JP2002097965A - Cold heat utilizing power generation system - Google Patents

Cold heat utilizing power generation system

Info

Publication number
JP2002097965A
JP2002097965A JP2000286412A JP2000286412A JP2002097965A JP 2002097965 A JP2002097965 A JP 2002097965A JP 2000286412 A JP2000286412 A JP 2000286412A JP 2000286412 A JP2000286412 A JP 2000286412A JP 2002097965 A JP2002097965 A JP 2002097965A
Authority
JP
Japan
Prior art keywords
carbon dioxide
expansion turbine
gas
power generation
generation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000286412A
Other languages
Japanese (ja)
Inventor
Takeshi Suzuki
鈴木  剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2000286412A priority Critical patent/JP2002097965A/en
Publication of JP2002097965A publication Critical patent/JP2002097965A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Abstract

PROBLEM TO BE SOLVED: To generate power at high efficiency without causing icing in an LNG carburetor. SOLUTION: After a high-pressure liquid carbon dioxide (d) produced in a liquefied natural gas carburetor is heated by the exhaust gas (e) from an expansion turbine, high temperature and high pressure gaseous carbon dioxide (g) heated in a heater 8 (16) on the upstream side of the expansion turbine is fed to the expansion turbine 4 for power generation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液化天然ガスの冷
熱を利用して発電する冷熱利用発電システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cold-heat-generating power generation system for generating electricity by using cold of liquefied natural gas.

【0002】[0002]

【従来の技術】従来、図3に示すように、LNGタンク
1に貯蔵されている液化天然ガス(以下、LNGと称す
る)aをポンプ2によって高圧に昇圧した後、LNG気
化器3で工場排水bなどを利用して加熱蒸発させ、しか
る後に、膨張タービン4に導入し、当該膨張タービン4
に直結している発電機5によって発電を行うことが行わ
れている。
2. Description of the Related Art Conventionally, as shown in FIG. 3, a liquefied natural gas (hereinafter referred to as LNG) a stored in an LNG tank 1 is pressurized to a high pressure by a pump 2 and then discharged to a factory by an LNG vaporizer 3. b to heat and evaporate it, and then introduce it into the expansion turbine 4
Is generated by a generator 5 directly connected to the power supply.

【0003】[0003]

【発明が解決しようとする課題】しかし、この方式は、
可燃性であるLNGを燃焼ガスなどで直接加熱すること
が不可能である。また、フロンなどの熱媒体が利用でき
ないので、例えば、温水や蒸気などにより加熱する手段
もあるが、LNG気化器で氷結するという問題もある。
However, this method is
It is impossible to directly heat flammable LNG with a combustion gas or the like. In addition, since a heat medium such as chlorofluorocarbon cannot be used, for example, there is a means for heating with hot water, steam, or the like.

【0004】本発明は、係る従来の問題に鑑みてなされ
たものであり、その目的とするところは、LNG気化器
での氷結を惹起させることなく、高効率で発電し得る冷
熱利用発電システムを提供することにある。
The present invention has been made in view of such a conventional problem, and an object of the present invention is to provide a cold heat power generation system capable of generating power with high efficiency without causing freezing in an LNG vaporizer. To provide.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の冷熱利用発電システムは、液化天然ガス気
化器で製造された高圧液体炭酸ガスを膨張タービンの排
気で加熱した後、前記膨張タービン前の加熱器で加熱し
た高温高圧炭酸ガスを前記膨張タービンに通気して発電
することを特徴としている。
In order to achieve the above object, a cold-heat-generating power generation system of the present invention heats high-pressure liquid carbon dioxide produced by a liquefied natural gas vaporizer with exhaust gas from an expansion turbine, and High-temperature and high-pressure carbon dioxide gas heated by a heater in front of the expansion turbine is passed through the expansion turbine to generate power.

【0006】前記加熱器の熱源としては、いろいろある
が、ガスタービンの排気を有効利用することが望まし
い。
Although there are various heat sources for the heater, it is desirable to use the exhaust gas of the gas turbine effectively.

