WO2012157285A1 - Composite power generation system - Google Patents

Composite power generation system Download PDF

Info

Publication number
WO2012157285A1
WO2012157285A1 PCT/JP2012/003266 JP2012003266W WO2012157285A1 WO 2012157285 A1 WO2012157285 A1 WO 2012157285A1 JP 2012003266 W JP2012003266 W JP 2012003266W WO 2012157285 A1 WO2012157285 A1 WO 2012157285A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
gas
power generation
turbine
gas engine
Prior art date
Application number
PCT/JP2012/003266
Other languages
French (fr)
Japanese (ja)
Inventor
芳一 広地
松本 忠士
寿英 平井
豊充 金井
Original Assignee
千代田化工建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千代田化工建設株式会社 filed Critical 千代田化工建設株式会社
Priority to SG2013082441A priority Critical patent/SG194827A1/en
Priority to CN201280023975.5A priority patent/CN103547786B/en
Priority to KR1020137030263A priority patent/KR101619393B1/en
Publication of WO2012157285A1 publication Critical patent/WO2012157285A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Definitions

  • the present invention relates to a combined power generation system, and more particularly to a gas engine combined power generation system that generates power using exhaust heat of a gas engine.
  • a combined power generation system in which power generation efficiency is improved by generating power using exhaust heat of internal combustion power generation has been widespread.
  • a Rankine cycle heating source including a gas turbine driven by combustion gas and a steam turbine driven by steam generated by collecting exhaust heat of the gas turbine, and using steam on the steam turbine side as a working fluid
  • Patent Document 1 A combined power generation system that improves power generation efficiency by using gas turbine exhaust gas is known (see Patent Document 1).
  • exhaust heat at two different temperature levels (for example, exhaust gas from 400 to 500 ° C and exhaust heat from engine jacket cooling water at 85 ° C) accounts for a large proportion of the total exhaust heat. Therefore, it is indispensable to use them effectively in order to improve power generation efficiency and reduce carbon dioxide emissions.
  • Patent Document 1 when the conventional technique described in Patent Document 1 is applied to the gas engine combined power generation system, there is a problem that the relatively low temperature engine jacket cooling water heat cannot be effectively used.
  • a cooling source below freezing point for example, LNG (Liquefied Natural Gas) cooling, refrigerator brine cooling, etc.
  • LNG Liquefied Natural Gas
  • refrigerator brine cooling etc.
  • the present invention has been devised in view of such problems of the prior art, and provides a combined power generation system capable of improving power generation efficiency by effectively using exhaust heat of a gas engine.
  • the main purpose is to do.
  • a gas engine (2) using combustible gas as fuel, a first generator (4) driven by the gas engine, and a hydrocarbon system A refrigerant turbine (3) using the refrigerant as a working fluid, a second generator (5) driven by the refrigerant turbine, and a first heater that heats the refrigerant using a coolant that cools the gas engine as a heat source (31), a second heater (11) for further heating the refrigerant heated by the first heater using the exhaust gas of the gas engine as a heat source, and condensation for condensing the refrigerant discharged from the refrigerant turbine And a vessel (22).
  • the refrigerant turbine that uses a hydrocarbon-based refrigerant as the working fluid is configured to use the exhaust heat of the gas engine (heat of exhaust gas and coolant), the exhaust heat recovery rate of the gas engine increases, The power generation efficiency of the system can be improved.
  • a gas engine (2) using combustible gas as a fuel, a first generator (4) driven by the gas engine, and a hydrocarbon-based refrigerant as a working fluid.
  • the refrigerant turbine that uses a hydrocarbon-based refrigerant as the working fluid is configured to use the exhaust heat of the gas engine (heat of exhaust gas and coolant), the exhaust heat recovery rate of the gas engine increases, The power generation efficiency of the system can be improved.
  • the refrigerant is heated by using the coolant heated by the exhaust gas of the gas engine without directly exchanging heat between the combustible hydrocarbon refrigerant and the exhaust gas of the gas engine, the safety of the system is increased. There are also advantages.
  • the condenser condenses the refrigerant using liquefied natural gas.
  • the combustible gas is a boil-off gas of liquefied natural gas.
  • boil-off gas generated from an LNG base or the like can be used effectively without requiring adjustment of heat quantity by mixing LP gas or the like as in the case of using as city gas.
  • the condenser condenses the refrigerant using brine.
  • the refrigerant is a mixed medium of methane and propane.
  • FIG. 1 is a configuration diagram showing an outline of a gas engine combined power generation system 1 according to a first embodiment of the present invention.
  • the combined power generation system 1 includes a gas engine 2 that is an internal combustion engine using a combustible gas as a fuel, and a refrigerant turbine 3 that uses a hydrocarbon-based refrigerant boiling at a low temperature (a temperature lower than water) as a working fluid.
  • the first generator 4 and the second generator 5 that are driven by the engine 2 and the refrigerant turbine 3, respectively, generate power, and are juxtaposed to the LNG base 6 that delivers LNG for city gas.
  • Boil-off gas (hereinafter referred to as BOG) generated at the LNG base 6 is supplied to the gas engine 2 as fuel (at least a part thereof), and the gas engine exhaust gas at a relatively high temperature (here 410 ° C.) after combustion is supplied. It is discharged toward the heat exchanger 11 for exhaust heat recovery.
  • the gas engine 2 is provided with a cooling engine jacket (not shown), and jacket cooling water at a relatively low temperature (88 ° C. in this case) is discharged from the engine jacket.
  • the discharged jacket cooling water is circulated through the cooling water circulation line 13 provided with the cooling water pump 12 in the direction indicated by the arrow in FIG.
  • the output of the gas engine 2 is converted into electric power by the first generator 4.
  • a mixed refrigerant of methane and propane (here, methane 50 to 55% by weight, propane 45 to 50% by weight) is used as a working fluid.
  • This working fluid is heated by the gas engine exhaust gas in the heat exchanger 11 before being introduced into the refrigerant turbine 3.
  • the heat exchanger 11 is provided with a plurality of heating units composed of heat transfer tube groups, so that efficient heat exchange between the gas engine exhaust gas and the working fluid is possible.
  • a working fluid (gas) having a predetermined temperature and pressure (here, 103 ° C., 4.9 MPaG) is introduced into the refrigerant turbine 3, and turbine blades (not shown) are rotated by the kinetic energy of the working fluid.
  • the output is converted into electric power by the second generator 5.
  • the working fluid discharged from the refrigerant turbine 3 (here, gas of temperature: ⁇ 5 ° C., pressure: 0.4 MPaG) is sent to the condenser 22 through the refrigerant circulation line 21 in the direction indicated by the arrow in FIG.
  • a discharge pipe 23 from the LNG base 6 is connected to the condenser 22, and the cold heat of the introduced LNG (here, temperature: ⁇ 160 ° C., pressure: 7.0 MPaG, flow rate: 70 t / hr) is the working fluid. Used for cooling. On the other hand, the heat of the working fluid is used to vaporize LNG.
  • the condensed working fluid is temporarily stored in a circulating refrigerant storage tank 25 provided in the refrigerant circulation line 21. Thereafter, the working fluid (here, ⁇ 128 ° C., 5.0 MPaG, 99.4 t / hr) pressurized by the refrigerant pump 26 provided in the refrigerant circulation line 21 is sent to the refrigerant evaporator 27.
  • the refrigerant evaporator 27 is connected to a seawater introduction pipe 28 for introducing seawater (here, 15 ° C.), and the working fluid is heated to a temperature at which the jacket cooling water does not freeze due to heat exchange with the seawater (here, 5 °C).
  • the working fluid from the refrigerant evaporator 27 is sent to the refrigerant heater 31 where it is heated by heat exchange with jacket cooling water (88 ° C., 270 t / hr here) (here, heated to 29 ° C.). ) On the other hand, the jacket cooling water is cooled to a temperature at which the gas engine 2 can be cooled in the refrigerant heater 31 (here, 50 to 80 ° C.). The working fluid from the refrigerant heater 31 is sent to the heat exchanger 11, and the heated working fluid (103 ° C., 4.9 MPaG) is supplied to the refrigerant turbine 3 again.
  • jacket cooling water 88 ° C., 270 t / hr here
  • the jacket cooling water is cooled to a temperature at which the gas engine 2 can be cooled in the refrigerant heater 31 (here, 50 to 80 ° C.).
  • the working fluid from the refrigerant heater 31 is sent to the heat exchanger 11, and the heated working fluid (
  • LNG from the LNG base 6 is discharged from the condenser 22 and then sent to the LNG heater 32 through the discharge pipe 23.
  • the LNG heater 32 is connected to a seawater introduction pipe 33 for introducing seawater (here, 15 ° C.), and the working fluid is heated by heat exchange with seawater (here, a gas at 5 ° C. Sent to the city gas line for use as city gas.
  • the BOG supply amount is 1.94 t / hr (fuel consumption is 29600 kw), and the exhaust amount of the gas engine exhaust gas is 83.2 t / hr.
