WO2012073880A1 - 変性共役ジエン系ゴムの製造方法、変性共役ジエン系ゴム、及びゴム組成物 - Google Patents

変性共役ジエン系ゴムの製造方法、変性共役ジエン系ゴム、及びゴム組成物 Download PDF

Info

Publication number
WO2012073880A1
WO2012073880A1 PCT/JP2011/077357 JP2011077357W WO2012073880A1 WO 2012073880 A1 WO2012073880 A1 WO 2012073880A1 JP 2011077357 W JP2011077357 W JP 2011077357W WO 2012073880 A1 WO2012073880 A1 WO 2012073880A1
Authority
WO
WIPO (PCT)
Prior art keywords
conjugated diene
modified conjugated
group
diene rubber
rubber
Prior art date
Application number
PCT/JP2011/077357
Other languages
English (en)
French (fr)
Inventor
了司 田中
直矢 野坂
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2012546854A priority Critical patent/JP6003651B2/ja
Priority to US13/991,005 priority patent/US8980987B2/en
Priority to SG2013041900A priority patent/SG190443A1/en
Priority to EP11845388.5A priority patent/EP2647657B1/en
Priority to CN201180057588.9A priority patent/CN103237833B/zh
Priority to BR112013013418A priority patent/BR112013013418B8/pt
Priority to KR1020137012112A priority patent/KR101824466B1/ko
Publication of WO2012073880A1 publication Critical patent/WO2012073880A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F36/06Butadiene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/442Block-or graft-polymers containing polysiloxane sequences containing vinyl polymer sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule

Definitions

  • the present invention relates to a method for producing a modified conjugated diene rubber, a modified conjugated diene rubber, and a rubber composition. More specifically, a method for producing a modified conjugated diene rubber capable of producing a crosslinked rubber excellent in tensile strength, abrasion resistance, wet skid resistance and low hysteresis loss characteristics, and obtained by such a production method.
  • conjugated diene rubber for example, styrene-butadiene copolymer
  • emulsion polymerization method As a rubber for automobile tires, a conjugated diene rubber (for example, styrene-butadiene copolymer) obtained by an emulsion polymerization method is known.
  • various conjugated diene rubbers capable of realizing excellent fuel efficiency have been proposed in the hope of improving the fuel efficiency of automobiles.
  • a conjugated diolefin or a (co) polymer rubber of a conjugated diolefin and an aromatic vinyl compound (2) a primary amino group bonded to a (co) polymer chain, an alkoxysilyl group, And (3) a bifunctional or higher functional monomer is copolymerized in the (co) polymer chain, and / or a bifunctional or higher functional coupling agent at least of the (co) polymer chain.
  • Patent Document 1 A conjugated diolefin (co) polymer rubber characterized in that it is partially coupled has been proposed (Patent Document 1).
  • a modified diene polymer rubber obtained from Step 2 in which a modified polymer rubber is obtained by reacting the active polymer with a compound represented by a specific formula has been proposed (Patent Document 2).
  • a polymer having an active site of an organometallic in the molecule A first modification reaction in which a hydrocarbyloxysilane compound is allowed to react with the active site, followed by a second modification reaction in which a hydrocarbyloxysilane compound is further reacted via a condensation reaction between hydrocarbyloxysilyl groups has been proposed (Patent Document 3).
  • an object of the present invention is to provide a method for producing a modified conjugated diene rubber that can be used as a raw material for a crosslinked rubber that can be used for applications such as automobile tires and can improve fuel efficiency of automobiles and the like. To do.
  • the present inventor in addition to the conjugated diene polymer having an alkali metal or alkaline earth metal active terminal, by using two specific alkoxysilane compounds, The present invention has been found that a modified conjugated diene rubber can be produced that is imparted with physical properties such as excellent low hysteresis loss characteristics, and as a result, can provide excellent fuel efficiency when used in automobile tires, etc. Was completed. That is, the present invention provides the following [1] to [10].
  • a conjugated diene compound or a conjugated diene polymer having an alkali metal or alkaline earth metal active terminal obtained by polymerizing a conjugated diene compound and an aromatic vinyl compound, and two or more alkoxy
  • a step of obtaining a modified conjugated diene polymer having an alkoxysilyl group by reacting an alkoxysilyl group having a group and a first alkoxysilane compound having a group protected by a deprotectable protecting group (b) A method for producing a modified conjugated diene rubber, comprising: reacting the modified conjugated diene polymer having an alkoxysilyl group with a second alkoxysilane compound having an alkoxysilyl group.
  • a group protected by a deprotectable protecting group of the first alkoxysilane compound is a nitrogen-containing group in which two hydrogen atoms of a primary amine are substituted by two protecting groups, a secondary amine Nitrogen-containing group in which one hydrogen atom is replaced by one protecting group, sulfur-containing group in which one hydrogen atom of thiol is replaced by one protecting group, two hydrogen atoms of primary phosphine are two protected
  • [1] which is at least one selected from the group consisting of a phosphorus-containing group substituted with a group and a phosphorus-containing group in which one hydrogen atom of a secondary phosphine is substituted with one protecting group
  • a method for producing the modified conjugated diene rubber is a nitrogen-containing group in which two hydrogen atoms of a primary amine are substituted by two protecting groups, a secondary amine Nitrogen-containing group in which one hydrogen atom is replaced by one protecting group, sulfur-containing group in which one hydrogen atom of thiol is replaced by
  • [3] The method for producing a modified conjugated diene rubber according to [1] or [2], wherein the step (b) is performed in the presence of a condensation catalyst of an alkoxysilane compound containing a metal element.
  • the condensation catalyst is a metal compound containing at least one metal element among the metal elements contained in groups 4, 12, 13, 14, and 15 of the periodic table.
  • a method for producing the modified conjugated diene rubber [5] The method for producing a modified conjugated diene rubber according to [4], wherein the metal catalyst alkoxide, carboxylate, or acetylacetonate complex salt is used as the condensation catalyst.
  • [6] The method for producing a modified conjugated diene rubber according to any one of the above [1] to [5], which comprises a step of contacting the mixture obtained in step (b) with water.
  • [7] A modified conjugated diene rubber obtained by the method for producing a modified conjugated diene rubber according to any one of [1] to [6].
  • [8] A rubber composition comprising the modified conjugated diene rubber according to [7], silica and / or carbon black, and a crosslinking agent.
  • [9] A crosslinked rubber composition obtained by crosslinking the rubber composition according to [8].
  • [10] A tire comprising the crosslinked rubber composition according to [9].
  • the production method of the present invention it is possible to produce a crosslinked conjugated diene rubber excellent in shape retention, capable of producing a crosslinked rubber composition excellent in tensile strength, abrasion resistance and wet skid resistance. it can.
  • the crosslinked rubber composition produced using the modified conjugated diene rubber can be used for applications such as automobile tires, and can improve fuel efficiency of automobiles.
  • the method for producing the modified conjugated diene rubber of the present invention comprises: (a) a conjugated diene having an active end of an alkali metal or alkaline earth metal obtained by polymerizing a conjugated diene compound or a conjugated diene compound and an aromatic vinyl compound.
  • a modified conjugated diene system having an alkoxysilyl group by reacting a system polymer with an alkoxysilyl group having two or more alkoxy groups and a first alkoxysilane compound having a group protected by a deprotectable protecting group A step of obtaining a polymer; and (b) a step of reacting the modified conjugated diene polymer having an alkoxysilyl group with a second alkoxysilane compound having an alkoxysilyl group.
  • Step (a) includes a conjugated diene compound, or a conjugated diene polymer having an alkali metal or alkaline earth metal active terminal obtained by polymerizing a conjugated diene compound and an aromatic vinyl compound, and two or more alkoxy compounds.
  • This is a step of obtaining a modified conjugated diene polymer having an alkoxysilyl group by reacting an alkoxysilyl group having a group and a first alkoxysilane compound having a group protected by a deprotectable protecting group.
  • conjugated diene polymer having an alkali metal or alkaline earth metal active terminal examples include an anionic polymer obtained by polymerizing a conjugated diene compound alone or copolymerizing a conjugated diene compound and an aromatic vinyl compound. be able to.
  • the production method of the conjugated diene polymer as described above, except that anionic polymerization is performed with an alkali metal or alkaline earth metal (hereinafter sometimes referred to as “initiator” or “polymerization initiator”).
  • an alkali metal or alkaline earth metal hereinafter sometimes referred to as “initiator” or “polymerization initiator”.
  • the polymerization method any of solution polymerization method, gas phase polymerization method, and bulk polymerization method can be used, but it is particularly preferable to use the solution polymerization method.
  • the polymerization type may be either a batch type or a continuous type.
  • the active site metal present in the molecule of the conjugated diene polymer is an alkali metal or alkaline earth metal, preferably lithium, sodium, potassium, magnesium, or barium, and particularly lithium metal.
  • alkali metals or alkaline earth metals all have the same action from the viewpoint that it is possible to obtain a conjugated diene polymer having a metal active terminal capable of reacting with the first alkoxysilane compound. Even those that are not described in the examples described later can be used in the present invention. Furthermore, it is also effective to mix a functional group-containing monomer and activate the functional group in the polymer with an alkali metal or alkaline earth initiator. For example, it is also effective to lithiate the functional group portion of a copolymer containing an isobutylene unit, a paramethylstyrene unit, and a parahalogenated methylstyrene unit to form an active site.
  • conjugated diene monomer examples include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, 1,3-heptadiene, 2, 3-dimethylbutadiene, 2-phenyl-1,3-butadiene, 3-methyl-1,3-pentadiene, 1,3-hexadiene, 2-chloro-1,3-butadiene and the like can be preferably used. These may be used alone or in combination of two or more. Among these compounds, 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene and the like can be used particularly preferably.
  • conjugated diene monomers have the same action from the viewpoint that it is possible to obtain a conjugated diene polymer having a metal active terminal capable of reacting with the first alkoxysilane compound. Even those which are not described in Examples described later can be used in the present invention.
  • aromatic vinyl compound examples include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, ⁇ -methylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 4-tert-butyl.
  • Styrene 5-t-butyl-2-methylstyrene, vinylethylbenzene, divinylbenzene, trivinylbenzene, divinylnaphthalene, tert-butoxystyrene, vinylbenzyldimethylamine, (4-vinylbenzyl) dimethylaminoethyl ether, dimethylaminomethyl Styrene, N, N-dimethylaminoethyl styrene, 2-ethyl styrene, 3-ethyl styrene, 4-ethyl styrene, 2-t-butyl styrene, 3-t-butyl styrene, 4-t-butyl styrene, vinyl xylene, Vinylna Array type, vinyl toluene, vinyl pyridine, diphenylethylene, can be suitably used a tertiary amino group-containing diphenylethylene,
  • styrene is particularly preferred.
  • aromatic vinyl compounds have the same action from the viewpoint that it is possible to obtain a conjugated diene polymer having a metal active terminal capable of reacting with the first alkoxysilane compound. Even those which are not described in Examples described later can be used in the present invention.
  • the monomer concentration in the solvent is preferably 5 to 50% by mass, more preferably 10 to 30% by mass from the viewpoint of maintaining a balance between productivity and ease of polymerization control. %.
  • the content of the aromatic vinyl compound in the charged monomer mixture is determined by the low hysteresis loss characteristics and wet skid resistance of the resulting crosslinked rubber composition. From the viewpoint of maintaining balance, the content is preferably 3 to 55% by mass, more preferably 5 to 50% by mass.
  • alkali metal or alkaline earth metal initiators include alkyl lithium, alkylene dilithium, lithium alkylene imide, lithium dialkyl amide, phenyl lithium, stilbene lithium, lithium naphthalene, sodium naphthalene, potassium naphthalene, n-butyl.
  • organic lithium compound those having a hydrocarbon group having 1 to 20 carbon atoms are preferable.
  • lithium amide compound for example, lithium hexamethylene imide, lithium pyrrolidide, lithium piperide, lithium heptamethylene imide, lithium dodecamethylene imide, lithium morpholide, lithium dimethyl amide, lithium diethyl amide, lithium dibutyl amide, lithium Dipropylamide, lithium diisopropylamide, lithium diheptylamide, lithium dihexylamide, lithium dioctylamide, lithium di-2-ethylhexylamide, lithium didecylamide, lithium-N-methylpiperazide, lithium ethylpropylamide, lithium ethylbutyramide, lithium Ethylbenzylamide, lithium methylphenethylamide, 3- [N, N-bis (trimethylsilyl)]-1-pro Tritium, 3- [N, N-bis (trimethylsilyl)]-2-methyl-1-propyllithium, 3- [N, N-bis (trimethylsilyl)]-2-methyl
  • cyclic lithium amides such as lithium hexamethylene imide, lithium pyrrolidide, lithium piperidide, lithium heptamethylene imide, and lithium dodecamethylene imide are included in terms of the interaction effect on carbon black and silica and the ability to initiate polymerization.
  • lithium hexamethyleneimide, lithium pyrrolidide, and lithium piperidide are particularly preferable.
  • lithium amide compounds are generally prepared in advance from a secondary amine and a lithium compound for polymerization, but can also be prepared in a polymerization system (in-situ).
  • the amount of the polymerization initiator used is preferably selected in the range of 0.2 to 20 mmol per 100 g of monomer.
  • a specific method for producing a conjugated diene polymer by anionic polymerization using the lithium compound as a polymerization initiator is, for example, an organic solvent inert to the reaction, such as aliphatic, alicyclic or aromatic.
  • An organic solvent inert to the reaction such as aliphatic, alicyclic or aromatic.
  • a method in which a diene monomer or a diene monomer and an aromatic vinyl compound are anionically polymerized in a hydrocarbon solvent such as a hydrocarbon compound in the presence of a randomizer used as desired, with the lithium compound as a polymerization initiator. can be mentioned. By such a method, the target conjugated diene polymer can be obtained.
  • the hydrocarbon solvent preferably has 3 to 8 carbon atoms.
  • the randomizer used as desired is a control of the microstructure of the conjugated diene polymer, for example, a vinyl bond (1,2 bond) in the butadiene portion in the butadiene-styrene copolymer, a vinyl bond (1 in the isoprene polymer). , 2 bonds and 3,4 bonds), or control of the composition distribution of monomer units in conjugated diene polymers, such as randomization of butadiene units and styrene units in butadiene-styrene copolymers. It is a compound.
  • the randomizer is not particularly limited, and any one of known compounds generally used as a conventional randomizer can be appropriately selected and used.
  • a potassium compound may be added together with the polymerization initiator.
  • the potassium compound added together with the polymerization initiator include potassium isopropoxide, potassium tert-butoxide, potassium tert-amyloxide, potassium n-heptaoxide, potassium benzyloxide, and potassium phenoxide.
  • potassium salts of organic phosphorous acid partial esters such as phosphorous acid dilauryl is used.
  • potassium compounds are preferably added in an amount of 0.005 to 0.5 mol per gram atomic equivalent of alkali metal or alkaline earth metal as a polymerization initiator. If it is less than 0.005 mol, the addition effect of the potassium compound (reactivity improvement of the polymerization initiator, randomization of the aromatic vinyl compound or addition of a single chain or a long chain) may not appear, When exceeding, polymerization activity will fall, productivity will fall significantly, and the modification
  • the temperature in this polymerization reaction is preferably ⁇ 20 to 150 ° C., more preferably 0 to 120 ° C.
  • the polymerization reaction can be carried out under generated pressure, but it is usually preferred to operate at a pressure sufficient to keep the monomer in a substantially liquid phase. That is, the pressure depends on the particular material being polymerized, the polymerization medium used and the polymerization temperature, but higher pressures can be used if desired compared to the generated pressure, and such pressure is inert with respect to the polymerization reaction. It can be obtained by an appropriate method such as pressurizing the reactor with a simple gas.
  • the glass transition temperature (Tg) obtained by differential thermal analysis of the obtained polymer or copolymer is preferably ⁇ 90 ° C. to 0 ° C. It is difficult to obtain a polymer having a glass transition temperature of less than ⁇ 90 ° C., and when it exceeds 0 ° C., the viscosity becomes too high in the room temperature region, which may make handling difficult.
  • the alkoxysilyl group in the first alkoxysilane compound includes a reactive viewpoint with a conjugated diene polymer having an alkali metal or alkaline earth metal active terminal, and a reaction with a second alkoxysilane compound described later. From the viewpoint, those having two or more alkoxy groups are used.
  • Preferred examples of the alkoxy group include alkoxy groups having an alkyl group having 1 to 20 carbon atoms or an aryl group. When two or more alkoxy groups are present, they may be the same as or different from each other.
  • the group protected by the deprotectable protecting group in the first alkoxysilane compound is a group protected from the alkali metal or alkaline earth metal active terminal of the conjugated diene polymer.
  • Nitrogen-containing group in which two hydrogen atoms are replaced by two protecting groups nitrogen-containing group in which one hydrogen atom of a secondary amine is replaced by one protecting group, one hydrogen atom of thiol is one protection
  • a phosphorus-containing group may be used individually by 1 type, and may be used in combination of 2 or more type.
  • a nitrogen-containing group in which two hydrogen atoms of a primary amine are substituted with two protecting groups, or a nitrogen-containing group in which one hydrogen atom of a secondary amine is substituted with one protecting group, an alkoxysilyl group examples of the compound having N, N-bis (trimethylsilyl) aminopropylmethyldimethoxysilane, N, N-bis (trimethylsilyl) aminopropyltrimethoxysilane, N, N-bis (trimethylsilyl) aminopropyltriethoxysilane, N, N-bis (trimethylsilyl) aminopropylmethyldiethoxysilane, N, N-bis (trimethylsilyl) aminoethyltrimethoxysilane, N, N-bis (trimethylsilyl) aminoethyltriethoxysilane, N, N-bis (trimethylsilyl) ) Aminoethylmethyldimethoxy Silane, N, N-bis (trimethylsilyl)
  • Examples of the compound having a sulfur-containing group in which one hydrogen atom of thiol is substituted with one protecting group and an alkoxysilyl group include S-trimethylsilylmercaptopropylmethyldimethoxysilane, S-trimethylsilylmercaptopropyltrimethoxysilane, S -Trimethylsilylmercaptopropyltriethoxysilane, S-trimethylsilylmercaptopropylmethyldiethoxysilane, S-trimethylsilylmercaptoethyltrimethoxysilane, S-trimethylsilylmercaptoethyltriethoxysilane, S-trimethylsilylmercaptoethylmethyldimethoxysilane, S-trimethylsilylmercaptoethyl And methyldiethoxysilane. S-trimethylsilyl mercaptopropyltrimethoxysilane and S-trimethylsilylmercaptopropyltrieth
  • the first alkoxysilane compound described above can react with a conjugated diene polymer having a metal active terminal made of an alkali metal or an alkaline earth metal, and when the rubber composition is used, It reacts or interacts with the resulting carbon black and / or silica to give excellent low hysteresis loss characteristics when a crosslinked rubber composition is obtained. From this viewpoint, the first alkoxysilane compound described above can be used in the present invention even if it is not described in Examples described later.
