用する場合は、発光層に使用する材料は一般式(1)で表される化合物以外の他のホスト材料であってもよい。また、一般式(1)で表される化合物と他のホスト材料を併用してもよい。更に、公知のホスト材料を複数種類併用して用いてもよい。
  使用できる公知のホスト化合物としては、正孔輸送能又は電子輸送能を有し、かつ発光の長波長化を防ぎ、なおかつ高いガラス転移温度を有する化合物であることが好ましい。
  このような他のホスト材料は、多数の特許文献等により知られているので、それらから選択することができる。ホスト材料の具体例としては、特に限定されるものではないが、インドール誘導体、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三アミン化合物、スチリルアミン化合物、芳香族ジメチリデン系化合物、ポルフィリン系化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン誘導体、8-キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾール誘導体の金属錯体に代表される各種金属錯体、ポリシラン系化合物、ポリ(N-ビニルカルバゾール)誘導体、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、ポリフルオレン誘導体等の高分子化合物等が挙げられる。
-注入層-
  注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、正孔注入層と電子注入層があり、陽極と発光層又は正孔輸送層の間、及び陰極と発光層又は電子輸送層との間に存在させてもよい。注入層は必要に応じて設けることができる。
-正孔阻止層-
  正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。
  正孔阻止層には公知の正孔阻止層材料を用いることができる。また、正孔阻止層材料としては、後述する電子輸送層の材料を必要に応じて用いることができる。
-電子阻止層-
  電子阻止層とは、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料から成り、正孔を輸送しつつ電子を阻止することで電子と正孔が再結合する確率を向上させることができる。
  電子阻止層の材料としては、前記一般式(1)で表される化合物を用いることが好ましいが、該化合物を他の何れかの有機層に使用する場合は、後述する正孔輸送層の材料を必要に応じて用いることができる。電子阻止層の膜厚は好ましくは3~100nmであり、より好ましくは5~30nmである。
-励起子阻止層-
  励起子阻止層とは、発光層内で正孔と電子が再結合することにより生じた励起子が電荷輸送層に拡散することを阻止するための層であり、本層の挿入により励起子を効率的に発光層内に閉じ込めることが可能となり、素子の発光効率を向上させることができる。励起子阻止層は発光層に隣接して陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。
  励起子阻止層の材料としては、例えば、1,3-ジカルバゾリルベンゼン(mCP)や、ビス(2-メチル-8-キノリノラト)-4-フェニルフェノラトアルミニウム(III)(BAlq)が挙げられる。
-正孔輸送層-
  正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、正孔輸送層は単層又は複数層設けることができる。
  正孔輸送材料は、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。正孔輸送材料としては、前記一般式(1)で表される化合物を用いることが好ましいが、該化合物を他の何れかの有機層に使用する場合は、従来公知の化合物の中から任意のものを選択して用いることができる。使用できる公知の正孔輸送材料としては例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物を用いることが好ましく、芳香族第3級アミン化合物を用いることがより好ましい。
-電子輸送層-
  電子輸送層とは電子を輸送する機能を有する材料からなり、電子輸送層は単層又は複数層設けることができる。
  電子輸送材料(正孔阻止材料を兼ねる場合もある)としては、陰極より注入された電子を発光層に伝達する機能を有していればよい。電子輸送層には従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
  以下、本発明を実施例によって更に詳しく説明するが、本発明は勿論、これらの実施例に限定されるものではなく、その要旨を越えない限りにおいて、種々の形態で実施することが可能である。
  以下に示すルートにより本発明に用いた一般式(1)で表される化合物を合成した。尚、化合物番号は、上記化学式に付した番号に対応する。
合成例1
化合物1-3の合成
Figure JPOXMLDOC01-appb-I000022
 
  窒素雰囲気下、オルトフルオロフェニルボロン酸を60.0 g(0.43 mol)、2-ブロモアセトアニリド40.0 g(0.29 mol)、テトラキス(トリフェニルホスフィン)パラジウム(0)13.2 g(0.011 mol)、炭酸ナトリウム109 gの水(500 ml)溶液、トルエン1000 ml、エタノールを400 ml加え、90℃で加熱しながら一晩撹拌した。反応溶液を室温まで冷却した後に、トルエン 500 ml、蒸留水(500 ml)を撹拌しながら加えた。有機層を蒸留水(3 × 500 ml)で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後に、硫酸マグネシウムをろ別し、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製を行い、白色固体として中間体Aを32.1 g (0.14 mol、収率49%)を得た。
  窒素雰囲気下、中間体Aを32.0 g(0.14 mol)、酢酸パラジウム(II)を16.0 g(0.070 mol)、酢酸銅(II)25.2 g(0.14 mol)、トルエン1390 ml加え、110℃で加熱しながら一晩撹拌した。反応溶液を室温まで冷却した後に、トルエン 500 ml、蒸留水(500 ml)を撹拌しながら加えた。有機層を蒸留水(3 × 500 ml)で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後に、硫酸マグネシウムをろ別し、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製を行い、白色固体として中間体Bを12.0 g (0.065 mol、収率47%)を得た。
  窒素雰囲気下、中間体Bを8.2 g(0.036 mol)、テトラヒドロフラン(THF)60 ml、ジメチルスルホキシド30 ml、水酸化カリウムを10.0 g(0.18 mol)、蒸留水(3 ml)加え、80℃で加熱しながら30分撹拌した。反応溶液を室温まで冷却した後に、酢酸エチル 300 ml、蒸留水(100 ml)を撹拌しながら加えた。有機層を蒸留水(3 × 200 ml)で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後に、硫酸マグネシウムをろ別し、溶媒を減圧留去し、黄色固体として中間体Cを6.4 g(0.034 mol、収率95%)得た。
Figure JPOXMLDOC01-appb-I000023
 
