KR20130099617A - Power generation system and method with organic rankine cycle using cold source of lng carrier cargo tank - Google Patents

Power generation system and method with organic rankine cycle using cold source of lng carrier cargo tank Download PDF

Info

Publication number
KR20130099617A
KR20130099617A KR1020120021256A KR20120021256A KR20130099617A KR 20130099617 A KR20130099617 A KR 20130099617A KR 1020120021256 A KR1020120021256 A KR 1020120021256A KR 20120021256 A KR20120021256 A KR 20120021256A KR 20130099617 A KR20130099617 A KR 20130099617A
Authority
KR
South Korea
Prior art keywords
organic
organic refrigerant
liquefied natural
natural gas
heat
Prior art date
Application number
KR1020120021256A
Other languages
Korean (ko)
Inventor
이종일
이재익
신재웅
Original Assignee
에스티엑스조선해양 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스티엑스조선해양 주식회사 filed Critical 에스티엑스조선해양 주식회사
Priority to KR1020120021256A priority Critical patent/KR20130099617A/en
Publication of KR20130099617A publication Critical patent/KR20130099617A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/02Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for the fluid remaining in the liquid phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J2/00Arrangements of ventilation, heating, cooling, or air-conditioning
    • B63J2/12Heating; Cooling
    • B63J2/14Heating; Cooling of liquid-freight-carrying tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE: A system and method for generating power with an organic Rankine cycle for a liquefied natural gas (LNG) carrier using cold heat from an LNG cargo are provided to improve efficiency in generating the power. CONSTITUTION: A system and method for generating power with an organic Rankine cycle for a liquefied natural gas (LNG) carrier using cold heat from an LNG cargo includes a heating medium-heat exchanger (2), an organic refrigerant evaporator (6), a gas turbine (8), and an organic refrigerant condenser (10). The heating medium-heat exchanger raises the temperature of a heating medium (3) such as steam or hot water using waste heat gas (1). The organic refrigerant evaporator allow the hot heating medium to heat-exchange with an organic refrigerant (5) which is pressurized at high pressure by an organic refrigerant pump (4), and then evaporates the organic refrigerant. The gas turbine expands the evaporated organic refrigerant (7) at the high pressure in order to generate electricity. The LNG fuel vaporizer allows the expanded organic refrigerant (9) to heat-exchange with cooled glycol-water (11), and then condenses the expanded organic refrigerant.

Description

액화천연가스 화물창의 냉열을 이용한 액화천연가스 운반선용 유기 랭킨 사이클 발전 시스템 및 방법{Power generation system and method with organic rankine cycle using cold source of LNG carrier cargo tank}Power generation system and method with organic rankine cycle using cold source of LNG carrier cargo tank

본 발명은 액화천연가스 운반선의 추진기관에서 발생하는 폐열을 회수하여 발전하는 설비에 관한 것으로, 보다 상세하게는 액화천연가스 운반선에서 유기냉매의 응축을 위한 냉각수로 해수보다 더 낮은 온도의 냉각수인 글리콜 워터(glycol-water)를 사용함으로써 발전 효율을 더욱 높인 것을 특징으로 하는, 액화천연가스 화물창의 냉열을 이용한 액화천연가스 운반선용 유기 랭킨 사이클 발전 시스템 및 방법을 제공한다.The present invention relates to a facility for recovering and generating waste heat generated from a propulsion engine of a liquefied natural gas carrier. More specifically, the present invention relates to a cooling water having a lower temperature than that of sea water as a cooling water for condensation of organic refrigerant in a liquefied natural gas carrier. Provided is an organic Rankine cycle power generation system and method for a liquefied natural gas carrier using cold heat of a liquefied natural gas cargo hold, characterized by further increasing power generation efficiency by using water (glycol-water).

도 3은 특허출원 제10-2007-7013530호의 선박의 추진기관에서 발생하는 폐열을 회수하여 발전하는 설비에 관한 것이다(이하, ‘종래기술’이라 함).
Figure 3 relates to a facility for recovering and generating waste heat generated in the propulsion engine of the ship of the patent application No. 10-2007-7013530 (hereinafter referred to as 'prior art').

