WO2011105161A1 - 有機電界発光素子 - Google Patents

有機電界発光素子 Download PDF

Info

Publication number
WO2011105161A1
WO2011105161A1 PCT/JP2011/051640 JP2011051640W WO2011105161A1 WO 2011105161 A1 WO2011105161 A1 WO 2011105161A1 JP 2011051640 W JP2011051640 W JP 2011051640W WO 2011105161 A1 WO2011105161 A1 WO 2011105161A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
layer
organic
carbon atoms
light emitting
Prior art date
Application number
PCT/JP2011/051640
Other languages
English (en)
French (fr)
Inventor
匡志 多田
淳也 小川
孝弘 甲斐
松本 めぐみ
堤 安久
Original Assignee
新日鐵化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵化学株式会社 filed Critical 新日鐵化学株式会社
Priority to JP2012501715A priority Critical patent/JP5662994B2/ja
Priority to KR1020127024540A priority patent/KR101719173B1/ko
Priority to EP11747125.0A priority patent/EP2541635B1/en
Priority to US13/578,942 priority patent/US8986858B2/en
Priority to CN201180010857.6A priority patent/CN102770981B/zh
Publication of WO2011105161A1 publication Critical patent/WO2011105161A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Definitions

  • the present invention relates to an organic electroluminescent element material for an organic electroluminescent element and an organic electroluminescent element using the same, and more specifically, a thin film device that emits light by applying an electric field to a light emitting layer made of an organic compound. It is about.
  • an organic electroluminescence element (hereinafter referred to as an organic EL element) has a light emitting layer and a pair of counter electrodes sandwiching the layer as its simplest structure. That is, in an organic EL element, when an electric field is applied between both electrodes, electrons are injected from the cathode, holes are injected from the anode, and these are recombined in the light emitting layer to emit light. .
  • CBP 4,4′-bis (9-carbazolyl) biphenyl
  • Ir (ppy) 3 a green phosphorescent material typified by tris (2-phenylpyridine) iridium complex
  • CBP has a characteristic that it is easy to flow holes and electrons. The charge injection balance is lost, and excess holes flow out to the electron transport layer side. As a result, the light emission efficiency from Ir (ppy) 3 decreases.
  • a host material having high triplet excitation energy and balanced in both charge (hole / electron) injection and transport characteristics is required. Further, a compound that is electrochemically stable and has high heat resistance and excellent amorphous stability is desired, and further improvement is required.
  • this carbazole compound has a phenyl group at positions 3 and 6 of carbazole, it is presumed that sufficient luminous efficiency cannot be obtained.
  • Patent Document 2 discloses a carbazole compound as shown below as a host material of an organic EL element.
  • Patent Document 3 discloses a carbazole compound as shown below as a host material of an organic EL element.
  • the above compound only discloses a compound in which carbazole is linked at the 9-position, and does not disclose the usefulness of the organic EL device using the compound linked at the 1-position.
  • Patent Document 4 a carbazole compound as shown below is disclosed as a host material of an organic EL element.
  • the above compound only discloses a compound in which carbazole is linked at the 3-position, and does not disclose the usefulness of the organic EL device using the compound linked at the 1-position.
  • An object of this invention is to provide the practically useful organic EL element which has high efficiency and high drive stability in view of the said present condition, and a compound suitable for it.
  • the present inventors have been excellent in using, as an organic EL device, a carbazole compound having a specific substituent at the 9-position in which two or more carbazole rings are linked at the 1-position via a linking group.
  • the inventors have found that the present invention exhibits characteristics and have completed the present invention.
  • the present invention provides an organic electroluminescence device comprising an anode, an organic layer, and a cathode laminated on a substrate, and at least one selected from the group consisting of a light emitting layer, a hole transport layer, an electron transport layer, and a hole blocking layer.
  • the present invention relates to an organic electroluminescent element using a carbazole compound represented by the general formula (1) in one layer.
  • each X independently represents C—Y or nitrogen
  • each Y independently represents hydrogen, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 11 carbon atoms, or a carbon number.
  • n an integer of 2 to 4
  • A represents an n-valent aromatic hydrocarbon group having 6 to 50 carbon atoms or an aromatic heterocyclic group having 3 to 50 carbon atoms
  • L is independently a direct bond
  • each R independently represents hydrogen, an alkyl group having 1 to 10 carbon atoms, or Represents a cycloalkyl group having 3 to 11 carbon atoms.
  • L is a direct bond
  • A is not a condensed ring structure.
  • L is a direct bond, a divalent aromatic hydrocarbon group composed of a 5-membered ring or a 6-membered ring, and a divalent aromatic heterocycle composed of a 5-membered ring or a 6-membered ring It is preferably any one of groups, and more preferably any one of a direct bond, a phenylene group, and a divalent aromatic heterocyclic group composed of a 6-membered ring.
  • n is 2 to 4, preferably 2 or 3.
  • the organic electroluminescent element preferably has a light emitting layer containing a carbazole compound represented by the general formula (1) and a phosphorescent light emitting dopant.
  • the carbazole compound represented by the general formula (1) has two or more carbazole skeletons substituted with a monocyclic aromatic group at the 1 and 9 positions and linked by an aromatic group at the 1 position. It is considered that fine adjustment of the electron transfer speed and control of various energy values of ionization potential (IP), electron affinity (EA), and triplet excitation energy (T1) are possible.
  • IP ionization potential
  • EA electron affinity
  • T1 triplet excitation energy
  • the carbazole compound is considered to be capable of improving the stability in each active state of oxidation, reduction, and excitation, and at the same time has good amorphous characteristics. From the above, it is possible to realize an organic EL element having a long driving life and high durability.
  • the organic electroluminescent device of the present invention contains the carbazole compound represented by the general formula (1) in a specific layer.
  • n is an integer of 2 to 4
  • A is an n-valent aromatic hydrocarbon group having 6 to 50 carbon atoms or an aromatic heterocyclic group having 3 to 50 carbon atoms. That is, the carbazole compound represented by the general formula (1) has a structure in which n carbazole-containing groups are bonded to an n-valent group A.
  • each X independently represents C—Y or nitrogen
  • Y represents hydrogen, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 11 carbon atoms, or 6 to 18 carbon atoms.
  • a plurality of Y may be the same or different.
  • X independently represents CY or nitrogen, but when X is nitrogen, the number is preferably 1 to 3, more preferably 1 to 2.
  • each Y is independently hydrogen, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 11 carbon atoms, or an aromatic group having 6 to 18 carbon atoms.
  • it is an aromatic hydrocarbon group or an aromatic heterocyclic group, it is preferably not a condensed ring structure.
  • alkyl group or cycloalkyl group examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a cyclohexyl group, and a methylcyclohexyl group. And may be linear or branched.
  • An alkyl group having 1 to 6 carbon atoms, a cyclohexyl group, or a methylcyclohexyl group is preferable. Specifically, they are methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, cyclohexyl group, and methylcyclohexyl group.
  • aromatic hydrocarbon group or aromatic heterocyclic group examples include benzene, naphthalene, fluorene, anthracene, phenanthrene, fluoranthene, pyrene, chrysene, pyridine, pyrimidine, triazine, indole, quinoline, isoquinoline, quinoxaline, naphthyridine, and carbazole.
  • aromatic compound in which a plurality of aromatic rings are connected include, for example, biphenyl, terphenyl, bipyridine, bipyrimidine, vitriazine, bistriazylbenzene, binaphthalene, phenylpyridine, diphenylpyridine, diphenylpyrimidine, diphenyltriazine, phenylcarbazole, Examples thereof include a monovalent group generated by removing hydrogen from pyridylcarbazole and the like, and the bonding position is not limited, and it may be a terminal ring or a central ring.
  • aromatic hydrocarbon groups or aromatic heterocyclic groups include benzene, pyridine, pyrimidine, triazine, carbazole, dibenzofuran, oxanthrene, phenoxazine, dibenzothiophene, thianthrene, phenothiazine or a combination of these aromatic rings.
  • a monovalent group generated by removing hydrogen from an aromatic compound more preferably benzene, pyridine, pyrimidine, triazine, dibenzofuran, dibenzothiophene or an aromatic compound in which a plurality of these aromatic rings are connected to remove hydrogen. It is a monovalent group produced by
  • each of a plurality of R's independently represents hydrogen, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group having 3 to 11 carbon atoms.
  • they are hydrogen, an alkyl group having 1 to 6 carbon atoms, and a cycloalkyl group having 3 to 8 carbon atoms.
  • alkyl group or cycloalkyl group examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a cyclohexyl group, and a methylcyclohexyl group.
  • Preferred R is hydrogen, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, cyclohexyl group, or methylcyclohexyl group, and more preferably hydrogen.
  • n represents an integer of 2-4.
  • n is 2 or 3, more preferably 2.
  • A represents an n-valent aromatic hydrocarbon group having 6 to 50 carbon atoms or an aromatic heterocyclic group having 3 to 50 carbon atoms.
  • An n-valent aromatic hydrocarbon group having 6 to 36 carbon atoms or an aromatic heterocyclic group having 3 to 36 carbon atoms is preferable.
  • A is an aromatic hydrocarbon group or aromatic heterocyclic group
  • specific examples of the aromatic hydrocarbon group or aromatic heterocyclic group include benzene, naphthalene, fluorene, anthracene, phenanthrene, fluoranthene, pyrene, chrysene, pyridine.
  • n-valent group generated by removing n hydrogen atoms from the aromatic compound in which a plurality of aromatic rings are connected include biphenyl, terphenyl, bipyridine, bipyrimidine, vitriazine, bistriazylbenzene, binaphthalene, and phenylpyridine.
  • Diphenylpyridine, diphenylpyrimidine, diphenyltriazine, phenylcarbazole, pyridylcarbazole and the like, and a group formed by removing hydrogen, and the connecting position with the 1-position of L or carbazole to be bonded is not limited, May be a ring at the center.
  • the aromatic hydrocarbon group or aromatic heterocyclic group may have a substituent, and when it has a substituent, preferred substituents include an alkyl group having 1 to 4 carbon atoms and a group having 3 to 6 carbon atoms.
  • the total number of substituents is 1-10.
  • it is 1-6, more preferably 1-4.
  • the said aromatic hydrocarbon group or aromatic heterocyclic group has two or more substituents, they may be the same or different. Further, in the calculation of the carbon number of the aromatic hydrocarbon group or aromatic heterocyclic group, when it has a substituent, the carbon number of the substituent is included.
  • a group generated from an aromatic compound in which a plurality of aromatic rings are connected is represented by the following formula, for example. (Ar 1 to Ar 6 represent an aromatic ring.)
  • A is an n-valent aromatic hydrocarbon group or an n-valent aromatic heterocyclic group that is not a condensed ring structure.
  • the term “not condensed ring structure” means that when a plurality of aromatic rings are linked, the first aromatic ring linked to the 1-position of the n carbazole rings in the general formula (1) is not a condensed ring structure.
  • the aromatic ring that is not connected to the carbazole ring may be a condensed ring, but A is preferably a single ring or an n-valent group in which a plurality of single rings are connected.
  • L represents a direct bond, a divalent aromatic hydrocarbon group having 6 to 10 carbon atoms or an aromatic heterocyclic group having 3 to 10 carbon atoms that is not a condensed ring structure, It is preferably either a divalent aromatic hydrocarbon group composed of a member ring or a 6-membered ring, or a divalent aromatic heterocyclic group composed of a 5-membered ring or a 6-membered ring, a direct bond, More preferably, it is either a phenylene group or a divalent aromatic heterocyclic group composed of a 6-membered ring.
  • aromatic hydrocarbon group or aromatic heterocyclic group examples include pyrrole, imidazole, furan, thiophene, oxazole, thiazole, pyrazole, benzene, pyridine, pyrimidine, pyrazine, pyridazine, and triazine except for two hydrogens.
  • divalent group examples include a group formed by removing two hydrogens from benzene, pyrrole, furan, thiophene, pyridine, pyrimidine, or triazine, and more preferred is a group formed by removing two hydrogens from benzene, pyridine, pyrimidine, or triazine. Is a valent group.
  • the divalent aromatic hydrocarbon group or aromatic heterocyclic group may have a substituent, and when it has a substituent, preferred substituents include an alkyl group having 1 to 4 carbon atoms and a carbon number of 3 A cycloalkyl group having 6 to 6 carbon atoms, an alkoxy group having 1 to 2 carbon atoms, or an acetyl group.
  • preferable A is formed by removing n hydrogens from the aromatic compound shown below.
  • a group formed by removing n hydrogen atoms from a single ring is preferable.
  • the aromatic compound may have a substituent.
  • preferred substituents include an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and 1 to 2 alkoxy groups or acetyl groups.
