WO2022124367A1 - 有機電界発光素子用材料及び有機電界発光素子 - Google Patents

有機電界発光素子用材料及び有機電界発光素子 Download PDF

Info

Publication number
WO2022124367A1
WO2022124367A1 PCT/JP2021/045321 JP2021045321W WO2022124367A1 WO 2022124367 A1 WO2022124367 A1 WO 2022124367A1 JP 2021045321 W JP2021045321 W JP 2021045321W WO 2022124367 A1 WO2022124367 A1 WO 2022124367A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
organic electroluminescent
organic
aromatic
Prior art date
Application number
PCT/JP2021/045321
Other languages
English (en)
French (fr)
Inventor
いくみ 北原
健太郎 林
淳也 小川
季子 上田
Original Assignee
日鉄ケミカル&マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ケミカル&マテリアル株式会社 filed Critical 日鉄ケミカル&マテリアル株式会社
Priority to KR1020237017956A priority Critical patent/KR20230119634A/ko
Priority to US18/038,883 priority patent/US20230422611A1/en
Priority to CN202180081968.XA priority patent/CN116547285A/zh
Priority to EP21903466.7A priority patent/EP4261910A1/en
Priority to JP2022568329A priority patent/JPWO2022124367A1/ja
Publication of WO2022124367A1 publication Critical patent/WO2022124367A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium

