JP2008231980A - Waste heat utilization device for internal combustion engine - Google Patents

Waste heat utilization device for internal combustion engine Download PDF

Info

Publication number
JP2008231980A
JP2008231980A JP2007070449A JP2007070449A JP2008231980A JP 2008231980 A JP2008231980 A JP 2008231980A JP 2007070449 A JP2007070449 A JP 2007070449A JP 2007070449 A JP2007070449 A JP 2007070449A JP 2008231980 A JP2008231980 A JP 2008231980A
Authority
JP
Japan
Prior art keywords
path
pump
heat
working fluid
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007070449A
Other languages
Japanese (ja)
Inventor
Junichiro Kasuya
潤一郎 粕谷
Vineberg Peter
ビネバーグ ピーター
Murder Matthias
ムーダー マティアス
Olhoft Peter
オルフォフト ピーター
Rinne Frank
リンネ フランク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2007070449A priority Critical patent/JP2008231980A/en
Publication of JP2008231980A publication Critical patent/JP2008231980A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waste heat utilization device for an internal combustion engine capable of enhancing the waste heat recovery efficiency of the internal combustion engine while advancing the warmup of the internal combustion engine by a simple structure. <P>SOLUTION: This waste heat utilization device 2 for recovering the waste heat of the internal combustion engine 4 from heat media comprises, in addition to a heat exchanger 24 for exchanging heat between a working fluid heated by the exchange of heat between itself and a low temperature heat medium and a high temperature heat medium and further heating the working fluid, and a Rankine cycle circuit 8 having an expander 28; a condenser 30; and pumps 22, 34 and forming a Rankine cycle path 40 by circulating the working fluid between an energy generating circuit part 38 and a heat exchange circuit part 42. The Rankine cycle circuit comprises a bypass path 36 bypassing the energy generating circuit part, and a path changing means for changing the path to the bypass path according to the operating state of the internal combustion engine, and changing a Rankine cycle path to a heat pipe path 44. The pumps are so disposed as to circulate a liquid working fluid irrespective of whether or not the path is changed by the path changing means. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、内燃機関の廃熱利用装置に係り、詳しくは、車両に好適な内燃機関の廃熱利用装置に関する。   The present invention relates to an internal combustion engine waste heat utilization device, and more particularly to an internal combustion engine waste heat utilization device suitable for a vehicle.

内燃機関の廃熱利用装置としては、例えば車両用エンジンにおいて、エンジンから排出される排ガス熱を回収し、この回収された排ガス熱でエンジンの冷却水回路の冷却水を加熱することによりエンジンを加熱し、エンジンの暖機に要する時間を短縮するランキンサイクル回路が知られている(例えば、特許文献1参照)。
特開2005−42618号公報
As a waste heat utilization device for an internal combustion engine, for example, in a vehicle engine, the exhaust gas heat exhausted from the engine is recovered, and the recovered exhaust gas heat is used to heat the cooling water in the engine cooling water circuit to heat the engine. A Rankine cycle circuit that shortens the time required to warm up the engine is known (see, for example, Patent Document 1).
JP 2005-42618 A

しかしながら、上記従来技術では、ランキンサイクルの廃熱回収効率が低下するとの問題がある。
なぜならば、ランキンサイクル回路において作動流体(以下、冷媒という)を循環させるべく駆動されるポンプにはキャビテーション等を防止するために液冷媒を流入させる必要があり、このことに鑑みると、上記従来技術では、エンジンの冷却水回路とランキンサイクル回路との熱交換を実施する熱交換器は、廃熱回収時、エンジン暖機時のいずれにおいても、冷媒を凝縮させる凝縮器としてしか機能していない。
However, the above prior art has a problem that the waste heat recovery efficiency of the Rankine cycle is lowered.
This is because a liquid refrigerant needs to flow into a pump driven to circulate a working fluid (hereinafter referred to as a refrigerant) in a Rankine cycle circuit in order to prevent cavitation and the like. Then, the heat exchanger that performs heat exchange between the engine coolant circuit and the Rankine cycle circuit functions only as a condenser that condenses the refrigerant both when the waste heat is recovered and when the engine is warmed up.

すなわち、上記従来技術のランキンサイクル回路では、廃熱回収時において、排ガス熱は回収できるものの、エンジン本体の廃熱の回収はできないからである。
また、仮にランキンサイクル回路において膨張機の下流に空冷凝縮器を設置して上記熱交換器の手前で冷媒を凝縮させ、この熱交換器を蒸発器として機能させることでエンジン本体の廃熱を回収することも考えられる。しかし、エンジン冷却水により加熱された冷媒が蒸発するとポンプで循環させることができなくなってしまうため、いずれにせよエンジン本体の廃熱を回収することはできない。
That is, in the Rankine cycle circuit of the prior art, exhaust gas heat can be recovered at the time of waste heat recovery, but waste heat of the engine body cannot be recovered.
In addition, an air-cooled condenser is installed downstream of the expander in the Rankine cycle circuit to condense the refrigerant in front of the heat exchanger, and this heat exchanger functions as an evaporator to recover waste heat from the engine body. It is also possible to do. However, if the refrigerant heated by the engine cooling water evaporates, it cannot be circulated by the pump, and in any case, the waste heat of the engine body cannot be recovered.

本発明は、このような課題に鑑みてなされたもので、簡単な構成で内燃機関の暖機を迅速化しながら内燃機関の廃熱回収効率を向上できる内燃機関の廃熱利用装置を提供することを目的とする。   The present invention has been made in view of such problems, and provides a waste heat utilization device for an internal combustion engine that can improve the waste heat recovery efficiency of the internal combustion engine while speeding up the warm-up of the internal combustion engine with a simple configuration. With the goal.

上記の目的を達成するべく、請求項1記載の内燃機関の廃熱利用装置は、内燃機関の廃熱を複数の熱媒体から熱回収する廃熱利用装置であって、熱媒体が所定温度の廃熱を帯びる高温熱媒体、所定温度よりも低となる廃熱を帯びる低温熱媒体を含んでなり、低温熱媒体と熱交換した作動流体を高温熱媒体と熱交換して加熱する熱交換器、熱交換器を経由した作動流体を膨張させて駆動力を発生する膨張機、膨張機を経由した作動流体を凝縮させる凝縮器及び作動流体を循環させるポンプを有し、内燃機関及び熱交換器から熱交換回路部を、膨張機及び凝縮器からエネルギ発生回路部を構成し、ポンプによりエネルギ発生回路部と熱交換回路部との間で作動流体を循環させてランキンサイクル経路を形成するランキンサイクル回路を備え、ランキンサイクル回路は、エネルギ発生回路部をバイパスするバイパス路を有し、バイパス路に回路を切り換えることにより熱交換器で加熱蒸発された作動流体で低温熱媒体を加熱すべくポンプにより熱交換回路部及びバイパス路に作動流体を循環させてヒートパイプ経路を形成するものであって、内燃機関の作動状況に応じてバイパス路に回路を切り換え、ランキンサイクル経路とヒートパイプ経路との切り換えを行う経路切換手段を有し、ポンプは、経路切換手段による経路の切り換えに依らず、液体状の作動流体を循環させるよう配設されていることを特徴としている。   In order to achieve the above object, a waste heat utilization apparatus for an internal combustion engine according to claim 1 is a waste heat utilization apparatus for recovering heat from a plurality of heat mediums, wherein the heat medium has a predetermined temperature. A heat exchanger that includes a high-temperature heat medium having waste heat and a low-temperature heat medium having waste heat that is lower than a predetermined temperature, and heats the working fluid that has exchanged heat with the low-temperature heat medium by exchanging heat with the high-temperature heat medium. An internal combustion engine and a heat exchanger having an expander that expands the working fluid that passes through the heat exchanger to generate a driving force, a condenser that condenses the working fluid that passes through the expander, and a pump that circulates the working fluid A Rankine cycle in which a heat exchange circuit unit is formed from an expander and a condenser, and a working fluid is circulated between the energy generation circuit unit and the heat exchange circuit unit by a pump to form a Rankine cycle path. With circuit and run The cycle circuit has a bypass path that bypasses the energy generation circuit section, and the heat exchange circuit section is heated by a pump to heat the low-temperature heat medium with the working fluid heated and evaporated by the heat exchanger by switching the circuit to the bypass path. In addition, the working fluid is circulated in the bypass path to form a heat pipe path, and the circuit is switched to the bypass path according to the operation state of the internal combustion engine, and the path switching is performed to switch between the Rankine cycle path and the heat pipe path. And the pump is arranged to circulate the liquid working fluid regardless of the path switching by the path switching means.

また、請求項2記載の発明では、請求項1において、ポンプは、エネルギ発生回路部と熱交換回路部との間に配設されて作動流体をエネルギ発生回路部から熱交換回路部に向けて循環させる第1ポンプと、低温熱媒体と熱交換した作動流体を熱交換器に向けて循環させる第2ポンプとからなり、ランキンサイクル回路は、第1ポンプをバイパスする第1ポンプバイパス路と第2ポンプをバイパスする第2ポンプバイパス路とを更に有し、経路切換手段は、第1ポンプバイパス路及び第2ポンプバイパス路に回路を切り換える手段と第1ポンプ及び第2ポンプの作動を制御する手段とを含み、ランキンサイクル経路の形成時には、第1ポンプバイパス路を閉成して第1ポンプを駆動する一方、第2ポンプバイパス路を開成して第2ポンプを停止し、ヒートパイプ経路の形成時には、第1ポンプバイパス路を開成して第1ポンプを停止する一方、第2ポンプバイパス路を閉成して第2ポンプを駆動することを特徴としている。   According to a second aspect of the present invention, in the first aspect, the pump is disposed between the energy generation circuit unit and the heat exchange circuit unit to direct the working fluid from the energy generation circuit unit to the heat exchange circuit unit. The Rankine cycle circuit includes a first pump that circulates and a second pump that circulates the working fluid that has exchanged heat with the low-temperature heat medium toward the heat exchanger. And a second pump bypass passage for bypassing the two pumps, and the path switching means controls the operation of the first pump and the second pump with the means for switching the circuit to the first pump bypass path and the second pump bypass path. When the Rankine cycle path is formed, the first pump bypass path is closed and the first pump is driven, while the second pump bypass path is opened and the second pump is stopped. , During formation of the heat pipe route, while stopping the first pump and opens the first pump bypass passage is characterized by driving the second pump by closing the second pump bypass passage.