  • the modification reaction in which such a first alkoxysilane compound is introduced into the alkali metal or alkaline earth metal active terminal of the conjugated diene polymer is, for example, a solution reaction (the solution used here is the unreacted used during polymerization). It may be a solution containing a monomer.
  • a solution reaction the solution used here is the unreacted used during polymerization.
  • It may be a solution containing a monomer.
  • This modification reaction is preferably carried out after completion of the polymerization reaction and before performing various operations necessary for solvent removal, water treatment, heat treatment, polymer isolation, and the like.
  • the amount of the first alkoxysilane compound used in this modification reaction is preferably at least 0.1 molar equivalent, more preferably 0.3 mol, relative to the active site of the conjugated diene polymer obtained by anionic polymerization. More than equivalent. If it is less than 0.1 molar equivalent, the progress of the modification reaction is not sufficient, the dispersibility of the reinforcing agent is not sufficiently improved, and when it is a crosslinked rubber composition, tensile strength, abrasion resistance, wet skid resistance, and The low hysteresis loss characteristic may be inferior.
  • the method for adding the first alkoxysilane compound, which is a modifier is not particularly limited, and examples thereof include a method of adding all at once, a method of adding in divided portions, a method of adding continuously, and the like. A method of adding all at once is preferable.
  • the first alkoxysilane compound may be added in a solution containing the above conjugated diene monomer, the above aromatic vinyl compound, the above hydrocarbon solvent, the above randomizer, or the like as a solvent.
  • the temperature of the modification reaction the polymerization temperature of the conjugated diene polymer can be used as it is. Specifically, a preferred range is 0 to 120 ° C. More preferably, it is 20 to 100 ° C.
  • the reaction time in the primary modification reaction is preferably 1 minute to 5 hours, more preferably 2 minutes to 1 hour.
  • a coupling agent can be added in combination with the first alkoxysilane compound.
  • Specific examples of the coupling agent are as follows. This coupling agent is added at the stage of modifying the conjugated diene polymer with the first alkoxysilane compound.
  • a coupling agent used in combination with the first alkoxysilane compound and reacting with the polymerization active terminal (a) an isocyanate compound and / or an isothiocyanate compound, (b) an amide compound and / or an imide compound, (C) pyridyl-substituted ketone compound and / or pyridyl-substituted vinyl compound, (d) silicon compound, (e) ester compound, (f) ketone compound and (g) tin compound, (h) epoxy compound, (i) phosphoric acid Examples thereof include at least one compound selected from the group consisting of ester compounds, (j) acid anhydride group-containing compounds, (k) arylvinyl group-containing compounds, and (l) halogenated carbon group-containing compounds.
  • the isocyanate compound or thioisocyanate compound as component (a) includes 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, diphenylmethane diisocyanate, diphenylethane diisocyanate, Polymeric type diphenylmethane diisocyanate (C-MDI), isophorone diisocyanate, hexamethylene diisocyanate, 1,3,5-benzenetriisocyanate, phenyl-1,4-diisothiocyanate, etc. are preferred examples. Can be mentioned.
  • succinic acid amide As the amide compound or imide compound as component (b), succinic acid amide, phthalic acid amide, N, N, N ′, N′-tetramethylphthalic acid amide, oxamide, N, N, N ′, N′— Amide compounds such as tetramethyloxamide, adipic acid bisdimethylamide, polymethacrylic acid dimethylamide, succinimide, N-methylsuccinimide, maleimide, N-methylmaleimide, phthalimide, N-methylphthalimide, and other imide compounds It can be mentioned as a suitable example.
  • Preferred examples of the pyridyl-substituted ketone compound or pyridyl-substituted vinyl compound as component (c) include dibenzoylpyridine, diacetylpyridine, divinylpyridine and the like.
  • dibutyldichlorosilicon methyltrichlorosilicon, methyldichlorosilicon, tetrachlorosilicon, silicon tetrabromide, silicon tetraiodide, monochlorotrimethoxysilane, monobromotrimethoxysilane, dichlorodimethoxy Silane, dibromodimethoxysilane, trichloromethoxysilane, tribromomethoxysilane, hexachlorodisilane, bis (trichlorosilyl) methane, 1,2-bis (trichlorosilyl) ethane, 1,3-bis (trichlorosilyl) propane, 1,4 -Bis (trichlorosilyl) butane, 1,5-bis (trichlorosilyl) pentane, 1,6-bis (trichlorosilyl) hexane, triethoxymethylsilane, triphenoxy
  • ester compound as component (e) examples include dimethyl adipate, diethyl adipate, dimethyl terephthalate, diethyl terephthalate, dimethyl phthalate, dimethyl isophthalate, diethyl malonate, diethyl phthalate, diethyl glutarate, diethyl maleate Etc. can be mentioned as a suitable example.
  • ketone compound as component (f) examples include N, N, N ′, N′-tetramethyl-4,4′-diaminobenzophenone, N, N, N ′, N′-tetraethyl (4,4 '-Diamino) -benzophenone, N, N-dimethyl-1-aminobenzoquinone, N, N, N', N'-tetramethyl-1,3-diaminobenzoquinone, N, N-dimethyl-1-aminoanthraquinone, N , N, N ′, N′-Tetramethyl-1,4-diaminoanthraquinone, 4,4′-diacetylbenzophenone and the like can be mentioned as preferred examples.
  • tin compound As the tin compound as the component, tetrachlorotin, tetrabromotin, trichlorobutyltin, trichloromethyltin, trichloroethyltin, trichlorophenyltin, trichlorooctyltin, dibromodimethyltin, dichlorodimethyltin, dichlorodibutyltin, Dichlorodioctyltin, 1,2-bis (trichlorostannyl) ethane, 1,2-bis (methyldichlorostannylethane), 1,4-bis (trichlorostannyl) butane, 1,4-bis (methyldichlorostadium) Nyl) butane, ethyltin tristearate, butyltin trisoctanoate, butyltin tristearate, butyltin trislaurate, dibutyltin bisoctanoate,
  • epoxy compound (h) examples include polyglycidyl ethers of polyhydric alcohols such as ethylene glycol diglycidyl ether and glycerin triglycidyl ether, and polycyclic aromatic compounds having two or more phenyl groups such as diglycidylated bisphenol A.
  • Polyepoxy compounds such as glycidyl ether, 1,4-diglycidylbenzene, 1,3,5-triglycidylbenzene, polyepoxidized liquid polybutadiene, 4,4′-diglycidyl-diphenylmethylamine, 4,4′-diglycidyl- Epoxy group-containing tertiary amines such as dibenzylmethylamine, diglycidyl aniline, diglycidyl orthotoluidine, tetraglycidyl metaxylenediamine, tetraglycidylaminodiphenylmethane, tetraglycidyl-p-pheny
  • Glycidylamino compounds such as diamine, diglycidylaminomethylcyclohexane, tetraglycidyl-1,3-bisaminomethylcyclohexane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane
  • Examples of the phosphoric acid ester compound as component (i) include polyhalogenated phosphorus compounds such as trichlorophosphine and tribromophosphine, and phosphorous acid such as trisnonylphenyl phosphite, trimethyl phosphite and triethyl phosphite.
  • Preferable examples include ester compounds, trimethyl phosphate, triethyl phosphate and the like.
  • Preferable examples of the acid anhydride group-containing compound (j) include pyromellitic anhydride and styrene-maleic anhydride copolymer.
  • Preferred examples of the aryl vinyl group-containing compound (k) include divinyl benzene, diisopropenyl benzene, divinyl benzene oligomer and the like.
  • Preferred examples of the halogenated carbon group-containing compound (l) include trichloropropane, tribromopropane, tetrachlorobutane and the like.
  • the amount of the coupling agent used is 1 mol or less, preferably 0.1 as the amount of the substituent capable of coupling in the coupling agent per gram atomic equivalent of the alkali metal or alkaline earth metal of the polymerization initiator. An amount of ⁇ 0.5 mol. When the amount exceeds 1 mol, the reaction rate of the first alkoxysilane compound is lowered, and an excellent low hysteresis loss characteristic or the like may not be obtained when a crosslinked rubber composition is obtained.
  • Step (b) is a step of reacting the modified conjugated diene polymer having an alkoxysilyl group with a second alkoxysilane compound having an alkoxysilyl group.
  • a second alkoxysilane compound having an alkoxysilyl group.
  • the second alkoxysilane compound primary amino group, secondary amino group, tertiary amino group, imino group, pyridyl group, primary phosphino group, secondary phosphino group, tertiary phosphino group, epoxy group, isocyanate group , A compound having a thioepoxy group, a hydroxyl group, a carboxyl group, an oxetane group or a thiol group and an alkoxysilyl group, a compound having an ethanolamine, benzimidazole, melamine or amidine structure, and an alkoxysilyl group.
  • the number of alkoxysilyl groups in the second alkoxysilane compound is 1 or more, and preferably 2 or 3, more preferably 3, from the viewpoint of reaction efficiency.
  • This 2nd alkoxysilane compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the compound having an oxetane group or thiol group and an alkoxysilyl group includes 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxy Silane, 3-mercaptomethyltrimethoxysilane, 3-mercaptomethyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, aminophenyltrimethoxysilane, aminophenyltriethoxysilane, 3- (N -Methylamino Prop
  • Such mixing of the second alkoxysilane compound and the modified conjugated diene polymer having an alkoxysilyl group can be performed, for example, in the form of a solution.
  • a batch type mixer You may carry out using a batch type mixer, and you may carry out by a continuous type using apparatuses, such as a multistage continuous type mixer and an in-line mixer. Moreover, you may add the process which makes water contact after mixing.
  • the reaction by mixing is preferably carried out after completion of the polymerization reaction and before performing various operations necessary for solvent removal treatment, water treatment, heat treatment, polymer isolation, and the like.
  • the amount of the second alkoxysilane compound used in this mixing is preferably 0.2 molar equivalents or more, more preferably 0.3 mol, based on the active site of the conjugated diene polymer obtained by anionic polymerization. More than molar equivalent. If it is less than 0.2 molar equivalent, the incorporation of the second alkoxysilane compound accompanying oniumation is not sufficient, the dispersibility of the reinforcing agent is not sufficiently improved, and when a crosslinked rubber composition is obtained, the tensile strength, It may be inferior in abrasion, wet skid resistance and low hysteresis loss characteristics.
  • the second alkoxysilane compound can also be used as the first alkoxysilane compound.
  • the addition method of the second alkoxysilane compound as a modifier is not particularly limited, and examples thereof include a method of adding all at once, a method of adding in divided portions, a method of adding continuously, and the like. A method of adding all at once is preferable.
  • the second alkoxysilane compound may be added in a solution containing the above-mentioned hydrocarbon solvent, the above-mentioned randomizer, or the like as a solvent. Further, the second alkoxysilane compound may be added simultaneously with the first alkoxysilane compound or after the reaction of the first alkoxysilane compound.
  • the polymerization temperature of the conjugated diene polymer can be used as it is. Specifically, a preferred range is 0 to 120 ° C. More preferably, it is 20 to 100 ° C. When the temperature is low, the viscosity of the polymer tends to increase, and when the temperature is high, the polymerization active terminal tends to be altered. Therefore, the temperature within the above numerical range is preferable.
  • the mixing time is preferably 1 minute to 5 hours, more preferably 2 minutes to 1 hour.
  • the step (b) can also be performed in the presence of a condensation catalyst of an alkoxysilane compound containing a metal element (hereinafter sometimes simply referred to as “condensation catalyst”).
  • a condensation catalyst of an alkoxysilane compound containing a metal element hereinafter sometimes simply referred to as “condensation catalyst”.
  • condensation catalyst an alkoxysilane compound containing a metal element
  • any of the following three embodiments can be employed.
  • a modified conjugated diene rubber can be obtained.
  • (B-1) a step of mixing a modified conjugated diene polymer having an alkoxysilyl group and a second alkoxysilane compound having an alkoxysilyl group; and (b-2) obtained in the step (b-1).
  • a step of mixing the condensation catalyst [second embodiment] (B-3) a step of mixing a modified conjugated diene polymer having an alkoxysilyl group and a condensation catalyst, (b-4) a mixture obtained in the step (b-3), and having an alkoxysilyl group
  • a step of mixing a second alkoxysilane compound [third embodiment] (B-5) comprising a step of simultaneously mixing a modified conjugated diene polymer having an alkoxysilyl group, a second alkoxysilane compound having an alkoxysilyl group, and a condensation catalyst.
  • a metal compound containing at least one metal element among the metal elements contained in Groups 4, 12, 13, 14, and 15 of the periodic table is used. It is preferable.
  • the metal element include titanium, zirconium, aluminum, bismuth, tin, and the like.
  • the condensation catalyst for the alkoxysilane compound containing the metal element is preferably an alkoxide, carboxylate or acetylacetonate complex of the metal element described above.
  • the condensation catalyst promotes the condensation of the modified conjugated diene polymer and the second alkoxysilane compound, and the condensation catalyst itself is also an alkoxysilyl residue of the modified conjugated diene polymer and the second alkoxysilane compound.
  • the reactivity with the filler can be further increased by reacting with.
  • condensation catalysts tetrakis (2-ethylhexyloxy) titanium, tetra (octanediolate) titanium, tris (2-ethylhexanoate) bismuth, tetra n-propoxyzirconium, tetra n-butoxyzirconium, bis ( 2-ethylhexanoate) zirconium oxide, bis (oleate) zirconium oxide, tri-i-propoxyaluminum, trisec-butoxyaluminum, tris (2-ethylhexanoate) aluminum, tris (stearate) aluminum, zirconium tetrakis ( Acetylacetonate), aluminum tris (acetylacetonate), bis (2-ethylhexanoate) tin, di-n-octyltinbis (2-ethylhexylmalate) Mention may be made of Te.
  • the amount of the condensation catalyst of the alkoxysilane compound containing a metal element in this mixture is preferably 0.1 to 10 molar equivalents, more preferably 0.2 to the alkoxysilyl group present in the reaction system. ⁇ 5 molar equivalents. If it is less than 0.1 molar equivalent, the progress of the condensation reaction is not sufficient. On the other hand, even if it is used in excess of 10 molar equivalent, the effect of the reacting condensation catalyst is saturated, which is economically undesirable.
  • the addition method of the condensation catalyst which is a modifier is not particularly limited, and examples thereof include a batch addition method, a split addition method, and a continuous addition method. Is preferred. Further, the condensation catalyst may be added in a solution containing the above-described hydrocarbon solvent, the above-described randomizer, or the like in the specification.
  • the temperature at which the condensation catalyst and other components (for example, the modified conjugated diene polymer obtained in step (a)) are mixed is preferably 0 to 120 ° C., and preferably 20 to 100 ° C. Further preferred. When the temperature is low, the viscosity of the polymer tends to increase, and when the temperature is high, the polymerization active terminal tends to be deteriorated. Therefore, the temperature within the above numerical range is preferable.
  • the mixing time is preferably 1 minute to 5 hours, more preferably 2 minutes to 1 hour. If it is less than 1 minute, mixing is not completed. On the other hand, even if it exceeds 5 hours, the mixture is saturated, which is not preferable.
  • the modified conjugated diene rubber of the present invention is a modified conjugated diene rubber obtained by the production method of the modified conjugated diene rubber of the present invention described so far.
  • Such a modified conjugated diene rubber has a high Mooney viscosity, excellent shape stability, and good processability.
  • the Mooney viscosity (ML1 + 4, 100 ° C.) of the modified conjugated diene rubber of the present invention is preferably 30 to 150, more preferably 40 to 120. When the Mooney viscosity (ML1 + 4, 100 ° C.) is less than 30, the shape stability tends to decrease.
  • the oil is usually extended with an extender oil to be within this range.
  • the extender oil aroma oil, naphthenic oil, paraffin oil, and aroma substitute oil of 3 mass% or less of PCA by the method of IP346 are preferably used.
  • the amount of the extender oil used is arbitrary, but is usually 10 to 50 parts by mass with respect to 100 parts by mass of the polymer. Generally, 20 to 37.5 parts by mass are used.
  • T-DAE Teated Distillate Aromatic Extract
  • T-RAE Teated Residual Aromatic Extract
  • MES Mel Extract Exolate
  • RAE Rex
  • Rubber composition The rubber composition of the present invention contains the aforementioned modified conjugated diene rubber as a rubber component. The details will be described below.
  • Rubber component The rubber component in the rubber composition of the present invention contains the aforementioned modified conjugated diene rubber.
  • the content of the modified conjugated diene rubber in the rubber component is preferably 20% by mass or more, more preferably 30% by mass or more, and particularly preferably 40% by mass or more. When the content ratio is 20% by mass or more, the cross-linked rubber composition can have better mechanical properties such as tensile strength and tensile elongation, crack growth resistance, and wear resistance.
  • the modified conjugated diene rubber may contain one type of modified conjugated diene rubber or two or more types of modified conjugated diene rubber.
  • other rubber components may be contained.
  • Other rubber components include natural rubber, synthetic isoprene rubber, butadiene rubber, styrene-butadiene rubber, ethylene- ⁇ -olefin copolymer rubber, ethylene- ⁇ -olefin-diene copolymer rubber, acrylonitrile-butadiene copolymer rubber, chloroprene.
  • Rubber halogenated butyl rubber, styrene-isoprene copolymer rubber, butadiene-isoprene copolymer rubber, random styrene-butadiene-isoprene copolymer rubber, styrene-acrylonitrile-butadiene copolymer rubber, acrylonitrile-butadiene copolymer rubber, and polystyrene -Polybutadiene-polystyrene block copolymers, mixtures thereof, and the like. Even if other known rubber components that can be used as a rubber composition for tires are contained, low hysteresis loss characteristics are obtained. It is possible to produce an excellent crosslinked rubber.
  • the rubber composition of the present invention preferably further contains carbon black and / or silica.
  • carbon black include furnace black, acetylene black, thermal represented by SRF, GPF, FEF, HAF, ISAF, SAF, ISAF-HS, ISAF-LS, IISAF-HS, HAF-HS, HAF-LS. Examples thereof include black, channel black, graphite, graphite fiber, fullerene and the like.
  • Carbon black having an iodine adsorption amount (IA) of 60 mg / g or more and a dibutyl phthalate oil absorption amount (DBP) of 80 ml / 100 g or more is preferable.