종래기술의 경우 유기냉매는 중저온에서도 쉽게 기화하는 성질을 가지므로 폐열 회수에 적절한 냉매로 사용된다. 선박에서 발생하는 폐열을 유기 랭킨 사이클의 열원으로 이용하여 스팀 고압의 유기냉매를 증발시키고 이를 가스터빈에서 팽창시킴으로써 전력을 생성한다. 유기냉매는 해수에 의해 응축된 후 펌프에 의해 가압되어 다시 증발기로 공급되어 순환한다.
In the prior art, since the organic refrigerant has a property of easily vaporizing even at low and low temperatures, it is used as a suitable refrigerant for waste heat recovery. Waste heat from ships is used as a heat source for the organic Rankine cycle to generate power by evaporating the high pressure organic refrigerant and expanding it in the gas turbine. The organic refrigerant is condensed by sea water, pressurized by a pump, and fed back to the evaporator for circulation.

발전 효율을 결정하는 중요한 요인은 가스터빈 전후의 압력 차이인데, 이는 냉매 고유의 특성, 열원의 온도, 냉각수의 온도에 의해 결정된다. 그런데 종래기술의 경우에는 냉각수로 해수를 이용하기 때문에 유기냉매의 냉각수 온도가 35~40℃로 다소 높아 효율을 높이는 데 한계가 존재한다.An important factor in determining the power generation efficiency is the pressure difference before and after the gas turbine, which is determined by the inherent characteristics of the refrigerant, the temperature of the heat source, and the temperature of the cooling water. However, in the case of the prior art, since the seawater is used as the cooling water, the cooling water temperature of the organic refrigerant is 35 to 40 ° C., which is rather high, so that there is a limit to increase the efficiency.

본 발명은 상기와 같은 문제점을 해결하기 위해 제안된 것으로, 액화천연가스 운반선에서 유기냉매의 응축을 위한 냉각수로 해수보다 더 낮은 온도의 냉각수인 글리콜 워터(glycol-water)를 사용함으로써 발전 효율을 더욱 높인 것을 특징으로 하는, 액화천연가스 화물창의 냉열을 이용한 액화천연가스 운반선용 유기 랭킨 사이클 발전 시스템 및 방법을 제공하는 것을 목적으로 한다.The present invention has been proposed to solve the above problems, by using glycol water (glycol-water) of cooling water at a lower temperature than the seawater as the cooling water for the condensation of the organic refrigerant in the LNG carrier more efficient power generation An object of the present invention is to provide an organic Rankine cycle power generation system and method for a liquefied natural gas carrier using cold heat of a liquefied natural gas cargo hold.

상기한 목적을 달성하기 위하여 본 발명은,According to an aspect of the present invention,

액화천연가스 운반선의 추진기관에서 발생하는 폐열가스를 이용하여 증기 혹은 뜨거운 물과 같은 열공급매체의 온도를 상승시키는 열매체열교환기;A heat exchanger for raising the temperature of a heat supply medium such as steam or hot water by using waste heat gas generated from a propulsion engine of a liquefied natural gas carrier;

유기냉매펌프에 의해 고압으로 가압된 유기냉매를 고온의 열공급매체와 열교환시켜 증발시키는 유기냉매증발기;An organic refrigerant evaporator for evaporating the organic refrigerant pressurized by the organic refrigerant pump at a high pressure with a high temperature heat supply medium;

증발된 고압의 유기냉매를 팽창시켜 전기를 생성하는 가스터빈 및;A gas turbine for generating electricity by expanding the evaporated high pressure organic refrigerant;

팽창된 유기냉매를 냉각 상태의 글리콜 워터와 열교환시켜 응축시키는 유기냉매응축기;An organic refrigerant condenser for condensing the expanded organic refrigerant by heat exchange with glycol water in a cooled state;

를 포함하는 액화천연가스 화물창의 냉열을 이용한 액화천연가스 운반선용 유기 랭킨 사이클 발전 시스템을 제공한다.
It provides an organic Rankine cycle power generation system for liquefied natural gas carrier using the cold heat of the liquefied natural gas cargo containing.