更に、請求項3記載の発明では、請求項1において、ポンプは、エネルギ発生回路部と熱交換回路部との間に配設され、ランキンサイクル回路は、エネルギ発生回路部とポンプの吸入口とを連通させる第1連通路及び第1連通路と連動してポンプの吐出口と熱交換回路部とを連通させる第2連通路並びに熱交換回路部とポンプの吸入口とを連通させる第3連通路及び第3連通路と連動してポンプの吐出口とバイパス路とを連通させる第4連通路からなる四方弁を含み、経路切換手段は、四方弁を切換制御する手段を含み、ランキンサイクル経路の形成時には、四方弁の第3連通路と第4連通路とを閉塞して第1連通路と第2連通路とを連通させる一方、ヒートパイプ経路の形成時には、四方弁の第1連通路と第2連通路とを閉塞して第3連通路と第4連通路とを連通させることを特徴としている。   Further, in the invention according to claim 3, in claim 1, the pump is disposed between the energy generation circuit unit and the heat exchange circuit unit, and the Rankine cycle circuit includes the energy generation circuit unit, the suction port of the pump, A first communication passage that communicates with the first communication passage, a second communication passage that communicates between the discharge port of the pump and the heat exchange circuit in conjunction with the first communication passage, and a third communication that communicates between the heat exchange circuit and the suction port of the pump. A four-way valve comprising a fourth communication passage that communicates the discharge port of the pump and the bypass passage in conjunction with the passage and the third communication passage, the path switching means includes means for switching control of the four-way valve, and the Rankine cycle path When the heat pipe path is formed, the third communication path and the fourth communication path of the four-way valve are closed to connect the first communication path and the second communication path, while when the heat pipe path is formed, the first communication path of the four-way valve is formed. And the second communication passage are closed to make the third communication It is characterized by communicating the fourth communication passage when.

更にまた、請求項4記載の発明では、請求項2又は3において、低温熱媒体は内燃機関と熱交換する冷却水であって、内燃機関を経由した冷却水が循環する冷却水回路と、冷却水回路に介挿され、冷却水を熱交換器に到達する前の作動流体と熱交換させる第2熱交換器と、冷却水回路を構成し、第2熱交換器をバイパスする第2バイパス路とを更に備え、経路切換手段は、冷却水回路の回路を第2バイパス路に切り換える手段を含み、ヒートパイプ経路の形成時には回路を第2熱交換器側に保持することを特徴としている。   Furthermore, in the invention of claim 4, in claim 2 or 3, the low-temperature heat medium is cooling water that exchanges heat with the internal combustion engine, and a cooling water circuit in which the cooling water that circulates through the internal combustion engine circulates, A second heat exchanger that is inserted in the water circuit and exchanges heat with the working fluid before reaching the heat exchanger, and a second bypass path that constitutes the cooling water circuit and bypasses the second heat exchanger The path switching means includes means for switching the circuit of the cooling water circuit to the second bypass path, and is characterized in that the circuit is held on the second heat exchanger side when the heat pipe path is formed.

また、請求項5記載の発明では、請求項2又は3において、低温熱媒体はランキンサイクル回路を循環する作動流体と同一流体であって、作動流体が直接に内燃機関の廃熱を帯びることを特徴としている。
更に、請求項6記載の発明では、請求項5において、作動流体の温度を検出する温度センサを更に備え、経路切換手段は、温度センサで検出された作動流体の温度に応じて、ポンプの回転数と膨張機の負荷とを制御する手段を含むことを特徴としている。
Further, in the invention described in claim 5, in claim 2 or 3, the low temperature heat medium is the same fluid as the working fluid circulating in the Rankine cycle circuit, and the working fluid directly takes waste heat of the internal combustion engine. It is a feature.
Furthermore, the invention according to claim 6 further comprises a temperature sensor for detecting the temperature of the working fluid according to claim 5, wherein the path switching means rotates the pump according to the temperature of the working fluid detected by the temperature sensor. It includes means for controlling the number and the load on the expander.

請求項1記載の本発明の内燃機関の廃熱利用装置によれば、ランキンサイクル回路は、熱交換回路部とエネルギ発生回路部とを含んで構成され、ポンプを駆動することにより、これら回路部間を作動流体が循環する。そして、経路切換手段によりエネルギ発生回路部をバイパスして熱交換回路部のみからなるヒートパイプ経路を形成する。
ここで、上記ポンプは経路切換手段による経路の切り換えに依らず液体状の作動流体を循環させるよう配設されるため、ランキンサイクル経路の形成時には、ポンプによって作動流体を確実にランキンサイクル経路内で循環させるようにでき、熱交換器に流入する作動流体が低温熱媒体で予め良好に加熱され、高温熱媒体のみならず低温熱媒体からも積極的に廃熱回収を実施することができる。
According to the waste heat utilization apparatus for an internal combustion engine of the first aspect of the present invention, the Rankine cycle circuit includes a heat exchange circuit unit and an energy generation circuit unit, and these circuit units are driven by driving a pump. The working fluid circulates between them. And the heat pipe path | route which consists only of a heat exchange circuit part is formed by bypassing an energy generation circuit part with a path | route switching means.
Here, since the pump is arranged to circulate the liquid working fluid regardless of the switching of the path by the path switching means, when the Rankine cycle path is formed, the pump ensures that the working fluid is passed through the Rankine cycle path. The working fluid flowing into the heat exchanger can be well heated in advance by the low-temperature heat medium, and waste heat recovery can be actively performed not only from the high-temperature heat medium but also from the low-temperature heat medium.

一方、ヒートパイプ経路の形成時には、ポンプによって作動流体を確実にヒートパイプ経路内で循環させるようにでき、熱交換器で加熱蒸発された作動流体により冷却水を加熱するヒートパイプとしての回路を円滑に機能させることができる。
従って、ランキンサイクル経路形成時、ヒートパイプ経路形成時のいずれの場合でも冷媒を確実に循環させ、簡単な構成で内燃機関の暖機を迅速化しながら内燃機関の廃熱回収効率を向上できる。
On the other hand, when the heat pipe path is formed, the working fluid can be reliably circulated in the heat pipe path by the pump, and the circuit as the heat pipe for heating the cooling water by the working fluid heated and evaporated by the heat exchanger can be smoothly smoothed. Can function.
Therefore, it is possible to improve the waste heat recovery efficiency of the internal combustion engine while speeding up the warm-up of the internal combustion engine with a simple configuration by reliably circulating the refrigerant in both cases of forming the Rankine cycle path and forming the heat pipe path.

また、請求項2記載の発明によれば、ポンプは、エネルギ発生回路部と熱交換回路部との間に配設されて作動流体をエネルギ発生回路部から熱交換回路部に向けて循環させる第1ポンプと、低温熱媒体と熱交換した作動流体を熱交換器に向けて循環させる第2ポンプとからなり、ランキンサイクル回路は、第1ポンプをバイパスする第1ポンプバイパス路と第2ポンプをバイパスする第2ポンプバイパス路とを更に有し、経路切換手段は、ランキンサイクル経路の形成時には、第1ポンプバイパス路を閉成して第1ポンプを駆動する一方、第2ポンプバイパス路を開成して第2ポンプを停止し、ヒートパイプ経路の形成時には、第1ポンプバイパス路を開成して第1ポンプを停止する一方、第2ポンプバイパス路を閉成して第2ポンプを駆動するようにしている。これにより、経路の切り換えに依らず液体状の作動流体を第1ポンプ又は第2ポンプで確実に循環させ、内燃機関の暖機を迅速化しながら内燃機関の廃熱回収効率を向上できる。   According to the second aspect of the present invention, the pump is disposed between the energy generation circuit unit and the heat exchange circuit unit and circulates the working fluid from the energy generation circuit unit to the heat exchange circuit unit. 1 pump and a second pump that circulates the working fluid heat-exchanged with the low-temperature heat medium toward the heat exchanger, and the Rankine cycle circuit includes a first pump bypass path and a second pump that bypass the first pump. A second pump bypass path for bypassing, and when the Rankine cycle path is formed, the path switching means closes the first pump bypass path and drives the first pump, while opening the second pump bypass path. Then, the second pump is stopped, and when the heat pipe path is formed, the first pump bypass path is opened to stop the first pump, while the second pump bypass path is closed to drive the second pump. I have to so that. Accordingly, it is possible to reliably circulate the liquid working fluid with the first pump or the second pump regardless of the path switching, and to improve the waste heat recovery efficiency of the internal combustion engine while speeding up the warming up of the internal combustion engine.