【0007】[0007]

【発明の実施の形態】以下、図面を用いて本発明の実施
の形態を説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0008】図1は、作動ガスである炭酸ガスの加熱方
式として独立加熱方式を採用した例である。図1に示す
ように、6ata以上の低圧の炭酸ガスcをLNG気化
器3へ通気し、LNGaを気化させる。
FIG. 1 shows an example in which an independent heating system is adopted as a heating system for carbon dioxide as a working gas. As shown in FIG. 1, a low-pressure carbon dioxide gas c of 6 ata or more is passed through the LNG vaporizer 3 to vaporize LNGa.

【0009】一方、LNG気化器3で液化された液化炭
酸ガスdは、一旦、貯槽6に貯蔵される。貯槽6の液化
炭酸ガスdは、ポンプ2によって汲み上げられて昇圧さ
れた後、炭酸ガスボイラ7で、再度、蒸発気化する。気
化した高圧の炭酸ガスeは、交互燃焼式蓄熱バーナを有
するなどの独立加熱器8によって更に温度を昇温され、
高温高圧のガスgとなって膨張タービン4へ導入され、
発電機5を駆動して電力を発生する。
On the other hand, the liquefied carbon dioxide gas liquefied by the LNG vaporizer 3 is temporarily stored in the storage tank 6. The liquefied carbon dioxide gas d in the storage tank 6 is pumped up by the pump 2 and pressurized, and then evaporates again in the carbon dioxide gas boiler 7. The temperature of the vaporized high-pressure carbon dioxide gas e is further raised by an independent heater 8 such as having an alternate combustion type heat storage burner.
High temperature and high pressure gas g is introduced into the expansion turbine 4,
The generator 5 is driven to generate electric power.

【0010】膨張タービン4から排出された炭酸ガスf
は、上記炭酸ガスボイラ7を通過する間に前述の液化炭
酸ガスdを蒸発気化させながら前述のLNG気化器3に
供給される。
The carbon dioxide gas f discharged from the expansion turbine 4
Is supplied to the LNG vaporizer 3 while evaporating and vaporizing the liquefied carbon dioxide gas d while passing through the carbon dioxide gas boiler 7.

【0011】なお、膨張タービン4がトリップした時の
用心のために、炭酸ガスボイラ7から独立加熱器8に至
る間の管路9と、炭酸ガスボイラ7からLNG気化器3
に至る間の管路10の間にバイパス11を設けて炭酸ガ
スeを膨張タービン4に供給しないようにすることが必
要である。また、これに関連して、冷凍倉庫12の下流
側に非常用加熱器13を設置する。図中、符号14及び
15はバルブ、符号iは空気、符号jは燃料を示してい
る。
Note that, in order to be careful when the expansion turbine 4 trips, a pipe line 9 from the carbon dioxide boiler 7 to the independent heater 8 and an LNG vaporizer 3 from the carbon dioxide boiler 7 are provided.
, It is necessary to provide a bypass 11 between the pipelines 10 to prevent the carbon dioxide gas e from being supplied to the expansion turbine 4. In this connection, an emergency heater 13 is installed downstream of the freezing warehouse 12. In the figure, reference numerals 14 and 15 indicate valves, reference numeral i indicates air, and reference numeral j indicates fuel.

【0012】本方式によれば、膨張タービン入口温度を
高くして出力比、すなわち、発電出力/LNG量を高め
ることができる。
According to this method, the output ratio, that is, the power generation output / LNG amount can be increased by increasing the expansion turbine inlet temperature.

【0013】因みに、本方式の性能を「表1」に示す。
ただし、LNGの通気量は、50t/hに設定した。ま
た、表1中、TITは、膨張タービン入口温度である。
Incidentally, the performance of this method is shown in Table 1.
However, the ventilation volume of LNG was set to 50 t / h. In Table 1, TIT is the expansion turbine inlet temperature.

【0014】[0014]

【表1】 [Table 1]

【0015】「表1」によれば、圧力比が高いほど効率
が高く、膨張タービン入口温度は、余り効率の向上に寄
与しないことが分かる。ただし、発電出力比は、温度お
よび圧力が高いほど向上することが分かる。
According to Table 1, the higher the pressure ratio, the higher the efficiency, and the expansion turbine inlet temperature does not contribute much to the improvement of the efficiency. However, it is understood that the power generation output ratio increases as the temperature and the pressure increase.