또한 본 발명은,Further, according to the present invention,

열매체열교환기가 액화천연가스 운반선의 추진기관에서 발생하는 폐열가스를 이용하여 증기 혹은 뜨거운 물과 같은 열공급매체의 온도를 상승시키는 단계;The heat exchanger heats up the temperature of the heat supply medium such as steam or hot water using waste heat gas generated from the propulsion engine of the liquefied natural gas carrier;

유기냉매증발기가 유기냉매펌프에 의해 고압으로 가압된 유기냉매를 고온의 열공급매체와 열교환시켜 증발시키는 단계;Evaporating the organic refrigerant evaporated by the organic refrigerant evaporator to a high pressure by the organic refrigerant pump by heat exchange with a high temperature heat supply medium;

가스터빈이 증발된 고압의 유기냉매를 팽창시켜 전기를 생성하는 단계 및;Generating electricity by expanding the high pressure organic refrigerant in which the gas turbine is evaporated;

유기냉매응축기가 팽창된 유기냉매를 냉각 상태의 글리콜 워터와 열교환시켜 응축시키는 단계;Condensing the expanded organic refrigerant with heat exchanged with the cold water glycol water;

를 포함하는 액화천연가스 화물창의 냉열을 이용한 액화천연가스 운반선용 유기 랭킨 사이클 발전 방법을 제공한다.It provides an organic Rankine cycle power generation method for liquefied natural gas carrier using the cold heat of the liquefied natural gas cargo containing.

본 발명에 따르면, 액화천연가스 운반선의 추진기관에서 발생하는 폐열을 회수하여 발전을 함에 있어서 유기냉매의 응축을 위한 냉각수로 해수보다 더 낮은 온도의 냉각수인 글리콜 워터(glycol-water)를 사용함으로써 발전 효율을 더욱 높일 수 있다.According to the present invention, in the power generation by recovering the waste heat generated from the propulsion engine of the liquefied natural gas carrier, by using glycol water (glycol-water), which is lower than sea water, as cooling water for condensation of organic refrigerant The efficiency can be further increased.

도 1은 본 발명에 따른 액화천연가스 화물창의 냉열을 이용한 액화천연가스 운반선용 유기 랭킨 사이클 발전 시스템을 보여준다.
도 2는 본 발명에서 사용되는 유기냉매 중의 하나인 R134A의 선도를 보여준다.
도 3은 특허출원 제10-2007-7013530호의 선박의 추진기관에서 발생하는 폐열을 회수하여 발전하는 설비를 보여준다.
1 shows an organic Rankine cycle power generation system for a LNG carrier using cold heat of a LNG cargo hold according to the present invention.
Figure 2 shows a diagram of R134A, one of the organic refrigerants used in the present invention.
Figure 3 shows a facility for recovering and generating waste heat generated from the propulsion engine of the ship of Patent Application No. 10-2007-7013530.

이하, 첨부된 도면들을 참조하여 본 발명에 대하여 상세히 설명한다. 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. In the following description of the present invention, a detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear.

도 1은 본 발명에 따른 액화천연가스 화물창의 냉열을 이용한 액화천연가스 운반선용 유기 랭킨 사이클 발전 시스템을 보여준다.
1 shows an organic Rankine cycle power generation system for a LNG carrier using cold heat of a LNG cargo hold according to the present invention.

본 발명에 따른 액화천연가스 화물창의 냉열을 이용한 액화천연가스 운반선용 유기 랭킨 사이클 발전 시스템은, 유기냉매의 응축을 위한 냉각수로 해수보다 더 낮은 온도의 냉각수인 글리콜 워터(glycol-water)를 사용함으로써 발전 효율을 더욱 높인 것을 특징으로 한다.
Organic Rankine cycle power generation system for liquefied natural gas carriers using the cold heat of the liquefied natural gas cargo hold according to the present invention, by using the glycol water (glycol-water) of cooling water of lower temperature than the sea water as the cooling water for the condensation of the organic refrigerant It is characterized by further enhancing the power generation efficiency.