  • the amount of power generated by the first generator 4 is 13500 kW, and the amount of power generated by the refrigerant turbine 3 is 4060 KW.
  • the total power generation efficiency of the combined power generation system 1 is 59.3% (the effective power generation efficiency including auxiliary power consumption is 57.2%), and a higher power generation efficiency can be realized as compared with a combined power generation system using a conventional gas turbine.
  • a conventional combined power generation system 201 using a gas turbine is shown in FIG.
  • BOG supply amount: 2.02 t / hr, consumed fuel: 30706 kW, pressure: 0.02 MPaG
  • the discharged gas turbine exhaust gas (temperature: 504 ° C., flow rate: 136.2 t / hr) is introduced into the exhaust gas boiler 204 for exhaust heat recovery.
  • the exhaust gas boiler 204 heat exchange is performed between the gas turbine exhaust gas and the steam, and the high-pressure steam (temperature: 482 ° C, pressure: 5.4MPaG, flow rate: 14.6t / hr) generated thereby is sent to the steam turbine generator 205. be introduced.
  • Exhaust steam (temperature: 41 ° C., pressure: 0.093 MPaG) from the steam turbine generator 205 is cooled in the condenser 206, and again through the condenser pump 207, the deaerator 208, and the high-pressure feed water pump 209, the exhaust gas boiler. Cycled to 204.
  • the cooling water introduced into the condenser 206 is circulated through the air cooling cooling tower 210.
  • the amount of power generated by the gas turbine generator is 9754kW, and the amount of power generated by the steam turbine generator is 3656kW.
  • the total power generation efficiency of the combined power generation system 201 is 47.3% (the effective power generation efficiency including auxiliary power consumption is 41.1%).
  • the gas turbine exhaust gas and the jacket cooling water are used as a high heat source by the refrigerant turbine 3 using a mixed refrigerant of methane and propane as a working fluid. Electricity is generated by the binary Rankine cycle method using the cold heat during gasification as a low heat source.
  • the exhaust heat recovery rate can be increased by effectively using the heat of the gas engine exhaust gas and the jacket cooling water, which occupy a large proportion of the exhaust heat of the gas engine 2, and thus the power generation efficiency of the combined power generation system 1 is improved.
  • the heating temperature in the heat exchanger 11 is preferably relatively low (for example, 130 ° C. or less) from the viewpoint of system safety.
  • the working fluid is condensed using LNG in the condenser 22, it is possible to effectively use the cold heat of the LNG discharged from the LNG base 6 or the like in the cooling process of the refrigerant.
  • BOG is used as the fuel gas (or part thereof) of the gas engine 2, it is generated from the LNG base 6 and the like without the need for adjusting the amount of heat by mixing LP gas or the like as in the case of use as city gas. BOG can be effectively used, and the cold heat of LNG can be effectively utilized in the cooling process of the working fluid.
  • FIG. 2 is a configuration diagram showing an outline of the gas engine combined power generation system 1 according to the second embodiment of the present invention.
  • the same components as those in the first embodiment described above are denoted by the same reference numerals. Further, in the second embodiment, the detailed description is omitted as in the case of the first embodiment except for the matters specifically mentioned below.
  • the second embodiment is different from the first embodiment in that the gas engine exhaust gas and the working fluid are indirectly heat-exchanged via jacket cooling water.
  • the jacket cooling water discharged from the gas engine 2 is sent to the heat exchanger 11A and heated by heat exchange with the gas engine exhaust gas. Thereafter, the jacket cooling water (here, pressurized hot water of 150 to 160 ° C.) is sent to the refrigerant heater 31A through the cooling water circulation line 13 and used for heating the working fluid.
  • the jacket cooling water cooled by the refrigerant heater 31A is supplied again to the engine jacket by the cooling water pump 12.
  • the working fluid (103 ° C., 4.9 MPaG) heated by the refrigerant heater 31 ⁇ / b> A is supplied to the refrigerant turbine 3.
  • the combined power generation system 1 according to the second embodiment has an advantage that the safety of the system is increased because the gas engine exhaust gas and the combustible working fluid are not directly heat-exchanged.
  • FIG. 3 is a configuration diagram showing an outline of the combined power generation system 100 according to the third embodiment of the present invention. 3, the same code
  • the combined power generation system 100 mainly includes a refrigerant turbine 3 using a hydrocarbon-based refrigerant boiling at a low temperature as a working fluid, and a generator 4 driven by the refrigerant turbine 3, and serves as a discharge source of steam and hot water. It is installed in parallel with a factory that does not (for example, petrochemical factory).
  • propane alone or a refrigerant obtained by mixing propane with a small amount of ethane or butane is used as a working fluid.
  • the working fluid is heated by exchanging heat with warm water (here, 100 ° C., 24.3 Gcal / hr) in the refrigerant heater 131 before being introduced into the refrigerant turbine 3.
  • warm water here, 100 ° C., 24.3 Gcal / hr
  • hot water (hot water) discharged from a factory or low-pressure steam can be used.
  • a working fluid having a predetermined temperature and pressure (here, 90 ° C., 3 MPaG) is introduced into the refrigerant turbine 3, and turbine blades (not shown) are rotated by the kinetic energy of the working fluid, and the output thereof is a generator. 4 is converted into electric power.
  • the working fluid discharged from the refrigerant turbine 3 (here, 20 ° C., 0.5 MPaG gas) is sent to the condenser 122 through the refrigerant circulation line 121 in the direction indicated by the arrow in FIG.
  • a brine circulation line 42 from the vapor absorption refrigerator 41 is connected to the condenser 122, and the cold of the introduced brine (here, ⁇ 8 ° C., 21.4 Gcal / hr ethylene glycol) is used as the working fluid. Used for cooling.
  • low-pressure steam for example, saturated steam of 0.5 to 0.7 MPaG discharged from the factory is used as a heat source.
  • the working fluid (2 ° C.) cooled in the condenser 122 is temporarily stored in the circulating refrigerant storage tank 25 on the refrigerant circulation line 21. Thereafter, the working fluid whose pressure has been increased by the refrigerant pump 26 is sent to the refrigerant heater 131, where the working fluid (90 ° C., 3 MPaG) heated again is supplied to the refrigerant turbine 3.
  • hot water discharged from the factory is used as a high heat source, and brine cold using the low-pressure steam discharged from the factory is used as a low heat source to generate power.
  • no new fuel such as LNG
  • chiller water of a factory can be used instead of brine.
  • the combined power generation system 100 is configured to condense the refrigerant discharged from the refrigerant turbine using brine, a highly efficient power generation amount can be realized.
  • the condenser 122 is supplied with cooling water (25 ° C., 22.6 Gcal / hr) (conventional technology).
  • the working fluid discharged from the refrigerant turbine 3 has a temperature of 50 ° C. and a pressure of 1.2 MPaG, and is cooled by the cooling water in the condenser 122.
  • the cooled working fluid (35 ° C.) is temporarily stored in the circulating refrigerant storage tank 125 on the refrigerant circulation line 21. And the electric power generation amount by the generator 4 becomes a low value (2500 kW) compared with the case where it condenses using the brine cold heat of this invention (4000 kW).
  • the present invention has been described based on specific embodiments, these embodiments are merely examples, and the present invention is not limited to these embodiments.
  • the working fluid of the refrigerant turbine is not limited to the above-described one, but a hydrocarbon-based refrigerant composed of a simple substance such as methane, ethane, propane, or butane having a relatively small molecular weight or a mixture of two or more thereof. Can be used.
  • the weight ratio of the hydrocarbon components can be set according to the temperature levels of the high heat source and the low heat source in the applied combined power generation system. It should be noted that all the components of the combined power generation system according to the present invention shown in the above embodiment are not necessarily essential, and can be appropriately selected as long as they do not depart from the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

[Problem] To provide a composite power generation system, the power generation efficiency of which is improved by effectively using the exhaust heat of a gas engine. [Solution] A composite power generation system comprises: a gas engine (2) in which BOG is used as a fuel; a first power generator (4) driven by the gas engine; a refrigerant turbine (3) in which a hydrocarbon-based mixed refrigerant is used as a working fluid; a second power generator (5) driven by the refrigerant turbine; a refrigerant heater (31) for heating the mixed refrigerant by using a coolant for cooling the gas engine as a heat source; a thermal exchanger (11) for further heating the mixed refrigerant heated by the refrigerant heater by using the exhaust gas of the gas engine as a heat source; and a condenser (22) for condensing the mixed refrigerant discharged from the refrigerant turbine.