  • the carbazole compound represented by the general formula (1) has an excellent organic electric field by being contained in at least one organic layer of an organic EL device in which an anode, a plurality of organic layers and a cathode are laminated on a substrate.
  • a light emitting element is provided.
  • the organic layer to be contained a light emitting layer, a hole transport layer, an electron transport layer or a hole blocking layer is suitable. More preferably, it is added as a host material of a light emitting layer containing a phosphorescent dopant.
  • the organic EL device of the present invention has an organic layer having at least one light emitting layer between an anode and a cathode laminated on a substrate, and at least one organic layer contains the carbazole compound.
  • a carbazole compound represented by the general formula (1) is included in the light emitting layer together with a phosphorescent dopant.
  • the structure of the organic EL element of the present invention will be described with reference to the drawings.
  • the structure of the organic EL element of the present invention is not limited to the illustrated one.
  • FIG. 1 is a cross-sectional view showing an example of the structure of a general organic EL device.
  • 1 is a substrate
  • 2 is an anode
  • 3 is a hole injection layer
  • 4 is a hole transport layer
  • 5 is a light emitting layer
  • 6 is an electron transport.
  • Layers 7, 7 each represent a cathode.
  • the organic EL device of the present invention may have an exciton blocking layer adjacent to the light emitting layer, and may have an electron blocking layer between the light emitting layer and the hole injection layer.
  • the exciton blocking layer can be inserted on either the anode side or the cathode side of the light emitting layer, or both can be inserted simultaneously.
  • the organic EL device of the present invention has a substrate, an anode, a light emitting layer and a cathode as essential layers, but it is preferable to have a hole injecting and transporting layer and an electron injecting and transporting layer in layers other than the essential layers, and further emit light. It is preferable to have a hole blocking layer between the layer and the electron injecting and transporting layer.
  • the hole injection / transport layer means either or both of a hole injection layer and a hole transport layer
  • the electron injection / transport layer means either or both of an electron injection layer and an electron transport layer.
  • the organic EL element of the present invention is preferably supported on a substrate.
  • the substrate is not particularly limited as long as it is conventionally used for an organic EL element.
  • a substrate made of glass, transparent plastic, quartz, or the like can be used.
  • an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) that can form a transparent conductive film may be used.
  • these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when the pattern accuracy is not required (about 100 ⁇ m or more) ), A pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered. Or when using the substance which can be apply
  • the cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • an electron injecting metal a material having a low work function (4 eV or less) metal
  • an alloy a material having a low work function (4 eV or less) metal
  • an alloy a material having a low work function (4 eV or less) metal
  • an alloy referred to as an electron injecting metal
  • an alloy referred to as an electron injecting metal
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture
  • Suitable are a magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum and the like.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the light emission luminance is improved, which is convenient.
  • a transparent or semi-transparent cathode can be produced by producing the conductive transparent material mentioned in the description of the anode on the cathode after producing the metal with a thickness of 1 to 20 nm on the cathode.
  • an element in which both the anode and the cathode are transmissive can be manufactured.
  • the light emitting layer is a phosphorescent light emitting layer and includes a phosphorescent dopant and a host material.
  • the phosphorescent dopant material preferably contains an organometallic complex containing at least one metal selected from ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum and gold. Such organometallic complexes are known in the prior art documents and the like, and these can be selected and used.
  • Preferable phosphorescent dopants include complexes such as Ir (ppy) 3 having a noble metal element such as Ir as a central metal, complexes such as (Bt) 2 Iracac, and complexes such as (Btp) Ptacac. Specific examples of these complexes are shown below, but are not limited to the following compounds.
  • the amount of the phosphorescent dopant contained in the light emitting layer is 1 to 40% by weight, preferably 5 to 30% by weight.
  • the material used for the light emitting layer may be a host material other than the carbazole compound.
  • a carbazole compound and another host material may be used in combination.
  • a plurality of known host materials may be used in combination.
  • a known host compound that can be used is preferably a compound that has a hole transporting ability and an electron transporting ability, prevents a long wavelength of light emission, and has a high glass transition temperature.
  • host materials are known from a large number of patent documents and can be selected from them.
  • Specific examples of the host material are not particularly limited, but include indole derivatives, carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine.
  • arylamine derivatives amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidene compounds, porphyrin compounds, anthraquino Heterocyclic tetracarboxylic acid anhydrides such as dimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, naphthalene perylene,
  • metal complexes typified by metal complexes of Russianine derivatives, 8-quinolinol derivatives, metal phthalocyanines, metal complexes of benzoxazole and benzothiazole derivatives, polysilane compounds, poly (N-vinylcarbazole) derivatives, aniline copolymers, Examples thereof include polymer compounds such
  • the injection layer is a layer provided between the electrode and the organic layer for lowering the driving voltage and improving the luminance of light emission.
  • the injection layer can be provided as necessary.
  • the hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking.
  • the carbazole compound represented by the general formula (1) for the hole blocking layer
  • a known hole blocking layer material is used. Also good.
  • the material of the electron carrying layer mentioned later can be used as needed.
  • the electron blocking layer is made of a material that has a function of transporting holes and has a very small ability to transport electrons. By blocking holes while transporting holes, the electron blocking layer is established to recombine. Can be improved.
  • the thickness of the electron blocking layer is preferably 3 to 100 nm, more preferably 5 to 30 nm.
  • the exciton blocking layer is a layer for preventing excitons generated by recombination of holes and electrons in the light emitting layer from diffusing into the charge transport layer. It becomes possible to efficiently confine in the light emitting layer, and the light emission efficiency of the device can be improved.
  • the exciton blocking layer can be inserted on either the anode side or the cathode side adjacent to the light emitting layer, or both can be inserted simultaneously.
  • Examples of the material for the exciton blocking layer include 1,3-dicarbazolylbenzene (mCP) and bis (2-methyl-8-quinolinolato) -4-phenylphenolato aluminum (III) (BAlq). It is done.
  • mCP 1,3-dicarbazolylbenzene
  • BAlq bis (2-methyl-8-quinolinolato) -4-phenylphenolato aluminum
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic. Although it is preferable to use the carbazole compound represented by General formula (1) for a positive hole transport layer, arbitrary things can be selected and used from a conventionally well-known compound.
  • Examples of known hole transport materials that can be used include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, Examples include styryl anthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers. Porphyrin compounds, aromatic tertiary amine compounds, and styryl. It is preferable to use an amine compound, and it is more preferable to use an aromatic tertiary amine compound.
  • the electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer can be provided as a single layer or a plurality of layers.
  • an electron transport material which may also serve as a hole blocking material
  • the carbazole compound represented by the general formula (1) according to the present invention any one of conventionally known compounds can be selected and used. Fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives and the like can be mentioned.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • a carbazole compound as a phosphorescent light emitting device material was synthesized by the following route.
  • the compound number corresponds to the number assigned to the above chemical formula.
  • intermediate (1) 126.0 g (0.40 mol), triphenylbismuthine 350.0 g (0.80 mol), copper acetate 108.0 g (0.60 mol), and dehydrated methylene chloride 3000 ml were added and stirred in an ice bath. .
  • Triethylamine 41.3 ml (0.30 mol) was slowly added so that the internal temperature did not exceed 5 ° C, and the mixture was stirred overnight while heating at 50 ° C. After cooling the reaction solution to room temperature, the precipitated pale yellow solid was collected by filtration, and the resulting pale yellow solid was purified by recrystallization, and 72.0 g (0.18 mol) of light yellow powder intermediate (2) was collected. Rate 45%).
  • intermediate (3) 21.0 g (0.085 ⁇ ⁇ mol), iodobenzene 87.0 g (0.43 mol), copper (I) iodide 65.0 g (0.34 mol), potassium triphosphate 72.4 g (0.34 mol).
  • 38.9 g (0.34 mol) of tarns-1,2-cyclohexanediamine was added, followed by stirring at 90 ° C. for 2 hours.
  • the reaction solution was cooled to room temperature, filtered through celite, and the solvent was removed under reduced pressure.
  • the obtained residue was purified by silica gel column chromatography to obtain 17.7 g (0.055 mol, yield 65%) of intermediate (4) as a colorless liquid.
  • Example 1 Each thin film was laminated at a vacuum degree of 4.0 ⁇ 10 ⁇ 5 Pa by a vacuum deposition method on a glass substrate on which an anode made of an ITO substrate having a thickness of 110 nm was formed.
  • copper phthalocyanine (CuPc) was formed to a thickness of 20 nm on ITO.
  • NPB 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • a compound A-1 as a host material and tris (2-phenylpyridine) iridium (III) (Ir (ppy) 3 ) as a dopant are co-deposited from different vapor deposition sources on the hole transport layer.
  • the light emitting layer was formed to a thickness of 30 nm.
  • the concentration of Ir (ppy) 3 was 10 wt%.
  • BAlq was formed to a thickness of 10 nm as a hole blocking layer.
  • tris (8-hydroxyquinolinato) aluminum (III) (Alq3) was formed to a thickness of 40 nm as an electron transport layer.
  • lithium fluoride LiF
  • Al aluminum
  • Example 2 An organic EL device was produced in the same manner as in Example 1 except that Compound A-8 was used as the host material for the light emitting layer.
  • Example 3 An organic EL device was produced in the same manner as in Example 1 except that Compound A-19 was used as the host material for the light emitting layer.
  • Example 4 An organic EL device was produced in the same manner as in Example 1 except that Compound B-31 was used as the host material for the light emitting layer.
  • Example 5 An organic EL device was produced in the same manner as in Example 1 except that Compound C-4 was used as the host material for the light emitting layer.
  • Example 6 An organic EL device was produced in the same manner as in Example 1 except that Compound D-1 was used as the host material for the light emitting layer.
  • Example 7 An organic EL device was produced in the same manner as in Example 1 except that Compound E-3 was used as the host material for the light emitting layer.
  • Comparative Example 1 An organic EL device was produced in the same manner as in Example 1 except that mCP was used as the host material of the light emitting layer in Example 2.
  • Comparative Example 2 An organic EL device was produced in the same manner as in Example 1 except that Compound H-1 was used as the host material for the light emitting layer.
  • the organic EL devices obtained in Examples 2 to 7 and Comparative Examples 1 and 2 were evaluated in the same manner as in Example 1. As a result, it was confirmed that they had the light emission characteristics as shown in Table 1.
  • the maximum wavelengths of the emission spectra of the organic EL elements obtained in Examples 2 to 7 and Comparative Examples 1 and 2 were all 540 nm, and it was identified that light emission from Ir (ppy) 3 was obtained. It was.
  • the luminance, voltage, and luminous efficiency show values at the time of driving at 20 mA / cm 2 .
  • Example 1 the initial characteristics are improved compared to Comparative Example 1 and Comparative Example 2.
  • the organic EL element characteristics are improved. It turns out that it improves.
  • the EL device characteristics of Examples 2 to 7 are good, and the superiority of the carbazole compound represented by the general formula (1) is also shown here.
  • the organic EL device of the present invention has practically satisfactory levels of light emission characteristics, drive life and durability, and is a flat panel display (mobile phone display device, in-vehicle display device, OA computer display device, television, etc.), surface light emission. Its technical value is great in applications to light sources (lighting, light sources for copying machines, backlight light sources for liquid crystal displays and instruments), display boards, and sign lamps that make use of the characteristics of the body.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Indole Compounds (AREA)