본 발명에 따른 액화천연가스 화물창의 냉열을 이용한 액화천연가스 운반선용 유기 랭킨 사이클 발전 시스템은, 열매체열교환기(2), 유기냉매증발기(6), 가스터빈(8) 및 유기냉매응축기(10)를 포함하여 이루어지는바, 이러한 열매체열교환기(2), 유기냉매증발기(6), 가스터빈(8) 및 유기냉매응축기(10)가 순차적으로 작용하여 하나의 순환 사이클을 형성하게 된다.
The organic Rankine cycle power generation system for liquefied natural gas carriers using the cold heat of the liquefied natural gas cargo hold according to the present invention, the heat medium heat exchanger (2), organic refrigerant evaporator (6), gas turbine (8) and organic refrigerant condenser (10) Bar heat exchanger (2), the organic refrigerant evaporator (6), the gas turbine (8) and the organic refrigerant condenser (10) are sequentially formed to form one circulation cycle.

먼저, 열매체열교환기(2)가 액화천연가스 운반선의 추진기관에서 발생하는 배기가스(exhaust gas)와 같은 폐열가스(1)를 이용하여 증기(steam) 혹은 뜨거운 물(hot water)과 같은 열공급매체(3)의 온도를 상승시킨다.
First, the heat exchanger (2) is a heat supply medium such as steam or hot water using waste heat gas (1) such as exhaust gas generated in the propulsion engine of a liquefied natural gas carrier. The temperature of (3) is raised.

다음으로, 유기냉매증발기(6)가 유기냉매펌프(4)에 의해 고압으로 가압된 유기냉매(5)를 고온의 열공급매체(3)와 열교환시켜 증발시킨다. 본 발명에서 유기냉매(5)는 안정적이고 중저온에서도 쉽게 기화되는 형태의 것으로 R245FA, R134A, R600, RE134, RE245, R123, R152A 등을 사용한다.
Next, the organic refrigerant evaporator 6 is evaporated by heat-exchanging the organic refrigerant 5 pressurized to high pressure by the organic refrigerant pump 4 with a high temperature heat supply medium 3. In the present invention, the organic refrigerant 5 is stable and easily vaporized even at low and low temperatures, and uses R245FA, R134A, R600, RE134, RE245, R123, R152A, and the like.

다음으로, 가스터빈(8)이 증발된 고압의 유기냉매(7)를 팽창시켜 전기를 생성한다.
Next, the gas turbine 8 expands the evaporated high-pressure organic refrigerant 7 to generate electricity.

마지막으로, 유기냉매응축기(10)가 팽창된 유기냉매(9)를 냉각 상태의 글리콜 워터(11)와 열교환시켜 응축시키며, 응축된 유기냉매(9)는 유기냉매펌프(4)에 의해 다시 고압으로 가압된다(5). 본 발명에서 글리콜 워터(11)는 유기냉매(9)의 응축을 위한 냉각수로 사용되는 것으로, 액화천연가스 화물창 사이의 코퍼댐을 지나면서 5~10℃로 냉각되므로 통상 35~40℃의 온도를 갖는 해수보다 더 낮은 온도를 갖는다.
Finally, the organic refrigerant condenser 10 is condensed by heat-exchanging the expanded organic refrigerant 9 with the glycol water 11 in the cooling state, the condensed organic refrigerant 9 is again high pressure by the organic refrigerant pump (4) (5). In the present invention, the glycol water 11 is used as a cooling water for condensation of the organic refrigerant 9, and is typically cooled to 5 to 10 ° C. while passing through a cofferdam between the LNG carriers. Have a lower temperature than the seawater it has.

냉각수의 온도가 낮아지면 유기냉매(9)의 응축 온도가 낮아지고 이는 가스터빈(8)에서 더 낮은 압력까지 팽창시킬 수 있다는 것을 의미한다. 액화천연가스 화물창 사이의 코퍼댐을 가열하고 나오는 글리콜 워터(11)의 온도는 5~10℃ 사이로, 이를 이용하여 유기냉매(9)를 응축시킬 경우 유기 랭킨 사이클의 발전 효율을 기존의 7~8%대에서 9~11%대로 더욱 높일 수 있다.
The lower temperature of the cooling water lowers the condensation temperature of the organic refrigerant 9 which means that it can expand to a lower pressure in the gas turbine 8. The temperature of the glycol water 11 after heating the cofferdam between liquefied natural gas cargo holds is between 5 and 10 ° C., and when condensing the organic refrigerant 9 by using this, the power generation efficiency of the organic Rankine cycle is reduced to 7 to 8 degrees. It can be increased to 9 ~ 11% in the% band.