  • IA iodine adsorption amount
  • DBP dibutyl phthalate oil absorption amount
  • silica examples include wet silica (hydrous silicic acid), dry silica (anhydrous silicic acid), colloidal silica, precipitated silica, calcium silicate, aluminum silicate and the like.
  • wet silica is most preferable because it has the most remarkable effect of improving the fracture resistance, wet grip properties, and low rolling resistance.
  • high dispersible type silica in view of physical properties and workability because the dispersibility to rubber is improved.
  • Silica can be used alone or in combination of two or more.
  • the rubber composition of the present invention contains 20 to 130 parts by mass of carbon black and / or silica with respect to 100 parts by mass of the rubber component (the total of the modified conjugated diene rubber and other rubber components). From the viewpoint of reinforcing properties and the effect of improving various physical properties thereby, it is more preferable to contain 25 to 110 parts by mass. If the content ratio of carbon black and / or silica is small, the effect of improving the fracture resistance and the like tends to be insufficient, and if the content ratio of carbon black and / or silica is large, the processability of the rubber composition is increased. Therefore, the content ratio is preferably within the numerical range.
  • the carbon-silica dual phase filler is a so-called silica-coated carbon black in which silica is chemically bonded to the surface of carbon black, and is sold by Cabot Corporation under the trade names CRX2000, CRX2002, and CRX2006.
  • the compounding amount of the carbon-silica dual phase filler is preferably 1 to 100 parts by mass, more preferably 5 to 95 parts by mass with respect to 100 parts by mass of the total rubber component.
  • the rubber composition of the present invention contains silica as a reinforcing agent
  • a silane coupling agent in order to further improve the reinforcing effect.
  • the silane coupling agent include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-triethoxysilylpropyl) disulfide, and bis (2-triethoxy).
  • Ethoxysilylethyl) tetrasulfide bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercapto Ethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-triethoxysilylpropyl-N, N-dimethylthio Rubamoyl tetrasulfide, 2-triethoxysilylethyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-trimethoxysilylpropylbenzothiazolyl tetra
  • silane compounds are preferred.
  • these silane coupling agents can be used individually or in combination of 2 or more types.
  • the blending amount of the silane coupling agent varies depending on the type of the silane coupling agent, but is preferably 1 to 20 parts by mass, more preferably 3 to 15 parts by mass with respect to 100 parts by mass of silica. . When the amount is less than 1 part by mass, the effect as a coupling agent tends to be hardly exhibited. On the other hand, when it exceeds 20 parts by mass, the rubber component tends to be easily gelled.
  • Suitable compatibilizers include epoxy group-containing compounds, carboxylic acid compounds, carboxylic acid ester compounds, ketone compounds, ether compounds, aldehyde compounds, organic compounds selected from hydroxyl group-containing compounds and amino group-containing compounds, and alkoxysilane compounds. , Silicone compounds selected from siloxane compounds and aminosilane compounds.
  • organic compounds as compatibilizers include epoxy group-containing compounds, carboxylic acid compounds, carboxylic acid ester compounds, ketone compounds, ether compounds, aldehyde compounds, amino group-containing compounds, hydroxyl group-containing compounds, and the like.
  • examples of these various organic compounds include the following compounds.
  • Examples of the epoxy group-containing compound include butyl glycidyl ether, diglycidyl ether, propylene oxide, neopentyl glycol siglycidyl ether, epoxy resin, epoxidized soybean oil, and epoxidized fatty acid ester.
  • the carboxylic acid compound include adipic acid, octylic acid, methacrylic acid and the like.
  • Carboxylic acid ester compounds include acrylic acid ester, diethylene acrylate, ethyl methacrylate, orthoacetic acid ester, ethyl acetoacetate, butyl acetate, isopropyl acetate, dimethyl carbonate, p-hydroxyphenylacetic acid, polyester plasticizer, stearic acid type
  • plasticizers examples include plasticizers.
  • the ketone compound include methylcyclohexanone and acetylacetone.
  • ether compounds include isopropyl ether and dibutyl ether.
  • aldehyde compound examples include undecylene aldehyde, decyl aldehyde, vanillin, 3,4-dimethoxybenzaldehyde, cumin aldehyde, and the like.
  • amino group-containing compounds include isopropylamine, diisopropylamine, triethylamine, 3-ethoxypropylamine, 2-ethylhexylamine, isopropanolamine, N-ethylethylenediamine, ethyleneimine, hexamethylenediamine, 3-lauryloxypropylamine, and aminophenol.
  • the hydroxyl group-containing compound include isopropyl alcohol, butanol, octanol, octanediol, ethylene glycol, methylcyclohexanol, 2-mercaptoethanol, 3-methyl-3-methoxy-1-butanol, and 3-methyl-1,5-pentanediol.
  • 1-octadecanol diethylene glycol, butylene glycol, dibutylene glycol, triethylene glycol and the like.
  • an epoxy group-containing compound, an amino group-containing compound, and a hydroxyl group-containing compound are preferable.
  • silicone compounds as compatibilizers include alkoxysilane compounds, siloxane compounds, aminosilane compounds, and the like. Examples of these various silicone compounds include the following compounds.
  • alkoxysilane compound examples include trimethylmethoxysilane, trimethylethoxysilane, dimethyldimethoxysilane, methyltriethoxysilane, methyltriphenoxysilane, tetraethoxysilane, methyldiethoxysilane, and vinyltrimethoxysilane.
  • siloxane compound examples include dimethylsiloxane oligomer, silicone oil, amino-modified silicone oil, epoxy-modified silicone oil, carboxyl-modified silicone oil, polyether-modified silicone oil, alkyl-modified silicone oil, higher fatty acid ester-modified silicone oil, and higher alkoxy-modified silicone oil. And higher fatty acid-containing silicone oils.
  • aminosilane compound examples include hexamethyldisilazane, nonamethyltrisilazane, anilitrimethylsilane, bis (dimethylamino) dimethylsilane, bis (diethylamino) dimethylsilane, and triethylaminosilane. Of these, a silazane compound and bis (dimethylamino) dimethylsilane are preferable.
  • various chemicals and additives usually used in the rubber industry can be blended, if desired, within a range where the object of the present invention is not impaired.
  • various chemicals and additives that can be blended in the rubber composition of the present invention include, for example, cross-linking agents (for example, vulcanizing agents), vulcanizing aids, processing aids, vulcanization accelerators, process oils, and anti-aging agents.
  • the vulcanizing agent examples include sulfur, halogenated sulfur, organic peroxides, quinonedioximes, organic polyvalent amine compounds, alkylphenol resins having a methylol group, and sulfur is usually used.
  • the amount of the vulcanizing agent used is preferably 0.1 to 5 parts by mass, and 0.5 to 3 parts by mass with respect to 100 parts by mass of the modified conjugated diene rubber (raw rubber; rubber component). Is more preferable.
  • the vulcanization aid and processing aid stearic acid is generally used.
  • the amount of the vulcanization aid and processing aid used is usually 0.5 to 5 parts by mass with respect to 100 parts by mass of the modified conjugated diene rubber.
  • the vulcanization accelerator is not particularly limited, and examples thereof include sulfenamide-based, guanidine-based, thiuram-based, thiourea-based, thiazole-based, dithiocarbamic acid-based, and xanthogenic acid-based compounds, preferably 2-mercaptobenzothiazole, dibenzoic acid.
  • the amount of the vulcanization accelerator used is usually 0.1 to 5 parts by mass, preferably 0.4 to 4 parts by mass with respect to 100 parts by mass of the modified conjugated diene rubber.
  • the rubber composition of the present invention can be produced by kneading using a kneader such as an open kneader including a roll and a closed kneader including a Banbury mixer. Further, it can be applied to various rubber products by crosslinking (vulcanizing) after molding.
  • the crosslinked rubber composition (rubber composition after crosslinking) of the present invention is used for tires such as tire treads, under treads, carcass, sidewalls and bead parts; anti-vibration rubber, fenders, belts, hoses, etc. It is suitable for applications such as industrial products.
  • the crosslinked rubber composition of the present invention is particularly suitably used as a tire tread rubber.
  • each physical property of a modified conjugated diene polymer (obtained in step (a)), a modified conjugated diene rubber (obtained in step (b)), a rubber composition, a crosslinked rubber composition, etc. Is as follows.
  • the polystyrene-converted weight average molecular weight of the conjugated diene polymer before modification by gel permeation chromatography (GPC) balances the shape stability of the modified conjugated diene rubber and the workability when producing the rubber composition. From the standpoint of maintenance, it is preferably 1 to 1.5 million, more preferably 50,000 to 1,000,000, particularly preferably 100,000 to 800,000.
  • the glass transition temperature of the modified conjugated diene rubber is preferably 0 ° C.
  • the Mooney viscosity (ML1 + 4, 100 ° C.) of the modified conjugated diene rubber is preferably 30 to 150 from the viewpoint of maintaining the balance between the shape stability of the modified conjugated diene rubber and the workability when producing the rubber composition. More preferably, it is 40 to 120.
  • the cold flow value (mg / min) of the modified conjugated diene rubber is preferably 1.5 or less, more preferably 1.0 or less, particularly preferably 0.5, from the viewpoint of the shape stability of the modified conjugated diene rubber. It is as follows.
  • the Mooney viscosity (ML1 + 4, 100 ° C.) of the rubber composition is preferably 20 to 150, more preferably 30 to 130, and particularly preferably 40 to 110, from the viewpoint of workability when producing a tire.
  • the index of the tensile strength (JIS K 6301, 300% modulus) of the crosslinked rubber composition is preferably 101 or more, more preferably 103 or more.
  • the index of the crosslinked rubber composition is preferably 115 or more, more preferably 120 or more.
  • the index of tan ⁇ at 70 ° C. of the crosslinked rubber composition is preferably 110 or more, more preferably 120 or more.
  • the index of wear resistance (JIS K 6264, load 10 N, 25 ° C.) of the crosslinked rubber composition is preferably 102 or more, more preferably 105 or more, and particularly preferably 107 or more.
  • Example 1 Synthesis of modified conjugated diene rubber A and evaluation thereof
  • An autoclave reactor with an internal volume of 5 liters purged with nitrogen was charged with 2,750 g of cyclohexane, 50.0 g of tetrahydrofuran, 125 g of styrene, and 365 g of 1,3-butadiene.
  • a cyclohexane solution containing n-butyllithium 5.80 mmol
  • Example 2 [Synthesis of modified conjugated diene rubber B and its evaluation] In the same manner as in Example 1, except that N, N-bis (triethylsilyl) aminopropylmethyldimethoxysilane was used instead of N, N-bis (triethylsilyl) aminopropyltrimethoxysilane in Example 1, Modified conjugated diene rubber B was obtained. Table 1 shows the polymerization formulation of the modified conjugated diene rubber B, and Table 2 shows the properties of the resulting modified conjugated diene rubber B. Further, using the modified conjugated diene rubber B, the rubber composition prepared by the compounding recipe shown in Table 3 and Table 4 was vulcanized, and physical properties were evaluated. The results are shown in Table 4.
  • Example 3 Synthesis of modified conjugated diene rubber C and its evaluation
  • modification was performed in the same manner as in Example 1 except that N, N-bis (trimethylsilyl) aminopropyltriethoxysilane was used instead of N, N-bis (triethylsilyl) aminopropyltrimethoxysilane.
  • a conjugated diene rubber C was obtained.
  • Table 1 shows the polymerization formulation of the modified conjugated diene rubber C
  • Table 2 shows the properties of the resulting modified conjugated diene rubber C.
  • the rubber composition prepared by the compounding formulation shown in Table 3 and Table 4 was vulcanized, and physical properties were evaluated. The results are shown in Table 4.
  • Example 4 Synthesis of modified conjugated diene rubber D and its evaluation
  • An autoclave reactor with an internal volume of 5 liters purged with nitrogen was charged with 2,750 g of cyclohexane, 10.3 g of tetrahydrofuran, 50 g of styrene, and 440 g of 1,3-butadiene.
  • a cyclohexane solution containing n-butyllithium 5.80 mmol
  • Table 1 shows the polymerization formulation of the modified conjugated diene rubber D
  • Table 2 shows the properties of the resulting modified conjugated diene rubber D. Further, using the modified conjugated diene rubber D, the rubber composition prepared by the formulation shown in Table 3 and Table 4 was vulcanized, and the physical properties were evaluated. The results are shown in Table 4.
  • Example 5 Synthesis of modified conjugated diene rubber E and evaluation thereof]
  • Example 1 instead of N, N-bis (triethylsilyl) aminopropyltrimethoxysilane, N- [3- (trimethoxysilyl) -propyl] -N, N'-diethyl-N'-trimethylsilyl-ethane-
  • the modified conjugated diene rubber E was prepared in the same manner as in Example 1 except that 1,2-diamine was used and zirconium tetrakis (acetylacetonate) was used instead of bis (2-ethylhexanoate) tin.
  • 1,2-diamine was used and zirconium tetrakis (acetylacetonate) was used instead of bis (2-ethylhexanoate) tin.
  • Table 1 shows the polymerization formulation of the modified conjugated diene rubber E
  • Table 2 shows the properties of the resulting modified conjugated diene rubber E. Further, using the modified conjugated diene rubber E, the rubber composition prepared by the formulation shown in Table 3 and Table 4 was vulcanized, and physical properties were evaluated. The results are shown in Table 4.
  • Example 6 [Synthesis of modified conjugated diene rubber F and evaluation thereof]
  • Example 5 instead of N- [3- (trimethoxysilyl) -propyl] -N, N′-diethyl-N′-trimethylsilyl-ethane-1,2-diamine, 3- (4-trimethylsilyl-1-
  • a modified conjugated diene rubber F was obtained in the same manner as in Example 5 except that piperazino) propyltriethoxysilane was used.
  • Table 1 shows the polymerization formulation of the modified conjugated diene rubber F
  • Table 2 shows the properties of the resulting modified conjugated diene rubber F.
  • the rubber composition prepared by the compounding recipe shown in Table 3 and Table 4 was vulcanized, and physical properties were evaluated. The results are shown in Table 4.
  • Example 7 Synthesis of modified conjugated diene rubber G and its evaluation
  • the modified conjugated diene rubber G was prepared in the same manner as in Example 1, except that S-trimethylsilylmercaptopropyltriethoxysilane was used instead of N, N-bis (triethylsilyl) aminopropyltrimethoxysilane.
  • Table 1 shows the polymerization formulation of the modified conjugated diene rubber G
  • Table 2 shows the properties of the resulting modified conjugated diene rubber G.
  • rubber compositions prepared according to the compounding formulations shown in Tables 3 and 4 were vulcanized, and physical properties were evaluated. The results are shown in Table 4.
  • Example 8 Synthesis of modified conjugated diene rubber H and evaluation thereof
  • a modified conjugated diene rubber H was obtained in the same manner as in Example 1, except that mercaptopropyltriethoxysilane was used instead of 3-aminopropyltriethoxysilane.
  • Table 1 shows the polymerization prescription of the modified conjugated diene rubber H
  • Table 2 shows the properties of the resulting modified conjugated diene rubber H.
  • the rubber composition prepared by the formulation shown in Table 3 and Table 4 was vulcanized, and the physical properties were evaluated. The results are shown in Table 4.
  • Example 9 [Synthesis of modified conjugated diene rubber I and its evaluation]
  • Example 1 3.25 mmol of 2,2-di (tetrahydrofuryl) propane was used instead of 50.0 g of tetrahydrofuran, and N-2- (aminoethyl) -3 was used instead of 3-aminopropyltriethoxysilane.
  • a modified conjugated diene rubber I was obtained in the same manner as in Example 1 except that aminopropylmethyldimethoxysilane was used.
  • Table 1 shows the polymerization formulation of the modified conjugated diene rubber I
  • Table 2 shows the properties of the resulting modified conjugated diene rubber I.
  • the rubber compositions prepared by the compounding recipes shown in Tables 3 and 4 were vulcanized, and physical properties were evaluated. The results are shown in Table 4.
  • Example 10 Synthesis of modified conjugated diene rubber J and evaluation thereof]
  • Example 1 3.25 mmol of 2,2-di (tetrahydrofuryl) propane was used instead of 50.0 g of tetrahydrofuran, and the addition amount of 3-aminopropyltriethoxysilane was changed from 4.96 mmol to 9.92 mmol.
  • a modified conjugated diene rubber J was obtained in the same manner as in Example 1 except that.
  • Table 1 shows the polymerization formulation of the modified conjugated diene rubber J
  • Table 2 shows the properties of the resulting modified conjugated diene rubber J.
  • the rubber compositions prepared by the compounding formulations shown in Table 3 and Table 4 were vulcanized, and physical properties were evaluated. The results are shown in Table 4.
  • Example 11 Synthesis of modified conjugated diene rubber K and its evaluation
  • An autoclave reactor with an internal volume of 5 liters purged with nitrogen was charged with 2,750 g of cyclohexane, 100.0 g of tetrahydrofuran, 180 g of styrene, and 310 g of 1,3-butadiene.
  • a cyclohexane solution containing n-butyllithium (4.60 mmol) was added to initiate polymerization. The polymerization was carried out under adiabatic conditions and the maximum temperature reached 85 ° C.
  • a cyclohexane solution containing 3-aminopropyltriethoxysilane (3.93 mmol) is added and mixed for 5 minutes, and a cyclohexane solution containing zirconium tetrakis (acetylacetonate) (4.96 mmol) is further added. In addition, mixing was performed for 5 minutes. Next, 2.0 g of 2,6-di-tert-butyl-p-cresol was added to the obtained polymer solution, and then 187.5 g of a naphthenic oil (trade name; SNH46, manufactured by Sankyo Oil Chemical Co., Ltd.) was added. In addition, mixing was performed for 5 minutes.
  • a naphthenic oil (trade name; SNH46, manufactured by Sankyo Oil Chemical Co., Ltd.) was added. In addition, mixing was performed for 5 minutes.
  • Table 1 shows the polymerization formulation of the modified conjugated diene rubber K
  • Table 2 shows the properties of the resulting modified conjugated diene rubber K.
  • the rubber composition prepared according to the formulation shown in Table 3 and Table 4 was vulcanized, and physical properties were evaluated. The results are shown in Table 4.
  • Example 12 Synthesis of modified conjugated diene rubber L and its evaluation
  • 1- (3-triethoxysilylpropyl) -2,2,5,5-tetramethyl-1-aza-2,5-disilacyclopentane was first added followed by tetrakis (2-ethylhexyl).
  • a modified conjugated diene rubber L was obtained in the same manner as in Example 4 except that oxy) titanium and finally 3-aminopropyltriethoxysilane were added.