  窒素雰囲気下、中間体Cを6.4 g(0.034 mol)、2-ヨードジベンゾフランを21.5 g(0.073 mol)、ヨウ化銅36.2 g(0.19 mol)、リン酸三カリウム40.3 g (0.19 mol)、trans-1,2-シクロヘキサンジアミン23.1 ml (0.19 mol)、1,4-ジオキサンを162 ml加え、120℃で一晩撹拌した。反応溶液を室温まで冷却した後に、析出した結晶をろ取し、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製を行い、白色固体として中間体Dを7.0 g (0.020 mol、収率58%)を得た。
  窒素雰囲気下、水素化ナトリウム(62.0%品)1.9 g (0.048 mol)、脱水N,N-ジメチルホルムアミド(DMF) 12 mlを加え、室温で0.5時間撹拌した。得られた懸濁液にカルバゾール6.7 g (0.040 mol)のDMF(25 ml)溶液を加え、室温で30分撹拌した。得られた懸濁液に中間体D7.0 g (0.020 mol)加え、130℃で3日間撹拌した。反応溶液を室温まで冷却した後に、蒸留水(500 ml)を撹拌しながら加え、析出した固体をろ取した。得られた固体をシリカゲルカラムクロマトグラフィー、晶析精製を行い、白色固体として化合物1-3を2.2 g(0.0044 mol、収率22.2%)得た。
APCI-TOFMS, m/z 498 [M]+ 、1H-NMR測定結果(測定溶媒:CD2Cl2)を図2に示す。
合成例2
化合物1-15の合成
Figure JPOXMLDOC01-appb-I000024
 
  窒素雰囲気下、中間体Cを7.6 g(0.041 mol)、3-ヨード-9-フェニルカルバゾールを10. 0 g(0.027 mol)、ヨウ化銅20.9 g(0.11 mol)、リン酸三カリウム23.3 g (0.11 mol)、trans-1,2-シクロヘキサンジアミン13.2 ml (0.11 mol)、1,4-ジオキサンを135 ml加え、120℃で4時間撹拌した。反応溶液を室温まで冷却した後に、析出した結晶をろ取し、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製を行い、白色固体として中間体Eを9.8 g (0.023 mol、収率87%)を得た。
  窒素雰囲気下、水素化ナトリウム(62.0%品)2.2 g (0.056 mol)、DMF 14 mlを加え、室温で0.5時間撹拌した。得られた懸濁液にカルバゾール 7.8 g (0.047 mol)のDMF(33 ml)溶液を加え、室温で30分撹拌した。得られた懸濁液に中間体Eを9.8 g (0.023 mol)加え、130℃で3日間撹拌した。反応溶液を室温まで冷却した後に、蒸留水(1000 ml)を撹拌しながら加え、析出した黄色固体をろ取した。得られた黄色固体をシリカゲルカラムクロマトグラフィーを行い、白色固体として化合物1-15を2.4 g(0.0042 mol、収率18%)得た。APCI-TOFMS, m/z 574 [M+H]+ 、1H-NMR測定結果(測定溶媒:CD2Cl2)を図3に示す。
合成例3
化合物1-21の合成
Figure JPOXMLDOC01-appb-I000025
 