Abstract

 素子の発光効率を改善し、駆動安定性を充分に確保し、かつ簡略な構成をもつ有機電界発光素子(有機EL素子)を提供する。 この有機EL素子は、基板上に積層された陽極と陰極の間に有機層を有し、発光層、正孔輸送層、電子輸送層及び正孔阻止層から選ばれる少なくとも一つの有機層に、下記式(1)で表されるカルバゾール化合物を含有する。燐光発光性ドーパントとホスト材料を含む発光層にこのカルバゾール化合物を含有する場合は、カルバゾール化合物をホスト材料として含有する有機電界発光素子である。式(1)において、XはC-Y又は窒素であり、Yは水素、アルキル基、シクロアルキル基又は芳香族基である。nは2~4の整数であり、Aはn価の芳香族基であり、Lは直接結合又は2価の芳香族基であり、Rは水素、アルキル基又はシクロアルキル基である。

Description

有機電界発光素子
  本発明は有機電界発光素子用の有機電界発光素子用材料及びこれを用いた有機電界発光素子に関するものであり、詳しくは、有機化合物からなる発光層に電界をかけて光を放出する薄膜型デバイスに関するものである。
  一般に、有機電界発光素子(以下、有機EL素子という)は、その最も簡単な構造としては発光層及び該層を挟んだ一対の対向電極から構成されている。すなわち、有機EL素子では、両電極間に電界が印加されると、陰極から電子が注入され、陽極から正孔が注入され、これらが発光層において再結合し、光を放出する現象を利用する。
  近年、有機薄膜を用いた有機EL素子の開発が行われるようになった。特に、発光効率を高めるため、電極からキャリアー注入の効率向上を目的として電極の種類の最適化を行い、芳香族ジアミンからなる正孔輸送層と8-ヒドロキシキノリンアルミニウム錯体(以下、Alq3という)からなる発光層とを電極間に薄膜として設けた素子の開発により、従来のアントラセン等の単結晶を用いた素子と比較して大幅な発光効率の改善がなされたことから、自発光・高速応答性といった特徴を持つ高性能フラットパネルへの実用化を目指して進められてきた。
  また、素子の発光効率を上げる試みとして、蛍光ではなく燐光を用いることも検討されている。上記の芳香族ジアミンからなる正孔輸送層とAlq3からなる発光層とを設けた素子をはじめとした多くの素子が蛍光発光を利用したものであったが、燐光発光を用いる、すなわち、三重項励起状態からの発光を利用することにより、従来の蛍光(一重項)を用いた素子と比べて、3~4倍程度の効率向上が期待される。この目的のためにクマリン誘導体やベンゾフェノン誘導体を発光層とすることが検討されてきたが、極めて低い輝度しか得られなかった。また、三重項状態を利用する試みとして、ユーロピウム錯体を用いることが検討されてきたが、これも高効率の発光には至らなかった。近年では、特許文献1に挙げられるように発光の高効率化や長寿命化を目的にイリジウム錯体等の有機金属錯体を中心に燐光発光ドーパント材料の研究が多数行われている。
特開2005-093159号公報 WO2005-057987号公報 特開2005-132820号公報 特開2004-071500号公報
  高い発光効率を得るには、前記ドーパント材料と同時に、使用するホスト材料が重要になる。ホスト材料として提案されている代表的なものとして、特許文献2で紹介されているカルバゾール化合物の4,4'-ビス(9-カルバゾリル)ビフェニル(以下、CBPという)が挙げられる。CBPはトリス(2-フェニルピリジン)イリジウム錯体(以下、Ir(ppy)3という)に代表される緑色燐光発光材料のホスト材料として使用した場合、CBPは正孔を流し易く電子を流しにくい特性上、電荷注入バランスが崩れ、過剰の正孔は電子輸送層側に流出し、結果としてIr(ppy)3からの発光効率が低下する。
  前述のように、有機EL素子で高い発光効率を得るには、高い三重項励起エネルギーを有し、かつ両電荷(正孔・電子)注入輸送特性においてバランスがとれたホスト材料が必要である。更に、電気化学的に安定であり、高い耐熱性と共に優れたアモルファス安定性を備える化合物が望まれており、更なる改良が求められている。
  特許文献1においては、有機EL素子のホスト材料として以下に示すようなカルバゾール化合物が開示されている。
Figure JPOXMLDOC01-appb-I000002
 