  • Table 1 shows the polymerization formulation of the modified conjugated diene rubber L
  • Table 2 shows the properties of the resulting modified conjugated diene rubber L.
  • the rubber composition prepared by the compounding prescription shown in Table 3 and Table 4 was vulcanized using the modified conjugated diene rubber L, and physical properties were evaluated. The results are shown in Table 4.
  • Example 13 [Synthesis of modified conjugated diene rubber M and its evaluation]
  • 1- (3-triethoxysilylpropyl) -2,2,5,5-tetramethyl-1-aza-2,5-disilacyclopentane was first added followed by tetrakis (2-ethylhexyl).
  • a modified conjugated diene rubber M was obtained in the same manner as in Example 4 except that (oxy) titanium and 3-aminopropyltriethoxysilane were added simultaneously.
  • Table 1 shows the polymerization formulation of the modified conjugated diene rubber M
  • Table 2 shows the properties of the resulting modified conjugated diene rubber M.
  • the rubber composition prepared according to the formulation shown in Table 3 and Table 4 was vulcanized, and physical properties were evaluated. The results are shown in Table 4.
  • Example 1 Synthesis of modified conjugated diene rubber N and its evaluation
  • a modified conjugated diene rubber N was obtained in the same manner as in Example 1 except that N, N-bis (triethylsilyl) aminopropyltrimethoxysilane was not added.
  • Table 1 shows the polymerization formulation of the modified conjugated diene rubber N
  • Table 2 shows the properties of the resulting modified conjugated diene rubber N.
  • the rubber composition prepared according to the formulation shown in Table 3 and Table 4 was vulcanized, and physical properties were evaluated. The results are shown in Table 4.
  • the blend obtained above was cooled to room temperature, and the blend was kneaded with sulfur and a vulcanization accelerator according to the blending recipe shown in Tables 3 and 4. This was molded, vulcanized with a vulcanizing press at 160 ° C. for a predetermined time, and the following characteristics were evaluated as representing tire performance.
  • tan ⁇ Measured using a vulcanized rubber as a measurement sample and using a dynamic spectrometer (manufactured by Rheometrics, USA) under conditions of a tensile dynamic strain of 0.14%, an angular velocity of 100 radians per second, and 0 ° C. did. Expressed as an index, the larger the numerical value, the greater the wet skid resistance and the better the wet skid resistance.
  • the crosslinked rubber composition of the present invention using the modified conjugated diene rubber of the present invention balances wet skid resistance and low hysteresis loss characteristics without impairing tensile strength and wear resistance. It can be seen that is significantly improved. From the physical property evaluation results of the modified conjugated diene rubbers N to P of Comparative Examples 1 to 3, all of the steps (a) to (b) of the present invention are important for improving the balance between wet skid resistance and low hysteresis loss characteristics. Can be confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)

Abstract

 タイヤトレッド等の用途に用いられ、低燃費性能を高めることができる架橋ゴムの原料として用いうる共役ジエン系ゴムの製造方法を提供する。 (a)共役ジエン系化合物、又は共役ジエン系化合物と芳香族ビニル化合物を重合して得られるアルカリ金属もしくはアルカリ土類金属活性末端を有する共役ジエン系重合体と、2つ以上のアルコキシ基を有するアルコキシシリル基及び脱保護可能な保護基により保護された基を有する第一のアルコキシシラン化合物とを反応させて、アルコキシシリル基を有する変性共役ジエン系重合体を得る工程と、(b)上記変性共役ジエン系重合体と、アルコキシシリル基を有する第二のアルコキシシラン化合物を反応させる工程と、を含む変性共役ジエン系ゴムの製造方法。

Description

変性共役ジエン系ゴムの製造方法、変性共役ジエン系ゴム、及びゴム組成物
本発明は、変性共役ジエン系ゴムの製造方法、変性共役ジエン系ゴム、及びゴム組成物に関する。更に詳しくは、引張強度、耐摩耗性、ウェットスキッド抵抗性及び、低ヒステリシスロス特性に優れた架橋ゴムを製造することが可能な変性共役ジエン系ゴムの製造方法、このような製造方法によって得られた形状保持性に優れた変性共役ジエン系ゴム、該変性共役ジエン系ゴムを含むゴム組成物、及び、該ゴム組成物を架橋(例えば、加硫)させてなる架橋ゴム組成物(例えば、加硫ゴム組成物)に関する。
 自動車タイヤ用ゴムとして、乳化重合法によって得られる共役ジエン系ゴム(例えば、スチレン-ブタジエン共重合体)が知られている。近年、自動車の低燃費性能の向上が期待される中で、優れた低燃費性能を実現しうる種々の共役ジエン系ゴムが提案されている。
 一例として、(1)共役ジオレフィンあるいは共役ジオレフィンと芳香族ビニル化合物の(共)重合ゴムであって、(2)(共)重合体鎖に結合した第1級アミノ基とアルコキシシリル基とを有し、かつ(3)(共)重合体鎖中に2官能性以上のモノマーが共重合されているか、および/または、2官能性以上のカップリング剤で(共)重合体鎖の少なくとも一部がカップリングされている、ことを特徴とする共役ジオレフィン(共)重合ゴムが提案されている(特許文献1)。
 他の例として、アルカリ金属触媒の存在下、炭化水素溶媒中で、共役ジエンモノマー、又は、共役ジエンモノマーと芳香族ビニルモノマーとを重合させ、アルカリ金属末端を有する活性重合体を得る工程1と、該活性重合体と、特定の式で表される化合物とを反応させて、変性重合体ゴムを得る工程2から得られる、変性ジエン系重合体ゴムが提案されている(特許文献2)。
 また、シリカ及びカーボンブラックとの相互作用を高め、破壊特性、耐摩耗性、低発熱性を向上させることができる変性重合体を製造する方法として、有機金属の活性部位を分子中に有する重合体の該活性部位にヒドロカルビルオキシシラン化合物を反応させる第一次変性反応を行い、その後さらにヒドロカルビルオキシシリル基同士の縮合反応を経由して、ヒドロカルビルオキシシラン化合物を反応させる第二次変性反応を行う方法が提案されている(特許文献3)。
特開2004-18795号公報 特開2005-290355号公報 WO 03/048216 A1
 前述のとおり、自動車の優れた低燃費性能を実現しうる種々の共役ジエン系ゴムが提案されている。しかし、ガソリンの価格高騰等の経済事情、二酸化炭素の排出を初めとする環境事情下において、自動車のさらなる低燃費化が期待されている。そこで、本発明は、自動車タイヤ等の用途に用いることができ、自動車等の低燃費性能を高めることができる架橋ゴムの原料として用いうる変性共役ジエン系ゴムの製造方法を提供することを目的とする。
 本発明者は、上記課題を解決するために鋭意検討した結果、アルカリ金属もしくはアルカリ土類金属活性末端を有する共役ジエン系重合体に加えて、特定の2種のアルコキシシラン化合物を用いることによって、低ヒステリシスロス特性に優れるなどの物性が付与され、その結果、自動車タイヤ等に用いた場合に優れた低燃費性能を与えることが可能な変性共役ジエン系ゴムを製造しうることを見出し、本発明を完成した。
 すなわち、本発明は、以下の[1]~[10]を提供するものである。
[1](a)共役ジエン系化合物、又は共役ジエン系化合物と芳香族ビニル化合物を重合して得られるアルカリ金属もしくはアルカリ土類金属活性末端を有する共役ジエン系重合体と、2つ以上のアルコキシ基を有するアルコキシシリル基及び脱保護可能な保護基により保護された基を有する第一のアルコキシシラン化合物を反応させて、アルコキシシリル基を有する変性共役ジエン系重合体を得る工程と、(b)上記アルコキシシリル基を有する変性共役ジエン系重合体と、アルコキシシリル基を有する第二のアルコキシシラン化合物を反応させる工程と、を含む変性共役ジエン系ゴムの製造方法。
[2]前記第一のアルコキシシラン化合物の脱保護可能な保護基により保護された基が、1級アミンの2つの水素原子が2つの保護基によって置換されてなる窒素含有基、2級アミンの1つの水素原子が1つの保護基によって置換されてなる窒素含有基、チオールの1つの水素原子が1つの保護基によって置換されてなる硫黄含有基、1級ホスフィンの2つの水素原子が2つの保護基によって置換されてなるリン含有基、及び、2級ホスフィンの1つの水素原子が1つの保護基によって置換されてなるリン含有基、からなる群より選ばれる1種以上である前記[1]に記載の変性共役ジエン系ゴムの製造方法。
[3]工程(b)が、金属元素を含むアルコキシシラン化合物の縮合触媒の存在下で行われる前記[1]又は[2]に記載の変性共役ジエン系ゴムの製造方法。
[4]前記縮合触媒が、周期律表の4族、12族、13族、14族及び15族に含まれる金属元素のうち少なくとも一つの金属元素を含有する金属化合物である前記[3]に記載の変性共役ジエン系ゴムの製造方法。
[5]前記縮合触媒として、前記金属元素のアルコキシド、カルボン酸塩、又はアセチルアセトナート錯塩を用いる前記[4]に記載の変性共役ジエン系ゴムの製造方法。
[6](c)工程(b)で得られた混合物と水を接触させる工程、を含む前記[1]~[5]のいずれか一つに記載の変性共役ジエン系ゴムの製造方法。
[7]前記[1]~[6]のいずれか一つに記載の変性共役ジエン系ゴムの製造方法によって得られた変性共役ジエン系ゴム。
[8]前記[7]に記載の変性共役ジエン系ゴムと、シリカ及び/又はカーボンブラックと、架橋剤を含む、ゴム組成物。
[9]前記[8]に記載のゴム組成物を架橋させてなる架橋ゴム組成物。
[10]前記[9]に記載の架橋ゴム組成物からなるタイヤ。
 本発明の製造方法によれば、引張強度、耐摩耗性及びウェットスキッド抵抗性に優れた架橋ゴム組成物を製造することが可能な、形状保持性に優れた変性共役ジエン系ゴムを得ることができる。
 該変性共役ジエン系ゴムを用いて製造される架橋ゴム組成物は、自動車タイヤ等の用途に用いることができ、自動車等の低燃費性能を高めることができる。
 本発明の変性共役ジエン系ゴムの製造方法は、(a)共役ジエン系化合物、又は共役ジエン系化合物と芳香族ビニル化合物を重合して得られるアルカリ金属もしくはアルカリ土類金属活性末端を有する共役ジエン系重合体と、2つ以上のアルコキシ基を有するアルコキシシリル基及び脱保護可能な保護基により保護された基を有する第一のアルコキシシラン化合物を反応させて、アルコキシシリル基を有する変性共役ジエン系重合体を得る工程と、(b)上記アルコキシシリル基を有する変性共役ジエン系重合体と、アルコキシシリル基を有する第二のアルコキシシラン化合物を反応させる工程と、を含むものである。
[1]変性共役ジエン系ゴムの製造方法:
[工程(a)]
工程(a)は、共役ジエン系化合物、又は共役ジエン系化合物と芳香族ビニル化合物を重合して得られるアルカリ金属もしくはアルカリ土類金属活性末端を有する共役ジエン系重合体と、2つ以上のアルコキシ基を有するアルコキシシリル基及び脱保護可能な保護基により保護された基を有する第一のアルコキシシラン化合物を反応させて、前記アルコキシシリル基を有する変性共役ジエン系重合体を得る工程である。
 アルカリ金属もしくはアルカリ土類金属活性末端を有する共役ジエン系重合体としては、共役ジエン系化合物を単独で重合、または、共役ジエン系化合物と芳香族ビニル化合物を共重合させてなるアニオン重合体を挙げることができる。
 共役ジエン系重合体の製造方法については、上記したようにアルカリ金属もしくはアルカリ土類金属(以下、「開始剤」または「重合開始剤」ということがある。)によってアニオン重合させること以外については特に制限はない。例えば、重合法については、溶液重合法、気相重合法、バルク重合法のいずれも用いることができるが、特に、溶液重合法を用いることが好ましい。また、重合形式は、バッチ式及び連続式のいずれであってもよい。また、共役ジエン系重合体の分子中に存在する活性部位の金属は、アルカリ金属もしくはアルカリ土類金属であり、リチウム、ナトリウム、カリウム、マグネシウム、バリウムであることが好ましく、特にリチウム金属であることが好ましい。これらのアルカリ金属もしくはアルカリ土類金属は、第一のアルコキシシラン化合物と反応可能な金属活性末端を有する共役ジエン系重合体を得ることが可能であるという観点から、いずれも同様の作用を有するものであり、後述の実施例に記載されていないものであっても、本発明において使用することが可能である。
 更には、官能基含有モノマーを混在させ、ポリマー中の官能基をアルカリ金属もしくはアルカリ土類系開始剤によって活性化することも有効である。例えば、イソブチレン単位、パラメチルスチレン単位及びパラハロゲン化メチルスチレン単位を含む共重合体の官能基部分をリチオ化して活性部位とすることも有効である。
 上記共役ジエン系モノマーとしては、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、1,3-ヘプタジエン、2,3-ジメチルブタジエン、2-フェニル-1,3-ブタジエン、3-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、2-クロロ-1,3-ブタジエン等を好適に用いることができる。これらは単独で用いてもよく、二種以上組み合わせて用いてもよい。これらの化合物の中で、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン等を特に好適に用いることができる。これらの共役ジエン系モノマーは、第一のアルコキシシラン化合物と反応可能な金属活性末端を有する共役ジエン系重合体を得ることが可能であるという観点から、いずれも同様の作用を有するものであり、後述の実施例に記載されていないものであっても、本発明において使用することが可能である。
 芳香族ビニル化合物としては、例えば、スチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、α-メチルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、4-tert-ブチルスチレン、5-t-ブチル-2-メチルスチレン、ビニルエチルベンゼン、ジビニルベンゼン、トリビニルベンゼン、ジビニルナフタレン、tert-ブトキシスチレン、ビニルベンジルジメチルアミン、(4-ビニルベンジル)ジメチルアミノエチルエーテル、ジメチルアミノメチルスチレン、N,N-ジメチルアミノエチルスチレン、2-エチルスチレン、3-エチルスチレン、4-エチルスチレン、2-t-ブチルスチレン、3-t-ブチルスチレン、4-t-ブチルスチレン、ビニルキシレン、ビニルナフタレン、ビニルトルエン、ビニルピリジン、ジフェニルエチレン、3級アミノ基含有ジフェニルエチレン等を好適に用いることができる。これらは単独で用いてもよく、二種以上を組み合わせて用いてもよい。これらの化合物の中で、スチレンが特に好ましい。これらの芳香族ビニル化合物は、第一のアルコキシシラン化合物と反応可能な金属活性末端を有する共役ジエン系重合体を得ることが可能であるという観点から、いずれも同様の作用を有するものであり、後述の実施例に記載されていないものであっても、本発明において使用することが可能である。
