WO2012074031A1 - Iii族窒化物半導体基板及びその製造方法、並びに半導体発光デバイス及びその製造方法 - Google Patents

Iii族窒化物半導体基板及びその製造方法、並びに半導体発光デバイス及びその製造方法 Download PDF

Info

Publication number
WO2012074031A1
WO2012074031A1 PCT/JP2011/077727 JP2011077727W WO2012074031A1 WO 2012074031 A1 WO2012074031 A1 WO 2012074031A1 JP 2011077727 W JP2011077727 W JP 2011077727W WO 2012074031 A1 WO2012074031 A1 WO 2012074031A1
Authority
WO
WIPO (PCT)
Prior art keywords
group iii
iii nitride
plane
nitride semiconductor
semiconductor substrate
Prior art date
Application number
PCT/JP2011/077727
Other languages
English (en)
French (fr)
Inventor
久保 秀一
宏隆 池田
浩久 伊藤
真二郎 門野
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to KR1020137014593A priority Critical patent/KR20130141576A/ko
Publication of WO2012074031A1 publication Critical patent/WO2012074031A1/ja
Priority to US13/908,428 priority patent/US20130264606A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1856Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds

Definitions

  • the present invention relates to a group III nitride semiconductor substrate and a manufacturing method thereof, a semiconductor light emitting device and a manufacturing method thereof. More specifically, the present invention relates to a group III nitride semiconductor substrate capable of growing a high-quality crystal on a main surface, and a semiconductor light emitting device provided by growing a group III nitride semiconductor using the substrate.
  • Semiconductor light-emitting devices such as LEDs are generally manufactured by growing a group III nitride semiconductor crystal on a substrate. At this time, if a group III nitride crystal is grown on a heterogeneous substrate, an efficient semiconductor light emitting device cannot be provided due to crystal defects. However, a group III nitride is formed on the same group III nitride substrate. It is known that high performance semiconductor light emitting devices can be provided by homoepitaxial growth of physical crystals.
  • a large group III nitride substrate having a polar surface as a main surface can be produced relatively easily, but a large group III nitride substrate having a nonpolar surface or a semipolar surface as a main surface is good. It is not easy to manufacture a substrate. For this reason, various investigations have been made on a method for producing a large group III nitride substrate having a nonpolar plane or a semipolar plane as a main surface, and several production methods have been proposed. For example, a method of manufacturing a group III nitride substrate by arranging off-substrates with nonpolar faces as seeds and growing crystals thereon has been proposed (see Patent Document 1).
  • Patent Document 2 There has also been proposed a method for manufacturing a group III nitride substrate by arranging seeds having various semipolar planes and growing crystals on the seeds. Furthermore, a method of manufacturing a group III nitride substrate by arranging seeds having a main surface such as a (20-21) plane and growing a crystal thereon has also been proposed (see Patent Document 3).
  • Patent Document 4 discloses that after a GaN thin film having a (10-10) plane as a main surface is grown on a (10-10) plane of a sapphire substrate, a GaN crystal having a thickness of 1.5 mm is further formed by a liquid phase method. An example of growing is described. According to this document, it is reported that the stacking fault of the grown GaN crystal whose main surface is the (10-10) plane is 10 4 cm ⁇ 1 .
  • the present inventors provide a group III nitride substrate capable of growing a high-quality crystal on the main surface. The study was advanced as a purpose. Further, as a first object of the present invention, investigations have been made to provide a semiconductor light emitting device having high luminous efficiency by growing a group III nitride crystal on such a substrate.
  • a method in which a crystal is homoepitaxially grown on a group III nitride seed having a polar surface as a main surface, and then cut out so that a desired surface appears can obtain a group III nitride semiconductor substrate with few stacking faults. There is a problem that a substrate of a size cannot be obtained.
  • a crystal is homoepitaxially grown on a group III nitride seed having a nonpolar surface such as the (10-10) surface as the main surface described in Patent Document 4, and then the (10-10) surface is the main surface.
  • the present inventors examined a method of cutting out the substrate, it became clear for the first time that there was a problem that stacking faults would increase when a substrate was produced by growing a thick film crystal. That is, in the study by the present inventors, the group III nitride crystal obtained by homoepitaxial growth on the group III nitride seed having the (10-10) plane as the main surface has the (0001) plane as the main surface. As compared with the group III nitride crystal obtained by homoepitaxial growth on the group III nitride seed, the problem of having many stacking faults when the thick film is grown was found. Thus, the conventional method has few stacking faults and cannot provide a large group III nitride semiconductor substrate.
  • the present inventors have provided a new manufacturing method capable of providing a large group III nitride semiconductor substrate with few stacking faults.
  • the investigation was advanced as the second object of the invention.
  • the present inventors can obtain a crystal with few stacking faults and particularly with stacking faults in a direction parallel to the polar plane being remarkably suppressed when homoepitaxial growth is further performed on the main surface of the substrate.
  • Providing such a group III nitride semiconductor substrate was also studied as a second object.
  • the present inventors analyzed a group III nitride substrate manufactured according to the conventional method, and found that there were warpages in each of the two axes perpendicular to each other on the main surface of the substrate.
  • Prior art documents including Patent Documents 1 to 3 do not particularly describe such warpage of the substrate in the two axial directions.
  • the present inventors have found that these warpages are related to the quality of crystals grown on the substrate. Considering that there is a possibility of having an influence, we investigated the relationship between the warpage of the substrate and the quality of the crystal grown on the substrate.
  • the first aspect of the present invention has been provided on the basis of such findings, and includes the following aspects.
  • a group III nitride semiconductor substrate having a surface other than the C-plane as a main surface, the tilt angle distribution W1 of the main surface in the direction of the intersection of the main surface and the C-plane, and the direction orthogonal to the line of intersection A group III nitride semiconductor substrate having a ratio (W1 / W2) to a tilt angle distribution W2 of the main surface of less than 1.
  • [3] The group III nitride semiconductor substrate according to [1] or [2], wherein the tilt angle distribution W1 is less than ⁇ 1 ° per 40 mm interval.
  • [4] The group III nitride semiconductor substrate according to any one of [1] to [3], wherein the tilt angle distribution W2 is ⁇ 0.01 or more and less than ⁇ 1 ° per 40 mm interval.
  • [5] A method for producing a group III nitride semiconductor crystal, comprising growing a group III nitride semiconductor crystal on the group III nitride semiconductor substrate according to any one of [1] to [4].
  • [6] A method for producing a semiconductor light emitting device, comprising a step of growing a group III nitride semiconductor crystal on the group III nitride semiconductor substrate according to any one of [1] to [4].
  • [7] A semiconductor light-emitting device manufactured by the manufacturing method according to [6].
  • [8] The semiconductor light-emitting device according to [7], which is an LED.
  • the second aspect of the present invention includes the following aspects. [9] (1) a first step of obtaining a group III nitride semiconductor crystal by performing homoepitaxial growth on the semipolar surface of a group III nitride seed having a semipolar surface as a main surface; and (2) A group III nitride semiconductor comprising a second step of obtaining a group III nitride semiconductor substrate having a main surface different from the semipolar plane from the group III nitride semiconductor crystal.
  • the group III nitride seed includes a plurality of group III nitride seeds, and the plurality of group III nitride seeds have a surface orientation distribution of ⁇ 0.5 between the seeds on the same plane.
  • the group III nitride semiconductor substrate according to the first aspect of the present invention is used, a group III nitride crystal having excellent quality can be grown thereon. Moreover, if the manufacturing method by the 1st aspect of this invention is used, the semiconductor light-emitting devices, such as a group III nitride crystal and LED which have the outstanding quality, can be manufactured simply. The semiconductor light emitting device of the present invention has high luminous efficiency. In addition, according to the method for producing a group III nitride semiconductor substrate according to the second aspect of the present invention, it is possible to easily provide a large group III nitride semiconductor substrate with few stacking faults.
  • FIG. 10 is a diagram showing a PL intensity (low temperature) distribution caused by stacking faults in the vicinity of 3.41 eV with respect to the band edge PL intensity of the (10-10) plane slice substrate of Substrate Production Example 6. It is a figure which shows PL intensity (low temperature) distribution resulting from the stacking fault of 3.41 eV with respect to the band edge PL intensity of the (20-21) plane slice board
  • group III nitride semiconductor substrate of the present invention will be described in detail.
  • the description of the constituent elements described below may be made based on typical embodiments and specific examples of the present invention, but the present invention is not limited to such embodiments and specific examples.
  • the “main surface” of a group III nitride crystal refers to the widest surface of the group III nitride crystal and the surface on which crystal growth should be performed.
  • the “C plane” is a plane equivalent to the ⁇ 0001 ⁇ plane in a hexagonal crystal structure (wurtzite type crystal structure), and is a polar plane.
  • the C plane is a group III plane or a group V plane, and in gallium nitride, it corresponds to a Ga plane or an N plane, respectively.
  • the “M plane” means ⁇ 1-100 ⁇ plane, ⁇ 01-10 ⁇ plane, [ ⁇ 1010] plane, ⁇ 1100 ⁇ plane, ⁇ 0-110 ⁇ plane, ⁇ 10-10] ⁇
  • Non-polar planes comprehensively represented as planes, specifically, (1-100) plane, (01-10) plane, (-1010) plane, (-1100) plane, (0-110) Plane, meaning (10-10) plane.
  • the “A plane” means ⁇ 2-1-10 ⁇ plane, ⁇ -12-10 ⁇ plane, ⁇ -1-120 ⁇ plane, ⁇ -2110 ⁇ plane, ⁇ 1-210 ⁇ plane.
  • ⁇ 11-20 ⁇ planes which are comprehensively represented as planes, specifically, (2-1-10) plane, (-12-10) plane, (-1-120) plane, ( -2110) plane, (1-210) plane, and (11-20) plane.
  • c-axis”, “m-axis”, and “a-axis” mean axes perpendicular to the C-plane, M-plane, and A-plane, respectively.
  • the “off angle” is an angle representing a deviation of a certain surface from the exponential surface.
  • tilt angle is an angle representing a deviation of a certain crystal axis with respect to a reference crystal axis in the crystal plane.
  • the angle represents how much the crystal axis at other positions on the main surface is deviated from the center crystal axis with reference to the crystal axis at the center of the main surface of the crystal plane.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • a first aspect of the present invention is a group III nitride semiconductor substrate having a surface other than the C plane as a main surface, the tilt angle distribution W1 of the main surface in the direction of the intersection of the main surface and the C surface, A group III nitride semiconductor substrate having a ratio (W1 / W2) to a tilt angle distribution W2 of a main surface in a direction perpendicular to the line is less than 1.
  • the group III nitride semiconductor substrate of the present invention is a group III nitride semiconductor substrate having a main surface other than the C plane.
  • the main surface of the group III nitride semiconductor substrate of the present invention may be a nonpolar surface, a semipolar surface, or a surface inclined from these surfaces.
  • the “nonpolar plane” means a plane in which both a group III element and a nitrogen element are present on the surface and the abundance ratio thereof is 1: 1.
  • the M surface and the A surface can be cited as preferable surfaces.
  • the “semipolar plane” means, for example, that when a group III nitride is a hexagonal crystal and its main surface is represented by (hklm), at least two of h, i, and k are not 0. , And the surface where l is not 0.
  • the semipolar plane is a c-plane, that is, a plane inclined with respect to the (0001) plane, and the presence of only one of the group III element and nitrogen element or the C-plane is present on the surface. It means a surface whose ratio is not 1: 1.
  • h, k, l and m are each independently preferably an integer of ⁇ 5 to 5, more preferably an integer of ⁇ 2 to 2, and preferably a low index surface. .
  • Examples of the semipolar plane that can be preferably used as the main surface of the group III nitride semiconductor substrate of the present invention include (10-11) plane, (10-1-1) plane, (20-21) plane, (20-2-) 1) plane, (10-12) plane, (10-1-2) plane, and the like.
  • the off angle is a range in which the tilted plane does not become a C plane. Select within.
  • the off angle is preferably 0.01 ° or more, more preferably 0.05 ° or more, and further preferably 0.1 ° or more.
  • the off angle is preferably 10 ° or less, more preferably 5 ° or less, and further preferably 3 ° or less.
  • the inclination direction is preferably selected from the c-axis direction.
  • the surface of the group III nitride semiconductor substrate of the present invention is a semipolar surface
  • the surface is preferably inclined in the c-axis direction from the M-plane or M-plane, or inclined in the c-axis direction from the A-plane or A-plane. More preferably, it is an M plane or a plane inclined from the M plane in the c-axis direction.
  • the main surface is a surface inclined in the c-axis direction from the M-plane or the A-plane
  • specific examples of the surface inclined in the c-axis direction from the M-plane include the (20-21) plane and the (10-11) plane. be able to.
  • the group III nitride semiconductor substrate of the present invention has a ratio (W1) between the tilt angle distribution W1 of the main surface in the direction of the intersection of the main surface and the C plane and the tilt angle distribution W2 of the main surface in the direction perpendicular to the line of intersection. / W2) is less than 1.
  • W1 the tilt angle distribution W1 of the main surface in the x direction and y orthogonal to the x direction.
  • the ratio with the tilt angle distribution W2 of the main surface in the direction is less than the specified value.
  • the intersecting direction of the main surface and the C-plane is the a-axis direction
  • the ratio (W1 / W2) is the tilt angle distribution of the main surface in the a-axis direction. It can be obtained by dividing by the tilt angle distribution.
  • the principal surface is the A surface
  • the intersecting direction of the principal surface and the C surface is the m-axis direction
  • the ratio (W1 / W2) is the tilt angle distribution of the principal surface in the m-axis direction. It can be obtained by dividing by the tilt angle distribution.
  • the tilt angle distribution represents the magnitude of warpage.
  • the tilt angle distribution of the main surface in the present invention is obtained by measuring the tilt angle at three or more measurement points on each axis. For specific measurement methods, examples described later can be referred to.
  • the tilt angle distribution is expressed in terms of 40 mm intervals in the present invention.
  • the ratio of tilt angle distribution (W1 / W2) in the group III nitride semiconductor substrate of the present invention is preferably less than 1, more preferably less than 0.8, and even more preferably less than 0.5. . Further, the lower limit is preferably 0.01 or more, more preferably 0.02 or more, and further preferably 0.04 or more.
  • the tilt angle distribution W1 in the group III nitride semiconductor substrate of the present invention is preferably less than ⁇ 1 ° per 40 mm interval, more preferably less than ⁇ 0.5 °, and less than ⁇ 0.2 °. Is more preferable.
  • the tilt angle distribution W1 is most preferably zero, but when it takes a finite value, for example, it can be set to ⁇ 0.01 ° or more.
  • the tilt angle distribution W1 in the group III nitride semiconductor substrate of the present invention described above is paraphrased by the warpage of the substrate in the direction of the intersection of the principal surface and the C plane.
  • the warpage of the substrate in the intersecting direction is preferably less than 2 ° per 40 mm, more preferably less than 1 °, more preferably less than 0.85 °, and less than 0.65 °. More preferably, it is less than 0.45 °, more preferably less than 0.4 °, and particularly preferably less than 0.25 °.
  • the tilt angle distribution W2 in the group III nitride semiconductor substrate of the present invention is preferably less than ⁇ 1 ° per 40 mm interval, more preferably less than ⁇ 0.8 °, and less than ⁇ 0.5 °. Is more preferable.
  • the tilt angle distribution W2 can be set to ⁇ 0.01 ° or more, for example.
  • the tilt angle distribution W2 in the group III nitride semiconductor substrate of the present invention described above is paraphrased as the warpage of the substrate in the direction perpendicular to the intersecting line.
  • the warpage of the substrate in the direction perpendicular to the intersecting line is preferably less than 2 ° per 40 mm, more preferably less than 1.6 °, even more preferably less than 1 °, and 0.80.
  • the difference between the warp of the substrate per 40 mm in the direction of the intersection of the principal surface and the C surface and the warp of the substrate per 40 mm in the direction perpendicular to the intersecting line is usually 0.02 to 1.0 °,
  • the angle is preferably 0.03 to 0.75 °, more preferably 0.05 to 0.5 °.
  • the warpage of the substrate can be measured by the same method as the tilt angle distribution measuring method in the examples described later.
  • the group III nitride semiconductor substrate of the present invention differs from the conventional group III nitride semiconductor substrate in which the tilt angle distributions W1 and W2 are both large and the tilt angle distribution ratio (W1 / W2) is small. It is also characterized by a small absolute value and a small tilt angle distribution ratio (W1 / W2). Such a group III nitride semiconductor substrate cannot be conventionally provided, and has been provided for the first time by the present invention. Further, if a group III nitride semiconductor substrate having a tilt angle distribution ratio (W1 / W2) less than a specific value is used, a group III nitride semiconductor having excellent properties on its main surface can be grown. This has been revealed for the first time by the present invention.
  • Group III nitride semiconductor The type of group III nitride semiconductor constituting the substrate of the present invention is not particularly limited.
  • gallium nitride (GaN), aluminum nitride (AlN), indium nitride (InN), or a mixed crystal thereof can be given.
  • the mixed crystal include AlGaN, InGaN, AlInN, and AlInGaN.
  • Preferred is a mixed crystal containing gallium nitride (GaN) and Ga, and more preferred is gallium nitride (GaN).
  • the size of the group III nitride semiconductor substrate of the present invention is preferably large enough to grow crystals on its main surface.
  • the maximum diameter can be 10 mm or more, and further can be 17 mm or more.
  • the shape can take various shapes such as a rectangular parallelepiped, a cube, and a cylinder, and is not particularly limited.
  • the method for producing a group III nitride semiconductor substrate of the present invention is not particularly limited as long as it can produce a substrate that satisfies the conditions of the present invention.
  • the group III nitride semiconductor substrate of the present invention can be manufactured, for example, through a process of growing a group III nitride semiconductor on the same type of group III nitride free-standing substrate.
  • the group III nitride free-standing substrate is, for example, the same main surface as the main surface of the group III nitride semiconductor substrate to be manufactured or a surface inclined from the main surface from a group III nitride crystal mass grown in a specific direction. It can manufacture by cutting out so that may become a main surface. For example, when the group III nitride semiconductor is a hexagonal crystal, it is cut out from the group III nitride crystal block produced by (0001) plane growth so that the M plane or a plane slightly inclined from the M plane becomes the main plane. Thus, a group III nitride free-standing substrate can be manufactured.
  • This group III nitride free-standing substrate can be used for growing a group III nitride semiconductor substrate having an M plane as a main surface.
  • the inclination angle is preferably 60 ° or less, more preferably 45 ° or less, and 30 ° or less. More preferably.
  • the total area of the (000-1) plane is larger than the total area of the (0001) plane. This is preferable for further reducing the W1 / W2 ratio of the crystal to be grown.
  • the size of the group III nitride free-standing substrate to be cut out is required to allow crystals to grow on the free-standing substrate.
  • the shape and size corresponding to the shape of the group III nitride semiconductor substrate to be manufactured are selected.
  • a group III nitride free-standing substrate having a rectangular shape, a cubic diameter, or a cylindrical shape can be used.