Definitions

  • the present invention relates to an organic EL device including a compound for an organic electroluminescent device (organic EL device) and a specific mixed host material.
  • Patent Document 1 discloses an organic EL device using a TTF (Triplet-Triplet Fusion) mechanism, which is one of the mechanisms of delayed fluorescence.
  • TTF Triplet-Triplet Fusion
  • the TTF mechanism utilizes the phenomenon that singlet excitons are generated by the collision of two triplet excitons, and it is thought that the internal quantum efficiency can be theoretically increased to 40%.
  • the efficiency is lower than that of the phosphorescent light emitting type organic EL element, further improvement in efficiency and low voltage characteristics are required.
  • Patent Document 2 discloses an organic EL element using a TADF (Thermally Activated Delayed Fluorescence) mechanism.
  • the TADF mechanism utilizes the phenomenon that inverse intersystem crossing from a triplet exciter to a singlet exciter occurs in a material with a small energy difference between the singlet level and the triplet level, and theoretically determines the internal quantum efficiency. It is believed that it can be increased to 100%.
  • Patent Documents 3 and 4 disclose that an indolocarbazole compound is used as a host material.
  • Patent Document 5 discloses that a compound in which triphenylene and a nitrogen-containing six-membered ring are substituted for indenocarbazole is used for the light emitting layer.
  • Patent Documents 6, 7, 8 and 9 disclose compounds in which triphenylene is substituted with indolocarbazole.
  • an organic EL element In order to apply an organic EL element to a display element such as a flat panel display, it is necessary to improve the luminous efficiency of the element and at the same time to sufficiently secure the long life characteristics of the element. In view of the above situation, it is an object of the present invention to provide an organic EL device having a low drive voltage, high efficiency and long life characteristics, and a compound suitable for the organic EL device.
  • the present invention relates to a compound for an organic electroluminescent device represented by the following general formula (1).
  • the ring A is an aromatic ring represented by the formula (1a) and is condensed with an adjacent ring.
  • Ring B is a five-membered heterocyclic ring represented by the formula (1b) and is condensed with an adjacent ring.
  • Tp is a triphenylene group represented by the formula (1c), and * represents a bonding position with L.
  • R 1 independently represents deuterium or an aliphatic hydrocarbon group having 1 to 10 carbon atoms.
  • L represents a divalently substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms.
  • Each of X independently represents N or CH, and at least one X is N.
  • Ar 1 is independently composed of hydrogen, an substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 3 to 17 carbon atoms, or an aromatic ring thereof. Represents 2-5 linked substituted or unsubstituted linked aromatic groups.
  • R 2 is independently a heavy hydrogen, an aliphatic hydrocarbon group having 1 to 10 carbon atoms, an substituted or unsubstituted aromatic hydrocarbon group having 6 to 10 carbon atoms, and an substituted or unsubstituted aromatic hydrocarbon group having 3 to 12 carbon atoms.
  • It represents a substituted or unsubstituted linked aromatic group in which 2 to 5 aromatic rings of a group heterocyclic group or an aromatic group selected from the aromatic hydrocarbon group and the aromatic heterocyclic group are linked.
  • a to f represent the number of substitutions, a to d are integers of 0 to 4, e is an integer of 0 to 3, f is an integer of 0 to 2, and n is an integer of 1 to 3. be.
  • Tp there is an embodiment represented by the following formula (2c). (Here, R 2 , c, d, e and * are synonymous with the general formula (1).)
  • the present invention is an organic electroluminescent device having an organic layer between an anode and a cathode laminated on a substrate, and the organic layer contains the above-mentioned compound for an organic electroluminescent device.
  • the present invention relates to an organic electroluminescent device.
  • the organic layer include a light emitting layer, and it is preferable that the above compound for an organic electroluminescent device is contained as a host material.
  • an organic EL element In order to apply an organic EL element to a display element such as a flat panel display or a light source, it is necessary to improve the luminous efficiency of the element and at the same time extend the life of the element. In order to extend the life of the device, it is necessary that the material used for the organic layer has high durability against heat and electric charge.
  • the compound for an organic EL device of the present invention has a nitrogen-containing six-membered ring with high electron transportability on one N of indolocarbazole, which is assumed to have high hole transportability and high charge stability.
  • triphenylene which is assumed to be highly stable against heat and electric charge, on the other N, it is possible to achieve a longer life of the device when it is used as a host material for an organic EL device. it is conceivable that.
  • a delayed fluorescence emission EL element or a phosphorescence emission EL element it has a minimum excitation triplet energy sufficiently high to confine the excitation energy generated in the light emitting layer, and has a rigid triphenylene group.
  • the compound for an organic EL device of the present invention is represented by the above general formula (1).
  • the compound for an organic EL device of the present invention is also referred to as a material of the present invention or a compound of the general formula (1).
  • the ring A is a benzene ring represented by the formula (1a) and is condensed with two adjacent rings.
  • the ring B is a heterocyclic ring of a five-membered ring represented by the formula (1b), and is condensed with two adjacent rings at an arbitrary position, but is not condensed at an edge containing N. Therefore, the indolocarbazole ring has several isomeric structures, but the number is limited. Specifically, it can have a structure as represented by the above equations (2) to (5). Preferably, it is a compound represented by the above formulas (3) to (5).
  • X is CH or N independently, and at least one is N.
  • at least two X's are N, and more preferably all of X's are N.
  • a to f represent the number of substitutions
  • a to d are integers of 0 to 4
  • e is an integer of 0 to 3
  • f is an integer of 0 to 2.
  • a to f are 0 to 1, and more preferably 0.
  • n represents the number of repetitions and is an integer of 1 to 3, preferably 1 to 2, and more preferably 1.
  • Ar 1 is independently composed of hydrogen, an substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 3 to 17 carbon atoms, or an aromatic ring thereof. It is a substituted or unsubstituted linked aromatic group in which 2 to 5 are linked. It is preferably hydrogen, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms, or a substituted or unsubstituted linked aromatic group in which 2 to 5 aromatic hydrocarbon groups are linked. More preferably, it is a substituted or unsubstituted phenyl group or a substituted or unsubstituted linked aromatic group in which 2 to 3 phenyl groups are linked.
  • group include benzene, naphthalene, acenaphthene, acenaphtylene, azulene, anthracene, chrysene, pyrene, phenanthrene, fluorene, triphenylene, pyridine, pyrimidine, triazine, thiophene, isothiazole, thiazole, pyridazine, pyrrol, pyrazole, imidazole, Triazole, pyrazine, furan, isoxazole, quinoline, isoquinoline, quinoxalin, quinazoline, thiadiazole, phthalazine, tetrazole, indol, benzofuran,
  • Preferred include benzene, naphthalene, acenaphthene, acenaphthylene, azulene, anthracene, chrysene, pyrene, phenanthrene, fluorene, triphenylene, or groups resulting from compounds composed of 2-5 linkages thereof. More preferably, it is a phenyl group, a biphenyl group, or a terphenyl group.
  • the terphenyl group may be linearly linked or branched.
  • L is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms. It is preferably a substituted or unsubstituted phenylene group.
  • n is 2 or 3
  • the structure is such that L is connected, but the connection mode may be any of ortho, meta, and para-connection.
  • this linking structure is a structure in which aromatic hydrocarbon rings are bonded to each other by a single bond.
  • Ar 1 is a divalent group generated by removing two hydrogens from an aromatic hydrocarbon compound. This is the same as in the case of an unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms. It is preferably a phenylene group.
  • R 1 is independently a deuterium or an aliphatic hydrocarbon group having 1 to 10 carbon atoms.
  • aliphatic hydrocarbon group having 1 to 10 carbon atoms include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl and the like. It is preferably an alkyl group having 1 to 4 carbon atoms.
  • Tp is a triphenylene group represented by the formula (1c). It is preferably a triphenylene group represented by the formula (2c).
  • R2 is independently a heavy hydrogen, an aliphatic hydrocarbon group having 1 to 10 carbon atoms, an substituted or unsubstituted aromatic hydrocarbon group having 6 to 10 carbon atoms, and a substituted or unsubstituted aromatic hydrocarbon group having 3 to 17 carbon atoms.
  • An aromatic heterocyclic group, or a substituted or unsubstituted linked aromatic group in which 2 to 5 of these aromatic rings are linked is preferably a hydrocarbon, a substituted or unsubstituted phenyl group, or an aromatic ring thereof. Is a substituted or unsubstituted linked aromatic group in which 2 to 5 are linked. More preferably, it is a substituted or unsubstituted phenyl group or a linked aromatic group in which 2 to 3 aromatic rings thereof are linked.
  • aliphatic hydrocarbon group having 1 to 10 carbon atoms are the same as in the case where R 1 is an aliphatic hydrocarbon group having 1 to 10 carbon atoms.
  • aromatic hydrocarbon group having 6 to 10 carbon atoms, an aromatic heterocyclic group having 3 to 17 carbon atoms, or an unsubstituted linked aromatic group in which 2 to 5 of these aromatic rings are linked.
  • Specific examples of the groups are the same as in the case where Ar 1 is these.
  • the aromatic hydrocarbon group, the aromatic heterocyclic group, or the linked aromatic group may each have a substituent.
  • the substituents are heavy hydrogen, halogen, cyano group, triarylsilyl group, aliphatic hydrocarbon group having 1 to 10 carbon atoms, alkenyl group having 2 to 5 carbon atoms, and 1 to 5 carbon atoms.
  • An alkoxy group or a diarylamino group having 12 to 44 carbon atoms is preferable.
  • the substituent is an aliphatic hydrocarbon group having 1 to 10 carbon atoms, it may be linear, branched or cyclic.
  • the triarylsilyl group or the diarylamino group is substituted with the aromatic hydrocarbon group, aromatic heterocyclic group, or linked aromatic group, silicon and carbon or nitrogen and carbon are single-bonded, respectively.
  • the number of the substituents is 0 to 5, preferably 0 to 2.
  • the aromatic hydrocarbon group and the aromatic heterocyclic group have a substituent, the carbon number calculation does not include the carbon number of the substituent. However, it is preferable that the total number of carbon atoms including the number of carbon atoms of the substituent satisfies the above range.
  • substituents include cyano, methyl, ethyl, propyl, i-propyl, butyl, t-butyl, pentyl, cyclopentyl, hexyl, cyclohexyl, heptyl, octyl, nonyl, decyl, vinyl, propenyl, butenyl, Examples thereof include pentenyl, methoxy, ethoxy, propoxy, butoxy, pentoxy, diphenylamino, naphthylphenylamino, dinaphthylamino, dianthranylamino, diphenanthrenylamino, dipyrenylamino and the like.
  • Preferred include cyano, methyl, ethyl, t-butyl, propyl, butyl, pentyl, hexyl, heptyl, or octyldiphenylamino, naphthylphenylamino, or dinaphthylamino.
  • the linked aromatic group refers to an aromatic group in which the carbons of the aromatic ring of the aromatic group selected from the aromatic hydrocarbon group and the aromatic heterocyclic group are bonded and linked by a single bond. It is an aromatic group in which two or more aromatic groups are linked, and these may be linear or branched.
  • the aromatic group may be an aromatic hydrocarbon group or an aromatic heterocyclic group, and the plurality of aromatic groups may be the same or different.
  • the aromatic group corresponding to the linked aromatic group is different from the substituted aromatic group.
  • the unsubstituted aromatic hydrocarbon group, the unsubstituted aromatic heterocyclic group, the unsubstituted linked aromatic group, the substituent of these aromatic groups, or the aliphatic hydrocarbon group is a part thereof or All hydrogen may be hydrocarbonized. Further, some or all of the hydrogen in the general formulas (1), formulas (1a) to (1c), formulas (2) to (5), and formula (2c) may be deuterated.
  • the compound for an organic EL element of the present invention is contained in the organic layer of the organic EL element, and the organic layer includes a light emitting layer, a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, and a hole. It may be selected from a group consisting of a blocking layer and an electron blocking layer. It is preferably a light emitting layer, and the light emitting layer may contain at least one kind of light emitting dopant.
  • the light emitting layer contains the compound for an organic EL device of the present invention, it is desirable that it is contained as a host.
  • FIG. 1 is a cross-sectional view showing a structural example of a general organic EL device used in the present invention, in which 1 is a substrate, 2 is an anode, 3 is a hole injection layer, 4 is a hole transport layer, and 5 is a light emitting layer. , 6 represent an electron transport layer, and 7 represents a cathode.
  • the organic EL device of the present invention may have an exciton blocking layer adjacent to the light emitting layer, or may have an electron blocking layer between the light emitting layer and the hole injection layer.
  • the exciton blocking layer can be inserted into either the anode side or the cathode side of the light emitting layer, and both can be inserted at the same time.
  • the organic EL device of the present invention has an anode, a light emitting layer, and a cathode as essential layers, but it is preferable to have a hole injection transport layer and an electron injection transport layer in addition to the essential layers, and further, a light emitting layer and an electron injection. It is preferable to have a hole blocking layer between the transport layers.
  • the hole injection transport layer means either or both of the hole injection layer and the hole transport layer
  • the electron injection transport layer means either or both of the electron injection layer and the electron transport layer.
  • the organic EL element of the present invention is preferably supported by a substrate.
  • the substrate is not particularly limited as long as it is conventionally used for an organic EL element, and for example, a substrate made of glass, transparent plastic, quartz or the like can be used.
  • anode material in the organic EL element a material having a large work function (4 eV or more), an alloy, an electrically conductive compound, or a mixture thereof is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • amorphous material such as IDIXO (In 2 O 3 -ZnO) capable of producing a transparent conductive film may be used.
  • a thin film may be formed by forming a thin film of these electrode materials by a method such as thin film deposition or sputtering, and a pattern of a desired shape may be formed by a photolithography method, or when pattern accuracy is not required so much (about 100 ⁇ m or more). May form a pattern through a mask having a desired shape during vapor deposition or sputtering of the electrode material.
