WO2012074905A2 - Parallel cycle heat engines - Google Patents
Parallel cycle heat engines Download PDFInfo
- Publication number
- WO2012074905A2 WO2012074905A2 PCT/US2011/062198 US2011062198W WO2012074905A2 WO 2012074905 A2 WO2012074905 A2 WO 2012074905A2 US 2011062198 W US2011062198 W US 2011062198W WO 2012074905 A2 WO2012074905 A2 WO 2012074905A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass flow
- heat exchanger
- working fluid
- turbine
- heat
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K13/00—General layout or general methods of operation of complete plants
- F01K13/02—Controlling, e.g. stopping or starting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/10—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/04—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled condensation heat from one cycle heating the fluid in another cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/02—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for the fluid remaining in the liquid phase
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
- F01K25/10—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
- F01K25/10—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
- F01K25/103—Carbon dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K7/00—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
- F01K7/16—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B35/00—Control systems for steam boilers
- F22B35/06—Control systems for steam boilers for steam boilers of forced-flow type
- F22B35/08—Control systems for steam boilers for steam boilers of forced-flow type of forced-circulation type
- F22B35/083—Control systems for steam boilers for steam boilers of forced-flow type of forced-circulation type without drum, i.e. without hot water storage in the boiler
- F22B35/086—Control systems for steam boilers for steam boilers of forced-flow type of forced-circulation type without drum, i.e. without hot water storage in the boiler operating at critical or supercritical pressure
Definitions
- Heat is often created as a byproduct of industrial processes where flowing streams of liquids, solids, or gasses that contain heat must be exhausted into the environment or otherwise removed from the process in an effort to maintain the operating temperatures of the industrial process equipment.
- the industrial process can use heat exchanging devices to capture the heat and recycle it back into the process via other process streams.
- This type of heat is generally referred to as "waste" heat, and is typically discharged directly into the environment through, for example, a stack, or indirectly through a cooling medium, such as water.
- thermal energy such as heat from the sun (which may be concentrated or otherwise manipulated) or geothermal sources.
- thermal energy sources are intended to fall within the definition of "waste heat,” as that term is used herein.
- Waste heat can be utilized by turbine generator systems which employ thermodynamic methods, such as the Rankine cycle, to convert heat into work.
- this method is steam- based, wherein the waste heat is used to raise steam in a boiler to drive a turbine.
- this method is steam- based, wherein the waste heat is used to raise steam in a boiler to drive a turbine.
- at least one of the key short-comings of a steam-based Rankine cycle is its high temperature requirement, which is not always practical since it generally requires a relatively high temperature (600°F or higher, for example) waste heat stream or a very large overall heat content.
- the complexity of boiling water at multiple pressures/temperatures to capture heat at multiple temperature levels as the heat source stream is cooled is costly in both equipment cost and operating labor.
- the steam-based Rankine cycle is not a realistic option for streams of small flow rate and/or low temperature.
- the organic Rankine cycle addresses the short-comings of the steam-based Rankine cycles by replacing water with a lower boiling-point fluid, such as a light hydrocarbon like propane or butane, or a HCFC (e.g., R245fa) fluid.
- a lower boiling-point fluid such as a light hydrocarbon like propane or butane, or a HCFC (e.g., R245fa) fluid.
- HCFC e.g., R245fa
- the boiling heat transfer restrictions remain, and new issues such as thermal instability, toxicity or flammability of the fluid are added.
- supercritical C0 2 power cycles have been used.
- the supercritical state of the C0 2 provides improved thermal coupling with multiple heat sources. For example, by using a supercritical fluid, the temperature glide of a process heat exchanger can be more readily matched.
- single cycle supercritical C0 2 power cycles operate over a limited pressure ratio, thereby limiting the amount of temperature reduction, i.e., energy extraction, through the power conversion device (typically a turbine or positive displacement expander).
- the pressure ratio is limited primarily due to the high vapor pressure of the fluid at typically available condensation temperatures (e.g., ambient).
- condensation temperatures e.g., ambient.
- the maximum output power that can be achieved from a single expansion stage is limited, and the expanded fluid retains a significant amount of potentially usable energy. While a portion of this residual energy can be recovered within the cycle by using a heat exchanger as a recuperator, and thus pre-heating the fluid between the pump and waste heat exchanger, this approach limits the amount of heat that can be extracted from the waste heat source in a single cycle.
- Embodiments of the disclosure may provide a system for converting thermal energy to work.
- the system may include a pump configured to circulate a working fluid throughout a working fluid circuit, the working fluid being separated into a first mass flow and a second mass flow downstream from the pump, and a first heat exchanger fluidly coupled to the pump and in thermal communication with a heat source, the first heat exchanger being configured to receive the first mass flow and transfer heat from the heat source to the first mass flow.
- the system may also include a first turbine fluidly coupled to the first heat exchanger and configured to expand the first mass flow, and a first recuperator fluidly coupled to the first turbine and configured to transfer residual thermal energy from the first mass flow discharged from the first turbine to the first mass flow directed to the first heat exchanger.
- the system may further include a second heat exchanger fluidly coupled to the pump and in thermal communication with the heat source, the second heat exchanger being configured to receive the second mass flow and transfer heat from the heat source to the second mass flow, and a second turbine fluidly coupled to the second heat exchanger and configured to expand the second mass flow.
- a second heat exchanger fluidly coupled to the pump and in thermal communication with the heat source, the second heat exchanger being configured to receive the second mass flow and transfer heat from the heat source to the second mass flow
- a second turbine fluidly coupled to the second heat exchanger and configured to expand the second mass flow.
- Embodiments of the disclosure may further provide another system for converting thermal energy to work.
- the additional system may include a pump configured to circulate a working fluid throughout a working fluid circuit, the working fluid being separated into a first mass flow and a second mass flow downstream from the pump, a first heat exchanger fluidly coupled to the pump and in thermal communication with a heat source, the first heat exchanger being configured to receive the first mass flow and transfer heat from the heat source to the first mass flow, and a first turbine fluidly coupled to the first heat exchanger and configured to expand the first mass flow.
- the system may also include a first recuperator fluidly coupled to the first turbine and configured to transfer residual thermal energy from the first mass flow discharged from the first turbine to the first mass flow directed to the first heat exchanger, a second heat exchanger fluidly coupled to the pump and in thermal communication with the heat source, the second heat exchanger being configured to receive the second mass flow and transfer heat from the heat source to the second mass flow, and a second turbine fluidly coupled to the second heat exchanger and configured to expand the second mass flow, the second mass flow being discharged from the second turbine and re- combined with the first mass flow to generate a combined mass flow.
- a first recuperator fluidly coupled to the first turbine and configured to transfer residual thermal energy from the first mass flow discharged from the first turbine to the first mass flow directed to the first heat exchanger
- a second heat exchanger fluidly coupled to the pump and in thermal communication with the heat source, the second heat exchanger being configured to receive the second mass flow and transfer heat from the heat source to the second mass flow
- a second turbine fluidly coupled to the second heat exchanger
- the system may further include a second recuperator fluidly coupled to the second turbine and configured to transfer residual thermal energy from the combined mass flow to the second mass flow directed to the second heat exchanger, and a third heat exchanger in thermal communication with the heat source and arranged between the pump and the first heat exchanger, the third heat exchanger being configured to receive and transfer heat to the first mass flow prior to passing through the first heat exchanger
- Embodiments of the disclosure may further provide a method for converting thermal energy to work.
- the method may include circulating a working fluid with a pump throughout a working fluid circuit, separating the working fluid in the working fluid circuit into a first mass flow and a second mass flow, and transferring thermal energy in a first heat exchanger from a heat source to the first mass flow, the first heat exchanger being in thermal communication with the heat source.
- the method may also include expanding the first mass flow in a first turbine fluidly coupled to the first heat exchanger, transferring residual thermal energy in a first recuperator from the first mass flow discharged from the first turbine to the first mass flow directed to the first heat exchanger, the first recuperator being fluidly coupled to the first turbine, and transferring thermal energy in a second heat exchanger from the heat source to the second mass flow, the second heat exchanger being in thermal communication with the heat source.
- the method may further include expanding the second mass flow in a second turbine fluidly coupled to the second heat exchanger.
- Figure 1 schematically illustrates an exemplary embodiment of a parallel heat engine cycle, according to one or more embodiments disclosed.
- Figure 2 schematically illustrates another exemplary embodiment of a parallel heat engine cycle, according to one or more embodiments disclosed.
- Figure 3 schematically illustrates another exemplary embodiment of a parallel heat engine cycle, according to one or more embodiments disclosed.
- Figure 4 schematically illustrates another exemplary embodiment of a parallel heat engine cycle, according to one or more embodiments disclosed.
- Figure 5 schematically illustrates another exemplary embodiment of a parallel heat engine cycle, according to one or more embodiments disclosed.
- Figure 6 schematically illustrates another exemplary embodiment of a parallel heat engine cycle, according to one or more embodiments disclosed.
- FIG. 7 schematically illustrates an exemplary embodiment of a mass management system (MMS) which can be implemented with a parallel heat engine cycle, according to one or more embodiments disclosed.
- MMS mass management system
- FIG. 8 schematically illustrates another exemplary embodiment of a MMS which can be implemented with a parallel heat engine cycle, according to one or more embodiments disclosed.
- FIGS 9 and 10 schematically illustrate different system arrangements for inlet chilling of a separate stream of fluid (e.g., air) by utilization of the working fluid which can be used in parallel heat engine cycles disclosed herein.
- a separate stream of fluid e.g., air
- first and second features are formed in direct contact
- additional features may be formed interposing the first and second features, such that the first and second features may not be in direct contact.
- exemplary embodiments presented below may be combined in any combination of ways, i.e., any element from one exemplary embodiment may be used in any other exemplary embodiment, without departing from the scope of the disclosure.
- FIG. 1 illustrates an exemplary thermodynamic cycle 100, according to one or more embodiments of the disclosure that may be used to convert thermal energy to work by thermal expansion of a working fluid.
- the cycle 100 is characterized as a Rankine cycle and may be implemented in a heat engine device that includes multiple heat exchangers in fluid communication with a waste heat source, multiple turbines for power generation and/or pump driving power, and multiple recuperators located downstream of the turbine(s).
- the thermodynamic cycle 100 may include a working fluid circuit 1 10 in thermal communication with a heat source 106 via a first heat exchanger 102, and a second heat exchanger 104 arranged in series. It will be appreciated that any number of heat exchangers may be utilized in conjunction with one or more heat sources.
- the first and second heat exchangers 102, 104 may be waste heat exchangers.
- the first and second heat exchangers 102, 104 may include first and second stages, respectively, of a single or combined waste heat exchanger.
- the heat source 106 may derive thermal energy from a variety of high temperature sources.
- the heat source 106 may be a waste heat stream such as, but not limited to, gas turbine exhaust, process stream exhaust, or other combustion product exhaust streams, such as furnace or boiler exhaust streams.
- the thermodynamic cycle 100 may be configured to transform waste heat into electricity for applications ranging from bottom cycling in gas turbines, stationary diesel engine gensets, industrial waste heat recovery (e.g., in refineries and compression stations), and hybrid alternatives to the internal combustion engine.
- the heat source 106 may derive thermal energy from renewable sources of thermal energy such as, but not limited to, solar thermal and geothermal sources.
- the heat source 106 may be a fluid stream of the high temperature source itself, in other exemplary embodiments the heat source 106 may be a thermal fluid in contact with the high temperature source.
- the thermal fluid may deliver the thermal energy to the waste heat exchangers 102, 104 to transfer the energy to the working fluid in the circuit 100.
- the first heat exchanger 102 may serve as a high temperature, or relatively higher temperature, heat exchanger adapted to receive an initial or primary flow of the heat source 106.
- the initial temperature of the heat source 106 entering the cycle 100 may range from about 400°F to greater than about 1 ,200°F (about 204°C to greater than about 650°C).
- the initial flow of the heat source 106 may have a temperature of about 500°C or higher.
- the second heat exchanger 104 may then receive the heat source 106 via a serial connection 108 downstream from the first heat exchanger 102.
- the temperature of the heat source 106 provided to the second heat exchanger 104 may be about 250-300°C. It should be noted that representative operative temperatures, pressures, and flow rates as indicated in the Figures are by way of example and are not in any way to be considered as limiting the scope of the disclosure.
- the working fluid circulated in the working fluid circuit 1 10, and the other exemplary circuits disclosed herein below, may be carbon dioxide (C0 2 ).
- Carbon dioxide as a working fluid for power generating cycles has many advantages. It is a greenhouse friendly and neutral working fluid that offers benefits such as non-toxicity, non-flammability, easy availability, low price, and no need of recycling. Due in part to its relative high working pressure, a C0 2 system can be built that is much more compact than systems using other working fluids. The high density and volumetric heat capacity of C0 2 with respect to other working fluids makes it more "energy dense" meaning that the size of all system components can be considerably reduced without losing performance.
- the working fluid in the circuit 1 10 may be a binary, ternary, or other working fluid blend.
- the working fluid blend or combination can be selected for the unique attributes possessed by the fluid combination within a heat recovery system, as described herein.
- one such fluid combination includes a liquid absorbent and C0 2 mixture enabling the combined fluid to be pumped in a liquid state to high pressure with less energy input than required to compress C0 2 .
- the working fluid may be a combination of C0 2 or supercritical carbon dioxide (ScC0 2 ) and one or more other miscible fluids or chemical compounds.
- the working fluid may be a combination of C0 2 and propane, or C0 2 and ammonia, without departing from the scope of the disclosure.
- working fluid is not intended to limit the state or phase of matter that the working fluid is in.
- the working fluid may be in a fluid phase, a gas phase, a supercritical phase, a subcritical state, or any other phase or state at any one or more points within the fluid cycle.
- the working fluid may be in a supercritical state over certain portions of the circuit 1 10 (the "high pressure side"), and in a subcritical state over other portions of the circuit 1 10 (the "low pressure side”).
- the entire working fluid circuit 1 10 may be operated and controlled such that the working fluid is in a supercritical or subcritical state during the entire execution of the circuit 1 10.
- the heat exchangers 102, 104 are arranged in series in the heat source 106, but arranged in parallel in the working fluid circuit 1 10.
- the first heat exchanger 102 may be fluidly coupled to a first turbine 1 12, and the second heat exchanger 104 may be fluidly coupled to a second turbine 1 14.
- the first turbine 1 12 may be fluidly coupled to a first recuperator 1 16, and the second turbine 1 14 may be fluidly coupled to a second recuperator 1 18.
- One or both of the turbines 1 12, 1 14 may be a power turbine configured to provide electrical power to auxiliary systems or processes.
- the recuperators 1 16, 1 18 may be arranged in series on a low temperature side of the circuit 1 10 and in parallel on a high temperature side of the circuit 1 10.
- the recuperators 1 16, 1 18 divide the circuit 1 10 into the high and low temperature sides.
- the high temperature side of the circuit 1 10 includes the portions of the circuit 1 10 arranged downstream from each recuperator 1 16, 1 18 where the working fluid is directed to the heat exchangers 102, 104.
- the low temperature side of the circuit 1 10 includes the portions of the circuit downstream from each recuperator 1 16, 1 18 where the working fluid is directed away from the heat exchangers 102, 104.
- the working fluid circuit 1 10 may further include a first pump 120 and a second pump 122 in fluid communication with the components of the fluid circuit 1 10 and configured to circulate the working fluid.
- the first and second pumps 120, 122 may be turbopumps, or driven independently by one or more external machines or devices, such as a motor.
- the first pump 120 may be used to circulate the working fluid during normal operation of the cycle 100 while the second pump 122 may be nominally driven and used only for starting the cycle 100.
- the second turbine 1 14 may be used to drive the first pump 120, but in other exemplary embodiments the first turbine 1 12 may be used to drive the first pump 120, or the first pump 120 may be nominally driven by a motor (not shown).
- the first turbine 1 12 may operate at a higher relative temperature (e.g., higher turbine inlet temperature) than the second turbine 1 14, due to the temperature drop of the heat source 106 experienced across the first heat exchanger 102.
- each turbine 1 12, 1 14 may be configured to operate at the same or substantially the same inlet pressure. This may be accomplished by design and control of the circuit 1 10 including, but not limited to, the control of the first and second pumps 120, 122 and/or the use of multiple- stage pumps to optimize the inlet pressures of each turbine 1 12, 1 14 for corresponding inlet temperatures of the circuit 1 10.