Description

複合発電システムCombined power generation system
 本発明は、複合発電システムに関し、特に、ガスエンジンの排熱を利用して発電を行うガスエンジン複合発電システムに関する。 The present invention relates to a combined power generation system, and more particularly to a gas engine combined power generation system that generates power using exhaust heat of a gas engine.
 従来、内燃力発電の排熱を利用して発電を行うことにより発電効率を高めた複合発電システムが普及している。例えば、燃焼ガスにより駆動されるガスタービンと、ガスタービンの排熱を回収して発生させた蒸気により駆動される蒸気タービンとを備え、蒸気タービン側の水蒸気を作動流体とするランキンサイクルの加熱源としてガスタービン排ガスを利用することにより、発電効率を向上させる複合発電システムが知られている(特許文献1参照)。 Conventionally, a combined power generation system in which power generation efficiency is improved by generating power using exhaust heat of internal combustion power generation has been widespread. For example, a Rankine cycle heating source including a gas turbine driven by combustion gas and a steam turbine driven by steam generated by collecting exhaust heat of the gas turbine, and using steam on the steam turbine side as a working fluid A combined power generation system that improves power generation efficiency by using gas turbine exhaust gas is known (see Patent Document 1).
特開2005-207259号公報JP 2005-207259 A
 ところで、ガスエンジンを用いる複合発電システムでは、2つの異なる温度レベルの排熱(例えば、400~500℃のエンジン排ガスと、85℃のエンジンジャケット冷却水の排熱)が全排熱において大きな割合を占めるため、発電効率の向上や二酸化炭素排出量の削減のためにはそれらを有効利用することが不可欠である。 By the way, in a combined power generation system using a gas engine, exhaust heat at two different temperature levels (for example, exhaust gas from 400 to 500 ° C and exhaust heat from engine jacket cooling water at 85 ° C) accounts for a large proportion of the total exhaust heat. Therefore, it is indispensable to use them effectively in order to improve power generation efficiency and reduce carbon dioxide emissions.
 しかしながら、上記特許文献1に記載の従来技術をガスエンジン複合発電システムに適用した場合、比較的低温のエンジンジャケット冷却水熱を有効利用することができないという問題があった。また、上記従来技術では作動流体が蒸気であるため、氷点下以下の冷熱源(例えば、LNG(Liquefied Natural Gas)の冷熱や冷凍機のブライン冷熱等)を作動流体の冷却過程で用いることができず、低温の排熱を有効利用することは困難であるという問題もあった。 However, when the conventional technique described in Patent Document 1 is applied to the gas engine combined power generation system, there is a problem that the relatively low temperature engine jacket cooling water heat cannot be effectively used. In addition, since the working fluid is steam in the above prior art, a cooling source below freezing point (for example, LNG (Liquefied Natural Gas) cooling, refrigerator brine cooling, etc.) cannot be used in the cooling process of the working fluid. There is also a problem that it is difficult to effectively use low-temperature exhaust heat.
 本発明は、このような従来技術の課題を鑑みて案出されたものであり、ガスエンジンの排熱を有効に利用することにより、発電効率を向上させることを可能とした複合発電システムを提供することを主目的とする。 The present invention has been devised in view of such problems of the prior art, and provides a combined power generation system capable of improving power generation efficiency by effectively using exhaust heat of a gas engine. The main purpose is to do.
 上記課題を解決するためになされた本発明の第1の側面では、可燃ガスを燃料とするガスエンジン(2)と、前記ガスエンジンによって駆動される第1発電機(4)と、炭化水素系の冷媒を作動流体とする冷媒タービン(3)と、前記冷媒タービンによって駆動される第2発電機(5)と、前記ガスエンジンを冷却する冷却液を熱源として前記冷媒を加熱する第1加熱器(31)と、前記ガスエンジンの排ガスを熱源として前記第1加熱器で加熱された前記冷媒を更に加熱する第2加熱器(11)と、前記冷媒タービンから排出された前記冷媒を凝縮させる凝縮器(22)とを備えたことを特徴とする。 In a first aspect of the present invention made to solve the above problems, a gas engine (2) using combustible gas as fuel, a first generator (4) driven by the gas engine, and a hydrocarbon system A refrigerant turbine (3) using the refrigerant as a working fluid, a second generator (5) driven by the refrigerant turbine, and a first heater that heats the refrigerant using a coolant that cools the gas engine as a heat source (31), a second heater (11) for further heating the refrigerant heated by the first heater using the exhaust gas of the gas engine as a heat source, and condensation for condensing the refrigerant discharged from the refrigerant turbine And a vessel (22).
 これによると、炭化水素系の冷媒を作動流体とする冷媒タービンにおいてガスエンジンの排熱(排ガスおよび冷却液の熱)を利用する構成としたため、ガスエンジンの排熱回収率が高まり、延いてはシステムの発電効率を向上させることが可能となる。 According to this, since the refrigerant turbine that uses a hydrocarbon-based refrigerant as the working fluid is configured to use the exhaust heat of the gas engine (heat of exhaust gas and coolant), the exhaust heat recovery rate of the gas engine increases, The power generation efficiency of the system can be improved.
 また、本発明の第2の側面として、可燃ガスを燃料とするガスエンジン(2)と、前記ガスエンジンによって駆動される第1発電機(4)と、炭化水素系の冷媒を作動流体とする冷媒タービン(3)と、前記冷媒タービンによって駆動される第2発電機(5)と、前記ガスエンジンの排ガスを熱源として前記ガスエンジンの冷却液を加熱する第1加熱器(11A)と、前記第1加熱器で加熱された前記冷却液を熱源として前記冷媒を加熱する第2加熱器(31A)と 前記冷媒タービンから排出された前記冷媒を凝縮させる凝縮器(22)とを備えたことを特徴とする。 As a second aspect of the present invention, a gas engine (2) using combustible gas as a fuel, a first generator (4) driven by the gas engine, and a hydrocarbon-based refrigerant as a working fluid. A refrigerant turbine (3), a second generator (5) driven by the refrigerant turbine, a first heater (11A) for heating the coolant of the gas engine using the exhaust gas of the gas engine as a heat source, A second heater (31A) for heating the refrigerant using the coolant heated by the first heater as a heat source; and a condenser (22) for condensing the refrigerant discharged from the refrigerant turbine. Features.
 これによると、炭化水素系の冷媒を作動流体とする冷媒タービンにおいてガスエンジンの排熱(排ガスおよび冷却液の熱)を利用する構成としたため、ガスエンジンの排熱回収率が高まり、延いてはシステムの発電効率を向上させることが可能となる。また、可燃性の炭化水素系の冷媒とガスエンジンの排ガスとを直接熱交換せずに、ガスエンジンの排ガスによって加熱された冷却液を熱源として冷媒を加熱するため、システムの安全性が高まるという利点もある。 According to this, since the refrigerant turbine that uses a hydrocarbon-based refrigerant as the working fluid is configured to use the exhaust heat of the gas engine (heat of exhaust gas and coolant), the exhaust heat recovery rate of the gas engine increases, The power generation efficiency of the system can be improved. In addition, because the refrigerant is heated by using the coolant heated by the exhaust gas of the gas engine without directly exchanging heat between the combustible hydrocarbon refrigerant and the exhaust gas of the gas engine, the safety of the system is increased. There are also advantages.
 また、本発明の第3の側面として、前記凝縮器は液化天然ガスを用いて前記冷媒を凝縮させることを特徴とする。 Further, as a third aspect of the present invention, the condenser condenses the refrigerant using liquefied natural gas.
 これによると、LNG基地等から払い出されるLNGの冷熱を作動流体の冷却過程において有効利用することが可能となる。 According to this, it becomes possible to effectively use the cold heat of LNG delivered from the LNG base or the like in the cooling process of the working fluid.
 また、本発明の第4の側面として、前記可燃ガスは液化天然ガスのボイルオフガスであることを特徴とする。 Also, as a fourth aspect of the present invention, the combustible gas is a boil-off gas of liquefied natural gas.
 これによると、都市ガスとして利用する場合のようにLPガス等の混合による熱量調整を必要とすることなく、LNG基地等から発生するボイルオフガスを有効利用することが可能となる。 According to this, boil-off gas generated from an LNG base or the like can be used effectively without requiring adjustment of heat quantity by mixing LP gas or the like as in the case of using as city gas.
 また、本発明の第5の側面として、前記凝縮器はブラインを用いて前記冷媒を凝縮させることを特徴とする。 Further, as a fifth aspect of the present invention, the condenser condenses the refrigerant using brine.
 これによると、工場等から排出される比較的低圧(例えば、0.2~0.7MPaG)の蒸気等を用いてブラインを冷却することにより、工場等の排熱を有効利用することが可能となる。 According to this, it is possible to effectively use the exhaust heat of the factory, etc. by cooling the brine using a relatively low pressure (for example, 0.2 to 0.7 MPaG) steam discharged from the factory, etc.