更に、請求項3記載の発明によれば、ポンプは、エネルギ発生回路部と熱交換回路部との間に配設され、ランキンサイクル回路は、エネルギ発生回路部とポンプの吸入口とを連通させる第1連通路及び該第1連通路と連動して該ポンプの吐出口と熱交換回路部とを連通させる第2連通路並びに熱交換回路部とポンプの吸入口とを連通させる第3連通路及び該第3連通路と連動して該ポンプの吐出口とバイパス路とを連通させる第4連通路からなる四方弁を含み、経路切換手段は、ランキンサイクル経路の形成時には、四方弁の第3連通路と第4連通路とを閉塞して第1連通路と第2連通路とを連通させる一方、ヒートパイプ経路の形成時には、四方弁の第1連通路と第2連通路とを閉塞して第3連通路と第4連通路とを連通させるようにしている。これにより、熱交換回路部とエネルギ発生回路部回路部との間を循環する既存のポンプを利用し、四方弁を新たに設けるだけの簡素化された回路構成で、経路の切り換えに依らず液体状の作動流体をポンプで確実に循環させ、内燃機関の暖機を迅速化しながら内燃機関の廃熱回収効率を向上できる。   According to a third aspect of the present invention, the pump is disposed between the energy generation circuit unit and the heat exchange circuit unit, and the Rankine cycle circuit communicates the energy generation circuit unit with the suction port of the pump. A first communication path, a second communication path that communicates the discharge port of the pump and the heat exchange circuit unit in conjunction with the first communication path, and a third communication path that communicates the heat exchange circuit unit and the suction port of the pump. And a four-way valve comprising a fourth communication passage that communicates the discharge port of the pump and the bypass passage in conjunction with the third communication passage, and the path switching means includes a third one of the four-way valves when the Rankine cycle path is formed. The communication path and the fourth communication path are closed to connect the first communication path and the second communication path, while the first communication path and the second communication path of the four-way valve are closed when the heat pipe path is formed. So that the third communication path and the fourth communication path communicate with each other. That. As a result, the existing pump that circulates between the heat exchange circuit unit and the energy generation circuit unit circuit unit is used, and a simplified circuit configuration in which a new four-way valve is newly provided. It is possible to improve the waste heat recovery efficiency of the internal combustion engine while speeding up the warming up of the internal combustion engine by reliably circulating the working fluid with a pump.

更にまた、請求項4記載の発明によれば、低温熱媒体は内燃機関と熱交換する冷却水であって、内燃機関を経由した冷却水が循環する冷却水回路と、冷却水回路に介挿され、冷却水を熱交換器に到達する前の作動流体と熱交換させる第2熱交換器と、冷却水回路を構成し、第2熱交換器をバイパスする第2バイパス路とを更に備え、経路切換手段は、冷却水回路の回路を第2バイパス路に切り換える手段を含み、ヒートパイプ経路の形成時には回路を第2熱交換器側に保持する。これにより、ヒートパイプ経路の形成時には冷却水を第2熱交換器に極力通水させることができるため、内燃機関の暖機迅速化を更に促進できる。   Furthermore, according to the invention described in claim 4, the low-temperature heat medium is cooling water that exchanges heat with the internal combustion engine, the cooling water circuit through which the cooling water passes through the internal combustion engine circulates, and the cooling water circuit. A second heat exchanger that exchanges heat with the working fluid before reaching the heat exchanger, and a second bypass path that constitutes a cooling water circuit and bypasses the second heat exchanger, The path switching means includes means for switching the circuit of the cooling water circuit to the second bypass path, and holds the circuit on the second heat exchanger side when the heat pipe path is formed. Thereby, since the cooling water can be passed through the second heat exchanger as much as possible when the heat pipe path is formed, it is possible to further accelerate the warm-up of the internal combustion engine.

また、請求項5記載の発明によれば、低温熱媒体はランキンサイクル回路を循環する作動流体と同一流体であるので、作動流体を内燃機関の本体と直接に熱交換させるようにできる。これにより、ランキンサイクル回路の熱伝達効率の向上が可能となるため、内燃機関の更なる暖機迅速化及び廃熱回収効率向上が実現できるとともに、その回路構成が簡素化できる。   According to the invention described in claim 5, since the low-temperature heat medium is the same fluid as the working fluid circulating in the Rankine cycle circuit, the working fluid can directly exchange heat with the main body of the internal combustion engine. As a result, the heat transfer efficiency of the Rankine cycle circuit can be improved, so that further rapid warm-up of the internal combustion engine and improvement of the waste heat recovery efficiency can be realized, and the circuit configuration can be simplified.

更に、請求項6記載の発明によれば、内燃機関の廃熱を直接に帯びる作動流体の温度を検出する温度センサを更に備え、経路切換手段は、温度センサで検出された作動流体の温度に応じて、ポンプの回転数と膨張機の負荷とを制御する手段を含んでいる。ここで、ポンプの回転数及び膨張機の負荷によって、それぞれランキンサイクル回路における廃熱回収量、及び廃熱利用量を算出できるため、作動流体の温度を所定の温度に略一定に保持すべくこれら廃熱回収量、及び廃熱利用量を制御することにより、作動流体を内燃機関の本体と直接に熱交換させる場合であっても、内燃機関の本体温度を所望の温度に略一定に保持でき、ランキンサイクル回路を更に適切に機能させることができる。   Furthermore, according to the invention described in claim 6, the temperature sensor for detecting the temperature of the working fluid directly charged with the waste heat of the internal combustion engine is further provided, and the path switching means has a temperature of the working fluid detected by the temperature sensor. Correspondingly, means for controlling the rotational speed of the pump and the load of the expander is included. Here, the amount of waste heat recovered and the amount of waste heat used in the Rankine cycle circuit can be calculated according to the rotational speed of the pump and the load on the expander, respectively. By controlling the amount of waste heat recovered and the amount of waste heat used, the body temperature of the internal combustion engine can be kept substantially constant at a desired temperature even when the working fluid directly exchanges heat with the body of the internal combustion engine. The Rankine cycle circuit can be made to function more appropriately.

以下、図面により本発明の実施形態について説明する。
先ず、第1実施形態について説明する。
図1は本実施形態の内燃機関の廃熱利用装置2の構成を示す模式図であり、廃熱利用装置2は、冷却水が循環し、例えば車両のエンジン(内燃機関)4を冷却する冷却水回路6と、作動流体(以下、冷媒という)が循環し、エンジン4の廃熱を回収するランキンサイクル回路8(以下、サイクル8という)とから構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, the first embodiment will be described.
FIG. 1 is a schematic diagram showing a configuration of a waste heat utilization device 2 for an internal combustion engine according to the present embodiment. The waste heat utilization device 2 is a cooling system that circulates cooling water and cools, for example, an engine (internal combustion engine) 4 of a vehicle. A water circuit 6 and a Rankine cycle circuit 8 (hereinafter referred to as cycle 8) that circulates a working fluid (hereinafter referred to as refrigerant) and recovers waste heat of the engine 4 are configured.

冷却水回路6は、エンジン4から水ポンプ10、熱交換器(第2熱交換器)12、サーモスタット14が順に接続されて閉回路を構成し、サーモスタット14には熱交換器12をバイパスするバイパス路16が接続され、バイパス路16には電磁弁18が介挿されている。そして、水ポンプ10を駆動することにより、冷却水が上記各構成機器を流れて循環する。   In the cooling water circuit 6, a water pump 10, a heat exchanger (second heat exchanger) 12, and a thermostat 14 are connected in order from the engine 4 to form a closed circuit, and the thermostat 14 bypasses the heat exchanger 12. A path 16 is connected, and an electromagnetic valve 18 is inserted in the bypass path 16. Then, by driving the water pump 10, the cooling water flows and circulates through each of the constituent devices.

また、エンジン4には、エンジン4から流出した後の冷却水温度を検出する温度センサ20が装着され、この検出された冷却水温度に応じて、エンジン4の廃熱回収を実施するか、或いはエンジン4の始動直後等で暖機の要求がされているかを判断している。
水ポンプ10は、リニア電動ポンプであって、水ポンプ10の駆動部に入力される入力信号に比例して可動部を連続的に可変駆動することにより、冷却水回路6を循環する冷却水量を微調整可能に構成されている。具体的には、エンジン4の回転数に応じて駆動され、エンジン4の冷却に要する冷却水量を冷却水回路6に循環させる。
Further, the engine 4 is equipped with a temperature sensor 20 for detecting the coolant temperature after flowing out of the engine 4, and according to the detected coolant temperature, waste heat recovery of the engine 4 is performed, or It is determined whether a warm-up request is made immediately after the engine 4 is started.
The water pump 10 is a linear electric pump, and the amount of cooling water circulating in the cooling water circuit 6 is reduced by continuously driving the movable portion in proportion to an input signal input to the driving portion of the water pump 10. It is configured to allow fine adjustment. Specifically, it is driven according to the rotational speed of the engine 4, and the amount of cooling water required for cooling the engine 4 is circulated to the cooling water circuit 6.