 窒素雰囲気下、中間体Cを5.1 g(28.0 mmol)、ヨードベンゼンを5.6 g(27.4 mmol)、ヨウ化銅0.17 g(0.89 mmol)、リン酸三カリウム29.3 g (138 mmol)、trans-1,2-シクロヘキサンジアミン1.05 g (9.2 mmol)、1,4-ジオキサンを150 ml加え、115℃で2時間撹拌した。反応溶液を室温まで冷却した後に、析出した結晶をろ取し、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製を行い、白色固体として中間体Fを5.6 g (3.8 mmol、収率14%)を得た。
 窒素雰囲気下、水素化ナトリウム(63.0%品)1.9 g (50.7 mmol)、DMF 50 mlを加え、室温で0.5時間撹拌した。得られた懸濁液に中間体C 9.4 g (50.7 mmol)のDMF(35 ml)溶液を加え、室温で20分撹拌した。得られた懸濁液に中間体FのDMF(35 ml)溶液を13.2 g (50.7  mmol)加え、115℃で一晩撹拌した。反応溶液を室温まで冷却した後に、蒸留水(1000 ml)を撹拌しながら加え、析出した黄色固体をろ取した。得られた黄色固体をシリカゲルカラムクロマトグラフィーを行い、白色固体として中間体Gを3.8 g(8.9 mmol、収率18%)得た。
 窒素雰囲気下、水素化ナトリウム(63.0%品)0.62 g (16.4 mmol)、DMF 50 mlを加え、室温で0.5時間撹拌した。得られた懸濁液にカルバゾール 2.7 g (16.4 mmol)のDMF(25 ml)溶液を加え、室温で30分撹拌した。得られた懸濁液に中間体Gを3.5 g (8.2  mmol)のDMF(25 ml)溶液を加え、115℃で一晩撹拌した。反応溶液を室温まで冷却した後に、蒸留水(150 ml)を撹拌しながら加え、析出した黄色固体をろ取した。得られた黄色固体をシリカゲルカラムクロマトグラフィーを行い、白色固体として化合物1-21を1.5 g(2.6 mmol、収率32%)得た。APCI-TOFMS, m/z 574 [M+H]+ 、1H-NMR測定結果(測定溶媒:CD2Cl2)を図4に示す。
合成例4
化合物1-27の合成
Figure JPOXMLDOC01-appb-I000026
 
 窒素雰囲気下、水素化ナトリウム(63.0%品)2.73 g (0.0706 mol)、DMF 50 mlを加え、室温で0.5時間撹拌した。得られた懸濁液に3-ヨードカルバゾール 18.8 g (0.0642 mol)のDMF(30 ml)溶液を加え、室温で20分撹拌した。得られた懸濁液に中間体F 8.4 g (0.0321  mol) のDMF(30 ml)溶液を加え、120℃で69時間撹拌した。反応溶液を室温まで冷却した後に、蒸留水(300 ml)を撹拌しながら加え、析出した黄色固体をろ取した。得られた黄色固体をシリカゲルカラムクロマトグラフィーを行い、白色固体として中間体Hを14.9 g(0.028 mol、収率87%)得た。
 窒素雰囲気下、中間体Hを14.0 g(0.0262 mol)、カルバゾールを8.7 g(0.0524 mol)、ヨウ化銅0.99 g(0.0052 mol)、リン酸三カリウム22.2 g (0.104 mol)、trans-1,2-シクロヘキサンジアミン5.98 g (0.0524 mol)、1,4-ジオキサンを400 ml加え、110℃で8時間撹拌した。反応溶液を室温まで冷却した後に、析出した結晶をろ取し、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製を行い、白色固体として化合物1-27を12.4 g(0.0217 mol、収率83%)得た。APCI-TOFMS, m/z 574 [M+H]+ 、1H-NMR測定結果(測定溶媒:CD2Cl2)を図5に示す。
  また、上記合成例及び明細書中に記載の合成方法に準じて、化合物1-8、1-11、1-17、1-25、1-28、1-30、2-13、2-22、2-23及び3-6を合成し、有機EL素子の作製に供した。
実施例1
  図1に示す有機EL素子において、電子輸送層と陰極との間に電子注入層を追加した素子を作製した。膜厚 110 nm の 酸化インジウムスズ(ITO)からなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度2.0×10-5 Pa で積層させた。まず、ITO 上に正孔注入層として、銅フタロシアニン(CuPC)を 25 nm の厚さに形成した。次に、正孔輸送層としてN,N-ジ(ナフタレン-1-イル)-N,N-ジフェニル-ベンジデン(NPB)を 90 nm の厚さに形成した。次に、正孔輸送層上に、発光層のホスト材料としての化合物1-3とドーパントとしての青色燐光材料であるイリジウム錯体[イリジウム(III)ビス(4,6-ジ-フルオロフェニル)-ピリジネート-N,C2']ピコリネート](FIrpic)とを異なる蒸着源から、共蒸着し、30 nm の厚さに発光層を形成した。FIrpicの濃度は 10 %であった。次に、電子輸送層として Alq3 を 30 nm厚さに形成した。更に、電子輸送層上に、電子注入層としてフッ化リチウム(LiF)を 1.0 nm厚さに形成した。最後に、電子注入層上に、電極としてアルミニウム(Al)を70 nm厚さに形成し、有機EL素子を作製した。
実施例2~11
  発光層のホスト材料として、化合物1-8、化合物1-11、化合物1-15、化合物1-17、化合物1-21、化合物1-27、化合物1-30、化合物2-13、化合物2-23又は化合物3-6を用いた以外は実施例1と同様にして有機EL素子を作製した。
比較例1~2
  発光層のホスト材料として、mCP又は下記化合物H-1を用いた以外は実施例1と同様にして有機EL素子を作製した。
Figure JPOXMLDOC01-appb-I000027
 