- the inlet pressure at the first pump 120 may exceed the vapor pressure of the working fluid by a margin sufficient to prevent vaporization of the working fluid at the local regions of the low pressure and/or high velocity. This is especially important with high speed pumps, such as the turbopumps that may be used in the various exemplary embodiments disclosed herein. Consequently, a traditional passive pressurization system, such as one that employs a surge tank which only provides the incremental pressure of gravity relative to the fluid vapor pressure, may prove insufficient for the exemplary embodiments disclosed herein.
- the working fluid circuit 1 10 may further include a condenser 124 in fluid communication with one or both the first and second recuperators 1 16, 1 18.
- the low-pressure discharge working fluid flow exiting each recuperator 1 16, 1 18 may be directed through the condenser 124 to be cooled for return to the low temperature side of the circuit 1 10 and to either the first or second pump 120, 122.
- the working fluid is separated at point 126 in the working fluid circuit 1 10 into a first mass flow m-i and a second mass flow m 2 .
- the first mass flow m-i is directed through the first heat exchanger 102 and subsequently expanded in the first turbine 1 12.
- the first mass flow m-i passes through the first recuperator 1 16 in order to transfer residual heat back to the first mass flow ⁇ as it is directed toward the first heat exchanger 102.
- the second mass flow m 2 may be directed through the second heat exchanger 104 and subsequently expanded in the second turbine 1 14.
- the second mass flow m 2 passes through the second recuperator 1 18 to transfer residual heat back to the second mass flow m 2 as it is directed towed the second heat exchanger 104.
- the second mass flow m 2 is then re- combined with the first mass flow m-i at point 128 in the working fluid circuit 1 10 to generate a combined mass flow m 1 +m 2 .
- the combined mass flow may be directed through the condenser 124 and back to the pump 120 to commence the loop over again.
- the working fluid at the inlet of the pump 120 is supercritical.
- each stage of heat exchange with the heat source 106 can be incorporated in the working fluid circuit 1 10 where it is most effectively utilized within the complete thermodynamic cycle 100.
- additional heat can be extracted from the heat source 106 for more efficient use in expansion, and primarily to obtain multiple expansions from the heat source 106.
- recuperators 1 16, 1 18 in the working fluid circuit 1 10 can be optimized with the heat source 106 to maximize power output of the multiple temperature expansions in the turbines 1 12, 1 14.
- FIG. 2 illustrates another exemplary embodiment of a thermodynamic cycle 200, according to one or more embodiments disclosed,
- the cycle 200 may be similar in some respects to the thermodynamic cycle 100 described above with reference to Figure 1 . Accordingly, the thermodynamic cycle 200 may be best understood with reference to Figure 1 , where like numerals correspond to like elements and therefore will not be described again in detail.
- the cycle 200 includes first and second heat exchangers 102, 104 again arranged in series in thermal communication with the heat source 106, but in parallel in a working fluid circuit 210.
- the first and second recuperators 1 16 and 1 18 are arranged in series on the low temperature side of the circuit 210 and in parallel on the high temperature side of the circuit 210.
- the working fluid is separated into a first mass flow ⁇ and a second mass flow m 2 at a point 202.
- the first mass flow m-i is eventually directed through the first heat exchanger 102 and subsequently expanded in the first turbine 1 12.
- the first mass flow m-i then passes through the first recuperator 1 16 to transfer residual heat back to the first mass flow m-i coursing past state 25 and into the first recuperator 1 16.
- the second mass flow m 2 may be directed through the second heat exchanger 104 and subsequently expanded in the second turbine 1 14.
- the second mass flow m 2 is re-combined with the first mass flow m-i at point 204 to generate a combined mass flow m 1 +m 2 .
- the combined mass flow may be directed through the second recuperator 1 18 to transfer residual heat to the first mass flow m-i passing through the second recuperator 1 18.
- recuperators 1 16, 1 18 provides the combined mass flow m ⁇ m 2 to the second recuperator 1 18 prior to reaching the condenser 124. As can be appreciated, this may increase the thermal efficiency of the working fluid circuit 210 by providing better matching of the heat capacity rates, as defined above.
- the second turbine 1 14 may be used to drive the first or main working fluid pump 120.
- the first turbine 1 12 may be used to drive the pump 120, without departing from the scope of the disclosure.
- the first and second turbines 1 12, 1 14 may be operated at common turbine inlet pressures or different turbine inlet pressures by management of the respective mass flow rates at the corresponding states 41 and 42.
- FIG. 3 illustrates another exemplary embodiment of a thermodynamic cycle 300, according to one or more embodiments of the disclosure.
- the cycle 300 may be similar in some respects to the thermodynamic cycles 100 and/or 200, thereby the cycle 300 may be best understood with reference to Figures 1 and 2, where like numerals correspond to like elements and therefore will not be described again in detail.
- the thermodynamic cycle 300 may include a working fluid circuit 310 utilizing a third heat exchanger 302 in thermal communication with the heat source 106.
- the third heat exchanger 302 may be a type of heat exchanger similar to the first and second heat exchanger 102, 104, as described above.
- the heat exchangers 102, 104, 302 may be arranged in series in thermal communication with the heat source 106 stream, and arranged in parallel in the working fluid circuit 310.
- the corresponding first and second recuperators 1 16, 1 18 are arranged in series on the low temperature side of the circuit 310 with the condenser 124, and in parallel on the high temperature side of the circuit 310.
- the third heat exchanger 302 may be configured to receive the first mass flow m-i and transfer heat from the heat source 106 to the first mass flow ⁇ before reaching the first turbine 1 12 for expansion. Following expansion in the first turbine 1 12, the first mass flow m-i is directed through the first recuperator 1 16 to transfer residual heat to the first mass flow m-i discharged from the third heat exchanger 302.
- the second mass flow m 2 is directed through the second heat exchanger 104 and subsequently expanded in the second turbine 1 14. Following the second turbine 1 14, the second mass flow m 2 is re-combined with the first mass flow m-i at point 306 to generate the combined mass flow which provides residual heat to the second mass flow m 2 in the second recuperator 1 18.
- the second turbine 1 14 again may be used to drive the first or primary pump 120, or it may be driven by other means, as described herein.
- the second or starter pump 122 may be provided on the low temperature side of the circuit 310 and provide circulate working fluid through a parallel heat exchanger path including the second and third heat exchangers 104, 302.
- the first and third heat exchangers 102, 302 may have essentially zero flow during the startup of the cycle 300.
- the working fluid circuit 310 may also include a throttle valve 308, such as a pump-drive throttle valve, and a shutoff valve 312 to manage the flow of the working fluid.
- FIG. 4 illustrates another exemplary embodiment of a thermodynamic cycle 400, according to one or more exemplary embodiments disclosed.
- the cycle 400 may be similar in some respects to the thermodynamic cycles 100, 200, and/or 300, and as such, the cycle 400 may be best understood with reference to Figures 1-3, where like numerals correspond to like elements and will not be described again in detail.
- the thermodynamic cycle 400 may include a working fluid circuit 410 where the first and second recuperators 1 16, 1 18 are combined into or otherwise replaced with a single recuperator 402.
- the recuperator 402 may be of a similar type as the recuperators 1 16, 1 18 described herein, or may be another type of recuperator or heat exchanger known to those skilled in the art.
- the recuperator 402 may be configured to transfer heat to the first mass flow m-i as it enters the first heat exchanger 102 and receive heat from the first mass flow m-i as it exits the first turbine 1 12.
- the recuperator 402 may also transfer heat to the second mass flow m 2 as it enters the second heat exchanger 104 and receive heat from the second mass flow m-i as it exits the second turbine 1 14.
- the combined mass flow flows out of the recuperator 402 and to the condenser 124.
- the recuperator 402 may be enlarged, as indicated by the dashed extension lines illustrated in Figure 4, or otherwise adapted to receive the first mass flow m-i entering and exiting the third heat exchanger 302. Consequently, additional thermal energy may be extracted from the recuperator 304 and directed to the third heat exchanger 302 to increase the temperature of the first mass flow m,.
- FIG. 5 illustrates another exemplary embodiment of a thermodynamic cycle 500 according to the disclosure.
- the cycle 500 may be similar in some respects to the thermodynamic cycle 100, and as such, may be best understood with reference to Figure 1 above, where like numerals correspond to like elements that will not be described again.
- the thermodynamic cycle 500 may have a working fluid circuit 510 substantially similar to the working fluid circuit 1 10 of Figure 1 but with a different arrangement of the first and second pumps 120, 122.
- each of the parallel cycles has one independent pump (pump 120 for the high temperature cycle and pump 122 for the low temperature cycle, respectively) to supply the working fluid flow during normal operation.
- thermodynamic cycle 500 in Figure 5 uses the main pump 120, which may be driven by the second turbine 1 14, to provide working fluid flows for both parallel cycles.
- the starter pump 122 in Figure 5 only operates during the startup process of the heat engine, therefore no motor-driven pump is required during normal operation.
- FIG. 6 illustrates another exemplary embodiment of a thermodynamic cycle 600 according to the disclosure.
- the cycle 600 may be similar in some respects to the thermodynamic cycle 300, and as such, may be best understood with reference to Figure 3 above, where like numerals correspond to like elements and will not be described again in detail.
- the thermodynamic cycle 600 may have a working fluid circuit 610 substantially similar to the working fluid circuit 310 of Figure 3 but with the addition of a third recuperator 602 which extracts additional thermal energy from the combined mass flow m-i+rr discharged from the second recuperator 1 18. Accordingly, the temperature of the first mass flow ⁇ entering the third heat exchanger 302 may be increased prior to receiving residual heat transferred from the heat source 106.
- recuperators 1 16, 1 18, 602 may operate as separate heat exchanging devices. In other exemplary embodiments, however, the recuperators 1 16, 1 18, 602 may be combined into a single recuperator, similar to the recuperator 406 described above in reference to Figure 4.
- each exemplary thermodynamic cycle 100-600 described herein meaning cycles 100, 200, 300, 400, 500, and 600
- the parallel heat exchanging cycle and arrangement incorporated into each working fluid circuit 1 10-610 meaning circuits 1 10, 210, 310, 410, 510, and 610) enables more power generation from a given heat source 106 by raising the power turbine inlet temperature to levels unattainable in a single cycle, thereby resulting in higher thermal efficiency for each exemplary cycle 100-600.
- the addition of lower temperature heat exchanging cycles via the second and third heat exchangers 104, 302 enables recovery of a higher fraction of available energy from the heat source 106.
- the pressure ratios for each individual heat exchanging cycle can be optimized for additional improvement in thermal efficiency.
- turbines 1 12, 1 14 may be coupled together such as by the use of additional turbine stages in parallel on a shared power turbine shaft.
- Other variations contemplated herein are, but not limited to, the use of additional turbine stages in parallel on a turbine-driven pump shaft; coupling of turbines through a gear box; the use of different recuperator arrangements to optimize overall efficiency; and the use of reciprocating expanders and pumps in place of turbomachinery.
- first and second turbines 1 12, 1 14 are coupled to the main pump 120 and a motor-generator (not shown) that serves as both a starter motor and a generator.
- Each of the described cycles 100-600 may be implemented in a variety of physical embodiments, including but not limited to fixed or integrated installations, or as a self-contained device such as a portable waste heat engine or "skid.”
- the exemplary waste heat engine skid may arrange each working fluid circuit 1 10-610 and related components such as turbines 1 12, 1 14, recuperators 1 16, 1 18, condensers 124, pumps 120, 122, valves, working fluid supply and control systems and mechanical and electronic controls are consolidated as a single unit.
- An exemplary waste heat engine skid is described and illustrated in co-pending U.S. Patent Application Serial No. 12/631 ,412, entitled “Thermal Energy Conversion Device,” filed on December 9, 2009, the contents of which are hereby incorporated by reference to the extent not inconsistent with the present disclosure.
- the exemplary embodiments disclosed herein may further include the incorporation and use of a mass management system (MMS) in connection with or integrated into the described thermodynamic cycles 100-600.
- MMS mass management system
- the MMS may be provided to control the inlet pressure at the first pump 120 by adding and removing mass (i.e., working fluid) from the working fluid circuit 100-600, thereby increasing the efficiency of the cycles 100-600.
- the MMS operates with the cycle 100-600 semi-passively and uses sensors to monitor pressures and temperatures within the high pressure side (from pump 120 outlet to expander 1 16, 1 18 inlet) and low pressure side (from expander 1 12, 1 14 outlet to pump 120 inlet) of the circuit 1 10-610.
- the MMS may also include valves, tank heaters or other equipment to facilitate the movement of the working fluid into and out of the working fluid circuits 1 10-610 and a mass control tank for storage of working fluid.
- Exemplary embodiments of the MMS are illustrated and described in co-pending U.S. Patent Application Serial Nos. 12/631 ,412; 12/631 ,400; and 12/631 ,379 each filed on December 4, 2009; U.S. Patent Application Serial No 12/880,428, filed on September 13, 2010, and PCT Application No. US201 1/29486, filed on March 22, 201 1 .
- the contents of each of the foregoing cases is hereby incorporated by reference to the extent not inconsistent with the present disclosure.
- exemplary mass management systems 700 and 800 are illustrated in conjunction with the thermodynamic cycles 100-600 described herein, in one or more exemplary embodiments.
- System tie-in points A, B, and C as shown in Figures 7 and 8 correspond to the system tie-in points A, B, and C shown in Figures 1 -6.
- MMS 700 and 800 may each be fluidly coupled to the thermodynamic cycles 100-600 of Figures 1-6 at the corresponding system tie-in points A, B, and C (if applicable).
- the exemplary MMS 800 stores a working fluid at low (sub- ambient) temperature and therefore low pressure
- the exemplary MMS 700 stores a working fluid at or near ambient temperature.
- the working fluid may be C0 2 , but may also be other working fluids without departing from the scope of the disclosure.
- a working fluid storage tank 702 is pressurized by tapping working fluid from the working fluid circuit(s) 1 10-610 through a first valve 704 at tie-in point A.
- additional working fluid may be added to the working fluid circuit(s) 1 10-610 by opening a second valve 706 arranged near the bottom of the storage tank 702 in order to allow the additional working fluid to flow through tie-in point C, arranged upstream from the pump 120 ( Figures 1-6). Adding working fluid to the circuit(s) 1 10-610 at tie-in point C may serve to raise the inlet pressure of the first pump 120.
- a third valve 708 may be opened to permit cool, pressurized fluid to enter the storage tank via tie-in point B.
- the MMS 700 may also include a transfer pump 710 configured to remove working fluid from the tank 702 and inject it into the working fluid circuit(s) 1 10-610.
- the MMS 800 of Figure 8 uses only two system tie-ins or interface points A and C.
- the valve-controlled interface A is not used during the control phase (e.g., the normal operation of the unit), and is provided only to pre-pressurize the working fluid circuit(s) 1 10-610 with vapor so that the temperature of the circuit(s) 1 10-610 remains above a minimum threshold during fill.
- a vaporizer may be included to use ambient heat to convert the liquid-phase working fluid to approximately an ambient temperature vapor-phase of the working fluid. Without the vaporizer, the system could decrease in temperature dramatically during filling. The vaporizer also provides vapor back to the storage tank 702 to make up for the lost volume of liquid that was extracted, and thereby acting as a pressure-builder.
- the vaporizer can be electrically- heated or heated by a secondary fluid.
- working fluid may be selectively added to the working fluid circuit(s) 1 10-610 by pumping it in with a transfer pump 802 provided at or proximate tie-in C.
- working fluid is selectively extracted from the system at interface C and expanded through one or more valves 804 and 806 down to the relatively low storage pressure of the storage tank 702. [0060] Under most conditions, the expanded fluid following the valves 804, 806 will be two-phase (i.e., vapor + liquid).
- a small vapor compression refrigeration cycle including a vapor compressor 808 and accompanying condenser 810, may be provided.
- the condenser can be used as the vaporizer, where condenser water is used as a heat source instead of a heat sink.
- the refrigeration cycle may be configured to decrease the temperature of the working fluid and sufficiently condense the vapor to maintain the pressure of the storage tank 702 at its design condition.
- the vapor compression refrigeration cycle may be integrated within MMS 800, or may be a stand-alone vapor compression cycle with an independent refrigerant loop.
- the working fluid contained within the storage tank 702 will tend to stratify with the higher density working fluid at the bottom of the tank 702 and the lower density working fluid at the top of the tank 702.
- the working fluid may be in liquid phase, vapor phase or both, or supercritical; if the working fluid is in both vapor phase and liquid phase, there will be a phase boundary separating one phase of working fluid from the other with the denser working fluid at the bottom of the storage tank 702.
- the MMS 700, 800 may be capable of delivering to the circuits 1 10-610 the densest working fluid within the storage tank 702.