熱交換器12は、サイクル8を流れる冷媒と熱交換することにより、エンジン4の廃熱回収時には冷媒を蒸発させてサイクル8側で吸熱する蒸発器として機能し、エンジン4の暖機要求時には冷媒を凝縮させてサイクル8側から加熱する凝縮器として機能する。
サーモスタット14は、内部に図示しない温度検出部が内蔵され、2つの入口ポートと1つの出口ポートとを有する機械式の切換弁である。そして、温度検出部で検出される冷却水温度に応じて、熱交換器12側の流路が接続される入口ポートとバイパス路16が接続される入口ポートとのいずれか一方が連通するように弁体を切り換え、或いは微調整することにより、熱交換器12に冷却水を通水させるか否かを適宜選択するとともにこの通水させる冷却水量を微調整し、エンジン4の本体温度を所定の温度に略一定に保持している。
The heat exchanger 12 functions as an evaporator that evaporates the refrigerant when the waste heat of the engine 4 is recovered and absorbs heat on the cycle 8 side by exchanging heat with the refrigerant flowing through the cycle 8, and the refrigerant when the engine 4 is requested to warm up. It functions as a condenser that condenses and heats from the cycle 8 side.
The thermostat 14 is a mechanical switching valve having a temperature detection unit (not shown) built therein and having two inlet ports and one outlet port. Then, depending on the coolant temperature detected by the temperature detector, either the inlet port to which the flow path on the heat exchanger 12 side is connected or the inlet port to which the bypass path 16 is connected communicates. By switching or finely adjusting the valve body, whether or not to allow the cooling water to flow through the heat exchanger 12 is appropriately selected, and the amount of cooling water to be passed is finely adjusted, and the body temperature of the engine 4 is set to a predetermined value. The temperature is kept almost constant.

電磁弁18は、温度センサ20の信号に応じて駆動され、廃熱回収時には開弁されてサーモスタット14を適切に機能させ、暖機要求時には閉弁されたまま保持される(経路切換手段)。
これに対しサイクル8は、熱交換器12から排ガス熱交換器(熱交換器)24、三方弁26、膨張機28、凝縮器30、逆止弁32、冷媒ポンプ(ポンプ、第1ポンプ)22を順に接続して閉回路を構成し、熱交換器12と排ガス熱交換器24との間には第2冷媒ポンプ(ポンプ、第2ポンプ)34が設けられている。
The electromagnetic valve 18 is driven in response to a signal from the temperature sensor 20, and is opened when the waste heat is recovered to allow the thermostat 14 to function properly, and is kept closed when a warm-up is requested (path switching means).
On the other hand, in the cycle 8, the heat exchanger 12 to the exhaust gas heat exchanger (heat exchanger) 24, the three-way valve 26, the expander 28, the condenser 30, the check valve 32, the refrigerant pump (pump, first pump) 22. Are connected in order to form a closed circuit, and a second refrigerant pump (pump, second pump) 34 is provided between the heat exchanger 12 and the exhaust gas heat exchanger 24.

また、三方弁26から逆止弁32及び冷媒ポンプ22の間にかけて膨張機28及び凝縮器30並びに逆止弁32をバイパスするバイパス路36が設けられている。
冷媒ポンプ22及び第2冷媒ポンプ34は、各ポンプ22,34の駆動部に入力される接点信号に応じて可動部を駆動する電動ポンプであり、サイクル8において冷媒を好適に循環させる。
A bypass path 36 is provided between the three-way valve 26 and the check valve 32 and the refrigerant pump 22 to bypass the expander 28, the condenser 30, and the check valve 32.
The refrigerant pump 22 and the second refrigerant pump 34 are electric pumps that drive the movable portion in accordance with contact signals input to the drive portions of the pumps 22 and 34, and appropriately circulate the refrigerant in the cycle 8.

排ガス熱交換器24は、エンジン4の排ガス(高温熱媒体)が流出される図示しない排ガス管内に設けられ、廃熱回収時には、熱交換器12で冷却水により加熱された冷媒を排ガスにより更に加熱し、エンジン4の本体及び排ガスの両方からエンジン4の廃熱を回収している。
一方、エンジン4の暖機要求時には、サイクル8における冷媒経路の切り換えにより、排ガス熱交換器24は熱交換器12を介して冷却水回路6を循環する冷却水を加熱蒸発させる蒸発器として機能する。
The exhaust gas heat exchanger 24 is provided in an exhaust gas pipe (not shown) through which the exhaust gas (high temperature heat medium) of the engine 4 flows out, and at the time of waste heat recovery, the refrigerant heated by the cooling water in the heat exchanger 12 is further heated by the exhaust gas. The waste heat of the engine 4 is recovered from both the main body of the engine 4 and the exhaust gas.
On the other hand, when the engine 4 is requested to warm up, the exhaust gas heat exchanger 24 functions as an evaporator that heats and evaporates the cooling water circulating in the cooling water circuit 6 via the heat exchanger 12 by switching the refrigerant path in the cycle 8. .

詳しくは、三方弁26は1つの入口ポートと2つの出口ポートとを有するオンオフ切換弁であって、この三方弁26の駆動部に入力される接点信号に応じて、膨張機28側の流路が接続される出口ポートとバイパス路36が接続される出口ポートとのいずれかに入口ポートが連通するように弁体を切り換える。これより、膨張機28及び凝縮器30、いわばエネルギ発生回路部38に冷媒を通水させるか否かが選択可能となり、エンジン4の廃熱回収時にはエネルギ発生回路部38を含むランキンサイクル経路40(以下、ランキン経路40という)が閉成される。   Specifically, the three-way valve 26 is an on / off switching valve having one inlet port and two outlet ports, and the flow path on the side of the expander 28 according to a contact signal input to the drive unit of the three-way valve 26. The valve body is switched so that the inlet port communicates with either the outlet port connected to the outlet port or the outlet port connected to the bypass path 36. Thus, it is possible to select whether or not the refrigerant is allowed to flow through the expander 28 and the condenser 30, that is, the energy generation circuit unit 38, and when the waste heat of the engine 4 is recovered, the Rankine cycle path 40 ( Hereinafter, the Rankine path 40 is closed.

これに対し、エンジン4の暖機要求時にはエネルギ発生回路部38をバイパスし、残りのサイクル8の構成機器である熱交換器12及び排ガス熱交換器24、いわば熱交換回路部42のみを含むヒートパイプ経路44(以下、ヒート経路44という)が閉成され、上述の如く、排ガス熱交換器24が蒸発器して機能することとなる。
膨張機28は、熱交換器12及び排ガス熱交換器24で加熱され過熱蒸気の状態となる冷媒の膨張によって回転等に係る駆動力を発生させる流体機器である。また、膨張機28には例えば図示しない発電機等が接続され、この発電機を介して膨張機28で発生した駆動力を廃熱利用装置2の外部で使用可能である。
On the other hand, when the engine 4 is required to warm up, the energy generation circuit unit 38 is bypassed, and the heat including the heat exchanger 12 and the exhaust gas heat exchanger 24, which are the constituent devices of the remaining cycle 8, is the heat including only the heat exchange circuit unit 42. The pipe path 44 (hereinafter referred to as the heat path 44) is closed, and the exhaust gas heat exchanger 24 functions as an evaporator as described above.
The expander 28 is a fluid device that generates a driving force related to rotation or the like by expansion of a refrigerant that is heated by the heat exchanger 12 and the exhaust gas heat exchanger 24 and becomes a superheated steam state. Further, for example, a generator (not shown) is connected to the expander 28, and the driving force generated by the expander 28 via this generator can be used outside the waste heat utilization apparatus 2.

凝縮器30は、膨張機28から吐出される冷媒を外気との熱交換により凝縮液化する熱交換器であり、凝縮器30で確実に凝縮された液冷媒が冷媒ポンプ22で熱交換器12に圧送され、サイクル8を構成するランキン経路40又はヒート経路44を好適に循環する。なお、逆止弁32により、ヒート経路44の形成時における凝縮器30側への冷媒の逆流を防止している。   The condenser 30 is a heat exchanger that condenses and liquefies the refrigerant discharged from the expander 28 by heat exchange with the outside air, and the liquid refrigerant that is reliably condensed by the condenser 30 is transferred to the heat exchanger 12 by the refrigerant pump 22. Pumped and suitably circulated through Rankine path 40 or heat path 44 constituting cycle 8. The check valve 32 prevents the refrigerant from flowing backward to the condenser 30 when the heat path 44 is formed.

ところで、本実施形態の廃熱利用装置2では、冷媒ポンプ22、第2冷媒ポンプ34をそれぞれランキン経路40、ヒート経路44で個別に使用すべくポンプ切換制御を実施している。具体的には、サイクル8には各ポンプ22,34をそれぞれバイパスするバイパス路(第1ポンプバイパス路)46、バイパス路(第2ポンプバイパス路)48が設けられ、各バイパス路46,48にはそれぞれ電磁弁50,52が介挿されており、これら電磁弁50,52の開閉と同時に各ポンプ22,34の駆動、停止を実施する。   By the way, in the waste heat utilization apparatus 2 of this embodiment, pump switching control is implemented so that the refrigerant pump 22 and the second refrigerant pump 34 can be individually used in the Rankine path 40 and the heat path 44, respectively. Specifically, the cycle 8 includes a bypass path (first pump bypass path) 46 and a bypass path (second pump bypass path) 48 that bypass the pumps 22 and 34 respectively. Electromagnetic valves 50 and 52 are inserted, and the pumps 22 and 34 are driven and stopped simultaneously with opening and closing of the electromagnetic valves 50 and 52.

より詳しくは、ランキン経路40の形成時には、冷媒ポンプ22を駆動するとともに電磁弁50を閉弁する一方、第2冷媒ポンプ34の駆動を停止するとともに電磁弁52を開弁する。なお、図1中、電磁弁50,52のみならず電磁弁18,三方弁26の白抜きされたポートは全開ポートを示し、黒塗りされたポートは全閉ポートを示しており、以降の図面も同様に示す。   More specifically, when the Rankine path 40 is formed, the refrigerant pump 22 is driven and the electromagnetic valve 50 is closed, while the second refrigerant pump 34 is stopped and the electromagnetic valve 52 is opened. In FIG. 1, not only the solenoid valves 50 and 52 but also the white ports of the solenoid valve 18 and the three-way valve 26 indicate fully opened ports, and the blacked ports indicate fully closed ports. Is shown in the same way.