  • a coatable substance such as an organic conductive compound
  • a wet film forming method such as a printing method or a coating method can also be used.
  • the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the material, but is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
  • the cathode material a material consisting of a metal (electron-injecting metal) having a small work function (4 eV or less), an alloy, an electrically conductive compound, or a mixture thereof is used.
  • a metal electron-injecting metal
  • Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O). 3 ) Examples include mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injectable metal and a second metal which is a stable metal having a larger work function value than this, for example, magnesium / silver mixture, magnesium. / Aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide mixture, lithium / aluminum mixture, aluminum and the like are suitable.
  • the cathode can be produced by forming a thin film of these cathode materials by a method such as thin film deposition or sputtering.
  • the sheet resistance of the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the emission brightness is improved, which is convenient.
  • a transparent or translucent cathode can be produced. By applying it, it is possible to manufacture an element in which both the anode and the cathode are transparent.
  • the light emitting layer is a layer that emits light after excitons are generated by recombination of holes and electrons injected from each of the anode and cathode, and the light emitting layer may contain an organic light emitting dopant material and a host. ..
  • the compound for an organic EL device of the present invention may be used.
  • One of the compounds of the present invention as a host may be used, or two or more different compounds may be used. If necessary, other host materials such as known host materials may be used alone or in combination of two or more.
  • the other host material a compound having a hole transporting ability and an electron transporting ability, preventing a long wavelength of light emission, and having a high glass transition temperature is preferable.
  • the known host material is known from a large number of patent documents and can be selected from them. Specific examples of the host material are not particularly limited, but are the indrocarbazole derivative described in WO2008 / 056746A, WO2008 / 146839A, etc., the carbazole derivative described in WO2009 / 086028A, WO2012 / 077520A, etc., and CBP ( N, N-biscarbazolylbiphenyl) derivative, triazine derivative described in WO2014 / 185595A, WO2018 / 021663A, etc., indenocarbazole derivative described in WO2010 / 136109A, WO2011 / 00455A, etc., described in WO2015 / 169412A, etc.
  • Dibenzofuran derivative triazole derivative, indole derivative, oxazole derivative, oxadiazole derivative, imidazole derivative, polyarylalkane derivative, pyrazoline derivative, pyrazolone derivative, phenylenediamine derivative, arylamine derivative, amino-substituted carcon derivative, styrylanthracene derivative, fluorenone derivative , Hydrazone derivative, Stilben derivative, Silazan derivative, Aromatic tertiary amine compound, Stylylamine compound, Aromatic dimethylidene compound, Porphyrin derivative, Anthracinodimethane derivative, Antron derivative, Diphenylquinone derivative, Thiopirandioxide derivative, Heterocyclic tetracarboxylic acid anhydrides such as naphthalene perylene, phthalocyanine derivatives, metal complexes of 8-quinolinol derivatives and metal phthalocyanine, various metal complexes typified by metal
  • the phosphorescent dopant When a phosphorescent dopant is used as the luminescent dopant material, the phosphorescent dopant contains an organic metal complex containing at least one metal selected from ruthenium, rhodium, palladium, silver, renium, osmium, iridium, platinum and gold. What to do is good.
  • the iridium complex described in J.Am.Chem.Soc.2001,123,4304, JP2013-530515A, US2016 / 0049599A, US2017 / 0069848A, US2018 / 0282356A, US2019 / 0036043A, etc., and US2018 Platinum complexes described in / 0013078A, KR2018-094482A, etc. are preferably used, but are not limited thereto.
  • the phosphorescent dopant material only one kind may be contained in the light emitting layer, or two or more kinds may be contained.
  • the content of the phosphorescent dopant material is preferably 0.1 to 30 wt%, more preferably 1 to 20 wt% with respect to the host material.
  • the phosphorescent dopant material is not particularly limited, but specific examples include the following.
  • the fluorescent light emitting dopant is not particularly limited, and is, for example, a benzoxazole derivative, a benzothiazole derivative, a benzoimidazole derivative, a styrylbenzene derivative, a polyphenyl derivative, a diphenylbutadiene derivative, or a tetraphenyl.
  • Examples thereof include polymer compounds such as polyphenylene and polyphenylene vinylene, and organic silane derivatives.
  • Preferred examples thereof include condensed aromatic derivatives, styryl derivatives, diketopyrrolopyrrole derivatives, oxazine derivatives, pyrromethene metal complexes, transition metal complexes, or lanthanoid complexes, and more preferably naphthalene, pyrene, chrysen, triphenylene, benzo [c] phenanthrene.
  • the fluorescent light emitting dopant material only one kind may be contained in the light emitting layer, or two or more kinds may be contained.
  • the content of the fluorescent light emitting dopant material is preferably 0.1 to 20%, more preferably 1 to 10% with respect to the host material.
  • the heat-activated delayed fluorescent light-emitting dopant is not particularly limited, but is a metal complex such as a tin complex or a copper complex, or an indro described in WO2011 / 070963A.
  • a metal complex such as a tin complex or a copper complex, or an indro described in WO2011 / 070963A.
  • examples thereof include carbazole derivatives, cyanobenzene derivatives described in Nature 2012,492,234, carbazole derivatives, phenazine derivatives, oxadiazole derivatives, triazole derivatives, sulfone derivatives, phenoxazine derivatives, aclysine derivatives and the like described in Nature Photonics 2014,8,326.
  • the thermally activated delayed fluorescent dopant material is not particularly limited, but specific examples include the following.
  • the thermally activated delayed fluorescent dopant material may contain only one type or two or more types in the light emitting layer. Further, the thermally activated delayed fluorescent dopant may be mixed with a phosphorescent light emitting dopant or a fluorescent light emitting dopant. The content of the thermally activated delayed fluorescent dopant material is preferably 0.1 to 50%, more preferably 1 to 30% with respect to the host material.
  • the injection layer is a layer provided between the electrode and the organic layer in order to reduce the driving voltage and improve the emission brightness.
  • the injection layer includes a hole injection layer and an electron injection layer, and is located between the anode and the light emitting layer or the hole transport layer. And may be present between the cathode and the light emitting layer or the electron transporting layer.
  • the injection layer can be provided as needed.
  • the hole blocking layer has the function of an electron transporting layer in a broad sense, and is made of a hole blocking material having a function of transporting electrons and a significantly small ability to transport holes, and is composed of a hole blocking material while transporting electrons. It is possible to improve the recombination probability of electrons and holes in the light emitting layer by blocking the above.
  • the electron blocking layer has a function of a hole transporting layer in a broad sense, and by blocking electrons while transporting holes, the probability of recombination of electrons and holes in the light emitting layer can be improved. ..
  • the material of the electron blocking layer a known electron blocking layer material can be used, and a hole transporting layer material described later can be used as needed.
  • the film thickness of the electron blocking layer is preferably 3 to 100 nm, more preferably 5 to 30 nm.
  • the exciton blocking layer is a layer for blocking excitons generated by the recombination of holes and electrons in the light emitting layer from diffusing into the charge transport layer, and excitons are inserted by inserting this layer. It is possible to efficiently confine it in the light emitting layer, and it is possible to improve the light emitting efficiency of the element.
  • the exciton blocking layer can be inserted between two adjacent light emitting layers in an element in which two or more light emitting layers are adjacent to each other.
  • exciton blocking layer As the material of the exciton blocking layer, a known exciton blocking layer material can be used. For example, 1,3-dicarbazolylbenzene (mCP) and bis (2-methyl-8-quinolinolato) -4-phenylphenylatoaluminum (III) (BAlq) can be mentioned.
  • mCP 1,3-dicarbazolylbenzene
  • BAlq bis (2-methyl-8-quinolinolato) -4-phenylphenylatoaluminum
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer may be provided with a single layer or a plurality of layers.
  • the hole transport material has any of hole injection or transport and electron barrier property, and may be either an organic substance or an inorganic substance. Any compound can be selected and used for the hole transport layer from conventionally known compounds. Examples of such hole transport materials include porphyrin derivatives, arylamine derivatives, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, and amino-substituted carcon derivatives.
  • the electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer may be provided with a single layer or a plurality of layers.
  • the electron transport material (which may also serve as a hole blocking material) may have a function of transmitting electrons injected from the cathode to the light emitting layer.
  • any conventionally known compound can be selected and used, for example, a polycyclic aromatic derivative such as naphthalene, anthracene, phenanthroline, tris (8-quinolinolate) aluminum (III).
  • Derivatives phosphine oxide derivatives, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, carbodiimide, fleolenilidene methane derivatives, anthracinodimethane and antron derivatives, bipyridine derivatives, quinoline derivatives, oxadiazole derivatives, benzoimidazole Derivatives, benzothiazole derivatives, indrocarbazole derivatives and the like can be mentioned, and polymer materials in which these materials are introduced into a polymer chain or these materials are used as the main chain of a polymer can also be used.
  • Example 1 Compound (2) was synthesized according to the following reaction formula.
  • the mixture was stirred at 190 ° C. for 19 hours under a nitrogen atmosphere.
  • purification and crystallization purification were performed by silica gel column chromatography to obtain 31 g (yield 71%) of the intermediate (1-1) as a white solid.
  • Example 2 Compound (81) was synthesized according to the following reaction formula.
  • Compound (d) 20 g, compound (b) 36 g, copper iodide 1.5 g, potassium carbonate 43 g, 18-crown-6-ether 0.06 g, 1,3-dimethyl-2-imidazolidinone 900 ml
  • the reaction product was separated and purified to obtain 32 g (yield 73%) of a white solid intermediate (2-1).
  • To 30 ml of DMAc 1.4 g of 60 wt% sodium hydride was added, 17 g of the intermediate (2-1) dissolved in DMAc was added thereto, and the mixture was stirred for 30 minutes. After adding 7.9 g of compound (c) there, the mixture was stirred for 24 hours.
  • Example 3 Compound (82) was synthesized according to the following reaction formula.
  • Compound (d) 20 g, compound (e) 36 g, copper iodide 1.5 g, potassium carbonate 43 g, 18-crown-6-ether 0.06 g, 1,3-dimethyl-2-imidazolidinone 900 ml
  • the reaction product was separated and purified to obtain 28 g (yield 64%) of a white solid intermediate (3-1).
  • To 30 ml of DMAc 1.4 g of 60 wt% sodium hydride was added, 17 g of the intermediate (3-1) dissolved in DMAc was added thereto, and the mixture was stirred for 30 minutes. After adding 7.9 g of compound (c) there, the mixture was stirred for 4 hours.
  • Example 4 Compound (83) was synthesized according to the following reaction formula. Add 15 g of compound (f), 36 g of tripotassium phosphate, 2.8 g of 18-crown-6-ether, and 180 ml of 1,3-dimethyl-2-imidazolidinone to 10.8 g of compound (d) for 90 hours. Stirred. The reaction product was separated and purified to obtain 25 g (yield 57%) of a white solid intermediate (4-1). To 20 ml of DMAc, 0.6 g of 60 wt% sodium hydride was added, 9 g of the intermediate (4-1) dissolved in DMAc was added thereto, and the mixture was stirred for 30 minutes. After adding 4.6 g of compound (c) there, the mixture was stirred for 27 hours. The reaction product was separated and purified to obtain 9 g (yield 70%) of the yellow solid compound (83).
  • Example 5 Compound (85) was synthesized according to the following reaction formula. To 30 ml of DMAc, 1.4 g of 60 wt% sodium hydride was added, 11 g of the intermediate (3-1) dissolved in DMAc was added thereto, and the mixture was stirred for 30 minutes. After adding 7.9 g of the compound (g) there, the mixture was stirred for 24 hours. The reaction product was separated and purified to obtain 19 g (yield 73%) of the yellow solid compound (85).
  • Example 6 Compound (93) was synthesized according to the following reaction formula.
  • To 30 ml of DMAc 1.4 g of 60 wt% sodium hydride was added, 11 g of the intermediate (6-1) dissolved in DMAc was added thereto, and the mixture was stirred for 30 minutes. After adding 7.9 g of compound (c) there, the mixture was stirred for 72 hours.
  • Example 7 Compound (103) was synthesized according to the following reaction formula. To 30 ml of DMAc, 1.4 g of 60 wt% sodium hydride was added, 11 g of the intermediate (3-1) dissolved in DMAc was added thereto, and the mixture was stirred for 30 minutes. After adding 11 g of compound (i) there, the mixture was stirred for 72 hours. The reaction product was separated and purified to obtain 19 g (yield 72%) of the yellow solid compound (103).
  • Example 8 Each thin film was laminated with a vacuum degree of 4.0 ⁇ 10 -5 Pa by a vacuum vapor deposition method on a glass substrate on which an anode made of ITO having a film thickness of 110 nm was formed.
  • HAT-CN was formed on the ITO to a thickness of 25 nm as a hole injection layer, and then Spiro-TPD was formed to a thickness of 30 nm as a hole transport layer.
  • HT-1 was formed to a thickness of 10 nm as an electron blocking layer.
  • compound (2) as a host material and Ir (ppy) 3 as a light emitting dopant were co-deposited from different vapor deposition sources to form a light emitting layer having a thickness of 40 nm.
  • the concentration of Ir (ppy) 3 was 10 wt%.
  • ET-1 was formed to a thickness of 20 nm as an electron transport layer.
  • LiF was formed on the electron transport layer as an electron injection layer to a thickness of 1 nm.
  • Al was formed on the electron injection layer as a cathode to a thickness of 70 nm to fabricate an organic EL device.
  • Example 9-14 Example 8 except that the compounds (81), (82), (83), (85), (93), and (103) obtained in Examples 2 to 7 were used as the host material for the light emitting layer.
  • An organic EL element was produced in the same manner. Table 3 shows the light emission characteristics.
  • Comparative Examples 1 to 6 An organic EL device was prepared in the same manner as in Example 8 except that compound A, B, C, D, E, or F was used as the host material for the light emitting layer in Example 8.
  • Table 1 shows the evaluation results of the manufactured organic EL device.
  • the brightness, drive voltage, power efficiency, and LT70 are the values at a drive current of 20 mA / cm 2 .
  • LT70 is the time required to attenuate from the initial brightness of 9000 cd / A to 70%, and represents the life characteristic.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