 更に、共役ジエン系モノマーと芳香族ビニル化合物とを用いて共重合を行う場合、それぞれ1,3-ブタジエンとスチレンとを使用することが好ましい。これらのモノマーは、入手が容易であるとともに、アニオン重合におけるリビング性が高いという点において優れている。また、溶液重合法を用いた場合には、溶媒中のモノマー濃度は、生産性と重合コントロールの容易性のバランスを維持する観点から、好ましくは5~50質量%、より好ましくは10~30質量%である。なお、共役ジエン系モノマーと芳香族ビニル化合物を用いて共重合を行う場合、仕込みモノマー混合物中の芳香族ビニル化合物の含量は、得られる架橋ゴム組成物の低ヒステリシスロス特性とウェットスキッド抵抗性のバランスを維持する観点から、3~55質量%であることが好ましく、5~50質量%であることが更に好ましい。
 アルカリ金属もしくはアルカリ土類金属系開始剤として用いられる化合物としては、アルキルリチウム、アルキレンジリチウム、リチウムアルキレンイミド、リチウムジアルキルアミド、フェニルリチウム、スチルベンリチウム、リチウムナフタレン、ナトリウムナフタレン、カリウムナフタレン、n-ブチルマグネシウム、n-ヘキシルマグネシウム、エトキシカルシウム、ステアリン酸カルシウム、t-ブトキシストロンチウム、エトキシバリウム、イソプロポキシバリウム、エチルメルカプトバリウム、t-ブトキシバリウム、フェノキシバリウム、ジエチルアミノバリウム、ステアリン酸バリウム、ケチルバリウム、ナトリウムビフェニル、カリウム-テトラヒドロフラン錯体、カリウムジエトキシエタン錯体、α-メチルスチレンテトラマーのナトリウム塩等を挙げることができ、アルキルリチウム等の有機リチウム化合物、及びリチウムアルキレンイミド等のリチウムアミド化合物を好適例として挙げることができる。前者の有機リチウム化合物を用いる場合には、重合開始末端に炭化水素基を有し、かつ他方の末端が重合活性部位である共役ジエン系重合体が得られる。また、後者のリチウムアミド化合物を用いる場合には、重合開始末端に窒素含有基を有し、他方の末端が重合活性部位である共役ジエン系重合体が得られる。これらのアルカリ金属もしくはアルカリ土類金属系開始剤は、第一のアルコキシシラン化合物と反応可能な金属活性末端を有する共役ジエン系重合体を得ることが可能であるという観点から、いずれも同様の作用を有するものであり、後述の実施例に記載されていないものであっても、本発明において使用することが可能である。
 上記有機リチウム化合物としては、炭素数1~20の炭化水素基を有するものが好ましく、例えば、メチルリチウム、エチルリチウム、n-プロピルリチウム、iso-プロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-オクチルリチウム、n-デシルリチウム、フェニルリチウム、2-ナフチルリチウム、2-ブチル-フェニルリチウム、4-フェニル-ブチルリチウム、シクロヘキシルリチウム、ジイソプロペニルベンゼンとブチルリチウムとの反応生成物、t-ブチルリチウム、n-ヘキシルリチウム、ベンジルリチウム、フェニルリチウム、スチルベンリチウム、1,4-ジリチオブタン、1,3,5-トリリチオベンゼン、n-ブチルリチウムと1,3-ブタジエンおよびジビニルベンゼンの反応物、n-ブチルリチウムとポリアセチレン化合物の反応物、4-シクロペンチルリチウム、1,2-ジリチオメタン、1,4-ジリチオブタン、1,4-ジリチオ-2-エチルシクロヘキサン、1,3,5-トリリチオベンゼン等を挙げることができる。これらの中で、n-ブチルリチウム及びsec-ブチルリチウムが好ましい。
 一方、リチウムアミド化合物としては、例えば、リチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピぺリジド、リチウムヘプタメチレンイミド、リチウムドデカメチレンイミド、リチウムモルホリド、リチウムジメチルアミド、リチウムジエチルアミド、リチウムジブチルアミド、リチウムジプロピルアミド、リチウムジイソプロピルアミド、リチウムジヘプチルアミド、リチウムジヘキシルアミド、リチウムジオクチルアミド、リチウムジ-2-エチルヘキシルアミド、リチウムジデシルアミド、リチウム-N-メチルピペラジド、リチウムエチルプロピルアミド、リチウムエチルブチルアミド、リチウムエチルベンジルアミド、リチウムメチルフェネチルアミド、3-[N,N-ビス(トリメチルシリル)]-1-プロピルリチウム、3-[N,N-ビス(トリメチルシリル)]-2-メチル-1-プロピルリチウム、3-[N,N-ビス(トリメチルシリル)]-2,2-ジメチル-1-プロピルリチウム、4-[N,N-ビス(トリメチルシリル)]-1-ブチルリチウム、5-[N,N-ビス(トリメチルシリル)]-1-ペンチルリチウム、8-[N,N-ビス(トリメチルシリル)]-1-オクチルリチウム、3-(2,2,5,5,-テトラメチル-2,5-ジシラ-1-アザシクロペンタン)-1-プロピルリチウム、2-メチル-3-(2,2,5,5,-テトラメチル-2,5-ジシラ-1-アザシクロペンタン)-1-プロピルリチウム、2,2-ジメチル-3-(2,2,5,5,-テトラメチル-2,5-ジシラ-1-アザシクロペンタン)-1-プロピルリチウム、4-(2,2,5,5,-テトラメチル-2,5-ジシラ-1-アザシクロペンタン)-1-ブチルリチウム、6-(2,2,5,5,-テトラメチル-2,5-ジシラ-1-アザシクロペンタン)-1-ヘキシルリチウム、等を挙げることができる。これらの中で、カーボンブラックやシリカに対する相互作用効果及び重合開始能の点から、リチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピぺリジド、リチウムへプタメチレンイミド、リチウムドデカメチレンイミドなどの環状リチウムアミドが好ましく、特に、リチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピペリジドが好適である。
 これらのリチウムアミド化合物は、一般に、二級アミンとリチウム化合物とから予め調製したものを重合に使用することが多いが、重合系中(in-situ)で調製することもできる。また、この重合開始剤の使用量は、好ましくはモノマー100gあたり、0.2~20ミリモルの範囲で選定される。
 前記リチウム化合物を重合開始剤として用い、アニオン重合によって共役ジエン系重合体を製造する際の具体的な方法としては、例えば、反応に不活性な有機溶剤、例えば脂肪族、脂環族もしくは芳香族炭化水素化合物等の炭化水素溶媒中において、ジエン系モノマー又はジエン系モノマーと芳香族ビニル化合物を、前記リチウム化合物を重合開始剤として、所望により用いられるランダマイザーの存在下に、アニオン重合させる方法を挙げることができる。このような方法によって、目的の共役ジエン系重合体を得ることができる。
 前記炭化水素溶媒としては、炭素数3~8のものが好ましく、例えば、プロパン、n-ブタン、イソブタン、n-ペンタン、イソペンタン、n-へキサン、シクロへキサン、プロペン、1-ブテン、イソブテン、トランス-2-ブテン、シス-2-ブテン、1-ペンチン、2-ペンチン、1-ヘキセン、2-ヘキセン、ベンゼン、トルエン、キシレン、エチルベンゼン、ヘプタン、シクロペンタン、メチルシクロペンタン、メチルシクロヘキサン、1-ペンテン、2-ペンテン、シクロヘキセン等を挙げることができる。これらは単独で用いてもよく、二種以上を混合して用いてもよい。
 また、所望により用いられるランダマイザーとは、共役ジエン系重合体のミクロ構造の制御、例えばブタジエン-スチレン共重合体におけるブタジエン部分のビニル結合(1,2結合)、イソプレン重合体におけるビニル結合(1,2結合及び3,4結合)の増加など、あるいは共役ジエン系重合体におけるモノマー単位の組成分布の制御、例えばブタジエン-スチレン共重合体におけるブタジエン単位とスチレン単位とのランダム化などの作用を有する化合物のことである。このランダマイザーとしては、特に制限はなく、従来ランダマイザーとして一般に使用されている公知の化合物の中から任意のものを適宜選択して用いることができる。具体的には、ジメトキシベンゼン、テトラヒドロフラン、ジメトキシエタン、ジエチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、2,2-ジ(テトラヒドロフリル)プロパン、2-(2-エトキシエトキシ)-2-メチルプロパン、トリエチルアミン、ピリジン、N-メチルモルホリン、N,N,N’,N’-テトラメチルエチレンジアミン、1,2-ジピペリジノエタン、エチレングリコールジブチルエーテル、エチレングリコールジメチルエーテル、ジエチルエーテル、ジオキサン、トリメチルアミン、キヌクリジン、カリウム-t-アミラート、カリウム-t-ブチラート、トリフェニルホスフィン、テトラヒドロピラン、ジブチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジエチルエーテル、ジフェニルエーテル、アニソール、トリプロピルアミン、トリブチルアミン、N,N-ジエチルアニリン、キノリンなどのエーテル類及び三級アミン類などを挙げることができる。これらのランダマイザーは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 上記した重合開始剤の反応性を向上させようとする場合、あるいは重合体中に導入される芳香族ビニル化合物をランダムに配列するか又は芳香族ビニル化合物の単連鎖もしくは長連鎖を付与しようとする場合に、重合開始剤とともにカリウム化合物を添加してもよい。重合開始剤とともに添加されるカリウム化合物としては、例えば、カリウムイソプロポキシド、カリウム-t-ブトキシド、カリウム-t-アミロキシド、カリウム-n-ヘプタオキシド、カリウムベンジルオキシド、カリウムフェノキシドに代表される、カリウムアルコキシドもしくはカリウムフェノキシド;イソバレリアン酸、カプリル酸、ラウリル酸、パルミチン酸、ステアリン酸、オレイン酸、リノレイン酸、安息香酸、フタル酸、2-エチルヘキサン酸などのカリウム塩;ドデシルベンゼンスルホン酸、テトラデシルベンゼンスルホン酸、ヘキサデシルベンゼンスルホン酸、オクタデシルベンゼンスルホン酸などの有機スルホン酸のカリウム塩;亜リン酸ジエチル、亜リン酸ジイソプロピル、亜リン酸ジフェニル、亜リン酸ジブチル、亜リン酸ジラウリルなどの有機亜リン酸部分エステルのカリウム塩などが用いられる。
 これらのカリウム化合物は、重合開始剤のアルカリ金属もしくはアルカリ土類金属1グラム原子当量あたり、0.005~0.5モルの量で添加することが好ましい。0.005モル未満では、カリウム化合物の添加効果(重合開始剤の反応性向上、芳香族ビニル化合物のランダム化又は単連鎖もしくは長連鎖付与)が現れないことがあり、一方、0.5モルを超えると、重合活性が低下し、生産性を大幅に低下させることになるとともに、第一のアルコキシシラン化合物との変性反応における変性効率が低下することがある。
 この重合反応における温度は、-20~150℃であることが好ましく、0~120℃であることが更に好ましい。重合反応は、発生圧力下で行うことができるが、通常はモノマーを実質的に液相に保つに十分な圧力で操作することが好ましい。すなわち、圧力は重合される個々の物質や、用いる重合媒体及び重合温度にもよるが、所望ならば発生圧力に比べてより高い圧力を用いることができ、このような圧力は重合反応に関して不活性なガスで反応器を加圧する等の適当な方法で得られる。
 この重合においては、重合開始剤、溶媒、モノマーなどの、重合に関与する全ての原材料は、水、酸素、二酸化炭素、プロトン性化合物等の反応阻害物質を除去したものを用いることが望ましい。なお、エラストマーとして重合体を得る場合は、得られる重合体又は共重合体の、示差熱分析法により求めたガラス転移温度(Tg)が-90℃~0℃であることが好ましい。ガラス転移温度が-90℃未満の重合体を得るのは困難であり、また0℃を超える場合には室温領域で粘度が高くなりすぎ、取り扱いが困難となる場合がある。
 第一のアルコキシシラン化合物におけるアルコキシシリル基としては、アルカリ金属もしくはアルカリ土類金属活性末端を有する共役ジエン系重合体との反応性の観点、及び、後述する第二のアルコキシシラン化合物との反応の観点から、2つ以上のアルコキシ基を有するものが用いられる。アルコキシ基としては、炭素数1~20のアルキル基またはアリール基を有するアルコキシ基を好適に挙げることができる。アルコキシ基が2つ以上存在する場合は、互いに同一であっても異なっていてもよい。
 第一のアルコキシシラン化合物における脱保護可能な保護基により保護された基とは、共役ジエン系重合体のアルカリ金属もしくはアルカリ土類金属活性末端から保護される基であり、例えば、1級アミンの2つの水素原子が2つの保護基によって置換されてなる窒素含有基、2級アミンの1つの水素原子が1つの保護基によって置換されてなる窒素含有基、チオールの1つの水素原子が1つの保護基によって置換されてなる硫黄含有基、1級ホスフィンの2つの水素原子が2つの保護基によって置換されてなるリン含有基、及び、2級ホスフィンの1つの水素原子が1つの保護基によって置換されてなるリン含有基等が挙げられる。この第一のアルコキシシラン化合物は、一種を単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 1級アミンの2つの水素原子が2つの保護基によって置換されてなる窒素含有基、または2級アミンの1つの水素原子が1つの保護基によって置換されてなる窒素含有基と、アルコキシシリル基とを有する化合物としては、例えば、N,N-ビス(トリメチルシリル)アミノプロピルメチルジメトキシシラン、N,N-ビス(トリメチルシリル)アミノプロピルトリメトキシシラン、N,N-ビス(トリメチルシリル)アミノプロピルトリエトキシシラン、N,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン、N,N-ビス(トリメチルシリル)アミノエチルトリメトキシシラン、N,N-ビス(トリメチルシリル)アミノエチルトリエトキシシラン、N,N-ビス(トリメチルシリル)アミノエチルメチルジメトキシシラン、N,N-ビス(トリメチルシリル)アミノエチルメチルジエトキシシラン、N,N-ビス(トリエチルシリル)アミノプロピルメチルジメトキシシラン、N,N-ビス(トリエチルシリル)アミノプロピルトリメトキシシラン、N,N-ビス(トリエチルシリル)アミノプロピルトリエトキシシラン、N,N-ビス(トリエチルシリル)アミノプロピルメチルジエトキシシラン、N,N-ビス(トリエチルシリル)アミノエチルトリメトキシシラン、N,N-ビス(トリエチルシリル)アミノエチルトリエトキシシラン、N,N-ビス(トリエチルシリル)アミノエチルメチルジメトキシシラン、N,N-ビス(トリエチルシリル)アミノエチルメチルジエトキシシラン、N,N’,N’-トリス(トリメチルシリル)-N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、N,N’,N’-トリス(トリメチルシリル)-N-(2-アミノエチル)-3-アミノプロピルメチルジエトキシシラン、N,N’,N’-トリス(トリメチルシリル)-N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N,N’,N’-トリス(トリメチルシリル)-N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、1-(3-トリエトキシシリルプロピル)-2,2,5,5-テトラメチル-1-アザ-2,5-ジシラシクロペンタン、1-(3-トリメトキシシリルプロピル)-2,2,5,5-テトラメチル-1-アザ-2,5-ジシラシクロペンタン、1-(3-メチルジエトキシシリルプロピル)-2,2,5,5-テトラメチル-1-アザ-2,5-ジシラシクロペンタン、1-(3-メチルジメトキシシリルプロピル)-2,2,5,5-テトラメチル-1-アザ-2,5-ジシラシクロペンタン、1-トリメチルシリル-2,2-ジメトキシ-1-アザ-2-シラシクロペンタン、N-〔3-(トリメトキシシリル)-プロピル〕-N,N’-ジエチル-N’-トリメチルシリル-エタン-1,2-ジアミン、N-〔3-(トリエトキシシリル)-プロピル〕-N,N’-ジエチル-N’-トリメチルシリル-エタン-1,2-ジアミン、N-[3-(メチルジメトキシシリル)-プロピル]-N,N’-ジエチル-N’-トリメチルシリル-エタン-1,2-ジアミン、N-[3-(メチルジメトキシシリル)-プロピル]-N,N’-ジエチル-N’-トリメチルシリル-p-フェニレンジアミン、N-〔3-(トリエトキシシリル)-プロピル〕-N,N’-ジエチル-N’-トリメチルシリル-p-フェニレンジアミン、3-〔3-(トリメチルシリルエチルアミノ)-1-ピロリジニル〕-プロピル-メチルジエトキシシラン、3-〔3-(トリメチルシリルプロピルアミノ)-1-ピロリジニル〕-プロピル-トリエトキシシラン、N-〔3-(ジエトキシメチルシリル)-プロピル〕-N-エチル-N’-(2-エトキシエチル)-N’-トリメチルシリル-エタン-1,2-ジアミン、N-〔3-(トリプロポキシシリル)-プロピル〕-N-プロピル-N’-(2-エトキシエチル)-N’-トリエチルシリル-p-フェニレンジアミン、N-〔2-(ジエトキシメチルシリル)-1-メチルエチル〕-N-エチル-N’-(2-ジエチルアミノ-エチル)-N’-トリエチルシリル-エタン-1,2-ジアミン、N-〔3-(トリエトキシシリル)-プロピル〕-N-エチル-N’-(2-ジエチルアミノ-エチル)-N’-トリエチルシリル-エタン-1,2-ジアミン、3-(4-トリメチルシリル-1-ピペラジノ)プロピルメチルジメトキシシラン、3-(4-トリメチルシリル-1-ピペラジノ)プロピルトリエトキシシラン、3-(4-トリメチルシリル-1-ピペラジノ)プロピルトリブトキシシラン、3-(3-トリメチルシリル-1-イミダゾリジニル)プロピルエチルジエトキシシラン、3-(3-トリメチルシリル-1-イミダゾリジニル)プロピルトリエトキシシラン、3-(3-トリメチルシリル-1-ヘキサヒドロピリミジニル)プロピルメチルジメトキシシラン、3-(3-トリメチルシリル-1-ヘキサヒドロピリミジニル)プロピルトリエトキシシラン、4-(4-トリメチルシリル-1-ピペラジニル)ブチルトリエトキシシラン、3-ジ(t-ブチルジメチルシリル)アミノプロピルトリメトキシシラン、3-ジ(t-ブチルジメチルシリル)アミノプロピルトリエトキシシラン、3-ジ(t-ブチルジメチルシリル)アミノプロピルメチルジメトキシシラン、3-ジ(t-ブチルジメチルシリル)アミノプロピルメチルジエトキシシラン、ビス[3-(トリエトキシシリル)プロピル]トリメチルシリルアミン、ビス[3-(トリメトキシシリル)プロピル]トリメチルシリルアミン等を挙げることができる。
 なお、好ましくは、N,N-ビス(トリエチルシリル)アミノプロピルメチルジメトキシシラン、N,N-ビス(トリメチルシリル)アミノプロピルメチルジメトキシシラン、N,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン、N,N-ビス(トリメチルシリル)アミノプロピルトリエトキシシラン、1-(3-トリエトキシシリルプロピル)-2,2,5,5-テトラメチル-1-アザ-2,5-ジシラシクロペンタン、N,N’,N’-トリス(トリメチルシリル)-N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、1-トリメチルシリル-2,2-ジメトキシ-1-アザ-2-シラシクロペンタン、N-〔3-(トリメトキシシリル)-プロピル〕-N,N’-ジエチル-N’-トリメチルシリル-エタン-1,2-ジアミン、N-〔3-(トリエトキシシリル)-プロピル〕-N,N’-ジエチル-N’-トリメチルシリル-エタン-1,2-ジアミン、3-(4-トリメチルシリル-1-ピペラジノ)プロピルトリエトキシシラン、ビス[3-(トリエトキシシリル)プロピル]トリメチルシリルアミン、ビス[3-(トリメトキシシリル)プロピル]トリメチルシリルアミンである。