これに対し図2に示されるヒート経路44の形成時には、第2冷媒ポンプ34を駆動するとともに電磁弁52を閉弁する一方、冷媒ポンプ22の駆動を停止するとともに電磁弁50を開弁する。
ここで、検出端たる温度センサ20や、操作端たる電磁弁18,50,52、及び三方弁26、並びにポンプ10,22,34は車両及び廃熱利用装置2の総合的な制御を行う電子コントロールユニット(ECU)54に電気的に接続されており、ポンプ切換制御はこのECU54内で処理される。
In contrast, when the heat path 44 shown in FIG. 2 is formed, the second refrigerant pump 34 is driven and the electromagnetic valve 52 is closed, while the refrigerant pump 22 is stopped and the electromagnetic valve 50 is opened.
Here, the temperature sensor 20 serving as the detection end, the solenoid valves 18, 50, 52 serving as the operation end, the three-way valve 26, and the pumps 10, 22, and 34 are electronic devices that perform comprehensive control of the vehicle and the waste heat utilization device 2. It is electrically connected to a control unit (ECU) 54, and pump switching control is processed in this ECU 54.

具体的には、温度センサ20で検出される冷却水温度に応じて、エンジン4の暖機要求があるか否かが判定され、三方弁26によりランキン経路40、及びヒート経路44間の経路切り換えが実施される。このとき、電磁弁18の開閉も含めてポンプ切換制御もほぼ同じタイミングで実施され、各経路40,44間の経路切り換え後の冷媒の流れが不要に阻害されないようになっている(経路切換手段)。   Specifically, it is determined whether or not there is a request for warming up the engine 4 according to the coolant temperature detected by the temperature sensor 20, and the three-way valve 26 switches the path between the Rankine path 40 and the heat path 44. Is implemented. At this time, pump switching control including opening and closing of the electromagnetic valve 18 is also performed at substantially the same timing, so that the refrigerant flow after the path switching between the paths 40 and 44 is not unnecessarily obstructed (path switching means). ).

以上のように、本実施形態では、ランキンサイクル回路は、エネルギ発生回路部38と熱交換回路部42とを含んで構成され、冷媒ポンプ22を駆動することにより、これら回路部38,42間を冷媒が循環する。そして、温度センサ20で検出された冷却水温度が低下し、ECU54内でエンジン4の暖機が要求されると、三方弁26を駆動してエネルギ発生回路部38をバイパスするとともに、ポンプ切換制御が実行され、冷媒ポンプ22を停止、バイパスする一方、第2冷媒ポンプ34を駆動してそのバイパスを解除し、熱交換回路部42のみからなるヒート経路44を形成する。   As described above, in the present embodiment, the Rankine cycle circuit is configured to include the energy generation circuit unit 38 and the heat exchange circuit unit 42, and by driving the refrigerant pump 22, the circuit unit 38 is connected between the circuit units 38 and 42. The refrigerant circulates. When the cooling water temperature detected by the temperature sensor 20 decreases and the engine 54 is required to be warmed up in the ECU 54, the three-way valve 26 is driven to bypass the energy generation circuit unit 38, and the pump switching control is performed. Is performed, and the refrigerant pump 22 is stopped and bypassed, while the second refrigerant pump 34 is driven to release the bypass, and the heat path 44 including only the heat exchange circuit unit 42 is formed.

ここで、冷媒ポンプ22は上記両回路部38,42間に位置づけられるため、ランキン経路40の形成時には、排ガス熱交換器24に流入する冷媒はエンジン4からの吸熱により加熱された冷却水、いわば温水(低温熱媒体)で予め加熱され、排ガスのみならずこの温水からも廃熱の回収を実施できる。
一方、ヒート経路44の形成時には、ポンプ切換制御により冷媒ポンプ22がバイパスされるため、排ガス熱交換器24で加熱蒸発された冷媒がバイパス路36、46を円滑に順次経由して熱交換器12に流入する。すなわち、ヒート経路44の形成時に冷媒ポンプ22が過熱冷媒の圧力損失要素となることが防止され、冷媒ポンプ22を通過した過熱冷媒が凝縮することはない。
Here, since the refrigerant pump 22 is positioned between both the circuit portions 38 and 42, when the Rankine path 40 is formed, the refrigerant flowing into the exhaust gas heat exchanger 24 is cooling water heated by heat absorption from the engine 4, that is, so-called It is preheated with warm water (low temperature heat medium), and waste heat can be recovered not only from the exhaust gas but also from this warm water.
On the other hand, when the heat path 44 is formed, the refrigerant pump 22 is bypassed by the pump switching control, so that the refrigerant heated and evaporated by the exhaust gas heat exchanger 24 smoothly and sequentially passes through the bypass paths 36 and 46. Flow into. That is, when the heat path 44 is formed, the refrigerant pump 22 is prevented from becoming a pressure loss factor of the superheated refrigerant, and the superheated refrigerant that has passed through the refrigerant pump 22 is not condensed.

そして、熱交換器12を経由した冷媒は冷却水回路6を循環する冷却水、ひいてはエンジン4の本体を加熱することにより吸熱され凝縮する。そして、凝縮した液冷媒は第2冷媒ポンプ34で排ガス熱交換器24に圧送され、ヒート経路44における冷媒の循環が好適になされる。
また、冷却水回路6において、電磁弁18が温度センサ20の信号に応じて駆動され、廃熱回収時、すなわちランキン経路40の形成時には開弁されてサーモスタット14を適切に機能させる一方、暖機要求時、すなわちヒート経路44の形成時には閉弁されたまま保持される。これにより、冷却水を熱交換器12に極力通水させることができる。従って、ランキン経路40の形成時、ヒート経路44の形成時のいずれの場合であっても、サイクル8に冷媒を確実に循環させ、簡単な構成でエンジン4の暖機を迅速化しながらエンジン4の廃熱回収効率を向上できる。
And the refrigerant | coolant which passed through the heat exchanger 12 is absorbed and condensed by heating the cooling water which circulates through the cooling water circuit 6, and by extension, the main body of the engine 4. FIG. The condensed liquid refrigerant is pumped to the exhaust gas heat exchanger 24 by the second refrigerant pump 34, and the refrigerant is suitably circulated in the heat path 44.
In the cooling water circuit 6, the electromagnetic valve 18 is driven in response to a signal from the temperature sensor 20 and is opened when waste heat is recovered, that is, when the Rankine path 40 is formed, so that the thermostat 14 functions properly. When requested, that is, when the heat path 44 is formed, the valve is held closed. Thereby, cooling water can be passed through the heat exchanger 12 as much as possible. Therefore, regardless of whether the Rankine path 40 is formed or the heat path 44 is formed, the refrigerant is reliably circulated in the cycle 8, and the warm-up of the engine 4 can be speeded up with a simple configuration. Waste heat recovery efficiency can be improved.

次に、第2実施形態について説明する。
図3に示すように、当該第2実施形態の廃熱利用装置56は、上記第1実施形態の冷却水回路6及びその構成機器、並びに熱交換器12を排除し、サイクル8を循環する冷媒をエンジン4と直接に熱交換させるものであり、他は上記第1実施形態と同一の構成をなしているため、主として上記異なる点について説明する。
Next, a second embodiment will be described.
As shown in FIG. 3, the waste heat utilization device 56 of the second embodiment excludes the cooling water circuit 6 and its components and the heat exchanger 12 of the first embodiment and circulates in the cycle 8. Is directly exchanged with the engine 4, and the other configuration is the same as that of the first embodiment, so that the differences will be mainly described.

図3はランキン経路40の形成時を示しており、サイクル8を循環する冷媒をエンジン4に導入し、冷却水を介することなくエンジン4の本体から直接に廃熱回収している。
一方、ECU54からエンジン4の暖機が要求されると、三方弁26を切り換えてエネルギ発生回路部38をバイパスするとともに上記ポンプ切換制御を実施してヒート経路44が形成され(状態の図示は省略)、排ガス熱交換器24で過熱状態にされた冷媒をエンジン4に導入し、冷却水を介することなくエンジン4の本体を直接に加熱して暖機している。
FIG. 3 shows the time when the Rankine path 40 is formed, in which the refrigerant circulating in the cycle 8 is introduced into the engine 4 and the waste heat is recovered directly from the main body of the engine 4 without passing through the cooling water.
On the other hand, when the ECU 4 requires the engine 4 to be warmed up, the three-way valve 26 is switched to bypass the energy generation circuit unit 38 and the pump switching control is performed to form the heat path 44 (state illustration is omitted). ), The refrigerant that has been overheated by the exhaust gas heat exchanger 24 is introduced into the engine 4, and the main body of the engine 4 is directly heated to warm up without passing through the cooling water.

また、本実施形態では、温度センサ20はエンジン4から流出した後の冷媒温度を検出しており、ECU54は、この温度センサ20で検出される冷媒温度に応じて、ポンプ22の回転数と膨張機28の負荷とを制御している(経路切換手段)。
このように、上記第1実施形態と同様、第2実施形態に係る廃熱利用装置56においても、ポンプ切換制御を実施することにより、サイクル8は、ランキン経路40の形成時にはエンジン4の本体からも廃熱を積極的に回収できるとともに、ヒート経路44の形成時にはエンジン4の本体を加熱するヒートパイプとして円滑に機能させることができる。
In this embodiment, the temperature sensor 20 detects the refrigerant temperature after flowing out of the engine 4, and the ECU 54 determines the rotation speed and expansion of the pump 22 according to the refrigerant temperature detected by the temperature sensor 20. The load of the machine 28 is controlled (path switching means).
As described above, in the waste heat utilization apparatus 56 according to the second embodiment as well, the cycle 8 is started from the main body of the engine 4 when the Rankine path 40 is formed by performing the pump switching control. In addition, the waste heat can be positively recovered and can function smoothly as a heat pipe for heating the main body of the engine 4 when the heat path 44 is formed.