低駆動電圧で、高効率かつ長寿命特性を有した有機EL素子を与える有機EL素子用化合物及びこの化合物を使用した有機EL素子を提供する。この有機EL素子用化合物は、下記一般式(1)で表されるインドロカルバゾール骨格を有する化合物である。ここで、環Aはベンゼン環、環Bは式(1b)、Tpはトリフェニレン基、Lは炭素数6~18の芳香族炭化水素基であり、XはN又はC―Hを表し、少なくとも1つはNであり、nは1~3の整数である。

Description

有機電界発光素子用材料及び有機電界発光素子
 本発明は、有機電界発光素子(有機EL素子)用化合物及び特定の混合ホスト材料を含む有機EL素子に関するものである。
 有機EL素子に電圧を印加することで、陽極から正孔が、陰極からは電子がそれぞれ発光層に注入される。そして発光層において、注入された正孔と電子が再結合し、励起子が生成される。この際、電子スピンの統計則により、一重項励起子及び三重項励起子が1:3の割合で生成する。一重項励起子による発光を用いる蛍光発光型の有機EL素子は、内部量子効率は25%が限界であるといわれている。一方で三重項励起子による発光を用いる燐光発光型の有機EL素子は、一重項励起子から項間交差が効率的に行われた場合には、内部量子効率を100%まで高められることが知られている。
 最近では、遅延蛍光を利用した高効率の有機EL素子の開発がなされている。例えば特許文献1には、遅延蛍光のメカニズムの一つであるTTF(Triplet-Triplet Fusion)機構を利用した有機EL素子が開示されている。TTF機構は2つの三重項励起子の衝突によって一重項励起子が生成する現象を利用するものであり、理論上内部量子効率を40%まで高められると考えられている。しかしながら、燐光発光型の有機EL素子と比較すると効率が低いため、更なる効率の改良、及び低電圧特性が求められている。
 また、特許文献2では、TADF(Thermally Activated Delayed Fluorescence)機構を利用した有機EL素子が開示されている。TADF機構は一重項準位と三重項準位のエネルギー差が小さい材料において三重項励起子から一重項励起子への逆項間交差が生じる現象を利用するものであり、理論上内部量子効率を100%まで高められると考えられている。
 しかしながらいずれの機構においても、効率、寿命ともに向上の余地があり、加えて駆動電圧の低減についても改善が求められている。
WO2010/134350 A WO2011/070963 A WO2008/056746 A WO2008/146839 A WO2013/056776 A 特開2012-140365号公報 KR2019-0069083 A US2015/0171357 A WO2012/039561 A
 特許文献3、及び4ではインドロカルバゾール化合物をホスト材料として使用することを開示している。特許文献5では、インデノカルバゾールにトリフェニレンと含窒素六員環が置換した化合物を発光層に用いることを開示している。特許文献6、7、8、及び9では、トリフェニレンにインドロカルバゾールを置換した化合物を開示している。
 しかしながら、いずれも十分なものとは言えず、有機EL素子の効率、寿命の更なる改良が望まれている。
 有機EL素子をフラットパネルディスプレイ等の表示素子に応用するためには、素子の発光効率を改善すると同時に、素子の長寿命特性を十分に確保する必要がある。本発明は、上記現状に鑑み、低駆動電圧で、高効率かつ長寿命特性を有した有機EL素子及びそれに適する化合物を提供することを目的とする。
 本発明者らは、鋭意検討した結果、特定のインドロカルバゾール化合物を有機EL素子に用いることで優れた特性を示すことを見出し、本発明を完成するに至った。
 本発明は、下記一般式(1)で表される有機電界発光素子用化合物に関する。
Figure JPOXMLDOC01-appb-C000004
 一般式(1)において、環Aは、式(1a)で表される芳香族環であり、隣接環と縮合する。
 環Bは、式(1b)で表される五員環の複素環であり、隣接環と縮合する。
 Tpは、式(1c)で表されるトリフェニレン基であり、*はLとの結合位置を表す。
 Rはそれぞれ独立に重水素、又は炭素数1~10の脂肪族炭化水素基を表す。
 Lは2価の置換もしくは未置換の炭素数6~18の芳香族炭化水素基を表す。
 Xはそれぞれ独立に、N又はC―Hを表し、少なくとも1つのXはNである。
 Arは、それぞれ独立に水素、置換若しくは未置換の炭素数6~18の芳香族炭化水素基、置換若しくは未置換の炭素数3~17の芳香族複素環基、又はこれらの芳香族環が2~5個連結した置換若しくは未置換の連結芳香族基を表す。
 Rはそれぞれ独立に重水素、炭素数1~10の脂肪族炭化水素基、置換もしくは未置換の炭素数6~10の芳香族炭化水素基、置換もしくは未置換の炭素数3~12の芳香族複素環基、又は前記芳香族炭化水素基及び芳香族複素環基から選ばれる芳香族基の芳香族環が2~5個連結した置換もしくは未置換の連結芳香族基を表す。
 a~fは置換数を表し、a~dは0~4の整数、eは0~3の整数、fは0~2の整数であり、nは繰り返し数を表し、1~3の整数である。
 前記一般式(1)において、Xが全てNであること、Lがフェニレン基であること、nが1であること、又はa~fの全部が0であることの何れかを満足することは本発明の好ましい態様である。
 前記一般式(1)の態様としては、下記式(2)~(5)のいずれかで表される態様がある。
Figure JPOXMLDOC01-appb-C000005
(ここで、Tp、Ar、L、R、R、a~f、及びnは一般式(1)と同義である。)
 また、上記Tpとしては、下記式(2c)で表される態様がある。
Figure JPOXMLDOC01-appb-C000006
(ここで、R、c、d、e及び*は一般式(1)と同義である。)
 また、本発明は、基板上に積層された陽極と陰極の間に、有機層を有する有機電界発光素子であって、該有機層が、上記の有機電界発光素子用化合物を含有することを特徴とする有機電界発光素子に関する。
 上記有機層としては、発光層が挙げられ、上記の有機電界発光素子用化合物をホスト材料として含有することが好ましい。
 有機EL素子をフラットパネルディスプレイ等の表示素子や光源に応用するためには、素子の発光効率を改善すると同時に素子を長寿命化する必要がある。素子の長寿命化のためには、有機層に使用する材料の熱や電荷に対する耐久性が高いことが必要である。
 本発明の有機EL素子用化合物は、正孔輸送性が高く、電荷に対する安定性が高いと想定されるインドロカルバゾールの一方のN上に、電子輸送性の高い含窒素六員環を有し、もう一方のN上に、熱や電荷に対する安定性が高いと想定されるトリフェニレンを置換することで、有機EL素子にホスト材料として使用した際に、素子の長寿命化を達成することができると考えられる。
 更に、遅延蛍光発光EL素子や燐光発光EL素子の場合にあっては、発光層で生成する励起エネルギーを閉じ込めるのに十分高い最低励起三重項エネルギーを有していることと、剛直なトリフェニレン基を導入することで、分子の回転や振動による励起エネルギーの損失が少なくなったと想定され、発光層内から周辺層へのエネルギー流出がなく、低電圧でありながら、高効率、長寿命な有機EL素子とすることが予想外にも可能となったと想定される。
有機EL素子の一例を示した模式断面図である。
 本発明の有機EL素子用化合物は、前記一般式(1)で表される。本発明の有機EL素子用化合物を、本発明の材料又は一般式(1)の化合物ともいう。
 一般式(1)において、環Aは式(1a)で表されるベンゼン環であり、2つの隣接環と縮合する。
 また環Bは、式(1b)で表される五員環の複素環であり、2つの隣接環と任意の位置で縮合するが、Nを含む辺で縮合することはない。したがって、インドロカルバゾール環はいくつかの異性体構造を有するが、その数は限られる。
 具体的には、前記式(2)~(5)で表されるような構造であることができる。好ましくは、前記式(3)~(5)で表される化合物である。
 一般式(1)及び式(2)~(5)及び式(2c)において、共通する記号は同じ意味を有する。
 Xは、それぞれ独立にC―H又はNであり、少なくとも一つはNである。好ましくは、少なくとも2つのXがNであり、より好ましくは、Xの全てがNである。
 a~fは置換数を表し、a~dは0~4の整数、eは0~3の整数、fは0~2の整数である。好ましくは、a~fは0~1であり、より好ましくは0である。
 nは繰り返し数を表し、1~3の整数であり、好ましくは1~2であり、より好ましくは1である。
 Arは、それぞれ独立に水素、置換若しくは未置換の炭素数6~18の芳香族炭化水素基、置換若しくは未置換の炭素数3~17の芳香族複素環基、又はこれらの芳香族環が2~5個連結した置換もしくは未置換の連結芳香族基である。好ましくは水素、置換若しくは未置換の炭素数6~18の芳香族炭化水素基、又は該芳香族炭化水素基が2~5個連結した置換もしくは未置換の連結芳香族基である。より好ましくは、置換もしくは未置換のフェニル基又はフェニル基が2~3個連結した置換もしくは未置換の連結芳香族基である。
 上記未置換の炭素数6~18の芳香族炭化水素基、未置換の炭素数3~17の芳香族複素環基、又はこれらの芳香族環が2~5個連結した未置換の連結芳香族基の具体例としては、ベンゼン、ナフタレン、アセナフテン、アセナフチレン、アズレン、アントラセン、クリセン、ピレン、フェナントレン、フルオレン、トリフェニレン、ピリジン、ピリミジン、トリアジン、チオフェン、イソチアゾール、チアゾール、ピリダジン、ピロール、ピラゾール、イミダゾール、トリアゾール、ピラジン、フラン、イソキサゾール、キノリン、イソキノリン、キノキサリン、キナゾリン、チアジアゾール、フタラジン、テトラゾール、インドール、ベンゾフラン、ベンゾチオフェン、ベンゾオキサゾール、ベンゾチアゾール、インダゾール、ベンズイミダゾール、ベンゾトリアゾール、ベンゾイソチアゾール、ベンゾチアジアゾール、プリン、ピラノン、クマリン、イソクマリン、クロモン、ジベンゾフラン、ジベンゾチオフェン、ジベンゾセレノフェン、カルバゾール又はこれらが2~5連結して構成される化合物から1個の水素を取って生じる基が挙げられる。好ましくは、ベンゼン、ナフタレン、アセナフテン、アセナフチレン、アズレン、アントラセン、クリセン、ピレン、フェナントレン、フルオレン、トリフェニレン、又はこれらが2~5連結して構成される化合物から生じる基が挙げられる。より好ましくは、フェニル基、ビフェニル基、又はターフェニル基である。ターフェニル基は、直鎖状に連結しても、分岐してもよい。
 Lは置換若しくは未置換の炭素数6~18の芳香族炭化水素基である。好ましくは置換若しくは未置換のフェニレン基である。nが2又は3である場合は、Lが連結した構造となるが、連結様式はオルト、メタ、若しくはパラ連結のいずれであってもよい。なお、この連結構造は芳香族炭化水素環同士が単結合で結合した構造である。
 Lが未置換の炭素数6~18の芳香族炭化水素基である場合は、芳香族炭化水素化合物から2個の水素を取って生じる2価の基であることを除いて、上記Arが未置換の炭素数6~18の芳香族炭化水素基である場合と同様である。好ましくは、フェニレン基である。
 Rはそれぞれ独立に、重水素又は炭素数1~10の脂肪族炭化水素基である。
 上記炭素数1~10の脂肪族炭化水素基の具体例としては、メチル、エチル、プロピル、ブチル、ペンチル、へキシル、ヘプチル、オクチル、ノニル、デシル等が挙げられる。好ましくは、炭素数1~4のアルキル基である。
 一般式(1)において、Tpは式(1c)で表されるトリフェニレン基である。好ましくは、式(2c)で表されるトリフェニレン基である。
 Rは、それぞれ独立に重水素、炭素数1~10の脂肪族炭化水素基、置換もしくは未置換の炭素数6~10の芳香族炭化水素基、置換もしくは未置換の炭素数3~17の芳香族複素環基、又はこれらの芳香族環が2~5個連結した置換もしくは未置換の連結芳香族基を示し、好ましくは、重水素、置換若しくは未置換のフェニル基またはこれらの芳香族環が2~5個連結した置換もしくは未置換の連結芳香族基である。更に好ましくは、置換若しくは未置換のフェニル基またはこれらの芳香族環が2~3個連結した連結芳香族基である。
 上記炭素数1~10の脂肪族炭化水素基の具体例としては、Rが炭素数1~10の脂肪族炭化水素基である場合と同様である。
 上記未置換の炭素数6~10の芳香族炭化水素基、未置換の炭素数3~17の芳香族複素環基、又はこれらの芳香族環が2~5個連結した未置換の連結芳香族基の具体例としては、Arがこれらである場合と同様である。