  しかしながら、このカルバゾール化合物はカルバゾールの3,6位にフェニル基を有するため、十分な発光効率が得られないことが推定される。
  特許文献2においては、有機EL素子のホスト材料として以下に示すようなカルバゾール化合物が開示されている。

Figure JPOXMLDOC01-appb-I000003
 
  特許文献3においては、有機EL素子のホスト材料として以下に示すようなカルバゾール化合物が開示されている。
Figure JPOXMLDOC01-appb-I000004
 
  しかしながら、上記化合物はカルバゾールが9位で連結した化合物を開示するのみであり、1位で連結した化合物を用いた有機EL素子の有用性を開示するものではない。
  特許文献4においては、有機EL素子のホスト材料として以下に示すようなカルバゾール化合物が開示されている。
Figure JPOXMLDOC01-appb-I000005
 
  しかしながら、上記化合物はカルバゾールが3位で連結した化合物を開示するのみであり、1位で連結した化合物を用いた有機EL素子の有用性を開示するものではない。
  有機EL素子をフラットパネルディスプレイ等の表示素子に応用するためには、素子の発光効率を改善すると同時に駆動時の安定性を十分に確保する必要がある。本発明は、上記現状に鑑み、高効率かつ高い駆動安定性を有した実用上有用な有機EL素子及びそれに適する化合物を提供することを目的とする。
  本発明者らは、鋭意検討した結果、2つ以上のカルバゾール環を1位で連結基を介して連結させた9位に特定の置換基を有するカルバゾール化合物を有機EL素子として用いることで優れた特性を示すことを見出し、本発明を完成するに至った。
  本発明は、基板上に、陽極、有機層及び陰極が積層されてなる有機電界発光素子において、発光層、正孔輸送層、電子輸送層、及び正孔阻止層からなる群れから選ばれる少なくとも一つの層に一般式(1)で表されるカルバゾール化合物を用いた有機電界発光素子に関する。
Figure JPOXMLDOC01-appb-I000006
 
  一般式(1)中、Xはそれぞれ独立してC-Y又は窒素を表し、Yはそれぞれ独立して水素、炭素数1~10のアルキル基、炭素数3~11のシクロアルキル基、炭素数6~18の芳香族炭化水素基又は炭素数3~18の芳香族複素環基を表す。nは2~4の整数を表し、Aはn価の炭素数6~50の芳香族炭化水素基又は炭素数3~50の芳香族複素環基を表し、Lはそれぞれ独立して直接結合、縮環構造でない2価の炭素数6~10の芳香族炭化水素基又は炭素数3~10の芳香族複素環基を表し、Rはそれぞれ独立して水素、炭素数1~10のアルキル基又は炭素数3~11のシクロアルキル基を表す。但し、Lが直接結合の場合、Aは縮環構造ではない。
  一般式(1)において、Lが直接結合、5員環又は6員環で構成される2価の芳香族炭化水素基、5員環又は6員環で構成される2価の芳香族複素環基の何れかであることが好ましく、直接結合、フェニレン基、6員環で構成される2価の芳香族複素環基の何れかであることがより好ましい。また、一般式(1)において、nは2~4であるが、2又は3であることが好ましい。
  また、上記有機電界発光素子は一般式(1)で表されるカルバゾール化合物と燐光発光ドーパントを含有する発光層を有することが好ましい。
  一般式(1)で表されるカルバゾール化合物は、1,9位に単環の芳香族基を置換し、1位上の芳香族基で連結したカルバゾール骨格を2つ以上有することにより、正孔、電子移動速度の微調整、並びにイオン化ポテンシャル(IP)、電子親和力(EA)、三重項励起エネルギー(T1)の各種エネルギー値の制御が可能となると考えられる。また、該カルバゾール化合物は酸化、還元、励起の各活性状態で安定性を向上させることが可能であると考えられ、同時に良好なアモルファス特性を有する。以上のことから駆動寿命が長く、耐久性の高い有機EL素子を実現できる。
有機EL素子の一構造例を示す断面図である。 化合物A-1の1H-NMRチャートを示す。
  本発明の有機電界発光素子は、前記一般式(1)で表されるカルバゾール化合物を特定の層に含有する。一般式(1)において、nは2~4の整数であり、Aはn価の炭素数6~50の芳香族炭化水素基又は炭素数3~50の芳香族複素環基である。すなわち、一般式(1)で表されるカルバゾール化合物は、n個のカルバゾール含有基が、n価の基Aに結合した構造を有する。
  一般式(1)において、Xはそれぞれ独立してC-Y又は窒素を表し、Yは水素、炭素数1~10のアルキル基、炭素数3~11のシクロアルキル基、炭素数6~18の芳香族炭化水素基又は炭素数3~17の芳香族複素環基を表す。Yが複数存在する場合は、同一であっても、異なってもよい。
  一般式(1)において、Xはそれぞれ独立してC-Y又は窒素を表すが、Xが窒素である場合、その数は1~3個が好ましく、より好ましくは1~2個である。
  一般式(1)において、XがC-Yである場合、Yはそれぞれ独立して水素、炭素数1~10のアルキル基、炭素数3~11のシクロアルキル基、炭素数6~18の芳香族炭化水素基又は炭素数3~17の芳香族複素環基を表す。好ましくは、水素、炭素数1~6のアルキル基、炭素数3~8のシクロアルキル基、炭素数6~14の芳香族炭化水素基又は炭素数3~13の芳香族複素環基である。芳香族炭化水素基又は芳香族複素環基である場合、縮環構造でないことが好ましい。
  アルキル基又はシクロアルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、へプチル基、オクチル基、ノニル基、デシル基、シクロヘキシル基、メチルシクロヘキシル基等が挙げられ、直鎖であっても、分岐していても構わない。好ましくは、炭素数1~6のアルキル基又はシクロヘキシル基、メチルシクロヘキシル基である。具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、メチルシクロヘキシル基である。
  芳香族炭化水素基又は芳香族複素環基の具体例としては、ベンゼン、ナフタレン、フルオレン、アントラセン、フェナントレン、フルオランテン、ピレン、クリセン、ピリジン、ピリミジン、トリアジン、インドール、キノリン、イソキノリン、キノキサリン、ナフチリジン、カルバゾール、アクリジン、フェナントロリン、フェナジン、ベンゾフラン、ジベンゾフラン、キサンテン、オキサントレン、フェノキサジン、ベンゾチオフェン、ジベンゾチオフェン、チオキサンテン、チアントレン、フェノキサチイン、フェノチアジン又はこれらの芳香環が複数連結された芳香族化合物から水素を除いて生じる1価の基等が挙げられる。上記芳香環が複数連結された芳香族化合物の具体例としては、例えばビフェニル、ターフェニル、ビピリジン、ビピリミジン、ビトリアジン、ビストリアジルベンゼン、ビナフタレン、フェニルピリジン、ジフェニルピリジン、ジフェニルピリミジン、ジフェニルトリアジン、フェニルカルバゾール、ピリジルカルバゾール等から水素を除いて生じる1価の基等が挙げられ、結合位置は限定されず、末端の環であっても中央部の環であっても構わない。
  好ましい芳香族炭化水素基又は芳香族複素環基の具体例としては、ベンゼン、ピリジン、ピリミジン、トリアジン、カルバゾール、ジベンゾフラン、オキサントレン、フェノキサジン、ジベンゾチオフェン、チアントレン、フェノチアジン又はこれらの芳香環が複数連結された芳香族化合物から水素を除いて生じる1価の基であり、より好ましくは、ベンゼン、ピリジン、ピリミジン、トリアジン、ジベンゾフラン、ジベンゾチオフェン又はこれらの芳香環が複数連結された芳香族化合物から水素を除いて生じる1価の基である。
  一般式(1)において、複数のRはそれぞれ独立して水素、炭素数1~10のアルキル基又は炭素数3~11のシクロアルキル基を表す。好ましくは、水素、炭素数1~6のアルキル基、炭素数3~8のシクロアルキル基である。アルキル基又はシクロアルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、へプチル基、オクチル基、ノニル基、デシル基、シクロヘキシル基、メチルシクロヘキシル基等が挙げられる。好ましいRは、水素、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、メチルシクロヘキシル基であり、より好ましくは水素である。
  一般式(1)において、nは2~4の整数を表す。好ましくは、nは2又は3、より好ましくは2である。
  一般式(1)において、Aはn価の炭素数6~50の芳香族炭化水素基又は炭素数3~50の芳香族複素環基を表す。好ましくは、n価の炭素数6~36の芳香族炭化水素基又は炭素数3~36の芳香族複素環基である。
  Aが芳香族炭化水素基又は芳香族複素環基である場合、芳香族炭化水素基又は芳香族複素環基の具体例としてはベンゼン、ナフタレン、フルオレン、アントラセン、フェナントレン、フルオランテン、ピレン、クリセン、ピリジン、ピリミジン、トリアジン、インドール、キノリン、イソキノリン、キノキサリン、ナフチリジン、カルバゾール、アクリジン、フェナントロリン、フェナジン、ベンゾフラン、ジベンゾフラン、キサンテン、オキサントレン、フェノキサジン、ベンゾチオフェン、ジベンゾチオフェン、チオキサンテン、チアントレン、フェノキサチイン、フェノチアジン又はこれらの芳香環が複数連結された芳香族化合物からn個の水素を除いて生じるn価の基等が挙げられる。好ましくは、ベンゼン、ナフタレン、フルオレン、アントラセン、フェナントレン、フルオランテン、ピレン、クリセン、ピリジン、ピリミジン、トリアジン、インドール、キノリン、イソキノリン、キノキサリン、ナフチリジン、カルバゾール、アクリジン、ベンゾフラン、ジベンゾフラン、フェノキサジン、ベンゾチオフェン、ジベンゾチオフェン、フェノチアジン又はこれらの芳香環が複数連結された芳香族化合物からn個の水素を除いて生じるn価の基であり、より好ましくは、ベンゼン、ピリジン、ピリミジン、トリアジン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン又はこれらの芳香環が複数連結された芳香族化合物からn個の水素を除いて生じるn価の基である。上記芳香環が複数連結される場合、それらは同一でも異なっていてもよい。上記芳香環が複数連結された芳香族化合物からn個の水素を除いて生じるn価の基の具体例としては、例えばビフェニル、ターフェニル、ビピリジン、ビピリミジン、ビトリアジン、ビストリアジルベンゼン、ビナフタレン、フェニルピリジン、ジフェニルピリジン、ジフェニルピリミジン、ジフェニルトリアジン、フェニルカルバゾール、ピリジルカルバゾール等から水素を除いて生じる基が挙げられ、結合するL又はカルバゾールの1位との連結位置は限定されず、末端の環であっても中央部の環であっても構わない。上記芳香族炭化水素基又は芳香族複素環基は、置換基を有してもよく、置換基を有する場合、好ましい置換基としては、炭素数1~4のアルキル基、炭素数3~6のシクロアルキル基、炭素数1~2のアルコキシ基、アセチル基又は炭素数6~24のジアリールアミノ基である。置換基を有する場合、置換基の総数は1~10である。好ましくは1~6であり、より好ましくは1~4である。また、上記芳香族炭化水素基又は芳香族複素環基が2つ以上の置換基を有する場合、それらは同一でも異なっていてもよい。また、上記芳香族炭化水素基又は芳香族複素環基の炭素数の計算において、置換基を有する場合、その置換基の炭素数を含む。
  ここで、芳香環が複数連結された芳香族化合物から生じる基は、2価の基の場合、例えば、下記式で表わされる。
Figure JPOXMLDOC01-appb-I000007
 