  • the length (L1) in the direction of the intersection of the main surface and the C surface may be longer than the length (L2) in the direction in the main surface perpendicular to the main surface. preferable.
  • the length ratio (L1 / L2) is preferably 1 or more, more preferably 1.5 or more, and even more preferably 2 or more.
  • the length ratio (L1 / L2) is preferably 10 or less, more preferably 7 or less, and even more preferably 5 or less.
  • the thickness of the group III nitride free-standing substrate can be appropriately determined in consideration of the ease of handling, the ease of crystal growth on the free-standing substrate, etc., for example 0.2 mm or more, and further 0.3 mm or more For example, it can be 5 mm or less, and further can be 2 mm or less.
  • a group III nitride free-standing substrate can be used alone and a group III nitride crystal can be grown thereon, a plurality of large group III nitride crystals can be easily produced. It is preferable to grow the group III nitride crystal after arranging the group III nitride free-standing substrates of the above as a seed. When arranging a plurality of group III nitride free-standing substrates, it is preferable to arrange them so that their crystal orientations are aligned on the same plane, so that at least adjacent self-standing substrates are in contact with each other. In addition, since crystal orientation means the inclination of the principal surface normal direction in each seed, aligning crystal orientation is synonymous with aligning off angles between seeds.
  • a group III nitride free-standing substrate having the same shape as a rectangular parallelepiped or a cube including a main surface having a side perpendicular to the main surface and the C plane and a side orthogonal to the main surface, the main surface and C
  • the sides in the direction of the line of intersection with the surface are in contact with each other, and preferably the sides perpendicular to the surface are in contact with each other.
  • a rectangular parallelepiped group III nitride free-standing substrate (seed 110) having an M-plane having a side in the a-axis direction and a side in the c-axis direction as shown in FIG. It can be arranged so that the sides in the direction touch each other and the sides in the c-axis direction touch each other.
  • the sum (Sa) of the distances between the sides in the a-axis direction, which is the intersecting direction of the main surface and the C-plane is the sum of the distances where the other sides in the c-axis direction are in contact (Sc). ).
  • the ratio of the sum of distances (Sa / Sc) is preferably 1 or more, more preferably 2 or more, and further preferably 2.5 or more. Further, the ratio of the sum of distances (Sa / Sc) is preferably 20 or less, more preferably 15 or less, further preferably 10 or less, and still more preferably 8 or less. It is particularly preferred that When the ratio of the sum of the distances is equal to or greater than the lower limit, it is preferable to align the off angles in the ⁇ 0001> (c-axis) direction in each group III nitride free-standing substrate.
  • the intersecting direction between the main surface of each free-standing substrate and the C surface, and the main surface and C surface between the free-standing substrates is preferable to align the intersecting direction between the main surface of each free-standing substrate and the C surface, and the main surface and C surface between the free-standing substrates. It is preferable that the distribution in the direction of the line of intersection is within ⁇ 5 °, more preferably within ⁇ 3 °, and even more preferably within ⁇ 1 °, ⁇ It is preferable to align so that it may be within 0.5 degree.
  • a method for growing a group III nitride crystal on a group III nitride free-standing substrate for example, a hydride vapor phase epitaxy (HVPE) method, a metal organic chemical vapor deposition (MOCVD) method, a vapor phase method such as a sublimation method, A liquid phase method such as a liquid phase epitaxy (LPE) method, an ammonothermal method, or the like can be employed, and the HVPE method can be preferably used.
  • HVPE hydride vapor phase epitaxy
  • MOCVD metal organic chemical vapor deposition
  • LPE liquid phase epitaxy
  • ammonothermal method or the like
  • a production apparatus capable of growing a group III nitride crystal on a group III nitride free-standing substrate can be appropriately selected and used.
  • the manufacturing apparatus of the HVPE method is demonstrated as an example of a preferable manufacturing apparatus, referring FIG.
  • the manufacturing apparatus of FIG. 3 includes in a reactor 100 a susceptor 108 for mounting a seed 110 and a reservoir 106 for storing a group III nitride semiconductor material to be grown.
  • introduction pipes 101 to 105 for introducing gas into the reactor 100 and an exhaust pipe 109 for exhausting are installed.
  • a heater 107 for heating the reactor 100 from the side surface is installed.
  • Reactor material gas type of ambient gas
  • quartz sintered boron nitride, stainless steel, or the like is used.
  • a preferred material is quartz.
  • the reactor 100 is filled with atmospheric gas in advance before starting the reaction.
  • the atmospheric gas include inert gases such as hydrogen, nitrogen, He, Ne, and Ar. These gases may be mixed and used.
  • the material of the susceptor 108 is preferably carbon, and more preferably the surface is coated with SiC.
  • the shape of the susceptor 108 is not particularly limited as long as the group III nitride seed used in the present invention can be installed, but there is no structure in the vicinity of the crystal growth surface during crystal growth. preferable. If there is a structure that can grow in the vicinity of the crystal growth surface, a polycrystal adheres to the structure, and HCl gas is generated as a product to adversely affect the crystal to be grown.
  • the contact surface between the seed 110 and the susceptor 108 is preferably separated from the main surface (crystal growth surface) of the seed by 1 mm or more, more preferably 3 mm or more, and further preferably 5 mm or more.
  • the reservoir 106 is charged with a group III nitride semiconductor material to be grown. Specifically, a raw material to be a group III source is added. Examples of such a group III source material include Ga, Al, and In.
  • a gas that reacts with the raw material put in the reservoir 106 is supplied from an introduction pipe 103 for introducing the gas into the reservoir 106.
  • HCl gas can be supplied from the introduction pipe 103.
  • the carrier gas may be supplied from the introduction pipe 103 together with the HCl gas.
  • the carrier gas include hydrogen, nitrogen, an inert gas such as He, Ne, and Ar. These gases may be mixed and used.
  • a raw material gas serving as a nitrogen source is supplied. Usually, NH 3 is supplied.
  • a carrier gas is supplied from the introduction pipe 101.
  • the carrier gas the same carrier gas supplied from the introduction pipe 103 can be exemplified. This carrier gas also has an effect of suppressing the reaction in the gas phase between the source gases and preventing the polycrystal from adhering to the nozzle tip.
  • a dopant gas can also be supplied from the introduction pipe 102.
  • an n-type dopant gas such as SiH 4 , SiH 2 Cl 2 , or H 2 S can be supplied.
  • Gas introduction method The gases supplied from the introduction pipes 101 to 104 may be exchanged with each other and supplied from different introduction pipes.
  • the source gas and the carrier gas serving as a nitrogen source may be mixed and supplied from the same introduction pipe.
  • a carrier gas may be mixed from another introduction pipe.
  • the gas exhaust pipe 109 can be installed on the top, bottom, and side surfaces of the reactor inner wall. From the viewpoint of dust removal, it is preferably located below the crystal growth end, and more preferably a gas exhaust pipe 109 is installed on the bottom of the reactor as shown in FIG.
  • Crystal growth using the above production apparatus is preferably performed at 950 ° C. or higher, more preferably at 970 ° C. or higher, and further preferably at 980 ° C. or higher. Moreover, it is preferable to carry out at 1120 degrees C or less, It is more preferable to carry out at 1100 degrees C or less, It is further more preferable to carry out at 1090 degrees C or less. In order to further reduce the W1 / W2 ratio, it is preferable to control so that the temperature during crystal growth does not gradually decrease. The temperature decrease during crystal growth is preferably controlled within 60 ° C, more preferably controlled within 40 ° C, further preferably controlled within 20 ° C, and particularly preferably controlled within 10 ° C.
  • the pressure in the reactor is preferably 10 kPa or more, more preferably 30 kPa or more, and further preferably 50 kPa or more. Moreover, it is preferable to set it as 200 kPa or less, It is more preferable to set it as 150 kPa or less, It is further more preferable to set it as 120 kPa or less.
  • Crystal growth rate The growth rate of crystal growth using the above-described manufacturing apparatus varies depending on the growth method, growth temperature, raw material gas supply amount, crystal growth plane orientation, etc., but generally 5 ⁇ m / h to 500 ⁇ m /
  • the range of h is preferably 10 ⁇ m / h or more, more preferably 50 ⁇ m / h or more, and further preferably 70 ⁇ m or more.
  • the growth rate can be controlled by appropriately setting the type of carrier gas, the flow rate, the supply port-crystal growth end distance, and the like.
  • slicing outline processing, surface polishing
  • outer shape processing surface polishing
  • surface polishing any one of these methods may be selected and used, or may be used in combination.
  • slicing, contour processing, and surface polishing can be performed in this order. If it demonstrates in detail about each process, a slice can be performed by cut
  • the outline processing means making the substrate shape into a circle or a rectangle, and examples thereof include dicing, outer periphery polishing, and a method of cutting with a wire.
  • surface polishing include a method of polishing the surface using abrasive grains such as diamond abrasive grains, CMP (chemical mechanical polishing), damage layer etching by RIE after mechanical polishing, and the like.
  • a group III nitride semiconductor crystal can be produced by growing a crystal on the main surface of the group III nitride semiconductor substrate of the present invention.
  • Examples of a method for growing a group III nitride crystal on a group III nitride semiconductor substrate include liquid phases such as hydride vapor phase epitaxy (HVPE), metal organic chemical vapor deposition (MOCVD), and LPE. Method, ammonothermal method and the like, and HVPE method can be preferably used. About the manufacturing apparatus of HVPE method, what is shown in FIG. 3 can be illustrated.
  • As for the production conditions normal Group III nitride crystal growth conditions can be appropriately selected and employed.
  • the group III nitride semiconductor crystal grown using the group III nitride semiconductor substrate of the present invention has high crystal quality and can be preferably used for a semiconductor light emitting device or the like.
  • a group III nitride semiconductor substrate having a large size can be provided, it is preferable to use a substrate according to the size of the group III nitride semiconductor crystal to be manufactured.
  • a plurality of group III nitride semiconductor substrates can be arranged on a plane, and a group III nitride semiconductor crystal can be grown so as to straddle the group III nitride semiconductor substrate.
  • a group III nitride semiconductor crystal is grown on one group III nitride semiconductor substrate.
  • a second aspect of the present invention is a method for manufacturing a group III nitride semiconductor substrate, which includes the following first and second steps.
  • the first step in the method for producing a group III nitride semiconductor substrate of the present invention is to perform homoepitaxial growth on the semipolar surface of a group III nitride seed having a semipolar surface as a main surface to produce a group III nitride semiconductor crystal. It is a process to obtain.
  • the main surface of the group III nitride seed refers to the widest surface in the structure and the surface on which crystal growth is to be performed.
  • the seed used in the first step is composed of group III nitride.
  • group III nitride examples include gallium nitride (GaN), aluminum nitride (AlN), indium nitride (InN), and mixed crystals thereof.
  • a seed composed of the same group III nitride as the group III nitride semiconductor substrate manufactured by the manufacturing method of the present invention is selected.
  • GaN gallium nitride
  • GaN gallium nitride
  • AlN aluminum nitride
  • InN indium nitride
  • the seed and the group III nitride semiconductor substrate do not need to have completely the same composition. If the composition of 99.75% (atomic ratio) or more matches, the seed of the same group III nitride is used.
  • the seed of the same group III nitride is used.
  • a group III nitride crystal doped with Si, oxygen or the like is grown on a seed composed of GaN, it is referred to as homoepitaxial growth because the same group III nitride is grown.
  • the group III nitride seed used in the first step has a semipolar surface as the main surface.
  • the main surface of the group III nitride seed used in the first step is preferably selected so that the angle with respect to the main surface of the group III nitride semiconductor substrate manufactured by the manufacturing method of the present invention falls within a specific range. Specifically, it is possible to select a group III nitride seed whose main surface is a surface intersecting with a main surface of a group III nitride semiconductor substrate manufactured by the manufacturing method of the present invention at an angle of 13 to 49 °.
  • a group III nitride seed having a plane main surface intersecting at an angle of 13 to 43 ° and more preferably selecting a group III nitride seed having a plane main surface intersecting at an angle of 13 to 30 °. More preferably.
  • the (10-11) plane or the (10-1-1) plane intersecting at 28 ° is set as the main surface.
  • it is a group III nitride seed having a (20-21) plane or a (20-2-1) plane as a principal plane.
  • group III nitride seeds it is preferable because the stacking faults of the obtained group III nitride semiconductor crystal are reduced.
  • the total area of the (0001) plane of the seed is preferably smaller than the total area of the (000-1) plane. Using such a seed is preferable because the tilt angle distribution W2 can be reduced.
  • a plurality of group III nitride seeds may be used.
  • group III nitride free-standing substrates it is preferable to arrange them so that their crystal orientations are aligned on the same plane, so that at least adjacent self-standing substrates are in contact with each other.
  • luminous efficiency is improved when an LED structure is formed.
  • a group III nitride free-standing substrate having the same shape as a rectangular parallelepiped or a cube including a main surface having a side perpendicular to the main surface and the C plane and a side orthogonal to the main surface, the main surface and C
  • the sides in the direction of the line of intersection with the surface are in contact with each other, and preferably the sides perpendicular to the surface are in contact with each other.
  • a rectangular parallelepiped group III nitride free-standing substrate (seed 110) having an M-plane having a side in the a-axis direction and a side in the c-axis direction as shown in FIG.
  • the sum (Sa) of the distances between the sides in the a-axis direction, which is the intersecting direction of the main surface and the C-plane, is the sum of the distances where the other sides in the c-axis direction are in contact (Sc). ).
  • the ratio of the sum of distances (Sa / Sc) is preferably 1 or more, more preferably 2 or more, and further preferably 2.5 or more.
  • the tilt angle distribution W1 can be reduced, which is preferable.
  • the ratio of the sum of distances (Sa / Sc) is preferably 20 or less, more preferably 15 or less, further preferably 10 or less, and still more preferably 8 or less. It is particularly preferred that
  • the plurality of group III nitride seeds may be those having the same semipolar plane or those having different semipolar planes. Since the obtained group III nitride semiconductor crystal becomes uniform, the plane orientation distribution of the main surface between the seeds is preferably within ⁇ 5 °, more preferably within ⁇ 3 °, and even more preferably ⁇ 1 °. Within the range, and most preferably within ⁇ 0.5 °. Since the plane orientation means the inclination of the principal surface normal direction in each seed, the distribution of the plane orientation within ⁇ 5 ° is synonymous with the off-angle within ⁇ 5 °. is there.
  • the off angle in the ⁇ 0001> (c-axis) direction in each seed is not particularly limited, and the group III nitride seeds may be arranged adjacent to each other in the same plane, or may be arranged adjacent to each other in a plane.
  • the group III nitride semiconductor obtained on the seed junction is obtained by disposing the main surfaces in the same direction. The crystallinity tends to be good, which is preferable.
  • the homoepitaxial growth in the first step is to grow a group III nitride of the same type as the group III nitride constituting the seed on the semipolar surface of the seed. At this time, the growth may be performed on a surface other than the semipolar surface which is the main surface of the group III nitride seed. Further, the homoepitaxial growth in the first step is not necessarily performed in a direction perpendicular to the main surface as long as it grows on the main surface of the group III nitride seed. Also, the direction of growth may change during the first step.
  • the thickness of the crystal grown on the semipolar surface of the group III nitride seed can be appropriately determined according to the size of the group III nitride semiconductor substrate to be finally obtained.
  • the thickness of the crystal grown on the semipolar surface of the seed can be, for example, 1 to 51 mm, 3 to 24 mm, or 10 to 14 mm.
  • the thickness here means the thickness in the direction perpendicular to the semipolar plane of the seed.
  • the specific method of homoepitaxial growth is not particularly limited.
  • a hydride vapor deposition method (HVPE) method, a metal organic chemical vapor deposition method (MOCVD method), a liquid phase method, an ammonothermal method, or the like can be adopted.
  • a monothermal method can be preferably used.
  • the production apparatus and production conditions that can be used are the same as in the first aspect of the present invention.
  • ⁇ Content of the second step> In the second step in the method for producing a group III nitride semiconductor substrate of the present invention, a substrate having a main surface different from the semipolar plane is obtained from the group III nitride semiconductor crystal obtained in the first step. It is a process.
  • the main surface of the group III nitride semiconductor substrate obtained in the second step is not particularly limited as long as it is a surface different from the main surface of the seed.
  • it may be a nonpolar surface or a semipolar surface.
  • nonpolar surfaces include ⁇ 10-10 ⁇ planes and ⁇ 11-20 ⁇ planes.
  • the ⁇ 10-10 ⁇ plane here is a so-called “M plane”, which is a plane equivalent to the (10-10) plane in the hexagonal crystal structure (wurtzite type crystal structure). It means (1-100) plane, (-1100) plane, (01-10 plane), (0-110) plane, (10-10) plane, (-1010) plane.
  • the ⁇ 11-20 ⁇ plane is a so-called “A plane”, which is a plane equivalent to the (11-20) plane in the hexagonal crystal structure (wurtzite-type crystal structure). It means (11-20) plane, (-1-120) plane, (1-210) plane, (-12-10) plane, (-2110) plane, (2-1-10) plane.
  • Examples of the semipolar plane include (10-11) plane, (10-1-1) plane, (20-21) plane, (20-2-1) plane, and the like.
  • examples of a method for obtaining a target group III nitride semiconductor substrate from the group III nitride semiconductor crystal obtained in the first step include polishing, cutting, and etching. Any one of these methods may be selected and used, or may be used in combination. When used in combination, polishing is preferably performed after cutting or etching. If necessary, etching may be performed after polishing.
  • the method preferably employed in the second step is polishing, cutting, or a combination thereof. In the case of polishing, after the surface is polished using abrasive grains such as diamond abrasive grains, the surface roughness of the substrate can be set to an arbitrary range by a known method such as CMP (chemical mechanical polishing). .
  • a group III nitride semiconductor substrate having a relatively large size main surface can be obtained.
  • a group III nitride semiconductor substrate having a major surface with a maximum diameter of 10 to 153 mm, preferably 18 to 101 mm, and more preferably 51 to 77 mm can be obtained.
  • the maximum diameter means the length of a straight line having the longest length in the main surface, and the shape of the main surface is not limited to a circle.
  • a group III nitride semiconductor substrate having a thickness of 0.1 to 2 mm, preferably 0.2 to 1.5 mm, more preferably 0.3 to 0.6 mm is obtained. It is possible.
  • a group III nitride semiconductor substrate with very few stacking faults can be obtained.
  • the number of stacking faults in the group III nitride semiconductor substrate can be evaluated by fabricating an LED structure on the group III nitride semiconductor substrate and performing PL (photo-luminescence) measurement at room temperature.
  • PL photo-luminescence
  • the stacking fault is a plane defect that exists in parallel to the polar plane, a straight line corresponding to the cross section of the stacking fault can be confirmed as the bright line in a substrate having a nonpolar plane or a semipolar plane as a main surface.