【0016】従って、炭酸ガスの加熱方式としては、ガ
スタービン排気によって加熱する方式が好ましい。すな
わち、図1の単独システムは、設備が簡単で高効率発電
が可能であるが(例えば、気化されたLNGを燃料とし
た既存のガスタービン複合発電と同等、あるいはそれ以
上の効率が得られる)、図2の複合発電システムは、発
電出力比を更に高め、且つ、効率も従来以上に高くする
ことが可能である。
Accordingly, as a heating method of carbon dioxide gas, a method of heating by gas turbine exhaust is preferable. That is, the single system of FIG. 1 has simple equipment and can generate high efficiency power (for example, an efficiency equal to or higher than that of an existing gas turbine combined power generation using vaporized LNG as fuel) can be obtained. In the combined power generation system of FIG. 2, the power generation output ratio can be further increased, and the efficiency can be made higher than before.

【0017】すなわち、図2に示すように、6ata以
上の低圧の炭酸ガスcをLNG気化器3へ通気し、LN
Gaを気化させる。
That is, as shown in FIG. 2, a low-pressure carbon dioxide gas c of 6 ata or more is passed through the LNG vaporizer 3 and
Ga is vaporized.

【0018】一方、LNG気化器3で液化された液化炭
酸ガスdは、一旦、貯槽6に貯蔵される。貯槽6の液化
炭酸ガスdは、ポンプ2によって汲み上げられて昇圧さ
れた後、炭酸ガスボイラ7で、再度、蒸発気化する。気
化した高圧の炭酸ガスeは、熱源にガスタービン排ガス
hを利用する炭酸ガス加熱器16によって更に温度を昇
温され、高温高圧のガスgとなって膨張タービン4へ導
入され、発電機5を駆動して電力を発生する。
On the other hand, the liquefied carbon dioxide gas liquefied by the LNG vaporizer 3 is temporarily stored in the storage tank 6. The liquefied carbon dioxide gas d in the storage tank 6 is pumped up by the pump 2 and pressurized, and then evaporates again in the carbon dioxide gas boiler 7. The temperature of the vaporized high-pressure carbon dioxide gas e is further raised by a carbon dioxide gas heater 16 using a gas turbine exhaust gas h as a heat source, and is introduced into the expansion turbine 4 as a high-temperature high-pressure gas g. Drives to generate power.

【0019】膨張タービン4から排出された炭酸ガスe
は、上記炭酸ガスボイラ7を通過する間に前述の液化炭
酸ガスdを蒸発気化させながら前述のLNG気化器3に
供給される。
Carbon dioxide e discharged from the expansion turbine 4
Is supplied to the LNG vaporizer 3 while evaporating and vaporizing the liquefied carbon dioxide gas d while passing through the carbon dioxide gas boiler 7.

【0020】一方、ガスタービン17は、空気圧縮機1
8と、燃焼器19およびガスタービン20から構成さ
れ、空気圧縮機18およびガスタービン20は、上記膨
張タービン4および発電機5に直結されている。
On the other hand, the gas turbine 17 is
8, a combustor 19 and a gas turbine 20. The air compressor 18 and the gas turbine 20 are directly connected to the expansion turbine 4 and the generator 5.

【0021】なお、膨張タービン4がトリップした時の
用心のために、炭酸ガスボイラ7から独立加熱器8に至
る間の管路9と、炭酸ガスボイラ7からLNG気化器3
に至る間の管路10の間にバイパス11を設けて炭酸ガ
スeを膨張タービン4に供給しないようにすることが必
要である。また、これに関連して、冷凍倉庫12の下流
側に非常用加熱器13を設置する。図中、符号14及び
15はバルブ、符号iは空気、符号jは燃料を示してい
る。
In order to be careful when the expansion turbine 4 trips, a pipe 9 extending from the carbon dioxide boiler 7 to the independent heater 8 and an LNG vaporizer 3 from the carbon dioxide boiler 7 are provided.
, It is necessary to provide a bypass 11 between the pipelines 10 to prevent the carbon dioxide gas e from being supplied to the expansion turbine 4. In this connection, an emergency heater 13 is installed downstream of the freezing warehouse 12. In the figure, reference numerals 14 and 15 indicate valves, reference numeral i indicates air, and reference numeral j indicates fuel.

【0022】因みに、本方式の性能を「表2」に示す。
但し、膨張タービン圧力比を7に設定し、膨張タービン
入口温度を400℃に設定した。
Incidentally, Table 2 shows the performance of this method.
However, the expansion turbine pressure ratio was set to 7, and the expansion turbine inlet temperature was set to 400 ° C.