  上記実施例及び比較例で得られた有機EL素子に外部電源を接続し直流電圧を印加したところ、表1のような発光特性(初期特性)を有することが確認された。なお、素子発光スペクトルの極大波長はいずれも475 nmであり、FIrpicからの発光が得られていることがわかった。
  表1において、化合物はホスト材料として使用した化合物であり、輝度、電圧、及び発光効率は、2.5 mA/cm2での値を示す。
Figure JPOXMLDOC01-appb-T000028
 
  表1より、実施例1~11において、一般式(1)で表される化合物を発光層に用いた場合は、燐光ホスト材料として一般的に知られているmCPや、カルバゾールの置換位置が異なるH-1を用いた場合に比べ、高い発光効率特性を有していることが判る。
実施例12
  膜厚110nmのITO基板からなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度2.0×10-5Paで積層させた。まず、ITO上に正孔注入層として、CuPCを 25 nm の厚さに形成した。次に、正孔輸送層としてNPBを40 nmの厚さに形成した。次に、正孔輸送層上に、ホスト材料としての化合物1-3とドーパントとしてのIr(ppy)3とを異なる蒸着源から、共蒸着し、40 nmの厚さに発光層を形成した。この時、Ir(ppy)3の濃度は10 wt%であった。次に、電子輸送層としてAlq3を20nmの厚さに形成した。更に、電子輸送層上に、電子注入層としてLiFを1nmの厚さに形成した。最後に、電子注入層上に、電極としてAlを70nmの厚さに形成し、有機EL素子を作製した。
実施例13~25
  発光層のホスト材料として、化合物1-8、化合物1-11、化合物1-15、化合物1-17、化合物1-21、化合物1-25、化合物1-27、化合物1-28、化合物1-30、化合物2-13、化合物2-22、化合物2-23又は化合物3-6を用いた以外は実施例12と同様にして有機EL素子を作製した。
比較例3~4
  発光層のホスト材料としてCBP又はH-1を用いた以外は実施例12と同様にして有機EL素子を作製した。
  実施例12~25及び比較例3~4で得られた有機EL素子に外部電源を接続し直流電圧を印加したところ、表2のような発光特性を有することが確認された。なお、素子発光スペクトルの極大波長はいずれも530 nmであり、Ir(ppy)3からの発光が得られていることがわかった。
  表2において、化合物はホスト材料として使用した化合物であり、輝度、電圧及び発光効率は、20 mA/cm2での駆動時の値を示し、また、輝度半減時間は、20 mA/cm2の一定電流駆動で評価し、この結果を初期輝度1000 cd/m2の場合に換算した値を示す。
Figure JPOXMLDOC01-appb-T000029
 
  表2より、一般式(1)で表される化合物を発光層に用いた実施例12~25は、燐光ホスト材料として一般的に知られているCBPや、カルバゾールの置換位置が異なるH-1を用いた場合に比べ、高い発光効率特性を有していることが判る。更に、駆動寿命特性が良好で高い安定性を有していることも示している。
  以上の結果より、一般式(1)で表されるカルバゾール化合物は、4-(9-カルバゾリル)カルバゾール構造を有することで、分子軌道の広がりを制御でき、電荷バランスの最適化と両電荷安定性が向上した効果をもたらすと考えられる。また、該化合物を発光層に用いることにより、高効率な有機EL燐光素子を実現することが明らかである。
産業上の利用の可能性
  本発明で用いられるカルバゾール化合物は、4-(9-カルバゾリル)カルバゾール構造を有する。複数のカルバゾールが連結した化合物については、特許文献5にも示すような3-(9-カルバゾリル)カルバゾール構造のみからなる化合物が知られている。本発明化合物は、4-(9-カルバゾリル)カルバゾール構造を有することにより他の位置のみでカルバゾールが連結する場合と比較して、高い正孔輸送性を示す。また、連結基を特定の芳香族基に置換することにより、高い正孔輸送性を担保しながら電子輸送性も向上させることができると考えられる。従って、本発明で用いられるカルバゾール化合物をホスト材料として使用した場合、両電荷の輸送性が高くなり、発光層中での再結合確率が上昇すると考えられる。以上の効果により、本発明の有機EL素子は高い発光効率を達成し、駆動寿命が長く、耐久性の高い有機EL素子を実現することができると考えられる。
  本発明による有機EL素子は、発光特性、駆動寿命ならびに耐久性において、実用上満足できるレベルにあり、フラットパネルディスプレイ(携帯電話表示素子、車載表示素子、OAコンピュータ表示素子やテレビ等)、面発光体としての特徴を生かした光源(照明、複写機の光源、液晶ディスプレイや計器類のバックライト光源)、表示板や標識灯等への応用において、その技術的価値は大きいものである。

Claims (7)

