WO2024048535A1 - 有機電界発光素子用ホスト材料及び予備混合物並びに有機電界発光素子 - Google Patents

有機電界発光素子用ホスト材料及び予備混合物並びに有機電界発光素子 Download PDF

Info

Publication number
WO2024048535A1
WO2024048535A1 PCT/JP2023/031041 JP2023031041W WO2024048535A1 WO 2024048535 A1 WO2024048535 A1 WO 2024048535A1 JP 2023031041 W JP2023031041 W JP 2023031041W WO 2024048535 A1 WO2024048535 A1 WO 2024048535A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
group
unsubstituted
host
aromatic
Prior art date
Application number
PCT/JP2023/031041
Other languages
English (en)
French (fr)
Inventor
淳也 小川
満 坂井
皇遥 ▲高▼木
裕士 池永
Original Assignee
日鉄ケミカル&マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ケミカル&マテリアル株式会社 filed Critical 日鉄ケミカル&マテリアル株式会社
Publication of WO2024048535A1 publication Critical patent/WO2024048535A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers

Definitions

  • the present invention relates to an organic electroluminescent device (hereinafter referred to as an organic EL device), and specifically relates to an organic EL device containing a specific mixed host material.
  • Patent Document 1 discloses an organic EL element that utilizes a TTF (Triplet-Triplet Fusion) mechanism, which is one of the mechanisms of delayed fluorescence.
  • TTF Triplet-Triplet Fusion
  • the TTF mechanism utilizes the phenomenon in which singlet excitons are generated by the collision of two triplet excitons, and it is thought that the internal quantum efficiency can be increased to 40% in theory.
  • the efficiency is lower than that of a phosphorescent organic EL element, further improvement in efficiency and low voltage characteristics are required.
  • Patent Document 2 discloses an organic EL element that utilizes a TADF (Thermally Activated Delayed Fluorescence) mechanism.
  • the TADF mechanism utilizes the phenomenon that reverse intersystem crossing occurs from triplet excitons to singlet excitons in materials with a small energy difference between the singlet and triplet levels, and theoretically increases the internal quantum efficiency. It is believed that this can be increased to 100%.
  • Patent Document 3 discloses the use of an indolocarbazole compound as a host material for a light emitting layer.
  • Patent Documents 4 and 5 disclose the use of an indolocarbazole compound and a biscarbazole compound as a mixed host material for a light emitting layer.
  • Patent Documents 6 and 7 disclose the use of a deuterated substituted indolocarbazole compound as a host material for a light emitting layer.
  • Patent Documents 8 and 9 disclose the use of a deuterated biscarbazole compound as a host material for a light emitting layer.
  • Patent Documents 7 and 10 disclose the use of a deuterated substituted indolocarbazole compound and a biscarbazole compound as a mixed host material for a light emitting layer.
  • organic EL displays are thin and lightweight, have high contrast, and are capable of high-speed video display, and are highly praised for their design features such as curved surfaces and flexibility, and are widely used in displays such as mobiles and TVs. Widely applied to equipment.
  • organic EL displays are thin and lightweight, have high contrast, and are capable of high-speed video display, and are highly praised for their design features such as curved surfaces and flexibility, and are widely used in displays such as mobiles and TVs. Widely applied to equipment.
  • it is necessary to further lower the voltage, and as a light source, it is inferior to inorganic LEDs in terms of brightness and lifespan, so improvements in efficiency and element lifespan are required. There is a need for improvement.
  • an object of the present invention is to provide a practically useful organic EL element having low voltage, high efficiency, and long life characteristics.
  • the present invention relates to a host material for an organic electroluminescent device represented by the following general formula (1).
  • ring G is an aromatic ring represented by formula (1a), and ring H represents a heterocycle represented by formula (1b).
  • D represents deuterium
  • Ar 1 is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 3 to 17 carbon atoms, or an aromatic group thereof. It is a substituted or unsubstituted connected aromatic group in which 2 to 5 aromatic rings of the group are connected.
  • a, b, and x represent the number of substitutions, a and b independently represent integers from 0 to 4, x represents an integer from 0 to 2, and a+b+x ⁇ 1.
  • n and n represent the number of repetitions, m and n each independently represent an integer of 0 or 1, and m+n is 1 or more.
  • the substituent substituting on triazine and Ar 1 do not contain deuterium.
  • Ar 1 is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms, or a substituted or unsubstituted connected aromatic group in which two aromatic rings of these aromatic groups are connected. It is a preferred embodiment of the present invention that Ar 1 is a substituted or unsubstituted phenyl group or a substituted or unsubstituted biphenyl group, and m is 0.
  • Preferred embodiments of general formula (1) include any of the following (2) to (5).
  • the present invention also provides an organic electroluminescent device including one or more light-emitting layers between opposing anodes and cathodes, in which at least one light-emitting layer is selected from the compounds represented by the general formula (1).
  • the present invention is an organic electroluminescent device characterized by containing a first host, a second host selected from compounds represented by the following general formula (6), and a luminescent dopant material.
  • Ar 2 and Ar 3 are each independently a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 3 to 17 carbon atoms. , or represents a substituted or unsubstituted connected aromatic group in which 2 to 5 aromatic rings of these aromatic groups are connected.
  • L each independently represents a single bond, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 3 to 17 carbon atoms
  • R each independently represents Represents deuterium or an aliphatic hydrocarbon group having 1 to 10 carbon atoms.
  • g to j and p to s represent the number of substitutions, g, h, r and s each independently an integer of 0 to 4, i and j each independently an integer of 0 to 3, p and q each independently Represents an integer from 0 to 13. However, when L is a single bond, r and s are integers of 0.
  • Ar 2 and Ar 3 in the general formula (6) are each independently a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, or a substituted or unsubstituted terphenyl group, and terphenyl
  • the groups may be linearly connected or branched.
  • host materials in which R is deuterium are preferably mentioned.
  • the organic electroluminescent device of the present invention has a mixed host containing two types of compounds and a light-emitting layer containing a dopant (luminescent dopant material).
  • a mixed host the ratio of the compound represented by general formula (1) to the total of the compound represented by general formula (1) and the compound represented by general formula (6) is 10% by mass. % or more and less than 80% by mass, and more preferably 20% or more and less than 70% by mass.
  • the luminescent dopant is an organometallic complex containing at least one metal selected from the group consisting of ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, and gold, or has a delayed thermal activation. More preferably, it is a fluorescent dopant.
  • the present invention relates to a premix used to form a light emitting layer of an organic electroluminescent device comprising a light emitting layer containing a host and a light emitting dopant material between opposing anodes and cathodes, the premix comprising: includes a first host and a second host, of which the first host is selected from the compounds represented by the general formula (1), and the second host is selected from the compounds represented by the general formula (6). It is characterized by being In addition, in manufacturing the above organic electroluminescent device, a first host represented by general formula (1) and a second host represented by general formula (6) are mixed to form a premix, and then this is mixed. It is preferable to have a step of forming a light emitting layer by vapor depositing a host material containing the light emitting layer.
  • the difference in 50% weight loss temperature between the first host and the second host is within 20°C.
  • the compound represented by the general formula (1) has a nitrogen-containing 6-membered ring in indolocarbazole, the indolocarbazole is substituted with deuterium, and The six-membered nitrogen ring has one or more phenylene groups. Then, the compound represented by general formula (1) is used as a host material, preferably the compound represented by general formula (1) is used as a first host, and a biscarbazole compound represented by general formula (6) is used. By mixing and using them as a second host, it is possible to obtain an organic EL element with high efficiency and long life despite being low voltage.
  • 1 is a schematic cross-sectional view showing an example of an organic EL element.
  • the host material for the organic EL device of the present invention is represented by the above general formula (1).
  • ring G is an aromatic ring represented by formula (1a), and is fused with two adjacent rings.
  • Ring H is a five-membered heterocycle represented by formula (1b), and is condensed with two adjacent rings at any position, but not at a side containing N. Therefore, the indolocarbazole ring has several isomeric structures, but the number is limited. Specifically, it can have a structure represented by the above formulas (2) to (5), preferably formulas (2) to (4), and more preferably a structure represented by formula (2). This is the mode in which
  • D represents deuterium
  • Ar 1 is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 3 to 17 carbon atoms, or an aromatic group thereof. It is a substituted or unsubstituted connected aromatic group in which 2 to 5 aromatic rings of the group are connected.
  • it is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms, or a substituted or unsubstituted connected aromatic group in which two aromatic rings of these aromatic groups are connected, and more preferably a substituted or unsubstituted aromatic hydrocarbon group. or an unsubstituted phenyl group, or a substituted or unsubstituted biphenyl group.
  • n and n represent the number of repetitions, m and n each independently represent an integer of 0 or 1, and m+n is 1 or more.
  • m represents an integer of 0 and n is an integer of 1.
  • Ar 1 is an unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms, an unsubstituted aromatic heterocyclic group having 3 to 17 carbon atoms, or 2 to 5 aromatic rings of these aromatic groups are linked together.
  • the linked aromatic group include benzene, naphthalene, acenaphthene, acenaphthylene, azulene, anthracene, chrysene, pyrene, phenanthrene, fluorene, triphenylene, pyridine, pyrimidine, triazine, thiophene, isothiazole, thiazole, pyridazine, pyrrole, Pyrazole, imidazole, triazole, pyrazine, furan, isoxazole, quinoline, isoquinoline, quinoxaline, quinazoline, thiadiazole, phthalazine, tetrazole, indole,
  • Preferable examples include benzene, naphthalene, acenaphthene, acenaphthylene, azulene, anthracene, chrysene, pyrene, phenanthrene, fluorene, triphenylene, or a group formed from a compound formed by linking 2 to 5 of these, and more preferably, A phenyl group, a biphenyl group, or a terphenyl group.
  • the terphenyl group may be linearly connected or branched.
  • the mode of connection may be at any of the ortho, meta, and para positions, but it is preferable to include an ortho connection.
  • the aromatic hydrocarbon group, aromatic heterocyclic group, or linked aromatic group may each have a substituent.
  • the substituent is a halogen, a cyano group, a triarylsilyl group, an aliphatic hydrocarbon group having 1 to 10 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, or A diarylamino group having 12 to 44 carbon atoms is preferred.
  • the substituent is an aliphatic hydrocarbon group having 1 to 10 carbon atoms, it may be linear, branched, or cyclic.
  • the above-mentioned triarylsilyl group or the above-mentioned diarylamino group substitutes the above-mentioned aromatic hydrocarbon group, aromatic heterocyclic group, or linked aromatic group, silicon and carbon or nitrogen and carbon are each a single bond.
  • the number of the above substituents is preferably 0 to 5, preferably 0 to 2.
  • the aromatic hydrocarbon group and the aromatic heterocyclic group have a substituent, the number of carbon atoms in the substituent is not included in the calculation of the number of carbon atoms. However, it is preferable that the total number of carbon atoms including the number of carbon atoms of the substituents satisfies the above range.
  • substituents include cyano, methyl, ethyl, propyl, i-propyl, butyl, t-butyl, pentyl, neopentyl, cyclopentyl, hexyl, cyclohexyl, heptyl, octyl, nonyl, decyl, vinyl, propenyl, Examples include butenyl, pentenyl, methoxy, ethoxy, propoxy, butoxy, pentoxy, diphenylamino, naphthylphenylamino, dinaphthylamino, dianthranylamino, diphenanthrenylamino, dipyrenylamino, and the like.