(Ar1~Ar6は芳香環を表す。)
  一般式(1)において、Lが直接結合の場合、Aは縮環構造ではないn価の芳香族炭化水素基又はn価の芳香族複素環基である。ここで縮環構造ではないとは、複数の芳香環が連結する場合は、一般式(1)中のn個のカルバゾール環の1位と最初に連結する芳香環が縮環構造ではないことを意味し、カルバゾール環と連結しない芳香環が縮環であっても構わないが、Aは単環又は単環が複数連結したn価の基であることが好ましい。
  一般式(1)において、Lは、直接結合、縮環構造でない2価の炭素数6~10の芳香族炭化水素基又は炭素数3~10の芳香族複素環基を表し、直接結合、5員環又は6員環で構成される2価の芳香族炭化水素基、5員環又は6員環で構成される2価の芳香族複素環基の何れかであることが好ましく、直接結合、フェニレン基、6員環で構成される2価の芳香族複素環基の何れかであることがより好ましい。芳香族炭化水素基又は芳香族複素環基の具体例としては、ピロール、イミダゾール、フラン、チオフェン、オキサゾール、チアゾール、ピラゾール、ベンゼン、ピリジン、ピリミジン、ピラジン、ピリダジン、トリアジンから2個の水素を除いて生じる2価の基等が挙げられる。好ましくは、ベンゼン、ピロール、フラン、チオフェン、ピリジン、ピリミジン、トリアジンから2個の水素を除いて生じる基であり、より好ましくは、ベンゼン、ピリジン、ピリミジン、トリアジンから2個の水素を除いて生じる2価の基である。上記2価の芳香族炭化水素基又は芳香族複素環基は、置換基を有してもよく、置換基を有する場合、好ましい置換基としては、炭素数1~4のアルキル基、炭素数3~6のシクロアルキル基、炭素数1~2のアルコキシ基又はアセチル基である。
  一般式(1)において、好ましいAとしては、以下に示す芳香族化合物からn個の水素を除いて形成される。なお、縮環と単環が連結した構造を有する芳香族化合物の場合は、単環からn個の水素を除いて形成される基であることが好ましい。上記芳香族化合物は、置換基を有してもよく、置換基を有する場合、好ましい置換基としては、炭素数1~4のアルキル基、炭素数3~6のシクロアルキル基、炭素数1~2のアルコキシ基又はアセチル基である。
Figure JPOXMLDOC01-appb-I000008
 
Figure JPOXMLDOC01-appb-I000009
 
  一般式(1)で表されるカルバゾール化合物の具体例を以下に示すが、これらに限定されない。
Figure JPOXMLDOC01-appb-I000010
 
Figure JPOXMLDOC01-appb-I000011
 
Figure JPOXMLDOC01-appb-I000012
 
Figure JPOXMLDOC01-appb-I000013
 
Figure JPOXMLDOC01-appb-I000014
 
Figure JPOXMLDOC01-appb-I000015
 
Figure JPOXMLDOC01-appb-I000016
 
Figure JPOXMLDOC01-appb-I000017
 
Figure JPOXMLDOC01-appb-I000018
 
Figure JPOXMLDOC01-appb-I000019
 
 
Figure JPOXMLDOC01-appb-I000020
 
Figure JPOXMLDOC01-appb-I000021
 
Figure JPOXMLDOC01-appb-I000022
 
Figure JPOXMLDOC01-appb-I000023
 
Figure JPOXMLDOC01-appb-I000024
 
  上記一般式(1)で表されるカルバゾール化合物は、基板上に、陽極、複数の有機層及び陰極が積層されてなる有機EL素子の少なくとも1つの有機層に含有させることにより、優れた有機電界発光素子を与える。含有させる有機層としては、発光層、正孔輸送層、電子輸送層または正孔阻止層が適する。より好ましくは、燐光発光ドーパントを含有する発光層のホスト材料として含有させることが良い。
  次に、本発明の有機EL素子について説明する。
  本発明の有機EL素子は、基板上に積層された陽極と陰極の間に、少なくとも一つの発光層を有する有機層を有し、且つ少なくとも一つの有機層は、上記カルバゾール化合物を含む。有利には、燐光発光ドーパントと共に一般式(1)で表されるカルバゾール化合物を発光層中に含む。
  次に、本発明の有機EL素子の構造について、図面を参照しながら説明するが、本発明の有機EL素子の構造は何ら図示のものに限定されるものではない。
  図1は一般的な有機EL素子の構造例を示す断面図であり、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は電子輸送層、7は陰極を各々表わす。本発明の有機EL素子では発光層と隣接して励起子阻止層を有してもよく、また、発光層と正孔注入層との間に電子阻止層を有しても良い。励起子阻止層は発光層の陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。本発明の有機EL素子では、基板、陽極、発光層及び陰極を必須の層として有するが、必須の層以外の層に、正孔注入輸送層、電子注入輸送層を有することがよく、更に発光層と電子注入輸送層の間に正孔阻止層を有することがよい。なお、正孔注入輸送層は、正孔注入層と正孔輸送層のいずれか又は両者を意味し、電子注入輸送層は、電子注入層と電子輸送層のいずれか又は両者を意味する。
  なお、図1とは逆の構造、すなわち、基板1上に陰極7、電子輸送層6、発光層5、正孔輸送層4、陽極2の順に積層することも可能であり、この場合も、必要により層を追加したり、省略したりすることが可能である。
-基板-
  本発明の有機EL素子は、基板に支持されていることが好ましい。この基板については、特に制限はなく、従来から有機EL素子に慣用されているものであればよく、例えば、ガラス、透明プラスチック、石英などからなるものを用いることができる。
-陽極-
  有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In23-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
-陰極-
  一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が、透明又は半透明であれば発光輝度が向上し好都合である。
  また、陰極に上記金属を1~20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
-発光層-
  発光層は燐光発光層であり、燐光発光ドーパントとホスト材料を含む。燐光発光ドーパント材料としては、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金及び金から選ばれる少なくとも一つの金属を含む有機金属錯体を含有するものがよい。かかる有機金属錯体は、前記先行技術文献等で公知であり、これらが選択されて使用可能である。
  好ましい燐光発光ドーパントとしては、Ir等の貴金属元素を中心金属として有するIr(ppy)3等の錯体類、(Bt)2Iracac等の錯体類、(Btp)Ptacac等の錯体類が挙げられる。これらの錯体類の具体例を以下に示すが、下記の化合物に限定されない。
Figure JPOXMLDOC01-appb-I000025
 