  1.   基板上に、陽極、複数の有機層及び陰極が積層されてなる有機電界発光素子において、発光層、正孔輸送層及び電子阻止層からなる群れから選ばれる少なくとも一つの層に一般式(1)で表されるカルバゾール化合物を含有することを特徴とする有機電界発光素子。
    Figure JPOXMLDOC01-appb-I000001
     
     ここで、Lはm価の総炭素数6~30の芳香族炭化水素基又は総炭素数3~30の芳香族複素環基であるが、カルバゾール環含有基であることはない。Rはそれぞれ独立して水素、炭素数1~10のアルキル基又は炭素数3~11のシクロアルキル基である。mは1~3の整数であり、nはそれぞれ独立して1~4の整数であるが、少なくとも1つのnは2~4の整数であり、式中に少なくとも1つの式(1a)で表される結合構造を有する。
    Figure JPOXMLDOC01-appb-I000002
     
     ここで、Rは一般式(1)と同意である。
  2.   一般式(1)において、mは1~2の整数であり、nはそれぞれ独立して1~3の整数であり、少なくとも1つのnは2~3の整数である請求項1に記載の有機電界発光素子。
  3.   一般式(1)において、カルバゾール環間の全ての結合構造が式(1a)、又は式(1a)及び下記式(1b)で表される結合構造である請求項2に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-I000003
     
     ここで、Rは式(1a)と同意である。
  4.   一般式(1)において、Lが式(2)~(5)のいずれか1つからm個の水素を除いて生じるm価の基である請求項1に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-I000004
     
     式(2)~(5)中、Xはそれぞれ独立してCH又は窒素を表し、Rはそれぞれ独立して水素、炭素数1~10のアルキル基又は炭素数3~11のシクロアルキル基を表す。式(3)及び(5)中、Yは酸素又は硫黄を表し、式(4)中、pは0~2の整数を表す。
  5.   一般式(1)において、Lが式(2)~(4)のいずれか1つからm個の水素を除いて生じるm価の基である請求項4に記載の有機電界発光素子。
  6.   一般式(1)において、nの総和が2~6の整数である請求項1に記載の有機電界発光素子。
  7.   カルバゾール化合物を含む有機層が、燐光発光ドーパントを含有する発光層であることを特徴とする請求項1~6のいずれかに記載の有機電界発光素子。
PCT/JP2011/077384 2010-12-09 2011-11-28 有機電界発光素子 WO2012077520A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11846896.6A EP2650941B1 (en) 2010-12-09 2011-11-28 Organic electroluminescent element
CN201180059022.XA CN103262283B (zh) 2010-12-09 2011-11-28 有机电致发光元件
JP2012547786A JP5834023B2 (ja) 2010-12-09 2011-11-28 有機電界発光素子
US13/990,511 US9337432B2 (en) 2010-12-09 2011-11-28 Organic electroluminescent element
KR1020137017654A KR101838675B1 (ko) 2010-12-09 2011-11-28 유기 전계 발광 소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010274334 2010-12-09
JP2010-274334 2010-12-09

Publications (1)

Publication Number Publication Date
WO2012077520A1 true WO2012077520A1 (ja) 2012-06-14

Family

ID=46207012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077384 WO2012077520A1 (ja) 2010-12-09 2011-11-28 有機電界発光素子

Country Status (7)

Country Link
US (1) US9337432B2 (ja)
EP (1) EP2650941B1 (ja)
JP (1) JP5834023B2 (ja)
KR (1) KR101838675B1 (ja)
CN (1) CN103262283B (ja)
TW (1) TWI518071B (ja)
WO (1) WO2012077520A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035275A1 (ja) * 2011-09-09 2013-03-14 出光興産株式会社 含窒素へテロ芳香族環化合物
WO2013062043A1 (ja) * 2011-10-26 2013-05-02 東ソー株式会社 4-アミノカルバゾール化合物及びその用途
WO2013081088A1 (ja) * 2011-12-02 2013-06-06 国立大学法人九州大学 有機発光素子ならびにそれに用いる遅延蛍光材料および化合物
WO2013165192A1 (en) * 2012-05-02 2013-11-07 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescence compounds and organic electroluminescence device containing the same
CN103570712A (zh) * 2012-07-31 2014-02-12 乐金显示有限公司 磷光化合物和使用该磷光化合物的有机发光二极管器件
US20150243894A1 (en) * 2014-02-21 2015-08-27 Universal Display Corporation Organic Electroluminescent Materials and Devices
KR101550429B1 (ko) * 2013-04-30 2015-09-08 (주)피엔에이치테크 새로운 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
EP3034506A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 4-functionalized carbazole derivatives for electronic applications
KR20160092983A (ko) 2013-12-18 2016-08-05 이데미쓰 고산 가부시키가이샤 화합물, 유기 전기발광 소자용 재료, 잉크 조성물, 유기 전기발광 소자, 전자 기기, 및 화합물의 제조 방법
WO2016158191A1 (ja) * 2015-03-30 2016-10-06 新日鉄住金化学株式会社 有機電界発光素子
TWI567069B (zh) * 2012-07-19 2017-01-21 新日鐵住金化學股份有限公司 有機電場發光元件
US9698352B2 (en) 2012-09-27 2017-07-04 Tosoh Corporation Amine compound and use thereof
WO2017115596A1 (ja) * 2015-12-28 2017-07-06 新日鉄住金化学株式会社 有機電界発光素子
WO2017169785A1 (ja) * 2016-03-28 2017-10-05 新日鉄住金化学株式会社 有機電界発光素子
WO2018173598A1 (ja) * 2017-03-22 2018-09-27 新日鉄住金化学株式会社 有機電界発光素子
WO2018173593A1 (ja) * 2017-03-23 2018-09-27 新日鉄住金化学株式会社 有機電界発光素子
KR20190025512A (ko) * 2017-09-01 2019-03-11 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
JP2019116461A (ja) * 2017-12-27 2019-07-18 三星電子株式会社Samsung Electronics Co.,Ltd. 化合物、有機エレクトロルミネッセンス素子用液状組成物、有機エレクトロルミネッセンス素子用インク組成物、有機エレクトロルミネッセンス素子用薄膜、及び有機エレクトロルミネッセンス素子
WO2022124367A1 (ja) 2020-12-11 2022-06-16 日鉄ケミカル&マテリアル株式会社 有機電界発光素子用材料及び有機電界発光素子
US11706977B2 (en) 2018-01-11 2023-07-18 Samsung Electronics Co., Ltd. Heterocyclic compound, composition including the same, and organic light-emitting device including the heterocyclic compound