 好ましくは、ベンゼン、ピリジン、ピリミジン、トリアジン、チオフェン、イソチアゾール、チアゾール、ピリダジン、ピロール、ピラゾール、イミダゾール、トリアゾール、ピラジン、フラン、イソキサゾール、オキサゾール、キノリン、イソキノリン、キノキサリン、キナゾリン、オキサジアゾール、チアジアゾール、ベンゾトリアジン、フタラジン、テトラゾール、インドール、ベンゾフラン、ベンゾチオフェン、ベンゾオキサゾール、ベンゾチアゾール、インダゾール、ベンズイミダゾール、ベンゾトリアゾール、ベンゾイソチアゾール、又はベンゾチアジアゾールから生じる芳香族基が挙げられる。より好ましくは、ベンゼンから生じる芳香族基が挙げられる。
 本明細書において、芳香族炭化水素基、芳香族複素環基、又は連結芳香族基は、それぞれ置換基を有してもよい。置換基を有する場合の置換基は、重水素、ハロゲン、シアノ基、トリアリールシリル基、炭素数1~10の脂肪族炭化水素基、炭素数2~5のアルケニル基、炭素数1~5のアルコキシ基又は炭素数12~44のジアリールアミノ基が好ましい。ここで、置換基が炭素数1~10の脂肪族炭化水素基である場合、直鎖状、分岐状、環状であってもよい。なお、上記トリアリールシリル基、又は上記ジアリールアミノ基が、前記芳香族炭化水素基、芳香族複素環基、又は連結芳香族基置換する場合、それぞれケイ素と炭素、又は窒素と炭素が単結合で結合する。
 なお、上記置換基の数は0~5、好ましくは0~2がよい。芳香族炭化水素基及び芳香族複素環基が置換基を有する場合の炭素数の計算には、置換基の炭素数を含まない。しかし、置換基の炭素数を含んだ合計の炭素数が上記範囲を満足することが好ましい。
 上記置換基の具体例としては、シアノ、メチル、エチル、プロピル、i-プロピル、ブチル、t-ブチル、ペンチル、シクロペンチル、へキシル、シクロヘキシル、ヘプチル、オクチル、ノニル、デシル、ビニル、プロペニル、ブテニル、ペンテニル、メトキシ、エトキシ、プロポキシ、ブトキシ、ペントキシ、ジフェニルアミノ、ナフチルフェニルアミノ、ジナフチルアミノ、ジアントラニルアミノ、ジフェナンスレニルアミノ、ジピレニルアミノ等が挙げられる。好ましくは、シアノ、メチル、エチル、t-ブチル、プロピル、ブチル、ペンチル、へキシル、ヘプチル、又はオクチルジフェニルアミノ、ナフチルフェニルアミノ、又はジナフチルアミノが挙げられる。
 本明細書において、連結芳香族基は、芳香族炭化水素基及び芳香族複素環基から選ばれる芳香族基の芳香族環の炭素同士が単結合で結合して連結した芳香族基をいう。芳香族基が2以上連結した芳香族基であり、これらは直鎖状であっても、分岐してもよい。芳香族基は芳香族炭化水素基であっても、芳香族複素環基であってもよく、複数の芳香族基は同一であっても、異なってもよい。連結芳香族基に該当する芳香族基は、置換芳香族基とは異なる。
 また、前記未置換の芳香族炭化水素基、未置換の芳香族複素環基、未置換の連結芳香族基、これら芳香族基の置換基、又は前記脂肪族炭化水素基は、その一部若しくは全ての水素が重水素化されていてもよい。また前記一般式(1)、式(1a)~(1c)、式(2)~(5)、及び式(2c)中の一部若しくは全ての水素が重水素化されていてもよい。
 一般式(1)で表される化合物の具体的な例を以下に示すが、これら例示化合物に限定されるものではない。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
 本発明の有機EL素子用化合物は、有機EL素子の有機層に含まれるが、この有機層としては、発光層、正孔注入層、正孔輸送層、電子輸送層、電子注入層、正孔阻止層及び電子阻止層からなる群れから選ばれることがよい。
 好ましくは、発光層であり、発光層は少なくとも1種の発光性ドーパントを含有することがよい。
 発光層に本発明の有機EL素子用化合物を含む場合は、ホストとして含まれることが望ましい。
 次に、本発明の有機EL素子の構造について、図面を参照しながら説明するが、本発明の有機EL素子の構造はこれに限定されない。
 図1は本発明に用いられる一般的な有機EL素子の構造例を示す断面図であり、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は電子輸送層、7は陰極を表す。本発明の有機EL素子は発光層と隣接して励起子阻止層を有してもよく、また発光層と正孔注入層との間に電子阻止層を有してもよい。励起子阻止層は発光層の陽極側、及び陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。本発明の有機EL素子では、陽極、発光層、そして陰極を必須の層として有するが、必須の層以外に正孔注入輸送層、電子注入輸送層を有することがよく、更に発光層と電子注入輸送層の間に正孔阻止層を有することがよい。なお、正孔注入輸送層は、正孔注入層と正孔輸送層のいずれか、または両者を意味し、電子注入輸送層は、電子注入層と電子輸送層のいずれか又は両者を意味する。
 図1とは逆の構造、すなわち基板1上に陰極7、電子輸送層6、発光層5、正孔輸送層4、陽極2の順に積層することも可能であり、この場合も必要により層を追加、省略することが可能である。
―基板―
 本発明の有機EL素子は、基板に支持されていることが好ましい。この基板については特に制限はなく、従来から有機EL素子に用いられているものであればよく、例えばガラス、透明プラスチック、石英等からなるものを用いることができる。
―陽極―
 有機EL素子における陽極材料としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物又はこれらの混合物からなる材料が好ましく用いられる。このような電極材料の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In2O3-ZnO)等の非晶質で、透明導電膜を作成可能な材料を用いてもよい。陽極はこれらの電極材料を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合(100μm以上程度)は、上記電極材料の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは有機導電性化合物のような塗布可能な物質を用いる場合には印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
―陰極―
 一方、陰極材料としては仕事関数の小さい(4eV以下)金属(電子注入性金属)、合金、電気伝導性化合物又はこれらの混合物からなる材料が用いられる。このような電極材料の具体例としては、ナトリウム、ナトリウム―カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えばマグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの陰極材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が透明又は半透明であれば発光輝度は向上し、好都合である。
 また、上記金属を1~20nmの膜厚で形成した後に、陽極の説明で挙げた導電性透明材料をその上に形成することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
―発光層―
 発光層は陽極及び陰極のそれぞれから注入された正孔及び電子が再結合することにより励起子が生成した後、発光する層であり発光層には有機発光性ドーパント材料とホストを含むことがよい。
 ホストには、本発明の有機EL素子用化合物を使用することがよい。
 ホストしての本発明の化合物は、1種を使用してもよく、2種以上の異なる化合物を使用してもよい。必要により、公知のホスト材料等の他のホスト材料を1種又は複数種類組み合わせて使用してもよい。他のホスト材料としては、正孔輸送能、電子輸送能を有し、かつ発光の長波長化を防ぎ、なおかつ高いガラス転移温度を有する化合物であることが好ましい。
 公知のホスト材料としては、多数の特許文献等により知られているもので、それらから選択することができる。ホスト材料の具体例としては、特に限定されるものではないが、WO2008/056746AやWO2008/146839A等に記載のインドロカルバゾール誘導体、WO 2009/086028AやWO2012/077520A等に記載のカルバゾール誘導体、CBP(N,N-ビスカルバゾリルビフェニル)誘導体、WO2014/185595AやWO2018/021663A等に記載のトリアジン誘導体、WO2010/136109AやWO2011/000455A等に記載のインデノカルバゾール誘導体、WO 2015/169412A等に記載のジベンゾフラン誘導体、トリアゾール誘導体、インドール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三アミン化合物、スチリルアミン化合物、芳香族ジメチリデン系化合物、ポルフィリン系化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン誘導体、8‐キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾール誘導体の金属錯体に代表される各種金属錯体、ポリシラン系化合物、ポリ(N-ビニルカルバゾール)誘導体、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、ポリフルオレン誘導体等の高分子化合物等が挙げられる。
 公知のホスト材料の具体的な例を以下に示すが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000027
 発光性ドーパント材料として燐光発光ドーパントを使用する場合、燐光発光ドーパントとしては、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金及び金から選ばれる少なくとも1つの金属を含む有機金属錯体を含有するものがよい。具体的には、J.Am.Chem.Soc.2001,123,4304、JP2013-530515A、US2016/0049599A、US2017/0069848A、US2018/0282356A、またはUS2019/0036043A等に記載されているイリジウム錯体や、US2018/0013078A、またはKR2018-094482A等に記載されている白金錯体が好適に用いられるが、これらに限定されない。
 燐光発光ドーパント材料は、発光層中に1種類のみが含有されても良いし、2種類以上を含有しても良い。燐光発光ドーパント材料の含有量はホスト材料に対して0.1~30wt%であることが好ましく、1~20wt%であることがより好ましい。
 燐光発光ドーパント材料は、特に限定されるものではないが、具体的には以下のような例が挙げられる。
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
 発光性ドーパント材料として蛍光発光ドーパントを使用する場合、蛍光発光ドーパントとしては、特に限定されないが例えばベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、ベンゾイミダゾール誘導体、スチリルベンゼン誘導体、ポリフェニル誘導体、ジフェニルブタジエン誘導体、テトラフェニルブタジエン誘導体、ナフタルイミド誘導体、クマリン誘導体、縮合芳香族化合物、ペリノン誘導体、オキサジアゾール誘導体、オキサジン誘導体、アルダジン誘導体、ピロリジン誘導体、シクロペンタジエン誘導体、ビススチリルアントラセン誘導体、キナクリドン誘導体、ピロロピリジン誘導体、チアジアゾロピリジン誘導体、スチリルアミン誘導体、ジケトピロロピロール誘導体、芳香族ジメチリジン化合物、8-キノリノール誘導体の金属錯体やピロメテン誘導体の金属錯体、希土類錯体、遷移金属錯体に代表される各種金属錯体等、ポリチオフェン、ポリフェニレン、ポリフェニレンビニレン等のポリマー化合物、有機シラン誘導体等が挙げられる。好ましくは縮合芳香族誘導体、スチリル誘導体、ジケトピロロピロール誘導体、オキサジン誘導体、ピロメテン金属錯体、遷移金属錯体、又はランタノイド錯体が挙げられ、より好ましくはナフタレン、ピレン、クリセン、トリフェニレン、ベンゾ[c]フェナントレン、ベンゾ[a]アントラセン、ペンタセン、ペリレン、フルオランテン、アセナフソフルオランテン、ジベンゾ[a,j]アントラセン、ジベンゾ[a,h]アントラセン、ベンゾ[a]ナフタレン、ヘキサセン、ナフト[2,1-f]イソキノリン、α‐ナフタフェナントリジン、フェナントロオキサゾール、キノリノ[6,5-f]キノリン、ベンゾチオファントレン等が挙げられる。これらは置換基としてアルキル基、アリール基、芳香族複素環基、又はジアリールアミノ基を有してもよい。