- control system 712 may include one or more proportional-integral-derivative (PID) controllers as control loop feedback systems.
- PID proportional-integral-derivative
- control system 712 may be any microprocessor-based system capable of storing a control program and executing the control program to receive sensor inputs and generate control signals in accordance with a predetermined algorithm or table.
- control system 712 may be a microprocessor-based computer running a control software program stored on a computer-readable medium. The software program may be configured to receive sensor inputs from various pressure, temperature, flow rate, etc.
- Each MMS 700, 800 may be communicably coupled to such a control system 712 such that control of the various valves and other equipment described herein is automated or semi- automated and reacts to system performance data obtained via the various sensors located throughout the circuits 1 10-610, and also reacts to ambient and environmental conditions. That is to say that the control system 712 may be in communication with each of the components of the MMS 700, 800 and be configured to control the operation thereof to accomplish the function of the thermodynamic cycle(s) 100-600 more efficiently.
- control system 712 may be in communication (via wires, RF signal, etc.) with each of the valves, pumps, sensors, etc. in the system and configured to control the operation of each of the components in accordance with a control software, algorithm, or other predetermined control mechanism.
- This may prove advantageous to control temperature and pressure of the working fluid at the inlet of the first pump 120, to actively increase the suction pressure of the first pump 120 by decreasing compressibility of the working fluid. Doing so may avoid damage to the first pump 120 as well as increase the overall pressure ratio of the thermodynamic cycle(s) 100-600, thereby improving the efficiency and power output.
- the suction pressure of the pump 120 may prove advantageous to maintain the suction pressure of the pump 120 above the boiling pressure of the working fluid at the inlet of the pump 120.
- One method of controlling the pressure of the working fluid in the low-temperature side of the working fluid circuit(s) 1 10-610 is by controlling the temperature of the working fluid in the storage tank 702 of Figure 7. This may be accomplished by maintaining the temperature of the storage tank 702 at a higher level than the temperature at the inlet of the pump 120.
- the MMS 700 may include the use of a heater and/or a coil 714 within the tank 702. The heater/coil 714 may be configured to add or remove heat from the fluid/vapor within the tank 702.
- the temperature of the storage tank 702 may be controlled using direct electric heat. In other exemplary embodiments, however, the temperature of the storage tank 702 may be controlled using other devices, such as but not limited to, a heat exchanger coil with pump discharge fluid (which is at a higher temperature than at the pump inlet), a heat exchanger coil with spent cooling water from the cooler/condenser (also at a temperature higher than at the pump inlet), or combinations thereof.
- a heat exchanger coil with pump discharge fluid which is at a higher temperature than at the pump inlet
- a heat exchanger coil with spent cooling water from the cooler/condenser also at a temperature higher than at the pump inlet
- chilling systems 900 and 1000 may also be employed in connection with any of the above-described cycles in order to provide cooling to other areas of an industrial process including, but not limited to, pre-cooling of the inlet air of a gas- turbine or other air-breathing engines, thereby providing for a higher engine power output.
- System tie-in points B and D or C and D in Figures 9 and 10 may correspond to the system tie-in points B, C, and D in Figures 1-6.
- chilling systems 900, 1000 may each be fluidly coupled to one or more of the working fluid circuits 1 10-610 of Figures 1-6 at the corresponding system tie-in points B, C, and/or D (where applicable).
- a portion of the working fluid may be extracted from the working fluid circuit(s) 1 10-610 at system tie-in C.
- the pressure of that portion of fluid is reduced through an expansion device 902, which may be a valve, orifice, or fluid expander such as a turbine or positive displacement expander.
- This expansion process decreases the temperature of the working fluid.
- Heat is then added to the working fluid in an evaporator heat exchanger 904, which reduces the temperature of an external process fluid (e.g., air, water, etc.).
- the working fluid pressure is then re-increased through the use of a compressor 906, after which it is reintroduced to the working fluid circuit(s) 1 10-610 via system tie-in D.
- the compressor 906 may be either motor-driven or turbine-driven off either a dedicated turbine or an additional wheel added to a primary turbine of the system.
- the compressor 906 may be integrated with the main working fluid circuit(s) 1 10-610.
- the compressor 906 may take the form of a fluid ejector, with motive fluid supplied from system tie-in point A, and discharging to system tie-in point D, upstream from the condenser 124 ( Figures 1-6).
- the chilling system 1000 of Figure 10 may also include a compressor 1002, substantially similar to the compressor 906, described above.
- the compressor 1002 may take the form of a fluid ejector, with motive fluid supplied from working fluid cycle(s) 1 10-610 via tie-in point A (not shown, but corresponding to point A in Figures 1 -6), and discharging to the cycle(s) 1 10-610 via tie-in point D.
- the working fluid is extracted from the circuit(s) 1 10- 610 via tie-in point B and pre-cooled by a heat exchanger 1004 prior to being expanded in an expansion device 1006, similar to the expansion device 902 described above.
- the heat exchanger 1004 may include a water-C0 2 , or air-C0 2 heat exchanger. As can be appreciated, the addition of the heat exchanger 1004 may provide additional cooling capacity above that which is capable with the chilling system 900 shown in Figure 9.
- upstream generally means toward or against the direction of flow of the working fluid during normal operation
- downstream generally means with or in the direction of the flow of the working fluid curing normal operation.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Control Of Turbines (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2011336831A AU2011336831C1 (en) | 2010-11-29 | 2011-11-28 | Parallel cycle heat engines |
RU2013124072/06A RU2575674C2 (en) | 2010-11-29 | 2011-11-28 | Heat engines with parallel cycle |
CN201180062759.7A CN103477035B (en) | 2010-11-29 | 2011-11-28 | Parallel cycling hot electromotor |
BR112013013387-2A BR112013013387A2 (en) | 2010-11-29 | 2011-11-28 | parallel cycle of thermal motors |
JP2013541069A JP6039572B2 (en) | 2010-11-29 | 2011-11-28 | Parallel circulation heat engine |
KR1020137016571A KR101835915B1 (en) | 2010-11-29 | 2011-11-28 | Parallel cycle heat engines |
CA2820606A CA2820606C (en) | 2010-11-29 | 2011-11-28 | Parallel cycle heat engines |
EP11845835.5A EP2646657B1 (en) | 2010-11-29 | 2011-11-28 | Parallel cycle heat engines |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US41778910P | 2010-11-29 | 2010-11-29 | |
US61/417,789 | 2010-11-29 | ||
US13/212,631 US9284855B2 (en) | 2010-11-29 | 2011-08-18 | Parallel cycle heat engines |
US13/212,631 | 2011-08-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012074905A2 true WO2012074905A2 (en) | 2012-06-07 |
WO2012074905A3 WO2012074905A3 (en) | 2012-10-04 |
Family
ID=46125717
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2011/062198 WO2012074905A2 (en) | 2010-11-29 | 2011-11-28 | Parallel cycle heat engines |
PCT/US2011/062201 WO2012074907A2 (en) | 2010-11-29 | 2011-11-28 | Driven starter pump and start sequence |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2011/062201 WO2012074907A2 (en) | 2010-11-29 | 2011-11-28 | Driven starter pump and start sequence |
Country Status (9)
Country | Link |
---|---|
US (3) | US8616001B2 (en) |
EP (2) | EP2646658A4 (en) |
JP (1) | JP6039572B2 (en) |
KR (2) | KR101835915B1 (en) |
CN (1) | CN103477035B (en) |
AU (1) | AU2011336831C1 (en) |
BR (2) | BR112013013385A8 (en) |
CA (2) | CA2818816C (en) |
WO (2) | WO2012074905A2 (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8613195B2 (en) | 2009-09-17 | 2013-12-24 | Echogen Power Systems, Llc | Heat engine and heat to electricity systems and methods with working fluid mass management control |
US8616001B2 (en) | 2010-11-29 | 2013-12-31 | Echogen Power Systems, Llc | Driven starter pump and start sequence |
US8783034B2 (en) | 2011-11-07 | 2014-07-22 | Echogen Power Systems, Llc | Hot day cycle |
WO2014117068A1 (en) * | 2013-01-28 | 2014-07-31 | Echogen Power Systems, L.L.C. | Methods for reducing wear on components of a heat engine system at startup |
US8794002B2 (en) | 2009-09-17 | 2014-08-05 | Echogen Power Systems | Thermal energy conversion method |
US8813497B2 (en) | 2009-09-17 | 2014-08-26 | Echogen Power Systems, Llc | Automated mass management control |
US8857186B2 (en) | 2010-11-29 | 2014-10-14 | Echogen Power Systems, L.L.C. | Heat engine cycles for high ambient conditions |
US8869531B2 (en) | 2009-09-17 | 2014-10-28 | Echogen Power Systems, Llc | Heat engines with cascade cycles |
WO2015047119A1 (en) | 2013-09-25 | 2015-04-02 | Siemens Aktiengesellschaft | Arrangement and method for the utilization of waste heat |
WO2015047120A1 (en) | 2013-09-25 | 2015-04-02 | Siemens Aktiengesellschaft | Arrangement and method for the utilization of waste heat |
US9014791B2 (en) | 2009-04-17 | 2015-04-21 | Echogen Power Systems, Llc | System and method for managing thermal issues in gas turbine engines |
US9091278B2 (en) | 2012-08-20 | 2015-07-28 | Echogen Power Systems, Llc | Supercritical working fluid circuit with a turbo pump and a start pump in series configuration |
US9118226B2 (en) | 2012-10-12 | 2015-08-25 | Echogen Power Systems, Llc | Heat engine system with a supercritical working fluid and processes thereof |
WO2016039655A1 (en) | 2014-09-08 | 2016-03-17 | Siemens Aktiengesellschaft | System and method for recovering waste heat energy |
US9316404B2 (en) | 2009-08-04 | 2016-04-19 | Echogen Power Systems, Llc | Heat pump with integral solar collector |
US9341084B2 (en) | 2012-10-12 | 2016-05-17 | Echogen Power Systems, Llc | Supercritical carbon dioxide power cycle for waste heat recovery |
JP2016519731A (en) * | 2013-03-04 | 2016-07-07 | エコージェン パワー システムズ エル.エル.シー.Echogen Power Systems, L.L.C. | Heat engine system with high net power supercritical carbon dioxide circuit |
US9441504B2 (en) | 2009-06-22 | 2016-09-13 | Echogen Power Systems, Llc | System and method for managing thermal issues in one or more industrial processes |
JP2016534281A (en) * | 2013-09-05 | 2016-11-04 | エコージェン パワー システムズ エル.エル.シー.Echogen Power Systems, L.L.C. | Heat engine system with selectively changeable working fluid circuit |
US9752460B2 (en) | 2013-01-28 | 2017-09-05 | Echogen Power Systems, Llc | Process for controlling a power turbine throttle valve during a supercritical carbon dioxide rankine cycle |
US9926814B2 (en) | 2015-05-04 | 2018-03-27 | Doosan Heavy Industries & Construction Co., Ltd. | Supercritical CO2 generation system |
US10634436B2 (en) | 2014-10-21 | 2020-04-28 | Bright Energy Storage Technologies, Llp | Concrete and tube hot thermal exchange and energy store (TXES) including temperature gradient control techniques |
US11187112B2 (en) | 2018-06-27 | 2021-11-30 | Echogen Power Systems Llc | Systems and methods for generating electricity via a pumped thermal energy storage system |
US11293309B2 (en) | 2014-11-03 | 2022-04-05 | Echogen Power Systems, Llc | Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system |
US11435120B2 (en) | 2020-05-05 | 2022-09-06 | Echogen Power Systems (Delaware), Inc. | Split expansion heat pump cycle |
US11629638B2 (en) | 2020-12-09 | 2023-04-18 | Supercritical Storage Company, Inc. | Three reservoir electric thermal energy storage system |
Families Citing this family (97)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010083198A1 (en) * | 2009-01-13 | 2010-07-22 | Avl North America Inc. | Hybrid power plant with waste heat recovery system |
US8616323B1 (en) | 2009-03-11 | 2013-12-31 | Echogen Power Systems | Hybrid power systems |
US10094219B2 (en) | 2010-03-04 | 2018-10-09 | X Development Llc | Adiabatic salt energy storage |
IT1399878B1 (en) * | 2010-05-13 | 2013-05-09 | Turboden Srl | ORC SYSTEM AT HIGH OPTIMIZED TEMPERATURE |
IT1402363B1 (en) * | 2010-06-10 | 2013-09-04 | Turboden Srl | ORC PLANT WITH SYSTEM TO IMPROVE THE HEAT EXCHANGE BETWEEN THE SOURCE OF WARM FLUID AND WORK FLUID |
US20120031096A1 (en) * | 2010-08-09 | 2012-02-09 | Uop Llc | Low Grade Heat Recovery from Process Streams for Power Generation |
US9062898B2 (en) | 2011-10-03 | 2015-06-23 | Echogen Power Systems, Llc | Carbon dioxide refrigeration cycle |
DE102011119977A1 (en) * | 2011-12-02 | 2013-06-06 | Alena von Lavante | Device and method for using the waste heat of an internal combustion engine, in particular for using the waste heat of a vehicle engine |
ITFI20110262A1 (en) * | 2011-12-06 | 2013-06-07 | Nuovo Pignone Spa | "HEAT RECOVERY IN CARBON DIOXIDE COMPRESSION AND COMPRESSION AND LIQUEFACTION SYSTEMS" |
US8887503B2 (en) * | 2011-12-13 | 2014-11-18 | Aerojet Rocketdyne of DE, Inc | Recuperative supercritical carbon dioxide cycle |
US9038391B2 (en) * | 2012-03-24 | 2015-05-26 | General Electric Company | System and method for recovery of waste heat from dual heat sources |
US9115603B2 (en) * | 2012-07-24 | 2015-08-25 | Electratherm, Inc. | Multiple organic Rankine cycle system and method |
WO2014052927A1 (en) | 2012-09-27 | 2014-04-03 | Gigawatt Day Storage Systems, Inc. | Systems and methods for energy storage and retrieval |
US20140102098A1 (en) | 2012-10-12 | 2014-04-17 | Echogen Power Systems, Llc | Bypass and throttle valves for a supercritical working fluid circuit |
US20140109575A1 (en) * | 2012-10-22 | 2014-04-24 | Fluor Technologies Corporation | Method for reducing flue gas carbon dioxide emissions |
US9410451B2 (en) | 2012-12-04 | 2016-08-09 | General Electric Company | Gas turbine engine with integrated bottoming cycle system |
EP2947279B1 (en) * | 2013-01-16 | 2019-12-04 | Panasonic Intellectual Property Management Co., Ltd. | Rankine cycle device |
WO2014164620A1 (en) * | 2013-03-11 | 2014-10-09 | Echogen Power Systems, L.L.C. | Pump and valve system for controlling a supercritical working fluid circuit in a heat engine system |