 また、本発明の第6の側面として、前記冷媒はメタンおよびプロパンの混合媒体であることを特徴とする。 Also, as a sixth aspect of the present invention, the refrigerant is a mixed medium of methane and propane.
 これによると、メタンとプロパンとの混合比率を変更することにより、冷媒タービンにおける作動流体のランキンサイクルの低温および高温レベルに容易かつ適切に対応することが可能となる。 According to this, it becomes possible to easily and appropriately cope with the low and high temperature levels of the Rankine cycle of the working fluid in the refrigerant turbine by changing the mixing ratio of methane and propane.
 このように本発明によれば、ガスエンジンの排熱を有効に利用することにより、発電効率を向上させることが可能となるという優れた効果を奏する。 Thus, according to the present invention, it is possible to improve the power generation efficiency by effectively using the exhaust heat of the gas engine.
第1実施形態に係るガスエンジン複合発電システム1の概略を示す構成図The block diagram which shows the outline of the gas engine combined power generation system 1 which concerns on 1st Embodiment. 第2実施形態に係るガスエンジン複合発電システム1の概略を示す構成図The block diagram which shows the outline of the gas engine combined power generation system 1 which concerns on 2nd Embodiment. 第3実施形態に係る複合発電システム100の概略を示す構成図The block diagram which shows the outline of the combined power generation system 100 which concerns on 3rd Embodiment. 従来のガスタービンを用いた複合発電システム201の概略を示す構成図The block diagram which shows the outline of the combined power generation system 201 using the conventional gas turbine
 以下、本発明の実施の形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<第1実施形態>
 図1は本発明の第1実施形態に係るガスエンジン複合発電システム1の概略を示す構成図である。複合発電システム1は、可燃ガスを燃料とする内燃機関であるガスエンジン2と、低温(水よりも低い温度)で沸騰する炭化水素系の冷媒を作動流体とする冷媒タービン3とを備え、ガスエンジン2および冷媒タービン3によりそれぞれ駆動される第1発電機4および第2発電機5によって発電を行うものであり、都市ガス用のLNGを払い出すLNG基地6に並設される。
<First Embodiment>
FIG. 1 is a configuration diagram showing an outline of a gas engine combined power generation system 1 according to a first embodiment of the present invention. The combined power generation system 1 includes a gas engine 2 that is an internal combustion engine using a combustible gas as a fuel, and a refrigerant turbine 3 that uses a hydrocarbon-based refrigerant boiling at a low temperature (a temperature lower than water) as a working fluid. The first generator 4 and the second generator 5 that are driven by the engine 2 and the refrigerant turbine 3, respectively, generate power, and are juxtaposed to the LNG base 6 that delivers LNG for city gas.
 ガスエンジン2には、LNG基地6で発生したボイルオフガス(以下、BOGという。)が燃料(その少なくとも一部)として供給され、燃焼後の比較的高温(ここでは410℃)のガスエンジン排ガスが排熱回収用の熱交換器11に向けて排出される。また、ガスエンジン2には、図示しない冷却用のエンジンジャケットが設けられており、このエンジンジャケットからは比較的低温(ここでは88℃)のジャケット冷却水が排出される。排出されたジャケット冷却水は、図1中に矢印で示す方向に、冷却水ポンプ12が設けられた冷却水循環ライン13を循環して再びエンジンジャケットに供給される。ガスエンジン2の出力は第1発電機4によって電力に変換される。 Boil-off gas (hereinafter referred to as BOG) generated at the LNG base 6 is supplied to the gas engine 2 as fuel (at least a part thereof), and the gas engine exhaust gas at a relatively high temperature (here 410 ° C.) after combustion is supplied. It is discharged toward the heat exchanger 11 for exhaust heat recovery. The gas engine 2 is provided with a cooling engine jacket (not shown), and jacket cooling water at a relatively low temperature (88 ° C. in this case) is discharged from the engine jacket. The discharged jacket cooling water is circulated through the cooling water circulation line 13 provided with the cooling water pump 12 in the direction indicated by the arrow in FIG. The output of the gas engine 2 is converted into electric power by the first generator 4.
 冷媒タービン3では、メタンとプロパンとの混合冷媒(ここでは、メタン50~55重量%、プロパン45~50重量%)が作動流体として用いられる。この作動流体は、冷媒タービン3への導入前に熱交換器11においてガスエンジン排ガスによって加熱される。熱交換器11には、伝熱管群からなる複数の加熱ユニットが設けられており、ガスエンジン排ガスと作動流体との効率的な熱交換が可能となっている。これにより、所定の温度および圧力(ここでは、103℃、4.9MPaG)とされた作動流体(気体)が冷媒タービン3に導入され、この作動流体の運動エネルギにより図示しないタービン翼が回転し、その出力が第2発電機5によって電力に変換される。 In the refrigerant turbine 3, a mixed refrigerant of methane and propane (here, methane 50 to 55% by weight, propane 45 to 50% by weight) is used as a working fluid. This working fluid is heated by the gas engine exhaust gas in the heat exchanger 11 before being introduced into the refrigerant turbine 3. The heat exchanger 11 is provided with a plurality of heating units composed of heat transfer tube groups, so that efficient heat exchange between the gas engine exhaust gas and the working fluid is possible. As a result, a working fluid (gas) having a predetermined temperature and pressure (here, 103 ° C., 4.9 MPaG) is introduced into the refrigerant turbine 3, and turbine blades (not shown) are rotated by the kinetic energy of the working fluid. The output is converted into electric power by the second generator 5.
 冷媒タービン3から排出された作動流体(ここでは、温度:-5℃、圧力:0.4MPaGの気体)は、図1中に矢印で示す方向に、冷媒循環ライン21を通して凝縮器22に送られる。凝縮器22には、LNG基地6からの払出管23が接続されており、導入されたLNG(ここでは、温度:-160℃、圧力:7.0MPaG、流量:70t/hr)の冷熱が作動流体の冷却に利用される。一方、作動流体の熱はLNGを気化するために利用される。 The working fluid discharged from the refrigerant turbine 3 (here, gas of temperature: −5 ° C., pressure: 0.4 MPaG) is sent to the condenser 22 through the refrigerant circulation line 21 in the direction indicated by the arrow in FIG. A discharge pipe 23 from the LNG base 6 is connected to the condenser 22, and the cold heat of the introduced LNG (here, temperature: −160 ° C., pressure: 7.0 MPaG, flow rate: 70 t / hr) is the working fluid. Used for cooling. On the other hand, the heat of the working fluid is used to vaporize LNG.
 凝縮された作動流体は、冷媒循環ライン21に設けられた循環冷媒貯槽25に一旦貯留される。その後、冷媒循環ライン21に設けられた冷媒ポンプ26によって昇圧された作動流体(ここでは、-128℃、5.0MPaG、99.4t/hr)は、冷媒蒸発器27に送られる。冷媒蒸発器27には海水(ここでは、15℃)を導入するための海水導入管28が接続されており、作動流体は海水との熱交換によりジャケット冷却水が凍結しない温度(ここでは、5℃)まで予熱される。 The condensed working fluid is temporarily stored in a circulating refrigerant storage tank 25 provided in the refrigerant circulation line 21. Thereafter, the working fluid (here, −128 ° C., 5.0 MPaG, 99.4 t / hr) pressurized by the refrigerant pump 26 provided in the refrigerant circulation line 21 is sent to the refrigerant evaporator 27. The refrigerant evaporator 27 is connected to a seawater introduction pipe 28 for introducing seawater (here, 15 ° C.), and the working fluid is heated to a temperature at which the jacket cooling water does not freeze due to heat exchange with the seawater (here, 5 ℃).
 冷媒蒸発器27からの作動流体は冷媒加熱器31に送られ、この冷媒加熱器31においてジャケット冷却水(ここでは88℃、270t/hr)との熱交換によって加熱(ここでは、29℃まで加熱)される。一方、ジャケット冷却水は、冷媒加熱器31においてガスエンジン2を冷却可能な温度(ここでは、50~80℃)まで冷却される。冷媒加熱器31からの作動流体は熱交換器11に送られ、再び加熱された作動流体(103℃、4.9MPaG)は冷媒タービン3に供給される。 The working fluid from the refrigerant evaporator 27 is sent to the refrigerant heater 31 where it is heated by heat exchange with jacket cooling water (88 ° C., 270 t / hr here) (here, heated to 29 ° C.). ) On the other hand, the jacket cooling water is cooled to a temperature at which the gas engine 2 can be cooled in the refrigerant heater 31 (here, 50 to 80 ° C.). The working fluid from the refrigerant heater 31 is sent to the heat exchanger 11, and the heated working fluid (103 ° C., 4.9 MPaG) is supplied to the refrigerant turbine 3 again.
 また、LNG基地6からのLNGは、凝縮器22から排出された後に払出管23を通してLNG加熱器32に送られる。LNG加熱器32には海水(ここでは、15℃)を導入するための海水導入管33が接続されており、作動流体は海水との熱交換により昇温され(ここでは、5℃の気体となる。)、都市ガスとして利用するために都市ガスラインに送られる。 LNG from the LNG base 6 is discharged from the condenser 22 and then sent to the LNG heater 32 through the discharge pipe 23. The LNG heater 32 is connected to a seawater introduction pipe 33 for introducing seawater (here, 15 ° C.), and the working fluid is heated by heat exchange with seawater (here, a gas at 5 ° C. Sent to the city gas line for use as city gas.