  • Preferred examples include cyano, methyl, ethyl, t-butyl, propyl, butyl, pentyl, neopentyl, hexyl, heptyl, octyldiphenylamino, naphthylphenylamino, and dinaphthylamino.
  • examples of the aliphatic hydrocarbon group having 1 to 10 carbon atoms include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl and the like.
  • it is an alkyl group having 1 to 4 carbon atoms.
  • a linked aromatic group refers to an aromatic group in which the aromatic rings of two or more aromatic groups are bonded together by a single bond.
  • These linked aromatic groups may be linear or branched.
  • the bonding position when benzene rings are bonded to each other may be ortho, meta, or para, but para bonding or meta bonding is preferred.
  • the aromatic group may be an aromatic hydrocarbon group or an aromatic heterocyclic group, and the plurality of aromatic groups may be the same or different.
  • the above host material is used as a host material for a light emitting layer of an organic EL element. Although one type of host material may be used, it is preferable to use two or more types. When using two or more types, it is preferable that the above host material is used as the first host material and a material selected from the compounds represented by the above general formula (6) is included as the second host material.
  • the two carbazole rings can be bonded at the 2-position, the 3-position, or the 4-position, respectively, but preferably they are bonded at the 3-position as shown in the formula (7).
  • the same symbols have the same meaning.
  • Ar 2 and Ar 3 each independently represent a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms, or a substituted or unsubstituted aromatic heterocarbon group having 3 to 17 carbon atoms.
  • it is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms, or a connected aromatic group in which 2 to 3 aromatic rings of the aromatic hydrocarbon group are connected, and more preferably a substituted or unsubstituted aromatic hydrocarbon group.
  • the terphenyl group may be linearly connected or branched.
  • L is each independently a single bond, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 3 to 17 carbon atoms.
  • Preferably it is a single bond or a substituted or unsubstituted phenylene group.
  • the connection mode may be ortho, meta, or para connection.
  • each R independently represents deuterium or an aliphatic hydrocarbon group having 1 to 10 carbon atoms. Preferably it is deuterium.
  • g to j and p to s represent the number of substitutions, g, h, r and s are each independently an integer of 0 to 4, i and j are each independently an integer of 0 to 3, p and q are each independently 0 represents an integer of ⁇ 13, and when L is a single bond, r and s are integers of 0.
  • g+h+i+j is an integer of 0 or 14.
  • an aliphatic hydrocarbon group having 1 to 10 carbon atoms an unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms, an unsubstituted aromatic heterocyclic group having 3 to 17 carbon atoms, and Specific examples of the unsubstituted linked aromatic group in which 2 to 5 aromatic rings of the aromatic hydrocarbon group and the aromatic heterocyclic group are linked are the same as those described in general formula (1). . Specific examples of the substituent are the same as those described for general formula (1) except that deuterium is included.
  • the unsubstituted aromatic hydrocarbon group, the unsubstituted aromatic heterocyclic group, the unsubstituted linked aromatic group, the substituents of these aromatic groups, or the aliphatic hydrocarbon group are Some or all of the hydrogen may be deuterated.
  • the substituent for triazine and Ar 1 are not deuterated, and other than that, hydrogen in the compounds represented by general formulas (1) to (7) is Part or all of may be deuterium.
  • the deuterated compound includes both cases where it consists of a single compound and cases where it consists of a mixture of two or more compounds.
  • the deuteration rate when the deuteration rate is 50%, it means that on average half of all hydrogen has been replaced with deuterium, and a deuterated product is a single compound. or a mixture of different deuteration rates.
  • the hydrogens in the compounds represented by general formulas (1) to (5) are deuterium, preferably 10% or more of the hydrogen atoms are deuterium, more preferably 20% or more, It is preferable that 40% or less is deuterium, and the deuteration rate is preferably such that the total number of a+b+x is 2 or more and 10 or less.
  • the hydrogens in the compounds represented by general formulas (6) and (7) are deuterium, preferably 30% or more of the hydrogen atoms are deuterium, more preferably 40% or more. It is preferable that at least 50% of the hydrogen is deuterium, and more preferably 50% or more of the hydrogen is deuterium.
  • the deuteration rate can be determined by mass spectrometry or proton nuclear magnetic resonance spectroscopy. For example, when determining by proton nuclear magnetic resonance spectroscopy, first prepare a measurement sample by adding and dissolving the compound and internal standard in a heavy solvent, and then calculate the concentration in the measurement sample from the integrated intensity ratio derived from the internal standard and the compound. Calculate the proton concentration [mol/g] of the compound contained in. Next, calculate the ratio of the proton concentration of the deuterated compound to the corresponding proton concentration of the non-deuterated compound, and subtract it from 1 to obtain the deuteration rate of the deuterated compound. It can be calculated. Further, the deuteration rate of a partial structure can be calculated from the integrated intensity of the chemical shift derived from the target partial structure using the same procedure as described above.
  • the host material for an organic EL device of the present invention is suitably used as a host material for a light emitting layer.
  • FIG. 1 is a cross-sectional view showing an example of the structure of a general organic EL device used in the present invention, in which 1 is a substrate, 2 is an anode, 3 is a hole injection layer, 4 is a hole transport layer, and 5 is a light emitting layer. , 6 represents an electron transport layer, and 7 represents a cathode.
  • the organic EL device of the present invention may have an exciton blocking layer adjacent to the light emitting layer, or may have an electron blocking layer between the light emitting layer and the hole injection layer.
  • the exciton blocking layer can be inserted into either the anode side or the cathode side of the light emitting layer, or can be inserted into both at the same time.
  • the organic EL device of the present invention has an anode, a light emitting layer, and a cathode as essential layers, but in addition to the essential layers, it may also have a hole injection transport layer and an electron injection transport layer, and further includes a light emitting layer and an electron injection transport layer. It is preferable to have a hole blocking layer between the transport layers.
  • the hole injection transport layer means either or both of the hole injection layer and the hole transport layer
  • the electron injection transport layer means either or both of the electron injection layer and the electron transport layer.
  • the organic EL element of the present invention is preferably supported by a substrate.
  • a substrate There are no particular restrictions on this substrate, and any substrate that has been conventionally used in organic EL devices may be used, such as glass, transparent plastic, quartz, or the like.
  • anode material in the organic EL element a material consisting of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a large work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 -ZnO) that can be used to form a transparent conductive film may be used.
  • these electrode materials may be formed into a thin film by methods such as vapor deposition or sputtering, and a pattern of the desired shape may be formed by photolithography, or if high pattern precision is not required (approximately 100 ⁇ m or more). Alternatively, a pattern may be formed through a mask having a desired shape during vapor deposition or sputtering of the electrode material. Alternatively, when a coatable substance such as an organic conductive compound is used, a wet film forming method such as a printing method or a coating method can also be used. When emitting light from this anode, it is desirable that the transmittance be greater than 10%, and the sheet resistance of the anode is preferably several hundred ⁇ / ⁇ or less. Although the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
  • the cathode material a material consisting of a metal (electron-injecting metal) with a small work function (4 eV or less), an alloy, an electrically conductive compound, or a mixture thereof is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium/copper mixture, magnesium/silver mixture, magnesium/aluminum mixture, magnesium/indium mixture, aluminum/aluminum oxide ( Al2O 3 ) Mixtures, indium, lithium/aluminum mixtures, rare earth metals, etc.
  • the cathode can be manufactured by forming a thin film of these cathode materials by a method such as vapor deposition or sputtering. Further, the sheet resistance of the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm. Note that, in order to transmit the emitted light, it is advantageous if either the anode or the cathode of the organic EL element is transparent or semi-transparent, as this improves the luminance of the emitted light.
  • a transparent or translucent cathode can be produced. By applying this, it is possible to fabricate an element in which both the anode and cathode are transparent.
  • the light-emitting layer is a layer that emits light after excitons are generated by recombination of holes and electrons injected from the anode and cathode, respectively, and the light-emitting layer may contain an organic light-emitting dopant material and a host material. good.
  • a host material represented by the general formula (1) or any one of formulas (2) to (5) (also referred to as the host material of the present invention) is used.
  • the host material of the present invention may be used alone, or two or more different compounds may be used, and one or more types of other host materials such as known host materials may be used in combination.
  • the other host material is preferably a compound that has hole transport ability and electron transport ability, prevents emitted light from increasing in wavelength, and has a high glass transition temperature.
  • host material of the present invention When the host material of the present invention is included as the first host material, it is particularly preferable to use a compound represented by either the general formula (6) or formula (7) as the second host material, but in addition to the following: host material may be used as the second host. In addition, when the host material of the present invention is used as the first host material and the compound represented by any of the general formulas (6) and (7) is used as the second host material, another host material may be used as the third host material. It's okay.
  • host materials can be selected from those known from numerous patent documents and the like. Specific examples of host materials include, but are not limited to, indolocarbazole derivatives described in WO2008/056746A1 and WO2008/146839A1, carbazole derivatives described in WO2009/086028A1 and WO2012/077520A1, and CBP (N , N-biscarbazolylbiphenyl) derivatives, triazine derivatives described in WO2014/185595A1 and WO2018/021663A1, etc., indenocarbazole derivatives described in WO2010/136109A1 and WO2011/000455A1, etc., dibenzofuran derivatives described in WO2015/169412A1, etc.
  • triazole derivatives indole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styryl anthracene derivatives, fluorenone derivatives, hydrazone Derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidene compounds, porphyrin compounds, anthraquinodimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyrane dioxide derivatives, naphthalene perylene
  • metal complexes such as metal complexes of heterocyclic tetracarboxylic acid anhydrides, phthalocyanine derivatives, 8-
  • the organic luminescent dopant material preferably includes a phosphorescent dopant, a fluorescent dopant, or a thermally activated delayed fluorescent dopant.
  • the phosphorescent dopant preferably contains an organometallic complex containing at least one metal selected from ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, and gold.
  • organometallic complex containing at least one metal selected from ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, and gold.
  • Iridium complex and US2018 described in /0013078A1 or KR2018/094482A, etc. are preferably used, but the platinum complexes are not limited thereto.
  • the light-emitting layer may contain only one type of phosphorescent dopant material, or may contain two or more types of phosphorescent dopant materials.