【0023】[0023]

【表2】 [Table 2]

【0024】尚、炭酸ガスボイラへ供給される炭酸ガス
を予熱する際の冷熱出力は、冷房、あるいは冷凍倉庫の
冷熱源として活用することによってコージエネレーショ
ンシステムも可能であり、著しいエネルギー使用の合理
化を高度に発揮することになる。
In addition, the cooling output when preheating the carbon dioxide supplied to the carbon dioxide boiler can be used as a cooling source for a cooling or freezing warehouse, and a cogeneration system can be used. It will demonstrate to a high degree.

【0025】[0025]

【発明の効果】上記のように、本発明によれば、作動ガ
スとしての炭酸ガスの氷結(ドライアイスの生成)を惹
起させることなく、高効率の発電を実現することが可能
になった。
As described above, according to the present invention, it is possible to realize high-efficiency power generation without causing freezing of carbon dioxide gas as a working gas (generation of dry ice).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る冷熱利用発電システムの概略図で
ある。
FIG. 1 is a schematic diagram of a cold heat power generation system according to the present invention.

【図2】本発明に係る冷熱利用発電システムの他の一例
を示す概略図である。
FIG. 2 is a schematic diagram showing another example of the cold-heat-generating power generation system according to the present invention.

【図3】従来の冷熱利用発電システムの概略図である。FIG. 3 is a schematic diagram of a conventional cold heat power generation system.

【符号の説明】[Explanation of symbols]

4 膨張タービン 8,16 膨張タービン前の加熱器 d 液化天然ガス気化器で製造された高圧液体炭酸ガス e 膨張タービンの排気 g 高温高圧炭酸ガス 4 Expansion turbine 8, 16 Heater before expansion turbine d High-pressure liquid carbon dioxide produced by liquefied natural gas vaporizer e Exhaust of expansion turbine g High-temperature high-pressure carbon dioxide

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 液化天然ガス気化器で製造された高圧液
体炭酸ガスを膨張タービンの排気で加熱した後、前記膨
張タービン前の加熱器で加熱した高温高圧炭酸ガスを前
記膨張タービンに通気して発電する冷熱利用発電システ
ム。
After heating a high-pressure liquid carbon dioxide gas produced by a liquefied natural gas vaporizer by exhaust gas from an expansion turbine, a high-temperature high-pressure carbon dioxide gas heated by a heater in front of the expansion turbine is passed through the expansion turbine. Power generation system using cold energy to generate electricity.
【請求項2】 前記加熱器の熱源にガスタービンの排気
を利用する請求項1記載の冷熱利用発電システム。
2. The cold heat power generation system according to claim 1, wherein exhaust gas of a gas turbine is used as a heat source of the heater.
JP2000286412A 2000-09-21 2000-09-21 Cold heat utilizing power generation system Withdrawn JP2002097965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000286412A JP2002097965A (en) 2000-09-21 2000-09-21 Cold heat utilizing power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000286412A JP2002097965A (en) 2000-09-21 2000-09-21 Cold heat utilizing power generation system

Publications (1)

Publication Number Publication Date
JP2002097965A true JP2002097965A (en) 2002-04-05

Family

ID=18770334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000286412A Withdrawn JP2002097965A (en) 2000-09-21 2000-09-21 Cold heat utilizing power generation system

Country Status (1)