 上記ガスエンジン2では、BOGの供給量が1.94t/hr(消費燃料は29600kw)であり、ガスエンジン排ガスの排出量は83.2t/hrである。また、第1発電機4による発電量は13500kWであり、冷媒タービン3による発電量は4060KWである。また、複合発電システム1の全発電効率は59.3%(補器電力消費を含む有効発電効率は57.2%)となり、従来のガスタービンを用いた複合発電システムに比べて高い発電効率を実現できる。 In the gas engine 2, the BOG supply amount is 1.94 t / hr (fuel consumption is 29600 kw), and the exhaust amount of the gas engine exhaust gas is 83.2 t / hr. The amount of power generated by the first generator 4 is 13500 kW, and the amount of power generated by the refrigerant turbine 3 is 4060 KW. In addition, the total power generation efficiency of the combined power generation system 1 is 59.3% (the effective power generation efficiency including auxiliary power consumption is 57.2%), and a higher power generation efficiency can be realized as compared with a combined power generation system using a conventional gas turbine.
 ここで、比較例として、ガスタービンを用いた従来の複合発電システム201を図4に示す。この複合発電システム201では、BOG(供給量:2.02t/hr、消費燃料:30706kW、圧力:0.02MPaG)は燃料ガス圧縮機202によって21MPaGまで圧縮されてガスタービン発電機203に導入される。排出されたガスタービン排ガス(温度:504℃、流量:136.2t/hr)は、排熱回収用の排ガスボイラ204に導入される。 Here, as a comparative example, a conventional combined power generation system 201 using a gas turbine is shown in FIG. In this combined power generation system 201, BOG (supply amount: 2.02 t / hr, consumed fuel: 30706 kW, pressure: 0.02 MPaG) is compressed to 21 MPaG by the fuel gas compressor 202 and introduced into the gas turbine generator 203. The discharged gas turbine exhaust gas (temperature: 504 ° C., flow rate: 136.2 t / hr) is introduced into the exhaust gas boiler 204 for exhaust heat recovery.
 排ガスボイラ204では、ガスタービン排ガスと蒸気との間で熱交換がなされ、これにより生じた高圧蒸気(温度:482℃、圧力:5.4MPaG、流量:14.6t/hr)が蒸気タービン発電機205に導入される。蒸気タービン発電機205からの排気蒸気(温度:41℃、圧力:0.093MPaG)は、復水器206において冷却され、復水ポンプ207、脱気器208、高圧給水ポンプ209を介して再び排ガスボイラ204に循環される。なお、復水器206に導入される冷却水は、空冷冷却塔210を介して循環される。 In the exhaust gas boiler 204, heat exchange is performed between the gas turbine exhaust gas and the steam, and the high-pressure steam (temperature: 482 ° C, pressure: 5.4MPaG, flow rate: 14.6t / hr) generated thereby is sent to the steam turbine generator 205. be introduced. Exhaust steam (temperature: 41 ° C., pressure: 0.093 MPaG) from the steam turbine generator 205 is cooled in the condenser 206, and again through the condenser pump 207, the deaerator 208, and the high-pressure feed water pump 209, the exhaust gas boiler. Cycled to 204. The cooling water introduced into the condenser 206 is circulated through the air cooling cooling tower 210.
 上記従来の複合発電システム201では、ガスタービン発電機による発電量は9754kWとなり、蒸気タービン発電機による発電量は3656kWとなる。また、複合発電システム201の全発電効率は47.3%(補器電力消費を含む有効発電効率は41.1%)である。 In the conventional combined power generation system 201, the amount of power generated by the gas turbine generator is 9754kW, and the amount of power generated by the steam turbine generator is 3656kW. The total power generation efficiency of the combined power generation system 201 is 47.3% (the effective power generation efficiency including auxiliary power consumption is 41.1%).
 このように、第1実施形態に係る複合発電システム1では、メタンとプロパンとの混合冷媒を作動流体とする冷媒タービン3により、ガスエンジン排ガスおよびジャケット冷却水を高熱源として利用する一方、LNGのガス化の際の冷熱を低熱源として利用したバイナリーランキンサイクル方式にて発電を行う。これにより、ガスエンジン2の排熱において大きな割合を占めるガスエンジン排ガスおよびジャケット冷却水の熱を有効利用して排熱回収率を高めることができ、延いては複合発電システム1の発電効率を向上させることができる。なお、ジャケット冷却水の代わりに、水以外の周知の冷却液を用いてもよい。また、混合冷媒は可燃性であるため、熱交換器11における加熱温度はシステムの安全性の観点から比較的低温(例えば、130℃以下)とすることが好ましい。 Thus, in the combined power generation system 1 according to the first embodiment, the gas turbine exhaust gas and the jacket cooling water are used as a high heat source by the refrigerant turbine 3 using a mixed refrigerant of methane and propane as a working fluid. Electricity is generated by the binary Rankine cycle method using the cold heat during gasification as a low heat source. Thereby, the exhaust heat recovery rate can be increased by effectively using the heat of the gas engine exhaust gas and the jacket cooling water, which occupy a large proportion of the exhaust heat of the gas engine 2, and thus the power generation efficiency of the combined power generation system 1 is improved. Can be made. In addition, you may use well-known coolant other than water instead of jacket cooling water. Moreover, since the mixed refrigerant is flammable, the heating temperature in the heat exchanger 11 is preferably relatively low (for example, 130 ° C. or less) from the viewpoint of system safety.
 また、凝縮器22においてLNGを用いて作動流体を凝縮する構成としたため、LNG基地6等から払い出されるLNGの冷熱を冷媒の冷却過程において有効利用することが可能となる。さらに、ガスエンジン2の燃料ガス(またはその一部)としてBOGを用いるため、都市ガスとして使用する場合のようにLPガス等の混合による熱量調整を必要とすることなく、LNG基地6等から発生するBOGを有効利用することができ、更に、LNGの冷熱を作動流体の冷却過程において有効利用することが可能となる。 Further, since the working fluid is condensed using LNG in the condenser 22, it is possible to effectively use the cold heat of the LNG discharged from the LNG base 6 or the like in the cooling process of the refrigerant. Furthermore, since BOG is used as the fuel gas (or part thereof) of the gas engine 2, it is generated from the LNG base 6 and the like without the need for adjusting the amount of heat by mixing LP gas or the like as in the case of use as city gas. BOG can be effectively used, and the cold heat of LNG can be effectively utilized in the cooling process of the working fluid.
<第2実施形態>
 図2は本発明の第2実施形態に係るガスエンジン複合発電システム1の概略を示す構成図である。図2では、上述の第1実施形態と同様の構成要素については同一の符号が付されている。また、第2実施形態では、以下で特に言及する事項を除いて第1実施形態の場合と同様として詳細な説明を省略する。
Second Embodiment
FIG. 2 is a configuration diagram showing an outline of the gas engine combined power generation system 1 according to the second embodiment of the present invention. In FIG. 2, the same components as those in the first embodiment described above are denoted by the same reference numerals. Further, in the second embodiment, the detailed description is omitted as in the case of the first embodiment except for the matters specifically mentioned below.
 第2実施形態は、ガスエンジン排ガスと作動流体とをジャケット冷却水を介して間接的に熱交換させる点において第1実施形態の場合とは異なる。図2に示すように、ガスエンジン2から排出されたジャケット冷却水は熱交換器11Aに送られ、ガスエンジン排ガスとの熱交換によって加熱される。その後、ジャケット冷却水(ここでは、150~160℃の加圧熱水)は、冷却水循環ライン13を通して冷媒加熱器31Aに送られ、作動流体の加熱に用いられる。冷媒加熱器31Aで冷却されたジャケット冷却水は、冷却水ポンプ12にて再びエンジンジャケットに供給される。一方、冷媒加熱器31Aで加熱された作動流体(103℃、4.9MPaG)は冷媒タービン3に供給される。 The second embodiment is different from the first embodiment in that the gas engine exhaust gas and the working fluid are indirectly heat-exchanged via jacket cooling water. As shown in FIG. 2, the jacket cooling water discharged from the gas engine 2 is sent to the heat exchanger 11A and heated by heat exchange with the gas engine exhaust gas. Thereafter, the jacket cooling water (here, pressurized hot water of 150 to 160 ° C.) is sent to the refrigerant heater 31A through the cooling water circulation line 13 and used for heating the working fluid. The jacket cooling water cooled by the refrigerant heater 31A is supplied again to the engine jacket by the cooling water pump 12. On the other hand, the working fluid (103 ° C., 4.9 MPaG) heated by the refrigerant heater 31 </ b> A is supplied to the refrigerant turbine 3.
 このように、第2実施形態に係る複合発電システム1では、ガスエンジン排ガスと可燃性の作動流体とが直接的に熱交換されない構成であるため、システムの安全性が高まるという利点がある。 As described above, the combined power generation system 1 according to the second embodiment has an advantage that the safety of the system is increased because the gas engine exhaust gas and the combustible working fluid are not directly heat-exchanged.
<第3実施形態>
 図3は本発明の第3実施形態に係る複合発電システム100の概略を示す構成図である。図3では、上述の第1実施形態と同様の構成要素については同一の符号が付されている。
<Third Embodiment>