  • the content of the phosphorescent dopant material is preferably 0.1 to 30% by mass, more preferably 1 to 20% by mass, based on the host material.
  • the phosphorescent dopant material is not particularly limited, but specific examples include the following.
  • fluorescent dopants include, but are not limited to, benzoxazole derivatives, benzothiazole derivatives, benzimidazole derivatives, styrylbenzene derivatives, polyphenyl derivatives, diphenylbutadiene derivatives, tetraphenylbutadiene derivatives, naphthalimide derivatives, coumarin derivatives, and condensed aromatic compounds.
  • Preferred examples include fused aromatic derivatives, styryl derivatives, diketopyrrolopyrrole derivatives, oxazine derivatives, pyrromethene metal complexes, transition metal complexes, and lanthanide complexes, and more preferred are naphthalene, pyrene, chrysene, triphenylene, and benzo[c]phenanthrene.
  • benzo[a]anthracene pentacene, perylene, fluoranthene, acenaphthofluoranthene, dibenzo[a,j]anthracene, dibenzo[a,h]anthracene, benzo[a]naphthalene, hexacene, naphtho[2,1-f ] Isoquinoline, ⁇ -naphthaphenanthridine, phenanthrooxazole, quinolino[6,5-f]quinoline, benzothiophanthrene, and the like.
  • These may have an alkyl group, an aryl group, an aromatic heterocyclic group, or a diarylamino group as a substituent.
  • the content of the fluorescent dopant material is preferably 0.1 to 20% by mass, more preferably 1 to 10% by mass, based on the host material.
  • thermally activated delayed fluorescence dopants include, but are not limited to, metal complexes such as tin complexes and copper complexes, indolocarbazole derivatives described in WO2011/070963A1, cyanobenzene derivatives and carbazole derivatives described in Nature 2012,492,234, Examples include phenazine derivatives, oxadiazole derivatives, triazole derivatives, sulfone derivatives, phenoxazine derivatives, acridine derivatives, etc. described in Nature Photonics 2014, 8, 326.
  • the heat-activated delayed fluorescence emitting dopant material is not particularly limited, but specific examples include the following.
  • thermally activated delayed fluorescence dopant may be used in combination with a phosphorescence dopant or a fluorescence dopant.
  • the content of the thermally activated delayed fluorescence dopant material is preferably 0.1 to 50% by mass, more preferably 1 to 30% by mass, based on the host material.
  • An injection layer is a layer provided between an electrode and an organic layer in order to reduce driving voltage and improve luminance.There are a hole injection layer and an electron injection layer. It may also be present between the cathode and the light emitting layer or electron transport layer. An injection layer can be provided as necessary.
  • the hole-blocking layer has the function of an electron-transporting layer, and is made of a hole-blocking material that has the function of transporting electrons but has an extremely low ability to transport holes. By preventing this, the probability of recombination of electrons and holes in the light emitting layer can be improved.
  • an electron blocking layer has the function of a hole transport layer, and by transporting holes and blocking electrons, it can improve the probability that electrons and holes will recombine in the light-emitting layer. .
  • the material for the electron blocking layer a known electron blocking layer material can be used, and the hole transporting layer material described below can be used as necessary.
  • the thickness of the electron blocking layer is preferably 3 to 100 nm, more preferably 5 to 30 nm.
  • the exciton blocking layer is a layer that prevents excitons generated by the recombination of holes and electrons in the light emitting layer from diffusing into the charge transport layer. It becomes possible to efficiently confine the light within the light emitting layer, and the light emitting efficiency of the device can be improved.
  • the exciton blocking layer can be inserted between two adjacent light-emitting layers in a device in which two or more light-emitting layers are adjacent.
  • exciton blocking layer As the material for the exciton blocking layer, known exciton blocking layer materials can be used. Examples include 1,3-dicarbazolylbenzene (mCP) and bis(2-methyl-8-quinolinolato)-4-phenylphenolate aluminum (III) (BAlq).
  • mCP 1,3-dicarbazolylbenzene
  • BAlq bis(2-methyl-8-quinolinolato)-4-phenylphenolate aluminum
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer can be provided in a single layer or in multiple layers.
  • the hole transport material has any of the following properties: hole injection/transport, and electron barrier properties, and may be either organic or inorganic.
  • hole transport layer any compound selected from conventionally known compounds can be used.
  • hole transport materials include porphyrin derivatives, arylamine derivatives, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives.
  • oxazole derivatives oxazole derivatives, styryl anthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, especially thiophene oligomers, but porphyrin derivatives, arylamine derivatives, and styryl It is preferable to use an amine derivative, and it is more preferable to use an arylamine derivative.
  • the electron transport layer is made of a material that has a function of transporting electrons, and the electron transport layer can be provided in a single layer or in multiple layers.
  • the electron transport material (which may also serve as a hole blocking material) may have the function of transmitting electrons injected from the cathode to the light emitting layer.
  • any compound selected from conventionally known compounds can be used, such as polycyclic aromatic derivatives such as naphthalene, anthracene, and phenanthroline, and tris(8-quinolinolato)aluminum(III).
  • the method for manufacturing an organic electroluminescent device of the present invention includes a step of pre-mixing the first host material and the second host material, and a step of vapor depositing the obtained mixture from one vapor deposition source to form a light emitting layer. has.
  • a mixing method methods such as powder mixing, melt mixing, and sublimation can be adopted.
  • the host and its premix may be in the form of powder, stick, or granule.
  • the difference in 50% weight loss temperature between the first host material and the second host material is preferably within 20°C.
  • the 50% weight loss temperature is the temperature at which the weight decreases by 50% when the temperature is raised from room temperature to 550°C at a rate of 10°C per minute in TG-DTA measurement under reduced pressure of nitrogen flow (1 Pa). Refers to temperature. It is thought that vaporization by evaporation or sublimation occurs most actively near this temperature.
  • Synthesis examples of compounds 1-11, 2-109, and 2-116 are shown as representative examples. Other compounds were synthesized using similar methods. The deuteration rate was determined by proton nuclear magnetic resonance spectroscopy.
  • Synthesis example 2 5.00 g (0.0186 mol) of compound (b), 4.78 g (0.0205 mol) of compound (c), 0.35 g (0.00186 mol) of copper iodide, 5.15 g (0.0370 mol) of potassium carbonate, 8 -0.54 g (0.00373 mol) of quinolinol and 21.5 g of 1,3-dimethyl-2-imidazolidinone were added, and the mixture was stirred at 130° C. for 3 hours under a nitrogen atmosphere. After cooling to room temperature, it was added dropwise to a mixed solution of 41 g of water and 10 g of 2N HCl, and the mixture was stirred at room temperature for 2 hours.
  • the precipitated crystals were collected by filtration and purified by silica gel column chromatography (toluene). The obtained crystals were purified by crystallization using 12 g of acetone and 12 g of heptane to obtain 3.70 g (0.00882 mol, yield 47.4%, deuteration rate 50%) of compound (d) as a white solid. . (APCI-TOFMS, m/z419[M+H] + ).
  • Synthesis example 4 3.50 g (0.00576 mol) of compound (f), 1.37 g (0.00691 mol) of compound (g), 0.001 g (0.00002 mol) of CX21 manufactured by Umicore, 1.59 g (0.0115 mol) of potassium carbonate, 21 g of m-xylene and 3.5 g of distilled water were added, and the mixture was stirred at 90° C. for 3 hours under a nitrogen atmosphere. After cooling to room temperature, 8.8 g of water was added, and after cooling to room temperature and stirring for 2 hours, the precipitated crystals were collected by filtration.
  • Synthesis example 6 Add 160 mL of heavy benzene (C 6 D 6 ) and 10.0 g of heavy trifluoromethanesulfonic acid (TfOD) to 8.3 g (14.8 mmol) of compound (2-2), and heat and stir at 50°C for 6.5 hours under a nitrogen atmosphere. did. The reaction solution was added to a heavy water solution (200 mL) of sodium carbonate (7.4 g) and quenched, separated and purified to obtain 2.5 g (4.25 mmol, yield 29%, deuterium) of compound (2-116) as a white solid. 81% conversion rate) was obtained (APCI-TOFMS, m/z 589[M+H]+).
  • Example 1 Each thin film was laminated by vacuum evaporation at a vacuum degree of 4.0 ⁇ 10 ⁇ 5 Pa on a glass substrate on which an anode made of ITO with a film thickness of 70 nm was formed.
  • HAT-CN was formed to a thickness of 25 nm as a hole injection layer on ITO
  • Spiro-TPD was formed to a thickness of 30 nm as a hole transport layer.
  • HT-1 was formed to a thickness of 10 nm as an electron blocking layer.
  • Example 2 Comparative Examples 1 to 5
  • an organic EL device was produced in the same manner as in Example 1, except that the compounds shown in Table 2 were used as hosts.
  • Table 2 shows the evaluation results of the produced organic EL devices.
  • the brightness, voltage, and power efficiency are values when the drive current is 10 mA/cm 2 and are initial characteristics.
  • the host compound number is the number assigned to the above-mentioned exemplified compound.
  • Example 6 Each thin film was laminated by vacuum evaporation at a degree of vacuum of 4.0 ⁇ 10 ⁇ 5 Pa on a glass substrate on which an anode made of ITO with a film thickness of 110 nm was formed.
  • HAT-CN was formed to a thickness of 25 nm as a hole injection layer on ITO
  • Spiro-TPD was formed to a thickness of 30 nm as a hole transport layer.
  • HT-1 was formed to a thickness of 10 nm as an electron blocking layer.
  • Compound 1-1 as a first host, Compound 2-2 as a second host, and Ir(ppy) 3 as a light emitting dopant were co-deposited from different deposition sources, and a 40 nm layer was deposited. A light emitting layer was formed to a thickness of .
  • co-evaporation was performed under deposition conditions such that the concentration of Ir(ppy) 3 was 10% by mass and the weight ratio of the first host and the second host was 30:70.
  • ET-1 was formed to a thickness of 20 nm as an electron transport layer.
  • LiF was formed to a thickness of 1 nm as an electron injection layer on the electron transport layer.
  • Al was formed to a thickness of 70 nm as a cathode on the electron injection layer to produce an organic EL device.
  • Examples 7-27 An organic EL device was produced in the same manner as in Example 6, except that the compounds shown in Table 3 were used as the first host and the second host, and the weight ratios shown in Table 3 were set.
  • Examples 28-39 Example 6 except that a premix obtained by weighing the first host and the second host shown in Table 3 so as to have the weight ratio shown in Table 3 and mixing them while grinding in a mortar was vapor deposited from one vapor deposition source. An organic EL device was prepared in the same manner as above.
  • Comparative examples 6 to 14 An organic EL device was produced in the same manner as in Example 6, except that the compounds shown in Table 4 were used as the first host and the second host, and the weight ratios shown in Table 4 were set.
  • Comparative examples 15-20 Example 6 except that a premix obtained by weighing the first host and the second host shown in Table 4 so as to have the weight ratio shown in Table 4, and mixing them while grinding in a mortar was vapor deposited from one vapor deposition source. An organic EL device was prepared in the same manner as above.
  • Tables 3 and 4 show the evaluation results of the produced organic EL devices.
  • the brightness, voltage, and power efficiency are values when the drive current is 10 mA/cm 2 and are initial characteristics.
  • the initial brightness at a drive current of 20 mA/cm 2 is taken as 100%, the time required for the brightness to decay to 97% represents the lifetime characteristic.
  • the weight ratio is first host:second host.
  • Examples 28 to 39 in which they were premixed and deposited from one deposition source, and Examples 28 to 39 in which they were premixed and deposited from one deposition source, and those that were deposited from separate deposition sources without premixing Comparing with Examples 7 to 27 in which co-evaporation was performed, it can be seen that a well-balanced element with high efficiency and long life can be obtained at a lower voltage.
  • Table 5 shows compounds 1-9, 1-10, 1-11, 1-81, 1-85, 2-2, 2-109, 2-116, 2-118, 2-119, 2-120, compounds The 50% weight loss temperature (T 50 ) of A, B, and C is indicated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