KR20150139859A (en) * | 2013-03-13 | 2015-12-14 | 에코진 파워 시스템스, 엘엘씨 | Charging pump system for supplying a working fluid to bearings in a supercritical working fluid circuit |
WO2014159520A1 (en) * | 2013-03-14 | 2014-10-02 | Echogen Power Systems, L.L.C. | Controlling turbopump thrust in a heat engine system |
US9593597B2 (en) * | 2013-05-30 | 2017-03-14 | General Electric Company | System and method of waste heat recovery |
US9587520B2 (en) * | 2013-05-30 | 2017-03-07 | General Electric Company | System and method of waste heat recovery |
US9145795B2 (en) * | 2013-05-30 | 2015-09-29 | General Electric Company | System and method of waste heat recovery |
US9260982B2 (en) * | 2013-05-30 | 2016-02-16 | General Electric Company | System and method of waste heat recovery |
JP6217426B2 (en) * | 2014-02-07 | 2017-10-25 | いすゞ自動車株式会社 | Waste heat recovery system |
CN103806969B (en) * | 2014-03-13 | 2015-04-29 | 中冶赛迪工程技术股份有限公司 | System for cycling power generation by means of supercritical CO2 working medium |
CA2952379C (en) | 2014-06-13 | 2019-04-30 | Echogen Power Systems, Llc | Systems and methods for controlling backpressure in a heat engine system having hydrostatic bearings |
EP3155239B1 (en) * | 2014-06-13 | 2020-05-13 | Echogen Power Systems LLC | Systems and methods for balancing thrust loads in a heat engine system |
US10436075B2 (en) * | 2015-01-05 | 2019-10-08 | General Electric Company | Multi-pressure organic Rankine cycle |
FR3032744B1 (en) * | 2015-02-13 | 2018-11-16 | Univ Aix Marseille | DEVICE FOR THE TRANSMISSION OF KINETIC ENERGY FROM A MOTOR FLUID TO A RECEPTOR FLUID |
US9644502B2 (en) * | 2015-04-09 | 2017-05-09 | General Electric Company | Regenerative thermodynamic power generation cycle systems, and methods for operating thereof |
EP3106645B1 (en) | 2015-06-15 | 2018-08-15 | Rolls-Royce Corporation | Gas turbine engine driven by sco2 cycle with advanced heat rejection |
EP3109433B1 (en) | 2015-06-19 | 2018-08-15 | Rolls-Royce Corporation | Engine driven by sc02 cycle with independent shafts for combustion cycle elements and propulsion elements |
ITUB20156041A1 (en) * | 2015-06-25 | 2017-06-01 | Nuovo Pignone Srl | SIMPLE CYCLE SYSTEM AND METHOD FOR THE RECOVERY OF THERMAL CASCAME |
EP3121409B1 (en) | 2015-07-20 | 2020-03-18 | Rolls-Royce Corporation | Sectioned gas turbine engine driven by sco2 cycle |
US9816401B2 (en) * | 2015-08-24 | 2017-11-14 | Saudi Arabian Oil Company | Modified Goswami cycle based conversion of gas processing plant waste heat into power and cooling |
DE102015217737A1 (en) * | 2015-09-16 | 2017-03-16 | Robert Bosch Gmbh | Waste heat recovery system with a working fluid circuit |
KR101800081B1 (en) * | 2015-10-16 | 2017-12-20 | 두산중공업 주식회사 | Supercritical CO2 generation system applying plural heat sources |
WO2017069457A1 (en) * | 2015-10-21 | 2017-04-27 | 두산중공업 주식회사 | Supercritical carbon dioxide generating system |
RU2657068C2 (en) * | 2015-11-13 | 2018-06-08 | Общество с ограниченной ответственностью "Элген Технологии", ООО "Элген Технологии" | Installation for electrical energy generation for utilization of heat of smoke and exhaust gases |
US9863266B2 (en) | 2015-11-19 | 2018-01-09 | Borgwarner Inc. | Waste heat recovery system for a power source |
JP6615358B2 (en) * | 2015-12-22 | 2019-12-04 | シーメンス エナジー インコーポレイテッド | Chimney energy control in combined cycle power plants. |
KR20170085851A (en) * | 2016-01-15 | 2017-07-25 | 두산중공업 주식회사 | Supercritical CO2 generation system applying plural heat sources |
KR101882070B1 (en) * | 2016-02-11 | 2018-07-25 | 두산중공업 주식회사 | Supercritical CO2 generation system applying plural heat sources |
KR101939436B1 (en) * | 2016-02-11 | 2019-04-10 | 두산중공업 주식회사 | Supercritical CO2 generation system applying plural heat sources |
ITUB20160955A1 (en) * | 2016-02-22 | 2017-08-22 | Nuovo Pignone Tecnologie Srl | CYCLE IN CASCAME OF RECOVERY OF CASCAME THERMAL AND METHOD |
US9742196B1 (en) * | 2016-02-24 | 2017-08-22 | Doosan Fuel Cell America, Inc. | Fuel cell power plant cooling network integrated with a thermal hydraulic engine |
CN105863876A (en) * | 2016-03-30 | 2016-08-17 | 时建华 | Petroleum transportation device with drying function |
CN105857155B (en) * | 2016-03-30 | 2018-12-25 | 江苏海涛新能源科技有限公司 | A kind of multi-compartment logistics device |
CN105822457A (en) * | 2016-03-30 | 2016-08-03 | 时建华 | Novel waste transporting equipment |
CN105781645B (en) * | 2016-03-30 | 2018-11-27 | 泰州市海星环保设备安装有限公司 | A kind of waste conveyor |
CN105839684B (en) * | 2016-03-30 | 2018-11-27 | 泰州市邦富环保科技有限公司 | A kind of high-performance bulldozing device |
KR102116815B1 (en) * | 2016-07-13 | 2020-06-01 | 한국기계연구원 | Supercritical cycle system |
CN107630728B (en) * | 2016-07-18 | 2020-11-13 | 西门子公司 | CO shift reaction system, and device and method for recovering waste heat of CO shift reaction |
KR20180035008A (en) * | 2016-09-28 | 2018-04-05 | 두산중공업 주식회사 | Hybrid type power generation system |
KR102061275B1 (en) * | 2016-10-04 | 2019-12-31 | 두산중공업 주식회사 | Hybrid type supercritical CO2 power generation system |
US11053847B2 (en) | 2016-12-28 | 2021-07-06 | Malta Inc. | Baffled thermoclines in thermodynamic cycle systems |
US10233833B2 (en) | 2016-12-28 | 2019-03-19 | Malta Inc. | Pump control of closed cycle power generation system |
US10458284B2 (en) | 2016-12-28 | 2019-10-29 | Malta Inc. | Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank |
US10221775B2 (en) | 2016-12-29 | 2019-03-05 | Malta Inc. | Use of external air for closed cycle inventory control |
US10436109B2 (en) | 2016-12-31 | 2019-10-08 | Malta Inc. | Modular thermal storage |
CN108952966B (en) | 2017-05-25 | 2023-08-18 | 斗山重工业建设有限公司 | Combined cycle power plant |
KR101876129B1 (en) * | 2017-06-15 | 2018-07-06 | 두산중공업 주식회사 | Filter automatic cleaner and method of filter automatic cleaning using it and supercritical fluid power generation system comprising it |
JP6776190B2 (en) * | 2017-06-26 | 2020-10-28 | 株式会社神戸製鋼所 | Thermal energy recovery device and thermal energy recovery method |
KR102026327B1 (en) * | 2017-07-20 | 2019-09-30 | 두산중공업 주식회사 | Hybrid power generating system |
KR102010145B1 (en) * | 2017-10-25 | 2019-10-23 | 두산중공업 주식회사 | Supercritical CO2 Power generation plant |
CA3085850A1 (en) * | 2017-12-18 | 2019-06-27 | Exergy International S.R.L. | Process, plant and thermodynamic cycle for production of power from variable temperature heat sources |
EP3935277A4 (en) | 2019-03-06 | 2023-04-05 | Industrom Power, LLC | Compact axial turbine for high density working fluid |
WO2020181137A1 (en) | 2019-03-06 | 2020-09-10 | Industrom Power, Llc | Intercooled cascade cycle waste heat recovery system |
US11396828B2 (en) * | 2019-03-13 | 2022-07-26 | Dylan M. Chase | Heat and power cogeneration system |
KR102153458B1 (en) * | 2019-04-10 | 2020-09-08 | 한국기계연구원 | Supercritical rankine cycle system |
CN111636935A (en) * | 2019-04-15 | 2020-09-08 | 李华玉 | Single working medium steam combined cycle |
CN111608756A (en) * | 2019-04-23 | 2020-09-01 | 李华玉 | Single working medium steam combined cycle |
CN111561367A (en) * | 2019-04-25 | 2020-08-21 | 李华玉 | Single working medium steam combined cycle |
CN111561368A (en) * | 2019-04-26 | 2020-08-21 | 李华玉 | Single working medium steam combined cycle |
CN115478920A (en) * | 2019-06-13 | 2022-12-16 | 李华玉 | Reverse single working medium steam combined cycle |
JP2022553780A (en) * | 2019-10-28 | 2022-12-26 | ペリグリン タービン テクノロジーズ、エルエルシー | Method and system for starting and stopping closed-cycle turbomachinery |
US11852043B2 (en) | 2019-11-16 | 2023-12-26 | Malta Inc. | Pumped heat electric storage system with recirculation |
IT201900023364A1 (en) * | 2019-12-10 | 2021-06-10 | Turboden Spa | HIGH EFFICIENCY ORGANIC RANKINE CYCLE WITH FLEXIBLE HEAT DISCONNECTION |
CN113586186A (en) * | 2020-06-15 | 2021-11-02 | 浙江大学 | Supercritical carbon dioxide Brayton cycle system |
WO2022036106A1 (en) | 2020-08-12 | 2022-02-17 | Malta Inc. | Pumped heat energy storage system with thermal plant integration |
US11480067B2 (en) | 2020-08-12 | 2022-10-25 | Malta Inc. | Pumped heat energy storage system with generation cycle thermal integration |
US11396826B2 (en) | 2020-08-12 | 2022-07-26 | Malta Inc. | Pumped heat energy storage system with electric heating integration |
US11286804B2 (en) | 2020-08-12 | 2022-03-29 | Malta Inc. | Pumped heat energy storage system with charge cycle thermal integration |
US11454167B1 (en) | 2020-08-12 | 2022-09-27 | Malta Inc. | Pumped heat energy storage system with hot-side thermal integration |
US11492964B2 (en) | 2020-11-25 | 2022-11-08 | Michael F. Keller | Integrated supercritical CO2/multiple thermal cycles |
US11486370B2 (en) | 2021-04-02 | 2022-11-01 | Ice Thermal Harvesting, Llc | Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations |
US11480074B1 (en) | 2021-04-02 | 2022-10-25 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11326550B1 (en) | 2021-04-02 | 2022-05-10 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11493029B2 (en) | 2021-04-02 | 2022-11-08 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11293414B1 (en) | 2021-04-02 | 2022-04-05 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power in an organic rankine cycle operation |
US11592009B2 (en) | 2021-04-02 | 2023-02-28 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11421663B1 (en) | 2021-04-02 | 2022-08-23 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power in an organic Rankine cycle operation |
US11644015B2 (en) | 2021-04-02 | 2023-05-09 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US12060867B2 (en) | 2021-04-02 | 2024-08-13 | Ice Thermal Harvesting, Llc | Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on working fluid temperature |
CN115680805A (en) * | 2022-10-24 | 2023-02-03 | 大连海事大学 | Waste heat recovery-oriented combined system construction method based on supercritical carbon dioxide power generation cycle |
US20240142143A1 (en) * | 2022-10-27 | 2024-05-02 | Supercritical Storage Company, Inc. | High-temperature, dual rail heat pump cycle for high performance at high-temperature lift and range |
Family Cites Families (432)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2575478A (en) | 1948-06-26 | 1951-11-20 | Leon T Wilson | Method and system for utilizing solar energy |
US2634375A (en) | 1949-11-07 | 1953-04-07 | Guimbal Jean Claude | Combined turbine and generator unit |
US2691280A (en) | 1952-08-04 | 1954-10-12 | James A Albert | Refrigeration system and drying means therefor |
US3105748A (en) | 1957-12-09 | 1963-10-01 | Parkersburg Rig & Reel Co | Method and system for drying gas and reconcentrating the drying absorbent |
GB856985A (en) | 1957-12-16 | 1960-12-21 | Licencia Talalmanyokat | Process and device for controlling an equipment for cooling electrical generators |
US3095274A (en) | 1958-07-01 | 1963-06-25 | Air Prod & Chem | Hydrogen liquefaction and conversion systems |
US3277955A (en) | 1961-11-01 | 1966-10-11 | Heller Laszlo | Control apparatus for air-cooled steam condensation systems |
US3401277A (en) | 1962-12-31 | 1968-09-10 | United Aircraft Corp | Two-phase fluid power generator with no moving parts |
US3237403A (en) | 1963-03-19 | 1966-03-01 | Douglas Aircraft Co Inc | Supercritical cycle heat engine |
US3622767A (en) | 1967-01-16 | 1971-11-23 | Ibm | Adaptive control system and method |
GB1275753A (en) | 1968-09-14 | 1972-05-24 | Rolls Royce | Improvements in or relating to gas turbine engine power plants |
US3736745A (en) | 1971-06-09 | 1973-06-05 | H Karig | Supercritical thermal power system using combustion gases for working fluid |
US3772879A (en) | 1971-08-04 | 1973-11-20 | Energy Res Corp | Heat engine |
US3998058A (en) | 1974-09-16 | 1976-12-21 | Fast Load Control Inc. | Method of effecting fast turbine valving for improvement of power system stability |
US4029255A (en) | 1972-04-26 | 1977-06-14 | Westinghouse Electric Corporation | System for operating a steam turbine with bumpless digital megawatt and impulse pressure control loop switching |
US3791137A (en) | 1972-05-15 | 1974-02-12 | Secr Defence | Fluidized bed powerplant with helium circuit, indirect heat exchange and compressed air bypass control |
US3830062A (en) | 1973-10-09 | 1974-08-20 | Thermo Electron Corp | Rankine cycle bottoming plant |
US3939328A (en) | 1973-11-06 | 1976-02-17 | Westinghouse Electric Corporation | Control system with adaptive process controllers especially adapted for electric power plant operation |
US3971211A (en) | 1974-04-02 | 1976-07-27 | Mcdonnell Douglas Corporation | Thermodynamic cycles with supercritical CO2 cycle topping |
AT369864B (en) | 1974-08-14 | 1982-06-15 | Waagner Biro Ag | STEAM STORAGE SYSTEM |
US3995689A (en) | 1975-01-27 | 1976-12-07 | The Marley Cooling Tower Company | Air cooled atmospheric heat exchanger |
US4009575A (en) | 1975-05-12 | 1977-03-01 | said Thomas L. Hartman, Jr. | Multi-use absorption/regeneration power cycle |
DE2632777C2 (en) | 1975-07-24 | 1986-02-20 | Gilli, Paul Viktor, Prof. Dipl.-Ing. Dr.techn., Graz | Steam power plant with equipment to cover peak loads |
SE409054B (en) | 1975-12-30 | 1979-07-23 | Munters Ab Carl | DEVICE FOR HEAT PUMP IN WHICH A WORKING MEDIUM IN A CLOSED PROCESS CIRCULATES IN A CIRCUIT UNDER DIFFERENT PRESSURES AND TEMPERATURE |
US4198827A (en) | 1976-03-15 | 1980-04-22 | Schoeppel Roger J | Power cycles based upon cyclical hydriding and dehydriding of a material |
US4030312A (en) | 1976-04-07 | 1977-06-21 | Shantzer-Wallin Corporation | Heat pumps with solar heat source |
US4049407A (en) | 1976-08-18 | 1977-09-20 | Bottum Edward W | Solar assisted heat pump system |
US4164849A (en) | 1976-09-30 | 1979-08-21 | The United States Of America As Represented By The United States Department Of Energy | Method and apparatus for thermal power generation |
GB1583648A (en) | 1976-10-04 | 1981-01-28 | Acres Consulting Services | Compressed air power storage systems |
US4070870A (en) | 1976-10-04 | 1978-01-31 | Borg-Warner Corporation | Heat pump assisted solar powered absorption system |
US4183220A (en) | 1976-10-08 | 1980-01-15 | Shaw John B | Positive displacement gas expansion engine with low temperature differential |
US4257232A (en) | 1976-11-26 | 1981-03-24 | Bell Ealious D | Calcium carbide power system |
US4164848A (en) | 1976-12-21 | 1979-08-21 | Paul Viktor Gilli | Method and apparatus for peak-load coverage and stop-gap reserve in steam power plants |
US4099381A (en) | 1977-07-07 | 1978-07-11 | Rappoport Marc D | Geothermal and solar integrated energy transport and conversion system |
US4170435A (en) | 1977-10-14 | 1979-10-09 | Swearingen Judson S | Thrust controlled rotary apparatus |