이와 관련한 예로서 본 발명에서 사용되는 유기냉매 중의 하나인 R134A의 선도를 도 2에 도시하였다.
As a related example, a diagram of R134A, which is one of the organic refrigerants used in the present invention, is shown in FIG. 2.

도 2의 선도에서, 35℃의 해수를 이용해 냉각시킬 경우 유기냉매(9)는 약 40℃가량으로 냉각되고 이 때의 응축 압력은 9.5bar이다. 반면 5℃의 글리콜 워터(11)를 이용해 냉각시킬 경우 유기냉매(9)는 약 15℃가량으로 냉각되고 이 때의 응축 압력은 3.5bar이다. 이와 관련하여 해수를 냉각수로 사용할 경우 가스터빈(8)에서의 압력 차이는 dP1이며, 글리콜 워터(11)를 냉각수로 사용할 경우 가스터빈(8)에서의 압력 차이는 dP2이다. 즉, 압력 차이에 의해 결정되는 일량은 W2(글리콜 워터(11)를 냉각수로 사용할 경우)가 W1(해수를 냉각수로 사용할 경우)보다 큰 것을 확인할 수 있는 것이다.
In the diagram of FIG. 2, when cooled using seawater at 35 ° C, the organic refrigerant 9 is cooled to about 40 ° C and the condensation pressure at this time is 9.5 bar. On the other hand, when cooled using the glycol water 11 at 5 ° C, the organic refrigerant 9 is cooled to about 15 ° C and the condensation pressure at this time is 3.5 bar. In this regard, the pressure difference in the gas turbine 8 is dP1 when seawater is used as the cooling water, and the pressure difference in the gas turbine 8 is dP2 when the glycol water 11 is used as the cooling water. That is, the work determined by the pressure difference can confirm that W2 (when glycol water 11 is used as cooling water) is larger than W1 (when seawater is used as cooling water).

이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위 내에서 다양한 수정, 변경 및 치환이 가능할 것이다. 따라서 본 발명에 개시된 실시 예 및 첨부된 도면들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예 및 첨부된 도면에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.It will be apparent to those skilled in the art that various modifications, substitutions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims. will be. Therefore, the embodiments disclosed in the present invention and the accompanying drawings are intended to illustrate and not to limit the technical spirit of the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments and accompanying drawings. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

1 : 폐열가스 2 : 열매체열교환기
3 : 열공급매체 4 : 유기냉매펌프
5, 7, 9 : 유기냉매 6 : 유기냉매증발기
8 : 가스터빈 10 : 유기냉매응축기
11 : 글리콜 워터
1: waste heat gas 2: heat medium heat exchanger
3: heat supply medium 4: organic refrigerant pump
5, 7, 9: organic refrigerant 6: organic refrigerant evaporator
8 gas turbine 10 organic refrigerant condenser
11: glycol water

Claims (6)