FIG. 3 is a configuration diagram showing an outline of the combined power generation system 100 according to the third embodiment of the present invention. 3, the same code | symbol is attached | subjected about the component similar to the above-mentioned 1st Embodiment.
 複合発電システム100は、低温で沸騰する炭化水素系の冷媒を作動流体とする冷媒タービン3と、この冷媒タービン3によって駆動される発電機4とを主として備え、蒸気や温水の排出源となる図示しない工場(例えば、石油化学工場)に並設される。 The combined power generation system 100 mainly includes a refrigerant turbine 3 using a hydrocarbon-based refrigerant boiling at a low temperature as a working fluid, and a generator 4 driven by the refrigerant turbine 3, and serves as a discharge source of steam and hot water. It is installed in parallel with a factory that does not (for example, petrochemical factory).
 冷媒タービン3では、プロパン単体またはプロパンに少量のエタンやブタンを混合した冷媒が作動流体として用いられる。作動流体は、冷媒タービン3への導入前に冷媒加熱器131において温水(ここでは、100℃、24.3Gcal/hr)と熱交換することによって加熱される。この温水としては、工場から排出される温水(熱水)や低圧の蒸気を利用することができる。これにより、所定の温度および圧力(ここでは、90℃、3MPaG)とされた作動流体が冷媒タービン3に導入され、この作動流体の運動エネルギにより図示しないタービン翼が回転し、その出力が発電機4によって電力に変換される。 In the refrigerant turbine 3, propane alone or a refrigerant obtained by mixing propane with a small amount of ethane or butane is used as a working fluid. The working fluid is heated by exchanging heat with warm water (here, 100 ° C., 24.3 Gcal / hr) in the refrigerant heater 131 before being introduced into the refrigerant turbine 3. As this hot water, hot water (hot water) discharged from a factory or low-pressure steam can be used. As a result, a working fluid having a predetermined temperature and pressure (here, 90 ° C., 3 MPaG) is introduced into the refrigerant turbine 3, and turbine blades (not shown) are rotated by the kinetic energy of the working fluid, and the output thereof is a generator. 4 is converted into electric power.
 冷媒タービン3から排出された作動流体(ここでは、20℃、0.5MPaGの気体)は、図3中に矢印で示す方向に、冷媒循環ライン121を通して凝縮器122に送られる。凝縮器122には、蒸気吸収式冷凍機41からのブライン循環ライン42が接続されており、導入されたブライン(ここでは、-8℃、21.4Gcal/hrのエチレングリコール)の冷熱が作動流体の冷却に利用される。蒸気吸収式冷凍機41では、工場が排出する低圧の蒸気(例えば、0.5~0.7MPaGの飽和蒸気)を熱源として利用する。 The working fluid discharged from the refrigerant turbine 3 (here, 20 ° C., 0.5 MPaG gas) is sent to the condenser 122 through the refrigerant circulation line 121 in the direction indicated by the arrow in FIG. A brine circulation line 42 from the vapor absorption refrigerator 41 is connected to the condenser 122, and the cold of the introduced brine (here, −8 ° C., 21.4 Gcal / hr ethylene glycol) is used as the working fluid. Used for cooling. In the vapor absorption refrigerator 41, low-pressure steam (for example, saturated steam of 0.5 to 0.7 MPaG) discharged from the factory is used as a heat source.
 凝縮器122において冷却された作動流体(2℃)は、冷媒循環ライン21上の循環冷媒貯槽25に一旦貯留される。その後、冷媒ポンプ26にて昇圧された作動流体は、冷媒加熱器131に送られ、そこで再び加熱された作動流体(90℃、3MPaG)が冷媒タービン3に供給される。 The working fluid (2 ° C.) cooled in the condenser 122 is temporarily stored in the circulating refrigerant storage tank 25 on the refrigerant circulation line 21. Thereafter, the working fluid whose pressure has been increased by the refrigerant pump 26 is sent to the refrigerant heater 131, where the working fluid (90 ° C., 3 MPaG) heated again is supplied to the refrigerant turbine 3.
 このような第3実施形態に係る複合発電システム100では、工場から排出される温水を高熱源とすると共に、工場から排出される低圧の蒸気を利用するブライン冷熱を低熱源として発電を行うため、上述の第1、第2実施形態の場合のように新たな燃料(LNG等)を必要とすることはないという利点がある。なお、凝縮器122では、ブラインの代わりに工場のチラー水を利用することも可能である。 In the combined power generation system 100 according to the third embodiment, hot water discharged from the factory is used as a high heat source, and brine cold using the low-pressure steam discharged from the factory is used as a low heat source to generate power. There is an advantage that no new fuel (such as LNG) is required as in the case of the first and second embodiments described above. In the condenser 122, chiller water of a factory can be used instead of brine.
 また、複合発電システム100では、冷媒タービンから排出された前記冷媒についてブラインを用いて凝縮させる構成としたため、高効率の発電量を実現できる。ここで、例えば、冷媒加熱器131に導入される温水および冷媒タービン3に導入される作動流体を上述の場合と同じ条件として、凝縮器122にブラインの代わりに冷却水(25℃、22.6Gcal/hr)を導入する場合(従来技術)を考える。この場合、冷媒タービン3から排出される作動流体は、温度が50℃、圧力が1.2MPaGとなり、凝縮器122において冷却水により冷却される。冷却された作動流体(35℃)は、冷媒循環ライン21上の循環冷媒貯槽125に一旦貯留される。そして、発電機4による発電量は、本願発明のブライン冷熱を用いて凝縮させる場合(4000kW)に比べて低い値(2500kW)となる。 Moreover, since the combined power generation system 100 is configured to condense the refrigerant discharged from the refrigerant turbine using brine, a highly efficient power generation amount can be realized. Here, for example, assuming that the hot water introduced into the refrigerant heater 131 and the working fluid introduced into the refrigerant turbine 3 have the same conditions as described above, the condenser 122 is supplied with cooling water (25 ° C., 22.6 Gcal / hr) (conventional technology). In this case, the working fluid discharged from the refrigerant turbine 3 has a temperature of 50 ° C. and a pressure of 1.2 MPaG, and is cooled by the cooling water in the condenser 122. The cooled working fluid (35 ° C.) is temporarily stored in the circulating refrigerant storage tank 125 on the refrigerant circulation line 21. And the electric power generation amount by the generator 4 becomes a low value (2500 kW) compared with the case where it condenses using the brine cold heat of this invention (4000 kW).
 本発明を特定の実施形態に基づいて説明したが、これらの実施形態はあくまでも例示であって、本発明はこれらの実施形態によって限定されるものではない。例えば、第1、第2実施形態では、低熱源としてLNG冷熱を利用する例を示したが、これに限らず第3実施形態の場合と同様にブライン冷熱等を利用してもよい。また、冷媒タービンの作動流体としては、上述のものに限らず、比較的分子量が小さいメタン、エタン、プロパン、ブタン等の単体またはそれらのうちの2以上の混合物から構成される炭化水素系の冷媒を用いることができる。混合冷媒を用いる場合、炭化水素成分の重量比は、適用する複合発電システムにおける高熱源および低熱源の温度レベル等に応じて設定することができる。なお、上記実施形態に示した本発明に係る複合発電システムの各構成要素は、必ずしも全てが必須ではなく、少なくとも本発明の範囲を逸脱しない限りにおいて適宜取捨選択することが可能である。 Although the present invention has been described based on specific embodiments, these embodiments are merely examples, and the present invention is not limited to these embodiments. For example, in the first and second embodiments, an example in which LNG cold heat is used as a low heat source has been described. However, the present invention is not limited thereto, and brine cold heat or the like may be used in the same manner as in the third embodiment. Further, the working fluid of the refrigerant turbine is not limited to the above-described one, but a hydrocarbon-based refrigerant composed of a simple substance such as methane, ethane, propane, or butane having a relatively small molecular weight or a mixture of two or more thereof. Can be used. When the mixed refrigerant is used, the weight ratio of the hydrocarbon components can be set according to the temperature levels of the high heat source and the low heat source in the applied combined power generation system. It should be noted that all the components of the combined power generation system according to the present invention shown in the above embodiment are not necessarily essential, and can be appropriately selected as long as they do not depart from the scope of the present invention.
1 複合発電システム
2 ガスエンジン
3 冷媒タービン
4 第1発電機
5 第2発電機
6 LNG基地
11 熱交換器(第2加熱器)
11A 熱交換器(第1加熱器)
22 凝縮器
31 冷媒加熱器(第1加熱器)
31A 冷媒加熱器(第2加熱器)
100 複合発電システム
122 凝縮器
131 冷媒加熱器
1 Combined Power Generation System 2 Gas Engine 3 Refrigerant Turbine 4 First Generator 5 Second Generator 6 LNG Base 11 Heat Exchanger (Second Heater)
11A heat exchanger (first heater)
22 Condenser 31 Refrigerant heater (first heater)
31A Refrigerant heater (second heater)
100 Combined power generation system 122 Condenser 131 Refrigerant heater