DE2852076A1 (en) | 1977-12-05 | 1979-06-07 | Fiat Spa | PLANT FOR GENERATING MECHANICAL ENERGY FROM HEAT SOURCES OF DIFFERENT TEMPERATURE |
US4208882A (en) | 1977-12-15 | 1980-06-24 | General Electric Company | Start-up attemperator |
US4236869A (en) | 1977-12-27 | 1980-12-02 | United Technologies Corporation | Gas turbine engine having bleed apparatus with dynamic pressure recovery |
US4182960A (en) | 1978-05-30 | 1980-01-08 | Reuyl John S | Integrated residential and automotive energy system |
US4276747A (en) * | 1978-11-30 | 1981-07-07 | Fiat Societa Per Azioni | Heat recovery system |
US4221185A (en) | 1979-01-22 | 1980-09-09 | Ball Corporation | Apparatus for applying lubricating materials to metallic substrates |
US4233085A (en) | 1979-03-21 | 1980-11-11 | Photon Power, Inc. | Solar panel module |
US4248049A (en) | 1979-07-09 | 1981-02-03 | Hybrid Energy Systems, Inc. | Temperature conditioning system suitable for use with a solar energy collection and storage apparatus or a low temperature energy source |
US4287430A (en) | 1980-01-18 | 1981-09-01 | Foster Wheeler Energy Corporation | Coordinated control system for an electric power plant |
US4798056A (en) | 1980-02-11 | 1989-01-17 | Sigma Research, Inc. | Direct expansion solar collector-heat pump system |
JPS5825876B2 (en) | 1980-02-18 | 1983-05-30 | 株式会社日立製作所 | Axial thrust balance device |
US4336692A (en) | 1980-04-16 | 1982-06-29 | Atlantic Richfield Company | Dual source heat pump |
CA1152563A (en) | 1980-04-28 | 1983-08-23 | Max F. Anderson | Closed loop power generating method and apparatus |
US4347714A (en) | 1980-07-25 | 1982-09-07 | The Garrett Corporation | Heat pump systems for residential use |
US4347711A (en) | 1980-07-25 | 1982-09-07 | The Garrett Corporation | Heat-actuated space conditioning unit with bottoming cycle |
US4384568A (en) | 1980-11-12 | 1983-05-24 | Palmatier Everett P | Solar heating system |
US4372125A (en) | 1980-12-22 | 1983-02-08 | General Electric Company | Turbine bypass desuperheater control system |
US4773212A (en) | 1981-04-01 | 1988-09-27 | United Technologies Corporation | Balancing the heat flow between components associated with a gas turbine engine |
US4391101A (en) | 1981-04-01 | 1983-07-05 | General Electric Company | Attemperator-deaerator condenser |
JPS588956A (en) | 1981-07-10 | 1983-01-19 | 株式会社システム・ホ−ムズ | Heat pump type air conditioner |
US4428190A (en) | 1981-08-07 | 1984-01-31 | Ormat Turbines, Ltd. | Power plant utilizing multi-stage turbines |
DE3137371C2 (en) | 1981-09-19 | 1984-06-20 | Saarbergwerke AG, 6600 Saarbrücken | System to reduce start-up and shutdown losses, to increase the usable power and to improve the controllability of a thermal power plant |
US4455836A (en) | 1981-09-25 | 1984-06-26 | Westinghouse Electric Corp. | Turbine high pressure bypass temperature control system and method |
FI66234C (en) | 1981-10-13 | 1984-09-10 | Jaakko Larjola | ENERGIOMVANDLARE |
US4448033A (en) | 1982-03-29 | 1984-05-15 | Carrier Corporation | Thermostat self-test apparatus and method |
JPS58193051A (en) | 1982-05-04 | 1983-11-10 | Mitsubishi Electric Corp | Heat collector for solar heat |
US4450363A (en) | 1982-05-07 | 1984-05-22 | The Babcock & Wilcox Company | Coordinated control technique and arrangement for steam power generating system |
US4475353A (en) | 1982-06-16 | 1984-10-09 | The Puraq Company | Serial absorption refrigeration process |
US4439994A (en) | 1982-07-06 | 1984-04-03 | Hybrid Energy Systems, Inc. | Three phase absorption systems and methods for refrigeration and heat pump cycles |
US4439687A (en) | 1982-07-09 | 1984-03-27 | Uop Inc. | Generator synchronization in power recovery units |
US4433554A (en) | 1982-07-16 | 1984-02-28 | Institut Francais Du Petrole | Process for producing cold and/or heat by use of an absorption cycle with carbon dioxide as working fluid |
US4489563A (en) | 1982-08-06 | 1984-12-25 | Kalina Alexander Ifaevich | Generation of energy |
US4467609A (en) | 1982-08-27 | 1984-08-28 | Loomis Robert G | Working fluids for electrical generating plants |
US4467621A (en) | 1982-09-22 | 1984-08-28 | Brien Paul R O | Fluid/vacuum chamber to remove heat and heat vapor from a refrigerant fluid |
US4489562A (en) | 1982-11-08 | 1984-12-25 | Combustion Engineering, Inc. | Method and apparatus for controlling a gasifier |
US4498289A (en) | 1982-12-27 | 1985-02-12 | Ian Osgerby | Carbon dioxide power cycle |
US4555905A (en) | 1983-01-26 | 1985-12-03 | Mitsui Engineering & Shipbuilding Co., Ltd. | Method of and system for utilizing thermal energy accumulator |
JPS6040707A (en) | 1983-08-12 | 1985-03-04 | Toshiba Corp | Low boiling point medium cycle generator |
US4674297A (en) | 1983-09-29 | 1987-06-23 | Vobach Arnold R | Chemically assisted mechanical refrigeration process |
JPS6088806A (en) | 1983-10-21 | 1985-05-18 | Mitsui Eng & Shipbuild Co Ltd | Waste heat recoverer for internal-combustion engine |
US5228310A (en) | 1984-05-17 | 1993-07-20 | Vandenberg Leonard B | Solar heat pump |
US4700543A (en) | 1984-07-16 | 1987-10-20 | Ormat Turbines (1965) Ltd. | Cascaded power plant using low and medium temperature source fluid |
US4578953A (en) | 1984-07-16 | 1986-04-01 | Ormat Systems Inc. | Cascaded power plant using low and medium temperature source fluid |
US4589255A (en) | 1984-10-25 | 1986-05-20 | Westinghouse Electric Corp. | Adaptive temperature control system for the supply of steam to a steam turbine |
US4573321A (en) | 1984-11-06 | 1986-03-04 | Ecoenergy I, Ltd. | Power generating cycle |
US4697981A (en) | 1984-12-13 | 1987-10-06 | United Technologies Corporation | Rotor thrust balancing |
JPS61152914A (en) | 1984-12-27 | 1986-07-11 | Toshiba Corp | Starting of thermal power plant |
US4636578A (en) | 1985-04-11 | 1987-01-13 | Atlantic Richfield Company | Photocell assembly |
CA1273695A (en) | 1985-09-25 | 1990-09-04 | Eiji Haraguchi | Control system for variable speed hydraulic turbine generator apparatus |
CH669241A5 (en) | 1985-11-27 | 1989-02-28 | Sulzer Ag | AXIAL PUSH COMPENSATING DEVICE FOR LIQUID PUMP. |
US5050375A (en) | 1985-12-26 | 1991-09-24 | Dipac Associates | Pressurized wet combustion at increased temperature |
US4730977A (en) | 1986-12-31 | 1988-03-15 | General Electric Company | Thrust bearing loading arrangement for gas turbine engines |
US4765143A (en) | 1987-02-04 | 1988-08-23 | Cbi Research Corporation | Power plant using CO2 as a working fluid |
US4756162A (en) | 1987-04-09 | 1988-07-12 | Abraham Dayan | Method of utilizing thermal energy |
US4821514A (en) | 1987-06-09 | 1989-04-18 | Deere & Company | Pressure flow compensating control circuit |
US4813242A (en) | 1987-11-17 | 1989-03-21 | Wicks Frank E | Efficient heater and air conditioner |
US4867633A (en) | 1988-02-18 | 1989-09-19 | Sundstrand Corporation | Centrifugal pump with hydraulic thrust balance and tandem axial seals |
JPH01240705A (en) | 1988-03-18 | 1989-09-26 | Toshiba Corp | Feed water pump turbine unit |
US5903060A (en) | 1988-07-14 | 1999-05-11 | Norton; Peter | Small heat and electricity generating plant |
US5483797A (en) | 1988-12-02 | 1996-01-16 | Ormat Industries Ltd. | Method of and apparatus for controlling the operation of a valve that regulates the flow of geothermal fluid |
NL8901348A (en) | 1989-05-29 | 1990-12-17 | Turboconsult Bv | METHOD AND APPARATUS FOR GENERATING ELECTRICAL ENERGY |
US4986071A (en) | 1989-06-05 | 1991-01-22 | Komatsu Dresser Company | Fast response load sense control system |
US5531073A (en) | 1989-07-01 | 1996-07-02 | Ormat Turbines (1965) Ltd | Rankine cycle power plant utilizing organic working fluid |
US5503222A (en) | 1989-07-28 | 1996-04-02 | Uop | Carousel heat exchanger for sorption cooling process |
US5000003A (en) | 1989-08-28 | 1991-03-19 | Wicks Frank E | Combined cycle engine |
US4995234A (en) | 1989-10-02 | 1991-02-26 | Chicago Bridge & Iron Technical Services Company | Power generation from LNG |
US5335510A (en) | 1989-11-14 | 1994-08-09 | Rocky Research | Continuous constant pressure process for staging solid-vapor compounds |
JP2641581B2 (en) | 1990-01-19 | 1997-08-13 | 東洋エンジニアリング株式会社 | Power generation method |
US4993483A (en) | 1990-01-22 | 1991-02-19 | Charles Harris | Geothermal heat transfer system |
JP3222127B2 (en) * | 1990-03-12 | 2001-10-22 | 株式会社日立製作所 | Uniaxial pressurized fluidized bed combined plant and operation method thereof |
US5102295A (en) | 1990-04-03 | 1992-04-07 | General Electric Company | Thrust force-compensating apparatus with improved hydraulic pressure-responsive balance mechanism |
US5098194A (en) | 1990-06-27 | 1992-03-24 | Union Carbide Chemicals & Plastics Technology Corporation | Semi-continuous method and apparatus for forming a heated and pressurized mixture of fluids in a predetermined proportion |
US5104284A (en) | 1990-12-17 | 1992-04-14 | Dresser-Rand Company | Thrust compensating apparatus |
US5164020A (en) | 1991-05-24 | 1992-11-17 | Solarex Corporation | Solar panel |
DE4129518A1 (en) | 1991-09-06 | 1993-03-11 | Siemens Ag | COOLING A LOW-BRIDGE STEAM TURBINE IN VENTILATION OPERATION |
US5360057A (en) | 1991-09-09 | 1994-11-01 | Rocky Research | Dual-temperature heat pump apparatus and system |
US5176321A (en) | 1991-11-12 | 1993-01-05 | Illinois Tool Works Inc. | Device for applying electrostatically charged lubricant |
JP3119718B2 (en) | 1992-05-18 | 2000-12-25 | 月島機械株式会社 | Low voltage power generation method and device |
JPH08503975A (en) | 1992-06-03 | 1996-04-30 | ヘンケル・コーポレイション | Polyol ester lubricant for heat transfer fluid of refrigerant |
US5320482A (en) | 1992-09-21 | 1994-06-14 | The United States Of America As Represented By The Secretary Of The Navy | Method and apparatus for reducing axial thrust in centrifugal pumps |
US5358378A (en) | 1992-11-17 | 1994-10-25 | Holscher Donald J | Multistage centrifugal compressor without seals and with axial thrust balance |
US5291960A (en) | 1992-11-30 | 1994-03-08 | Ford Motor Company | Hybrid electric vehicle regenerative braking energy recovery system |
FR2698659B1 (en) | 1992-12-02 | 1995-01-13 | Stein Industrie | Heat recovery process in particular for combined cycles apparatus for implementing the process and installation for heat recovery for combined cycle. |
US6753948B2 (en) | 1993-04-27 | 2004-06-22 | Nikon Corporation | Scanning exposure method and apparatus |
US5488828A (en) | 1993-05-14 | 1996-02-06 | Brossard; Pierre | Energy generating apparatus |
JPH06331225A (en) | 1993-05-19 | 1994-11-29 | Nippondenso Co Ltd | Steam jetting type refrigerating device |
US5440882A (en) | 1993-11-03 | 1995-08-15 | Exergy, Inc. | Method and apparatus for converting heat from geothermal liquid and geothermal steam to electric power |
US5392606A (en) | 1994-02-22 | 1995-02-28 | Martin Marietta Energy Systems, Inc. | Self-contained small utility system |
US5538564A (en) | 1994-03-18 | 1996-07-23 | Regents Of The University Of California | Three dimensional amorphous silicon/microcrystalline silicon solar cells |
US5444972A (en) | 1994-04-12 | 1995-08-29 | Rockwell International Corporation | Solar-gas combined cycle electrical generating system |
JPH0828805A (en) | 1994-07-19 | 1996-02-02 | Toshiba Corp | Apparatus and method for supplying water to boiler |
US5572871A (en) * | 1994-07-29 | 1996-11-12 | Exergy, Inc. | System and apparatus for conversion of thermal energy into mechanical and electrical power |
US5542203A (en) | 1994-08-05 | 1996-08-06 | Addco Manufacturing, Inc. | Mobile sign with solar panel |
DE4429539C2 (en) | 1994-08-19 | 2002-10-24 | Alstom | Process for speed control of a gas turbine when shedding loads |
AUPM835894A0 (en) | 1994-09-22 | 1994-10-13 | Thermal Energy Accumulator Products Pty Ltd | A temperature control system for liquids |
US5634340A (en) | 1994-10-14 | 1997-06-03 | Dresser Rand Company | Compressed gas energy storage system with cooling capability |
US5605118A (en) * | 1994-11-15 | 1997-02-25 | Tampella Power Corporation | Method and system for reheat temperature control |
US5813215A (en) | 1995-02-21 | 1998-09-29 | Weisser; Arthur M. | Combined cycle waste heat recovery system |
US5904697A (en) | 1995-02-24 | 1999-05-18 | Heartport, Inc. | Devices and methods for performing a vascular anastomosis |
US5600967A (en) | 1995-04-24 | 1997-02-11 | Meckler; Milton | Refrigerant enhancer-absorbent concentrator and turbo-charged absorption chiller |
US5649426A (en) | 1995-04-27 | 1997-07-22 | Exergy, Inc. | Method and apparatus for implementing a thermodynamic cycle |
US5676382A (en) | 1995-06-06 | 1997-10-14 | Freudenberg Nok General Partnership | Mechanical face seal assembly including a gasket |
US6170264B1 (en) | 1997-09-22 | 2001-01-09 | Clean Energy Systems, Inc. | Hydrocarbon combustion power generation system with CO2 sequestration |
US5953902A (en) | 1995-08-03 | 1999-09-21 | Siemens Aktiengesellschaft | Control system for controlling the rotational speed of a turbine, and method for controlling the rotational speed of a turbine during load shedding |
JPH09100702A (en) | 1995-10-06 | 1997-04-15 | Sadajiro Sano | Carbon dioxide power generating system by high pressure exhaust |
US5647221A (en) | 1995-10-10 | 1997-07-15 | The George Washington University | Pressure exchanging ejector and refrigeration apparatus and method |
US5588298A (en) | 1995-10-20 | 1996-12-31 | Exergy, Inc. | Supplying heat to an externally fired power system |
US5771700A (en) | 1995-11-06 | 1998-06-30 | Ecr Technologies, Inc. | Heat pump apparatus and related methods providing enhanced refrigerant flow control |
US6158237A (en) | 1995-11-10 | 2000-12-12 | The University Of Nottingham | Rotatable heat transfer apparatus |
JPH09209716A (en) | 1996-02-07 | 1997-08-12 | Toshiba Corp | Power plant |
DE19615911A1 (en) | 1996-04-22 | 1997-10-23 | Asea Brown Boveri | Method for operating a combination system |
US5973050A (en) | 1996-07-01 | 1999-10-26 | Integrated Cryoelectronic Inc. | Composite thermoelectric material |
US5789822A (en) | 1996-08-12 | 1998-08-04 | Revak Turbomachinery Services, Inc. | Speed control system for a prime mover |
US5899067A (en) | 1996-08-21 | 1999-05-04 | Hageman; Brian C. | Hydraulic engine powered by introduction and removal of heat from a working fluid |
US5874039A (en) | 1997-09-22 | 1999-02-23 | Borealis Technical Limited | Low work function electrode |
US5738164A (en) | 1996-11-15 | 1998-04-14 | Geohil Ag | Arrangement for effecting an energy exchange between earth soil and an energy exchanger |
US5862666A (en) | 1996-12-23 | 1999-01-26 | Pratt & Whitney Canada Inc. | Turbine engine having improved thrust bearing load control |
US5763544A (en) | 1997-01-16 | 1998-06-09 | Praxair Technology, Inc. | Cryogenic cooling of exothermic reactor |