 チオールの1つの水素原子が1つの保護基によって置換されてなる硫黄含有基と、アルコキシシリル基とを有する化合物としては、S-トリメチルシリルメルカプトプロピルメチルジメトキシシラン、S-トリメチルシリルメルカプトプロピルトリメトキシシラン、S-トリメチルシリルメルカプトプロピルトリエトキシシラン、S-トリメチルシリルメルカプトプロピルメチルジエトキシシラン、S-トリメチルシリルメルカプトエチルトリメトキシシラン、S-トリメチルシリルメルカプトエチルトリエトキシシラン、S-トリメチルシリルメルカプトエチルメチルジメトキシシラン、S-トリメチルシリルメルカプトエチルメチルジエトキシシラン等を挙げることができる。なお、好ましくは、S-トリメチルシリルメルカプトプロピルトリメトキシシラン、S-トリメチルシリルメルカプトプロピルトリエトキシシランである。
 1級ホスフィンの2つの水素原子が2つの保護基によって置換されてなるリン含有基、または2級ホスフィンの1つの水素原子が1つの保護基によって置換されてなるリン含有基と、アルコキシシリル基とを有する化合物としては、P,P-ビス(トリメチルシリル)ホスフィノプロピルメチルジメトキシシラン、P,P-ビス(トリメチルシリル)ホスフィノプロピルトリメトキシシラン、P,P-ビス(トリメチルシリル)ホスフィノプロピルトリエトキシシラン、P,P-ビス(トリメチルシリル)ホスフィノプロピルメチルジエトキシシラン、P,P-ビス(トリメチルシリル)ホスフィノエチルトリメトキシシラン、P,P-ビス(トリメチルシリル)ホスフィノエチルトリエトキシシラン、P,P-ビス(トリメチルシリル)ホスフィノエチルメチルジメトキシシラン、P,P-ビス(トリメチルシリル)ホスフィノエチルメチルジエトキシシラン等を挙げることができる。なお、好ましくは、P,P-ビス(トリメチルシリル)ホスフィノプロピルトリメトキシシラン、P,P-ビス(トリメチルシリル)ホスフィノプロピルトリエトキシシランである。
 アルカリ金属もしくはアルカリ土類金属活性末端を有する共役ジエン系重合体と、第一のアルコキシシラン化合物を反応させることによって、アルカリ金属もしくはアルカリ土類金属活性末端の部位と2つ以上存在するアルコキシ基の中の1つの部位が結合して、残余のアルコキシシリル基を有する変性共役ジエン系重合体を得ることができる。また、上記した第一のアルコキシシラン化合物は、アルカリ金属もしくはアルカリ土類金属からなる金属活性末端を有する共役ジエン系重合体と反応可能であると共に、ゴム組成物とした際にいずれも補強剤となるカーボンブラック及び/又はシリカと反応又は相互作用し、架橋ゴム組成物とした際に、優れた低ヒステリシスロス特性を与える。この観点から、上記した第一のアルコキシシラン化合物は、後述の実施例に記載されていないものであっても、本発明において使用することが可能である。
 このような第一のアルコキシシラン化合物を、共役ジエン系重合体のアルカリ金属もしくはアルカリ土類金属活性末端に導入させる変性反応は、例えば、溶液反応(ここで用いる溶液は、重合時に使用した未反応モノマーを含んだ溶液でもよい。)で行うことができる。変性反応の形式については特に制限はなく、バッチ式反応器を用いて行ってもよく、多段連続式反応器やインラインミキサなどの装置を用いて連続式で行ってもよい。また、この変性反応は、重合反応終了後、脱溶媒処理、水処理、熱処理、重合体単離に必要な諸操作などを行う前に実施することが好ましい。
 この変性反応における第一のアルコキシシラン化合物の使用量は、アニオン重合により得られた共役ジエン系重合体の活性部位に対し、好ましくは0.1モル当量以上であり、より好ましくは0.3モル当量以上である。0.1モル当量未満では、変性反応の進行が十分でなく、補強剤の分散性が充分に改良されず、架橋ゴム組成物とした際に引張強度、耐摩耗性、ウェットスキッド抵抗性、及び、低ヒステリシスロス特性に劣ることがある。
 なお、変性剤である第一のアルコキシシラン化合物の添加方法は、特に制限されず、一括して添加する方法、分割して添加する方法、あるいは、連続的に添加する方法などが挙げられるが、一括して添加する方法が好ましい。また、第一のアルコキシシラン化合物は、前述の共役ジエン系モノマー、前述の芳香族ビニル化合物、前述の炭化水素溶媒、前述のランダマイザー等を溶媒とする溶液で添加しても良い。
 変性反応の温度は、共役ジエン系重合体の重合温度をそのまま用いることができる。具体的には0~120℃が好ましい範囲として挙げられる。更に好ましくは、20~100℃である。温度が低くなると重合体の粘度が上昇する傾向があり、温度が高くなると重合活性末端が失活し易くなるので、上記数値範囲内の温度が好ましい。また、一次変性反応における反応時間は、好ましくは1分~5時間、更に好ましくは2分~1時間である。
 共役ジエン系重合体を製造する際には、第一のアルコキシシラン化合物と併用してカップリング剤を添加することも可能である。カップリング剤の具体例は、以下のとおりである。なお、このカップリング剤は、上記した第一のアルコキシシラン化合物によって共役ジエン系重合体を変性する段階で添加される。
 すなわち、第一のアルコキシシラン化合物と併用して、重合活性末端に反応させるカップリング剤としては、(a)イソシアナート化合物及び/又はイソチオシアナート化合物、(b)アミド化合物及び/又はイミド化合物、(c)ピリジル置換ケトン化合物及び/又はピリジル置換ビニル化合物、(d)ケイ素化合物、(e)エステル化合物、(f)ケトン化合物並びに(g)スズ化合物、(h)エポキシ化合物、(i)リン酸エステル化合物、(j)酸無水物基含有化合物、(k)アリールビニル基含有化合物、並びに(l)ハロゲン化炭素基含有化合物からなる群より選ばれる少なくとも一種の化合物が挙げられる。
 これらの化合物のうち、(a)成分であるイソシアナート化合物又はチオイソシアナート化合物としては、2,4-トリレンジイソシアナート、2,6-トリレンジイソシアナート、ジフェニルメタンジイソシアナート、ジフェニルエタンジイソシアネート、ポリメリックタイプのジフェニルメタンジイソシアナート(C-MDI)、イソホロンジイソシアナート、ヘキサメチレンジイソシアナート、1,3,5-ベンゼントリイソシアナート、フェニル-1,4-ジイソチオシアナート等を好適例として挙げることができる。
 (b)成分であるアミド化合物又はイミド化合物としては、コハク酸アミド、フタル酸アミド、N,N,N’,N’-テトラメチルフタル酸アミド、オキサミド、N,N,N’,N’-テトラメチルオキサミド、アジピン酸ビスジメチルアミド、ポリメタクリル酸ジメチルアミドなどのアミド化合物、コハク酸イミド、N-メチルコハクイミド、マレイミド、N-メチルマレイミド、フタルイミド、N-メチルフタルイミドなどのイミド化合物等を好適例として挙げることができる。
 (c)成分であるピリジル置換ケトン化合物又はピリジル置換ビニル化合物としては、ジベンゾイルピリジン、ジアセチルピリジン、ジビニルピリジン等を好適例として挙げることができる。
 (d)成分であるケイ素化合物としては、ジブチルジクロロケイ素、メチルトリクロロケイ素、メチルジクロロケイ素、テトラクロロケイ素、四臭化ケイ素、四ヨウ化ケイ素、モノクロロトリメトキシシラン、モノブロモトリメトキシシラン、ジクロロジメトキシシラン、ジブロモジメトキシシラン、トリクロロメトキシシラン、トリブロモメトキシシラン、ヘキサクロロジシラン、ビス(トリクロロシリル)メタン、1,2-ビス(トリクロロシリル)エタン、1,3-ビス(トリクロロシリル)プロパン、1,4-ビス(トリクロロシリル)ブタン、1,5-ビス(トリクロロシリル)ペンタン、1,6-ビス(トリクロロシリル)ヘキサン、トリエトキシメチルシラン、トリフェノキシメチルシラン、トリメトキシシラン、メチルトリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラブトキシシラン、3-アセチルプロポキシトリメトキシシラン、N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-(1,3-ジメチルブチリデン)-3-(トリブトキシシリル)-1-プロパンアミン、N-(1-メチルプロピリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-エチリデン-3-(トリエトキシシリル)-1-プロパンアミン、N-(3-トリエトキシシリルプロピル)-4,5-ジヒドロイミダゾール、3-クロロプロポキシトリメトキシシラン、4,5-エポキシヘプチルメチルジメトキシシラン、ビス(トリエトキシシリルプロピル)テトラサルファイド等を好適例として挙げることができる。
 (e)成分であるエステル化合物としては、アジピン酸ジメチル、アジピン酸ジエチル、テレフタル酸ジメチル、テレフタル酸ジエチル、フタル酸ジメチル、イソフタル酸ジメチル、マロン酸ジエチル、フタル酸ジエチル、グルタル酸ジエチル、マレイン酸ジエチル等を好適例として挙げることができる。
 (f)成分であるケトン化合物の具体例としては、N,N,N’,N’-テトラメチル-4,4’-ジアミノベンゾフェノン、N,N,N’,N’-テトラエチル(4,4’-ジアミノ)-ベンゾフェノン、N,N-ジメチル-1-アミノベンゾキノン、N,N,N’,N’-テトラメチル-1,3-ジアミノベンゾキノン、N,N-ジメチル-1-アミノアントラキノン、N,N,N’,N’-テトラメチル-1,4-ジアミノアントラキノン、4,4’-ジアセチルベンゾフェノン等を好適例として挙げることができる。
 (g)成分であるスズ化合物としては、テトラクロロスズ、テトラブロムスズ、トリクロロブチルスズ、トリクロロメチルスズ、トリクロロエチルスズ、トリクロロフェニルスズ、トリクロロオクチルスズ、ジブロムジメチルスズ、ジクロロジメチルスズ、ジクロロジブチルスズ、ジクロロジオクチルスズ、1,2-ビス(トリクロロスタニル)エタン、1,2-ビス(メチルジクロロスタニルエタン)、1,4-ビス(トリクロロスタニル)ブタン、1,4-ビス(メチルジクロロスタニル)ブタン、エチルスズトリステアレート、ブチルスズトリスオクタノエート、ブチルスズトリスステアレート、ブチルスズトリスラウレート、ジブチルスズビスオクタノエート、ジブチルスズビスステアレート、ジブチルスズビスラウレート等を好適例として挙げることができる。
 (h)成分であるエポキシ化合物としては、エチレングリコールジグリシジルエーテル、グリセリントリグリシジルエーテルなどの多価アルコールのポリグリシジルエーテル、ジグリシジル化ビスフェノールAなどの2個以上のフェニル基を有する芳香族化合物のポリグリシジルエーテル、1,4-ジグリシジルベンゼン、1,3,5-トリグリシジルベンゼン、ポリエポキシ化液状ポリブタジエンなどのポリエポキシ化合物、4,4’-ジグリシジル-ジフェニルメチルアミン、4,4’-ジグリシジル-ジベンジルメチルアミンなどのエポキシ基含有3級アミン、ジグリシジルアニリン、ジグリシジルオルソトルイジン、テトラグリシジルメタキシレンジアミン、テトラグリシジルアミノジフェニルメタン、テトラグリシジル-p-フェニレンジアミン、ジグリシジルアミノメチルシクロヘキサン、テトラグリシジル-1,3-ビスアミノメチルシクロヘキサン等のグリシジルアミノ化合物、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルトリブトキシシラン、エポキシ変性シリコーン、エポキシ化大豆油、エポキシ化亜麻仁油などのエポキシ基と他の官能基を有する化合物等を好適例として挙げることができる。
 (i)成分であるリン酸エステル化合物としては、トリクロルフォスフィン、トリブロモフォスフィンなどのポリハロゲン化リン化合物など、さらに、トリスノニルフェニルホスファイト、トリメチルホスファイト、トリエチルホスファイトなどの亜リン酸エステル化合物、トリメチルフォスフェイト、トリエチルフォスフェイ等を好適例として挙げることができる。
 (j)成分である酸無水物基含有化合物としては、無水ピロメリット酸、スチレン-無水マレイン酸共重合体等を好適例として挙げることができる。
 (k)成分であるアリールビニル基含有化合物としては、ジビニルベンゼン、ジイソプロペニルベンゼン、ジビニルベンゼンオリゴマー等を好適例として挙げることができる。
 (l)成分であるハロゲン化炭素基含有化合物としては、トリクロロプロパン、トリブロモプロパン、テトラクロロブタン等を好適例として挙げることができる。
 第一のアルコキシシラン化合物と併用して、重合活性末端に反応させるこれらの化合物は、一種単独で使用することも、あるいは二種以上を組み合わせて用いることもできる。
 上記カップリング剤の使用量は、重合開始剤のアルカリ金属もしくはアルカリ土類金属1グラム原子当量あたり、カップリング剤中のカップリング可能な置換基の量として1モル以下、好ましくは、0.1~0.5モルの量である。1モルを超えると、第一のアルコキシシラン化合物の反応率が低下し、架橋ゴム組成物とした際に優れた低ヒステリシスロス特性等が得られないことがある。
[工程(b)]
 工程(b)は、上記アルコキシシリル基を有する変性共役ジエン系重合体と、アルコキシシリル基を有する第二のアルコキシシラン化合物とを反応させる工程である。
 第二のアルコキシシラン化合物としては、1級アミノ基、2級アミノ基、3級アミノ基、イミノ基、ピリジル基、1級ホスフィノ基、2級ホスフィノ基、3級ホスフィノ基、エポキシ基、イソシアネート基、チオエポキシ基、ヒドロキシル基、カルボキシル基、オキセタン基またはチオール基等と、アルコキシシリル基とを有する化合物、エタノールアミン、ベンゾイミダゾール、メラミンまたはアミジン構造等と、アルコキシシリル基とを有する化合物が挙げられる。
 第二のアルコキシシラン化合物におけるアルコキシシリル基の数は、1つ以上であり、反応の効率性の観点から、好ましくは2つまたは3つ、より好ましくは3つである。
 この第二のアルコキシシラン化合物は、一種を単独で用いてよく、二種以上を組み合わせて用いてもよい。
 1級アミノ基、2級アミノ基、3級アミノ基、イミノ基、ピリジル基、1級ホスフィノ基、2級ホスフィノ基、3級ホスフィノ基、エポキシ基、イソシアネート基、チオエポキシ基、ヒドロキシル基、カルボキシル基、オキセタン基またはチオール基と、アルコキシシリル基とを有する化合物としては、前記工程(a)で例示された第一のアルコキシシラン化合物に加え、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-メルカプトメチルトリメトキシシラン、3-メルカプトメチルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、アミノフェニルトリメトキシシラン、アミノフェニルトリエトキシシラン、3-(N-メチルアミノ)プロピルトリメトキシシラン、3-(N-メチルアミノ)プロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、2-(6-アミノヘキシル)アミノプロピルトリメトキシシラン、N-[2-(トリメトキシシリル)-エチル]-N,N’,N’-トリメチルエタン-1,2-ジアミン、N-[2-(ジメトキシメチルシリル)-エチル]-N-エチル-N’,N’-ジメチルエタン-1,2-ジアミン、N-[3-(トリメトキシシリル)-プロピル]-N,N’,N’-トリメチルプロパン-1,3-ジアミン、N-[3-(ジメトキシメチルシリル)-プロピル]-N-エチル-N’,N’-ジメチルプロパン-1,3-ジアミン、N-[3-(トリエトキシシリル)-プロピル]-N,N’,N’-トリエチル-2-メチルプロパン-1,3-ジアミン、N-[3-(ジメトキシメチルシリル)-プロピル]-2,N,N’,N’-テトラメチルプロパン-1,3-ジアミン、N-(2-ジメチルアミノエチル)-N’-[2-(トリメトキシシリル)-エチル]-N,N’-ジメチルエタン-1,2-ジアミン、N-[2-(ジエトキシプロピルシリル)-エチル]-N’-(3-エトキシプロピル)-N,N’-ジメチルエタン-1,2-ジアミン、N-[2-(トリメトキシシリル)-エチル]-N’-メトキシメチル-N,N’-ジメチルエタン-1,2-ジアミン、N-[2-(トリメトキシシリル)-エチル]-N,N’-ジメチル-N’-(2-トリメチルシリルエチル)-エタン-1,2-ジアミン、N-[2-(トリエトキシシリル)-エチル]-N,N’-ジエチル-N’-(2-ジブチルメトキシシリルエチル)-エタン-1,2-ジアミン、1-[3-(トリエトキシシリル)-プロピル]-4-メチルピペラジン、1-[3-(ジエトキシエチルシリル)-プロピル]-4-メチルピペラジン、1-[3-(トリメトキシシリル)-プロピル]-3-メチルイミダゾリジン、1-[3-(ジエトキシエチルシリル)-プロピル]-3-エチルイミダゾリジン、1-[3-(トリエトキシシリル)-プロピル]-3-メチルヘキサヒドロピリミジン、1-[3-(ジメトキシメチルシリル)-プロピル]-3-メチルヘキサヒドロピリミジン、3-[3-(トリブトキシシリル)-プロピル]-1-メチル-1,2,3,4-テトラヒドロピリミジン、3-[3-(ジメトキシメチルシリル)-プロピル]-1-エチル-1,2,3,4-テトラヒドロピリミジン、1-(2-エトキシエチル)-3-[3-(トリメトキシシリル)-プロピル]-イミダゾリジン、2-(トリメトキシシリル)-1,3-ジメチルイミダゾリジン、2-(ジエトキシエチルシリル)-1,3-ジエチルイミダゾリジン、2-(トリエトキシシリル)―1,4-ジエチルピペラジン、2-(ジメトキシメチルシリル)―1,4-ジメチルピペラジン、5-(トリエトキシシリル)―1,3-ジプロピルヘキサヒドロピリミジン、5-(ジエトキシエチルシリル)―1,3-ジエチルヘキサヒドロピリミジン、2-[3-(2-ジメチルアミノエチル)-2-(エチルジメトキシシリル)―イミダゾリジン-1-イル]-エチル-ジメチルアミン、5-(トリメトキシシリル)-1,3-ビス-(2-メトキシエチル)-ヘキサヒドロピリミジン、5-(エチルジメトキシシラニル)-1,3-ビス-トリメチルシラニルヘキサヒドロピリミジン、2-(3-ジエトキシエチルシリル-プロピル)-1,3-ジエチルイミダゾリジン、2-(3-トリエトキシシリル-プロピル)―1,4-ジエチルピペラジン、2-(3-ジメトキシメチルシリル-プロピル)―1,4-ジメチルピペラジン、5-(3-トリエトキシシリル-プロピル)―1,3-ジプロピルヘキサヒドロピリミジン、5-(3-ジエトキシエチルシリル-プロピル)―1,3-ジエチルヘキサヒドロピリミジン、2-[3-(2-ジメチルアミノエチル)-2-(3-エチルジメトキシシリル-プロピル)―イミダゾリジン-1-イル]-エチル-ジメチルアミン、5-(3-トリメトキシシリル-プロピル)-1,3-ビス-(2-メトキシエチル)-ヘキサヒドロピリミジン、5-(3-エチルジメトキシシリル-プロピル)-1,3-ビス-(2-トリメチルシリルエチル)-ヘキサヒドロピリミジン、3-ジメチルアミノプロピルトリメトキシシラン、3-ジエチルアミノプロピルトリメトキシシラン、3-ジメチルアミノプロピルトリエトキシシラン、3-ジエチルアミノプロピルトリエトキシシラン、3-エチルメチルアミノプロピルトリメトキシシラン、3-エチルメチルアミノプロピルトリエトキシシラン、3-ジメチルアミノプロピルメチルジメトキシシラン、3-ジエチルアミノプロピルメチルジメトキシシラン、3-ジメチルアミノプロピルエチルジメトキシシラン、3-ジエチルアミノプロピルエチルジメトキシシラン、3-エチルメチルアミノプロピルメチルジメトキシシラン、3-エチルメチルアミノプロピルエチルジメトキシシラン、3-ジメチルアミノプロピルメチルジエトキシシラン、3-ジエチルアミノプロピルメチルジエトキシシラン、3-ジメチルアミノプロピルエチルジエトキシシラン、3-ジエチルアミノプロピルエチルジエトキシシラン、3-エチルメチルアミノプロピルメチルジエトキシシラン、3-エチルメチルアミノプロピルエチルジエトキシシラン、3-ジ(メトキシメチル)アミノプロピルトリメトキシシラン、3-ジ(メトキシエチル)アミノプロピルトリメトキシシラン、3-ジ(メトキシメチル)アミノプロピルトリエトキシシラン、3-ジ(メトキシエチル)アミノプロピルトリエトキシシラン、3-ジ(エトキシエチル)アミノプロピルトリメトキシシラン、3-ジ(エトキシメチル)アミノプロピルトリメトキシシラン、3-ジ(エトキシエチル)アミノプロピルトリエトキシシラン、3-ジ(エトキシメチル)アミノプロピルトリエトキシシラン、3-モルホリノプロピルトリメトキシシラン、3-モルホリノプロピルトリエトキシシラン、3-モルホリノプロピルメチルジメトキシシラン、3-モルホリノプロピルエチルジメトキシシラン、3-モルホリノプロピルメチルジエトキシシラン、3-モルホリノプロピルエチルジエトキシシラン、3-ピペリジノプロピルトリメトキシシラン、3-ピペリジノプロピルトリエトキシシラン、3-ピペリジノプロピルメチルジメトキシシラン、3-ピペリジノプロピルエチルジメトキシシラン、3-ピペリジノプロピルメチルジエトキシシラン、3-ピペリジノプロピルエチルジエトキシシラン、N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-(1,3-メチルエチリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-エチリデン-3-(トリエトキシシリル)-1-プロパンアミン、N-(1-メチルプロピリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-(4-N,N-ジメチルアミノベンジリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-(シクロヘキシリデン)-3-(トリエトキシシリル)-1-プロパンアミン及びこれらのトリエトキシシリル化合物に対応するトリメトキシシリル化合物、メチルジエトキシシリル化合物、エチルジメトキシシリル化合物、N-(3-トリメトキシシリルプロピル)-4,5-ジヒドロイミダゾール、N-(3-トリエトキシシリルプロピル)-4,5-ジヒドロイミダゾール、N-(3-トリメトキシシリルプロピル)-4,5-イミダゾール、N-(3-トリエトキシシリルプロピル)-4,5-イミダゾール、3-ヘキサメチレンイミノプロピルトリメトキシシラン、3-ヘキサメチレンイミノプロピルトリエトキシシラン、3-ヘキサメチレンイミノプロピルメチルジメトキシシラン、3-ヘキサメチレンイミノプロピルエチルジメトキシシラン、3-ヘキサメチレンイミノプロピルメチルジエトキシシラン、3-ヘキサメチレンイミノプロピルエチルジエトキシシラン、特開2006-249069号公報に例示されているメルカプトシラン化合物、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルトリブトキシシラン、エポキシ変性シリコーン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルメチルジエトキシシラン、等を挙げることができる。
 このような第二のアルコキシシラン化合物とアルコキシシリル基を有する変性共役ジエン系重合体の混合は、例えば、溶液の形態で行うことができる。混合の形式については特に制限はなく、バッチ式混合器を用いて行ってもよく、多段連続式混合器やインラインミキサなどの装置を用いて連続式で行ってもよい。また、混合後に水を接触させる工程を加えてもよい。なお、この混合による反応は、重合反応終了後、脱溶媒処理、水処理、熱処理、重合体単離に必要な諸操作などを行う前に実施することが好ましい。
 この混合における第二のアルコキシシラン化合物の使用量は、アニオン重合により得られた共役ジエン系重合体の活性部位に対し、0.2モル当量以上であることが好ましく、更に好ましくは、0.3モル当量以上である。0.2モル当量未満では、オニウム化に伴う第二のアルコキシシラン化合物の取込が十分でなく、補強剤の分散性が充分に改良されず、架橋ゴム組成物とした際に引張強度、耐摩耗性、ウェットスキッド抵抗性及び低ヒステリシスロス特性に劣ることがある。また、第二のアルコキシシラン化合物は、第一のアルコキシシラン化合物と兼用することもできる。この場合、アニオン重合により得られた共役ジエン系重合体の活性部位に対し、1.2モル当量以上の第一のアルコキシシラン化合物を用いればよい。
 なお、変性剤である第二のアルコキシシラン化合物の添加方法は、特に制限されず、一括して添加する方法、分割して添加する方法、あるいは、連続的に添加する方法などが挙げられるが、一括して添加する方法が好ましい。また、第二のアルコキシシラン化合物は、前述の炭化水素溶媒、前述のランダマイザー等を溶媒とする溶液で添加しても良い。また、第二のアルコキシシラン化合物は、第一のアルコキシシラン化合物と同時に添加しても、第一のアルコキシシラン化合物の反応後に添加してもよい。
 第二のアルコキシシラン化合物とアルコキシシリル基を有する変性共役ジエン系重合体を反応させるときの温度は、共役ジエン系重合体の重合温度をそのまま用いることができる。具体的には0~120℃が好ましい範囲として挙げられる。更に好ましくは、20~100℃である。温度が低くなると重合体の粘度が上昇する傾向があり、温度が高くなると重合活性末端が変質し易くなるので、前記数値範囲内の温度が好ましい。また、混合時間は、好ましくは1分~5時間、更に好ましくは2分~1時間である。
 さらに、工程(b)は、金属元素を含むアルコキシシラン化合物の縮合触媒(以下、単に「縮合触媒」ということがある)の存在下で行うこともできる。
 アルコキシシリル基を有する第二のアルコキシシラン化合物と縮合触媒の混合の方法としては、以下の3つの実施形態のいずれかを採用することができる。いずれの実施形態であっても、変性共役ジエン系ゴムを得ることができる。
[第一の実施形態]
 (b-1)アルコキシシリル基を有する変性共役ジエン系重合体と、アルコキシシリル基を有する第二のアルコキシシラン化合物を混合する工程と、(b-2)前記工程(b-1)で得られた混合物と、縮合触媒を混合する工程と、を含むもの
[第二の実施形態]
 (b-3)アルコキシシリル基を有する変性共役ジエン系重合体と、縮合触媒を混合する工程と、(b-4)前記工程(b-3)で得られた混合物と、アルコキシシリル基を有する第二のアルコキシシラン化合物を混合する工程と、を含むもの
[第三の実施形態]
 (b-5)アルコキシシリル基を有する変性共役ジエン系重合体と、アルコキシシリル基を有する第二のアルコキシシラン化合物と、縮合触媒を、同時に混合する工程、からなるもの
 金属元素を含むアルコキシシラン化合物の縮合触媒としては、周期律表の4族、12族、13族、14族及び15族に含まれる金属元素のうち少なくとも一つの金属元素を含有する金属化合物を用いることが好ましい。具体的な金属元素としては、チタン、ジルコニウム、アルミニウム、ビスマス、スズ等を好適例として挙げることができる。
 また、この金属元素を含むアルコキシシラン化合物の縮合触媒としては、上記した金属元素のアルコキシド、カルボン酸塩、又はアセチルアセトナート錯塩であることが好ましい。
 この場合、縮合触媒は、変性共役ジエン系重合体と第二のアルコキシシラン化合物の縮合を促進すると共に、縮合触媒自体も変性共役ジエン系重合体、および第二のアルコキシシラン化合物のアルコキシシリル残基と反応することで、フィラーとの反応性をさらに高めることができる。
 具体的には、上記縮合触媒として、テトラメトキシチタニウム、テトラエトキシチタニウム、テトラn-プロポキシチタニウム、テトラi-プロポキシチタニウム、テトラn-ブトキシチタニウム、テトラn-ブトキシチタニウムオリゴマー、テトラsec-ブトキシチタニウム、テトラtert-ブトキシチタニウム、テトラ(2-エチルヘキシルオキシ)チタニウム、ビス(オクタンジオレート)ビス(2-エチルヘキシルオキシ)チタニウム、テトラ(オクタンジオレート)チタニウム、チタニウムラクテート、チタニウムジプロポキシビス(トリエタノールアミネート)、チタニウムジブトキシビス(トリエタノールアミネート)、チタニウムトリブトキシステアレート、チタニウムトリプロポキシステアレート、チタニウムトリプロポキシアセチルアセトネート、チタニウムジプロポキシビス(アセチルアセトネート)、チタニウムトリプロポキシエチルアセトアセテート、チタニウムプロポキシアセチルアセトネートビス(エチルアセトアセテート)、チタニウムトリブトキシアセチルアセトネート、チタニウムジブトキシビス(アセチルアセトネート)、チタニウムトリブトキシエチルアセトアセテート、チタニウムブトキシアセチルアセトネートビス(エチルアセトアセテート)、チタニウムテトラキス(アセチルアセトネート)、チタニウムジアセチルアセトネートビス(エチルアセトアセテート)を挙げることができる。
 また、ビス(2-エチルヘキサノエート)チタニウムオキサイド、ビス(ラウレート)チタニウムオキサイド、ビス(ナフテート)チタニウムオキサイド、ビス(ステアレート)チタニウムオキサイド、ビス(オレエート)チタニウムオキサイド、ビス(リノレート)チタニウムオキサイド、テトラキス(2-エチルヘキサノエート)チタニウム、テトラキス(ラウレート)チタニウム、テトラキス(ナフテート)チタニウム、テトラキス(ステアレート)チタニウム、テトラキス(オレエート)チタニウム、テトラキス(リノレート)チタニウム、トリス(2-エチルヘキサノエート)ビスマス、トリス(ラウレート)ビスマス、トリス(ナフテート)ビスマス、トリス(ステアレート)ビスマス、トリス(オレエート)ビスマス、トリス(リノレート)ビスマスを挙げることができる。
 また、テトラエトキシジルコニウム、テトラn-プロポキシジルコニウム、テトラi-プロポキシジルコニウム、テトラn-ブトキシジルコニウム、テトラsec-ブトキシジルコニウム、テトラtert-ブトキシジルコニウム、テトラ(2-エチルヘキシル)ジルコニウム、ジルコニウムトリブトキシステアレート、ジルコニウムトリブトキシアセチルアセトネート、ジルコニウムジブトキシビス(アセチルアセトネート)、ジルコニウムトリブトキシエチルアセトアセテート、ジルコニウムブトキシアセチルアセトネートビス(エチルアセトアセテート)、ジルコニウムテトラキス(アセチルアセトネート)、ジルコニウムジアセチルアセトネートビス(エチルアセトアセテート)、ビス(2-エチルヘキサノエート)ジルコニウムオキサイド、ビス(ラウレート)ジルコニウムオキサイド、ビス(ナフテート)ジルコニウムオキサイド、ビス(ステアレート)ジルコニウムオキサイド、ビス(オレエート)ジルコニウムオキサイド、ビス(リノレート)ジルコニウムオキサイド、テトラキス(2-エチルヘキサノエート)ジルコニウム、テトラキス(ラウレート)ジルコニウム、テトラキス(ナフテート)ジルコニウム、テトラキス(ステアレート)ジルコニウム、テトラキス(オレエート)ジルコニウム、テトラキス(リノレート)ジルコニウムを挙げることができる。
 更にトリエトキシアルミニウム、トリn-プロポキシアルミニウム、トリi-プロポキシアルミニウム、トリn一ブトキシアルミニウム、トリsec-ブトキシアルミニウム、トリtert-ブトキシアルミニウム、トリ(2-エチルヘキシル)アルミニウム、アルミニウムジブトキシステアレート、アルミニウムジブトキシアセチルアセトネート、アルミニウムブトキシビス(アセチルアセトネート)、アルミニウムジブトキシエチルアセトアセテート、アルミニウムトリス(アセチルアセトネート)、アルミニウムトリス(エチルアセトアセテート)、トリス(2-エチルヘキサノエート)アルミニウム、トリス(ラウレート)アルミニウム、トリス(ナフテート)アルミニウム、トリス(ステアレート)アルミニウム、トリス(オレエート)アルミニウム、トリス(リノレート)アルミニウム、ビス(n-オクタノエート)スズ、ビス(2-エチルヘキサノエート)スズ、ジラウレートスズ、ジナフトエネートスズ、ジステアレートスズ、ジオレエートスズ、ジブチルスズジアセテート、ジブチルスズビス(n-オクタノエート)、ジブチルスズビス(2-エチルヘキサノエート)、ジブチルスズジラウレート、ジブチルスズマレート、ジブチルスズビス(ベンジルマレート)、ジブチルスズビス(2-エチルヘキシルマレート)、ジ-n-オクチルスズジアセテート、ジ-n-オクチルスズビス(n-オクタノエート)、ジ-n-オクチルスズビス(2-エチルヘキサノエート)、ジ-n-オクチルスズジラウレート、ジ-n-オクチルスズマレート、ジ-n-オクチルスズビス(ベンジルマレート)、ジ-n-オクチルスズビス(2-エチルヘキシルマレート)などを挙げることができる。
 これらの縮合触媒の中では、テトラキス(2-エチルヘキシルオキシ)チタン、テトラ(オクタンジオレート)チタニウム、トリス(2-エチルヘキサノエート)ビスマス、テトラn-プロポキシジルコニウム、テトラn-ブトキシジルコニウム、ビス(2-エチルヘキサノエート)ジルコニウムオキサイド、ビス(オレエート)ジルコニウムオキサイド、トリi-プロポキシアルミニウム、トリsec-ブトキシアルミニウム、トリス(2-エチルヘキサノエート)アルミニウム、トリス(ステアレート)アルミニウム、ジルコニウムテトラキス(アセチルアセトネート)、アルミニウムトリス(アセチルアセトネート)、ビス(2-エチルヘキサノエート)スズ、ジ-n-オクチルスズビス(2-エチルヘキシルマレート)を好適例として挙げることができる。
 この混合における金属元素を含むアルコキシシラン化合物の縮合触媒の使用量は、反応系内に存在するアルコキシシリル基に対し、0.1~10モル当量であることが好ましく、更に好ましくは、0.2~5モル当量である。0.1モル当量未満では、縮合反応の進行が十分でなく、一方、10モル当量を超えて使用しても、反応する縮合触媒の効果は飽和しており、経済上好ましくない。
 なお、変性剤である縮合触媒の添加方法は、特に制限されず、一括して添加する方法、分割して添加する方法、あるいは、連続的に添加する方法などが挙げられるが、一括して添加する方法が好ましい。また、縮合触媒は、明細書の前述の炭化水素溶媒、前述のランダマイザー、等を溶媒とする溶液で添加しても良い。
 縮合触媒と他の成分(例えば、工程(a)で得られた変性共役ジエン系重合体)を混合するときの温度は、0~120℃であることが好ましく、20~100℃であることが更に好ましい。温度が低くなると重合体の粘度が上昇する傾向があり、温度が高くなると重合活性末端が変質し易くなるので、前記の数値範囲内の温度が好ましい。
 また、混合時間は、好ましくは1分~5時間、更に好ましくは2分~1時間である。1分未満では、混合が完結せず、一方、5時間を超えても混合が飽和しているため好ましくない。
[2]変性共役ジエン系ゴム:
 本発明の変性共役ジエン系ゴムは、これまでに説明した本発明の変性共役ジエン系ゴムの製造方法によって得られた変性共役ジエン系ゴムである。このような変性共役ジエン系ゴムは、ムーニー粘度が高く、形状安定性に優れ、加工性が良好なものである。本発明の変性共役ジエン系ゴムのムーニー粘度(ML1+4,100℃)は、30~150であることが好ましく、40~120であることが更に好ましい。ムーニー粘度(ML1+4,100℃)が30未満であると、形状安定性が低下する傾向にある。一方、ムーニー粘度(ML1+4,100℃)が150を超えるものであると、作業性が悪くなり、配合剤とともに混練りすることが困難になることがある。なお、ムーニー粘度が高過ぎる場合は、通常、伸展油で油展して、この範囲内とする。伸展油としては、アロマ油、ナフテン油、パラフィン油、さらに、IP346の方法によるPCA3質量%以下のアロマ代替油が好ましく用いられる。伸展油の使用量は任意であるが、通常は、重合体100質量部に対し、10~50質量部である。一般的には20~37.5質量部用いられる。また、オイルの製造工程による分類においては、T-DAE(Treated Distillate Aromatic Extract)油、T-RAE(Treated Residual Aromati Extract)油、MES(Mild Extract Solvate)油、RAE(Residual Aromatic Extract)油などが好適に使用できる。
[3]ゴム組成物:
 本発明のゴム組成物は、ゴム成分として前述の変性共役ジエン系ゴムを含むものである。以下、その詳細について説明する。
[3-1]ゴム成分:
 本発明のゴム組成物中のゴム成分は、前述の変性共役ジエン系ゴムを含むものである。ゴム成分中の変性共役ジエン系ゴムの含有割合は、20質量%以上であることが好ましく、30質量%以上であることが更に好ましく、40質量%以上であることが特に好ましい。該含有割合を20質量%以上とすれば、架橋ゴム組成物の引張強さ、引張伸び等の機械的特性、耐亀裂成長性、及び耐摩耗性をより良好なものとすることができる。
 また、変性共役ジエン系ゴムには、一種類の変性共役ジエン系ゴムが含有されていても、二種類以上の変性共役ジエン系ゴムが含有されていてもよい。また、変性共役ジエン系ゴム以外にも、他のゴム成分が含有されていてもよい。他のゴム成分としては、天然ゴム、合成イソプレンゴム、ブタジエンゴム、スチレン-ブタジエンゴム、エチレン-α-オレフィン共重合ゴム、エチレン-α-オレフィン-ジエン共重合ゴム、アクリロニトリル-ブタジエン共重合ゴム、クロロプレンゴム、ハロゲン化ブチルゴム、スチレン-イソプレン共重合ゴム、ブタジエン-イソプレン共重合体ゴム、ランダムスチレン-ブタジエン-イソプレン共重合ゴム、スチレン-アクリロニトリル-ブタジエン共重合ゴム、アクリロニトリル-ブタジエン共重合ゴム、及び、ポリスチレン-ポリブタジエン-ポリスチレンブロック共重合体、並びにこれらの混合物等を挙げることができ、タイヤ用ゴム組成物として使用可能な他の公知のゴム成分が含有されていても、低ヒステリシスロス特性に優れた架橋ゴムを製造することが可能である。
[3-2]その他の成分(カーボンブラック、シリカ):
 本発明のゴム組成物は、カーボンブラック及び/又はシリカを更に含有するものであることが好ましい。カーボンブラックの具体例としては、SRF、GPF、FEF、HAF、ISAF、SAF、ISAF-HS、ISAF-LS、IISAF-HS、HAF-HS、HAF-LSに代表されるファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、グラファイト、さらに、グラファイト繊維、フラーレン等を挙げることができる。また、ヨウ素吸着量(IA)が60mg/g以上であり、ジブチルフタレート吸油量(DBP)が80ml/100g以上のカーボンブラックが好ましい。カーボンブラックを用いることにより、架橋ゴム組成物のグリップ性能、及び耐破壊特性の改良効果は大きくなる。なお、耐摩耗性に優れるHAF、ISAF、SAFが特に好ましい。カーボンブラックは、単独で又は二種以上を組み合わせて用いることができる。