 蛍光発光ドーパント材料は、発光層中に1種類のみが含有されてもよいし、2種類以上を含有してもよい。蛍光発光ドーパント材料の含有量は、ホスト材料に対して0.1~20%であることが好ましく、1~10%であることがより好ましい。
 発光性ドーパント材料として熱活性化遅延蛍光発光ドーパントを使用する場合、熱活性化遅延蛍光発光ドーパントとしては、特に限定されないがスズ錯体や銅錯体等の金属錯体や、WO2011/070963Aに記載のインドロカルバゾール誘導体、Nature 2012,492,234に記載のシアノベンゼン誘導体、カルバゾール誘導体、Nature Photonics 2014,8,326に記載のフェナジン誘導体、オキサジアゾール誘導体、トリアゾール誘導体、スルホン誘導体、フェノキサジン誘導体、アクリジン誘導体等が挙げられる。
 熱活性化遅延蛍光発光ドーパント材料は、特に限定されるものではないが、具体的には以下のような例が挙げられる。
Figure JPOXMLDOC01-appb-C000030
 熱活性化遅延蛍光発光ドーパント材料は、発光層中に1種類のみが含有されてもよいし、2種類以上を含有してもよい。また、熱活性化遅延蛍光発光ドーパントは燐光発光ドーパントや蛍光発光ドーパントと混合して用いてもよい。熱活性化遅延蛍光発光ドーパント材料の含有量は、ホスト材料に対して0.1~50%であることが好ましく、1~30%であることがより好ましい。
-注入層-
  注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、正孔注入層と電子注入層があり、陽極と発光層又は正孔輸送層の間、及び陰極と発光層又は電子輸送層との間に存在させてもよい。注入層は必要に応じて設けることができる。
-正孔阻止層-
  正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで発光層中での電子と正孔の再結合確率を向上させることができる。
-電子阻止層-
 電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送しつつ電子を阻止することで発光層中での電子と正孔が再結合する確率を向上させることができる。
  電子阻止層の材料としては、公知の電子阻止層材料を用いることができ、また後述する正孔輸送層の材料を必要に応じて用いることができる。電子阻止層の膜厚は好ましくは3~100nmであり、より好ましくは5~30nmである。
-励起子阻止層-
  励起子阻止層とは、発光層内で正孔と電子が再結合することにより生じた励起子が電荷輸送層に拡散することを阻止するための層であり、本層の挿入により励起子を効率的に発光層内に閉じ込めることが可能となり、素子の発光効率を向上させることができる。励起子阻止層は2つ以上の発光層が隣接する素子において、隣接する2つの発光層の間に挿入することができる。
  励起子阻止層の材料としては、公知の励起子阻止層材料を用いることができる。例えば、1,3-ジカルバゾリルベンゼン(mCP)や、ビス(2-メチル-8-キノリノラト)-4-フェニルフェノラトアルミニウム(III)(BAlq)が挙げられる。
-正孔輸送層-
  正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、正孔輸送層は単層又は複数層設けることができる。
 正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。正孔輸送層には従来公知の化合物の中から任意のものを選択して用いることができる。かかる正孔輸送材料としては例えば、ポルフィリン誘導体、アリールアミン誘導体、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられるが、ポルフィリン誘導体、アリールアミン誘導体及びスチリルアミン誘導体を用いることが好ましく、アリールアミン化合物を用いることがより好ましい。
-電子輸送層-
  電子輸送層とは電子を輸送する機能を有する材料からなり、電子輸送層は単層又は複数層設けることができる。
  電子輸送材料(正孔阻止材料を兼ねる場合もある)としては、陰極より注入された電子を発光層に伝達する機能を有していればよい。電子輸送層には、従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ナフタレン、アントラセン、フェナントロリン等の多環芳香族誘導体、トリス(8-キノリノラート)アルミニウム(III)誘導体、ホスフィンオキサイド誘導体、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、ビピリジン誘導体、キノリン誘導体、オキサジアゾール誘導体、ベンゾイミダゾール誘導体、ベンゾチアゾール誘導体、インドロカルバゾール誘導体等が挙げられ、更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 以下、本発明を実施例によって更に詳しく説明するが、本発明はこれらの実施例に限定されるものではなく、その要旨を超えない限りにおいて、種々の形態で実施することが可能である。
実施例1
 次の反応式に従い化合物(2)を合成した。
Figure JPOXMLDOC01-appb-C000031
 化合物(a)20gに、化合物(b)を36g、ヨウ化銅を1.5g、炭酸カリウムを 43g、18-クラウン-6-エーテルを0.06g、1,3-ジメチル-2-イミダゾリジノン を900ml加え、窒素雰囲気下で190℃にて19時間撹拌した。室温まで冷却後、シリカゲルカラムクロマトグラフィーで精製、晶析精製を行い、白色固体として中間体(1-1)を31g (収率71%)得た。 
 窒素雰囲気下、N,N’-ジメチルアセトアミド(DMAc)30mlに60重量%水素化ナトリウム1.4gを加え、懸濁液を調製した。そこにDMAc170mLに溶解した中間体(1-1)を17g加え、30分撹拌した。そこに化合物(c)を7.9g加えた後、4時間撹拌した。反応溶液をメタノール (300 ml)、蒸留水(100 ml)の混合溶液に撹拌しながら加え、得られた析出した固体をろ取した。得られた固体をシリカゲルカラムクロマトグラフィーで精製、晶析精製を行い、黄色固体として化合物(2)を20 g (収率70%)得た(APCI-TOFMS, m/z 790[M+H]+)。
実施例2
 次の反応式に従い化合物(81)を合成した。
Figure JPOXMLDOC01-appb-C000032
 化合物(d)20gに、化合物(b)を36g、ヨウ化銅を1.5g、炭酸カリウムを 43g、18-クラウン-6-エーテルを0.06g、1,3-ジメチル-2-イミダゾリジノン を900ml加え、72時間撹拌した。反応物を分離、精製して白色固体の中間体(2-1)を32g (収率73%) 得た。
 DMAc 30mlに60重量%水素化ナトリウム1.4gを加え、そこにDMAc に溶解した中間体(2-1)を17g加え、30分撹拌した。そこに化合物(c)を7.9g加えた後、24時間撹拌した。反応物を分離、精製して黄色固体の化合物(81)を18g(収率76%)得た。
実施例3
 次の反応式に従い化合物(82)を合成した。
Figure JPOXMLDOC01-appb-C000033
 化合物(d)20gに、化合物(e)を36g、ヨウ化銅を1.5g、炭酸カリウムを 43g、18-クラウン-6-エーテルを0.06g、1,3-ジメチル-2-イミダゾリジノン を900ml加え、72時間撹拌した。反応物を分離、精製して白色固体の中間体(3-1)を28g (収率64%) 得た。
 DMAc 30mlに60重量%水素化ナトリウム1.4gを加え、そこにDMAc に溶解した中間体(3-1)を17g加え、30分撹拌した。そこに化合物(c)を7.9g加えた後、4時間撹拌した。反応物を分離、精製して黄色固体の化合物(82)を21 g(収率89%)得た。
実施例4
 次の反応式に従い化合物(83)を合成した。
Figure JPOXMLDOC01-appb-C000034
 化合物(d)10.8gに、化合物(f)を15g、リン酸三カリウムを36g、18-クラウン-6-エーテルを2.8g、1,3-ジメチル-2-イミダゾリジノン を180ml加え、90時間撹拌した。反応物を分離、精製して白色固体の中間体(4-1)を25g (収率57%)得た。
 DMAc 20mlに60重量%水素化ナトリウム0.6gを加え、そこにDMAc に溶解した中間体(4-1)を9g加え、30分撹拌した。そこに化合物(c)を4.6g加えた後、27時間撹拌した。反応物を分離、精製して黄色固体の化合物(83)を9g(収率70%)得た。
実施例5
 次の反応式に従い化合物(85)を合成した。
Figure JPOXMLDOC01-appb-C000035
 DMAc 30mlに60重量%水素化ナトリウム1.4gを加え、そこにDMAc に溶解した中間体(3-1)を11g加え、30分撹拌した。そこに化合物(g)を7.9g加えた後、24時間撹拌した。反応物を分離、精製して黄色固体の化合物(85)を19g(収率73%)得た。
実施例6
 次の反応式に従い化合物(93)を合成した。
Figure JPOXMLDOC01-appb-C000036
 化合物(d)20gに、化合物(h)を43g、ヨウ化銅を1.5g、炭酸カリウムを 43g、18-クラウン-6-エーテルを0.06g、1,3-ジメチル-2-イミダゾリジノン を900ml加え、72時間撹拌した。反応物を分離、精製して白色固体の中間体(6-1)を37g (収率75%) 得た。
 DMAc 30mlに60重量%水素化ナトリウム1.4gを加え、そこにDMAc に溶解した中間体(6-1)を11g加え、30分撹拌した。そこに化合物(c)を7.9g加えた後、72時間撹拌した。反応物を分離、精製して黄色固体の化合物(93)を22 g(収率86%)得た。
実施例7
 次の反応式に従い化合物(103)を合成した。
Figure JPOXMLDOC01-appb-C000037
 DMAc 30mlに60重量%水素化ナトリウム1.4gを加え、そこにDMAc に溶解した中間体(3-1)を11g加え、30分撹拌した。そこに化合物(i)を11g加えた後、72時間撹拌した。反応物を分離、精製して黄色固体の化合物(103)を19g(収率72%)得た。
実施例8
 膜厚110nmのITOからなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度4.0×10-5Paで積層した。まず、ITO上に正孔注入層としてHAT-CNを25nmの厚さに形成し、次に正孔輸送層としてSpiro-TPDを30nmの厚さに形成した。次に電子阻止層としてHT-1を10nmの厚さに形成した。次に、ホスト材料としての化合物(2)と発光ドーパントとしてIr(ppy)3をそれぞれ異なる蒸着源から共蒸着し、40nmの厚さに発光層を形成した。この時、Ir(ppy)3の濃度は10wt%であった。次に電子輸送層としてET-1を20nmの厚さに形成した。更に電子輸送層上に電子注入層としてLiFを1nmの厚さに形成した。最後に、電子注入層上に、陰極としてAlを70nmの厚さに形成し、有機EL素子を作製した。
実施例9~14
 発光層のホスト材料として、実施例2~7で得られた化合物(81)、(82)、(83)、(85)、(93)、及び(103)を用いた以外は実施例8と同様にして有機EL素子を作成した。表3に発光特性を示す。
比較例1~6
 実施例8における発光層のホスト材料として化合物A、B、C、D、E、又はFを用いた以外は実施例8と同様にして有機EL素子を作成した。
 実施例及び比較例で得られた有機EL素子に外部電源を接続し直流電圧を印加したところ、すべての有機EL素子において、極大波長517nmの発光スペクトルが観測され、Ir(ppy)3からの発光が得られていることがわかった。
 作製した有機EL素子の評価結果を表1に示す。表中で輝度、駆動電圧、電力効率、及びLT70は駆動電流20mA/cm2時の値である。LT70は、初期輝度9000cd/Aから70%まで減衰するまでにかかる時間であり、寿命特性を表す。
Figure JPOXMLDOC01-appb-T000038
 表1から実施例8~14は、比較例に対して、電力効率及び寿命が向上し、良好な特性を示すことが分かる。
 実施例及び比較例で使用した化合物を次に示す。
Figure JPOXMLDOC01-appb-C000039
 1;基板、2;陽極、3;正孔注入層、4;正孔輸送層、5;発光層、6;電子輸送層、7;陰極
 