US5941238A (en) | 1997-02-25 | 1999-08-24 | Ada Tracy | Heat storage vessels for use with heat pumps and solar panels |
JPH10270734A (en) | 1997-03-27 | 1998-10-09 | Canon Inc | Solar battery module |
US6694740B2 (en) | 1997-04-02 | 2004-02-24 | Electric Power Research Institute, Inc. | Method and system for a thermodynamic process for producing usable energy |
US5873260A (en) | 1997-04-02 | 1999-02-23 | Linhardt; Hans D. | Refrigeration apparatus and method |
TW347861U (en) | 1997-04-26 | 1998-12-11 | Ind Tech Res Inst | Compound-type solar energy water-heating/dehumidifying apparatus |
US5918460A (en) | 1997-05-05 | 1999-07-06 | United Technologies Corporation | Liquid oxygen gasifying system for rocket engines |
JP2986426B2 (en) * | 1997-06-04 | 1999-12-06 | 株式会社日立製作所 | Hydrogen combustion turbine plant |
JPH1144202A (en) * | 1997-07-29 | 1999-02-16 | Toshiba Corp | Combined cycle generating plant |
US7147071B2 (en) | 2004-02-04 | 2006-12-12 | Battelle Energy Alliance, Llc | Thermal management systems and methods |
DE19751055A1 (en) | 1997-11-18 | 1999-05-20 | Abb Patent Gmbh | Gas-cooled turbogenerator |
US6446465B1 (en) | 1997-12-11 | 2002-09-10 | Bhp Petroleum Pty, Ltd. | Liquefaction process and apparatus |
DE59709283D1 (en) | 1997-12-23 | 2003-03-13 | Abb Turbo Systems Ag Baden | Method and device for contactless sealing of a separation gap formed between a rotor and a stator |
US5946931A (en) | 1998-02-25 | 1999-09-07 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Evaporative cooling membrane device |
JPH11270352A (en) | 1998-03-24 | 1999-10-05 | Mitsubishi Heavy Ind Ltd | Intake air cooling type gas turbine power generating equipment and generation power plant using the power generating equipment |
US20020166324A1 (en) | 1998-04-02 | 2002-11-14 | Capstone Turbine Corporation | Integrated turbine power generation system having low pressure supplemental catalytic reactor |
US6065280A (en) | 1998-04-08 | 2000-05-23 | General Electric Co. | Method of heating gas turbine fuel in a combined cycle power plant using multi-component flow mixtures |
DE29806768U1 (en) | 1998-04-15 | 1998-06-25 | Feodor Burgmann Dichtungswerke GmbH & Co., 82515 Wolfratshausen | Dynamic sealing element for a mechanical seal arrangement |
US6062815A (en) | 1998-06-05 | 2000-05-16 | Freudenberg-Nok General Partnership | Unitized seal impeller thrust system |
US6223846B1 (en) | 1998-06-15 | 2001-05-01 | Michael M. Schechter | Vehicle operating method and system |
ZA993917B (en) | 1998-06-17 | 2000-01-10 | Ramgen Power Systems Inc | Ramjet engine for power generation. |
WO2000000774A1 (en) | 1998-06-30 | 2000-01-06 | Ebara Corporation | Heat exchanger, heat pump, dehumidifier, and dehumidifying method |
US6112547A (en) | 1998-07-10 | 2000-09-05 | Spauschus Associates, Inc. | Reduced pressure carbon dioxide-based refrigeration system |
US6173563B1 (en) | 1998-07-13 | 2001-01-16 | General Electric Company | Modified bottoming cycle for cooling inlet air to a gas turbine combined cycle plant |
US6233938B1 (en) | 1998-07-14 | 2001-05-22 | Helios Energy Technologies, Inc. | Rankine cycle and working fluid therefor |
US6041604A (en) | 1998-07-14 | 2000-03-28 | Helios Research Corporation | Rankine cycle and working fluid therefor |
US6282917B1 (en) | 1998-07-16 | 2001-09-04 | Stephen Mongan | Heat exchange method and apparatus |
US6808179B1 (en) | 1998-07-31 | 2004-10-26 | Concepts Eti, Inc. | Turbomachinery seal |
US6748733B2 (en) | 1998-09-15 | 2004-06-15 | Robert F. Tamaro | System for waste heat augmentation in combined cycle plant through combustor gas diversion |
US6432320B1 (en) | 1998-11-02 | 2002-08-13 | Patrick Bonsignore | Refrigerant and heat transfer fluid additive |
US6571548B1 (en) | 1998-12-31 | 2003-06-03 | Ormat Industries Ltd. | Waste heat recovery in an organic energy converter using an intermediate liquid cycle |
US6105368A (en) | 1999-01-13 | 2000-08-22 | Abb Alstom Power Inc. | Blowdown recovery system in a Kalina cycle power generation system |
DE19906087A1 (en) | 1999-02-13 | 2000-08-17 | Buderus Heiztechnik Gmbh | Function testing device for solar installation involves collectors which discharge automatically into collection container during risk of overheating or frost |
US6058930A (en) | 1999-04-21 | 2000-05-09 | Shingleton; Jefferson | Solar collector and tracker arrangement |
US6129507A (en) | 1999-04-30 | 2000-10-10 | Technology Commercialization Corporation | Method and device for reducing axial thrust in rotary machines and a centrifugal pump using same |
US6202782B1 (en) | 1999-05-03 | 2001-03-20 | Takefumi Hatanaka | Vehicle driving method and hybrid vehicle propulsion system |
AUPQ047599A0 (en) | 1999-05-20 | 1999-06-10 | Thermal Energy Accumulator Products Pty Ltd | A semi self sustaining thermo-volumetric motor |
US6295818B1 (en) | 1999-06-29 | 2001-10-02 | Powerlight Corporation | PV-thermal solar power assembly |
US6082110A (en) | 1999-06-29 | 2000-07-04 | Rosenblatt; Joel H. | Auto-reheat turbine system |
US6668554B1 (en) | 1999-09-10 | 2003-12-30 | The Regents Of The University Of California | Geothermal energy production with supercritical fluids |
US7249588B2 (en) | 1999-10-18 | 2007-07-31 | Ford Global Technologies, Llc | Speed control method |
US6299690B1 (en) | 1999-11-18 | 2001-10-09 | National Research Council Of Canada | Die wall lubrication method and apparatus |
US7062913B2 (en) | 1999-12-17 | 2006-06-20 | The Ohio State University | Heat engine |
JP2001193419A (en) | 2000-01-11 | 2001-07-17 | Yutaka Maeda | Combined power generating system and its device |
US6921518B2 (en) | 2000-01-25 | 2005-07-26 | Meggitt (Uk) Limited | Chemical reactor |
US7022294B2 (en) | 2000-01-25 | 2006-04-04 | Meggitt (Uk) Limited | Compact reactor |
US7033553B2 (en) | 2000-01-25 | 2006-04-25 | Meggitt (Uk) Limited | Chemical reactor |
US6947432B2 (en) | 2000-03-15 | 2005-09-20 | At&T Corp. | H.323 back-end services for intra-zone and inter-zone mobility management |
GB0007917D0 (en) | 2000-03-31 | 2000-05-17 | Npower | An engine |
GB2361662B (en) | 2000-04-26 | 2004-08-04 | Matthew James Lewis-Aburn | A method of manufacturing a moulded article and a product of the method |
US6484490B1 (en) | 2000-05-09 | 2002-11-26 | Ingersoll-Rand Energy Systems Corp. | Gas turbine system and method |
US6282900B1 (en) | 2000-06-27 | 2001-09-04 | Ealious D. Bell | Calcium carbide power system with waste energy recovery |
SE518504C2 (en) | 2000-07-10 | 2002-10-15 | Evol Ingenjoers Ab Fa | Process and systems for power generation, as well as facilities for retrofitting in power generation systems |
US6463730B1 (en) | 2000-07-12 | 2002-10-15 | Honeywell Power Systems Inc. | Valve control logic for gas turbine recuperator |
US6960839B2 (en) | 2000-07-17 | 2005-11-01 | Ormat Technologies, Inc. | Method of and apparatus for producing power from a heat source |
WO2002015365A2 (en) | 2000-08-11 | 2002-02-21 | Nisource Energy Technologies | Energy management system and methods for the optimization of distributed generation |
US6657849B1 (en) | 2000-08-24 | 2003-12-02 | Oak-Mitsui, Inc. | Formation of an embedded capacitor plane using a thin dielectric |
US6393851B1 (en) | 2000-09-14 | 2002-05-28 | Xdx, Llc | Vapor compression system |
JP2002097965A (en) | 2000-09-21 | 2002-04-05 | Mitsui Eng & Shipbuild Co Ltd | Cold heat utilizing power generation system |
DE10052993A1 (en) | 2000-10-18 | 2002-05-02 | Doekowa Ges Zur Entwicklung De | Process for converting thermal energy into mechanical energy in a thermal engine comprises passing a working medium through an expansion phase to expand the medium, and then passing |
JP2004512650A (en) | 2000-10-27 | 2004-04-22 | クエストエアー テクノロジーズ インコーポレイテッド | System and method for supplying hydrogen to a fuel cell |
US6539720B2 (en) | 2000-11-06 | 2003-04-01 | Capstone Turbine Corporation | Generated system bottoming cycle |
US6739142B2 (en) | 2000-12-04 | 2004-05-25 | Amos Korin | Membrane desiccation heat pump |
US6539728B2 (en) | 2000-12-04 | 2003-04-01 | Amos Korin | Hybrid heat pump |
US6526765B2 (en) | 2000-12-22 | 2003-03-04 | Carrier Corporation | Pre-start bearing lubrication system employing an accumulator |
US6715294B2 (en) | 2001-01-24 | 2004-04-06 | Drs Power Technology, Inc. | Combined open cycle system for thermal energy conversion |
US6695974B2 (en) | 2001-01-30 | 2004-02-24 | Materials And Electrochemical Research (Mer) Corporation | Nano carbon materials for enhancing thermal transfer in fluids |
US6810335B2 (en) | 2001-03-12 | 2004-10-26 | C.E. Electronics, Inc. | Qualifier |
WO2002090747A2 (en) | 2001-05-07 | 2002-11-14 | Battelle Memorial Institute | Heat energy utilization system |
US6374630B1 (en) | 2001-05-09 | 2002-04-23 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Carbon dioxide absorption heat pump |
US6434955B1 (en) | 2001-08-07 | 2002-08-20 | The National University Of Singapore | Electro-adsorption chiller: a miniaturized cooling cycle with applications from microelectronics to conventional air-conditioning |
US20030213246A1 (en) | 2002-05-15 | 2003-11-20 | Coll John Gordon | Process and device for controlling the thermal and electrical output of integrated micro combined heat and power generation systems |
US6598397B2 (en) | 2001-08-10 | 2003-07-29 | Energetix Micropower Limited | Integrated micro combined heat and power system |
US20030061823A1 (en) | 2001-09-25 | 2003-04-03 | Alden Ray M. | Deep cycle heating and cooling apparatus and process |
US6734585B2 (en) | 2001-11-16 | 2004-05-11 | Honeywell International, Inc. | Rotor end caps and a method of cooling a high speed generator |
US7441589B2 (en) | 2001-11-30 | 2008-10-28 | Cooling Technologies, Inc. | Absorption heat-transfer system |
US6581384B1 (en) | 2001-12-10 | 2003-06-24 | Dwayne M. Benson | Cooling and heating apparatus and process utilizing waste heat and method of control |
US6684625B2 (en) | 2002-01-22 | 2004-02-03 | Hy Pat Corporation | Hybrid rocket motor using a turbopump to pressurize a liquid propellant constituent |
US6799892B2 (en) | 2002-01-23 | 2004-10-05 | Seagate Technology Llc | Hybrid spindle bearing |
US20030221438A1 (en) | 2002-02-19 | 2003-12-04 | Rane Milind V. | Energy efficient sorption processes and systems |
US6981377B2 (en) | 2002-02-25 | 2006-01-03 | Outfitter Energy Inc | System and method for generation of electricity and power from waste heat and solar sources |
US20050227187A1 (en) | 2002-03-04 | 2005-10-13 | Supercritical Systems Inc. | Ionic fluid in supercritical fluid for semiconductor processing |
EP1483490A1 (en) | 2002-03-14 | 2004-12-08 | Alstom Technology Ltd | Power generating system |
US6662569B2 (en) | 2002-03-27 | 2003-12-16 | Samuel M. Sami | Method and apparatus for using magnetic fields for enhancing heat pump and refrigeration equipment performance |
US7735325B2 (en) | 2002-04-16 | 2010-06-15 | Research Sciences, Llc | Power generation methods and systems |
CA2382382A1 (en) | 2002-04-16 | 2003-10-16 | Universite De Sherbrooke | Continuous rotary motor powered by shockwave induced combustion |
US7078825B2 (en) | 2002-06-18 | 2006-07-18 | Ingersoll-Rand Energy Systems Corp. | Microturbine engine system having stand-alone and grid-parallel operating modes |
US7464551B2 (en) | 2002-07-04 | 2008-12-16 | Alstom Technology Ltd. | Method for operation of a power generation plant |
CA2393386A1 (en) * | 2002-07-22 | 2004-01-22 | Douglas Wilbert Paul Smith | Method of converting energy |
US6857268B2 (en) | 2002-07-22 | 2005-02-22 | Wow Energy, Inc. | Cascading closed loop cycle (CCLC) |
KR20050056941A (en) | 2002-07-22 | 2005-06-16 | 다니엘 에이치. 스팅어 | Cascading closed loop cycle power generation |
GB0217332D0 (en) | 2002-07-25 | 2002-09-04 | Univ Warwick | Thermal compressive device |
US7253486B2 (en) | 2002-07-31 | 2007-08-07 | Freescale Semiconductor, Inc. | Field plate transistor with reduced field plate resistance |
US6644062B1 (en) | 2002-10-15 | 2003-11-11 | Energent Corporation | Transcritical turbine and method of operation |
US6796123B2 (en) | 2002-11-01 | 2004-09-28 | George Lasker | Uncoupled, thermal-compressor, gas-turbine engine |
US20060060333A1 (en) | 2002-11-05 | 2006-03-23 | Lalit Chordia | Methods and apparatuses for electronics cooling |
US8366883B2 (en) | 2002-11-13 | 2013-02-05 | Deka Products Limited Partnership | Pressurized vapor cycle liquid distillation |
US6892522B2 (en) | 2002-11-13 | 2005-05-17 | Carrier Corporation | Combined rankine and vapor compression cycles |
US6624127B1 (en) | 2002-11-15 | 2003-09-23 | Intel Corporation | Highly polar cleans for removal of residues from semiconductor structures |
US7560160B2 (en) | 2002-11-25 | 2009-07-14 | Materials Modification, Inc. | Multifunctional particulate material, fluid, and composition |
US20040108096A1 (en) | 2002-11-27 | 2004-06-10 | Janssen Terrance Ernest | Geothermal loopless exchanger |
US6751959B1 (en) | 2002-12-09 | 2004-06-22 | Tennessee Valley Authority | Simple and compact low-temperature power cycle |
US6735948B1 (en) | 2002-12-16 | 2004-05-18 | Icalox, Inc. | Dual pressure geothermal system |
US7234314B1 (en) | 2003-01-14 | 2007-06-26 | Earth To Air Systems, Llc | Geothermal heating and cooling system with solar heating |
JP4489756B2 (en) | 2003-01-22 | 2010-06-23 | ヴァスト・パワー・システムズ・インコーポレーテッド | Energy conversion system, energy transfer system, and method of controlling heat transfer |
US6769256B1 (en) | 2003-02-03 | 2004-08-03 | Kalex, Inc. | Power cycle and system for utilizing moderate and low temperature heat sources |
MXPA05008120A (en) | 2003-02-03 | 2006-02-17 | Kalex Llc | Power cycle and system for utilizing moderate and low temperature heat sources. |
JP2004239250A (en) | 2003-02-05 | 2004-08-26 | Yoshisuke Takiguchi | Carbon dioxide closed circulation type power generating mechanism |
US20030167769A1 (en) * | 2003-03-31 | 2003-09-11 | Desikan Bharathan | Mixed working fluid power system with incremental vapor generation |
US7124587B1 (en) | 2003-04-15 | 2006-10-24 | Johnathan W. Linney | Heat exchange system |
US6962054B1 (en) | 2003-04-15 | 2005-11-08 | Johnathan W. Linney | Method for operating a heat exchanger in a power plant |
US20040211182A1 (en) | 2003-04-24 | 2004-10-28 | Gould Len Charles | Low cost heat engine which may be powered by heat from a phase change thermal storage material |
JP2004332626A (en) | 2003-05-08 | 2004-11-25 | Jio Service:Kk | Generating set and generating method |
US7305829B2 (en) | 2003-05-09 | 2007-12-11 | Recurrent Engineering, Llc | Method and apparatus for acquiring heat from multiple heat sources |
US6986251B2 (en) | 2003-06-17 | 2006-01-17 | Utc Power, Llc | Organic rankine cycle system for use with a reciprocating engine |