  • the production method of the present invention it is possible to obtain a group III nitride semiconductor substrate having an emission line intensity of 200 cm ⁇ 1 or less, preferably 150 cm ⁇ 1 or less, more preferably 100 cm ⁇ 1 or less.
  • the number of stacking faults in the group III nitride semiconductor substrate can be evaluated by performing PL measurement at a low temperature (10K) on the substrate itself.
  • a group III nitride semiconductor substrate having a PL strength (low temperature) near 0.14 eV relative to the band edge PL strength of 0.1 or less.
  • PL strength low temperature
  • it is 0.08 or less, More preferably, it is 0.05 or less.
  • the semiconductor light emitting device of the present invention is a group III nitride semiconductor substrate according to the first aspect of the present invention or a group III nitride semiconductor obtained by the manufacturing method according to the second aspect of the present invention. It is characterized in that a substrate is used.
  • a semiconductor light emitting device such as an LED is manufactured by growing a group III nitride semiconductor crystal on the main surface of the group III nitride semiconductor substrate of the present invention by the above method.
  • Examples of the group III nitride semiconductor crystal to be grown include GaN, AlGaN, InGaN, AlInN, and AlInGaN.
  • the crystal is formed on the conventional group III nitride semiconductor substrate having a large tilt angle distribution ratio (W1 / W2) of the main surface.
  • W1 / W2 tilt angle distribution ratio
  • the susceptor 108 loaded with the seed 110 was placed in the reactor 100, the temperature of the reaction chamber was raised to 970 ° C., and growth of the GaN single crystal film was started by the HVPE method. Simultaneously with the start of growth, the temperature in the reaction chamber was raised from 970 ° C. to 1020 ° C. over 1 hour, and then grown at a constant 1020 ° C. for 77 hours. The temperature drop during growth was less than 5 ° C.
  • the growth pressure is 1.01 ⁇ 10 5 Pa from the start of growth to the end of growth
  • the partial pressure of GaCl gas G3 is 5.96 ⁇ 10 2 Pa
  • the partial pressure of NH 3 gas G4 is 5 34 ⁇ 10 3 Pa.
  • the temperature was lowered to room temperature to obtain a GaN crystal.
  • the obtained GaN crystal grew in the ⁇ 20-21> direction at a maximum of 12.0 mm and a minimum of 8.1 mm.
  • the growth film thickness distribution had no tendency and was a random film thickness distribution.
  • the obtained GaN crystal was trimmed by dicing, and further polished using diamond abrasive grains and surface-polished by Chemical-mechanical Polishing (CMP) to obtain a (10-10) plane (M-plane) having a thickness of 400 ⁇ m.
  • CMP Chemical-mechanical Polishing
  • a 55-mm square GaN free-standing substrate as a surface was prepared.
  • the tilt angle distribution in the ⁇ 11-20> (a-axis) direction and ⁇ 0001> (c-axis) direction in the substrate plane was measured by performing three ⁇ scans in each direction in the X-ray diffraction method. The three measurement points were a position at one point at the center of the substrate and two points 20 mm away from the center of the substrate.
  • the measurement results were ⁇ 0.11 ° in the ⁇ 11-20> (a-axis) direction and ⁇ 0.35 ° in the ⁇ 0001> (c-axis) direction in terms of 40 mm intervals.
  • the value obtained by dividing the tilt angle distribution in the ⁇ 11-20> (a-axis) direction by the tilt angle distribution in the ⁇ 0001> (c-axis) direction was 0.31. Note that the tilt angle distributions in the two axial directions were almost constant in the main surface.
  • Substrate production example 2 In accordance with the same method as in Substrate Production Example 1, GaN crystals are grown on eight GaN free-standing substrates having a main surface having an off angle of 1 ° in the ⁇ 0001> (c-axis) direction from the (20-21) plane. It was. The sum (Sa) of the distances between the sides in the direction of the intersection of the principal surface and the C surface was 180 mm, and the sum (Sc) of the distances between the other sides was 68 mm. The temperature drop during growth was less than 5 ° C.
  • the obtained GaN crystal is sliced by cutting with a wire, and is subjected to outer shape processing by dicing, and further is polished using diamond abrasive grains and subjected to surface polishing by CMP to obtain a (20-21) plane having a thickness of 400 ⁇ m.
  • a GaN free-standing substrate having a square size of 55 mm and a main surface of the substrate was prepared.
  • the tilt angle distribution in the ⁇ 11-20> (a-axis) direction in the substrate plane and in the direction orthogonal to the a-axis in the main surface is 3 in each direction in the same manner as in the substrate manufacturing example 1 by the ⁇ scan of the X-ray diffraction method.
  • the ⁇ 11-20> (a-axis) direction was ⁇ 0.11 ° in terms of 40 mm intervals, and the direction perpendicular to the a-axis was ⁇ 0.33 °.
  • a value obtained by dividing the tilt angle distribution in the ⁇ 11-20> (a-axis) direction by the tilt angle distribution in the direction orthogonal to the a-axis was 0.33. Note that the tilt angle distributions in the two axial directions were almost constant in the main surface.
  • ⁇ Board production example 3> The main surface is the (10-1-1) plane, the length in the direction perpendicular to the ⁇ 11-20> (a axis) is 5 mm, and the length in the ⁇ 11-20> (a axis) direction
  • a rectangular GaN free-standing substrate having a length of 20 mm was prepared and placed on the susceptor 108 as a seed 110. As shown in FIG. 3, the susceptor 108 loaded with the seed 110 was placed in the reactor 100, the temperature of the reaction chamber was raised to 1020 ° C., and a GaN single crystal film was grown for 54 hours by the HVPE method. The temperature drop during growth was less than 5 ° C.
  • the growth pressure is 1.01 ⁇ 10 5 Pa
  • the partial pressure of GaCl gas G3 is 5.96 ⁇ 10 2 Pa
  • the partial pressure of NH 3 gas G4 is 6.98 ⁇ 10 3 Pa. It was.
  • the temperature was lowered to room temperature to obtain a GaN crystal.
  • the crystals grew up to 4.5 mm in the [10-1-1] direction.
  • the obtained GaN crystal was subjected to outer shape processing and surface polishing treatment, and then sliced and polished by a normal method to obtain a GaN free-standing substrate having a (10-10) plane of 330 ⁇ m in thickness as the main surface. Three sheets were produced.
  • the second substrate from the seed side was evaluated.
  • the tilt angle distribution in the ⁇ 11-20> (a-axis) direction in the substrate plane and in the direction orthogonal to the a-axis in the main surface is 3 in each direction in the same manner as in the substrate manufacturing example 1 by the ⁇ scan of the X-ray diffraction method.
  • the ⁇ 11-20> (a-axis) direction was ⁇ 0.21 ° in terms of 40 mm intervals, and the direction perpendicular to the a-axis was ⁇ 0.26 °.
  • the value obtained by dividing the tilt angle distribution in the ⁇ 11-20> (a-axis) direction by the tilt angle distribution in the direction orthogonal to the a-axis was 0.81. Note that the tilt angle distributions in the two axial directions were almost constant in the main surface.
  • the tilt angle distribution in the ⁇ 11-20> (a-axis) direction in the substrate plane and in the direction orthogonal to the a-axis in the main surface is 3 in each direction in the same manner as in the substrate manufacturing example 1 by the ⁇ scan of the X-ray diffraction method.
  • the ⁇ 11-20> (a-axis) direction was ⁇ 0.08 ° in terms of 40 mm intervals, and the direction perpendicular to the a-axis was ⁇ 0.14 °.
  • a value obtained by dividing the tilt angle distribution in the ⁇ 11-20> (a-axis) direction by the tilt angle distribution in the direction orthogonal to the a-axis was 0.57. Note that the tilt angle distributions in the two axial directions were almost constant in the main surface.
  • the tilt angle distribution in the ⁇ 11-20> (a-axis) direction in the substrate plane and in the direction orthogonal to the a-axis in the main surface is 3 in each direction in the same manner as in the substrate manufacturing example 1 by ⁇ scan of the X-ray diffraction method.
  • the ⁇ 11-20> (a-axis) direction was ⁇ 0.15 ° in terms of 40 mm intervals, and the direction perpendicular to the a-axis was ⁇ 0.60 °.
  • the value obtained by dividing the tilt angle distribution in the ⁇ 11-20> (a-axis) direction by the tilt angle distribution in the direction orthogonal to the a-axis was 0.25. Note that the tilt angle distributions in the two axial directions were almost constant in the main surface.
  • ⁇ Substrate production example 6> As a seed, eight GaN free-standing substrates having a main surface of (20-21) plane, a length of 17 mm in the c-axis direction and a length of 25 mm in the a-axis direction were prepared. By changing the point that the ⁇ 0001> (c-axis) direction is aligned with 4 rows in the c-axis direction and 2 rows in the a-axis direction so that the directions are aligned with an accuracy of ⁇ 0.25 °, the substrate manufacturing example 3 is changed. A GaN crystal was obtained under the same conditions.
  • the total distance (Sa) at which the sides in the direction of the intersection of the principal surface and the C surface contact each other was 150 mm
  • the total distance (Sc) at which the other sides contact each other was 68 mm.
  • the distribution of the plane orientation between the freestanding substrates was within ⁇ 0.15 °.
  • the temperature drop during growth was less than 5 ° C.
  • the crystal grew up to 17 mm in the [20-21] direction.
  • Two crystals were produced under the same conditions. One crystal was sliced at the (10-10) plane to obtain a plurality of substrates, of which a 39 mm ⁇ 53 mm substrate was extracted for measurement.
  • the other crystal was (20-21)
  • the substrate was sliced to obtain a plurality of substrates, and 38 mm ⁇ 53 mm of them were extracted for measurement.
  • PL measurement was performed using a He—Cd laser having a central wavelength of 325 nm as an excitation light source at a measurement temperature of 10K.
  • the results of FIG. 5 were obtained with the (10-10) plane slice substrate, and FIG. 6 was obtained with the (20-21) plane slice substrate. It became the result.
  • a line parallel to the c-axis passing through the center of the substrate has a high PL intensity (low temperature) due to stacking faults near 3.41 eV with respect to the band edge PL intensity, while the substrate end on the a-axis direction side is The PL intensity (low temperature) due to stacking faults near 3.41 eV relative to the band edge PL intensity was low.
  • the tilt angle distribution in the ⁇ 11-20> (a-axis) direction in the substrate plane and in the direction orthogonal to the a-axis in the main surface is 3 in each direction in the same manner as in the substrate manufacturing example 1 by the ⁇ scan of the X-ray diffraction method.
  • the ⁇ 11-20> (a-axis) direction was ⁇ 0.033 ° in terms of 40 mm intervals, and the direction perpendicular to the a-axis was ⁇ 0.22 °.
  • a value obtained by dividing the tilt angle distribution in the ⁇ 11-20> (a-axis) direction by the tilt angle distribution in the direction orthogonal to the a-axis was 0.15. Note that the tilt angle distributions in the two axial directions were almost constant in the main surface.
  • (Substrate production example 7) Eight GaN free-standing substrates having a main surface having an off angle of -1 ° to 1 ° in the ⁇ 11-20> (a-axis) direction from the (20-21) plane are prepared, and the GaN free-standing substrate is used as a seed. On the susceptor, two rows in the ⁇ 11-20> (a axis) direction are orthogonal to the a axis so that the ⁇ 0001> (c axis) directions of the GaN free-standing substrates are aligned with an accuracy of ⁇ 0.25 °. It was arranged in 4 rows in the direction.
  • a substrate having an off angle of ⁇ 1 ° was placed on the ⁇ 11-20> side, and a substrate having an off angle of 1 ° was placed on the ⁇ 1-120> side on the susceptor.
  • the sum (Sa) of the distances between the sides in the direction of the intersection of the principal surface and the C surface was 180 mm, and the sum (Sc) of the distances between the other sides was 68 mm.
  • the temperature drop during growth was less than 5 ° C.
  • a GaN crystal was grown under the same conditions as in the substrate production example 1 using the crystal production apparatus of FIG.
  • the obtained GaN crystal is sliced by cutting with a wire, contoured by dicing, and further polished using diamond abrasive grains and subjected to surface polishing by CMP to obtain a (10-10) plane (M) with a thickness of 400 ⁇ m.
  • a square GaN free-standing substrate having a main surface of 55 mm square was produced.
  • the tilt angle distribution in the ⁇ 11-20> (a-axis) direction and ⁇ 0001> (c-axis) direction in the substrate plane was subjected to X-ray diffraction method ⁇ scan in three directions in the same manner as in Substrate Production Example 1.
  • the ⁇ 11-20> (a axis) direction was ⁇ 0.81 ° and the ⁇ 0001> (c axis) direction was ⁇ 0.41 ° in terms of a 40 mm interval.
  • the value obtained by dividing the tilt angle distribution in the ⁇ 11-20> (a-axis) direction by the tilt angle distribution in the ⁇ 0001> (c-axis) direction was 1.97. Note that the tilt angle distributions in the two axial directions were almost constant in the main surface.
  • Substrate production example 8 In accordance with the same method as in Substrate Production Example 1, GaN free-standing substrates were arranged as seeds on a susceptor and placed in a reactor. After growing for 45 minutes at a reaction chamber temperature of 1080 ° C., the temperature was lowered to 1020 ° C. over 30 minutes and grown at 1020 ° C. for 77 hours. The temperature drop during growth was 60 ° C. The obtained GaN crystal is sliced by cutting with a wire, is subjected to outer shape processing by dicing, and further is polished using diamond abrasive grains and subjected to surface polishing by CMP to obtain a (10-10) plane having a thickness of 400 ⁇ m.
  • a 55-mm square GaN free-standing substrate with the (M-plane) main surface was produced.
  • the tilt angle distribution in the ⁇ 11-20> (a-axis) direction and ⁇ 0001> (c-axis) direction in the substrate plane was measured by performing three ⁇ scans in each direction in the X-ray diffraction method.
  • the three measurement points were a position at one point at the center of the substrate and two points 20 mm away from the center of the substrate.
  • the measurement results were ⁇ 4.60 ° in the ⁇ 11-20> (a-axis) direction and ⁇ 1.75 ° in the ⁇ 0001> (c-axis) direction in terms of 40 mm intervals.
  • the value obtained by dividing the tilt angle distribution in the ⁇ 11-20> (a-axis) direction by the tilt angle distribution in the ⁇ 0001> (c-axis) direction was 2.63. Note that the tilt angle distributions in the two axial directions were almost constant in the main surface.
  • PL photo-luminescence
  • LED structure production example 2 An LED structure was fabricated in the same manner as in Device Structure Manufacture Example 1, except that a substrate having a (20-21) plane as the main surface manufactured in Substrate Production Example 2 was used. The produced LED structure was confirmed to be flat when it was confirmed with an optical microscope from 50 times to 1000 times magnification. When the prepared LED was subjected to PL measurement at room temperature using a He—Cd laser having a central wavelength of 325 nm as an excitation light source, light emission from a quantum well near an emission wavelength of 405 nm was observed from the entire surface of the wafer.
  • the vertical direction of the fluorescence micrograph is the c-axis direction, and the horizontal direction is the a-axis direction.
  • the bright line density was 0 in the small region and 100 cm ⁇ 1 in the large region. The bright line corresponds to the long wavelength emission region.
  • FIG.4 (Device structure production example 4) An LED structure was fabricated in the same manner as in Device Structure Production Example 1, except that a substrate having the (20-2-1) plane as the main surface produced in the substrate production example 4 was used.
  • the PL measurement was performed at room temperature using a He—Cd laser having a central wavelength of 325 nm as an excitation light source for the fabricated LED, light emission from the quantum well near the emission wavelength of 405 nm was observed from the entire wafer surface, and the PL intensity was 1.707.
  • FIG.4 (b) The vertical direction of the fluorescence micrograph is the c-axis direction, and the horizontal direction is the a-axis direction.
  • the bright line density was 0 in the small region and 90 cm ⁇ 1 in the large region.
  • LED structure production example 5 An LED structure was fabricated in the same manner as in Device Structure Production Example 1, except that a substrate having a (10-10) plane as the main surface produced in the substrate production example 7 was used. When the surface of the produced LED structure was observed at a magnification of 50 times with an optical microscope, it was confirmed that the surface was very rough.
  • PL measurement was performed at room temperature using a He—Cd laser with a central wavelength of 325 nm as an excitation light source. As a result, no light was emitted from the quantum well near the emission wavelength of 405 nm over the entire surface of the wafer. Only light emission on the long wavelength side was observed.
  • FIG.4 (Device structure production example 6) An LED structure was fabricated in the same manner as in Device Structure Production Example 1, except that a substrate having a (10-10) plane as the main surface produced in the substrate production example 5 was used.
  • the prepared LED was subjected to PL measurement at room temperature using a He—Cd laser having a central wavelength of 325 nm as an excitation light source, and the PL intensity was 0.337.
  • the result of having observed the surface at 200 time magnification using the fluorescence microscope is shown in FIG.4 (c).
  • the vertical direction of the fluorescence micrograph is the c-axis direction, and the horizontal direction is the a-axis direction.
  • the bright line density was 0 in a small region and 500 cm ⁇ 1 in a large region, and many bright lines corresponding to stacking faults were observed in the a-axis direction.
  • the semiconductor light emitting device structure using the substrate obtained in Substrate Production Example 7 which is a III nitride semiconductor that does not satisfy the first aspect of the present invention no light emission from the quantum well near 405 nm is observed. Only light emission longer than 440 nm was observed (Device Structure Production Example 5).
  • the semiconductor light emitting device structure using the substrate obtained in the substrate manufacturing examples 1 and 2 which is the group III nitride semiconductor substrate of the first aspect of the present invention has a flat chip surface (device structure manufacturing). Examples 1-2).
  • the semiconductor light emitting device structure using the substrate obtained in the substrate production example 7, which is a III nitride semiconductor that does not satisfy W1 / W2 which is the feature of the first aspect of the present invention has a very rough surface. (Device structure production example 5).
  • the substrates obtained in Substrate Production Examples 3 to 4 produced by the method for producing a Group III nitride semiconductor substrate according to the second aspect of the present invention were substrates having high PL intensity and low emission line density.
  • the substrate obtained in the substrate production example 5 manufactured by the method for manufacturing a group III nitride semiconductor substrate that does not satisfy the second aspect of the present invention and has the main surface of the base substrate as a nonpolar surface has a PL strength.
  • a substrate with a low emission line density was a substrate with a low emission line density.
  • the group III nitride semiconductor substrate of the present invention has a substrate warpage in the direction of the intersecting line between the polar surface and the main surface smaller than the substrate warp in the direction perpendicular to the intersecting line, In addition, the warpage of the substrate in the direction perpendicular to the intersecting line is less than 1 ° per 40 mm, which is significantly smaller than the substrate of the substrate production example 5. Further, an LED manufactured using the group III nitride semiconductor substrate of the present invention has a high PL intensity (room temperature). As is clear from FIG. 4, bright lines were observed in the direction of the intersecting line between the polar surface and the main surface, and it was confirmed that stacking faults occurred in parallel with the polar surface.
  • the substrate obtained in the substrate manufacturing example 6 has a PL intensity (low temperature) caused by stacking faults near 3.41 eV with respect to the band edge PL intensity at each point in the main surface. ) Is less than 1, and the substrate has very few stacking faults.
  • the substrate obtained in the substrate manufacturing example 5 is a substrate having many stacking faults, and the PL intensity (low temperature) at each point in the plane exceeds 1. it is conceivable that.
  • the group III nitride semiconductor substrate of the present invention is used, a group III nitride crystal having excellent quality can be grown thereon.
  • a group III nitride crystal grown in this manner is used, a semiconductor light emitting device such as an LED having high luminous efficiency can be easily manufactured. For this reason, this invention can be effectively utilized for development and manufacture of an industrial product using a group III nitride semiconductor, and industrial applicability is high.
  • Group III nitride semiconductor substrate 100 Reactor 101 Pipe for carrier gas 102 Pipe for dopant gas 103 Group III material pipe 104 Nitrogen material pipe 105 HCl gas pipe 106 Group III material reservoir 107 Heater 108 Susceptor 109 Exhaust pipe 110 Seed G1 Carrier gas G2 Dopant gas G3 Group III source gas G4 Nitrogen source gas G5 HCl gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