Claims (6)

  1.  可燃ガスを燃料とするガスエンジンと、
     前記ガスエンジンによって駆動される第1発電機と、
     炭化水素系の冷媒を作動流体とする冷媒タービンと、
     前記冷媒タービンによって駆動される第2発電機と、
     前記ガスエンジンを冷却する冷却液を熱源として前記冷媒を加熱する第1加熱器と、
     前記ガスエンジンの排ガスを熱源として前記第1加熱器で加熱された前記冷媒を更に加熱する第2加熱器と、
     前記冷媒タービンから排出された前記冷媒を凝縮させる凝縮器と
    を備えたことを特徴とする複合発電システム。
    A gas engine using combustible gas as fuel,
    A first generator driven by the gas engine;
    A refrigerant turbine using a hydrocarbon-based refrigerant as a working fluid;
    A second generator driven by the refrigerant turbine;
    A first heater that heats the refrigerant using a coolant that cools the gas engine as a heat source;
    A second heater for further heating the refrigerant heated by the first heater using the exhaust gas of the gas engine as a heat source;
    A combined power generation system comprising: a condenser for condensing the refrigerant discharged from the refrigerant turbine.
  2.  可燃ガスを燃料とするガスエンジンと、
     前記ガスエンジンによって駆動される第1発電機と、
     炭化水素系の冷媒を作動流体とする冷媒タービンと、
     前記冷媒タービンによって駆動される第2発電機と、
     前記ガスエンジンの排ガスを熱源として前記ガスエンジンの冷却液を加熱する第1加熱器と、
     前記第1加熱器で加熱された前記冷却液を熱源として前記冷媒を加熱する第2加熱器と
     前記冷媒タービンから排出された前記冷媒を凝縮させる凝縮器と
    を備えたことを特徴とする複合発電システム。
    A gas engine using combustible gas as fuel,
    A first generator driven by the gas engine;
    A refrigerant turbine using a hydrocarbon-based refrigerant as a working fluid;
    A second generator driven by the refrigerant turbine;
    A first heater that heats the gas engine coolant using the exhaust gas of the gas engine as a heat source;
    A combined power generation comprising: a second heater that heats the refrigerant using the coolant heated by the first heater as a heat source; and a condenser that condenses the refrigerant discharged from the refrigerant turbine. system.
  3.  前記凝縮器は液化天然ガスを用いて前記冷媒を凝縮させることを特徴とする請求項1または請求項2に記載の複合発電システム。 The combined power generation system according to claim 1 or 2, wherein the condenser condenses the refrigerant using liquefied natural gas.
  4.  前記可燃ガスは液化天然ガスのボイルオフガスであることを特徴とする請求項1から請求項3のいずれかに記載の複合発電システム。 The combined power generation system according to any one of claims 1 to 3, wherein the combustible gas is boil-off gas of liquefied natural gas.
  5.  前記凝縮器はブラインを用いて前記冷媒を凝縮させることを特徴とする請求項1または請求項2に記載の複合発電システム。 3. The combined power generation system according to claim 1 or 2, wherein the condenser condenses the refrigerant using brine.
  6.  前記冷媒はメタンおよびプロパンの混合媒体であることを特徴とする請求項1から請求項5のいずれかに記載の複合発電システム。 The combined power generation system according to any one of claims 1 to 5, wherein the refrigerant is a mixed medium of methane and propane.
PCT/JP2012/003266 2011-05-19 2012-05-18 Composite power generation system WO2012157285A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SG2013082441A SG194827A1 (en) 2011-05-19 2012-05-18 Composite power generation system
CN201280023975.5A CN103547786B (en) 2011-05-19 2012-05-18 Compound electricity generation system
KR1020137030263A KR101619393B1 (en) 2011-05-19 2012-05-18 Composite power generation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-112013 2011-05-19
JP2011112013A JP5875253B2 (en) 2011-05-19 2011-05-19 Combined power generation system

Publications (1)

Publication Number Publication Date
WO2012157285A1 true WO2012157285A1 (en) 2012-11-22

Family

ID=47176631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003266 WO2012157285A1 (en) 2011-05-19 2012-05-18 Composite power generation system

Country Status (6)

Country Link
JP (1) JP5875253B2 (en)
KR (1) KR101619393B1 (en)
CN (1) CN103547786B (en)
MY (1) MY173872A (en)
SG (1) SG194827A1 (en)
WO (1) WO2012157285A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180340452A1 (en) * 2015-11-13 2018-11-29 Shell Oil Company Method of generating power using a combined cycle
CN109233926A (en) * 2018-07-24 2019-01-18 北京宏科庆能科技有限公司 The absorption chilldown system of BOG generator flue gas