低電圧、高効率、かつ長寿命特性を有する実用上有用な有機EL素子を提供することを目的とする。 下記一般式(1)で表される有機電界発光素子用のホスト材料を用いるようにする。 (ここで、環Gは、式(1a)で表される芳香族環であり、環Hは、式(1b)で表される複素環を表す。Dは重水素を表し、Arは、置換若しくは未置換の炭素数6~18の芳香族炭化水素基、置換若しくは未置換の炭素数3~17の芳香族複素環基、又はこれらの芳香族基の芳香族環が2~5個連結した置換若しくは未置換の連結芳香族基である。a、b及びxは置換数を表し、a、bは0~4の整数、xは0~2の整数、a+b+x≧1である。m、nは繰り返し数を表し、m及びnは0又は1の整数で、m+nは1以上である。)

Description

有機電界発光素子用ホスト材料及び予備混合物並びに有機電界発光素子
 本発明は、有機電界発光素子(以下、有機EL素子という)に関するものであり、詳しくは、特定の混合ホスト材料を含む有機EL素子に関するものである。
 有機EL素子に電圧を印加することで、陽極から正孔が、陰極からは電子がそれぞれ発光層に注入される。そして発光層において、注入された正孔と電子が再結合し、励起子が生成される。この際、電子スピンの統計則により、一重項励起子及び三重項励起子が1:3の割合で生成する。一重項励起子による発光を用いる蛍光発光型の有機EL素子は、内部量子効率は25%が限界であるといわれている。一方で三重項励起子による発光を用いる燐光発光型の有機EL素子は、一重項励起子から項間交差が効率的に行われた場合には、内部量子効率を100%まで高められることが知られている。
 最近では、遅延蛍光を利用した高効率の有機EL素子の開発がなされている。例えば特許文献1には、遅延蛍光のメカニズムの一つであるTTF(Triplet-Triplet Fusion)機構を利用した有機EL素子が開示されている。TTF機構は2つの三重項励起子の衝突によって一重項励起子が生成する現象を利用するものであり、理論上内部量子効率を40%まで高められると考えられている。しかしながら、燐光発光型の有機EL素子と比較すると効率が低いため、更なる効率の改良、及び低電圧特性が求められている。
 また、特許文献2では、TADF(Thermally ActivatedDelayedFluorescence)機構を利用した有機EL素子が開示されている。TADF機構は一重項準位と三重項準位のエネルギー差が小さい材料において三重項励起子から一重項励起子への逆項間交差が生じる現象を利用するものであり、理論上内部量子効率を100%まで高められると考えられている。
 しかしながらいずれの機構においても、効率、寿命ともに向上の余地があり、加えて駆動電圧の低減についても改善が求められている。
 一方で、特許文献3では、インドロカルバゾール化合物を発光層のホスト材料として使用することを開示している。
 特許文献4、5では、インドロカルバゾール化合物と、ビスカルバゾール化合物を発光層の混合ホスト材料として使用することを開示している。
 特許文献6、7では、重水素化置換されたインドロカルバゾール化合物を発光層のホスト材料として使用することを開示している。
 特許文献8、9では、重水素化されたビスカルバゾール化合物を発光層のホスト材料として使用することを開示している。
 特許文献7、10では、重水素化置換されたインドロカルバゾール化合物と、ビスカルバゾール化合物を発光層の混合ホスト材料として使用することを開示している。
 しかしながら、いずれも十分なものとは言えず、更なる改良が望まれている。
国際公開第2010/134350号 国際公開第2011/070963号 国際公開第2008/056746号 国際公開第2018/198844号 米国特許第10333077号 特許第5784621号 韓国特許第102054806号 韓国特許第102283849号 韓国公開特許第2022-0013910号 韓国特許第102193015号
 有機ELディスプレイは、液晶ディスプレイと比較して、薄型軽量、高コントラスト、高速動画表示が可能といった特徴に加え、曲面化やフレキシブル化等のデザイン性が高く評価され、モバイル、TVをはじめとする表示装置に広く応用されている。しかし、携帯端末として用いる場合のバッテリー消費を抑えるため、さらなる低電圧化が必要であり、また光源としては無機LEDに対して輝度や寿命の面で劣っているため、効率の改良や、素子寿命の向上が求められている。本発明は、上記現状に鑑み、低電圧、高効率、かつ長寿命特性を有する実用上有用な有機EL素子を提供することを目的とする。
 本発明者らは、鋭意検討した結果、発光層に特定のホスト材料を用いて、特にそれを含んだ混合ホスト材料を用いた有機電界発光素子は、上記課題を解決することができることを見出し、本発明を完成するに至った。
 本発明は、下記一般式(1)で表される有機電界発光素子用ホスト材料に関する。
Figure JPOXMLDOC01-appb-C000007

 一般式(1)において、環Gは、式(1a)で表される芳香族環であり、環Hは、式(1b)で表される複素環を表す。
 Dは重水素を表し、Arは、置換若しくは未置換の炭素数6~18の芳香族炭化水素基、置換若しくは未置換の炭素数3~17の芳香族複素環基、又はこれらの芳香族基の芳香族環が2~5個連結した置換若しくは未置換の連結芳香族基である。a、b、及びxは置換数を表し、a、bは独立に0~4の整数、xは0~2の整数を表し、a+b+x≧1である。m、nは繰り返し数を表し、m及びnはそれぞれ独立に0又は1の整数を表し、m+nは1以上である。
 なお、上記一般式(1)において、トリアジンに置換する置換基、及びArは重水素を含まない。
 一般式(1)において、Arが置換若しくは未置換の炭素数6~18の芳香族炭化水素基、又はこれらの芳香族基の芳香族環が2個連結した置換若しくは未置換の連結芳香族基であること、Arが置換若しくは未置換のフェニル基、又は置換若しくは未置換のビフェニル基であること、mが0であることの何れかを満足することは本発明の好ましい態様である。
 一般式(1)の好ましい態様として、下記(2)~(5)のいずれかがある。
Figure JPOXMLDOC01-appb-C000008

 また、本発明は、対向する陽極と陰極の間に、1つ以上の発光層を含む有機電界発光素子において、少なくとも1つの発光層が、前記一般式(1)で表される化合物から選ばれる第1ホストと、下記一般式(6)で表される化合物から選ばれる第2ホスト、及び発光性ドーパント材料とを含有することを特徴とする有機電界発光素子である。
Figure JPOXMLDOC01-appb-C000009

 式(6)において、Ar、及びArは、それぞれ独立に置換若しくは未置換の炭素数6~18の芳香族炭化水素基、置換若しくは未置換の炭素数3~17の芳香族複素環基、又はこれらの芳香族基の芳香族環が2~5個連結した置換若しくは未置換の連結芳香族基を表す。
 Lはそれぞれ独立に単結合、置換もしくは未置換の炭素数6~18の芳香族炭化水素基、又は置換若しくは未置換の炭素数3~17の芳香族複素環基を表し、Rはそれぞれ独立に重水素、又は炭素数1~10の脂肪族炭化水素基を表す。
 g~jおよびp~sは置換数を表し、g、h、r及びsはそれぞれ独立に0~4の整数、i及びjはそれぞれ独立に0~3の整数、p及びqはそれぞれ独立に0~13の整数を表す。ただし、Lが単結合の時、rおよびsは0の整数である。
 前記一般式(6)の化合物としては、下記式(7)で表される態様がある。
Figure JPOXMLDOC01-appb-C000010