主面上に良質な結晶を成長させることが可能なIII族窒化物半導体基板を提供すること、および、積層欠陥が少なくて、特に極性面に平行な方向の積層欠陥が顕著に抑えられた結晶を得ることが可能なIII族窒化物半導体基板の製造方法を提供することを課題とする。 C面以外の面を主面とするIII族窒化物半導体基板(1)であって、主面とC面の交線方向(x方向)における主面のチルト角分布W1と、その交線に直交する方向(y方向)における主面のチルト角分布W2との比(W1/W2)が1未満であることを特徴とするIII族窒化物半導体基板により課題を解決する。

Description

III族窒化物半導体基板及びその製造方法、並びに半導体発光デバイス及びその製造方法
 本発明は、III族窒化物半導体基板およびその製造方法、半導体発光デバイスおよびその製造方法に関する。より詳細には、主面上に良質な結晶を成長させることが可能なIII族窒化物半導体基板と、その基板を用いてIII族窒化物半導体を成長させることにより提供される半導体発光デバイスに関する。
 LEDなどの半導体発光デバイスは、基板上にIII族窒化物半導体結晶を成長させることにより一般に製造されている。このとき、異種基板上にIII族窒化物結晶を成長させると、結晶欠陥が発生するために効率のよい半導体発光デバイスを提供することができないが、同種のIII族窒化物基板上にIII族窒化物結晶をホモエピタキシャル成長させれば、高性能な半導体発光デバイスを提供しうることが知られている。
 そこで、これまでに種々のIII族窒化物基板の製造方法が開発され提案されている。極性面を主面とする大型のIII族窒化物基板は比較的容易に製造することができるが、非極性面や半極性面を主面とする大型のIII族窒化物基板については、良好な基板を製造することが容易ではない。このため、非極性面や半極性面を主面とする大型のIII族窒化物基板の製造方法については、種々検討がなされ、幾つかの製造方法が提案されている。例えば、非極性面のオフ基板をシードとして並べて、その上に結晶を成長させることによりIII族窒化物基板を製造する方法が提案されている(特許文献1参照)。また、種々の半極性面を有するシードを並べて、その上に結晶を成長させることによりIII族窒化物基板を製造する方法も提案されている(特許文献2参照)。さらに、(20-21)面などの主面を有するシードを並べて、その上に結晶を成長させることによりIII族窒化物基板を製造する方法も提案されている(特許文献3参照)。
 加えて特許文献4には、サファイア基板の(10-10)面上に(10-10)面を主面とするGaN薄膜を成長させた後に、さらに液相法によって1.5mm厚のGaN結晶を成長させた例が記載されている。同文献によると、成長させた(10-10)面を主面とするGaN結晶の積層欠陥は104cm-1であったと報告されている。
特開2010-275171号公報 特開2011-16676号公報 特開2011-26181号公報 特開2010-1209号公報
 しかしながら、従来法で製造した基板を用いてその上に結晶を成長させても、積層欠陥が発生したり反りが発生したりして、性能がよい結晶が得られない。具体的には、従来法で製造した基板上に結晶を成長させてLED構造を製造すると、表面が荒れたLED構造が得られたり、発光効率が高くないLED構造が得られたりするなどの課題がある。
 そこで本発明者らは、このような従来技術の課題を解決するために、主面上に良質な結晶を成長させることが可能なIII族窒化物基板を提供することを本発明の第一の目的として検討を進めた。また、そのような基板上にIII族窒化物結晶を成長させることにより、発光効率が高い半導体発光デバイスを提供することも本発明の第一の目的として検討を進めた。
 また、極性面を主面とするIII族窒化物シード上に結晶をホモエピタキシャル成長させた後に、所望の面が現われるように切り出す方法では、積層欠陥が少ないIII族窒化物半導体基板が得られるものの大きいサイズの基板を得ることができないという課題がある。一方特許文献4に記載された、(10-10)面のような非極性面を主面とするIII族窒化物シード上に結晶をホモエピタキシャル成長させた後に、(10-10)面を主面とする基板を切り出す方法を本発明者らが検討したところ、厚膜の結晶を成長させて基板を作製しようとすると積層欠陥が多くなってしまうというという課題があることが初めて明らかになった。つまり、本発明者らの検討において、(10-10)面を主面とするIII族窒化物シード上でホモエピタキシャル成長をして得られたIII族窒化物結晶は、(0001)面を主面とするIII族窒化物シード上でホモエピタキシャル成長をして得られたIII族窒化物結晶に比べて、厚膜成長をさせた場合に多くの積層欠陥を有するとの課題が判明した。
 このように、従来の方法では積層欠陥が少なくて、なおかつ、大きなIII族窒化物半導体基板を提供することはできなかった。
 一方、基板の主面上にホモエピタキシャル成長を行ったときに特に極性面に平行な方向の積層欠陥の発生を顕著に抑えることができれば、高性能で高効率な発光デバイスの製造に極めて有用であると考えられる。しかしながら、そのようなIII族窒化物半導体基板を提供する方法は従来まったく提供されていなかった。
 そこで本発明者らは、このような従来技術の課題を解決するために、積層欠陥が少なくて大型のIII族窒化物半導体基板を提供することが可能である新しい製造方法を提供することを本発明の第二の目的として検討を進めた。また本発明者らは、基板の主面上にさらにホモエピタキシャル成長を行った場合に、積層欠陥が少なくて、特に極性面に平行な方向の積層欠陥が顕著に抑えられた結晶を得ることが可能なIII族窒化物半導体基板を提供することも第二の目的として検討を進めた。
 本発明者らが、従来法にしたがって製造したIII族窒化物基板を分析したところ、基板主面上で直交する2軸の各軸方向にそれぞれ反りがあることが判明した。特許文献1~3を含む先行技術文献にはこのような2つの軸方向の基板の反りについて特に記載されていないが、本発明者らは、これらの反りが基板上に成長する結晶の品質に影響を与えている可能性があると考えて、基板の反りと基板上に成長する結晶の品質との関係を鋭意検討した。その結果、基板における特定の軸方向の反りとそれに直交する方向の反りの比率を特定の範囲内に制御することが、基板上に成長するIII族窒化物結晶の品質を良化させることを初めて見出した。本発明の第一の態様は、このような知見に基づいて提供されたものであり、以下の態様を包含するものである。
[1] C面以外の面を主面とするIII族窒化物半導体基板であって、主面とC面の交線方向における主面のチルト角分布W1と、その交線に直交する方向における主面のチルト角分布W2との比(W1/W2)が1未満であることを特徴とするIII族窒化物半導体基板。
[2] M面を主面とするか、M面からc軸方向に90°未満傾斜した面を主面とするIII族窒化物半導体基板であることを特徴とする、[1]に記載のIII族窒化物半導体基板。
[3] 前記チルト角分布W1が40mm間隔あたり±1°未満であることを特徴とする[1]または[2]に記載のIII族窒化物半導体基板。
[4] 前記チルト角分布W2が40mm間隔あたり±0.01以上±1°未満であることを特徴とする[1]~[3]のいずれかに記載のIII族窒化物半導体基板。
[5] [1]~[4]のいずれかに記載のIII族窒化物半導体基板上にIII族窒化物半導体結晶を成長させることを特徴とするIII族窒化物半導体結晶の製造方法。
[6] [1]~[4]のいずれかに記載のIII族窒化物半導体基板上にIII族窒化物半導体結晶を成長させる工程を含むことを特徴とする半導体発光デバイスの製造方法。
[7] [6]に記載の製造方法により製造される半導体発光デバイス。
[8] LEDであることを特徴とする[7]に記載の半導体発光デバイス。
 また、本発明者らは、第二の目的を達成すべく鋭意検討を重ねた結果、シードの半極性面上に、ホモエピタキシャル成長を行った後に、所望の面が現れるように研磨または切断することにより、従来技術の課題を解決しうることを見出した。
 すなわち、本発明の第二の態様は、以下の態様を包含するものである。
[9] (1)半極性面を主面とするIII族窒化物シードの前記半極性面上にホモエピタキシャル成長を行ってIII族窒化物半導体結晶を得る第1工程、および、
(2)前記III族窒化物半導体結晶から、前記半極性面とは異なる面を主面とするIII族窒化物半導体基板を取得する第2工程
を含むことを特徴とする、III族窒化物半導体基板の製造方法。
[10] 前記III族窒化物シードは複数のIII族窒化物シードからなり、該複数のIII族窒化物シードは、同一平面上に各シード間の主面の面方位の分布が±0.5°以内となるよう配置されることを特徴とする、[9]に記載のIII族窒化物半導体基板の製造方法。
[11]
 前記III族窒化物シードを、下記式を満たすように配置することを特徴とする、[9]または[10]に記載のIII族窒化物半導体基板の製造方法。
   Sa/Sc≧1
(上記式において、SaはIII属窒化物シードの極性面と主面との交線方向の辺どうしが接する距離の総和を表し、Scはそれ以外の辺どうしが接する距離の総和を表わす。)
[12]
 前記III族窒化物シードは、シードの(0001)面の総面積が(000-1)面の総面積よりも小さいことを特徴とする、[9]~[11]のいずれかに記載のIII族窒化物半導体基板の製造方法。
[13] 前記第1工程は、結晶成長中の温度低下を60℃以内に制御して結晶成長を行うことを特徴とする、[9]~[12]のいずれかに記載のIII族窒化物半導体基板の製造方法。
 本発明の第一の態様によるIII族窒化物半導体基板を用いれば、その上に優れた品質を有するIII族窒化物結晶を成長させることができる。また、本発明の第一の態様による製造方法を用いれば、優れた品質を有するIII族窒化物結晶やLEDなどの半導体発光デバイスを簡便に製造することができる。本発明の半導体発光デバイスは、発光効率が高い。
 また、本発明の第二の態様によるIII族窒化物半導体基板の製造方法によれば、積層欠陥が少なくて大型のIII族窒化物半導体基板を簡便に提供することが可能である。そして製造されるIII族窒化物半導体基板の主面上にホモエピタキシャル成長を行えば、積層欠陥が少なくて、特に極性面に平行な方向の積層欠陥が顕著に抑えられた結晶を得ることができる。このため、本発明の第二の態様により得られたIII族窒化物半導体基板を利用すれば、発光強度が強くて、耐久性に優れた半導体発光デバイスを提供することができる。
III族窒化物半導体基板の反りを説明するための斜視図である。 シードの配置を説明するための斜視図である。 本発明の製造方法で用いることができる製造装置の一例を示す概略図である。 基板製造例3、4および5で製造したウェハの蛍光顕微鏡写真である。 基板製造例6の(10-10)面スライス基板のバンド端PL強度に対する3.41eV付近の積層欠陥起因のPL強度(低温)分布を示す図である。 基板製造例6の(20-21)面スライス基板のバンド端PL強度に対する3.41eV付近の積層欠陥起因のPL強度(低温)分布を示す図である。
 以下において、本発明のIII族窒化物半導体基板等について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定されるものではない。
 本明細書においてIII族窒化物結晶の「主面」とは、当該III族窒化物結晶における最も広い面であって、結晶成長を行うべき面を指す。本明細書において「C面」とは、六方晶構造(ウルツ鋼型結晶構造)における{0001}面と等価な面であり、極性面である。III族窒化物結晶では、C面はIII族面またはV族面であり、窒化ガリウムではそれぞれGa面またはN面に相当する。また、本明細書において「M面」とは、{1-100}面、{01-10}面、[-1010]面、{-1100}面、{0-110}面、{10-10}面として包括的に表される非極性面であり、具体的には(1-100)面、(01-10)面、(-1010)面、(-1100)面、(0-110)面、(10-10)面を意味する。さらに、本明細書において「A面」とは、{2-1-10}面、{-12-10}面、{-1-120}面、{-2110}面、{1-210}面、{11-20}面として包括的に表される非極性面であり、具体的には(2-1-10)面、(-12-10)面、(-1-120)面、(-2110)面、(1-210)面、(11-20)面を意味する。本明細書において「c軸」「m軸」「a軸」とは、それぞれC面、M面、A面に垂直な軸を意味する。また、本明細書において「オフ角」とは、ある面の指数面からのずれを表す角度である。また、「チルト角」とは、結晶面内で基準とする結晶軸に対するある結晶軸のずれを表す角度である。本明細書では、結晶面の主面の中心における結晶軸を基準として、主面上の他の位置における結晶軸が中心の結晶軸からどの程度ずれているかを表す角度である。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 以下、本発明の第一の態様について説明する。本発明の第一の態様は、C面以外の面を主面とするIII族窒化物半導体基板であって、主面とC面の交線方向における主面のチルト角分布W1と、その交線に直交する方向における主面のチルト角分布W2との比(W1/W2)が1未満であることを特徴とするIII族窒化物半導体基板である。
(1)III族窒化物半導体基板
(主面)
 本発明のIII族窒化物半導体基板は、C面以外の面を主面とするIII族窒化物半導体基板である。本発明のIII族窒化物半導体基板の主面は、非極性面であっても、半極性面であってもよく、またこれらの面から傾斜した面であってもよい。
 本明細書において「非極性面」とは、表面にIII族元素と窒素元素の両方が存在しており、かつその存在比が1:1である面を意味する。具体的には、M面やA面を好ましい面として挙げることができる。
 本明細書において「半極性面」とは、例えば、III族窒化物が六方晶であってその主面が(hklm)で表される場合、h,i,kのうち少なくとも2つが0でなく、且つlが0でない面をいう。また、半極性面は、c面、すなわち(0001)面に対して傾いた面で、表面にIII族元素と窒素元素の両方あるいはC面のように片方のみが存在する場合で、かつその存在比が1:1でない面を意味する。h、k、l、mはそれぞれ独立に-5~5のいずれかの整数であることが好ましく、-2~2のいずれかの整数であることがより好ましく、低指数面であることが好ましい。本発明のIII族窒化物半導体基板の主面として好ましく採用できる半極性面として、例えば(10-11)面、(10-1-1)面、(20-21)面、(20-2-1)面、(10-12)面、(10-1-2)面などを挙げることができる。
 なお、本明細書においてC面、M面、A面や特定の指数面を称する場合には、±0.01°以内の精度で計測される各結晶軸から10°以内のオフ角を有する範囲内の面を含む。好ましくはオフ角が5°以内であり、より好ましくは3°以内である。
 本発明のIII族窒化物半導体基板の主面として、オフ角を有する非極性面や半極性面である特定の指数面を採用するとき、そのオフ角は傾斜後の面がC面とならない範囲内で選択する。オフ角は0.01°以上であることが好ましく、0.05°以上であることがより好ましく、0.1°以上であることがさらに好ましい。また、オフ角は10°以下であることが好ましく、5°以下であることがより好ましく、3°以下であることがさらに好ましい。傾斜方向はc軸方向を選択することが好ましい。
 本発明のIII族窒化物半導体基板の主面が半極性面である場合には、好ましくはM面またはM面からc軸方向に傾斜した面や、A面またはA面からc軸方向に傾斜した面であり、より好ましくはM面またはM面からc軸方向に傾斜した面である。M面またはA面からc軸方向に傾斜した面を主面とする場合、M面からc軸方向に傾斜した面の具体例として、(20-21)面や(10-11)面を挙げることができる。
(チルト角分布)
 本発明のIII族窒化物半導体基板は、主面とC面の交線方向における主面のチルト角分布W1と、その交線に直交する方向における主面のチルト角分布W2との比(W1/W2)が1未満であることを特徴とする。図1のIII族窒化物半導体基板(1)で説明すると、主面とC面の交線方向がx方向であるとき、x方向における主面のチルト角分布W1と、x方向に直交するy方向における主面のチルト角分布W2との比が上記の規定値未満であることを特徴とする。例えば、主面がM面である場合、主面とC面の交線方向はa軸方向となり、比(W1/W2)はa軸方向の主面のチルト角分布をc軸方向の主面のチルト角分布で除することにより求めることができる。また、主面がA面である場合、主面とC面の交線方向はm軸方向となり、比(W1/W2)はm軸方向の主面のチルト角分布をc軸方向の主面のチルト角分布で除することにより求めることができる。