액화천연가스 운반선의 추진기관에서 발생하는 폐열가스(1)를 이용하여 증기 혹은 뜨거운 물과 같은 열공급매체(3)의 온도를 상승시키는 열매체열교환기(2);
유기냉매펌프(4)에 의해 고압으로 가압된 유기냉매(5)를 고온의 열공급매체(3)와 열교환시켜 증발시키는 유기냉매증발기(6);
증발된 고압의 유기냉매(7)를 팽창시켜 전기를 생성하는 가스터빈(8) 및;
팽창된 유기냉매(9)를 냉각 상태의 글리콜 워터(11)와 열교환시켜 응축시키는 유기냉매응축기(10);
를 포함하는 액화천연가스 화물창의 냉열을 이용한 액화천연가스 운반선용 유기 랭킨 사이클 발전 시스템.
A heat exchanger (2) for raising the temperature of the heat supply medium (3) such as steam or hot water by using the waste heat gas (1) generated in the propulsion engine of the liquefied natural gas carrier;
An organic refrigerant evaporator (6) for evaporating the organic refrigerant (5) pressurized to a high pressure by the organic refrigerant pump (4) by heat exchange with a high temperature heat supply medium (3);
A gas turbine 8 which expands the evaporated high pressure organic refrigerant 7 to generate electricity;
An organic refrigerant condenser (10) for condensing the expanded organic refrigerant (9) by heat exchange with glycol water (11) in a cooled state;
Organic Rankine cycle power generation system for liquefied natural gas carrier using the cold heat of the liquefied natural gas cargo containing.
제 1 항에 있어서,
상기 글리콜 워터(11)는 5~10℃의 온도인 것을 특징으로 하는 액화천연가스 화물창의 냉열을 이용한 액화천연가스 운반선용 유기 랭킨 사이클 발전 시스템.
The method of claim 1,
The glycol water (11) is an organic Rankine cycle power generation system for liquefied natural gas carrier using the cold heat of the liquefied natural gas cargo hold, characterized in that the temperature of 5 ~ 10 ℃.
제 1 항에 있어서,
상기 유기냉매(5)는 R245FA, R134A, R600, RE134, RE245, R123, R152A 중 어느 하나 이상인 것을 특징으로 하는 액화천연가스 화물창의 냉열을 이용한 액화천연가스 운반선용 유기 랭킨 사이클 발전 시스템.
The method of claim 1,
The organic refrigerant (5) is R245FA, R134A, R600, RE134, RE245, R123, R152A is an organic Rankine cycle power generation system for liquefied natural gas carrier using the cold heat of the liquefied natural gas cargo hold.
열매체열교환기(2)가 액화천연가스 운반선의 추진기관에서 발생하는 폐열가스(1)를 이용하여 증기 혹은 뜨거운 물과 같은 열공급매체(3)의 온도를 상승시키는 단계;
유기냉매증발기(6)가 유기냉매펌프(4)에 의해 고압으로 가압된 유기냉매(5)를 고온의 열공급매체(3)와 열교환시켜 증발시키는 단계;
가스터빈(8)이 증발된 고압의 유기냉매(7)를 팽창시켜 전기를 생성하는 단계 및;
유기냉매응축기(10)가 팽창된 유기냉매(9)를 냉각 상태의 글리콜 워터(11)와 열교환시켜 응축시키는 단계;
를 포함하는 액화천연가스 화물창의 냉열을 이용한 액화천연가스 운반선용 유기 랭킨 사이클 발전 방법.
The heat exchanger (2) raising the temperature of the heat supply medium (3) such as steam or hot water by using the waste heat gas (1) generated in the propulsion engine of the liquefied natural gas carrier;
Evaporating the organic refrigerant evaporator (6) by exchanging the organic refrigerant (5) pressurized by the organic refrigerant pump (4) to a high pressure with a high temperature heat supply medium (3);
Expanding the high-pressure organic refrigerant (7) from which the gas turbine (8) is evaporated to generate electricity;
Condensing the expanded organic refrigerant (9) with the glycol water (11) in a cooled state by condensing the organic refrigerant condenser (10);
Organic Rankine cycle power generation method for liquefied natural gas carrier using the cold heat of the liquefied natural gas cargo containing.
제 4 항에 있어서,
상기 글리콜 워터(11)는 5~10℃의 온도인 것을 특징으로 하는 액화천연가스 화물창의 냉열을 이용한 액화천연가스 운반선용 유기 랭킨 사이클 발전 방법.
5. The method of claim 4,
The glycol water (11) is an organic Rankine cycle power generation method for liquefied natural gas carrier using the cold heat of the liquefied natural gas cargo hold, characterized in that the temperature of 5 ~ 10 ℃.
제 4 항에 있어서,
상기 유기냉매(5)는 R245FA, R134A, R600, RE134, RE245, R123, R152A 중 어느 하나 이상인 것을 특징으로 하는 액화천연가스 화물창의 냉열을 이용한 액화천연가스 운반선용 유기 랭킨 사이클 발전 방법.
5. The method of claim 4,
The organic refrigerant (5) is R245FA, R134A, R600, RE134, RE245, R123, R152A is an organic Rankine cycle power generation method for liquefied natural gas carrier using the cold heat of the liquefied natural gas cargo hold.
KR1020120021256A 2012-02-29 2012-02-29 Power generation system and method with organic rankine cycle using cold source of lng carrier cargo tank KR20130099617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120021256A KR20130099617A (en) 2012-02-29 2012-02-29 Power generation system and method with organic rankine cycle using cold source of lng carrier cargo tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120021256A KR20130099617A (en) 2012-02-29 2012-02-29 Power generation system and method with organic rankine cycle using cold source of lng carrier cargo tank