US7340894B2 (en) | 2003-06-26 | 2008-03-11 | Bosch Corporation | Unitized spring device and master cylinder including such device |
US6964168B1 (en) | 2003-07-09 | 2005-11-15 | Tas Ltd. | Advanced heat recovery and energy conversion systems for power generation and pollution emissions reduction, and methods of using same |
JP4277608B2 (en) | 2003-07-10 | 2009-06-10 | 株式会社日本自動車部品総合研究所 | Rankine cycle |
CN101335473B (en) | 2003-07-24 | 2011-04-27 | 株式会社日立制作所 | Generator |
CA2474959C (en) | 2003-08-07 | 2009-11-10 | Infineum International Limited | A lubricating oil composition |
JP4044012B2 (en) | 2003-08-29 | 2008-02-06 | シャープ株式会社 | Electrostatic suction type fluid discharge device |
US6918254B2 (en) | 2003-10-01 | 2005-07-19 | The Aerospace Corporation | Superheater capillary two-phase thermodynamic power conversion cycle system |
WO2005035702A1 (en) | 2003-10-10 | 2005-04-21 | Idemitsu Kosan Co., Ltd. | Lubricating oil |
US7300468B2 (en) | 2003-10-31 | 2007-11-27 | Whirlpool Patents Company | Multifunctioning method utilizing a two phase non-aqueous extraction process |
US7279800B2 (en) | 2003-11-10 | 2007-10-09 | Bassett Terry E | Waste oil electrical generation systems |
US7767903B2 (en) | 2003-11-10 | 2010-08-03 | Marshall Robert A | System and method for thermal to electric conversion |
US7048782B1 (en) | 2003-11-21 | 2006-05-23 | Uop Llc | Apparatus and process for power recovery |
US6904353B1 (en) | 2003-12-18 | 2005-06-07 | Honeywell International, Inc. | Method and system for sliding mode control of a turbocharger |
US7036315B2 (en) | 2003-12-19 | 2006-05-02 | United Technologies Corporation | Apparatus and method for detecting low charge of working fluid in a waste heat recovery system |
US7096679B2 (en) | 2003-12-23 | 2006-08-29 | Tecumseh Products Company | Transcritical vapor compression system and method of operating including refrigerant storage tank and non-variable expansion device |
US7423164B2 (en) | 2003-12-31 | 2008-09-09 | Ut-Battelle, Llc | Synthesis of ionic liquids |
US7227278B2 (en) | 2004-01-21 | 2007-06-05 | Nextek Power Systems Inc. | Multiple bi-directional input/output power control system |
JP4521202B2 (en) | 2004-02-24 | 2010-08-11 | 株式会社東芝 | Steam turbine power plant |
US7955738B2 (en) | 2004-03-05 | 2011-06-07 | Honeywell International, Inc. | Polymer ionic electrolytes |
JP4343738B2 (en) | 2004-03-05 | 2009-10-14 | 株式会社Ihi | Binary cycle power generation method and apparatus |
US7171812B2 (en) | 2004-03-15 | 2007-02-06 | Powerstreams, Inc. | Electric generation facility and method employing solar technology |
US20050241311A1 (en) | 2004-04-16 | 2005-11-03 | Pronske Keith L | Zero emissions closed rankine cycle power system |
US6968690B2 (en) | 2004-04-23 | 2005-11-29 | Kalex, Llc | Power system and apparatus for utilizing waste heat |
US7200996B2 (en) | 2004-05-06 | 2007-04-10 | United Technologies Corporation | Startup and control methods for an ORC bottoming plant |
CN101018930B (en) | 2004-07-19 | 2014-08-13 | 再生工程有限责任公司 | Efficient conversion of heat to useful energy |
JP4495536B2 (en) | 2004-07-23 | 2010-07-07 | サンデン株式会社 | Rankine cycle power generator |
DE102004039164A1 (en) | 2004-08-11 | 2006-03-02 | Alstom Technology Ltd | Method for generating energy in a gas turbine comprehensive power generation plant and power generation plant for performing the method |
US7971449B2 (en) | 2004-08-14 | 2011-07-05 | State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University | Heat-activated heat-pump systems including integrated expander/compressor and regenerator |
AU2005278448B2 (en) | 2004-08-31 | 2008-12-18 | Tokyo Institute Of Technology | Sunlight heat collector, sunlight collecting reflection device, sunlight collecting system, and sunlight energy utilizing system |
US7194863B2 (en) | 2004-09-01 | 2007-03-27 | Honeywell International, Inc. | Turbine speed control system and method |
US7047744B1 (en) | 2004-09-16 | 2006-05-23 | Robertson Stuart J | Dynamic heat sink engine |
US7347049B2 (en) | 2004-10-19 | 2008-03-25 | General Electric Company | Method and system for thermochemical heat energy storage and recovery |
US7469542B2 (en) | 2004-11-08 | 2008-12-30 | Kalex, Llc | Cascade power system |
US7458218B2 (en) | 2004-11-08 | 2008-12-02 | Kalex, Llc | Cascade power system |
US7013205B1 (en) | 2004-11-22 | 2006-03-14 | International Business Machines Corporation | System and method for minimizing energy consumption in hybrid vehicles |
US7665304B2 (en) | 2004-11-30 | 2010-02-23 | Carrier Corporation | Rankine cycle device having multiple turbo-generators |
US20060112693A1 (en) | 2004-11-30 | 2006-06-01 | Sundel Timothy N | Method and apparatus for power generation using waste heat |
FR2879720B1 (en) | 2004-12-17 | 2007-04-06 | Snecma Moteurs Sa | COMPRESSION-EVAPORATION SYSTEM FOR LIQUEFIED GAS |
JP4543920B2 (en) | 2004-12-22 | 2010-09-15 | 株式会社デンソー | Waste heat utilization equipment for heat engines |
US20070161095A1 (en) | 2005-01-18 | 2007-07-12 | Gurin Michael H | Biomass Fuel Synthesis Methods for Increased Energy Efficiency |
US7313926B2 (en) | 2005-01-18 | 2008-01-01 | Rexorce Thermionics, Inc. | High efficiency absorption heat pump and methods of use |
US7174715B2 (en) | 2005-02-02 | 2007-02-13 | Siemens Power Generation, Inc. | Hot to cold steam transformer for turbine systems |
US7021060B1 (en) | 2005-03-01 | 2006-04-04 | Kaley, Llc | Power cycle and system for utilizing moderate temperature heat sources |
WO2006094190A2 (en) | 2005-03-02 | 2006-09-08 | Velocys Inc. | Separation process using microchannel technology |
JP4493531B2 (en) | 2005-03-25 | 2010-06-30 | 株式会社デンソー | Fluid pump with expander and Rankine cycle using the same |
US20060225459A1 (en) | 2005-04-08 | 2006-10-12 | Visteon Global Technologies, Inc. | Accumulator for an air conditioning system |
US7986869B2 (en) | 2005-04-22 | 2011-07-26 | Shell Oil Company | Varying properties along lengths of temperature limited heaters |
US7690202B2 (en) | 2005-05-16 | 2010-04-06 | General Electric Company | Mobile gas turbine engine and generator assembly |
US7765823B2 (en) | 2005-05-18 | 2010-08-03 | E.I. Du Pont De Nemours And Company | Hybrid vapor compression-absorption cycle |
WO2006137957A1 (en) | 2005-06-13 | 2006-12-28 | Gurin Michael H | Nano-ionic liquids and methods of use |
CN101243243A (en) | 2005-06-16 | 2008-08-13 | Utc电力公司 | Organic rankine cycle mechanically and thermally coupled to an engine driving a common load |
US7276973B2 (en) | 2005-06-29 | 2007-10-02 | Skyworks Solutions, Inc. | Automatic bias control circuit for linear power amplifiers |
BRPI0502759B1 (en) | 2005-06-30 | 2014-02-25 | lubricating oil and lubricating composition for a cooling machine | |
US8099198B2 (en) | 2005-07-25 | 2012-01-17 | Echogen Power Systems, Inc. | Hybrid power generation and energy storage system |
JP4561518B2 (en) | 2005-07-27 | 2010-10-13 | 株式会社日立製作所 | A power generation apparatus using an AC excitation synchronous generator and a control method thereof. |
JP2007040593A (en) * | 2005-08-02 | 2007-02-15 | Kansai Electric Power Co Inc:The | Hybrid system |
US7685824B2 (en) | 2005-09-09 | 2010-03-30 | The Regents Of The University Of Michigan | Rotary ramjet turbo-generator |
US7654354B1 (en) | 2005-09-10 | 2010-02-02 | Gemini Energy Technologies, Inc. | System and method for providing a launch assist system |
US7458217B2 (en) | 2005-09-15 | 2008-12-02 | Kalex, Llc | System and method for utilization of waste heat from internal combustion engines |
US7197876B1 (en) | 2005-09-28 | 2007-04-03 | Kalex, Llc | System and apparatus for power system utilizing wide temperature range heat sources |
US7827791B2 (en) | 2005-10-05 | 2010-11-09 | Tas, Ltd. | Advanced power recovery and energy conversion systems and methods of using same |
US7287381B1 (en) | 2005-10-05 | 2007-10-30 | Modular Energy Solutions, Ltd. | Power recovery and energy conversion systems and methods of using same |
US20070163261A1 (en) | 2005-11-08 | 2007-07-19 | Mev Technology, Inc. | Dual thermodynamic cycle cryogenically fueled systems |
US7621133B2 (en) | 2005-11-18 | 2009-11-24 | General Electric Company | Methods and apparatus for starting up combined cycle power systems |
US20070130952A1 (en) | 2005-12-08 | 2007-06-14 | Siemens Power Generation, Inc. | Exhaust heat augmentation in a combined cycle power plant |
JP4857766B2 (en) | 2005-12-28 | 2012-01-18 | 株式会社日立プラントテクノロジー | Centrifugal compressor and dry gas seal system used therefor |
US7900450B2 (en) | 2005-12-29 | 2011-03-08 | Echogen Power Systems, Inc. | Thermodynamic power conversion cycle and methods of use |
US7950243B2 (en) | 2006-01-16 | 2011-05-31 | Gurin Michael H | Carbon dioxide as fuel for power generation and sequestration system |
US7770376B1 (en) | 2006-01-21 | 2010-08-10 | Florida Turbine Technologies, Inc. | Dual heat exchanger power cycle |
CN100425925C (en) * | 2006-01-23 | 2008-10-15 | 杜培俭 | Electricity generating, air conditioning and heating apparatus utilizing natural medium and solar energy or waste heat |
JP2007198200A (en) | 2006-01-25 | 2007-08-09 | Hitachi Ltd | Energy supply system using gas turbine, energy supply method and method for remodeling energy supply system |
DE102007013817B4 (en) | 2006-03-23 | 2009-12-03 | DENSO CORPORATION, Kariya-shi | Waste heat collection system with expansion device |
BRPI0709137A2 (en) | 2006-03-25 | 2011-06-28 | Altervia Energy Llc | Biomass Fuel Synthesis Methods for Increased Energy Efficiency |
US7665291B2 (en) | 2006-04-04 | 2010-02-23 | General Electric Company | Method and system for heat recovery from dirty gaseous fuel in gasification power plants |
US7600394B2 (en) * | 2006-04-05 | 2009-10-13 | Kalex, Llc | System and apparatus for complete condensation of multi-component working fluids |
US7685821B2 (en) | 2006-04-05 | 2010-03-30 | Kalina Alexander I | System and process for base load power generation |
EP2010754A4 (en) | 2006-04-21 | 2016-02-24 | Shell Int Research | Adjusting alloy compositions for selected properties in temperature limited heaters |
US7549465B2 (en) | 2006-04-25 | 2009-06-23 | Lennox International Inc. | Heat exchangers based on non-circular tubes with tube-endplate interface for joining tubes of disparate cross-sections |
EP2021587B1 (en) | 2006-05-15 | 2017-05-03 | Granite Power Limited | A method and system for generating power from a heat source |
DE102006035272B4 (en) | 2006-07-31 | 2008-04-10 | Technikum Corporation, EVH GmbH | Method and device for using low-temperature heat for power generation |
US7503184B2 (en) | 2006-08-11 | 2009-03-17 | Southwest Gas Corporation | Gas engine driven heat pump system with integrated heat recovery and energy saving subsystems |
US20100287934A1 (en) | 2006-08-25 | 2010-11-18 | Patrick Joseph Glynn | Heat Engine System |
US7841179B2 (en) * | 2006-08-31 | 2010-11-30 | Kalex, Llc | Power system and apparatus utilizing intermediate temperature waste heat |
US7870717B2 (en) | 2006-09-14 | 2011-01-18 | Honeywell International Inc. | Advanced hydrogen auxiliary power unit |
EP2080076A2 (en) | 2006-09-25 | 2009-07-22 | Rexorce Thermionics, Inc. | Hybrid power generation and energy storage system |
GB0618867D0 (en) | 2006-09-25 | 2006-11-01 | Univ Sussex The | Vehicle power supply system |
JP2010506089A (en) | 2006-10-04 | 2010-02-25 | エナジー リカバリー インコーポレイテッド | Rotary pressure transfer device |
US7540324B2 (en) | 2006-10-20 | 2009-06-02 | Shell Oil Company | Heating hydrocarbon containing formations in a checkerboard pattern staged process |
KR100766101B1 (en) | 2006-10-23 | 2007-10-12 | 경상대학교산학협력단 | Turbine generator using refrigerant for recovering energy from the low temperature wasted heat |
US7685820B2 (en) | 2006-12-08 | 2010-03-30 | United Technologies Corporation | Supercritical CO2 turbine for use in solar power plants |
US20080163625A1 (en) | 2007-01-10 | 2008-07-10 | O'brien Kevin M | Apparatus and method for producing sustainable power and heat |
US7775758B2 (en) | 2007-02-14 | 2010-08-17 | Pratt & Whitney Canada Corp. | Impeller rear cavity thrust adjustor |
DE102007009503B4 (en) | 2007-02-25 | 2009-08-27 | Deutsche Energie Holding Gmbh | Multi-stage ORC cycle with intermediate dehumidification |
EP1998013A3 (en) | 2007-04-16 | 2009-05-06 | Turboden S.r.l. | Apparatus for generating electric energy using high temperature fumes |
US8839622B2 (en) | 2007-04-16 | 2014-09-23 | General Electric Company | Fluid flow in a fluid expansion system |
US7841306B2 (en) | 2007-04-16 | 2010-11-30 | Calnetix Power Solutions, Inc. | Recovering heat energy |
US8049460B2 (en) | 2007-07-18 | 2011-11-01 | Tesla Motors, Inc. | Voltage dividing vehicle heater system and method |
US7893690B2 (en) | 2007-07-19 | 2011-02-22 | Carnes Company, Inc. | Balancing circuit for a metal detector |
EP2195587A1 (en) | 2007-08-28 | 2010-06-16 | Carrier Corporation | Thermally activated high efficiency heat pump |
US7950230B2 (en) | 2007-09-14 | 2011-05-31 | Denso Corporation | Waste heat recovery apparatus |
US7893808B2 (en) | 2007-10-02 | 2011-02-22 | Advanced Magnet Lab, Inc. | Conductor assembly having an axial field in combination with high quality main transverse field |
JP2010540837A (en) | 2007-10-04 | 2010-12-24 | ユナイテッド テクノロジーズ コーポレイション | Cascade type organic Rankine cycle (ORC) system using waste heat from reciprocating engine |
CA2698334A1 (en) | 2007-10-12 | 2009-04-16 | Doty Scientific, Inc. | High-temperature dual-source organic rankine cycle with gas separations |
DE102008005978B4 (en) | 2008-01-24 | 2010-06-02 | E-Power Gmbh | Low-temperature power plant and method for operating a thermodynamic cycle |
JP2009174494A (en) | 2008-01-28 | 2009-08-06 | Panasonic Corp | Rankine cycle system |
US20090205892A1 (en) | 2008-02-19 | 2009-08-20 | Caterpillar Inc. | Hydraulic hybrid powertrain with exhaust-heated accumulator |
US7997076B2 (en) | 2008-03-31 | 2011-08-16 | Cummins, Inc. | Rankine cycle load limiting through use of a recuperator bypass |
US7866157B2 (en) | 2008-05-12 | 2011-01-11 | Cummins Inc. | Waste heat recovery system with constant power output |
US7821158B2 (en) | 2008-05-27 | 2010-10-26 | Expansion Energy, Llc | System and method for liquid air production, power storage and power release |
US20100077792A1 (en) | 2008-09-28 | 2010-04-01 | Rexorce Thermionics, Inc. | Electrostatic lubricant and methods of use |
US8087248B2 (en) | 2008-10-06 | 2012-01-03 | Kalex, Llc | Method and apparatus for the utilization of waste heat from gaseous heat sources carrying substantial quantities of dust |
JP5001928B2 (en) | 2008-10-20 | 2012-08-15 | サンデン株式会社 | Waste heat recovery system for internal combustion engines |
US8464532B2 (en) | 2008-10-27 | 2013-06-18 | Kalex, Llc | Power systems and methods for high or medium initial temperature heat sources in medium and small scale power plants |