 チルト角分布は、反りの大きさを表すものである。本発明における主面のチルト角分布は、各軸上の3点以上の測定点でチルト角を測定することにより求める。具体的な測定法については、後述の実施例を参照することができる。チルト角分布は、本発明では40mm間隔換算で表記する。
 本発明のIII族窒化物半導体基板におけるチルト角分布の比(W1/W2)は1未満であることが好ましく、0.8未満であることがより好ましく、0.5未満であることがさらに好ましい。また、下限値は0.01以上であることが好ましく、0.02以上であることがより好ましく、0.04以上であることがさらに好ましい。
 本発明のIII族窒化物半導体基板におけるチルト角分布W1は40mm間隔あたり±1°未満であることが好ましく、±0.5°未満であることがより好ましく、±0.2°未満であることがさらに好ましい。チルト角分布W1はゼロであることが最も好ましいが、有限の値をとる場合は例えば±0.01°以上とすることができる。
 上述の本発明のIII族窒化物半導体基板におけるチルト角分布W1は、主面とC面の交線方向の基板の反りに言い換えられる。前記交線方向の基板の反りは、40mmあたり2°未満であることが好ましく、1°未満であることがより好ましく、0.85°未満であることがより好ましく、0.65°未満であることがより好ましく、0.45°未満であることがより好ましく、0.4°未満であることがさらに好ましく、0.25°未満であることが特に好ましい。
 本発明のIII族窒化物半導体基板におけるチルト角分布W2は40mm間隔あたり±1°未満であることが好ましく、±0.8°未満であることがより好ましく、±0.5°未満であることがさらに好ましい。チルト角分布W2は例えば±0.01°以上とすることができる。
 上述の本発明のIII族窒化物半導体基板におけるチルト角分布W2は、前記交線に直交する方向の基板の反りに言い換えられる。前記交線に直交する方向の基板の反りは、40mmあたり2°未満であることが好ましく、1.6°未満であることがより好ましく、1°未満であることがよりに好ましく、0.80°未満であることがより好ましく、0.60°未満であることがさらに好ましく、0.40°未満であることが特に好ましい。
 また、主面とC面の交線方向の40mmあたりの基板の反りと前記交線に直交する方向の40mmあたりの基板の反りとの差は、通常0.02~1.0°であり、0.03~0.75°であることが好ましく、0.05~0.5°であることがより好ましい。なお、基板の反りは、後述する実施例におけるチルト角分布の測定方法と同方法により測定することができる。
 本発明のIII族窒化物半導体基板は、チルト角分布W1とW2がともに大きくてチルト角分布の比(W1/W2)が小さい従来のIII族窒化物半導体基板とは異なり、チルト角分布W1の絶対値が小さくてチルト角分布の比(W1/W2)が小さい点にも特徴がある。このようなIII族窒化物半導体基板は、従来は提供することができなかったものであり、本発明によって初めて提供されるに至ったものである。また、チルト角分布の比(W1/W2)が特定値未満であるIII族窒化物半導体基板を用いれば、その主面上に優れた性質を有するIII族窒化物半導体を成長させ得ることは、本発明によって初めて明らかにされたものである。
(III族窒化物半導体)
 本発明の基板を構成するIII族窒化物半導体の種類は特に制限されない。例えば、窒化ガリウム(GaN)、窒化アルミニウム(AlN)、窒化インジウム(InN)、またはこれらの混晶などを挙げることができる。混晶としては、AlGaN、InGaN、AlInN、AlInGaNなどを挙げることができる。好ましいのは窒化ガリウム(GaN)およびGaを含む混晶であり、より好ましいのは窒化ガリウム(GaN)である。
 本発明のIII族窒化物半導体基板のサイズは、その主面上に結晶を成長させるのに十分な大きさであることが好ましい。例えば、最大径は10mm以上とすることができ、さらに17mm以上とすることができる。また、厚みは取り扱いやすい厚みであることが好ましく、例えば0.2mm以上とすることができ、さらに0.3mm以上とすることができる。形状は、長方体、立方体、円柱状など様々な形状をとりうるものであり、特に制限されない。
(2)III族窒化物半導体基板の製造
(III族窒化物自立基板)
 本発明のIII族窒化物半導体基板の製造方法は、本発明の条件を満たす基板を製造することができるものであれば、特に制限されない。本発明のIII族窒化物半導体基板は、例えば同種のIII族窒化物自立基板上にIII族窒化物半導体を成長させる工程を経て製造することが可能である。
 III族窒化物自立基板は、例えば、特定の方向に成長させたIII族窒化物結晶塊から、製造しようとしているIII族窒化物半導体基板の主面と同じ主面かその主面から傾斜した面が主面となるように切り出すことにより製造することができる。例えば、III族窒化物半導体が六方晶である場合は、(0001)面成長により作製されたIII族窒化物結晶塊から、M面またはM面から若干傾斜した面が主面となるように切り出すことにより、III族窒化物自立基板を製造することができる。このIII族窒化物自立基板は、M面を主面とするIII族窒化物半導体基板を成長させるために用いることができる。M面から傾斜した半極性面を主面とする、III族窒化物自立結晶を切り出す場合は、傾斜角を60°以下にすることが好ましく、45°以下にすることがより好ましく、30°以下にすることがさらに好ましい。
 なお、III族窒化物結晶塊からIII族窒化物自立基板を切り出す際には、(0001)面の総面積よりも(000-1)面の総面積が大きくなるように切り出すことが、その上に成長させる結晶のW1/W2比をより小さくするうえで好ましい。
 切り出すIII族窒化物自立基板のサイズは、その自立基板上に結晶を成長させることができるものであることが必要とされる。通常は、製造しようとしているIII族窒化物半導体基板の形状に対応した形状とサイズを選択する。例えば、長方形、立方径、円柱状のIII族窒化物自立基板とすることができる。長方形のIII族窒化物自立基板を製造する場合は、主面とC面の交線方向の長さ(L1)が、それに直交する主面内の方向の長さ(L2)よりも長いことが好ましい。具体的には、長さの比(L1/L2)が1以上であることが好ましく、1.5以上であることがより好ましく、2以上であることがさらに好ましい。また、長さの比(L1/L2)は10以下であることが好ましく、7以下であることがより好ましく、5以下であることがさらに好ましい。III族窒化物自立基板の厚みは取り扱いの容易性や自立基板上への結晶の成長容易性等を考慮して適宜決定することができるが、例えば0.2mm以上にし、さらには0.3mm以上にすることができ、また、例えば5mm以下にし、さらには2mm以下にすることができる。
 III族窒化物自立基板は単独で用いて、その上にIII族窒化物結晶を成長させることも可能であるが、大型のIII族窒化物結晶を容易に作製することが可能な点から、複数のIII族窒化物自立基板をシードとして並べて設置したうえでIII族窒化物結晶を成長させることが好ましい。複数のIII族窒化物自立基板を並べる際には、同一平面上に結晶方位をそろえて並べ、少なくとも隣り合う自立基板が互いに接するように並べることが好ましい。なお、結晶方位とは各シードにおける主面法線方向の傾きを意味するものであるため、結晶方位をそろえることはシード間のオフ角度をそろえることと同義である。このとき、少なくとも自立基板の主面とC面との交線方向の辺で互いに接するように並べることが好ましい。例えば、主面とC面との交線方向の辺と、それに直交する辺を有する主面を含む直方体または立方体の同一形状のIII族窒化物自立基板を並べる際には、少なくとも主面とC面との交線方向の辺どうしが接するようにし、好ましくはそれに直交する辺どうしも接するように並べる。具体例として、a軸方向の辺とc軸方向の辺を有するM面を主面とする直方体のIII族窒化物自立基板(シード110)を並べる際には、図2に示すようにa軸方向の辺どうしが接し、c軸方向の辺どうしが接するように並べることができる。このとき、主面とC面との交線方向であるa軸方向の辺どうしが接する距離の総和(Sa)が、それ以外の辺であるc軸方向の辺どうしが接する距離の総和(Sc)よりも長くすることが好ましい。距離の総和の比(Sa/Sc)は1以上であることが好ましく、2以上であることがより好ましく、2.5以上であることがさらに好ましい。また、距離の総和の比(Sa/Sc)は20以下であることが好ましく、15以下であることがより好ましく、10以下であることがさらに好ましく、8以下であることがよりさらに好ましく、5以下であることが特に好ましい。距離の総和の比が下限以上である場合には、各III族窒化物自立基板における<0001>(c軸)方向のオフ角をそろえることが好ましい。なお、複数のIII族窒化物自立基板を並べる際には、各自立基板の主面とC面との交線方向を揃えて並べることがこのましく、各自立基板間の主面とC面との交線方向の分布が±5°以内となるように揃えることが好ましく、±3°以内となるように揃えることがより好ましく、±1°以内となるようにそろえることがさらに好ましく、±0.5°以内となるように揃えることが好ましい。
 III族窒化物自立基板上にIII族窒化物結晶を成長させる方法としては、例えば、ハイドライド気相成長(HVPE)法、有機金属化学気相堆積(MOCVD)法、昇華法などの気相法、液相エピタキシー(LPE)法などの液相法、アモノサーマル法などを採用することが可能であり、HVPE法を好ましく用いることができる。
(製造装置と製造条件)
 本発明では、III族窒化物自立基板上にIII族窒化物結晶を成長させることができる製造装置を適宜選択して用いることができる。以下では、好ましい製造装置の一例として、図3を参照しながらHVPE法の製造装置を説明する。
1)基本構造
 図3の製造装置は、リアクター100内に、シード110を載置するためのサセプター108と、成長させるIII族窒化物半導体の原料を入れるリザーバー106とを備えている。また、リアクター100内にガスを導入するための導入管101~105と、排気するための排気管109が設置されている。さらに、リアクター100を側面から加熱するためのヒーター107が設置されている。
2)リアクターの材質、雰囲気ガスのガス種
 リアクター100の材質としては、石英、焼結体窒化ホウ素、ステンレス等が用いられる。好ましい材質は石英である。リアクター100内には、反応開始前にあらかじめ雰囲気ガスを充填しておく。雰囲気ガス(キャリアガス)としては、例えば、水素、窒素、He、Ne、Arのような不活性ガス等を挙げることができる。これらのガスは混合して用いてもよい。
3)サセプターの材質、形状、成長面からサセプターまでの距離
 サセプター108の材質としてはカーボンが好ましく、SiCで表面をコーティングしているものがより好ましい。サセプター108の形状は、本発明で用いるIII族窒化物シードを設置することができる形状であれば特に制限されないが、結晶成長する際に結晶成長面付近に構造物が存在しないものであることが好ましい。結晶成長面付近に成長する可能性のある構造物が存在すると、そこに多結晶体が付着し、その生成物としてHClガスが発生して結晶成長させようとしている結晶に悪影響が及んでしまう。シード110とサセプター108の接触面は、シードの主面(結晶成長面)から1mm以上離れていることが好ましく、3mm以上離れていることがより好ましく、5mm以上離れていることがさらに好ましい。
4)リザーバー
 リザーバー106には、成長させるIII族窒化物半導体の原料を入れる。具体的には、III族源となる原料を入れる。そのようなIII族源となる原料として、Ga、Al、Inなどを挙げることができる。リザーバー106にガスを導入するための導入管103からは、リザーバー106に入れた原料と反応するガスを供給する。例えば、リザーバー106にIII族源となる原料を入れた場合は、導入管103からHClガスを供給することができる。このとき、HClガスとともに、導入管103からキャリアガスを供給してもよい。キャリアガスとしては、例えば水素、窒素、He、Ne、Arのような不活性ガス等を挙げることができる。これらのガスは混合して用いてもよい。
5)窒素源(アンモニア)、セパレートガス、ドーパントガス
 導入管104からは、窒素源となる原料ガスを供給する。通常はNH3を供給する。また、導入管101からは、キャリアガスを供給する。キャリアガスとしては、導入管103から供給するキャリアガスと同じものを例示することができる。このキャリアガスは原料ガス同士の気相での反応を抑制し、ノズル先端にポリ結晶が付着することを防ぐ効果もある。また、導入管102からは、ドーパントガスを供給することもできる。例えば、SiH4やSiH2Cl2、H2S等のn型のドーパントガスを供給することができる。
6)ガス導入方法
 導入管101~104から供給する上記ガスは、それぞれ互いに入れ替えて別の導入管から供給しても構わない。また、窒素源となる原料ガスとキャリアガスは、同じ導入管から混合して供給してもよい。さらに他の導入管からキャリアガスを混合してもよい。これらの供給態様は、リアクター100の大きさや形状、原料の反応性、目的とする結晶成長速度などに応じて、適宜決定することができる。
7)排気管の設置場所
 ガス排気管109は、リアクター内壁の上面、底面、側面に設置することができる。ゴミ落ちの観点から結晶成長端よりも下部にあることが好ましく、図3のようにリアクター底面にガス排気管109が設置されていることがより好ましい。
8)結晶成長条件
 上記の製造装置を用いた結晶成長は、950℃以上で行うことが好ましく、970℃以上で行うことがより好ましく、980℃以上で行うことがさらに好ましい。また、1120℃以下で行うことが好ましく、1100℃以下で行うことがより好ましく、1090℃以下で行うことがさらに好ましい。W1/W2比をより低減するためには、結晶成長中の温度が徐々に低下しないように制御することが好ましい。結晶成長中の温度低下は60℃以内に制御することが好ましく、40℃以内に制御することがより好ましく、20℃以内に制御することがさらに好ましく、10℃以内に制御することが特に好ましい。結晶成長中の温度低下は上記範囲内に制御することで、温度変化が原因で発生するチルト角分布W1およびチルト角分布W2の増加を防ぐことができ、好ましい。リアクター内の圧力は10kPa以上とすることが好ましく、30kPa以上とすることがより好ましく、50kPa以上とすることがさらに好ましい。また、200kPa以下とすることが好ましく、150kPa以下とすることがより好ましく、120kPa以下とすることがさらに好ましい。
9)結晶の成長速度
 上記の製造装置を用いた結晶成長の成長速度は、成長方法、成長温度、原料ガス供給量、結晶成長面方位等により異なるが、一般的には5μm/h~500μm/hの範囲であり、10μm/h以上が好ましく、50μm/h以上がより好ましく、70μm以上であることがさらに好ましい。成長速度は、上記の他、キャリアガスの種類、流量、供給口-結晶成長端距離等を適宜設定することによって制御することができる。
(スライス、外形加工、表面研磨)
 結晶成長後に所望の形状のIII族窒化物半導体基板を得るために、スライス、外形加工、表面研磨などを適宜行うことが好ましい。これらの方法は、いずれか1つだけを選択して用いてもよいし、組み合わせて用いてもよい。組み合わせて用いる場合は、例えば、スライス、外形加工、表面研磨の順に行うことができる。各処理について詳しく説明すると、スライスは、例えばワイヤーで切断することにより行うことができる。外形加工とは、基板形状を円形にしたり、長方形にしたりすることを意味し、例えばダイシング、外周研磨、ワイヤーで切断する方法などを挙げることができる。表面研磨の例として、ダイヤモンド砥粒などの砥粒を用いて表面を研磨する方法、CMP(chemical mechanical polishing)、機械研磨後のRIEでのダメージ層エッチングなどを挙げることができる。
(3)III族窒化物半導体結晶の製造