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2709181B1 (en) * 2011-05-12 2016-08-10 Toray Industries, Inc. Light-emitting element material and light-emitting element
US10418564B2 (en) 2014-04-11 2019-09-17 Merck Patent Gmbh Materials for organic electroluminescent devices
US9312499B1 (en) 2015-01-05 2016-04-12 Universal Display Corporation Organic electroluminescent materials and devices
US9834808B2 (en) 2016-01-21 2017-12-05 SeLux Diagnostics, Inc. Methods for rapid antibiotic susceptibility testing
JP7046833B2 (ja) 2016-01-21 2022-04-04 セルックス・ダイアグノスティクス・インコーポレイテッド 迅速な抗菌剤感受性試験のための方法
KR102637650B1 (ko) * 2016-11-30 2024-02-15 엘지디스플레이 주식회사 유기 화합물과 이를 포함하는 유기발광다이오드 및 유기발광 표시장치
WO2018116152A1 (en) * 2016-12-19 2018-06-28 Idemitsu Kosan Co., Ltd. Specifically substituted ladder type compounds for organic light emitting devices
EP3559252A1 (en) 2016-12-23 2019-10-30 Selux Diagnostics, Inc. Methods for improved rapid antimicrobial susceptibility testing
CN111548342B (zh) * 2020-05-12 2024-01-19 中国科学院长春应用化学研究所 以三嗪为中心核的树枝状双极主体材料、制备方法及其在有机电致发光器件上的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220380A (ja) * 2000-02-08 2001-08-14 Samsung Sdi Co Ltd 高い熱安定性を持つ有機電界発光素子用正孔輸送性化合物及びその製造方法並びに有機電界発光素子
WO2008059943A1 (fr) * 2006-11-16 2008-05-22 Bando Chemical Industries, Ltd. Dérivé inédit du carbazole et utilisation de celui-ci
WO2009086028A2 (en) * 2007-12-28 2009-07-09 Universal Display Corporation Carbazole-containing materials in phosphorescent light emitting diodes
WO2011049325A2 (en) * 2009-10-21 2011-04-28 Cheil Industries Inc. Novel compound for organic photoelectric device and organic photoelectric device including the same
WO2011057706A2 (de) * 2009-11-14 2011-05-19 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2011081061A1 (ja) * 2009-12-28 2011-07-07 新日鐵化学株式会社 有機電界発光素子