Publications (1)

Publication Number Publication Date
KR20130099617A true KR20130099617A (en) 2013-09-06

Family

ID=49450892

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120021256A KR20130099617A (en) 2012-02-29 2012-02-29 Power generation system and method with organic rankine cycle using cold source of lng carrier cargo tank

Country Status (1)

Country Link
KR (1) KR20130099617A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103758594A (en) * 2013-11-06 2014-04-30 北京中科华誉能源技术发展有限责任公司 System for generating electricity by hot water generated by hot-water boiler and through expander
CN104819568A (en) * 2015-05-02 2015-08-05 孙学文 Renewable energy water heater
CN105715470A (en) * 2016-03-16 2016-06-29 碧海舟(北京)节能环保装备有限公司 Natural gas pressure regulation station and solar comprehensive power generation system
CN109751096A (en) * 2019-02-26 2019-05-14 天津商业大学 The refrigeration power supply combined system that natural gas waste cold utilizes
CN113566597A (en) * 2021-08-05 2021-10-29 沈阳鑫博工业技术股份有限公司 Water power generation system is received to aluminium hydroxide roasting furnace flue gas

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103758594A (en) * 2013-11-06 2014-04-30 北京中科华誉能源技术发展有限责任公司 System for generating electricity by hot water generated by hot-water boiler and through expander
CN103758594B (en) * 2013-11-06 2015-05-20 北京中科华誉能源技术发展有限责任公司 System for generating electricity by hot water generated by hot-water boiler and through expander
CN104819568A (en) * 2015-05-02 2015-08-05 孙学文 Renewable energy water heater
CN105715470A (en) * 2016-03-16 2016-06-29 碧海舟(北京)节能环保装备有限公司 Natural gas pressure regulation station and solar comprehensive power generation system
CN109751096A (en) * 2019-02-26 2019-05-14 天津商业大学 The refrigeration power supply combined system that natural gas waste cold utilizes
CN113566597A (en) * 2021-08-05 2021-10-29 沈阳鑫博工业技术股份有限公司 Water power generation system is received to aluminium hydroxide roasting furnace flue gas

Similar Documents

Publication Publication Date Title
Yang et al. Analyzing the optimization of an organic Rankine cycle system for recovering waste heat from a large marine engine containing a cooling water system
JP4404010B2 (en) Combined refrigeration generator
JP5875253B2 (en) Combined power generation system
JP2010540837A (en) Cascade type organic Rankine cycle (ORC) system using waste heat from reciprocating engine
KR20130099616A (en) Power generation system and method with organic rankine cycle using lng fuel of lng fuel vessel
KR20130099617A (en) Power generation system and method with organic rankine cycle using cold source of lng carrier cargo tank
CN102213199A (en) Ocean thermal energy conversion method and ocean thermal energy conversion device
US11300010B2 (en) Cooling equipment, combined cycle plant comprising same, and cooling method
US20140345276A1 (en) Organic rankine cycle for concentrated solar power system with saturated liquid storage and method
KR102011859B1 (en) Energy saving system for using waste heat of ship
WO2012054006A1 (en) Method and device for energy production and regasification of liquefied natural gas
JP2015096703A (en) Heat recovery power generation system
JP2012082750A (en) Waste heat recovery power generator and vessel equipped with waste heat recovery power generator
KR101528935B1 (en) The generating system using the waste heat of condenser
KR101481010B1 (en) Ocean thermal energy conversion system and operation method thereof
KR101847019B1 (en) Floating vessel including device of heat exchange of medium and method of heat exchange of medium of the floating vessel
JP2014190285A (en) Binary power generation device operation method
JP2018021485A (en) Multistage rankine cycle system, internal combustion engine and operation method of multistage rankine cycle system
KR20130117375A (en) Lng regasification apparatus having combined cycle power plant
JP2010096414A (en) Ammonia absorption refrigeration type power generating device
KR20140085002A (en) Energy saving system for using waste heat of ship
KR102062102B1 (en) Fuel supply system of vessel with using Organic Rankine Cycle
RU2552481C1 (en) Operating method of thermal power plant
RU2559655C1 (en) Method of operation of thermal power plant
RU2560502C1 (en) Heat power plant operation mode

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application