 本発明のIII族窒化物半導体基板の主面上に結晶を成長させることにより、III族窒化物半導体結晶を製造することができる。III族窒化物半導体基板上にIII族窒化物結晶を成長させる方法としては、例えば、ハイドライド気相成長法(HVPE)法、有機金属化学気相堆積法(MOCVD法)、LPE法などの液相法、アモノサーマル法などを採用することが可能であり、HVPE法を好ましく用いることができる。HVPE法の製造装置については、図3に示すものを例示することができる。製造条件については、通常のIII族窒化物結晶の成長条件を適宜選択して採用することができる。本発明のIII族窒化物半導体基板を用いて成長させたIII族窒化物半導体結晶は、結晶品質が高くて半導体発光デバイス等に好ましく用いることができる。
 本発明によれば、サイズが大きなIII族窒化物半導体基板を提供することができるため、製造しようとしているIII族窒化物半導体結晶のサイズに応じた基板を用いることが好ましい。本発明では、複数のIII族窒化物半導体基板を平面上に並べて、その上にまたがるようにIII族窒化物半導体結晶を成長させることも可能であるが、一段と品質が良好な結晶を製造するためには、1枚のIII族窒化物半導体基板上にIII族窒化物半導体結晶を成長させることが好ましい。
 本発明の第二の態様は、III族窒化物半導体基板の製造方法であり、以下の第1および第2工程を含むものである。
<第1工程の内容>
 本発明のIII族窒化物半導体基板の製造方法における第1工程は、半極性面を主面とするIII族窒化物シードの前記半極性面上にホモエピタキシャル成長を行ってIII族窒化物半導体結晶を得る工程である。ここでIII族窒化物シードの主面とは、構造体において最も広い面であって、結晶成長を行うべき面のことを指す。
<III族窒化物シード>
 第1工程において使用するシードは、III族窒化物で構成される。III族窒化物としては、窒化ガリウム(GaN)、窒化アルミニウム(AlN)、窒化インジウム(InN)、又はこれらの混晶などを挙げることができる。本発明では、本発明の製造方法によって製造するIII族窒化物半導体基板と同種のIII族窒化物で構成されるシードを選択する。例えば、本発明によって窒化ガリウム(GaN)半導体基板を製造する場合は、窒化ガリウム(GaN)で構成されるシードを用いる。ただし、前記シードと前記III族窒化物半導体基板とは、完全に同一の組成である必要はなく、99.75%(原子比)以上の組成が一致していれば同種のIII族窒化物であるとする。例えば、GaNで構成されるシード上にSiや酸素などをドーピングしたIII族窒化物結晶を成長させる場合は、同種のIII族窒化物を成長させているとしてホモエピタキシャル成長と称する。
 第1工程において使用するIII族窒化物シードは、半極性面を主面とするものである。
 第1工程において使用するIII族窒化物シードの主面は、本発明の製造方法によって製造するIII族窒化物半導体基板の主面に対する角度が特定の範囲内になるように選択することが好ましい。具体的には、本発明の製造方法によって製造するIII族窒化物半導体基板の主面に対して13~49°の角度で交差する面を主面とするIII族窒化物シードを選択することが好ましく、13~43°の角度で交差する面主面とするIII族窒化物シードを選択することがより好ましく、13~30°の角度で交差する面主面とするIII族窒化物シードを選択することがさらに好ましい。例えば、(10-10)面を主面とするIII族窒化物半導体基板を製造する場合は、28°で交差する(10-11)面又は(10-1-1)面を主面とするIII族窒化物シードや、15°で交差する(20-21)面又は(20-2-1)面を主面とするIII族窒化物シードを採用することが好ましい。より好ましくは、(20-21)面又は(20-2-1)面を主面とするIII族窒化物シードである。これらのIII族窒化物シードを用いた場合には、得られるIII族窒化物半導体結晶の積層欠陥が低減するため好ましい。
 また、III族窒化物シードは、シードの(0001)面の総面積が(000-1)面の総面積よりも小さいことが好ましい。このようなシードを用いることで、チルト角分布W2を小さくすることができ、好ましい。
 第1工程においては、複数のIII族窒化物シードを用いてもよい。複数のIII族窒化物自立基板を並べる際には、同一平面上に結晶方位をそろえて並べ、少なくとも隣り合う自立基板が互いに接するように並べることが好ましい。このように、結晶方位をそろえて並べることで、LED構造とした際に発光効率が向上する。
 また、このとき、少なくとも自立基板の主面とC面との交線方向の辺で互いに接するように並べることが好ましい。例えば、主面とC面との交線方向の辺と、それに直交する辺を有する主面を含む直方体または立方体の同一形状のIII族窒化物自立基板を並べる際には、少なくとも主面とC面との交線方向の辺どうしが接するようにし、好ましくはそれに直交する辺どうしも接するように並べる。具体例として、a軸方向の辺とc軸方向の辺を有するM面を主面とする直方体のIII族窒化物自立基板(シード110)を並べる際には、図2に示すようにa軸方向の辺どうしが接し、c軸方向の辺どうしが接するように並べることができる。このとき、主面とC面との交線方向であるa軸方向の辺どうしが接する距離の総和(Sa)が、それ以外の辺であるc軸方向の辺どうしが接する距離の総和(Sc)よりも長くすることが好ましい。距離の総和の比(Sa/Sc)は1以上であることが好ましく、2以上であることがより好ましく、2.5以上であることがさらに好ましい。このように、距離の総和の比(Sa/Sc)が上記下限以上である場合には、チルト角分布W1を小さくすることができ、好ましい。また、距離の総和の比(Sa/Sc)は20以下であることが好ましく、15以下であることがより好ましく、10以下であることがさらに好ましく、8以下であることがよりさらに好ましく、5以下であることが特に好ましい。
 また、複数のIII族窒化物シードは、同一の半極性面を有するものを用いても、異なる半極性面を有するものを用いてもよい。得られるIII族窒化物半導体結晶が均一になることから、シード間の主面の面方位の分布が±5°以内であることが好ましく、より好ましくは±3°以内、さらに好ましくは±1°以内、もっとも好ましくは±0.5°以内である。なお、面方位とは各シードにおける主面法線方向の傾きを意味するものであるため、面方位の分布が±5°以内であることはオフ角度が±5°以内であることと同義である。
 また、距離の総和の比(Sa/Sc)が上記下限以上である場合には、各シードにおける<0001>(c軸)方向のオフ角を上記範囲内にすることが好ましい。
 複数のIII族窒化物シードの配置方法は特に限定されず、同一平面状に隣り合うように配置してもよいし、平面状で重なり合って隣り合うように配置してもよい。複数のIII族窒化物シードの主面が異なる面方位である場合には、各々の主面の面方位が同一方向となるように配置すると、シードの接合部上に得られるIII族窒化物半導体結晶の結晶性が良好になる傾向があり好ましい。
<ホモエピタキシャル成長>
 第1工程におけるホモエピタキシャル成長は、シードを構成するIII族窒化物と同種のIII族窒化物をシードの半極性面上に成長させるものである。このとき、III族窒化物シードの主面である半極性面以外の面にも成長が行われてもよい。また、第1工程におけるホモエピタキシャル成長は、III族窒化物シードの主面上に成長するものであれば、主面に対して必ずしも垂直な方向に成長させるものでなくてもよい。また、成長の方向は第1工程中に変わってもよい。
 III族窒化物シードの半極性面上に成長させる結晶の厚さは、最終的に取得したいIII族窒化物半導体基板のサイズ等に応じて適宜決定することができる。シードの半極性面上に成長させる結晶の厚さは、例えば1~51mmとすることができ、3~24mmとすることができ、10~14mmとすることができる。ここでいう厚さは、シードの半極性面に対して垂直な方向の厚さを意味する。
 ホモエピタキシャル成長の具体的な方法については特に制限されない。例えば、ハイドライド気相成長法(HVPE)法、有機金属化学気相堆積法(MOCVD法)、液相法、アモノサーマル法などを採用することが可能であり、HVPE法、液相法、アモノサーマル法を好ましく用いることができる。また、用いることができる製造装置と製造条件については、本発明の第一の態様と同様である。
<第2工程の内容>
 本発明のIII族窒化物半導体基板の製造方法における第2工程は、第1工程で得られたIII族窒化物半導体結晶から、前記半極性面とは異なる面を主面とする基板を取得する工程である。
<基板の主面>
 第2工程において取得するIII族窒化物半導体基板の主面は、シードの主面とは異なる面であれば特に限定されず、例えば非極性面であってもよいし、半極性面であってもよい。
 非極性面としては、例えば、{10-10}面や{11-20}面を例示することができる。ここでいう{10-10}面とはいわゆる「M面」のことであり、六方晶構造(ウルツ鋼型結晶構造)における(10-10)面と等価な面であって、具体的には(1-100)面、(-1100)面、(01-10面)、(0-110)面、(10-10)面、(-1010)面を意味する。また、{11-20}面とはいわゆる「A面」のことであり、六方晶構造(ウルツ鋼型結晶構造)における(11-20)面と等価な面であって、具体的には、(11-20)面、(-1-120)面、(1-210)面、(-12-10)面、(-2110)面、(2-1-10)面を意味する。
 半極性面としては、例えば、(10-11)面、(10-1-1)面、(20-21)面、(20-2-1)面などを例示することができる。
<基板を取得する方法>
 第2工程において、第1工程で得られたIII族窒化物半導体結晶から目的とするIII族窒化物半導体基板を取得する方法として、例えば、研磨、切断、エッチングなどの挙げることができる。これらの方法は、いずれか1つだけを選択して用いてもよいし、組み合わせて用いてもよい。組み合わせて用いる場合は、切断またはエッチングを行った後に研磨を行うことが好ましく、必要に応じてさらに研磨後にエッチングを行ってもよい。第2工程において好ましく採用される方法は、研磨、切断、またはこれらの組み合わせである。研磨を行う場合は、ダイヤモンド砥粒などの砥粒を用いて表面を研磨した後、CMP(chemical mechanical polishing)など公知の方法にて基板表面の粗さを任意の範囲にすることが可能である。
 第2工程では、所望のサイズのIII族窒化物半導体基板が得られるように研磨、切断、エッチングなどを行う。本発明の製造方法によれば、比較的大きなサイズの主面を有するIII族窒化物半導体基板を得ることが可能である。例えば、主面の最大径が10~153mm、好ましくは18~101mm、さらに好ましくは51~77mmであるIII族窒化物半導体基板を得ることが可能である。ここで最大径とは、主面の中で最長の長さを有する直線の長さのことをいい、主面の形状は円形に限られるものではない。
 また、本発明の製造方法によれば、厚さが0.1~2mm、好ましくは0.2~1.5mm、さらに好ましくは0.3~0.6mmであるIII族窒化物半導体基板を得ることが可能である。
 本発明の製造方法では、積層欠陥が極めて少ないIII族窒化物半導体基板を得ることができる。
 III族窒化物半導体基板の積層欠陥の多少は、III族窒化物半導体基板上にLED構造を作製し、室温にてPL(photo-luminescence)測定を行うことで評価することが可能である。また、III族窒化物半導体基板上にLED構造を作製し蛍光顕微鏡で観察した場合、積層欠陥に対応する輝線を確認することができるため、該輝線の強度でもIII族窒化物半導体基板の積層欠陥の多少を評価することができる。積層欠陥は極性面に平行に存在する面欠陥であるため、非極性面または半極性面を主面とする基板においては、積層欠陥の断面に相当する直線を前記輝線として確認することができる。本発明の製造方法を用いた場合、輝線強度が200cm-1以下であるIII族窒化物半導体基板を得ることが可能であり、好ましくは150cm-1以下、より好ましくは100cm-1以下である。
 さらに、III族窒化物半導体基板の積層欠陥の多少は、基板自体を低温(10K)にてPL測定を行うことでも評価することが可能である。本発明の製造方法を用いた場合、バンド端PL強度に対する3.41eV付近の積層欠陥起因のPL強度(低温)が0.1以下であるIII族窒化物半導体基板を得ることが可能であり、好ましくは0.08以下、より好ましくは0.05以下である。
(4)半導体発光デバイス
 本発明の半導体発光デバイスは、上記の本発明の第一の態様のIII族窒化物半導体基板、または本発明の第二の態様の製造方法により得たIII族窒化物半導体基板を用いている点に特徴がある。通常は、本発明のIII族窒化物半導体基板の主面上に上記方法によりIII族窒化物半導体結晶を成長させることにより、LEDなどの半導体発光デバイスを製造する。成長させるIII族窒化物半導体結晶としては、例えばGaN、AlGaN、InGaN、AlInN、AlInGaNなどを挙げることができる。本発明の第一の態様に係るIII族窒化物半導体基板上に結晶を成長させれば、主面のチルト角分布の比(W1/W2)が大きな従来のIII族窒化物半導体基板上に結晶を成長させた場合に比べて、発光効率が高い半導体発光デバイスを提供することができる。
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
(1)III族窒化物半導体基板の製造
(基板製造例1)
 (0001)面成長により作製されたGaN結晶塊から、(20-21)面から<0001>(c軸)方向に1°のオフ角を有する主面を有する長方体のGaN自立基板を8枚切り出した。各GaN自立基板は、<11-20>(a軸)方向に30mm、主面内においてa軸に直交する方向に17mmとなるように切り出した。各GaN自立基板間の面方位の分布は、±0.15°以内であった。このGaN自立基板をシードとして、サセプター上に、GaN自立基板どうしの<0001>(c軸)方向が±0.25°の精度で揃うように、<11-20>(a軸)方向に2列、a軸に直交する方向に4列に並べた(図2参照)。主面とC面との交線方向の辺どうしが接する距離の総和(Sa)は180mm、それ以外の辺どうしが接する距離の総和(Sc)は68mmであった。その後、図3に示すように、シード110を搭載したサセプター108をリアクター100内に配置し、反応室の温度を970℃まで上げ、HVPE法にてGaN単結晶膜の成長を開始した。成長開始と同時に、反応室の温度を970℃から1020℃まで1時間で昇温させた後、1020℃一定で77時間成長させた。成長中の温度低下は5℃未満であった。この単結晶成長工程においては成長開始から成長終了まで成長圧力を1.01×105Paとし、GaClガスG3の分圧を5.96×102Paとし、NH3ガスG4の分圧を5.34×103Paとした。単結晶成長工程が終了後、室温まで降温し、GaN結晶を得た。得られたGaN結晶は<20-21>方向に最大で12.0mm、最小で8.1mm成長していた。成長膜厚分布には傾向がなく、ランダムな膜厚分布であった。
 得られたGaN結晶を、ダイシングにより外形加工し、さらにダイヤモンド砥粒を用いた研磨およびChemical mechanical  Polishing(CMP)により表面研磨して、厚さ400μmの(10-10)面(M面)を主面とする55mm角の正方形のGaN自立基板を作製した。基板面内における<11-20>(a軸)方向および<0001>(c軸)方向のチルト角分布を、X線回折法のωスキャンを各方向に3点実施することにより測定した。3点の測定点は、基板中心1点と、基板中心から20mm離れた2点となる位置とした。測定結果は、40mm間隔換算で<11-20>(a軸)方向は±0.11°、<0001>(c軸)方向は±0.35°であった。<11-20>(a軸)方向のチルト角分布を<0001>(c軸)方向のチルト角分布で割った値は、0.31であった。なお、2つの軸方向のチルト角分布は主面中でほぼ一定であった。
(基板製造例2)