特に当該第2実施形態の場合には、冷却水回路6を要さず、しかも冷却水を介することなくエンジン4の本体と直接に熱交換するため、サイクル8の熱伝達効率の大幅な向上が可能となってエンジン4の更なる暖機迅速化及び廃熱回収効率向上が実現できるとともに、その回路構成がより一層簡素化できる。
また、ポンプ22の回転数、及び膨張機28の負荷によって、それぞれサイクル8における廃熱回収量、及び廃熱利用量を算出できるため、温度センサ20で検出される冷媒温度に応じて、ポンプ22の回転数と膨張機28の負荷とを制御することにより、第1実施形態におけるサーモスタット14に代わって、エンジン4の本体温度を所定の温度に略一定に保持することができる。
In particular, in the case of the second embodiment, since the cooling water circuit 6 is not required and heat is directly exchanged with the main body of the engine 4 without passing through the cooling water, the heat transfer efficiency of the cycle 8 is greatly improved. As a result, the engine 4 can be warmed up more quickly and waste heat recovery efficiency can be improved, and the circuit configuration can be further simplified.
Further, since the amount of waste heat recovered and the amount of waste heat used in the cycle 8 can be calculated based on the rotation speed of the pump 22 and the load of the expander 28, respectively, the pump 22 depends on the refrigerant temperature detected by the temperature sensor 20. By controlling the rotation speed and the load of the expander 28, the body temperature of the engine 4 can be kept substantially constant at a predetermined temperature instead of the thermostat 14 in the first embodiment.

次に、第3実施形態について説明する。
図4に示すように、当該第3実施形態の廃熱利用装置58は、上記第2実施形態の第2冷媒ポンプ34、バイパス路46,48、及び電磁弁50,52を排除し、代わりに四方弁60を設置するとともに、ポンプ切換制御の代わりに四方弁60の弁駆動制御を実施するものであり、他は上記第2実施形態と同一の構成をなしており、主として上記異なる点について説明する。
Next, a third embodiment will be described.
As shown in FIG. 4, the waste heat utilization device 58 of the third embodiment excludes the second refrigerant pump 34, the bypass passages 46 and 48, and the electromagnetic valves 50 and 52 of the second embodiment, and instead The four-way valve 60 is installed, and the valve drive control of the four-way valve 60 is performed instead of the pump switching control. The rest of the configuration is the same as that of the second embodiment, and the differences are mainly described. To do.

図4に示されるように、四方弁60は第1〜第4連通路60a〜60dを有するオンオフ切換弁であって、その駆動部はECU54に電気的に接続されており、ECU54から駆動部に入力される接点信号に応じて、互いに対称位置に配される第1及び第2連通路60a,60b、又は第3及び第4連通路60c,60dのいずれか一方が連通するように弁体を切り換える。これより、ランキン経路40の開成とヒート経路の開成とが選択可能となっている。   As shown in FIG. 4, the four-way valve 60 is an on / off switching valve having first to fourth communication passages 60 a to 60 d, and its drive unit is electrically connected to the ECU 54, and the ECU 54 connects to the drive unit. In accordance with the input contact signal, the valve body is arranged so that one of the first and second communication passages 60a and 60b, or the third and fourth communication passages 60c and 60d, which are arranged symmetrically with each other, communicates. Switch. Thus, the opening of the Rankine path 40 and the opening of the heat path can be selected.

詳しくは、図4はランキン経路40の形成時を示しており、この状態において、第1連通路60aは凝縮器30と冷媒ポンプ22とを連通させ、第2連通路60bは冷媒ポンプ22とエンジン4とを連通させるように四方弁60が駆動され、サイクル8を循環する冷媒は四方弁60、冷媒ポンプ22を経由してエンジン4に導入されてエンジン4の本体から直接に廃熱回収している。   Specifically, FIG. 4 shows the time when the Rankine path 40 is formed. In this state, the first communication path 60a communicates the condenser 30 and the refrigerant pump 22, and the second communication path 60b communicates with the refrigerant pump 22 and the engine. The refrigerant circulating in the cycle 8 is introduced into the engine 4 via the four-way valve 60 and the refrigerant pump 22 to recover waste heat directly from the main body of the engine 4. Yes.

一方、図5に示されるように、ECU54からエンジン4の暖機が要求されると、三方弁26を切り換えてエネルギ発生回路部38をバイパスするとともに四方弁60の弁駆動制御を実施してヒート経路44が形成され、排ガス熱交換器24で過熱状態にされた冷媒をエンジン4に導入し、エンジン4の本体を直接に加熱して暖機している。
この状態においては、第3連通路60cはエンジン4と冷媒ポンプ22とを連通させ、第4連通路60dは冷媒ポンプ22と排ガス熱交換器24とを連通させるべく駆動される。なお、本実施形態でのヒート経路44における冷媒の流れ方向はランキン経路40における冷媒の流れ方向とは逆向きとなる。
On the other hand, as shown in FIG. 5, when the ECU 54 requests the engine 4 to be warmed up, the three-way valve 26 is switched to bypass the energy generation circuit unit 38 and the four-way valve 60 is controlled to be driven. A path 44 is formed, and the refrigerant that has been overheated by the exhaust gas heat exchanger 24 is introduced into the engine 4, and the main body of the engine 4 is directly heated to warm up.
In this state, the third communication path 60c communicates the engine 4 and the refrigerant pump 22, and the fourth communication path 60d is driven to communicate the refrigerant pump 22 and the exhaust gas heat exchanger 24. In this embodiment, the refrigerant flow direction in the heat path 44 is opposite to the refrigerant flow direction in the Rankine path 40.

このように、上記第2実施形態と同様、第3実施形態に係る廃熱利用装置58においても、ポンプ切換制御に代わる四方弁60の弁駆動制御を実施することにより、エンジン4を適切に冷却しながらサイクル8の回路構成を簡素化でき、エンジン4の更なる暖機迅速化及び廃熱回収効率向上が実現できる。
特に当該第3実施形態の場合には、上記第2実施形態の第2冷媒ポンプ34、バイパス路46,48、及び電磁弁50,52を要することなく、熱交換回路部42とエネルギ発生回路部38との間を循環する既存のポンプ22を利用し、四方弁60を新たに設置するのみであるため、ECU54で制御する操作端の数が上記第1,第2実施形態の場合に比して大幅に低減され、より一層回路構成を簡素化することができる。また、操作端の数が減少したことによりサイクル8の更なる制御性向上をも実現できる。
As described above, in the waste heat utilization apparatus 58 according to the third embodiment as well, the engine 4 is appropriately cooled by performing the valve drive control of the four-way valve 60 instead of the pump switching control. However, the circuit configuration of the cycle 8 can be simplified, and the engine 4 can be warmed up more quickly and the waste heat recovery efficiency can be improved.
Particularly in the case of the third embodiment, the heat exchange circuit unit 42 and the energy generation circuit unit are not required without the need for the second refrigerant pump 34, the bypass passages 46 and 48, and the electromagnetic valves 50 and 52 of the second embodiment. Since the existing pump 22 that circulates between the two and only the four-way valve 60 is installed, the number of operation ends controlled by the ECU 54 is smaller than that in the first and second embodiments. The circuit configuration can be further simplified. Further, the controllability of the cycle 8 can be further improved by reducing the number of operation ends.

以上で本発明の一実施形態についての説明を終えるが、本発明は上記各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更ができるものである。
例えば、上記第3実施形態における回路構成を上記第1実施形態と同様に冷却水回路6を有する構成としても良く、この場合には少なくとも上記第1実施形態に比してECU54で制御する操作端の数が更に低減されて回路構成を簡素化することができる。
Although the description of one embodiment of the present invention has been completed above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.
For example, the circuit configuration in the third embodiment may be a configuration having the cooling water circuit 6 as in the first embodiment, and in this case, at least an operation end controlled by the ECU 54 compared to the first embodiment. The circuit number can be further reduced and the circuit configuration can be simplified.

また、上記第3実施形態では、排ガス熱交換器24を通過する冷媒の流れと排ガスの流れとは、ランキン経路40の形成時には並行流となり、ヒート経路44の形成時には対向流となるが、ランキン経路40の形成時に対向流となり、ヒート経路44の形成時に並行流となるような回路に構成することも可能であり、この場合にも上記と同様の効果を奏する。   Moreover, in the said 3rd Embodiment, although the flow of the refrigerant | coolant which passes the exhaust gas heat exchanger 24, and the flow of exhaust gas become a parallel flow at the time of formation of the Rankine path | route 40 and become a countercurrent flow at the time of formation of the heat path | route 44, Rankine It is also possible to configure the circuit so that it becomes a counter flow when the path 40 is formed and a parallel flow when the heat path 44 is formed. In this case, the same effect as described above can be obtained.