Country Link
JP (1) JP2002097965A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108434A1 (en) * 2007-03-06 2008-09-12 New Scientific R & D Institute Inc. Circulating internal pressure engine and power generation system
WO2008108436A1 (en) * 2007-03-06 2008-09-12 New Scientific R & D Institute Inc. Power generation system
WO2008108435A1 (en) * 2007-03-06 2008-09-12 New Scientific R & D Institute Inc. Circulating internal pressure engine and power generation system
WO2008108432A1 (en) * 2007-03-06 2008-09-12 New Scientific R & D Institute Inc. Circulating internal pressure engine and power generation system
WO2008108433A1 (en) * 2007-03-06 2008-09-12 New Scientific R & D Institute Inc. Power generation system
US8613195B2 (en) 2009-09-17 2013-12-24 Echogen Power Systems, Llc Heat engine and heat to electricity systems and methods with working fluid mass management control
US8783034B2 (en) 2011-11-07 2014-07-22 Echogen Power Systems, Llc Hot day cycle
US8794002B2 (en) 2009-09-17 2014-08-05 Echogen Power Systems Thermal energy conversion method
US8813497B2 (en) 2009-09-17 2014-08-26 Echogen Power Systems, Llc Automated mass management control
US8857186B2 (en) 2010-11-29 2014-10-14 Echogen Power Systems, L.L.C. Heat engine cycles for high ambient conditions
US8869531B2 (en) 2009-09-17 2014-10-28 Echogen Power Systems, Llc Heat engines with cascade cycles
US9014791B2 (en) 2009-04-17 2015-04-21 Echogen Power Systems, Llc System and method for managing thermal issues in gas turbine engines
US9062898B2 (en) 2011-10-03 2015-06-23 Echogen Power Systems, Llc Carbon dioxide refrigeration cycle
US9091278B2 (en) 2012-08-20 2015-07-28 Echogen Power Systems, Llc Supercritical working fluid circuit with a turbo pump and a start pump in series configuration
US9118226B2 (en) 2012-10-12 2015-08-25 Echogen Power Systems, Llc Heat engine system with a supercritical working fluid and processes thereof
US9316404B2 (en) 2009-08-04 2016-04-19 Echogen Power Systems, Llc Heat pump with integral solar collector
US9341084B2 (en) 2012-10-12 2016-05-17 Echogen Power Systems, Llc Supercritical carbon dioxide power cycle for waste heat recovery
US9410449B2 (en) 2010-11-29 2016-08-09 Echogen Power Systems, Llc Driven starter pump and start sequence
US9638065B2 (en) 2013-01-28 2017-05-02 Echogen Power Systems, Llc Methods for reducing wear on components of a heat engine system at startup
US9752460B2 (en) 2013-01-28 2017-09-05 Echogen Power Systems, Llc Process for controlling a power turbine throttle valve during a supercritical carbon dioxide rankine cycle
US10934895B2 (en) 2013-03-04 2021-03-02 Echogen Power Systems, Llc Heat engine systems with high net power supercritical carbon dioxide circuits
US11187112B2 (en) 2018-06-27 2021-11-30 Echogen Power Systems Llc Systems and methods for generating electricity via a pumped thermal energy storage system
US11293309B2 (en) 2014-11-03 2022-04-05 Echogen Power Systems, Llc Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system
CN114893269A (en) * 2022-06-15 2022-08-12 山东电力工程咨询院有限公司 System and method for coupling carbon dioxide collection and compressed air energy storage
US11435120B2 (en) 2020-05-05 2022-09-06 Echogen Power Systems (Delaware), Inc. Split expansion heat pump cycle
US11629638B2 (en) 2020-12-09 2023-04-18 Supercritical Storage Company, Inc. Three reservoir electric thermal energy storage system