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9366238B2 (en) * 2013-03-13 2016-06-14 Lockheed Martin Corporation System and process of cooling an OTEC working fluid pump motor
JP6284734B2 (en) * 2013-10-09 2018-02-28 日野自動車株式会社 Rankine cycle system
KR101610520B1 (en) * 2014-10-10 2016-04-08 현대자동차주식회사 Rankine Cycle System having Dual Fluid Circulation Circuit and Control Method thereof
CN105698002B (en) * 2016-01-14 2018-11-06 新奥科技发展有限公司 Moving energy station and its energy utilization method
CN105715952B (en) * 2016-02-19 2018-10-12 新奥科技发展有限公司 Moving energy station and its energy utilization method
IT201600121407A1 (en) * 2016-11-30 2018-05-30 Saipem Spa CLOSED GAS CYCLE IN CRYOGENIC OR REFRIGERANT FLUID APPLICATIONS
CN108019275B (en) * 2016-12-21 2020-12-29 赵志渊 Method for calculating power generation power and smoke discharge parameters of gas internal combustion engine based on complex working conditions
US10627158B2 (en) * 2017-03-13 2020-04-21 Baker Hughes, A Ge Company, Llc Coproduction of liquefied natural gas and electric power with refrigeration recovery
JP6928937B2 (en) 2019-05-21 2021-09-01 日揮グローバル株式会社 Power generation system and power generation method
WO2021229637A1 (en) * 2020-05-11 2021-11-18 日揮グローバル株式会社 Temperature adjustment system and temperature adjustment method
JP2024057758A (en) * 2022-10-13 2024-04-25 三菱重工業株式会社 Cold energy power generation device and cold energy power generation system

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05113108A (en) * 1991-10-23 1993-05-07 Osaka Gas Co Ltd Cold heat power generator utilizing liquefied natural gas
JP2000345915A (en) * 1999-06-07 2000-12-12 Nissan Motor Co Ltd Power unit
JP2002129980A (en) * 2000-10-25 2002-05-09 Osaka Gas Co Ltd Combined cycle power generation plant
JP2006037760A (en) * 2004-07-23 2006-02-09 Sanden Corp Rankine cycle generating set
JP2006144744A (en) * 2004-11-24 2006-06-08 Toyota Industries Corp Vehicular exhaust heat recovery system
JP2007255363A (en) * 2006-03-24 2007-10-04 Osaka Gas Co Ltd Power system
WO2008047489A1 (en) * 2007-04-11 2008-04-24 Hitachi, Ltd. Power supply equipment for natural gas liquefaction plant
JP2008128254A (en) * 2006-11-24 2008-06-05 Behr Gmbh & Co Kg System having organic rankine cycle circulation for driving at least one inflating device, heat exchanger for driving inflating device, and method for operating at least one inflating device
JP2008231980A (en) * 2007-03-19 2008-10-02 Sanden Corp Waste heat utilization device for internal combustion engine
JP2010156314A (en) * 2009-01-05 2010-07-15 Toyota Motor Corp Waste heat recovery device and engine
JP2010203284A (en) * 2009-03-02 2010-09-16 Nissan Motor Co Ltd Exhaust heat regeneration system
JP2011012625A (en) * 2009-07-03 2011-01-20 Mitsubishi Electric Corp Exhaust heat recovery system and control method of the same
JP2011027000A (en) * 2009-07-23 2011-02-10 Sanden Corp Waste heat utilization device
JP2011085071A (en) * 2009-10-15 2011-04-28 Toyota Industries Corp Waste heat regeneration system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3888084A (en) * 1974-05-20 1975-06-10 Gilbert L Hawkins Thermal recovery system
JPS5620709A (en) * 1979-07-27 1981-02-26 Hitachi Ltd Method of recovering cold and hot energy
JP2002161716A (en) * 2000-11-29 2002-06-07 Yanmar Diesel Engine Co Ltd Heat recovery rankine cycle system and heat recovery method
US6857268B2 (en) * 2002-07-22 2005-02-22 Wow Energy, Inc. Cascading closed loop cycle (CCLC)
EG24658A (en) * 2002-09-30 2010-04-07 Bpcorporation North America In All electric lng system and process
JP4404010B2 (en) * 2005-05-26 2010-01-27 Jfeエンジニアリング株式会社 Combined refrigeration generator
GB2457266B (en) * 2008-02-07 2012-12-26 Univ City Generating power from medium temperature heat sources
CN101614139A (en) * 2009-07-31 2009-12-30 王世英 Multicycle power generation thermodynamic system

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05113108A (en) * 1991-10-23 1993-05-07 Osaka Gas Co Ltd Cold heat power generator utilizing liquefied natural gas
JP2000345915A (en) * 1999-06-07 2000-12-12 Nissan Motor Co Ltd Power unit
JP2002129980A (en) * 2000-10-25 2002-05-09 Osaka Gas Co Ltd Combined cycle power generation plant
JP2006037760A (en) * 2004-07-23 2006-02-09 Sanden Corp Rankine cycle generating set
JP2006144744A (en) * 2004-11-24 2006-06-08 Toyota Industries Corp Vehicular exhaust heat recovery system
JP2007255363A (en) * 2006-03-24 2007-10-04 Osaka Gas Co Ltd Power system
JP2008128254A (en) * 2006-11-24 2008-06-05 Behr Gmbh & Co Kg System having organic rankine cycle circulation for driving at least one inflating device, heat exchanger for driving inflating device, and method for operating at least one inflating device
JP2008231980A (en) * 2007-03-19 2008-10-02 Sanden Corp Waste heat utilization device for internal combustion engine
WO2008047489A1 (en) * 2007-04-11 2008-04-24 Hitachi, Ltd. Power supply equipment for natural gas liquefaction plant
JP2010156314A (en) * 2009-01-05 2010-07-15 Toyota Motor Corp Waste heat recovery device and engine
JP2010203284A (en) * 2009-03-02 2010-09-16 Nissan Motor Co Ltd Exhaust heat regeneration system
JP2011012625A (en) * 2009-07-03 2011-01-20 Mitsubishi Electric Corp Exhaust heat recovery system and control method of the same
JP2011027000A (en) * 2009-07-23 2011-02-10 Sanden Corp Waste heat utilization device
JP2011085071A (en) * 2009-10-15 2011-04-28 Toyota Industries Corp Waste heat regeneration system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180340452A1 (en) * 2015-11-13 2018-11-29 Shell Oil Company Method of generating power using a combined cycle
RU2720873C2 (en) * 2015-11-13 2020-05-13 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Method for generating energy using combined cycle
AU2019268076B2 (en) * 2015-11-13 2021-03-11 Shell Internationale Research Maatschappij B.V. Method of generating power using a combined cycle
CN109233926A (en) * 2018-07-24 2019-01-18 北京宏科庆能科技有限公司 The absorption chilldown system of BOG generator flue gas

Also Published As

Publication number Publication date
KR20140027269A (en) 2014-03-06
KR101619393B1 (en) 2016-05-10
CN103547786B (en) 2016-05-18
SG194827A1 (en) 2013-12-30
JP2012241604A (en) 2012-12-10
MY173872A (en) 2020-02-25
JP5875253B2 (en) 2016-03-02
CN103547786A (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP5875253B2 (en) Combined power generation system
US8661820B2 (en) LNG regasification and power generation
CN109386316B (en) LNG cold energy and BOG combustion energy combined utilization system and method
US20100154381A1 (en) Combined brayton - rankine cycle
US11300010B2 (en) Cooling equipment, combined cycle plant comprising same, and cooling method
KR20210089635A (en) Organic Rankine Cycles for Combined Cycle Power Plants
JP2006329059A (en) Combined cryogenic power generator
Shi et al. Thermodynamic analysis of an LNG fuelled combined cycle power plant with waste heat recovery and utilization system
KR20130091806A (en) Cogeneration system using heat pump
JPH10288047A (en) Liquefied natural gas evaporating power generating device
CN107178927B (en) BOG utilization system of LNG power ship and working method
KR101528935B1 (en) The generating system using the waste heat of condenser
CN103821571A (en) Novel thermal power generation system and working method
CN111727342A (en) Regasification of liquefied natural gas
KR20130099617A (en) Power generation system and method with organic rankine cycle using cold source of lng carrier cargo tank
CN215633192U (en) LNG cold energy utilization device
KR101616333B1 (en) Lng regasification device
JP2010096414A (en) Ammonia absorption refrigeration type power generating device
CN113309591A (en) LNG cold energy utilization device
KR20120070197A (en) Power generation system using heat from transformer
CA2983533C (en) Combined cycle power generation
WO2013136606A1 (en) Steam generating system
CN110107368A (en) Steam condensing method, steam and condensate system and electricity generation system
KR101487287B1 (en) Power Plant
JP2005147447A (en) Ammonia-water non-azeotropic mixture medium circulation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12785115

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137030263

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12785115

Country of ref document: EP

Kind code of ref document: A1