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4707082B2 (ja) * 2002-11-26 2011-06-22 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子および表示装置
US7279704B2 (en) * 2004-05-18 2007-10-09 The University Of Southern California Complexes with tridentate ligands
US7402345B2 (en) 2004-09-14 2008-07-22 E.I. Du Pont De Nemours And Company Electroluminescent iridium compounds with fluorinated phenylpyridine ligands, and devices made with such compounds
JP2008195841A (ja) * 2007-02-14 2008-08-28 Toray Ind Inc 発光素子材料および発光素子
EP2129739B1 (en) * 2007-03-28 2011-06-08 FUJIFILM Corporation Organic electroluminescent device
US20080284317A1 (en) 2007-05-17 2008-11-20 Liang-Sheng Liao Hybrid oled having improved efficiency
JP5194596B2 (ja) * 2007-07-11 2013-05-08 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
US9067947B2 (en) 2009-01-16 2015-06-30 Universal Display Corporation Organic electroluminescent materials and devices
CN101580521B (zh) * 2009-04-21 2012-09-05 中国科学院长春应用化学研究所 树枝状有机金属配合物及用该配合物的电致发光器件
JP4523992B1 (ja) 2009-07-31 2010-08-11 富士フイルム株式会社 有機電界発光素子
KR101420318B1 (ko) * 2010-06-17 2014-07-16 이-레이 옵토일렉트로닉스 테크놀로지 컴퍼니 리미티드 유기전계발광장치용 화합물 및 이를 포함하는 유기전계발광장치
JP6007467B2 (ja) 2010-07-27 2016-10-12 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220380A (ja) * 2000-02-08 2001-08-14 Samsung Sdi Co Ltd 高い熱安定性を持つ有機電界発光素子用正孔輸送性化合物及びその製造方法並びに有機電界発光素子
WO2008059943A1 (fr) * 2006-11-16 2008-05-22 Bando Chemical Industries, Ltd. Dérivé inédit du carbazole et utilisation de celui-ci
WO2009086028A2 (en) * 2007-12-28 2009-07-09 Universal Display Corporation Carbazole-containing materials in phosphorescent light emitting diodes
WO2011049325A2 (en) * 2009-10-21 2011-04-28 Cheil Industries Inc. Novel compound for organic photoelectric device and organic photoelectric device including the same
WO2011057706A2 (de) * 2009-11-14 2011-05-19 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2011081061A1 (ja) * 2009-12-28 2011-07-07 新日鐵化学株式会社 有機電界発光素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2650941A4 *

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035275A1 (ja) * 2011-09-09 2013-03-14 出光興産株式会社 含窒素へテロ芳香族環化合物
US9604972B2 (en) 2011-09-09 2017-03-28 Idemitsu Kosan Co., Ltd. Nitrogen-containing heteroaromatic ring compound
JPWO2013035275A1 (ja) * 2011-09-09 2015-03-23 出光興産株式会社 含窒素へテロ芳香族環化合物
WO2013062043A1 (ja) * 2011-10-26 2013-05-02 東ソー株式会社 4-アミノカルバゾール化合物及びその用途
US9172045B2 (en) 2011-10-26 2015-10-27 Tosoh Corporation 4-aminocarbazole compound and use thereof
KR20140082847A (ko) * 2011-10-26 2014-07-02 토소가부시키가이샤 4-아미노카바졸 화합물 및 그 용도
KR102079834B1 (ko) 2011-10-26 2020-02-20 토소가부시키가이샤 4-아미노카바졸 화합물 및 그 용도
WO2013081088A1 (ja) * 2011-12-02 2013-06-06 国立大学法人九州大学 有機発光素子ならびにそれに用いる遅延蛍光材料および化合物
JP5679496B2 (ja) * 2011-12-02 2015-03-04 国立大学法人九州大学 有機発光素子ならびにそれに用いる遅延蛍光材料および化合物
US9153788B2 (en) 2011-12-02 2015-10-06 Kyushu University National University Corporation Organic light-emitting device, and delayed fluorescent material and compound used therefor
WO2013165192A1 (en) * 2012-05-02 2013-11-07 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescence compounds and organic electroluminescence device containing the same
TWI567069B (zh) * 2012-07-19 2017-01-21 新日鐵住金化學股份有限公司 有機電場發光元件
US9123898B2 (en) 2012-07-31 2015-09-01 Lg Display Co., Ltd. Phosphorescent compound and organic light emitting diode device using the same
CN103570712A (zh) * 2012-07-31 2014-02-12 乐金显示有限公司 磷光化合物和使用该磷光化合物的有机发光二极管器件
US9698352B2 (en) 2012-09-27 2017-07-04 Tosoh Corporation Amine compound and use thereof
KR101550429B1 (ko) * 2013-04-30 2015-09-08 (주)피엔에이치테크 새로운 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
KR20160092983A (ko) 2013-12-18 2016-08-05 이데미쓰 고산 가부시키가이샤 화합물, 유기 전기발광 소자용 재료, 잉크 조성물, 유기 전기발광 소자, 전자 기기, 및 화합물의 제조 방법
US10032991B2 (en) 2013-12-18 2018-07-24 Idemitsu Kosan Co., Ltd. Compound, organic electroluminescence element material, ink composition, organic electroluminescence element, electronic device, and method for producing compound
US10707423B2 (en) 2014-02-21 2020-07-07 Universal Display Corporation Organic electroluminescent materials and devices
US20150243894A1 (en) * 2014-02-21 2015-08-27 Universal Display Corporation Organic Electroluminescent Materials and Devices
EP3034506A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 4-functionalized carbazole derivatives for electronic applications
JPWO2016158191A1 (ja) * 2015-03-30 2018-01-25 新日鉄住金化学株式会社 有機電界発光素子
KR20170137036A (ko) 2015-03-30 2017-12-12 신닛테츠 수미킨 가가쿠 가부시키가이샤 유기 전계 발광 소자
WO2016158191A1 (ja) * 2015-03-30 2016-10-06 新日鉄住金化学株式会社 有機電界発光素子
JPWO2017115596A1 (ja) * 2015-12-28 2018-11-29 日鉄ケミカル&マテリアル株式会社 有機電界発光素子
WO2017115596A1 (ja) * 2015-12-28 2017-07-06 新日鉄住金化学株式会社 有機電界発光素子
KR102234085B1 (ko) 2016-03-28 2021-03-31 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 유기 전계 발광 소자
JPWO2017169785A1 (ja) * 2016-03-28 2019-02-07 日鉄ケミカル&マテリアル株式会社 有機電界発光素子
WO2017169785A1 (ja) * 2016-03-28 2017-10-05 新日鉄住金化学株式会社 有機電界発光素子
KR20180122645A (ko) * 2016-03-28 2018-11-13 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 유기 전계 발광 소자
WO2018173598A1 (ja) * 2017-03-22 2018-09-27 新日鉄住金化学株式会社 有機電界発光素子
JP7037543B2 (ja) 2017-03-22 2022-03-16 日鉄ケミカル&マテリアル株式会社 有機電界発光素子
JPWO2018173598A1 (ja) * 2017-03-22 2020-01-23 日鉄ケミカル&マテリアル株式会社 有機電界発光素子
KR20190128208A (ko) * 2017-03-23 2019-11-15 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 유기 전계 발광 소자
WO2018173593A1 (ja) * 2017-03-23 2018-09-27 新日鉄住金化学株式会社 有機電界発光素子
JPWO2018173593A1 (ja) * 2017-03-23 2020-01-23 日鉄ケミカル&マテリアル株式会社 有機電界発光素子
JP6998366B2 (ja) 2017-03-23 2022-01-18 日鉄ケミカル&マテリアル株式会社 有機電界発光素子
US11374178B2 (en) 2017-03-23 2022-06-28 Nippon Steel Chemical & Material Co., Ltd. Organic electroluminescent element
KR102439400B1 (ko) * 2017-03-23 2022-09-02 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 유기 전계 발광 소자
KR102121433B1 (ko) * 2017-09-01 2020-06-10 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
KR20190025512A (ko) * 2017-09-01 2019-03-11 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
US11380851B2 (en) 2017-09-01 2022-07-05 Lg Chem, Ltd. Compound and organic light emitting device comprising the same
JP2019116461A (ja) * 2017-12-27 2019-07-18 三星電子株式会社Samsung Electronics Co.,Ltd. 化合物、有機エレクトロルミネッセンス素子用液状組成物、有機エレクトロルミネッセンス素子用インク組成物、有機エレクトロルミネッセンス素子用薄膜、及び有機エレクトロルミネッセンス素子
US11706977B2 (en) 2018-01-11 2023-07-18 Samsung Electronics Co., Ltd. Heterocyclic compound, composition including the same, and organic light-emitting device including the heterocyclic compound
WO2022124367A1 (ja) 2020-12-11 2022-06-16 日鉄ケミカル&マテリアル株式会社 有機電界発光素子用材料及び有機電界発光素子