 前記一般式(6)におけるAr及びArがそれぞれ独立に、置換若しくは未置換のフェニル基、置換若しくは未置換のビフェニル基、又は置換若しくは未置換のターフェニル基であることが好ましく、ターフェニル基は、直鎖状に連結しても、分岐してもよい。またRが、重水素であるホスト材料が好ましく挙げられる。
 本発明の有機電界発光素子は、2種類の化合物を含んだ混合ホストを有すると共に、ドーパント(発光性ドーパント材料)を有した発光層を備えたものである。このうち、混合ホストとして、一般式(1)で表される化合物と一般式(6)で表される化合物の合計に対して、一般式(1)で表される化合物の割合が、10質量%以上、80質量%未満であることが好ましく、20質量%以上、70質量%未満であることがより好ましい。また、発光性のドーパントが、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金及び金からなる群から選ばれる少なくとも一つの金属を含む有機金属錯体であるか、又は、熱活性化遅延蛍光発光ドーパントであることがより好ましい。
 本発明は、対向する陽極と陰極の間に、ホスト及び発光性ドーパント材料を含有する発光層を含む有機電界発光素子の発光層を形成するために使用される予備混合物であって、該予備混合物が第1ホスト及び第2ホストを含み、このうち、第1ホストが前記一般式(1)で表される化合物から選ばれ、第2ホストが前記一般式(6)で表される化合物から選ばれることを特徴とする。
 また、上記の有機電界発光素子を製造するに当たり、一般式(1)で表される第1ホストと一般式(6)で表される第2ホストを混合して予備混合物としたのち、これを含むホスト材料を蒸着させて発光層を形成する工程を有することが好ましい。
 上記有機電界発光素子の製造方法において、第1ホストと第2ホストの50%重量減少温度の差が20℃以内であることが好ましい。
 本発明では、一般式(1)で表される化合物がインドロカルバゾールに含窒素6員環を有し、該インドロカルバゾールが重水素で置換されており、かつ、インドロカルバゾールに結合した含窒素6員環が1つ以上のフェニレン基を有する。そして、この一般式(1)で表される化合物をホスト材料として、好適には、一般式(1)で表される化合物を第1ホストとし、一般式(6)で表されるビスカルバゾール化合物を第2ホストとして混合使用することで、低電圧でありながら、高効率、長寿命の有機EL素子が得られるようになる。
有機EL素子の一例を示した模式断面図である。
 本発明の有機EL素子用のホスト材料は、前記一般式(1)で表される。
 一般式(1)において、環Gは式(1a)で表される芳香族環であり、2つの隣接環と縮合する。また環Hは、式(1b)で表される五員環の複素環であり、2つの隣接環と任意の位置で縮合するが、Nを含む辺で縮合することはない。したがって、インドロカルバゾール環はいくつかの異性体構造を有するが、その数は限られる。具体的には、前記式(2)~(5)で表されるような構造であることができ、好ましくは式(2)~(4)であり、より好ましくは式(2)で表される態様である。
 一般式(1)、式(2)~(5)において、共通する記号は同じ意味を有する。
 Dは重水素を表し、Arは、置換若しくは未置換の炭素数6~18の芳香族炭化水素基、置換若しくは未置換の炭素数3~17の芳香族複素環基、又はこれらの芳香族基の芳香族環が2~5個連結した置換若しくは未置換の連結芳香族基である。好ましくは置換若しくは未置換の炭素数6~18の芳香族炭化水素基、又はこれらの芳香族基の芳香族環が2個連結した置換若しくは未置換の連結芳香族基であり、より好ましくは置換若しくは未置換のフェニル基、又は置換若しくは未置換のビフェニル基である。
 m、nは繰り返し数を表し、m及びnはそれぞれ独立に0又は1の整数を表し、m+nは1以上である。好ましくは、mが0の整数を表し、nが1の整数である。
 a、b及びxは置換数を表し、a、bはそれぞれ独立に0~4の整数、xは0~2の整数を表し、a+b+x≧1であり、好ましくはaおよびbが4の整数、xが2の整数かつ、a+b+x=10である。
 上記Arが未置換の炭素数6~18の芳香族炭化水素基、未置換の炭素数3~17の芳香族複素環基、又はこれらの芳香族基の芳香族環が2~5個連結した連結芳香族基の具体例としては、ベンゼン、ナフタレン、アセナフテン、アセナフチレン、アズレン、アントラセン、クリセン、ピレン、フェナントレン、フルオレン、トリフェニレン、ピリジン、ピリミジン、トリアジン、チオフェン、イソチアゾール、チアゾール、ピリダジン、ピロール、ピラゾール、イミダゾール、トリアゾール、ピラジン、フラン、イソキサゾール、キノリン、イソキノリン、キノキサリン、キナゾリン、チアジアゾール、フタラジン、テトラゾール、インドール、ベンゾフラン、ベンゾチオフェン、ベンゾオキサゾール、ベンゾチアゾール、インダゾール、ベンズイミダゾール、ベンゾトリアゾール、ベンゾイソチアゾール、ベンゾチアジアゾール、プリン、ピラノン、クマリン、イソクマリン、クロモン、ジベンゾフラン、ジベンゾチオフェン、ジベンゾセレノフェン、カルバゾール又はこれらが2~5個連結して構成される化合物から1個の水素を取って生じる基が挙げられる。好ましくは、ベンゼン、ナフタレン、アセナフテン、アセナフチレン、アズレン、アントラセン、クリセン、ピレン、フェナントレン、フルオレン、トリフェニレン、又はこれらが2~5個連結して構成される化合物から生じる基が挙げられ、より好ましくは、フェニル基、ビフェニル基、又はターフェニル基である。ターフェニル基は、直鎖状に連結しても、分岐してもよい。連結様式はオルト、メタ、及びパラ位のいずれであってもよいが、オルト連結を含むことが好ましい。
 上記Arにおいて、芳香族炭化水素基、芳香族複素環基、又は連結芳香族基は、それぞれ置換基を有してもよい。置換基を有する場合の置換基は、ハロゲン、シアノ基、トリアリールシリル基、炭素数1~10の脂肪族炭化水素基、炭素数2~5のアルケニル基、炭素数1~5のアルコキシ基又は炭素数12~44のジアリールアミノ基が好ましい。ここで、置換基が炭素数1~10の脂肪族炭化水素基である場合、直鎖状、分岐状、環状であってもよい。なお、上記トリアリールシリル基、又は上記ジアリールアミノ基が、前記芳香族炭化水素基、芳香族複素環基、又は連結芳香族基を置換する場合、それぞれケイ素と炭素、又は窒素と炭素が単結合で結合する。
 なお、上記置換基の数は0~5であるのがよく、好ましくは0~2がよい。また、芳香族炭化水素基及び芳香族複素環基が置換基を有する場合の炭素数の計算には、置換基の炭素数を含まない。しかし、置換基の炭素数を含んだ合計の炭素数が上記範囲を満足することが好ましい。
 上記置換基の具体例としては、シアノ、メチル、エチル、プロピル、i-プロピル、ブチル、t-ブチル、ペンチル、ネオペンチル、シクロペンチル、へキシル、シクロヘキシル、ヘプチル、オクチル、ノニル、デシル、ビニル、プロペニル、ブテニル、ペンテニル、メトキシ、エトキシ、プロポキシ、ブトキシ、ペントキシ、ジフェニルアミノ、ナフチルフェニルアミノ、ジナフチルアミノ、ジアントラニルアミノ、ジフェナンスレニルアミノ、ジピレニルアミノ等が挙げられる。好ましくは、シアノ、メチル、エチル、t-ブチル、プロピル、ブチル、ペンチル、ネオペンチル、へキシル、ヘプチル、又はオクチルジフェニルアミノ、ナフチルフェニルアミノ、又はジナフチルアミノが挙げられる。
 また、炭素数1~10の脂肪族炭化水素基としては、メチル、エチル、プロピル、ブチル、ペンチル、へキシル、ヘプチル、オクチル、ノニル、デシル等が挙げられる。好ましくは、炭素数1~4のアルキル基である。
 また、連結芳香族基は、2以上の芳香族基の芳香族環が単結合で結合して連結した芳香族基をいう。これらの連結芳香族基は直鎖状であっても、分岐してもよい。ベンゼン環同士が連結する際の連結位置はオルト、メタ、パラ、いずれでもよいが、パラ連結、又はメタ連結が好ましい。芳香族基は芳香族炭化水素基であっても、芳香族複素環基であってもよく、複数の芳香族基は同一であっても、異なってもよい。
 上記ホスト材料は、有機EL素子の発光層のホスト材料として使用される。ホスト材料は1種類であってもよいが、2種類以上とすることが好ましい。2種類以上とする場合、上記ホスト材料を第1ホスト材料とし、上記一般式(6)で表される化合物から選ばれる材料を第2ホスト材料として含むことが好ましい。
 前記一般式(6)において、2つのカルバゾール環は、それぞれ2位、3位、又は4位で結合することができるが、好ましくは式(7)に示すような3位での結合である。
 一般式(6)及び式(7)において、同じ記号は同じ意味を有する。
 前記一般式(6)において、Ar、及びArは、それぞれ独立に置換もしくは未置換の炭素数6~18の芳香族炭化水素基、置換もしくは未置換の炭素数3~17の芳香族複素環基、又はこれらの芳香族基が2~5個連結した置換もしくは未置換の連結芳香族基を表す。好ましくは置換もしくは未置換の炭素数6~18の芳香族炭化水素基、又は該芳香族炭化水素基の芳香族環が2~3個連結した連結芳香族基であり、より好ましくは置換もしくは未置換のフェニル基、置換もしくは未置換のビフェニル基、又は置換もしくは未置換のターフェニル基である。ターフェニル基は、直鎖状に連結しても、分岐してもよい。
 また、Lはそれぞれ独立に単結合、置換若しくは未置換の炭素数6~18の芳香族炭化水素基、又は置換若しくは未置換の炭素数3~17の芳香族複素環基である。好ましくは単結合、又は置換若しくは未置換のフェニレン基である。連結様式は、オルト、メタ、若しくはパラ連結のいずれであってもよい。
 また、Rは、それぞれ独立に重水素、炭素数1~10の脂肪族炭化水素基を表す。好ましくは重水素である。
 g~j及びp~s置換数を表し、g、h、r及びsはそれぞれ独立に0~4の整数、i及びjはそれぞれ独立に0~3の整数、p及びqはそれぞれ独立に0~13の整数を表し、Lが単結合の時、rおよびsは0の整数である。好ましくはg+h+i+jが0又は14の整数である。
 一般式(6)において、炭素数1~10の脂肪族炭化水素基、未置換の炭素数6~18の芳香族炭化水素基、未置換の炭素数3~17の芳香族複素環基、及び該芳香族炭化水素基及び該芳香族複素環基の芳香族環が2~5個連結した未置換の連結芳香族基の具体例については、一般式(1)で述べた場合と同様である。置換基の具体例については、重水素を含む以外は一般式(1)で述べた場合と同様である。
 本発明においては、前記未置換の芳香族炭化水素基、未置換の芳香族複素環基、未置換の連結芳香族基、これら芳香族基の置換基、又は前記脂肪族炭化水素基は、その一部若しくは全ての水素が重水素化されていてもよい。但し、前述したように、一般式(1)においてトリアジンに置換する置換基とArは重水素化されず、それ以外について、一般式(1)~(7)で表される化合物中の水素の一部又は全部が重水素であってもよい。また、重水素化物は、単一化合物からなる場合と2以上の化合物の混合物からなる場合との両方を含む。すなわち、重水素化率を具体的に説明すると、重水素化率が50%の場合、全水素のうち平均で半数が重水素に置換されたものを意味し、重水素化物は単一の化合物であってもよいし、異なる重水素化率の混合物であってもよい。
 一般式(1)~(5)で表される化合物中の水素の一部が重水素で有る場合、好ましくは、水素原子のうち10%以上が重水素であり、より好ましくは20%以上、40%以下が重水素であるのがよく、かつ、a+b+xの総数が2以上、10以下での重水素化率であるのがよい。
 また、一般式(6)、(7)で表される化合物中の水素の一部が重水素で有る場合、好ましくは、水素原子のうち30%以上が重水素であり、より好ましくは40%以上が重水素で有り、さらに好ましくは50%以上が重水素で有るのがよい。
 重水素化率は質量分析やプロトン核磁気共鳴分光法によって求めることができる。例えばプロトン核磁気共鳴分光法によって求める場合は、まず重溶媒に化合物、及び内部標準物質を添加し溶解することで測定試料を調製し、内部標準物質と化合物由来の積分強度比から、測定試料中に含まれる化合物のプロトン濃度[mol/g]を計算する。次に、重水素化された化合物のプロトン濃度と、それに対応する重水素化されていない化合物のプロトン濃度の比を計算し、1から減じることで重水素化された化合物の重水素化率を算出することができる。また、部分構造の重水素化率は、対象の部分構造に由来する化学シフトの積分強度から、前記同様の手順で算出できる。
 前記一般式(1)で表される化合物の具体的な例を以下に示すが、これら例示化合物に限定されるものではない。
Figure JPOXMLDOC01-appb-C000011


Figure JPOXMLDOC01-appb-C000012


Figure JPOXMLDOC01-appb-C000013


Figure JPOXMLDOC01-appb-C000014


Figure JPOXMLDOC01-appb-C000015


Figure JPOXMLDOC01-appb-C000016


Figure JPOXMLDOC01-appb-C000017


Figure JPOXMLDOC01-appb-C000018

 前記一般式(6)、式(7)で表される化合物の具体的な例を以下に示すが、これら例示化合物に限定されるものではない。
Figure JPOXMLDOC01-appb-C000019