 基板製造例1と同じ方法にしたがって、(20-21)面から<0001>(c軸)方向に1°のオフ角を有する主面を有する8枚のGaN自立基板上にGaN結晶を成長させた。主面とC面との交線方向の辺どうしが接する距離の総和(Sa)は180mm、それ以外の辺どうしが接する距離の総和(Sc)は68mmであった。成長中の温度低下は5℃未満であった。得られたGaN結晶を、ワイヤーで切断することによりスライスし、ダイシングすることにより外形加工し、さらにダイヤモンド砥粒を用いた研磨とCMPにより表面研磨して、厚さ400μmの(20-21)面を主面とする55mm角の正方形のGaN自立基板を作製した。基板面内における<11-20>(a軸)方向および主面内においてa軸に直交する方向のチルト角分布を、X線回折法のωスキャンを基板製造例1と同様に各方向に3点実施することにより測定したところ、40mm間隔換算で<11-20>(a軸)方向は±0.11°、a軸に直交する方向は±0.33°であった。<11-20>(a軸)方向のチルト角分布をa軸に直交する方向のチルト角分布で割った値は、0.33であった。なお、2つの軸方向のチルト角分布は主面中でほぼ一定であった。
<基板製造例3>
 主面が(10-1-1)面であり、主面内において<11-20>(a軸)に直交する方向の長さが5mmで、<11-20>(a軸)方向の長さが20mmである長方形のGaN自立基板を用意し、これをシード110としてサセプター108上に置いた。シード110を搭載したサセプター108を図3に示すようにリアクター100内に配置して、反応室の温度を1020℃まで上げ、HVPE法にてGaN単結晶膜を54時間成長させた。成長中の温度低下は5℃未満であった。この単結晶成長工程においては成長圧力を1.01×105Paとし、GaClガスG3の分圧を5.96×102Paとし、NH3ガスG4の分圧を6.98×103Paとした。単結晶成長工程が終了後、室温まで降温し、GaN結晶を得た。結晶は[10-1-1]方向に最大4.5mm成長していた。
 得られたGaN結晶について外形加工、表面研磨処理を行った後、通常の手法でこれをスライスし、研磨を行って、厚さ330μmの(10-10)面を主面とするGaN自立基板を3枚作製した。得られた3枚のGaN自立基板のうち、シード側から2番目の基板の評価を実施した。基板面内における<11-20>(a軸)方向および主面内においてa軸に直交する方向のチルト角分布を、X線回折法のωスキャンを基板製造例1と同様に各方向に3点実施することにより測定したところ、40mm間隔換算で<11-20>(a軸)方向は±0.21°、a軸に直交する方向は±0.26°であった。<11-20>(a軸)方向のチルト角分布をa軸に直交する方向のチルト角分布で割った値は、0.81であった。なお、2つの軸方向のチルト角分布は主面中でほぼ一定であった。
<基板製造例4>
 シードとして主面が(20-2-1)面であるGaN自立基板を用いた点を変更して、基板製造例3と同じ条件でGaN結晶を得た。成長中の温度低下は5℃未満であった。結晶は[20-2-1]方向に最大4.8mm成長していた。この結晶から基板製造例3と同じ方法により厚さ330μmの3枚のGaN自立基板を得て、シード側から2番目の基板の反りを測定した。基板面内における<11-20>(a軸)方向および主面内においてa軸に直交する方向のチルト角分布を、X線回折法のωスキャンを基板製造例1と同様に各方向に3点実施することにより測定したところ、40mm間隔換算で<11-20>(a軸)方向は±0.08°、a軸に直交する方向は±0.14°であった。<11-20>(a軸)方向のチルト角分布をa軸に直交する方向のチルト角分布で割った値は、0.57であった。なお、2つの軸方向のチルト角分布は主面中でほぼ一定であった。
<基板製造例5>
 シードとして主面が(10-10)面であるGaN自立基板を用いた点を変更して、基板製造例3と同じ条件でGaN結晶を得た。成長中の温度低下は5℃未満であった。結晶は[10-10]方向に最大4.7mm成長していた。この結晶から基板製造例3と同じ方法により厚さ330μmの3枚のGaN自立基板を得て、シード側から2番目の基板の反りを測定した。基板面内における<11-20>(a軸)方向および主面内においてa軸に直交する方向のチルト角分布を、X線回折法のωスキャンを基板製造例1と同様に各方向に3点実施することにより測定したところ、40mm間隔換算で<11-20>(a軸)方向は±0.15°、a軸に直交する方向は±0.60°であった。<11-20>(a軸)方向のチルト角分布をa軸に直交する方向のチルト角分布で割った値は、0.25であった。なお、2つの軸方向のチルト角分布は主面中でほぼ一定であった。
<基板製造例6>
 シードとして、主面が(20-21)面であり、c軸方向の長さが17mmで、a軸方向の長さが25mmの長方形であるGaN自立基板を8枚用意し、GaN自立基板どうしの<0001>(c軸)方向が±0.25°の精度で揃うようにこれらをc軸方向に4列、a軸方向に2列に並べて使用した点を変更して、基板製造例3と同じ条件でGaN結晶を得た。主面とC面との交線方向の辺どうしが接する距離の総和(Sa)は150mm、それ以外の辺どうしが接する距離の総和(Sc)は68mmであった。なお、各自立基板間の面方位の分布は±0.15°以内であった。成長中の温度低下は5℃未満であった。結晶は[20-21]方向に最大17mm成長していた。同条件で2結晶作製し、1結晶は(10-10)面でスライスし、複数枚の基板を得て、そのうち39mm×53mmの基板を測定用に抜き取り、もう1結晶は(20-21)面でスライスし、複数枚の基板を得て、そのうちの38mm×53mmの基板を測定用に抜き取った。測定温度10Kにて、励起光源に中心波長325nmのHe-Cdレーザーを用い、PL測定を実施した。バンド端PL強度に対する3.41eV付近の積層欠陥起因のPL強度(低温)を調べたところ、(10-10)面スライス基板で図5の結果に、(20-21)面スライス基板で図6の結果になった。いずれのスライス基板においても、基板中心を通るc軸に平行なラインではバンド端PL強度に対する3.41eV付近の積層欠陥起因のPL強度(低温)が高く、一方、a軸方向側の基板端はバンド端PL強度に対する3.41eV付近の積層欠陥起因のPL強度(低温)が低い結果となった。基板面内における<11-20>(a軸)方向および主面内においてa軸に直交する方向のチルト角分布を、X線回折法のωスキャンを基板製造例1と同様に各方向に3点実施することにより測定したところ、40mm間隔換算で<11-20>(a軸)方向は±0.033°、a軸に直交する方向は±0.22°であった。<11-20>(a軸)方向のチルト角分布をa軸に直交する方向のチルト角分布で割った値は、0.15であった。なお、2つの軸方向のチルト角分布は主面中でほぼ一定であった。
(基板製造例7)
 (20-21)面から<11-20>(a軸)方向に-1°から1°のオフ角を有する主面を有する8枚のGaN自立基板を用意し、このGaN自立基板をシードとして、サセプター上に、GaN自立基板どうしの<0001>(c軸)方向が±0.25°の精度で揃うように、<11-20>(a軸)方向に2列、a軸に直交する方向に4列に並べた。<11-20>側に-1°のオフ角を有する基板を置き、<-1-120>側に1°のオフ角を有する基板をサセプター上に並べた。主面とC面との交線方向の辺どうしが接する距離の総和(Sa)は180mm、それ以外の辺どうしが接する距離の総和(Sc)は68mmであった。成長中の温度低下は5℃未満であった。図3の結晶製造装置を用いて、基板製造例1と同様の条件でGaN結晶を成長させた。得られたGaN結晶を、ワイヤーで切断することによりスライスし、ダイシングにより外形加工し、さらにダイヤモンド砥粒を用いた研磨とCMPにより表面研磨して、厚さ400μmの(10-10)面(M面)を主面とする55mm角の正方形のGaN自立基板を作製した。基板面内における<11-20>(a軸)方向および<0001>(c軸)方向のチルト角分布を、X線回折法のωスキャンを基板製造例1と同様に各方向に3点実施することにより測定したところ、40mm間隔換算で<11-20>(a軸)方向は±0.81°、<0001>(c軸)方向は±0.41°であった。<11-20>(a軸)方向のチルト角分布を<0001>(c軸)方向のチルト角分布で割った値は、1.97であった。なお、2つの軸方向のチルト角分布は主面中でほぼ一定であった。
(基板製造例8)
 基板製造例1と同じ方法にしたがって、GaN自立基板をシードとしてサセプター上に並べ、リアクター内に配置した。反応室の温度1080℃で、45分間成長させた後、1020℃まで30分間で降温し、1020℃で77時間成長させた。成長中の温度低下は60℃であった。得られたGaN結晶を、ワイヤーで切断することによりスライスし、ダイシングすることにより外形加工し、さらにダイヤモンド砥粒を用いた研磨とCMPにより表面研磨して、厚さ400μmの(10-10)面(M面)を主面とする55mm角の正方形のGaN自立基板を作製した。基板面内における<11-20>(a軸)方向および<0001>(c軸)方向のチルト角分布を、X線回折法のωスキャンを各方向に3点実施することにより測定した。3点の測定点は、基板中心1点と、基板中心から20mm離れた2点となる位置とした。測定結果は、40mm間隔換算で<11-20>(a軸)方向は±4.60°、<0001>(c軸)方向は±1.75°であった。<11-20>(a軸)方向のチルト角分布を<0001>(c軸)方向のチルト角分布で割った値は、2.63であった。なお、2つの軸方向のチルト角分布は主面中でほぼ一定であった。
(2)半導体発光デバイス構造の製造
(デバイス構造製造例1)
 基板製造例1で製造した(10-10)面を主面とする基板上に、MOCVD法により405nm発光を目標にしたInGaN系のLED構造を作製した。具体的には、基板にInGaN/GaN量子井戸を含んだ構造を成長することによってLED構造を作製した。作製したLED構造は、光学顕微鏡で50倍から1000倍の倍率まで確認したところ平坦に作製されていることが確認された。作製したLEDについて、中心波長325nmのHe-Cdレーザーを励起光源として用いて室温にてPL(photo-luminescence)測定を実施したところ、ウェハ全面から、発光波長405nm付近の量子井戸からの発光が観測された。
(デバイス構造製造例2)
 基板製造例2で製造した(20-21)面を主面とする基板を用いた点を変更して、デバイス構造製造例1と同様にしてLED構造を作製した。作製したLED構造は、光学顕微鏡で50倍から1000倍の倍率まで確認したところ平坦に作製されていることが確認された。作製したLEDについて、中心波長325nmのHe-Cdレーザーを励起光源として用いて室温にてPL測定を実施したところ、ウェハ全面から、発光波長405nm付近の量子井戸からの発光が観測された。
(デバイス構造製造例3)
 基板製造例3で製造した(10-1-1)面を主面とするシード側から2番目の基板を用いた点を変更して、デバイス構造製造例1と同様にしてLED構造を作製した。作製したLEDについて、中心波長325nmのHe-Cdレーザーを励起光源として用いて室温にてPL測定を実施したところ、ウェハ全面から、発光波長405nm付近の量子井戸からの発光が観測され、PL強度は2.147であった。また、蛍光顕微鏡を用いて表面を200倍の倍率で観察した結果を図4(a)に示す。蛍光顕微鏡写真の縦方向がc軸方向で、横方向がa軸方向である。輝線密度は、少ない領域では0、多い領域では100cm-1であった。輝線は長波長発光領域に対応している。
(デバイス構造製造例4)
 基板製造例4で製造した(20-2-1)面を主面とする基板を用いた点を変更して、デバイス構造製造例1と同様にしてLED構造を作製した。作製したLEDについて、中心波長325nmのHe-Cdレーザーを励起光源として用いて室温にてPL測定を実施したところ、ウェハ全面から、発光波長405nm付近の量子井戸からの発光が観測され、PL強度は1.707であった。また、蛍光顕微鏡を用いて表面を200倍の倍率で観察した結果を図4(b)に示す。蛍光顕微鏡写真の縦方向がc軸方向で、横方向がa軸方向である。輝線密度は、少ない領域では0、多い領域では90cm-1であった。
(デバイス構造製造例5)
 基板製造例7で製造した(10-10)面を主面とする基板を用いた点を変更して、デバイス構造製造例1と同様にしてLED構造を作製した。作製したLED構造の表面を光学顕微鏡で50倍の倍率で観察したところ、非常に荒れた表面になっていることが確認された。作製したLEDについて、中心波長325nmのHe-Cdレーザーを励起光源として用いて室温にてPL測定を実施したところ、ウェハ全面で発光波長405nm付近の量子井戸からの発光が全く観測されず、440nmより長波長側の発光のみ観測された。
(デバイス構造製造例6)
 基板製造例5で製造した(10-10)面を主面とする基板を用いた点を変更して、デバイス構造製造例1と同様にしてLED構造を作製した。作製したLEDについて、中心波長325nmのHe-Cdレーザーを励起光源として用いて室温にてPL測定を実施したところ、PL強度は0.337であった。また、蛍光顕微鏡を用いて表面を200倍の倍率で観察した結果を図4(c)に示す。蛍光顕微鏡写真の縦方向がc軸方向で、横方向がa軸方向である。輝線密度は、少ない領域では0、多い領域では500cm-1であり、積層欠陥に相当する輝線がa軸方向に多数認められた。
(考察)
 本発明の第一の態様のIII族窒化物半導体基板である、基板製造例1~4で得られた基板を用いた半導体発光デバイス構造は、ウェハ全面から発光波長405nm付近の量子井戸からの発光が観察された(デバイス構造製造例1~4)。一方、本発明の第一の態様を充足しないIII窒化物半導体である、基板製造例7で得られた基板を用いた半導体発光デバイス構造は、405nm付近の量子井戸からの発光が全く観察されず、440nmより長波長側の発光のみ観測された(デバイス構造製造例5)。
 また、本発明の第一の態様のIII族窒化物半導体基板である、基板製造例1~2で得られた基板を用いた半導体発光デバイス構造は、チップ表面が平坦であった(デバイス構造製造例1~2)。一方、本発明の第一の態様の特徴であるW1/W2を充足しないIII窒化物半導体である、基板製造例7で得られた基板を用いた半導体発光デバイス構造は、非常に荒れた表面になっていた(デバイス構造製造例5)。
Figure JPOXMLDOC01-appb-T000001
 本発明の第二の態様のIII族窒化物半導体基板の製造方法により製造された基板製造例3~4で得られた基板は、PL強度が高く、輝線密度が低い基板であった。一方、本発明の第二の態様を満たさない、下地基板の主面を非極性面とするIII族窒化物半導体基板の製造方法により製造された基板製造例5で得られた基板は、PL強度が低く、輝線密度が高い基板であった。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、本発明のIII族窒化物半導体基板は、極性面と主面の交差線方向の基板の反りが、前記交差線に直交する方向の基板の反りよりも小さくて、なおかつ、前記交差線に直交する方向の基板の反りが40mmあたり1°未満であって基板製造例5の基板よりも有意に小さい。また、本発明のIII族窒化物半導体基板を用いて製造したLEDは、PL強度(室温)が大きい。また、図4からも明らかなように、輝線は極性面と主面の交差線方向に認められ、積層欠陥が極性面と平行に発生していることが確認されたが、その頻度は基板製造例5に比べると有意に少なかった。
 また、図5及び図6から明らかなように、基板製造例6で得られた基板は、主面の面内各点でバンド端PL強度に対する3.41eV付近の積層欠陥起因のPL強度(低温)が1未満となっており、積層欠陥が非常に少ない基板となっている。一方で、基板製造例5で得られた基板はデバイス構造製造例6から明らかなように、積層欠陥が多数存在する基板であって、面内各点におけるPL強度(低温)は1超過であると考えられる。
 本発明のIII族窒化物半導体基板を用いれば、その上に優れた品質を有するIII族窒化物結晶を成長させることができる。また、そのようにして成長させたIII族窒化物結晶を用いれば、発光効率が高いLEDなどの半導体発光デバイスを簡便に製造することができる。このため、本発明はIII族窒化物半導体を利用した工業製品の開発や製造に効果的に利用することができ、産業上の利用可能性が高い。
  1 III族窒化物半導体基板
100 リアクター
101 キャリアガス用配管
102 ドーパントガス用配管
103 III族原料用配管
104 窒素原料用配管
105 HClガス用配管
106 III族原料用リザーバー
107 ヒーター
108 サセプター
109 排気管
110 シード
 G1 キャリアガス
 G2 ドーパントガス
 G3 III族原料ガス
 G4 窒素原料ガス
 G5 HClガス