Also Published As

Publication number Publication date
EP2650941B1 (en) 2018-01-24
JPWO2012077520A1 (ja) 2014-05-19
US20130248845A1 (en) 2013-09-26
KR101838675B1 (ko) 2018-03-14
JP5834023B2 (ja) 2015-12-16
CN103262283A (zh) 2013-08-21
TW201245150A (en) 2012-11-16
KR20130127992A (ko) 2013-11-25
EP2650941A1 (en) 2013-10-16
EP2650941A4 (en) 2016-06-15
TWI518071B (zh) 2016-01-21
US9337432B2 (en) 2016-05-10
CN103262283B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
JP5834023B2 (ja) 有機電界発光素子
JP5215481B2 (ja) 有機電界発光素子
JP5581341B2 (ja) 有機電界発光素子
JP4870245B2 (ja) 燐光発光素子用材料及びこれを用いた有機電界発光素子
JP6091428B2 (ja) 有機電界発光素子
JP5027947B2 (ja) 燐光発光素子用材料及びこれを用いた有機電界発光素子
JP6140146B2 (ja) 有機電界発光素子
JP5662994B2 (ja) 有機電界発光素子
JP5596706B2 (ja) 有機電界発光素子
JP5399418B2 (ja) 有機電界発光素子
JP5395161B2 (ja) 有機電界発光素子
WO2011081061A1 (ja) 有機電界発光素子
WO2012035934A1 (ja) 有機電界発光素子
WO2009119163A1 (ja) 有機電界発光素子用化合物及びこれを用いた有機電界発光素子
JP5953237B2 (ja) 有機電界発光素子
JP5577122B2 (ja) 有機電界発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846896

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012547786

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13990511

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011846896

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137017654

Country of ref document: KR

Kind code of ref document: A