Figure JPOXMLDOC01-appb-C000020

Figure JPOXMLDOC01-appb-C000021

Figure JPOXMLDOC01-appb-C000022


Figure JPOXMLDOC01-appb-C000023


Figure JPOXMLDOC01-appb-C000024


Figure JPOXMLDOC01-appb-C000025


Figure JPOXMLDOC01-appb-C000026


Figure JPOXMLDOC01-appb-C000027


Figure JPOXMLDOC01-appb-C000028

 本発明の有機EL素子用のホスト材料は、発光層のホスト材料として好適に用いられる。
 次に、本発明の有機EL素子の構造について、図面を参照しながら説明するが、本発明の有機EL素子の構造はこれに限定されない。
 図1は本発明に用いられる一般的な有機EL素子の構造例を示す断面図であり、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は電子輸送層、7は陰極を表す。本発明の有機EL素子は発光層と隣接して励起子阻止層を有してもよく、また発光層と正孔注入層との間に電子阻止層を有してもよい。励起子阻止層は発光層の陽極側、及び陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。
 本発明の有機EL素子では、陽極、発光層、そして陰極を必須の層として有するが、必須の層以外に正孔注入輸送層、電子注入輸送層を有することがよく、更に発光層と電子注入輸送層の間に正孔阻止層を有することがよい。なお、正孔注入輸送層は、正孔注入層と正孔輸送層のいずれか、または両者を意味し、電子注入輸送層は、電子注入層と電子輸送層のいずれか又は両者を意味する。
 図1とは逆の構造、すなわち基板1上に陰極7、電子輸送層6、発光層5、正孔輸送層4、正孔注入層3、陽極2の順に積層することも可能であり、この場合も必要により層を追加、省略することが可能である。
-基板-
 本発明の有機EL素子は、基板に支持されていることが好ましい。この基板については特に制限はなく、従来から有機EL素子に用いられているものであればよく、例えばガラス、透明プラスチック、石英等からなるものを用いることができる。
-陽極-
 有機EL素子における陽極材料としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物又はこれらの混合物からなる材料が好ましく用いられる。このような電極材料の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In2O3-ZnO)等の非晶質で、透明導電膜を作成可能な材料を用いてもよい。陽極はこれらの電極材料を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合(100μm以上程度)は、上記電極材料の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは有機導電性化合物のような塗布可能な物質を用いる場合には印刷方式、コーティング方式等の湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
-陰極-
 一方、陰極材料としては仕事関数の小さい(4eV以下)金属(電子注入性金属)、合金、電気伝導性化合物又はこれらの混合物からなる材料が用いられる。このような電極材料の具体例としては、ナトリウム、ナトリウム―カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えばマグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの陰極材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が透明又は半透明であれば発光輝度は向上し、好都合である。
 また、陰極に上記金属を1~20nmの膜厚で形成した後に、陽極の説明で挙げた導電性透明材料をその上に形成することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
-発光層-
 発光層は陽極及び陰極のそれぞれから注入された正孔及び電子が再結合することにより励起子が生成した後、発光する層であり発光層には有機発光性ドーパント材料とホスト材料を含むことがよい。
 ホストには、前記一般式(1)、式(2)~(5)のいずれかで表されるホスト材料(本発明のホスト材料ともいう。)を使用する。
 本発明のホスト材料は、1種を使用してもよく、2種以上の異なる化合物を使用してもよく、公知のホスト材料等の他のホスト材料を1種又は複数種類組み合わせて使用してもよい。他のホスト材料としては、正孔輸送能、電子輸送能を有し、かつ発光の長波長化を防ぎ、なおかつ高いガラス転移温度を有する化合物であることが好ましい。
 本発明のホスト材料を第1ホスト材料として含むとき、前記一般式(6)、式(7)のいずれかで表される化合物を第2ホスト材料として用いることが特に好ましいが、以下に示す他のホスト材料を第2ホストとして用いてもよい。また、本発明のホスト材料を第1ホスト材料、一般式(6)、(7)のいずれかで表される化合物を第2ホスト材料として用いる場合、第3ホスト材料として他のホスト材料を用いてもよい。
 他のホスト材料としては、多数の特許文献等により知られているもので、それらから選択することができる。ホスト材料の具体例としては、特に限定されるものではないが、WO2008/056746A1やWO2008/146839A1等に記載のインドロカルバゾール誘導体、WO2009/086028A1やWO2012/077520A1等に記載のカルバゾール誘導体、CBP(N,N-ビスカルバゾリルビフェニル)誘導体、WO2014/185595A1やWO2018/021663A1等に記載のトリアジン誘導体、WO2010/136109A1やWO2011/000455A1等に記載のインデノカルバゾール誘導体、WO2015/169412A1等に記載のジベンゾフラン誘導体、トリアゾール誘導体、インドール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三アミン化合物、スチリルアミン化合物、芳香族ジメチリデン系化合物、ポルフィリン系化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン誘導体、8‐キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾール誘導体の金属錯体に代表される各種金属錯体、ポリシラン系化合物、ポリ(N-ビニルカルバゾール)誘導体、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、ポリフルオレン誘導体等の高分子化合物等が挙げられる。
 上記他のホスト材料の具体的な例を以下に示すが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000029

 上記有機発光性ドーパント材料としては、燐光発光ドーパント、蛍光発光ドーパント又は熱活性化遅延蛍光発光ドーパントが好ましく挙げられる。
 燐光発光ドーパントとしては、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金及び金から選ばれる少なくとも1つの金属を含む有機金属錯体を含有するものがよい。具体的には、J.Am.Chem.Soc.2001,123,4304、JP2013-530515A、US2016/0049599A1、US2017/0069848A1、US2018/0282356A1、又はUS2019/0036043A1等に記載されているイリジウム錯体や、US2018/0013078A1、又はKR2018/094482A等に記載されている白金錯体が好適に用いられるが、これらに限定されない。
 燐光発光ドーパント材料は、発光層中に1種類のみが含有されてもよいし、2種類以上を含有してもよい。燐光発光ドーパント材料の含有量はホスト材料に対して0.1~30質量%であることが好ましく、1~20質量%であることがより好ましい。
 燐光発光ドーパント材料は、特に限定されるものではないが、具体的には以下のような例が挙げられる。
Figure JPOXMLDOC01-appb-C000030


Figure JPOXMLDOC01-appb-C000031


Figure JPOXMLDOC01-appb-C000032

 蛍光発光ドーパントとしては、特に限定されないが、例えばベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、ベンゾイミダゾール誘導体、スチリルベンゼン誘導体、ポリフェニル誘導体、ジフェニルブタジエン誘導体、テトラフェニルブタジエン誘導体、ナフタルイミド誘導体、クマリン誘導体、縮合芳香族化合物、ペリノン誘導体、オキサジアゾール誘導体、オキサジン誘導体、アルダジン誘導体、ピロリジン誘導体、シクロペンタジエン誘導体、ビススチリルアントラセン誘導体、キナクリドン誘導体、ピロロピリジン誘導体、チアジアゾロピリジン誘導体、スチリルアミン誘導体、ジケトピロロピロール誘導体、芳香族ジメチリジン化合物、8-キノリノール誘導体の金属錯体やピロメテン誘導体の金属錯体、希土類錯体、遷移金属錯体に代表される各種金属錯体等、ポリチオフェン、ポリフェニレン、ポリフェニレンビニレン等のポリマー化合物、有機シラン誘導体等が挙げられる。好ましくは縮合芳香族誘導体、スチリル誘導体、ジケトピロロピロール誘導体、オキサジン誘導体、ピロメテン金属錯体、遷移金属錯体、又はランタノイド錯体が挙げられ、より好ましくはナフタレン、ピレン、クリセン、トリフェニレン、ベンゾ[c]フェナントレン、ベンゾ[a]アントラセン、ペンタセン、ペリレン、フルオランテン、アセナフトフルオランテン、ジベンゾ[a,j]アントラセン、ジベンゾ[a,h]アントラセン、ベンゾ[a]ナフタレン、ヘキサセン、ナフト[2,1-f]イソキノリン、α‐ナフタフェナントリジン、フェナントロオキサゾール、キノリノ[6,5-f]キノリン、ベンゾチオファントレン等が挙げられる。これらは置換基としてアルキル基、アリール基、芳香族複素環基、又はジアリールアミノ基を有してもよい。
 蛍光発光ドーパント材料は、発光層中に1種類のみが含有されてもよいし、2種類以上を含有してもよい。蛍光発光ドーパント材料の含有量は、ホスト材料に対して0.1~20質量%であることが好ましく、1~10質量%であることがより好ましい。
 熱活性化遅延蛍光発光ドーパントとしては、特に限定されないがスズ錯体や銅錯体等の金属錯体や、WO2011/070963A1に記載のインドロカルバゾール誘導体、Nature 2012,492,234に記載のシアノベンゼン誘導体、カルバゾール誘導体、NaturePhotonics2014,8,326に記載のフェナジン誘導体、オキサジアゾール誘導体、トリアゾール誘導体、スルホン誘導体、フェノキサジン誘導体、アクリジン誘導体等が挙げられる。
 熱活性化遅延蛍光発光ドーパント材料は、特に限定されるものではないが、具体的には以下のような例が挙げられる。
Figure JPOXMLDOC01-appb-C000033

 熱活性化遅延蛍光発光ドーパント材料は、発光層中に1種類のみが含有されてもよいし、2種類以上を含有してもよい。また、熱活性化遅延蛍光発光ドーパントは燐光発光ドーパントや蛍光発光ドーパントと混合して用いてもよい。熱活性化遅延蛍光発光ドーパント材料の含有量は、ホスト材料に対して0.1~50質量%であることが好ましく、1~30質量%であることがより好ましい。
-注入層-
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、正孔注入層と電子注入層があり、陽極と発光層又は正孔輸送層の間、及び陰極と発光層又は電子輸送層との間に存在させてもよい。注入層は必要に応じて設けることができる。
-正孔阻止層-
 正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで発光層中での電子と正孔の再結合確率を向上させることができる。
-電子阻止層-
 電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送しつつ電子を阻止することで発光層中での電子と正孔が再結合する確率を向上させることができる。
 電子阻止層の材料としては、公知の電子阻止層材料を用いることができ、また後述する正孔輸送層の材料を必要に応じて用いることができる。電子阻止層の膜厚は好ましくは3~100nmであり、より好ましくは5~30nmである。
-励起子阻止層-
 励起子阻止層とは、発光層内で正孔と電子が再結合することにより生じた励起子が電荷輸送層に拡散することを阻止するための層であり、本層の挿入により励起子を効率的に発光層内に閉じ込めることが可能となり、素子の発光効率を向上させることができる。励起子阻止層は2つ以上の発光層が隣接する素子において、隣接する2つの発光層の間に挿入することができる。
 励起子阻止層の材料としては、公知の励起子阻止層材料を用いることができる。例えば、1,3-ジカルバゾリルベンゼン(mCP)や、ビス(2-メチル-8-キノリノラト)-4-フェニルフェノラトアルミニウム(III)(BAlq)が挙げられる。
-正孔輸送層-
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、正孔輸送層は単層又は複数層設けることができる。
 正孔輸送材料としては、正孔の注入・BR>狽ヘ輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。正孔輸送層には従来公知の化合物の中から任意のものを選択して用いることができる。かかる正孔輸送材料としては例えば、ポルフィリン誘導体、アリールアミン誘導体、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられるが、ポルフィリン誘導体、アリールアミン誘導体及びスチリルアミン誘導体を用いることが好ましく、アリールアミン誘導体を用いることがより好ましい。
-電子輸送層-
 電子輸送層とは電子を輸送する機能を有する材料からなり、電子輸送層は単層又は複数層設けることができる。
 電子輸送材料(正孔阻止材料を兼ねる場合もある)としては、陰極より注入された電子を発光層に伝達する機能を有していればよい。電子輸送層には、従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ナフタレン、アントラセン、フェナントロリン等の多環芳香族誘導体、トリス(8-キノリノラート)アルミニウム(III)誘導体、ホスフィンオキサイド誘導体、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フルオレニリデンメタン誘導体、アントラキノジメタン誘導体及びアントロン誘導体、ビピリジン誘導体、キノリン誘導体、オキサジアゾール誘導体、ベンゾイミダゾール誘導体、ベンゾチアゾール誘導体、インドロカルバゾール誘導体等が挙げられ、更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 本発明の有機電界発光素子の製造方法は、前記第1ホスト材料と、前記第2ホスト材料を事前混合する工程、及び得られた混合物を一つの蒸着源から蒸着させて発光層を形成させる工程を有する。このように2つのホスト材料を事前混合することにより、有機EL素子の性能を高めることができる。混合方法としては、粉体混合や溶融混合、昇華といった方法を採用することができる。ホスト及びその予備混合物の形態は粉体、スティック状、又は顆粒状であってもよい。
 上記事前混合により得られた組成物(予備混合物ともいう)は、前記第1ホスト材料と、前記第2ホスト材料の50%重量減少温度の差が20℃以内であることが好ましい。
 ここで、50%重量減少温度は、窒素気流減圧(1Pa)下でのTG-DTA測定において、室温から毎分10℃の速度で550℃まで昇温したとき、重量が50%減少した際の温度をいう。この温度付近では、蒸発又は昇華による気化が最も盛んに起こると考えられる。
 以下、本発明を実施例によって更に詳しく説明するが、本発明はこれらの実施例に限定されるものではなく、その要旨を超えない限りにおいて、種々の形態で実施することが可能である。
 代表例として、化合物1-11、2-109及び2-116の合成例を示す。他の化合物についても、類似の方法で合成した。重水素化率はプロトン核磁気共鳴分光法によって求めた。
合成例1
Figure JPOXMLDOC01-appb-C000034