Claims (9)

  1.  下記一般式(1)で表される有機電界発光素子用化合物。
    Figure JPOXMLDOC01-appb-C000001
     ここで、環Aは、式(1a)で表される芳香族環であり、環Bは、式(1b)で表される複素環であり、Tpは、式(1c)で表されるトリフェニレン基であり、*はLとの結合位置を表す。
    はそれぞれ独立に重水素、又は炭素数1~10の脂肪族炭化水素基を表す。
    Lは置換もしくは未置換の炭素数6~18の芳香族炭化水素基を表す。
    Xはそれぞれ独立に、N又はC―Hを表し、少なくとも1つはNである。
    Arは、それぞれ独立に水素、置換若しくは未置換の炭素数6~18の芳香族炭化水素基、置換若しくは未置換の炭素数3~17の芳香族複素環基、又はこれらの芳香族環が2~5個連結した置換若しくは未置換の連結芳香族基を表す。
    は、それぞれ独立に重水素、炭素数1~10の脂肪族炭化水素基、置換もしくは未置換の炭素数6~10の芳香族炭化水素基、置換もしくは未置換の炭素数3~12の芳香族複素環基、又は前記芳香族炭化水素基及び芳香族複素環基から選ばれる芳香族基の芳香族環が2~5個連結した置換もしくは未置換の連結芳香族基を表す。
    a~fは置換数を表し、a~dは0~4の整数、eは0~3の整数、fは0~2の整数であり、nは繰り返し数を表し、1~3の整数である。
  2.  Xが全てNであることを特徴とする請求項1に記載の有機電界発光素子用化合物。
  3.  Lがフェニレン基であることを特徴とする請求項1または2に記載の有機電界発光素子用化合物。
  4.  nが1であることを特徴とする請求項1~3のいずれかに記載の有機電界発光素子用化合物。
  5.  a~fの全部が0であることを特徴とする請求項1~4のいずれかに記載の有機電界発光素子用化合物。
  6.  前記一般式(1)で表される化合物が、下記式(2)~(5)のいずれかで表されることを特徴とする請求項1~5のいずれかに記載の有機電界発光素子用化合物。
    Figure JPOXMLDOC01-appb-C000002
     ここで、Tp、Ar、L、R、R、a~f、及びnは一般式(1)と同義である。
  7.  前記一般式(1)及び前記式(2)~(5)において、Tpが下記式(2c)で表されることを特徴とする請求項1~6のいずれかに記載の有機電界発光素子用化合物。
    Figure JPOXMLDOC01-appb-C000003
     ここで、R、c、d、e及び*は一般式(1)と同義である。
  8.  基板上に積層された陽極と陰極の間に、有機層を有する有機電界発光素子であって、該有機層が、請求項1~7のいずれかに記載の有機電界発光素子用化合物を含有することを特徴とする有機電界発光素子。
  9.  前記有機層が発光層であり、該発光層が、発光性ドーパントと請求項1~7のいずれかに記載の有機電界発光素子用化合物をホスト材料として含有することを特徴とする請求項8に記載の有機電界発光素子。
     
PCT/JP2021/045321 2020-12-11 2021-12-09 有機電界発光素子用材料及び有機電界発光素子 WO2022124367A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237017956A KR20230119634A (ko) 2020-12-11 2021-12-09 유기 전계 발광 소자용 재료 및 유기 전계 발광 소자
US18/038,883 US20230422611A1 (en) 2020-12-11 2021-12-09 Material for organic electroluminescent element and organic electroluminescent element
CN202180081968.XA CN116547285A (zh) 2020-12-11 2021-12-09 有机电场发光元件用材料及有机电场发光元件
EP21903466.7A EP4261910A1 (en) 2020-12-11 2021-12-09 Material for organic electroluminescent element and organic electroluminescent element
JP2022568329A JPWO2022124367A1 (ja) 2020-12-11 2021-12-09