本発明の第1実施形態に係る内燃機関の廃熱利用装置おいてランキンサイクル経路が形成された状態を示す模式図である。It is a schematic diagram which shows the state in which the Rankine cycle path | route was formed in the waste heat utilization apparatus of the internal combustion engine which concerns on 1st Embodiment of this invention. 図1の廃熱利用装置においてヒートパイプ経路が形成された状態を示す模式図である。It is a schematic diagram which shows the state in which the heat pipe path | route was formed in the waste heat utilization apparatus of FIG. 本発明の第2実施形態に係る内燃機関の廃熱利用装置おいてランキンサイクル経路が形成された状態を示す模式図である。It is a schematic diagram which shows the state in which the Rankine cycle path | route was formed in the waste heat utilization apparatus of the internal combustion engine which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る内燃機関の廃熱利用装置おいてランキンサイクル経路が形成された状態を示す模式図である。It is a schematic diagram which shows the state in which the Rankine cycle path | route was formed in the waste heat utilization apparatus of the internal combustion engine which concerns on 3rd Embodiment of this invention. 図4の廃熱利用装置においてヒートパイプ経路が形成された状態を示す模式図である。It is a schematic diagram which shows the state in which the heat pipe path | route was formed in the waste heat utilization apparatus of FIG.

符号の説明Explanation of symbols

2,56,58 廃熱利用装置
4 エンジン(内燃機関)
6 冷却水回路
8 ランキンサイクル回路
12 熱交換器(第2熱交換器)
16 バイパス路(第2バイパス路)
20 温度センサ
22 冷媒ポンプ(ポンプ、第1ポンプ)
24 排ガス熱交換器(熱交換器)
28 膨張機
30 凝縮器
34 第2冷媒ポンプ(ポンプ、第2ポンプ)
36 バイパス路
46 バイパス路(第1ポンプバイパス路)
48 バイパス路(第2ポンプバイパス路)
38 エネルギ発生回路部
40 ランキンサイクル経路
42 熱交換回路部
44 ヒートパイプ経路
60 四方弁
60a 第1連通路
60b 第2連通路
60c 第3連通路
60d 第4連通路
2,56,58 Waste heat utilization device 4 Engine (Internal combustion engine)
6 Cooling water circuit 8 Rankine cycle circuit 12 Heat exchanger (second heat exchanger)
16 Bypass (second bypass)
20 Temperature sensor 22 Refrigerant pump (pump, first pump)
24 Exhaust gas heat exchanger (heat exchanger)
28 expander 30 condenser 34 second refrigerant pump (pump, second pump)
36 Bypass path 46 Bypass path (1st pump bypass path)
48 Bypass (second pump bypass)
38 energy generation circuit section 40 Rankine cycle path 42 heat exchange circuit section 44 heat pipe path 60 four-way valve 60a first communication path 60b second communication path 60c third communication path 60d fourth communication path

Claims (6)

内燃機関の廃熱を複数の熱媒体から熱回収する廃熱利用装置であって、該熱媒体が所定温度の廃熱を帯びる高温熱媒体、該所定温度よりも低となる廃熱を帯びる低温熱媒体を含んでなり、
前記低温熱媒体と熱交換した作動流体を前記高温熱媒体と熱交換して加熱する熱交換器、該熱交換器を経由した作動流体を膨張させて駆動力を発生する膨張機、該膨張機を経由した作動流体を凝縮させる凝縮器及び作動流体を循環させるポンプを有し、前記内燃機関及び前記熱交換器から熱交換回路部を、前記膨張機及び前記凝縮器からエネルギ発生回路部を構成し、前記ポンプにより該エネルギ発生回路部と該熱交換回路部との間で作動流体を循環させてランキンサイクル経路を形成するランキンサイクル回路を備え、
前記ランキンサイクル回路は、前記エネルギ発生回路部をバイパスするバイパス路を有し、該バイパス路に回路を切り換えることにより前記熱交換器で加熱蒸発された作動流体で前記低温熱媒体を加熱すべく前記ポンプにより前記熱交換回路部及び前記バイパス路に作動流体を循環させてヒートパイプ経路を形成するものであって、前記内燃機関の作動状況に応じて前記バイパス路に回路を切り換え、前記ランキンサイクル経路と前記ヒートパイプ経路との切り換えを行う経路切換手段を有し、
前記ポンプは、前記経路切換手段による経路の切り換えに依らず、液体状の作動流体を循環させるよう配設されていることを特徴とする内燃機関の廃熱利用装置。
A waste heat utilization apparatus for recovering waste heat of an internal combustion engine from a plurality of heat media, wherein the heat medium has a high temperature heat medium having waste heat at a predetermined temperature, and a low temperature having waste heat that is lower than the predetermined temperature. Comprising a heat medium and
A heat exchanger that exchanges heat with the high-temperature heat medium and heats the working fluid heat-exchanged with the low-temperature heat medium, an expander that expands the working fluid that passes through the heat exchanger and generates a driving force, and the expander A condenser that condenses the working fluid that passes through the pump and a pump that circulates the working fluid, and a heat exchange circuit unit is configured from the internal combustion engine and the heat exchanger, and an energy generation circuit unit is configured from the expander and the condenser And a Rankine cycle circuit that forms a Rankine cycle path by circulating a working fluid between the energy generation circuit unit and the heat exchange circuit unit by the pump,
The Rankine cycle circuit has a bypass path that bypasses the energy generation circuit section, and the circuit is switched to the bypass path to heat the low-temperature heat medium with the working fluid heated and evaporated by the heat exchanger. A heat pipe path is formed by circulating a working fluid through the heat exchange circuit section and the bypass path by a pump, and the circuit is switched to the bypass path in accordance with an operating state of the internal combustion engine, and the Rankine cycle path And a path switching means for switching between the heat pipe path and
The waste heat utilization apparatus for an internal combustion engine, wherein the pump is arranged to circulate a liquid working fluid regardless of the path switching by the path switching means.
前記ポンプは、前記エネルギ発生回路部と前記熱交換回路部との間に配設されて作動流体を前記エネルギ発生回路部から前記熱交換回路部に向けて循環させる第1ポンプと、前記低温熱媒体と熱交換した作動流体を前記熱交換器に向けて循環させる第2ポンプとからなり、
前記ランキンサイクル回路は、前記第1ポンプをバイパスする第1ポンプバイパス路と前記第2ポンプをバイパスする第2ポンプバイパス路とを更に有し、
前記経路切換手段は、前記第1ポンプバイパス路及び前記第2ポンプバイパス路に回路を切り換える手段と前記第1ポンプ及び前記第2ポンプの作動を制御する手段とを含み、前記ランキンサイクル経路の形成時には、前記第1ポンプバイパス路を閉成して前記第1ポンプを駆動する一方、前記第2ポンプバイパス路を開成して前記第2ポンプを停止し、前記ヒートパイプ経路の形成時には、前記第1ポンプバイパス路を開成して前記第1ポンプを停止する一方、前記第2ポンプバイパス路を閉成して前記第2ポンプを駆動することを特徴とする請求項1に記載の内燃機関の廃熱利用装置。
The pump is disposed between the energy generation circuit unit and the heat exchange circuit unit, and circulates a working fluid from the energy generation circuit unit toward the heat exchange circuit unit, and the low-temperature heat. A second pump that circulates the working fluid heat-exchanged with the medium toward the heat exchanger;
The Rankine cycle circuit further includes a first pump bypass path that bypasses the first pump and a second pump bypass path that bypasses the second pump,
The path switching means includes means for switching circuits to the first pump bypass path and the second pump bypass path, and means for controlling the operation of the first pump and the second pump, and forms the Rankine cycle path. Sometimes the first pump bypass path is closed to drive the first pump, while the second pump bypass path is opened to stop the second pump, and when the heat pipe path is formed, the first pump bypass path is 2. The internal combustion engine according to claim 1, wherein the first pump is stopped by opening one pump bypass passage, and the second pump is driven by closing the second pump bypass passage. Heat utilization device.
前記ポンプは、前記エネルギ発生回路部と前記熱交換回路部との間に配設され、
前記ランキンサイクル回路は、前記エネルギ発生回路部と前記ポンプの吸入口とを連通させる第1連通路及び該第1連通路と連動して該ポンプの吐出口と前記熱交換回路部とを連通させる第2連通路並びに前記熱交換回路部と前記ポンプの吸入口とを連通させる第3連通路及び該第3連通路と連動して該ポンプの吐出口と前記バイパス路とを連通させる第4連通路からなる四方弁を含み、
前記経路切換手段は、前記四方弁を切換制御する手段を含み、前記ランキンサイクル経路の形成時には、前記四方弁の第3連通路と第4連通路とを閉塞して第1連通路と第2連通路とを連通させる一方、前記ヒートパイプ経路の形成時には、前記四方弁の第1連通路と第2連通路とを閉塞して第3連通路と第4連通路とを連通させることを特徴とする請求項1に記載の内燃機関の廃熱利用装置。
The pump is disposed between the energy generation circuit unit and the heat exchange circuit unit,
The Rankine cycle circuit communicates the discharge port of the pump and the heat exchange circuit unit in conjunction with the first communication path that communicates the energy generation circuit unit and the suction port of the pump. A second communication path, a third communication path for communicating the heat exchange circuit section and the suction port of the pump, and a fourth communication for communicating the discharge port of the pump and the bypass path in conjunction with the third communication path. Including a four-way valve consisting of a passageway,
The path switching means includes means for controlling the switching of the four-way valve. When the Rankine cycle path is formed, the third communication path and the fourth communication path of the four-way valve are closed to close the first communication path and the second communication path. While communicating with the communication path, when the heat pipe path is formed, the first communication path and the second communication path of the four-way valve are closed to connect the third communication path and the fourth communication path. The waste heat utilization apparatus for an internal combustion engine according to claim 1.
前記低温熱媒体は前記内燃機関と熱交換する冷却水であって、前記内燃機関を経由した冷却水が循環する冷却水回路と、
該冷却水回路に介挿され、前記冷却水を前記熱交換器に到達する前の作動流体と熱交換させる第2熱交換器と、
前記冷却水回路を構成し、前記第2熱交換器をバイパスする第2バイパス路とを更に備え、
前記経路切換手段は、前記冷却水回路の回路を第2バイパス路に切り換える手段を含み、前記ヒートパイプ経路の形成時には回路を前記第2熱交換器側に保持することを特徴とする請求項2又は3に記載の内燃機関の廃熱利用装置。
The low-temperature heat medium is cooling water that exchanges heat with the internal combustion engine, and a cooling water circuit in which the cooling water passing through the internal combustion engine circulates;
A second heat exchanger that is inserted in the cooling water circuit and exchanges heat between the cooling water and the working fluid before reaching the heat exchanger;
Further comprising a second bypass path that configures the cooling water circuit and bypasses the second heat exchanger;
The path switching means includes means for switching the circuit of the cooling water circuit to a second bypass path, and holds the circuit on the second heat exchanger side when the heat pipe path is formed. Or the waste heat utilization apparatus of the internal combustion engine of 3.
前記低温熱媒体は前記ランキンサイクル回路を循環する作動流体と同一流体であって、該作動流体が直接に前記内燃機関の廃熱を帯びることを特徴とする請求項2又は3に記載の内燃機関の廃熱利用装置。   4. The internal combustion engine according to claim 2, wherein the low-temperature heat medium is the same fluid as the working fluid circulating in the Rankine cycle circuit, and the working fluid directly bears waste heat of the internal combustion engine. Waste heat utilization equipment. 前記作動流体の温度を検出する温度センサを更に備え、
前記経路切換手段は、前記温度センサで検出された作動流体の温度に応じて、前記ポンプの回転数と前記膨張機の負荷とを制御する手段を含むことを特徴とする請求項5に記載の内燃機関の廃熱利用装置。
A temperature sensor for detecting the temperature of the working fluid;
The said path | route switching means contains a means to control the rotation speed of the said pump and the load of the said expander according to the temperature of the working fluid detected by the said temperature sensor. Waste heat utilization device for internal combustion engines.
JP2007070449A 2007-03-19 2007-03-19 Waste heat utilization device for internal combustion engine Pending JP2008231980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007070449A JP2008231980A (en) 2007-03-19 2007-03-19 Waste heat utilization device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007070449A JP2008231980A (en) 2007-03-19 2007-03-19 Waste heat utilization device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2008231980A true JP2008231980A (en) 2008-10-02