 化合物(a)15.0g(0.0585 mol)に、重ベンゼン(C6D6)を148ml、重トリフルオロメタンスルホン酸(TfOD)を43.9g(0.293 mol)加え、窒素雰囲気下、30℃で2時間加熱撹拌した。氷浴下で、反応液を炭酸ナトリウム(34.1 g)の重水溶液(341 mL)に加えて1時間撹拌した。さらにトルエン300mLを加えて有機層を抽出し、MgSOで乾燥後、MgSOをろ別した上で、ろ液を濃縮した。濃縮品にMeOH300mLを加えて室温で2時間撹拌し、析出した結晶をろ取し、重水素化物である化合物(b)を14.9g(0.0555 mol,収率94.9%,重水素化率91%)得た。(APCI-TOFMS,m/z 267[M+H]+)。
合成例2
Figure JPOXMLDOC01-appb-C000035


 化合物(b)5.00g(0.0186 mol)に、化合物(c)を4.78g(0.0205 mol)、ヨウ化銅を0.35g(0.00186 mol)、炭酸カリウムを5.15g(0.0370 mol)、8-キノリノールを0.54g(0.00373 mol)、1,3-ジメチル-2-イミダゾリジノンを21.5g加え、窒素雰囲気下で130℃にて3時間撹拌した。室温まで冷却後、水41g、2NHCl 10gの混合液に滴下し、室温で2時間撹拌した。析出した結晶をろ取し、シリカゲルカラムクロマトグラフィー(トルエン)で精製した。得られた結晶に対してアセトン12g、ヘプタン12gを用いて晶析精製を行い、白色固体として化合物(d)を3.70g(0.00882 mol,収率47.4%,重水素化率50%)得た。(APCI-TOFMS,m/z419[M+H]+)。
合成例3
Figure JPOXMLDOC01-appb-C000036


 窒素雰囲気下、N,N’-ジメチルアセトアミド25gに62.6重量%水素化ナトリウム0.27g(0.00694mol)を加え、懸濁液を調製した。そこにN,N’-ジメチルアセトアミド5gに溶解した化合物(d)2.76g(0.00658 mol)を加え、15℃にて30分撹拌した。反応溶液を5℃まで冷却後、化合物(e)を1.65g(0.00708 mol)加えた後、5℃を維持したまま2時間撹拌した。反応溶液に蒸留水(18 mL)を加え1時間撹拌し、析出した固体をろ取した。得られた固体に対してアセトニトリル28gを用いて晶析精製を行い、黄色固体として化合物(f)を3.62g(0.00595mol,収率90.4%,重水素化率32%)得た。(APCI-TOFMS,m/z608[M+H]+)。
合成例4
Figure JPOXMLDOC01-appb-C000037


 化合物(f)3.50g(0.00576 mol)に、化合物(g)を1.37g(0.00691 mol)、Umicore社製 CX21を0.001g(0.00002 mol)、炭酸カリウムを1.59g(0.0115 mol)、m-キシレンを21g、蒸留水を3.5g加え、窒素雰囲気下で90℃にて3時間撹拌した。室温まで冷却後、水を8.8g加えて室温まで冷却後、2時間撹拌したのち、析出した結晶をろ取した。得られた固体に対してm-キシレン54gを用いて晶析精製を繰り返し行い、黄色固体として化合物(1-11)を2.91g(0.00400 mol,収率66.1%,重水素化率28%)得た。(APCI-TOFMS,m/z726[M+H]+)。
合成例5
Figure JPOXMLDOC01-appb-C000038


 化合物(h)を3.0 g(7.10 mmol)に、化合物(i)を2.0g(8.58 mmol)、m-キシレンを100 mL、ビス(トリ-tert-ブチルホスフィン)パラジウムを0.2 g(0.39 mmol)、炭酸カリウムを4.9 g(35.5 mmol)加え、窒素雰囲気下、加熱還流下で5時間撹拌した。反応液を冷却後、分離、精製して白色固体の化合物(2-109)を1.5g(2.61 mmol,収率37%,重水素化率48%)得た。(APCI-TOFMS, m/z 575[M+H]+)。
合成例6
Figure JPOXMLDOC01-appb-C000039


 化合物(2-2) 8.3g(14.8 mmol)に、重ベンゼン(C6D6)を160 mL、重トリフルオロメタンスルホン酸(TfOD)を10.0g加え、窒素雰囲気下、50℃で6.5時間加熱撹拌した。反応液を炭酸ナトリウム(7.4 g)の重水溶液(200 mL)に加えて急冷し、分離、精製して白色固体の化合物(2-116)を2.5 g(4.25mmol,収率29%, 重水素化率81%)得た(APCI-TOFMS, m/z 589[M+H]+)。
 以下に、実施例及び比較例で使用する化合物を示す。
Figure JPOXMLDOC01-appb-C000040

 合成例1~6と同様にして反応を行い、実施例化合物である重水素化物1-9、1-10、1-81、1-85、2-118、2-119、及び2-120と、比較例化合物である重水素化物B、C、D、Eを合成した。そして、化合物1-11、2-109、および2-116と同様に重水素化率を計算した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000041

実施例1
 膜厚70nmのITOからなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度4.0×10-5Paで積層した。まず、ITO上に正孔注入層としてHAT-CNを25nmの厚さに形成し、次に正孔輸送層としてSpiro-TPDを30nmの厚さに形成した。次に電子阻止層としてHT-1を10nmの厚さに形成した。次に、表2に示したように、ホストとして化合物1-1を、発光ドーパントとしてIr(ppy)をそれぞれ異なる蒸着源から共蒸着し、40nmの厚さに発光層を形成した。この時、Ir(ppy)の濃度が10質量%となる蒸着条件で共蒸着した。次に電子輸送層としてET-1を20nmの厚さに形成した。更に電子輸送層上に電子注入層としてLiFを1nmの厚さに形成した。最後に、電子注入層上に、陰極としてAlを70nmの厚さに形成し、有機EL素子を作製した。
実施例2~5、比較例1~5
 実施例1において、表2に示す化合物をホストとして使用した以外は実施例1と同様にして有機EL素子を作製した。
 作製した有機EL素子の評価結果を表2に示す。表中で輝度、電圧、電力効率は駆動電流10mA/cm時の値であり、初期特性である。LT97は、駆動電流20mA/cmにおける初期輝度を100%とした際、輝度が97%に減衰するまでにかかる時間であり、寿命特性を表す。ホスト化合物の番号は、上記例示化合物に付した番号である。
Figure JPOXMLDOC01-appb-T000042

実施例6
 膜厚110nmのITOからなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度4.0×10-5Paで積層した。先ず、ITO上に正孔注入層としてHAT-CNを25nmの厚さに形成し、次に正孔輸送層としてSpiro-TPDを30nmの厚さに形成した。次に電子阻止層としてHT-1を10nmの厚さに形成した。次に、表3に示したように、第1ホストとして化合物1-1を、第2ホストとして化合物2-2を、発光ドーパントとしてIr(ppy)をそれぞれ異なる蒸着源から共蒸着し、40nmの厚さに発光層を形成した。この時、Ir(ppy)の濃度が10質量%、第1ホストと第2ホストの重量比が30:70となる蒸着条件で共蒸着した。次に電子輸送層としてET-1を20nmの厚さに形成した。更に電子輸送層上に電子注入層としてLiFを1nmの厚さに形成した。最後に、電子注入層上に、陰極としてAlを70nmの厚さに形成し、有機EL素子を作製した。
実施例7~27
 第1ホスト及び第2ホストとして、表3示す化合物を使用し、表3に示す重量比とした以外は実施例6と同様にして有機EL素子を作製した。
実施例28~39
 表3に示す第1ホストと第2ホストを表3に示す重量比となるように量りとり、乳鉢ですり潰しながら混合することにより得た予備混合物を一つの蒸着源から蒸着した以外は実施例6と同様にして有機EL素子を作成した。
比較例6~14
 第1ホスト及び第2ホストとして、表4に示す化合物を使用し、表4に示す重量比とした以外は実施例6と同様にして有機EL素子を作製した。
比較例15~20
 表4に示す第1ホストと第2ホストを表4に示す重量比となるように量りとり、乳鉢ですり潰しながら混合することにより得た予備混合物を一つの蒸着源から蒸着した以外は実施例6と同様にして有機EL素子を作成した。
 作製した有機EL素子の評価結果を表3、表4に示す。表中で輝度、電圧、電力効率は駆動電流10mA/cm時の値であり、初期特性である。LT97は、駆動電流20mA/cmにおける初期輝度を100%とした際、輝度が97%に減衰するまでにかかる時間であり、寿命特性を表す。なお、重量比は、第1ホスト:第2ホストである。
Figure JPOXMLDOC01-appb-T000043