Figure JPOXMLDOC01-appb-I000026
 
  前記燐光発光ドーパントが発光層中に含有される量は、1~40重量%、好ましくは5~30重量%の範囲にあることがよい。
  発光層におけるホスト材料としては、前記一般式(1)で表されるカルバゾール化合物を用いることが好ましい。しかし、該カルバゾール化合物を発光層以外の他の何れかの有機層に使用する場合は、発光層に使用する材料はカルバゾール化合物以外の他のホスト材料であってもよい。また、カルバゾール化合物と他のホスト材料を併用してもよい。更に、公知のホスト材料を複数種類併用して用いてもよい。
  使用できる公知のホスト化合物としては、正孔輸送能、電子輸送能を有し、かつ発光の長波長化を防ぎ、なおかつ高いガラス転移温度を有する化合物であることが好ましい。
  このような他のホスト材料は、多数の特許文献等により知られているので、それらから選択することができる。ホスト材料の具体例としては、特に限定されるものではないが、インドール誘導体、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三アミン化合物、スチリルアミン化合物、芳香族ジメチリデン系化合物、ポルフィリン系化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン誘導体、8―キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾール誘導体の金属錯体に代表される各種金属錯体、ポリシラン系化合物、ポリ(N-ビニルカルバゾール)誘導体、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、ポリフルオレン誘導体等の高分子化合物等が挙げられる。
-注入層-
  注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、正孔注入層と電子注入層があり、陽極と発光層又は正孔輸送層の間、及び陰極と発光層又は電子輸送層との間に存在させてもよい。注入層は必要に応じて設けることができる。
-正孔阻止層-
  正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。
  正孔阻止層には一般式(1)で表されるカルバゾール化合物を用いることが好ましいが、カルバゾール化合物を他の何れかの有機層に使用する場合は、公知の正孔阻止層材料を用いてもよい。また、正孔阻止層材料としては、後述する電子輸送層の材料を必要に応じて用いることができる。
-電子阻止層-
  電子阻止層とは、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料から成り、正孔を輸送しつつ電子を阻止することで電子と正孔が再結合する確立を向上させることができる。
  電子阻止層の材料としては、後述する正孔輸送層の材料を必要に応じて用いることができる。電子阻止層の膜厚は好ましくは3~100nmであり、より好ましくは5~30nmである。
-励起子阻止層-
  励起子阻止層とは、発光層内で正孔と電子が再結合することにより生じた励起子が電荷輸送層に拡散することを阻止するための層であり、本層の挿入により励起子を効率的に発光層内に閉じ込めることが可能となり、素子の発光効率を向上させることができる。励起子阻止層は発光層に隣接して陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。
  励起子阻止層の材料としては、例えば、1,3-ジカルバゾリルベンゼン(mCP)や、ビス(2-メチル-8-キノリノラト)-4-フェニルフェノラトアルミニウム(III)(BAlq)が挙げられる。
-正孔輸送層-
  正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、正孔輸送層は単層又は複数層設けることができる。
  正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。正孔輸送層には一般式(1)で表されるカルバゾール化合物を用いることが好ましいが、従来公知の化合物の中から任意のものを選択して用いることができる。使用できる公知の正孔輸送材料としては例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物を用いることが好ましく、芳香族第3級アミン化合物を用いることがより好ましい。
-電子輸送層-
  電子輸送層とは電子を輸送する機能を有する材料からなり、電子輸送層は単層又は複数層設けることができる。
  電子輸送材料(正孔阻止材料を兼ねる場合もある)としては、陰極より注入された電子を発光層に伝達する機能を有していればよい。電子輸送層には本発明に係る一般式(1)で表されるカルバゾール化合物を用いることが好ましいが、従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
  以下、本発明を実施例によって更に詳しく説明するが、本発明は勿論、これらの実施例に限定されるものではなく、その要旨を越えない限りにおいて、種々の形態で実施することが可能である。
  以下に示すルートにより燐光発光素子用材料となるカルバゾール化合物を合成した。尚、化合物番号は、上記化学式に付した番号に対応する。
合成例1
化合物A-1の合成
Figure JPOXMLDOC01-appb-I000027
 
  窒素雰囲気下、2-ブロモフェニルヒドラジン塩酸塩150.0 g(0.671 mol)、無水フタル酸190.0 g(1.3 mol)、トルエンを4500 ml加え、120 ℃で加熱しながら一晩撹拌した。反応溶液を室温まで冷却した後、析出した淡黄色固体をろ取した。得られた淡黄色固体を加熱リスラリーで精製を行い、淡黄色粉末の中間体(1)を181.0 g(0.57 mol、収率71%)を得た。
  窒素雰囲気下、中間体(1)126.0 g(0.40 mol)、トリフェニルビスムチン350.0 g (0.80 mol)、酢酸銅108.0 g (0.60 mol)、脱水塩化メチレン3000 mlを加え、氷浴中で撹拌した。内温が5℃以上にならないようにトリエチルアミン41.3 ml (0.30 mol)をゆっくり加え、50℃で加熱しながら一晩撹拌した。反応溶液を室温まで冷却した後、析出した淡黄色固体をろ取し、得られた淡黄色固体を再結晶で精製を行い、淡黄色粉末の中間体(2)を72.0 g(0.18 mol、収率45%)を得た。
  窒素雰囲気下、中間体(2)を30.0 g(0.076 mol)、脱水ベンゼンを1500 ml加え、室温で撹拌しながら塩化アルミニウム50.8 g(0.38 mol)を加えた後、室温で3時間撹拌した。水酸化ナトリウム水溶液900 mlを撹拌しながら加えた。反応溶液を室温まで冷却した後、蒸留水(1000 ml)とトルエン(1000 ml)を撹拌しながら加えた。有機層を蒸留水(3 × 1000 ml)で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後に、硫酸マグネシウムをろ別し、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製を行い、白色固体として中間体(3)を8.0 g (0.033 mol、収率43%)を得た。
  窒素雰囲気下、中間体(3)を21.0 g(0.085 mol)、ヨードベンゼン87.0 g(0.43 mol)、よう化銅(I)65.0 g(0.34 mol)、三リン酸カリウム72.4 g(0.34 mol)。脱水1,4-ジオキサン250 mlを加え、室温で撹拌しながらtarns-1,2-シクロヘキサンジアミン38.9 g(0.34 mol)を加えた後、90 ℃で2 時間撹拌した。反応溶液を室温まで冷却した後、セライトを用いてろ過した後、溶媒を減圧除去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製を行い、無色液体として中間体(4)を17.7 g (0.055 mol、収率65%)を得た。
  窒素雰囲気下、中間体(4)を17.0g(0.053 mol)、脱水テトラヒドロフラン300 mlを加え、-60 ℃で撹拌しながらn-ブチルリチウム41.6 ml(0.069 mol)を加え、-60 ℃で1時間撹拌した。その後、-60 ℃でトリメトキシボラン9.4 ml(0.085 mol)を加え、室温で1時間撹拌した。さらに2 M塩酸50 mlを加え、1時間撹拌した後、蒸留水(200 ml)とトルエン(200 ml)を撹拌しながら加えた。有機層を蒸留水(100 ml×3)で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後に、硫酸マグネシウムをろ別し、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製を行い、白色固体として中間体(5)を9.1 g (0.032 mol、収率60%)を得た。
  窒素雰囲気下、1,3-ジヨードベンゼン4.3 g(0.013 mol)、中間体(5)を9.0 g(0.031 mol)、テトラキス(トリフェニルホスフィン)パラジウム(0)0.81 g(0.00052 mol)、トルエン30 ml、エタノール6 mlを加え、室温で撹拌しながら、2 M水酸化ナトリウム水溶液20 mlを加えた。90℃で15時間撹拌した後、室温まで冷却し、有機層を蒸留水(100 ml×3)で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後に、硫酸マグネシウムをろ別し、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィー、晶析、再結晶で精製することで、白色固体として化合物A-1を2.2 g(0.0039 mol、収率30%)を得た。
APCI-TOFMS, m/z 561 [M+H]+1H-NMR測定結果(測定溶媒:THF-d8)を図2に示す。
実施例1
  膜厚110nmのITO基板からなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度4.0×10-5Paで積層させた。まず、ITO上に銅フタロシアニン(CuPc)を20 nmの厚さに形成した。次に、正孔輸送層として4,4'-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(NPB)を20 nmの厚さに形成した。次に、正孔輸送層上に、ホスト材料としての化合物A-1とドーパントとしてのトリス(2‐フェニルピリジン)イリジウム(III)(Ir(ppy)3)とを異なる蒸着源から、共蒸着し、30 nmの厚さに発光層を形成した。この時、Ir(ppy)3の濃度は10 wt%であった。次に、正孔阻止層としてBAlqを10 nmの厚さに形成した。次に電子輸送層としてトリス(8-ヒドロキシキノリナト)アルミニウム(III)(Alq3)を40 nmの厚さに形成した。更に、電子輸送層上に、電子注入層としてフッ化リチウム(LiF)を1nmの厚さに形成した。最後に、電子注入層上に、電極としてアルミニウム(Al)を70nmの厚さに形成し、有機EL素子を作製した。
  得られた有機EL素子に外部電源を接続し直流電圧を印加したところ、表1に示すような発光特性を有することが確認された。
実施例2
  発光層のホスト材料として、化合物A-8を用いた以外は実施例1と同様にして有機EL素子を作製した。
実施例3
  発光層のホスト材料として、化合物A-19を用いた以外は実施例1と同様にして有機EL素子を作製した。
実施例4
  発光層のホスト材料として、化合物B-31を用いた以外は実施例1と同様にして有機EL素子を作製した。
実施例5
  発光層のホスト材料として、化合物C-4を用いた以外は実施例1と同様にして有機EL素子を作製した。
実施例6
  発光層のホスト材料として、化合物D-1を用いた以外は実施例1と同様にして有機EL素子を作製した。
実施例7
  発光層のホスト材料として、化合物E-3を用いた以外は実施例1と同様にして有機EL素子を作製した。
比較例1
  実施例2における発光層のホスト材料としてmCPを用いた以外は実施例1と同様にして有機EL素子を作製した。
比較例2
  発光層のホスト材料として、化合物H-1を用いた以外は実施例1と同様にして有機EL素子を作製した。
Figure JPOXMLDOC01-appb-I000028
 実施例2~7及び比較例1~2で得られた有機EL素子について、実施例1と同様にして評価したところ、表1のような発光特性を有することが確認された。なお、実施例2~7及び比較例1~2で得られた有機EL素子の発光スペクトルの極大波長はいずれも540 nmであり、Ir(ppy)3からの発光が得られていると同定された。
 表1において、輝度、電圧及び発光効率は、20 mA/cm2での駆動時の値を示す。
Figure JPOXMLDOC01-appb-T000029
 