Family

ID=39905094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007070449A Pending JP2008231980A (en) 2007-03-19 2007-03-19 Waste heat utilization device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2008231980A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156315A (en) * 2009-01-05 2010-07-15 Toyota Motor Corp Engine waste heat utilizing device
JP2010281236A (en) * 2009-06-03 2010-12-16 Toyota Motor Corp Warm-up device of internal combustion engine
US20110088397A1 (en) * 2009-10-15 2011-04-21 Kabushiki Kaisha Toyota Jidoshokki Waste heat recovery system
JP2011102577A (en) * 2009-10-15 2011-05-26 Toyota Industries Corp Waste heat regeneration system
WO2012157285A1 (en) * 2011-05-19 2012-11-22 千代田化工建設株式会社 Composite power generation system
WO2013007530A1 (en) 2011-07-14 2013-01-17 Avl List Gmbh Method for controlling a heat recovery device in an internal combustion engine
CN103352772A (en) * 2013-06-25 2013-10-16 天津大学 Combined cycle thermoelectric conversion system utilizing multi-grade waste heat of internal combustion engine
CN103742292A (en) * 2013-12-27 2014-04-23 天津大学 Exhaust gas waste heat recovery system of two-stroke internal combustion engine
CN103742293A (en) * 2013-12-27 2014-04-23 天津大学 Internal combustion engine vapor supercharging waste heat recovery system
US20150089943A1 (en) * 2013-10-02 2015-04-02 Ford Global Technologies, Llc Methods and systems for hybrid vehicle waste heat recovery
CN106703967A (en) * 2017-01-06 2017-05-24 吉林大学 Engineering vehicle temperature control system and method based on double-cooling loop split radiator
CN106988923A (en) * 2017-04-21 2017-07-28 广州沁凌科技有限公司 A kind of car combustion engine energy recovery electricity generation system and method
CN107171592A (en) * 2017-05-11 2017-09-15 北京建筑大学 Cogeneration systems
AT518636B1 (en) * 2016-05-17 2017-12-15 Avl List Gmbh METHOD FOR OPERATING AN INTERNAL COMBUSTION ENGINE FOR A VEHICLE
JP2018200018A (en) * 2017-05-26 2018-12-20 いすゞ自動車株式会社 Circulation device
CN109404105A (en) * 2018-11-08 2019-03-01 潍柴西港新能源动力有限公司 Engine intelligent temperature control cogeneration system
CN115949486A (en) * 2023-02-03 2023-04-11 广东海洋大学 Internal combustion engine waste heat recovery system and transport means

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156315A (en) * 2009-01-05 2010-07-15 Toyota Motor Corp Engine waste heat utilizing device
JP2010281236A (en) * 2009-06-03 2010-12-16 Toyota Motor Corp Warm-up device of internal combustion engine
US20110088397A1 (en) * 2009-10-15 2011-04-21 Kabushiki Kaisha Toyota Jidoshokki Waste heat recovery system
JP2011102577A (en) * 2009-10-15 2011-05-26 Toyota Industries Corp Waste heat regeneration system
WO2012157285A1 (en) * 2011-05-19 2012-11-22 千代田化工建設株式会社 Composite power generation system
WO2013007530A1 (en) 2011-07-14 2013-01-17 Avl List Gmbh Method for controlling a heat recovery device in an internal combustion engine
CN103352772A (en) * 2013-06-25 2013-10-16 天津大学 Combined cycle thermoelectric conversion system utilizing multi-grade waste heat of internal combustion engine
CN104514601A (en) * 2013-10-02 2015-04-15 福特环球技术公司 Methods and systems for hybrid vehicle waste heat recovery
US20150089943A1 (en) * 2013-10-02 2015-04-02 Ford Global Technologies, Llc Methods and systems for hybrid vehicle waste heat recovery
US9587546B2 (en) * 2013-10-02 2017-03-07 Ford Global Technologies, Llc Methods and systems for hybrid vehicle waste heat recovery
CN103742292A (en) * 2013-12-27 2014-04-23 天津大学 Exhaust gas waste heat recovery system of two-stroke internal combustion engine
CN103742293A (en) * 2013-12-27 2014-04-23 天津大学 Internal combustion engine vapor supercharging waste heat recovery system
AT518636B1 (en) * 2016-05-17 2017-12-15 Avl List Gmbh METHOD FOR OPERATING AN INTERNAL COMBUSTION ENGINE FOR A VEHICLE
AT518636A4 (en) * 2016-05-17 2017-12-15 Avl List Gmbh METHOD FOR OPERATING AN INTERNAL COMBUSTION ENGINE FOR A VEHICLE
CN106703967B (en) * 2017-01-06 2022-10-28 吉林大学 Engineering vehicle temperature control system and method based on double-cooling-loop split radiator
CN106703967A (en) * 2017-01-06 2017-05-24 吉林大学 Engineering vehicle temperature control system and method based on double-cooling loop split radiator
CN106988923A (en) * 2017-04-21 2017-07-28 广州沁凌科技有限公司 A kind of car combustion engine energy recovery electricity generation system and method
CN107171592A (en) * 2017-05-11 2017-09-15 北京建筑大学 Cogeneration systems
JP2018200018A (en) * 2017-05-26 2018-12-20 いすゞ自動車株式会社 Circulation device
CN109404105A (en) * 2018-11-08 2019-03-01 潍柴西港新能源动力有限公司 Engine intelligent temperature control cogeneration system
CN109404105B (en) * 2018-11-08 2023-12-29 潍柴西港新能源动力有限公司 Engine with a motor Intelligent temperature control Combined heat and power system
CN115949486A (en) * 2023-02-03 2023-04-11 广东海洋大学 Internal combustion engine waste heat recovery system and transport means
CN115949486B (en) * 2023-02-03 2024-03-08 广东海洋大学 Internal combustion engine waste heat recovery system and transport means

Similar Documents

Publication Publication Date Title
JP2008231980A (en) Waste heat utilization device for internal combustion engine
JP5018592B2 (en) Waste heat recovery device
JP5008441B2 (en) Waste heat utilization device for internal combustion engine
JP4135626B2 (en) Waste heat utilization equipment for heating elements
JP5328527B2 (en) Waste heat regeneration system and control method thereof
US20110088397A1 (en) Waste heat recovery system
JP5338730B2 (en) Waste heat regeneration system
EP2345796A2 (en) Waste heat recovery system
WO2009133620A1 (en) Waste heat utilization device for internal combustion
JP2009287433A (en) Waste heat utilizing device for internal combustion engine
JP2005201067A (en) Rankine cycle system
RU2753503C1 (en) Vehicle temperature control system
JP2019085876A (en) Heat cycle system
JP2014231738A (en) Waste heat regeneration system
WO2013065371A1 (en) Waste-heat recovery system
JP2007327668A (en) Refrigerating device comprising waste heat utilization device
CN106414982B (en) The waste heat utilization device of engine
JP2013113192A (en) Waste heat regeneration system
WO2009133619A1 (en) Waste heat utilization device for internal combustion
JP4140543B2 (en) Waste heat utilization equipment
JP2008145022A (en) Refrigerating device comprising waste heat utilization device
JP2008133728A (en) Waste heat utilization device for internal combustion engine
WO2016056611A1 (en) Waste heat recovery device
JP2008184906A (en) Heat recovery system in internal combustion engine
JP5084233B2 (en) Waste heat utilization device for internal combustion engine