Figure JPOXMLDOC01-appb-T000044

 表2~4の結果より、実施例に係る有機EL素子では、比較例に係る有機EL素子に比べて良好な特性を示すことが分かる。
 すなわち、本発明の一般式(1)におけるホスト材料を用いた実施例1~5では、そうでないホスト材料を用いた比較例1~5の場合に比べて、寿命が向上することが分かる。また、本発明の一般式(1)における化合物を第1ホスト材料とし、本発明の一般式(6)における化合物を第2ホスト材料とする実施例6~39では、これらの組み合わせから外れる比較例6~20の場合に比べて、やはり寿命が向上することが分かる。
 このうち、第1ホスト材料と第2ホスト材料との混合ホストを用いる場合、これらを予備混合して一つの蒸着源から蒸着した実施例28~39と、予備混合せずに個別の蒸着源から共蒸着した実施例7~27とを比べると、より低電圧でありながら、高効率、長寿命のバランスの取れた素子が得られることが分かる。
 表5に、化合物1-9、1-10、1-11、1-81、1-85、2-2、2-109、2-116、2-118、2-119、2-120、化合物A、B、Cの50%重量減少温度(T50)を記す。
Figure JPOXMLDOC01-appb-T000045

1:基板、2:陽極、3:正孔注入層、4:正孔輸送層、5:発光層、6:電子輸送層、7:陰極 

Claims (17)

  1.  下記一般式(1)で表される有機電界発光素子用のホスト材料。
    Figure JPOXMLDOC01-appb-C000001


    (ここで、環Gは、式(1a)で表される芳香族環であり、環Hは、式(1b)で表される複素環を表す。
    Dは重水素を表し、Arは、置換若しくは未置換の炭素数6~18の芳香族炭化水素基、置換若しくは未置換の炭素数3~17の芳香族複素環基、又はこれらの芳香族基の芳香族環が2~5個連結した置換若しくは未置換の連結芳香族基である。
    a、b及びxは置換数を表し、a、bはそれぞれ独立に0~4の整数、xは0~2の整数、a+b+x≧1である。m、nは繰り返し数を表し、m及びnはそれぞれ独立に0又は1の整数で、m+nは1以上である。)
  2.  前記一般式(1)においてArが置換若しくは未置換の炭素数6~18の芳香族炭化水素基、又はこれらの芳香族基の芳香族環が2個連結した置換若しくは未置換の連結芳香族基であることを特徴とする請求項1に記載のホスト材料。
  3.  前記一般式(1)においてArが置換若しくは未置換のフェニル基、又は置換若しくは未置換のビフェニル基であることを特徴とする請求項1に記載のホスト材料。
  4.  前記一般式(1)においてmが0の整数を表すことを特徴とする請求項1に記載のホスト材料。
  5.  前記一般式(1)で表される化合物が、下記式(2)~(5)のいずれかで表されることを特徴とする請求項1に記載のホスト材料。
    Figure JPOXMLDOC01-appb-C000002


    (ここでAr、a、b、x、m、及びnは一般式(1)と同義である。)
  6.  前記一般式(1)で表される化合物が、前記式(2)で表されることを特徴とする請求項5に記載のホスト材料。
  7.  前記一般式(1)においてa+b+x=10で表されることを特徴とする請求項1に記載のホスト材料。
  8.  対向する陽極と陰極の間に、1つ以上の発光層を含む有機電界発光素子において、少なくとも1つの発光層が、請求項1~7のいずれかに記載のホスト材料から選ばれる第1ホスト材料、下記一般式(6)で表される化合物から選ばれる第2ホスト材料、及び発光性ドーパント材料を含有することを特徴とする有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000003


    (ここで、Ar、及びArは、それぞれ独立に置換若しくは未置換の炭素数6~18の芳香族炭化水素基、置換若しくは未置換の炭素数3~17の芳香族複素環基、又はこれらの芳香族基の芳香族環が2~5個連結した置換若しくは未置換の連結芳香族基を表す。
    Lはそれぞれ独立に単結合、置換もしくは未置換の炭素数6~18の芳香族炭化水素基、又は置換若しくは未置換の炭素数3~17の芳香族複素環基を表し、Rは、それぞれ独立に重水素、又は炭素数1~10の脂肪族炭化水素基を表す。
    g~jおよびp~sは置換数を表し、g、h、r及びsはそれぞれ独立に0~4の整数、i及びjはそれぞれ独立に0~3の整数、p及びqはそれぞれ独立に0~13の整数を表す。ただし、Lが単結合の時、r及びsは0の整数である。)
  9.  前記一般式(6)が、下記式(7)で表されることを特徴とする請求項8に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000004


    (ここで、Ar、Ar、L、R、g~j、及びp~sは一般式(6)と同義である。)
  10.  前記一般式(6)におけるAr及びArがそれぞれ独立に、置換若しくは未置換のフェニル基、置換若しくは未置換のビフェニル基、又は置換若しくは未置換のターフェニル基である請求項8に記載の有機電界発光素子。
  11.  前記一般式(6)におけるRが、重水素であることを特徴とする請求項8に記載の有機電界発光素子。
  12.  前記一般式(6)におけるg+h+i+j=14であることを特徴とする請求項8に記載の有機電界発光素子。
  13.  前記発光性ドーパント材料が、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金及び金から選ばれる少なくとも一つの金属を含む有機金属錯体であることを特徴とする請求項8に記載の有機電界発光素子。
  14.  前記発光性ドーパント材料が、熱活性化遅延蛍光発光ドーパント材料であることを特徴とする請求項8に記載の有機電界発光素子。
  15.  対向する陽極と陰極の間に、ホスト及び発光性ドーパント材料を含有する発光層を含む有機電界発光素子の発光層を形成するために使用される予備混合物であって、該予備混合物が第1ホストと第2ホストを含み、第1ホストが下記一般式(1)で表される化合物から選ばれ、第2ホストが下記一般式(6)で表される化合物から選ばれることを特徴とする予備混合物。
    Figure JPOXMLDOC01-appb-C000005


    (ここで、環Gは、式(1a)で表される芳香族環であり、環Hは、式(1b)で表される複素環を表す。
    Dは重水素を表し、Arは、置換若しくは未置換の炭素数6~18の芳香族炭化水素基、置換若しくは未置換の炭素数3~17の芳香族複素環基、又はこれらの芳香族基の芳香族環が2~5個連結した置換若しくは未置換の連結芳香族基である。
    a、b及びxは置換数を表し、a、bはそれぞれ独立に0~4の整数、xは0~2の整数、a+b+x≧1である。m、nは繰り返し数を表し、m、及びnはそれぞれ独立に0、又は1の整数で、m+nは1以上である。)
    Figure JPOXMLDOC01-appb-C000006


    (ここで、Ar、及びArは、それぞれ独立に置換若しくは未置換の炭素数6~18の芳香族炭化水素基、置換若しくは未置換の炭素数3~17の芳香族複素環基、又はこれらの芳香族基が2~5個連結した置換若しくは未置換の連結芳香族基を表す。
    Lはそれぞれ独立に単結合、置換もしくは未置換の炭素数6~18の芳香族炭化水素基、又は置換若しくは未置換の炭素数3~17の芳香族複素環基を表し、Rは、それぞれ独立に重水素、又は炭素数1~10の脂肪族炭化水素基を表す。
    g~jおよびp~sは置換数を表し、g、h、r及びsはそれぞれ独立に0~4の整数、i及びjはそれぞれ独立に0~3の整数、p及びqはそれぞれ独立に0~13の整数を表す。ただし、Lが単結合の時、r及びsは0の整数である。)
  16.  前記第1ホストと前記第2ホストの50%重量減少温度の差が20℃以内であることを特徴とする請求項15に記載の予備混合物。
  17.  請求項8に記載の有機電界発光素子を製造するに当たり、前記第1ホストと前記第2ホストを混合して予備混合物としたのち、これを含むホスト材料を蒸着させて発光層を形成させる工程を有することを特徴とする有機電界発光素子の製造方法。
PCT/JP2023/031041 2022-08-31 2023-08-28 有機電界発光素子用ホスト材料及び予備混合物並びに有機電界発光素子 WO2024048535A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-138388 2022-08-31
JP2022138388 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024048535A1 true WO2024048535A1 (ja) 2024-03-07

Family

ID=90099942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031041 WO2024048535A1 (ja) 2022-08-31 2023-08-28 有機電界発光素子用ホスト材料及び予備混合物並びに有機電界発光素子

Country Status (1)

Country Link
WO (1) WO2024048535A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022015084A1 (ko) * 2020-07-15 2022-01-20 주식회사 엘지화학 유기 발광 소자
KR20220015980A (ko) * 2020-07-31 2022-02-08 주식회사 엘지화학 유기 발광 소자
WO2022031036A1 (ko) * 2020-08-06 2022-02-10 주식회사 엘지화학 유기 발광 소자
JP2022536452A (ja) * 2019-12-19 2022-08-17 エルジー・ケム・リミテッド 有機発光素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022536452A (ja) * 2019-12-19 2022-08-17 エルジー・ケム・リミテッド 有機発光素子
WO2022015084A1 (ko) * 2020-07-15 2022-01-20 주식회사 엘지화학 유기 발광 소자
KR20220015980A (ko) * 2020-07-31 2022-02-08 주식회사 엘지화학 유기 발광 소자
WO2022031036A1 (ko) * 2020-08-06 2022-02-10 주식회사 엘지화학 유기 발광 소자

Similar Documents

Publication Publication Date Title
WO2016042997A1 (ja) 有機電界発光素子
JPWO2018198844A1 (ja) 有機電界発光素子
WO2014002629A1 (ja) 有機電界発光素子用材料及び有機電界発光素子
JP7456997B2 (ja) 有機電界発光素子用溶融混合物、及び有機電界発光素子
KR20200132898A (ko) 유기 전계발광 소자
JP7426382B2 (ja) 有機電界発光素子
KR20160135357A (ko) 유기 전계발광 소자용 재료 및 이것을 사용한 유기 전계발광 소자
WO2022131123A1 (ja) 有機電界発光素子及びその製造方法
WO2024048535A1 (ja) 有機電界発光素子用ホスト材料及び予備混合物並びに有機電界発光素子
JP2018170369A (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
WO2024019072A1 (ja) 有機電界発光素子
WO2024048536A1 (ja) 有機電界発光素子
WO2024048537A1 (ja) 有機電界発光素子
WO2023008501A1 (ja) 有機電界発光素子
WO2022255241A1 (ja) 重水素化物及び有機電界発光素子
WO2022124366A1 (ja) 有機電界発光素子
WO2022255242A1 (ja) 重水素化物及び有機電界発光素子
WO2023162701A1 (ja) 有機電界発光素子用材料、及び有機電界発光素子
WO2022124365A1 (ja) 有機電界発光素子
WO2022255243A1 (ja) 重水素化物及び有機電界発光素子
WO2022264638A1 (ja) 有機電界発光素子用材料、及び有機電界発光素子
EP4234556A1 (en) Material for organic electroluminescent element and organic electroluminescent element
WO2022124367A1 (ja) 有機電界発光素子用材料及び有機電界発光素子
WO2024135278A1 (ja) 化合物及び有機電界発光素子用材料並びに有機電界発光素子
WO2021220837A1 (ja) 有機電界発光素子用材料及び有機電界発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860297

Country of ref document: EP

Kind code of ref document: A1