  実施例1は比較例1及び比較例2に対して初期特性が向上している。これより、2つ以上のカルバゾール環を1位で連結基を介して連結させた9位に特定の置換基を有するカルバゾール化合物を有する材料を有機EL素子に使用することで、有機EL素子特性が改善することが判る。同様に、実施例2~7のEL素子特性は良好であり、ここでも一般式(1)で表されるカルバゾール化合物の優位性が示される。
産業上の利用の可能性
  本発明の有機EL素子は、発光特性、駆動寿命ならびに耐久性において、実用上満足できるレベルにあり、フラットパネルディスプレイ(携帯電話表示素子、車載表示素子、OAコンピュータ表示素子やテレビ等)、面発光体としての特徴を生かした光源(照明、複写機の光源、液晶ディスプレイや計器類のバックライト光源)、表示板や標識灯等への応用において、その技術的価値は大きいものである。

Claims (4)

  1.   基板上に、陽極、有機層及び陰極が積層されてなる有機電界発光素子において、発光層、正孔輸送層、電子輸送層、及び正孔阻止層からなる群れから選ばれる少なくとも一つの層に一般式(1)で表されるカルバゾール化合物を含有させたことを特徴とする有機電界発光素子。
    Figure JPOXMLDOC01-appb-I000001
     
     一般式(1)中、Xはそれぞれ独立してC-Y又は窒素を表し、Yはそれぞれ独立して水素、炭素数1~10のアルキル基、炭素数3~11のシクロアルキル基、炭素数6~18の芳香族炭化水素基又は炭素数3~18の芳香族複素環基を表す。nは2~4の整数を表し、Aはn価の炭素数6~50の芳香族炭化水素基又は炭素数3~50の芳香族複素環基を表し、Lは直接結合、縮環構造でない2価の炭素数6~10の芳香族炭化水素基又は炭素数3~10の芳香族複素環基を表し、Rはそれぞれ独立して水素、炭素数1~10のアルキル基又は炭素数3~11のシクロアルキル基を表す。但し、Lが直接結合の場合、Aは縮環構造ではない。
  2.   一般式(1)において、Lが直接結合、5員環又は6員環で構成される2価の芳香族炭化水素基、又は5員環又は6員環で構成される2価の芳香族複素環基の何れかであることを特徴とする請求項1に記載の有機電界発光素子。
  3.   一般式(1)において、Lが直接結合、フェニレン基、又は6員環で構成される2価の芳香族複素環基の何れかであり、かつ、nが2又は3であることを特徴とする請求項1に記載の有機電界発光素子。
  4.   一般式(1)で表されるカルバゾール化合物を含有させた層が、燐光発光ドーパントを含有する発光層であることを特徴とする請求項1~3のいずれかに記載の有機電界発光素子。
PCT/JP2011/051640 2010-02-26 2011-01-27 有機電界発光素子 WO2011105161A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012501715A JP5662994B2 (ja) 2010-02-26 2011-01-27 有機電界発光素子
KR1020127024540A KR101719173B1 (ko) 2010-02-26 2011-01-27 유기 전계 발광 소자
EP11747125.0A EP2541635B1 (en) 2010-02-26 2011-01-27 Organic electroluminescent element
US13/578,942 US8986858B2 (en) 2010-02-26 2011-01-27 Organic electroluminescent device
CN201180010857.6A CN102770981B (zh) 2010-02-26 2011-01-27 有机场致发光元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010042295 2010-02-26
JP2010-042295 2010-02-26

Publications (1)

Publication Number Publication Date
WO2011105161A1 true WO2011105161A1 (ja) 2011-09-01

Family

ID=44506582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051640 WO2011105161A1 (ja) 2010-02-26 2011-01-27 有機電界発光素子

Country Status (7)

Country Link
US (1) US8986858B2 (ja)
EP (1) EP2541635B1 (ja)
JP (1) JP5662994B2 (ja)
KR (1) KR101719173B1 (ja)
CN (1) CN102770981B (ja)
TW (1) TWI513687B (ja)
WO (1) WO2011105161A1 (ja)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115340A1 (ja) * 2012-02-03 2013-08-08 出光興産株式会社 カルバゾール化合物、有機エレクトロルミネッセンス素子用材料および有機エレクトロルミネッセンス素子
WO2013168688A1 (ja) * 2012-05-10 2013-11-14 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2014081206A1 (en) * 2012-11-21 2014-05-30 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescence compounds and organic electroluminescence device containing the same
JP2014216576A (ja) * 2013-04-26 2014-11-17 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
US9266892B2 (en) 2012-12-19 2016-02-23 Incyte Holdings Corporation Fused pyrazoles as FGFR inhibitors
US9388185B2 (en) 2012-08-10 2016-07-12 Incyte Holdings Corporation Substituted pyrrolo[2,3-b]pyrazines as FGFR inhibitors
US9533984B2 (en) 2013-04-19 2017-01-03 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US9533954B2 (en) 2010-12-22 2017-01-03 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
US9580423B2 (en) 2015-02-20 2017-02-28 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9611267B2 (en) 2012-06-13 2017-04-04 Incyte Holdings Corporation Substituted tricyclic compounds as FGFR inhibitors
US9673401B2 (en) 2013-06-28 2017-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US9708318B2 (en) 2015-02-20 2017-07-18 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9890156B2 (en) 2015-02-20 2018-02-13 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
JP2019505478A (ja) * 2015-12-08 2019-02-28 ヒソン・マテリアル・リミテッドHeesung Material Ltd. ヘテロ環化合物およびこれを用いた有機発光素子
US10396294B2 (en) 2013-12-27 2019-08-27 Samsung Electronics Co., Ltd. Carbazole compound and organic light-emitting device including the same
US10611762B2 (en) 2017-05-26 2020-04-07 Incyte Corporation Crystalline forms of a FGFR inhibitor and processes for preparing the same
US10851105B2 (en) 2014-10-22 2020-12-01 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11174257B2 (en) 2018-05-04 2021-11-16 Incyte Corporation Salts of an FGFR inhibitor
US11407750B2 (en) 2019-12-04 2022-08-09 Incyte Corporation Derivatives of an FGFR inhibitor
US11466004B2 (en) 2018-05-04 2022-10-11 Incyte Corporation Solid forms of an FGFR inhibitor and processes for preparing the same
US11566028B2 (en) 2019-10-16 2023-01-31 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11591329B2 (en) 2019-07-09 2023-02-28 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11607416B2 (en) 2019-10-14 2023-03-21 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11628162B2 (en) 2019-03-08 2023-04-18 Incyte Corporation Methods of treating cancer with an FGFR inhibitor
US11897891B2 (en) 2019-12-04 2024-02-13 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors
US11939331B2 (en) 2021-06-09 2024-03-26 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors
US12012409B2 (en) 2021-01-14 2024-06-18 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014509068A (ja) * 2010-12-20 2014-04-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 電子技術応用のための電気活性組成物
WO2013129491A1 (ja) * 2012-02-29 2013-09-06 出光興産株式会社 有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
JP2015119059A (ja) * 2013-12-18 2015-06-25 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
KR101502316B1 (ko) * 2014-04-18 2015-03-13 롬엔드하스전자재료코리아유한회사 복수종의 호스트 재료 및 이를 포함하는 유기 전계 발광 소자
KR101835501B1 (ko) 2014-08-13 2018-03-07 삼성에스디아이 주식회사 유기 광전자 소자 및 표시장치
KR102197612B1 (ko) * 2014-12-22 2021-01-04 솔루스첨단소재 주식회사 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
CN107098918A (zh) * 2016-04-25 2017-08-29 中节能万润股份有限公司 一种以均苯为核心的光电材料及其应用
CN107056806A (zh) * 2016-04-25 2017-08-18 中节能万润股份有限公司 一种含有均苯骨架结构的化合物及其在有机电致发光器件中的应用
KR102037816B1 (ko) * 2016-11-16 2019-10-29 삼성에스디아이 주식회사 유기 광전자 소자 및 표시 장치
CN106967021A (zh) * 2017-03-29 2017-07-21 江苏三月光电科技有限公司 一种以均苯为核心的有机化合物及其应用
CN107325037B (zh) * 2017-05-24 2020-03-13 北京八亿时空液晶科技股份有限公司 一种1-溴咔唑的制备方法
CN110903236B (zh) * 2019-12-17 2022-11-29 武汉大学 一种深蓝色电致发光材料及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071500A (ja) 2002-08-09 2004-03-04 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子および表示装置
JP2004342391A (ja) * 2003-05-14 2004-12-02 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2005093159A (ja) 2003-09-16 2005-04-07 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2005132820A (ja) 2003-10-29 2005-05-26 Samsung Sdi Co Ltd カルバゾール含有化合物及びそれを利用した有機電界発光素子
WO2005057987A1 (ja) 2003-12-15 2005-06-23 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2007069569A1 (ja) * 2005-12-15 2007-06-21 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
JP2009114370A (ja) * 2007-11-08 2009-05-28 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子及び表示装置、照明装置
JP2009170817A (ja) * 2008-01-18 2009-07-30 Mitsui Chemicals Inc 化合物、およびそれを含む有機電界発光素子
WO2009104488A1 (ja) * 2008-02-20 2009-08-27 コニカミノルタホールディングス株式会社 白色発光有機エレクトロルミネッセンス素子
JP2009263579A (ja) * 2008-04-28 2009-11-12 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080069216A (ko) * 2005-10-31 2008-07-25 신닛테츠가가쿠 가부시키가이샤 유기 전계 발광 소자

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071500A (ja) 2002-08-09 2004-03-04 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子および表示装置
JP2004342391A (ja) * 2003-05-14 2004-12-02 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2005093159A (ja) 2003-09-16 2005-04-07 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2005132820A (ja) 2003-10-29 2005-05-26 Samsung Sdi Co Ltd カルバゾール含有化合物及びそれを利用した有機電界発光素子
WO2005057987A1 (ja) 2003-12-15 2005-06-23 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2007069569A1 (ja) * 2005-12-15 2007-06-21 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
JP2009114370A (ja) * 2007-11-08 2009-05-28 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子及び表示装置、照明装置
JP2009170817A (ja) * 2008-01-18 2009-07-30 Mitsui Chemicals Inc 化合物、およびそれを含む有機電界発光素子
WO2009104488A1 (ja) * 2008-02-20 2009-08-27 コニカミノルタホールディングス株式会社 白色発光有機エレクトロルミネッセンス素子
JP2009263579A (ja) * 2008-04-28 2009-11-12 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2541635A4

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9533954B2 (en) 2010-12-22 2017-01-03 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
US10213427B2 (en) 2010-12-22 2019-02-26 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
US10813930B2 (en) 2010-12-22 2020-10-27 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
WO2013115340A1 (ja) * 2012-02-03 2013-08-08 出光興産株式会社 カルバゾール化合物、有機エレクトロルミネッセンス素子用材料および有機エレクトロルミネッセンス素子
JPWO2013115340A1 (ja) * 2012-02-03 2015-05-11 出光興産株式会社 カルバゾール化合物、有機エレクトロルミネッセンス素子用材料および有機エレクトロルミネッセンス素子
US9203036B2 (en) 2012-02-03 2015-12-01 Idemitsu Kosan Co., Ltd. Carbazole compound, material for organic electroluminescence device and organic electroluminescence device
WO2013168688A1 (ja) * 2012-05-10 2013-11-14 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
US11840534B2 (en) 2012-06-13 2023-12-12 Incyte Corporation Substituted tricyclic compounds as FGFR inhibitors
US11053246B2 (en) 2012-06-13 2021-07-06 Incyte Corporation Substituted tricyclic compounds as FGFR inhibitors
US9611267B2 (en) 2012-06-13 2017-04-04 Incyte Holdings Corporation Substituted tricyclic compounds as FGFR inhibitors
US10131667B2 (en) 2012-06-13 2018-11-20 Incyte Corporation Substituted tricyclic compounds as FGFR inhibitors
US9388185B2 (en) 2012-08-10 2016-07-12 Incyte Holdings Corporation Substituted pyrrolo[2,3-b]pyrazines as FGFR inhibitors
US9745311B2 (en) 2012-08-10 2017-08-29 Incyte Corporation Substituted pyrrolo[2,3-b]pyrazines as FGFR inhibitors
WO2014081206A1 (en) * 2012-11-21 2014-05-30 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescence compounds and organic electroluminescence device containing the same
JP2016503585A (ja) * 2012-11-21 2016-02-04 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 新規有機エレクトロルミネセンス化合物およびそれを含む有機エレクトロルミネセンスデバイス
CN104781253A (zh) * 2012-11-21 2015-07-15 罗门哈斯电子材料韩国有限公司 新颖有机电致发光化合物和含有所述化合物的有机电致发光装置
US9266892B2 (en) 2012-12-19 2016-02-23 Incyte Holdings Corporation Fused pyrazoles as FGFR inhibitors
US10040790B2 (en) 2013-04-19 2018-08-07 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US10947230B2 (en) 2013-04-19 2021-03-16 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11530214B2 (en) 2013-04-19 2022-12-20 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US10450313B2 (en) 2013-04-19 2019-10-22 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US9533984B2 (en) 2013-04-19 2017-01-03 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
JP2014216576A (ja) * 2013-04-26 2014-11-17 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
US9673401B2 (en) 2013-06-28 2017-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US10396294B2 (en) 2013-12-27 2019-08-27 Samsung Electronics Co., Ltd. Carbazole compound and organic light-emitting device including the same
US10851105B2 (en) 2014-10-22 2020-12-01 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10251892B2 (en) 2015-02-20 2019-04-09 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9890156B2 (en) 2015-02-20 2018-02-13 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11667635B2 (en) 2015-02-20 2023-06-06 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10632126B2 (en) 2015-02-20 2020-04-28 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10738048B2 (en) 2015-02-20 2020-08-11 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10214528B2 (en) 2015-02-20 2019-02-26 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10016438B2 (en) 2015-02-20 2018-07-10 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9708318B2 (en) 2015-02-20 2017-07-18 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11014923B2 (en) 2015-02-20 2021-05-25 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9801889B2 (en) 2015-02-20 2017-10-31 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9580423B2 (en) 2015-02-20 2017-02-28 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11173162B2 (en) 2015-02-20 2021-11-16 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
JP2019505478A (ja) * 2015-12-08 2019-02-28 ヒソン・マテリアル・リミテッドHeesung Material Ltd. ヘテロ環化合物およびこれを用いた有機発光素子
US10611762B2 (en) 2017-05-26 2020-04-07 Incyte Corporation Crystalline forms of a FGFR inhibitor and processes for preparing the same
US11472801B2 (en) 2017-05-26 2022-10-18 Incyte Corporation Crystalline forms of a FGFR inhibitor and processes for preparing the same
US11466004B2 (en) 2018-05-04 2022-10-11 Incyte Corporation Solid forms of an FGFR inhibitor and processes for preparing the same
US11174257B2 (en) 2018-05-04 2021-11-16 Incyte Corporation Salts of an FGFR inhibitor
US11628162B2 (en) 2019-03-08 2023-04-18 Incyte Corporation Methods of treating cancer with an FGFR inhibitor
US11591329B2 (en) 2019-07-09 2023-02-28 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11607416B2 (en) 2019-10-14 2023-03-21 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11566028B2 (en) 2019-10-16 2023-01-31 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11407750B2 (en) 2019-12-04 2022-08-09 Incyte Corporation Derivatives of an FGFR inhibitor
US11897891B2 (en) 2019-12-04 2024-02-13 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors
US12012409B2 (en) 2021-01-14 2024-06-18 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11939331B2 (en) 2021-06-09 2024-03-26 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors

Also Published As

Publication number Publication date
JP5662994B2 (ja) 2015-02-04
TW201202195A (en) 2012-01-16
EP2541635A1 (en) 2013-01-02
US8986858B2 (en) 2015-03-24
US20120319095A1 (en) 2012-12-20
CN102770981A (zh) 2012-11-07
EP2541635A4 (en) 2017-08-02
CN102770981B (zh) 2015-05-13
KR101719173B1 (ko) 2017-03-23
EP2541635B1 (en) 2018-12-12
KR20130009972A (ko) 2013-01-24
JPWO2011105161A1 (ja) 2013-06-20
TWI513687B (zh) 2015-12-21

Similar Documents

Publication Publication Date Title
JP5662994B2 (ja) 有機電界発光素子
JP5215481B2 (ja) 有機電界発光素子
JP4870245B2 (ja) 燐光発光素子用材料及びこれを用いた有機電界発光素子
EP2757608B1 (en) Organic electroluminescent element
JP5723764B2 (ja) 有機電界発光素子
JP5027947B2 (ja) 燐光発光素子用材料及びこれを用いた有機電界発光素子
JP6091428B2 (ja) 有機電界発光素子
JP5596706B2 (ja) 有機電界発光素子
JP5914500B2 (ja) 有機電界発光素子
WO2013137001A1 (ja) 有機電界発光素子
JP5399418B2 (ja) 有機電界発光素子
JP5697599B2 (ja) 有機電界発光素子
WO2015098297A1 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
KR20160021424A (ko) 신규한 화합물 및 이를 포함하는 유기발광소자
WO2015098359A1 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
KR20150124924A (ko) 신규한 화합물 및 이를 포함하는 유기발광소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180010857.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747125

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012501715

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13578942

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127024540

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011747125

Country of ref document: EP