US8695344B2 (en) | 2008-10-27 | 2014-04-15 | Kalex, Llc | Systems, methods and apparatuses for converting thermal energy into mechanical and electrical power |
US20100102008A1 (en) | 2008-10-27 | 2010-04-29 | Hedberg Herbert J | Backpressure regulator for supercritical fluid chromatography |
US8176738B2 (en) | 2008-11-20 | 2012-05-15 | Kalex Llc | Method and system for converting waste heat from cement plant into a usable form of energy |
KR101069914B1 (en) | 2008-12-12 | 2011-10-05 | 삼성중공업 주식회사 | waste heat recovery system |
CN102265012B (en) | 2008-12-26 | 2013-07-17 | 三菱重工业株式会社 | Control device for waste heat recovery system |
US8176723B2 (en) | 2008-12-31 | 2012-05-15 | General Electric Company | Apparatus for starting a steam turbine against rated pressure |
WO2010083198A1 (en) | 2009-01-13 | 2010-07-22 | Avl North America Inc. | Hybrid power plant with waste heat recovery system |
US8596075B2 (en) | 2009-02-26 | 2013-12-03 | Palmer Labs, Llc | System and method for high efficiency power generation using a carbon dioxide circulating working fluid |
US20100218930A1 (en) | 2009-03-02 | 2010-09-02 | Richard Alan Proeschel | System and method for constructing heat exchanger |
US9014791B2 (en) | 2009-04-17 | 2015-04-21 | Echogen Power Systems, Llc | System and method for managing thermal issues in gas turbine engines |
WO2010126980A2 (en) | 2009-04-29 | 2010-11-04 | Carrier Corporation | Transcritical thermally activated cooling, heating and refrigerating system |
FR2945574B1 (en) * | 2009-05-13 | 2015-10-30 | Inst Francais Du Petrole | DEVICE FOR MONITORING THE WORKING FLUID CIRCULATING IN A CLOSED CIRCUIT OPERATING ACCORDING TO A RANKINE CYCLE AND METHOD FOR SUCH A DEVICE |
CA2766637A1 (en) * | 2009-06-22 | 2010-12-29 | Echogen Power Systems Inc. | System and method for managing thermal issues in one or more industrial processes |
US20100326076A1 (en) | 2009-06-30 | 2010-12-30 | General Electric Company | Optimized system for recovering waste heat |
JP2011017268A (en) | 2009-07-08 | 2011-01-27 | Toosetsu:Kk | Method and system for converting refrigerant circulation power |
CN101614139A (en) | 2009-07-31 | 2009-12-30 | 王世英 | Multicycle power generation thermodynamic system |
US8434994B2 (en) | 2009-08-03 | 2013-05-07 | General Electric Company | System and method for modifying rotor thrust |
US20110030404A1 (en) | 2009-08-04 | 2011-02-10 | Sol Xorce Llc | Heat pump with intgeral solar collector |
WO2011017476A1 (en) | 2009-08-04 | 2011-02-10 | Echogen Power Systems Inc. | Heat pump with integral solar collector |
WO2011017599A1 (en) | 2009-08-06 | 2011-02-10 | Echogen Power Systems, Inc. | Solar collector with expandable fluid mass management system |
KR101103549B1 (en) | 2009-08-18 | 2012-01-09 | 삼성에버랜드 주식회사 | Steam turbine system and method for increasing the efficiency of steam turbine system |
US8627663B2 (en) | 2009-09-02 | 2014-01-14 | Cummins Intellectual Properties, Inc. | Energy recovery system and method using an organic rankine cycle with condenser pressure regulation |
US8869531B2 (en) | 2009-09-17 | 2014-10-28 | Echogen Power Systems, Llc | Heat engines with cascade cycles |
US8794002B2 (en) | 2009-09-17 | 2014-08-05 | Echogen Power Systems | Thermal energy conversion method |
US8613195B2 (en) | 2009-09-17 | 2013-12-24 | Echogen Power Systems, Llc | Heat engine and heat to electricity systems and methods with working fluid mass management control |
US8813497B2 (en) | 2009-09-17 | 2014-08-26 | Echogen Power Systems, Llc | Automated mass management control |
US8459029B2 (en) * | 2009-09-28 | 2013-06-11 | General Electric Company | Dual reheat rankine cycle system and method thereof |
US8286431B2 (en) | 2009-10-15 | 2012-10-16 | Siemens Energy, Inc. | Combined cycle power plant including a refrigeration cycle |
JP2011106302A (en) | 2009-11-13 | 2011-06-02 | Mitsubishi Heavy Ind Ltd | Engine waste heat recovery power-generating turbo system and reciprocating engine system including the same |
WO2011093850A1 (en) | 2010-01-26 | 2011-08-04 | Tm Ge Automation Systems, Llc | Energy recovery system and method |
US8590307B2 (en) | 2010-02-25 | 2013-11-26 | General Electric Company | Auto optimizing control system for organic rankine cycle plants |
WO2011119650A2 (en) * | 2010-03-23 | 2011-09-29 | Echogen Power Systems, Llc | Heat engines with cascade cycles |
US8419936B2 (en) | 2010-03-23 | 2013-04-16 | Agilent Technologies, Inc. | Low noise back pressure regulator for supercritical fluid chromatography |
US8752381B2 (en) | 2010-04-22 | 2014-06-17 | Ormat Technologies Inc. | Organic motive fluid based waste heat recovery system |
US8801364B2 (en) | 2010-06-04 | 2014-08-12 | Honeywell International Inc. | Impeller backface shroud for use with a gas turbine engine |
US9046006B2 (en) | 2010-06-21 | 2015-06-02 | Paccar Inc | Dual cycle rankine waste heat recovery cycle |
US8857186B2 (en) | 2010-11-29 | 2014-10-14 | Echogen Power Systems, L.L.C. | Heat engine cycles for high ambient conditions |
US8783034B2 (en) | 2011-11-07 | 2014-07-22 | Echogen Power Systems, Llc | Hot day cycle |
US8616001B2 (en) | 2010-11-29 | 2013-12-31 | Echogen Power Systems, Llc | Driven starter pump and start sequence |
WO2012074940A2 (en) | 2010-11-29 | 2012-06-07 | Echogen Power Systems, Inc. | Heat engines with cascade cycles |
KR101291170B1 (en) | 2010-12-17 | 2013-07-31 | 삼성중공업 주식회사 | Waste heat recycling apparatus for ship |
US20120174558A1 (en) | 2010-12-23 | 2012-07-12 | Michael Gurin | Top cycle power generation with high radiant and emissivity exhaust |
US9249018B2 (en) | 2011-01-23 | 2016-02-02 | Michael Gurin | Hybrid supercritical power cycle having liquid fuel reactor converting biomass and methanol, gas turbine power generator, and superheated CO2 byproduct |
CN202055876U (en) | 2011-04-28 | 2011-11-30 | 罗良宜 | Supercritical low temperature air energy power generation device |
KR101280519B1 (en) | 2011-05-18 | 2013-07-01 | 삼성중공업 주식회사 | Rankine cycle system for ship |
KR101280520B1 (en) | 2011-05-18 | 2013-07-01 | 삼성중공업 주식회사 | Power Generation System Using Waste Heat |
US8561406B2 (en) | 2011-07-21 | 2013-10-22 | Kalex, Llc | Process and power system utilizing potential of ocean thermal energy conversion |
US9062898B2 (en) | 2011-10-03 | 2015-06-23 | Echogen Power Systems, Llc | Carbon dioxide refrigeration cycle |
WO2013059695A1 (en) | 2011-10-21 | 2013-04-25 | Echogen Power Systems, Llc | Turbine drive absorption system |
JP6130390B2 (en) | 2011-11-17 | 2017-05-17 | エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated | Compositions, products and methods having tetraalkylguanidine salts of aromatic carboxylic acids |
CN202544943U (en) | 2012-05-07 | 2012-11-21 | 任放 | Recovery system of waste heat from low-temperature industrial fluid |
CN202718721U (en) | 2012-08-29 | 2013-02-06 | 中材节能股份有限公司 | Efficient organic working medium Rankine cycle system |
-
2011
- 2011-08-08 US US13/205,082 patent/US8616001B2/en active Active
- 2011-08-18 US US13/212,631 patent/US9284855B2/en active Active
- 2011-11-28 WO PCT/US2011/062198 patent/WO2012074905A2/en active Application Filing
- 2011-11-28 BR BR112013013385A patent/BR112013013385A8/en not_active IP Right Cessation
- 2011-11-28 CA CA2818816A patent/CA2818816C/en active Active
- 2011-11-28 CA CA2820606A patent/CA2820606C/en active Active
- 2011-11-28 KR KR1020137016571A patent/KR101835915B1/en active Search and Examination
- 2011-11-28 BR BR112013013387-2A patent/BR112013013387A2/en not_active IP Right Cessation
- 2011-11-28 EP EP11845935.3A patent/EP2646658A4/en not_active Withdrawn
- 2011-11-28 CN CN201180062759.7A patent/CN103477035B/en active Active
- 2011-11-28 EP EP11845835.5A patent/EP2646657B1/en active Active
- 2011-11-28 WO PCT/US2011/062201 patent/WO2012074907A2/en active Search and Examination
- 2011-11-28 JP JP2013541069A patent/JP6039572B2/en active Active
- 2011-11-28 KR KR1020137016572A patent/KR101896130B1/en active IP Right Grant
- 2011-11-28 AU AU2011336831A patent/AU2011336831C1/en not_active Ceased
-
2013
- 2013-12-11 US US14/102,677 patent/US9410449B2/en active Active
Non-Patent Citations (1)
Title |
---|
See references of EP2646657A4 * |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9014791B2 (en) | 2009-04-17 | 2015-04-21 | Echogen Power Systems, Llc | System and method for managing thermal issues in gas turbine engines |
US9441504B2 (en) | 2009-06-22 | 2016-09-13 | Echogen Power Systems, Llc | System and method for managing thermal issues in one or more industrial processes |
US9316404B2 (en) | 2009-08-04 | 2016-04-19 | Echogen Power Systems, Llc | Heat pump with integral solar collector |
US8613195B2 (en) | 2009-09-17 | 2013-12-24 | Echogen Power Systems, Llc | Heat engine and heat to electricity systems and methods with working fluid mass management control |
US9863282B2 (en) | 2009-09-17 | 2018-01-09 | Echogen Power System, LLC | Automated mass management control |
US8813497B2 (en) | 2009-09-17 | 2014-08-26 | Echogen Power Systems, Llc | Automated mass management control |
US9115605B2 (en) | 2009-09-17 | 2015-08-25 | Echogen Power Systems, Llc | Thermal energy conversion device |
US8869531B2 (en) | 2009-09-17 | 2014-10-28 | Echogen Power Systems, Llc | Heat engines with cascade cycles |
US8794002B2 (en) | 2009-09-17 | 2014-08-05 | Echogen Power Systems | Thermal energy conversion method |
US9458738B2 (en) | 2009-09-17 | 2016-10-04 | Echogen Power Systems, Llc | Heat engine and heat to electricity systems and methods with working fluid mass management control |
US9410449B2 (en) | 2010-11-29 | 2016-08-09 | Echogen Power Systems, Llc | Driven starter pump and start sequence |
US8857186B2 (en) | 2010-11-29 | 2014-10-14 | Echogen Power Systems, L.L.C. | Heat engine cycles for high ambient conditions |
US9284855B2 (en) | 2010-11-29 | 2016-03-15 | Echogen Power Systems, Llc | Parallel cycle heat engines |
US8616001B2 (en) | 2010-11-29 | 2013-12-31 | Echogen Power Systems, Llc | Driven starter pump and start sequence |
US8783034B2 (en) | 2011-11-07 | 2014-07-22 | Echogen Power Systems, Llc | Hot day cycle |
US9091278B2 (en) | 2012-08-20 | 2015-07-28 | Echogen Power Systems, Llc | Supercritical working fluid circuit with a turbo pump and a start pump in series configuration |
US9118226B2 (en) | 2012-10-12 | 2015-08-25 | Echogen Power Systems, Llc | Heat engine system with a supercritical working fluid and processes thereof |
US9341084B2 (en) | 2012-10-12 | 2016-05-17 | Echogen Power Systems, Llc | Supercritical carbon dioxide power cycle for waste heat recovery |
US9752460B2 (en) | 2013-01-28 | 2017-09-05 | Echogen Power Systems, Llc | Process for controlling a power turbine throttle valve during a supercritical carbon dioxide rankine cycle |
US9638065B2 (en) | 2013-01-28 | 2017-05-02 | Echogen Power Systems, Llc | Methods for reducing wear on components of a heat engine system at startup |
WO2014117068A1 (en) * | 2013-01-28 | 2014-07-31 | Echogen Power Systems, L.L.C. | Methods for reducing wear on components of a heat engine system at startup |
US10934895B2 (en) | 2013-03-04 | 2021-03-02 | Echogen Power Systems, Llc | Heat engine systems with high net power supercritical carbon dioxide circuits |
JP2016519731A (en) * | 2013-03-04 | 2016-07-07 | エコージェン パワー システムズ エル.エル.シー.Echogen Power Systems, L.L.C. | Heat engine system with high net power supercritical carbon dioxide circuit |
JP2016534281A (en) * | 2013-09-05 | 2016-11-04 | エコージェン パワー システムズ エル.エル.シー.Echogen Power Systems, L.L.C. | Heat engine system with selectively changeable working fluid circuit |
WO2015047119A1 (en) | 2013-09-25 | 2015-04-02 | Siemens Aktiengesellschaft | Arrangement and method for the utilization of waste heat |
WO2015047120A1 (en) | 2013-09-25 | 2015-04-02 | Siemens Aktiengesellschaft | Arrangement and method for the utilization of waste heat |
US9982571B2 (en) | 2013-09-25 | 2018-05-29 | Siemens Aktiengesellschaft | Arrangement and method for the utilization of waste heat |
WO2016039655A1 (en) | 2014-09-08 | 2016-03-17 | Siemens Aktiengesellschaft | System and method for recovering waste heat energy |
US10634436B2 (en) | 2014-10-21 | 2020-04-28 | Bright Energy Storage Technologies, Llp | Concrete and tube hot thermal exchange and energy store (TXES) including temperature gradient control techniques |
US11293309B2 (en) | 2014-11-03 | 2022-04-05 | Echogen Power Systems, Llc | Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system |
US9926814B2 (en) | 2015-05-04 | 2018-03-27 | Doosan Heavy Industries & Construction Co., Ltd. | Supercritical CO2 generation system |
US11187112B2 (en) | 2018-06-27 | 2021-11-30 | Echogen Power Systems Llc | Systems and methods for generating electricity via a pumped thermal energy storage system |
US11435120B2 (en) | 2020-05-05 | 2022-09-06 | Echogen Power Systems (Delaware), Inc. | Split expansion heat pump cycle |
US11629638B2 (en) | 2020-12-09 | 2023-04-18 | Supercritical Storage Company, Inc. | Three reservoir electric thermal energy storage system |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2820606C (en) | Parallel cycle heat engines | |
US8857186B2 (en) | Heat engine cycles for high ambient conditions | |
US8869531B2 (en) | Heat engines with cascade cycles | |
EP2550436B1 (en) | Heat engines with cascade cycles | |
US9458738B2 (en) | Heat engine and heat to electricity systems and methods with working fluid mass management control | |
WO2012074940A2 (en) | Heat engines with cascade cycles | |
US8783034B2 (en) | Hot day cycle | |
US20160017758A1 (en) | Management of working fluid during heat engine system shutdown | |
AU2013240243B2 (en) | System and method for recovery of waste heat from dual heat sources | |
EP2893162A1 (en) | Supercritical working fluid circuit with a turbo pump and a start pump in series configuration | |
RU2575674C2 (en) | Heat engines with parallel cycle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11845835 Country of ref document: EP Kind code of ref document: A2 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2820606 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2013541069 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011845835 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2011336831 Country of ref document: AU Date of ref document: 20111128 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20137016571 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2013124072 Country of ref document: RU Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013013387 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112013013387 Country of ref document: BR Kind code of ref document: A2 Effective date: 20130529 |