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108436A1 (en) * 2007-03-06 2008-09-12 New Scientific R & D Institute Inc. Power generation system
WO2008108435A1 (en) * 2007-03-06 2008-09-12 New Scientific R & D Institute Inc. Circulating internal pressure engine and power generation system
WO2008108432A1 (en) * 2007-03-06 2008-09-12 New Scientific R & D Institute Inc. Circulating internal pressure engine and power generation system
WO2008108433A1 (en) * 2007-03-06 2008-09-12 New Scientific R & D Institute Inc. Power generation system
WO2008108434A1 (en) * 2007-03-06 2008-09-12 New Scientific R & D Institute Inc. Circulating internal pressure engine and power generation system
US9014791B2 (en) 2009-04-17 2015-04-21 Echogen Power Systems, Llc System and method for managing thermal issues in gas turbine engines
US9316404B2 (en) 2009-08-04 2016-04-19 Echogen Power Systems, Llc Heat pump with integral solar collector
US8813497B2 (en) 2009-09-17 2014-08-26 Echogen Power Systems, Llc Automated mass management control
US9458738B2 (en) 2009-09-17 2016-10-04 Echogen Power Systems, Llc Heat engine and heat to electricity systems and methods with working fluid mass management control
US8869531B2 (en) 2009-09-17 2014-10-28 Echogen Power Systems, Llc Heat engines with cascade cycles
US8794002B2 (en) 2009-09-17 2014-08-05 Echogen Power Systems Thermal energy conversion method
US9115605B2 (en) 2009-09-17 2015-08-25 Echogen Power Systems, Llc Thermal energy conversion device
US8613195B2 (en) 2009-09-17 2013-12-24 Echogen Power Systems, Llc Heat engine and heat to electricity systems and methods with working fluid mass management control
US9863282B2 (en) 2009-09-17 2018-01-09 Echogen Power System, LLC Automated mass management control
US8857186B2 (en) 2010-11-29 2014-10-14 Echogen Power Systems, L.L.C. Heat engine cycles for high ambient conditions
US9410449B2 (en) 2010-11-29 2016-08-09 Echogen Power Systems, Llc Driven starter pump and start sequence
US9062898B2 (en) 2011-10-03 2015-06-23 Echogen Power Systems, Llc Carbon dioxide refrigeration cycle
US8783034B2 (en) 2011-11-07 2014-07-22 Echogen Power Systems, Llc Hot day cycle
US9091278B2 (en) 2012-08-20 2015-07-28 Echogen Power Systems, Llc Supercritical working fluid circuit with a turbo pump and a start pump in series configuration
US9118226B2 (en) 2012-10-12 2015-08-25 Echogen Power Systems, Llc Heat engine system with a supercritical working fluid and processes thereof
US9341084B2 (en) 2012-10-12 2016-05-17 Echogen Power Systems, Llc Supercritical carbon dioxide power cycle for waste heat recovery
US9638065B2 (en) 2013-01-28 2017-05-02 Echogen Power Systems, Llc Methods for reducing wear on components of a heat engine system at startup
US9752460B2 (en) 2013-01-28 2017-09-05 Echogen Power Systems, Llc Process for controlling a power turbine throttle valve during a supercritical carbon dioxide rankine cycle
US10934895B2 (en) 2013-03-04 2021-03-02 Echogen Power Systems, Llc Heat engine systems with high net power supercritical carbon dioxide circuits
US11293309B2 (en) 2014-11-03 2022-04-05 Echogen Power Systems, Llc Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system
US11187112B2 (en) 2018-06-27 2021-11-30 Echogen Power Systems Llc Systems and methods for generating electricity via a pumped thermal energy storage system
US11435120B2 (en) 2020-05-05 2022-09-06 Echogen Power Systems (Delaware), Inc. Split expansion heat pump cycle
US11629638B2 (en) 2020-12-09 2023-04-18 Supercritical Storage Company, Inc. Three reservoir electric thermal energy storage system
CN114893269A (en) * 2022-06-15 2022-08-12 山东电力工程咨询院有限公司 System and method for coupling carbon dioxide collection and compressed air energy storage

Similar Documents

Publication Publication Date Title
JP2002097965A (en) Cold heat utilizing power generation system
US7299619B2 (en) Vaporization of liquefied natural gas for increased efficiency in power cycles
US8661820B2 (en) LNG regasification and power generation
US7398642B2 (en) Gas turbine system including vaporization of liquefied natural gas
JP6245404B1 (en) Combustion equipment and power generation equipment
JP5476003B2 (en) Apparatus and method for start-up of a power plant
US20120096869A1 (en) Utilizing heat discarded from a gas turbine engine
US20100154381A1 (en) Combined brayton - rankine cycle
CA2578243A1 (en) Configurations and methods for power generation with integrated lng regasification
UA61957C2 (en) Method for obtaining energy from the exhaust gas of gas turbine, method and system of regeneration of energy of the exhaust gas heat
JP4094185B2 (en) Cold power generation system
WO2012157285A1 (en) Composite power generation system
CA2615850A1 (en) Configurations and methods for power generation in lng regasification terminals
JPH08296410A (en) Cogeneration equipment and combined cycle generation equipment
JP2010510433A (en) Single circulation heat pump power generator
JP7080324B2 (en) LNG revaporization
US6467273B1 (en) Method for producing electrical power
JPH11270347A (en) Gas turbine combined generating set using lng
JP3697476B2 (en) Combined power generation system using gas pressure energy
EP0605159A1 (en) Method for utilizing liquified natural gas as a heat sink for a gas turbine inlet chiller
JP7121185B2 (en) Power plant including natural gas regasification
KR102415547B1 (en) Fuel supply system and power generation system for ship
JP2001159318A (en) Cryogenic power generating device
US6968700B2 (en) Power systems
CA2983533C (en) Combined cycle power generation

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071204