Claims (13)

  1.  C面以外の面を主面とするIII族窒化物半導体基板であって、主面とC面の交線方向における主面のチルト角分布W1と、その交線に直交する方向における主面のチルト角分布W2との比(W1/W2)が1未満であることを特徴とするIII族窒化物半導体基板。
  2.  M面を主面とするか、M面からc軸方向に90°未満傾斜した面を主面とするIII族窒化物半導体基板であることを特徴とする、請求項1に記載のIII族窒化物半導体基板。
  3.  前記チルト角分布W1が40mm間隔あたり±1°未満であることを特徴とする請求項1または2に記載のIII族窒化物半導体基板。
  4.  前記チルト角分布W2が40mm間隔あたり±0.01以上±1°未満であることを特徴とする請求項1~3のいずれか一項に記載のIII族窒化物半導体基板。
  5.  請求項1~4のいずれか一項に記載のIII族窒化物半導体基板上にIII族窒化物半導体結晶を成長させることを特徴とするIII族窒化物半導体結晶の製造方法。
  6.  請求項1~4のいずれか一項に記載のIII族窒化物半導体基板上にIII族窒化物半導体結晶を成長させる工程を含むことを特徴とする半導体発光デバイスの製造方法。
  7.  請求項6に記載の製造方法により製造される半導体発光デバイス。
  8.  LEDであることを特徴とする請求項7に記載の半導体発光デバイス。
  9. (1)半極性面を主面とするIII族窒化物シードの前記半極性面上にホモエピタキシャル成長を行ってIII族窒化物半導体結晶を得る第1工程、および、
    (2)前記III族窒化物半導体結晶から、前記半極性面とは異なる面を主面とするIII族窒化物半導体基板を取得する第2工程
    を含むことを特徴とする、III族窒化物半導体基板の製造方法。
  10.  前記III族窒化物シードは複数のIII族窒化物シードからなり、該複数のIII族窒化物シードは、同一平面上に各シード間の主面の面方位の分布が±0.5°以内となるよう配置されることを特徴とする、請求項9に記載のIII族窒化物半導体基板の製造方法。
  11.  前記III族窒化物シードを、下記式を満たすように配置することを特徴とする、請求項9または10に記載のIII族窒化物半導体基板の製造方法。
       Sa/Sc≧1
    (上記式において、SaはIII属窒化物シードの極性面と主面との交線方向の辺どうしが接する距離の総和を表し、Scはそれ以外の辺どうしが接する距離の総和を表わす。)
  12.  前記III族窒化物シードは、シードの(0001)面の総面積が(000-1)面の総面積よりも小さいことを特徴とする、請求項9~11のいずれか一項に記載のIII族窒化物半導体基板の製造方法。
  13.  前記第1工程は、結晶成長中の温度低下を60℃以内に制御して結晶成長を行うことを特徴とする、請求項9~12のいずれか一項に記載のIII族窒化物半導体基板の製造方法。
PCT/JP2011/077727 2010-12-01 2011-11-30 Iii族窒化物半導体基板及びその製造方法、並びに半導体発光デバイス及びその製造方法 WO2012074031A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020137014593A KR20130141576A (ko) 2010-12-01 2011-11-30 Ⅲ 족 질화물 반도체 기판 및 그 제조 방법, 그리고 반도체 발광 디바이스 및 그 제조 방법
US13/908,428 US20130264606A1 (en) 2010-12-01 2013-06-03 Group iii nitride semiconductor substrate and method for producing the same, and semiconductor light-emitting device and method for producing the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010-268598 2010-12-01
JP2010268598 2010-12-01
JP2010-273221 2010-12-08
JP2010273221 2010-12-08
JP2011146633A JP5830973B2 (ja) 2010-12-01 2011-06-30 GaN自立基板および半導体発光デバイスの製造方法
JP2011-146633 2011-06-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/908,428 Continuation US20130264606A1 (en) 2010-12-01 2013-06-03 Group iii nitride semiconductor substrate and method for producing the same, and semiconductor light-emitting device and method for producing the same

Publications (1)

Publication Number Publication Date
WO2012074031A1 true WO2012074031A1 (ja) 2012-06-07

Family

ID=46171956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077727 WO2012074031A1 (ja) 2010-12-01 2011-11-30 Iii族窒化物半導体基板及びその製造方法、並びに半導体発光デバイス及びその製造方法

Country Status (4)

Country Link
US (1) US20130264606A1 (ja)
JP (1) JP5830973B2 (ja)
KR (1) KR20130141576A (ja)
WO (1) WO2012074031A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014028723A (ja) * 2012-07-31 2014-02-13 Mitsubishi Chemicals Corp 第13族窒化物基板及びその製造方法
WO2014097931A1 (ja) * 2012-12-17 2014-06-26 三菱化学株式会社 窒化ガリウム基板、および、窒化物半導体結晶の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9404197B2 (en) * 2008-07-07 2016-08-02 Soraa, Inc. Large area, low-defect gallium-containing nitride crystals, method of making, and method of use
TWI679320B (zh) * 2013-08-08 2019-12-11 日商三菱化學股份有限公司 自立GaN基板、GaN結晶、GaN單結晶之製造方法及半導體裝置之製造方法
JP6760285B2 (ja) * 2015-07-14 2020-09-23 三菱ケミカル株式会社 非極性または半極性GaNウエハ
JP7046496B2 (ja) 2017-03-28 2022-04-04 古河機械金属株式会社 Iii族窒化物半導体基板の製造方法、iii族窒化物半導体基板、及び、バルク結晶
JP7327532B2 (ja) * 2020-10-07 2023-08-16 三菱ケミカル株式会社 GaN単結晶およびGaN単結晶製造方法
JP7006751B2 (ja) * 2020-10-07 2022-01-24 三菱ケミカル株式会社 GaN単結晶およびGaN単結晶製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143581A (ja) * 2004-11-23 2006-06-08 Samsung Corning Co Ltd 窒化ガリウム単結晶厚膜およびその製造方法
JP2006315947A (ja) * 2005-04-11 2006-11-24 Nichia Chem Ind Ltd 窒化物半導体ウエハ及びその製造方法
JP2008143772A (ja) * 2006-11-17 2008-06-26 Sumitomo Electric Ind Ltd Iii族窒化物結晶の製造方法
JP2008169075A (ja) * 2007-01-11 2008-07-24 Sumitomo Electric Ind Ltd Iii族窒化物結晶の製造方法
WO2009039408A1 (en) * 2007-09-19 2009-03-26 The Regents Of The University Of California Method for increasing the area of non-polar and semi-polar nitride substrates
WO2010007867A1 (ja) * 2008-07-17 2010-01-21 住友電気工業株式会社 Iii族窒化物結晶の製造方法およびiii族窒化物結晶
WO2011004726A1 (ja) * 2009-07-07 2011-01-13 住友電気工業株式会社 窒化物半導体基板の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6083812A (en) * 1993-02-02 2000-07-04 Texas Instruments Incorporated Heteroepitaxy by large surface steps
TW418549B (en) * 1998-06-26 2001-01-11 Sharp Kk Crystal growth method for nitride semiconductor, nitride semiconductor light emitting device, and method for producing the same
US7221037B2 (en) * 2003-01-20 2007-05-22 Matsushita Electric Industrial Co., Ltd. Method of manufacturing group III nitride substrate and semiconductor device
JP4276020B2 (ja) * 2003-08-01 2009-06-10 豊田合成株式会社 Iii族窒化物系化合物半導体の製造方法
JP2006290677A (ja) * 2005-04-11 2006-10-26 Hitachi Cable Ltd 窒化物系化合物半導体結晶の製造方法及び窒化物系化合物半導体基板の製造方法
JP5125098B2 (ja) * 2006-12-26 2013-01-23 信越半導体株式会社 窒化物半導体自立基板の製造方法
JP5053893B2 (ja) * 2008-03-07 2012-10-24 住友電気工業株式会社 窒化物半導体レーザを作製する方法
JP2009286652A (ja) * 2008-05-28 2009-12-10 Sumitomo Electric Ind Ltd Iii族窒化物結晶、iii族窒化物結晶基板および半導体デバイスの製造方法
JP5420281B2 (ja) * 2009-03-11 2014-02-19 日立金属株式会社 Iii族窒化物半導体単結晶の製造方法、及びiii族窒化物半導体単結晶基板の製造方法
JP5446622B2 (ja) * 2009-06-29 2014-03-19 住友電気工業株式会社 Iii族窒化物結晶およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143581A (ja) * 2004-11-23 2006-06-08 Samsung Corning Co Ltd 窒化ガリウム単結晶厚膜およびその製造方法
JP2006315947A (ja) * 2005-04-11 2006-11-24 Nichia Chem Ind Ltd 窒化物半導体ウエハ及びその製造方法
JP2008143772A (ja) * 2006-11-17 2008-06-26 Sumitomo Electric Ind Ltd Iii族窒化物結晶の製造方法
JP2008169075A (ja) * 2007-01-11 2008-07-24 Sumitomo Electric Ind Ltd Iii族窒化物結晶の製造方法
WO2009039408A1 (en) * 2007-09-19 2009-03-26 The Regents Of The University Of California Method for increasing the area of non-polar and semi-polar nitride substrates
WO2010007867A1 (ja) * 2008-07-17 2010-01-21 住友電気工業株式会社 Iii族窒化物結晶の製造方法およびiii族窒化物結晶
WO2011004726A1 (ja) * 2009-07-07 2011-01-13 住友電気工業株式会社 窒化物半導体基板の製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014028723A (ja) * 2012-07-31 2014-02-13 Mitsubishi Chemicals Corp 第13族窒化物基板及びその製造方法
WO2014097931A1 (ja) * 2012-12-17 2014-06-26 三菱化学株式会社 窒化ガリウム基板、および、窒化物半導体結晶の製造方法
JPWO2014097931A1 (ja) * 2012-12-17 2017-01-12 三菱化学株式会社 窒化ガリウム基板、および、窒化物半導体結晶の製造方法
US9673046B2 (en) 2012-12-17 2017-06-06 Mitsubishi Chemical Corporation Gallium nitride substrate and manufacturing method of nitride semiconductor crystal
JP2018087120A (ja) * 2012-12-17 2018-06-07 三菱ケミカル株式会社 窒化ガリウム基板、および、窒化物半導体結晶の製造方法
JP2019077614A (ja) * 2012-12-17 2019-05-23 三菱ケミカル株式会社 窒化ガリウム基板、および、窒化物半導体結晶の製造方法
US10734485B2 (en) 2012-12-17 2020-08-04 Mitsubishi Chemical Corporation Gallium nitride substrate and manufacturing method of nitride semiconductor crystal
US11670687B2 (en) 2012-12-17 2023-06-06 Mitsubishi Chemical Corporation Gallium nitride substrate and manufacturing method of nitride semiconductor crystal

Also Published As

Publication number Publication date
KR20130141576A (ko) 2013-12-26
US20130264606A1 (en) 2013-10-10
JP5830973B2 (ja) 2015-12-09
JP2012136414A (ja) 2012-07-19

Similar Documents

Publication Publication Date Title
WO2012074031A1 (ja) Iii族窒化物半導体基板及びその製造方法、並びに半導体発光デバイス及びその製造方法
KR101488545B1 (ko) Iii 족 질화물 반도체 결정의 제조 방법, iii 족 질화물 반도체 기판 및 반도체 발광 디바이스
JP5370613B2 (ja) 窒化物半導体結晶およびその製造方法
WO2010140564A1 (ja) 窒化物半導体結晶およびその製造方法
US9343525B2 (en) Aluminum nitride substrate and group-III nitride laminate
US10570530B2 (en) Periodic table group 13 metal nitride crystals and method for manufacturing periodic table group 13 metal nitride crystals
JP2010275171A (ja) Iii族窒化物結晶及びその製造方法
JP5949064B2 (ja) GaNバルク結晶
JP2013082611A (ja) Iii族窒化物半導体結晶とその製造方法、およびiii族窒化物基板
JP2009143778A (ja) 窒化アルミニウム結晶の成長方法と窒化アルミニウム基板および半導体デバイス
JP2013075791A (ja) Iii族窒化物半導体結晶の製造方法、iii族窒化物半導体基板およびiii族窒化物半導体結晶
JP2013209274A (ja) 周期表第13族金属窒化物結晶
JP2014088272A (ja) 周期表第13族金属窒化物半導体結晶
JP2012136418A (ja) Iii族窒化物半導体基板とその製造方法
JP5942547B2 (ja) Iii族窒化物結晶の製造方法
JP2014028722A (ja) 第13族窒化物結晶の製造方法
JP6089821B2 (ja) 周期表第13族金属窒化物半導体結晶
JP2013199412A (ja) Iii族窒化物半導体結晶の製造方法
JP2019085290A (ja) Iii族窒化物半導体基板
JP2013035696A (ja) Iii族窒化物半導体単結晶の製造方法
JP2013116841A (ja) 周期表第13族金属窒化物半導体結晶の製造方法、周期表第13族金属窒化物半導体基板および周期表第13族金属窒化物半導体結晶
JP2014177375A (ja) 周期表第13族金属窒化物半導体結晶

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137014593

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11844766

Country of ref document: EP

Kind code of ref document: A1