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-206133 2020-12-11
JP2020206133 2020-12-11

Publications (1)

Publication Number Publication Date
WO2022124367A1 true WO2022124367A1 (ja) 2022-06-16

Family

ID=81973290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045321 WO2022124367A1 (ja) 2020-12-11 2021-12-09 有機電界発光素子用材料及び有機電界発光素子

Country Status (6)

Country Link
US (1) US20230422611A1 (ja)
EP (1) EP4261910A1 (ja)
JP (1) JPWO2022124367A1 (ja)
KR (1) KR20230119634A (ja)
CN (1) CN116547285A (ja)
WO (1) WO2022124367A1 (ja)

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056746A1 (fr) 2006-11-09 2008-05-15 Nippon Steel Chemical Co., Ltd. Composé pour un dispositif électroluminescent organique et dispositif électroluminescent organique
WO2008146839A1 (ja) 2007-05-29 2008-12-04 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
WO2009086028A2 (en) 2007-12-28 2009-07-09 Universal Display Corporation Carbazole-containing materials in phosphorescent light emitting diodes
WO2010134350A1 (ja) 2009-05-22 2010-11-25 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2010136109A1 (de) 2009-05-29 2010-12-02 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2011000455A1 (de) 2009-06-30 2011-01-06 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2011070963A1 (ja) 2009-12-07 2011-06-16 新日鐵化学株式会社 有機発光材料及び有機発光素子
WO2012039561A1 (en) 2010-09-20 2012-03-29 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2012077520A1 (ja) 2010-12-09 2012-06-14 新日鐵化学株式会社 有機電界発光素子
JP2012140365A (ja) 2010-12-28 2012-07-26 Idemitsu Kosan Co Ltd 縮合多環化合物、有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子
WO2013056776A1 (de) 2011-10-20 2013-04-25 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
JP2013530515A (ja) 2010-04-28 2013-07-25 ユニバーサル ディスプレイ コーポレイション 予備混合した材料の堆積
WO2014185595A1 (ko) 2013-05-16 2014-11-20 제일모직 주식회사 유기 광전자 소자용 발광 재료, 유기 광전자 소자 및 표시 장치
US20140367654A1 (en) * 2013-06-18 2014-12-18 Samsung Display Co., Ltd. Organic light-emitting device
US20150171357A1 (en) 2013-12-16 2015-06-18 Samsung Display Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device using the same
WO2015169412A1 (de) 2014-05-05 2015-11-12 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
US20160049599A1 (en) 2014-08-07 2016-02-18 Universal Display Corporation Organic electroluminescent materials and devices
US20160351822A1 (en) * 2014-04-09 2016-12-01 Samsung Sdi Co., Ltd. Organic compound, composition, organic optoelectronic diode, and display device
US20170069848A1 (en) 2015-09-09 2017-03-09 Universal Display Corporation Organic electroluminescent materials and devices
WO2017104946A1 (ko) * 2015-12-18 2017-06-22 삼성에스디아이 주식회사 유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치
US20180013078A1 (en) 2016-07-05 2018-01-11 Samsung Electronics Co., Ltd. Organometallic compound, organic light-emitting device including the same, and diagnostic composition including the organometallic compound
WO2018021663A1 (ko) 2016-07-29 2018-02-01 삼성에스디아이 주식회사 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치
KR20180094482A (ko) 2017-02-15 2018-08-23 삼성전자주식회사 유기금속 화합물, 이를 포함한 유기 발광 소자 및 이를 포함한 진단용 조성물
US20180282356A1 (en) 2017-03-29 2018-10-04 Universal Display Corporation Organic electroluminescent materials and devices
US20190036043A1 (en) 2017-07-20 2019-01-31 Samsung Display Co., Ltd. Organic light-emitting device
KR20190069083A (ko) 2017-12-11 2019-06-19 엘지디스플레이 주식회사 유기 화합물, 이를 포함하는 유기발광다이오드와 유기발광장치
WO2019132399A1 (ko) * 2017-12-27 2019-07-04 삼성에스디아이 주식회사 유기 광전자 소자용 화합물, 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056746A1 (fr) 2006-11-09 2008-05-15 Nippon Steel Chemical Co., Ltd. Composé pour un dispositif électroluminescent organique et dispositif électroluminescent organique
WO2008146839A1 (ja) 2007-05-29 2008-12-04 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
WO2009086028A2 (en) 2007-12-28 2009-07-09 Universal Display Corporation Carbazole-containing materials in phosphorescent light emitting diodes
WO2010134350A1 (ja) 2009-05-22 2010-11-25 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2010136109A1 (de) 2009-05-29 2010-12-02 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2011000455A1 (de) 2009-06-30 2011-01-06 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2011070963A1 (ja) 2009-12-07 2011-06-16 新日鐵化学株式会社 有機発光材料及び有機発光素子
JP2013530515A (ja) 2010-04-28 2013-07-25 ユニバーサル ディスプレイ コーポレイション 予備混合した材料の堆積
WO2012039561A1 (en) 2010-09-20 2012-03-29 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2012077520A1 (ja) 2010-12-09 2012-06-14 新日鐵化学株式会社 有機電界発光素子
JP2012140365A (ja) 2010-12-28 2012-07-26 Idemitsu Kosan Co Ltd 縮合多環化合物、有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子
WO2013056776A1 (de) 2011-10-20 2013-04-25 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2014185595A1 (ko) 2013-05-16 2014-11-20 제일모직 주식회사 유기 광전자 소자용 발광 재료, 유기 광전자 소자 및 표시 장치
US20140367654A1 (en) * 2013-06-18 2014-12-18 Samsung Display Co., Ltd. Organic light-emitting device
US20150171357A1 (en) 2013-12-16 2015-06-18 Samsung Display Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device using the same
JP2015118958A (ja) * 2013-12-16 2015-06-25 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
US20160351822A1 (en) * 2014-04-09 2016-12-01 Samsung Sdi Co., Ltd. Organic compound, composition, organic optoelectronic diode, and display device
WO2015169412A1 (de) 2014-05-05 2015-11-12 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
US20160049599A1 (en) 2014-08-07 2016-02-18 Universal Display Corporation Organic electroluminescent materials and devices
US20170069848A1 (en) 2015-09-09 2017-03-09 Universal Display Corporation Organic electroluminescent materials and devices
WO2017104946A1 (ko) * 2015-12-18 2017-06-22 삼성에스디아이 주식회사 유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치
US20180013078A1 (en) 2016-07-05 2018-01-11 Samsung Electronics Co., Ltd. Organometallic compound, organic light-emitting device including the same, and diagnostic composition including the organometallic compound
WO2018021663A1 (ko) 2016-07-29 2018-02-01 삼성에스디아이 주식회사 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치
KR20180094482A (ko) 2017-02-15 2018-08-23 삼성전자주식회사 유기금속 화합물, 이를 포함한 유기 발광 소자 및 이를 포함한 진단용 조성물
US20180282356A1 (en) 2017-03-29 2018-10-04 Universal Display Corporation Organic electroluminescent materials and devices
US20190036043A1 (en) 2017-07-20 2019-01-31 Samsung Display Co., Ltd. Organic light-emitting device
KR20190069083A (ko) 2017-12-11 2019-06-19 엘지디스플레이 주식회사 유기 화합물, 이를 포함하는 유기발광다이오드와 유기발광장치
WO2019132399A1 (ko) * 2017-12-27 2019-07-04 삼성에스디아이 주식회사 유기 광전자 소자용 화합물, 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
J. AM. CHEM. SOC., vol. 123, 2001, pages 4304
NATURE PHOTONICS, vol. 8, 2014, pages 326
NATURE, vol. 492, 2012, pages 234

Also Published As

Publication number Publication date
KR20230119634A (ko) 2023-08-16
JPWO2022124367A1 (ja) 2022-06-16
EP4261910A1 (en) 2023-10-18
US20230422611A1 (en) 2023-12-28
CN116547285A (zh) 2023-08-04

Similar Documents

Publication Publication Date Title
JP6786393B2 (ja) 有機電界発光素子
WO2013137001A1 (ja) 有機電界発光素子
WO2011105161A1 (ja) 有機電界発光素子
WO2010113761A1 (ja) 有機電界発光素子
WO2011049063A1 (ja) 有機電界発光素子
WO2020218188A1 (ja) 有機電界発光素子
JP6647283B2 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
WO2015045718A1 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
WO2022131123A1 (ja) 有機電界発光素子及びその製造方法
JPWO2015098297A1 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
WO2022149493A1 (ja) 有機電界発光素子及びその製造方法
KR20160135357A (ko) 유기 전계발광 소자용 재료 및 이것을 사용한 유기 전계발광 소자
JP6402177B2 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
JP6402114B2 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
JP6636011B2 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
JP6846256B2 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
WO2022124367A1 (ja) 有機電界発光素子用材料及び有機電界発光素子
JP6846258B2 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
WO2022085776A1 (ja) 有機電界発光素子用材料及び有機電界発光素子
WO2022124366A1 (ja) 有機電界発光素子
WO2022124365A1 (ja) 有機電界発光素子
WO2024048535A1 (ja) 有機電界発光素子用ホスト材料及び予備混合物並びに有機電界発光素子
WO2024019072A1 (ja) 有機電界発光素子
WO2024048536A1 (ja) 有機電界発光素子
WO2021065491A1 (ja) 有機電界発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903466

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 18038883

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180081968.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022568329

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021903466

Country of ref document: EP

Effective date: 20230711