 シリカの具体例としては、湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、コロイダルシリカ、沈降シリカ、ケイ酸カルシウム、ケイ酸アルミニウム等を挙げることができる。これらのうち、耐破壊特性の改良効果、ウェットグリップ性、及び低転がり抵抗性の両立効果が最も顕著である湿式シリカが好ましい。また、高分散型(High Dispersible Type)のシリカを使用することも、ゴムへの分散性を良好にし、物性、加工性の面で好ましい。シリカは、単独で又は二種以上を組み合わせて用いることができる。
 本発明のゴム組成物は、ゴム成分(変性共役ジエン系ゴム及び他のゴム成分の合計)100質量部に対して、カーボンブラック及び/又はシリカを20~130質量部含有するものであることが好ましく、補強性とそれによる諸物性の改良効果の観点から、25~110質量部含有するものであることが更に好ましい。なお、カーボンブラック及び/又はシリカの含有割合が少ないと、耐破壊特性等の向上効果が不十分となる傾向にあり、カーボンブラック及び/又はシリカの含有割合が多いと、ゴム組成物の加工性が低下する傾向にあるため、該含有割合は前記数値範囲内であることが好ましい。また、本発明のゴム組成物中にカーボン-シリカ デュアル・フェイズ・フィラー(Dual Phase Filler)を配合することにより、カーボンブラックとシリカを併用したときと同様な優れた利点を得ることができる。カーボン-シリカ デュアル・フェイズ・フィラーは、カーボンブラックの表面にシリカを化学結合させた、いわゆるシリカ・コーティング・カーボンブラックであり、キャボット社から商品名CRX2000、CRX2002、CRX2006として販売されている。カーボン-シリカ デュアル・フェイズ・フィラーの配合量は、ゴム成分の合計100質量部に対して、好ましくは1~100質量部、より好ましくは5~95質量部である。
 本発明のゴム組成物に、補強剤としてシリカを含有させる場合、補強効果を更に向上させるために、シランカップリッグ剤を配合することが好ましい。このシランカップリング剤としては、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリエトキシシリルプロピルベンゾリルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィド、ビス(3-ジエトキシメチルシリルプロピル)テトラスルフィド、3-メルカプトプロピルジメトキシメチルシラン、ジメトキシメチルシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、ジメトキシメチルシリルプロピルベンゾチアゾリルテトラスルフィド、ビニルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、3-オクタチオ-1-プロピル-トリエトキシシラン、γ-トリメトキシシリルプロピルジメチルチオカルバミルテトラスルフィド、γ-トリメトキシシリルプロピルベンゾチアジルテトラスルフィド、特開2006-249069号公報に例示されているメルカプトシラン化合物、市販では、例えば、モメンティブ パーフォーマンス マテリアルズ社製の商品名「NXT シラン」、「NXT-Low-V シラン」、「NXT Ultra Low-V シラン」、デグザ社製の商品名「VP Si363」、11-MERCAPTOUNDECYLTRIMETHOXYSILANE(gelest社製)などを挙げることができる。これらのうち、補強性の改善効果等の点から、ビス(3-トリエトキシシリルプロピル)ポリスルフィド、3-トリメトキシシリルプロピルベンゾチアジルテトラスルフィド、特開2006-249069号公報に例示されているメルカプトシラン化合物が好適である。なお、これらのシランカップリング剤は、単独で又は二種以上組み合わせて用いることができる。シランカップリング剤の配合量は、シランカップリング剤の種類等により異なるが、シリカ100質量部に対して、1~20質量部とすることが好ましく、3~15質量部とすることが更に好ましい。1質量部未満であると、カップリング剤としての効果が十分に発揮され難くなる傾向にある。一方、20質量部を超えると、ゴム成分がゲル化し易くなる傾向にある。
 本発明のゴム組成物の各種配合剤は、特に限定されないが、混練り時の加工性改良、あるいはウェットスキッド抵抗性、低ヒステリシスロス特性、耐摩耗性のバランスをさらに向上させる目的で、相溶化剤を混練り時に添加することもできる。好ましい相溶化剤としては、エポキシ基含有化合物、カルボン酸化合物、カルボン酸エステル化合物、ケトン化合物、エーテル化合物、アルデヒド化合物、水酸基含有化合物およびアミノ基含有化合物から選択される有機化合物、及び、アルコキシシラン化合物、シロキサン化合物およびアミノシラン化合物から選択されるシリコーン化合物が挙げられる。
 相溶化剤としての有機化合物の例として、エポキシ基含有化合物、カルボン酸化合物、カルボン酸エステル化合物、ケトン化合物、エーテル化合物、アルデヒド化合物、アミノ基含有化合物、水酸基含有化合物などが挙げられる。
 これら各種の有機化合物の例としては、下記の化合物が挙げられる。
 エポキシ基含有化合物としては、ブチルグリシジルエーテル、ジグリシジルエーテル、酸化プロピレン、ネオペンチルグリコールシグリシジルエーテル、エポキシ樹脂、エポキシ化大豆油、エポキシ化脂肪酸エステルなどが挙げられる。
 カルボン酸化合物としては、アジピン酸、オクチル酸、メタクリル酸などが挙げられる。
 カルボン酸エステル化合物としては、アクリル酸エステル、アクリル酸ジエチレン、メタクリル酸エチル、オルト酢酸エステル、アセト酢酸エチル、酢酸ブチル、酢酸イソプロピル、ジメチルカーボネート、p-ヒドロキシフェニル酢酸、ポリエステル系可塑剤、ステアリン酸系可塑剤などが挙げられる。
 ケトン化合物としては、メチルシクロヘキサノン、アセチルアセトンなどが挙げられる。
 エーテル化合物としては、イソプロピルエーテル、ジブチルエーテルなどが挙げられる。
 アルデヒド化合物としては、ウンデシレンアルデヒド、デシルアルデヒド、バニリン、3,4-ジメトキシベンズアルデヒド、クミンアルデヒドなどが挙げられる。
 アミノ基含有化合物としては、イソプロピルアミン、ジイソプロピルアミン、トリエチルアミン、3-エトキシプロピルアミン、2-エチルヘキシルアミン、イソプロパノールアミン、N-エチルエチレンジアミン、エチレンイミン、ヘキサメチレンジアミン、3-ラウリルオキシプロピルアミン、アミノフェノール、アニリン、3-イソプロポキシアニリン、フェニレンジアミン、アミノピリジン、N-メチルジエタノールアミン、N-メチルエタノールアミン、3-アミノ-1-プロパノール、塩酸エチルアミン、塩酸-n-ブチルアミンなどが挙げられる。
 水酸基含有化合物としては、イソプロピルアルコール、ブタノール、オクタノール、オクタンジオール、エチレングリコール、メチルシクロヘキサノール、2-メルカプトエタノール、3-メチル-3-メトキシ-1-ブタノール、3-メチル-1,5-ペンタンジオール、1-オクタデカノール、ジエチレングリコール、ブチレングリコール、ジブチレングリコール、トリエチレングリコールなどが挙げられる。
 なかでも、エポキシ基含有化合物、アミノ基含有化合物、水酸基含有化合物が好ましい。
 相溶化剤としてのシリコーン化合物の例として、アルコキシシラン化合物、シロキサン化合物、アミノシラン化合物などが挙げられる。
 これら各種のシリコーン化合物の例としては、下記の化合物が挙げられる。
 アルコキシシラン化合物としては、トリメチルメトキシシラン、トリメチルエトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、メチルトリフェノキシシラン、テトラエトキシシラン、メチルジエトキシシラン、ビニルトリメトキシシランなどが挙げられる。
 シロキサン化合物としては、ジメチルシロキサンオリゴマー、シリコーンオイル、アミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、カルボキシル変性シリコーンオイル、ポリエーテル変性シリコーンオイル、アルキル変性シリコーンオイル、高級脂肪酸エステル変性シリコーンオイル、高級アルコキシ変性シリコーンオイル、高級脂肪酸含有シリコーンオイルなどが挙げられる。
 アミノシラン化合物としては、ヘキサメチルジシラザン、ノナメチルトリシラザン、アニリトリメチルシラン、ビス(ジメチルアミノ)ジメチルシラン、ビス(ジエチルアミノ)ジメチルシラン、トリエチルアミノシランなどが挙げられる。
 なかでも、シラザン化合物、ビス(ジメチルアミノ)ジメチルシランが好ましい。
 本発明のゴム組成物には、本発明の目的が損なわれない範囲内で、所望により、ゴム工業界で通常用いられている各種の薬品や添加剤等を配合することができる。本発明のゴム組成物に配合可能な各種薬品や添加剤等としては、例えば、架橋剤(例えば、加硫剤)、加硫助剤、加工助剤、加硫促進剤、プロセス油、老化防止剤、スコーチ防止剤、亜鉛華、ステアリン酸等を挙げることができる。
 加硫剤としては、硫黄、ハロゲン化硫黄、有機過酸化物、キノンジオキシム類、有機多価アミン化合物、メチロール基を有するアルキルフェノール樹脂などが挙げられるが、通常、硫黄が使用される。加硫剤の使用量は、変性共役ジエン系ゴム(原料ゴム;ゴム成分)100質量部に対して、0.1~5質量部であることが好ましく、0.5~3質量部であることが更に好ましい。
 加硫助剤及び加工助剤としては、一般的にステアリン酸が用いられる。加硫助剤及び加工助剤の使用量は、変性共役ジエン系ゴム100質量部に対して、通常、0.5~5質量部である。
 加硫促進剤は、特に限定されないが、スルフェンアミド系、グアニジン系、チウラム系、チオウレア系、チアゾール系、ジチオカルバミン酸系、キサントゲン酸系の化合物が挙げられ、好ましくは2-メルカプトベンゾチアゾール、ジベンゾチアジルジサルファイド、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド、N-t-ブチル-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾールスルフェンアミド、ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジンなどを挙げることができる。加硫促進剤の使用量は、変性共役ジエン系ゴム100質量部に対して、通常、0.1~5質量部であり、0.4~4質量部であることが好ましい。
 本発明のゴム組成物は、ロールをはじめとする開放式混練機、バンバリーミキサーをはじめとする密閉式混練機等の混練機を使用し、混練することによって製造することができる。また、成形加工後に架橋(加硫)することによって、各種ゴム製品に適用可能である。本発明の架橋ゴム組成物(架橋後のゴム組成物)は、例えば、タイヤトレッド、アンダートレッド、カーカス、サイドウォール、ビード部等のタイヤ用途;防振ゴム、防舷材、ベルト、ホース、その他の工業品等の用途に好適である。本発明の架橋ゴム組成物は、特に、タイヤトレッド用ゴムとして好適に使用される。
 本発明において、変性共役ジエン系重合体(工程(a)で得られるもの)、変性共役ジエン系ゴム(工程(b)で得られるもの)、ゴム組成物、架橋ゴム組成物の各々の物性等は、以下のとおりである。
 変性前の共役ジエン系重合体の、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算の重量平均分子量は、変性共役ジエン系ゴムの形状安定性とゴム組成物を製造する際の作業性のバランスを維持する観点から、好ましくは1~150万、より好ましくは5万~100万、特に好ましくは10万~80万である。
 変性共役ジエン系ゴムのガラス転移温度は、得られる架橋ゴム組成物の低ヒステリシスロス特性とウェットスキッド抵抗性のバランスを維持する観点から、好ましくは0℃以下、より好ましくは-5℃以下、特に好ましくは-10℃以下である。
 変性共役ジエン系ゴムのムーニー粘度(ML1+4,100℃)は、変性共役ジエン系ゴムの形状安定性とゴム組成物を製造する際の作業性のバランスを維持する観点から、好ましくは30~150、より好ましくは40~120である。
 変性共役ジエン系ゴムのコールドフロー値(mg/分)は、変性共役ジエン系ゴムの形状安定性の観点から、好ましくは1.5以下、より好ましくは1.0以下、特に好ましくは0.5以下である。
 ゴム組成物のムーニー粘度(ML1+4,100℃)は、タイヤを作成する際の作業性の観点から、好ましくは20~150、より好ましくは30~130、特に好ましくは40~110である。
 架橋ゴム組成物の引張強度(JIS K 6301、300%モジュラス)の指数は、好ましくは101以上、より好ましくは103以上である。
 架橋ゴム組成物の0℃でのtanδの指数は、好ましくは115以上、より好ましくは120以上である。
 架橋ゴム組成物の70℃でのtanδの指数は、好ましくは110以上、より好ましくは120以上である。
 架橋ゴム組成物の耐摩耗性の指数(JIS K 6264、荷重10N、25℃)は、好ましくは102以上、より好ましくは105以上、特に好ましくは107以上である。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。また、各種物性値の測定方法を以下に示す。
[結合スチレン含量(%)]:500MHzのH-NMRによって求めた。
[ビニル含量(%)]:500MHzのH-NMRによって求めた。
[ガラス転移温度(℃)]:ASTM D3418に準拠して測定した。
[変性前の重量平均分子量]:ゲルパーミエーションクロマトグラフィー(GPC)(HLC-8120GPC(商品名(東ソー社製)))を使用して得られたGPC曲線の最大ピークの頂点に相当する保持時間から、ポリスチレン換算で求めた。
(GPCの条件)
  カラム;商品名「GMHHXL」(東ソー社製)2本
  カラム温度;40℃
  移動相;テトラヒドロフラン
  流速;1.0ml/分
  サンプル濃度;10mg/20ml
[ムーニー粘度(ML1+4,100℃)]:JIS K6300に準拠し、Lローターを使用して、予熱1分、ローター作動時間4分、温度100℃の条件で求めた。
[コールドフロー値]:共重合体(ゴム)を温度50℃に保持し、圧力24.1kPaの条件で、6.35mmのオリフィスから押し出した。押し出された時点から10分後(押し出し速度が一定になった後)に、90分間、共重合体の30分毎の押し出し量(mg)を測定し、その平均値をコールドフロー値(mg/分)とした。数値が大きいほど、ゴムの形状安定性が悪く、取扱いが困難となる。
実施例1〔変性共役ジエン系ゴムAの合成、およびその評価〕
 窒素置換された内容積5リットルのオートクレーブ反応器に、シクロヘキサン2,750g、テトラヒドロフラン50.0g、スチレン125g、1,3-ブタジエン365gを仕込んだ。反応器内容物の温度を10℃に調整した後、n-ブチルリチウム(5.80mmol)を含むシクロヘキサン溶液を添加して重合を開始した。重合は断熱条件で実施し、最高温度は85℃に達した。
 重合転化率が99%に達した時点で、ブタジエン10gを追加し、さらに5分間重合させた後、変性前分子量測定用に10gのポリマー溶液をサンプリングし、N,N-ビス(トリエチルシリル)アミノプロピルトリメトキシシラン(4.96mmol)を含むシクロヘキサン溶液を加えて15分間反応を行った。反応後の重合体溶液に、3-アミノプロピルトリエトキシシラン(4.96mmol)を含むシクロヘキサン溶液を加えて5分間混合後、更にビス(2-エチルヘキサノエート)スズ(4.96mmol)を含むシクロヘキサン溶液を加えて5分間混合を行った。次に、得られたポリマー溶液に2,6-ジ-tert-ブチル-p-クレゾール2.0gを添加した。次いで、水酸化ナトリウムでpH=11に調整した熱水を用いてスチームストリッピングを行うことにより脱溶媒を行い、110℃に調温された熱ロールによりゴムを乾燥し、変性共役ジエン系ゴムAを得た。
 変性共役ジエン系ゴムAの重合処方を表1に、得られた変性共役ジエン系ゴムAの性質を表2に示す。また、変性共役ジエン系ゴムAを用いて、表3及び表4に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
実施例2〔変性共役ジエン系ゴムBの合成、およびその評価〕
 実施例1で、N,N-ビス(トリエチルシリル)アミノプロピルトリメトキシシランの代わりにN,N-ビス(トリエチルシリル)アミノプロピルメチルジメトキシシランを用いた以外は実施例1と同様の方法で、変性共役ジエン系ゴムBを得た。
 変性共役ジエン系ゴムBの重合処方を表1に、得られた変性共役ジエン系ゴムBの性質を表2に示す。また、変性共役ジエン系ゴムBを用いて、表3及び表4に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
実施例3〔変性共役ジエン系ゴムCの合成、およびその評価〕
 実施例1で、N,N-ビス(トリエチルシリル)アミノプロピルトリメトキシシランの代わりにN,N-ビス(トリメチルシリル)アミノプロピルトリエトキシシランを用いた以外は実施例1と同様の方法で、変性共役ジエン系ゴムCを得た。
 変性共役ジエン系ゴムCの重合処方を表1に、得られた変性共役ジエン系ゴムCの性質を表2に示す。また、変性共役ジエン系ゴムCを用いて、表3及び表4に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
実施例4〔変性共役ジエン系ゴムDの合成、およびその評価〕
 窒素置換された内容積5リットルのオートクレーブ反応器に、シクロヘキサン2,750g、テトラヒドロフラン10.3g、スチレン50g、1,3-ブタジエン440gを仕込んだ。反応器内容物の温度を10℃に調整した後、n-ブチルリチウム(5.80mmol)を含むシクロヘキサン溶液を添加して重合を開始した。重合は断熱条件で実施し、最高温度は90℃に達した。
 重合転化率が99%に達した時点で、ブタジエン10gを追加し、さらに5分間重合させた後、変性前分子量測定用に10gのポリマー溶液をサンプリングし、1-(3-トリエトキシシリルプロピル)-2,2,5,5-テトラメチル-1-アザ-2,5-ジシラシクロペンタン(4.96mmol)を含むシクロヘキサン溶液を加えて15分間反応を行った。反応後の重合体溶液に、3-アミノプロピルトリエトキシシラン(4.96mmol)を含むシクロヘキサン溶液を加えて5分間混合後、更にテトラキス(2-エチルヘキシルオキシ)チタン(4.96mmol)を含むシクロヘキサン溶液を加えて5分間混合を行った。次に、得られたポリマー溶液に2,6-ジ-tert-ブチル-p-クレゾール2.0gを添加した。次いで、水酸化ナトリウムでpH=10に調整した熱水を用いてスチームストリッピングを行うことにより脱溶媒を行い、110℃に調温された熱ロールによりゴムを乾燥し、変性共役ジエン系ゴムDを得た。
 変性共役ジエン系ゴムDの重合処方を表1に、得られた変性共役ジエン系ゴムDの性質を表2に示す。また、変性共役ジエン系ゴムDを用いて、表3及び表4に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
実施例5〔変性共役ジエン系ゴムEの合成、およびその評価〕
 実施例1で、N,N-ビス(トリエチルシリル)アミノプロピルトリメトキシシランの代わりにN-〔3-(トリメトキシシリル)-プロピル〕-N,N’-ジエチル-N’-トリメチルシリル-エタン-1,2-ジアミンを用い、かつ、ビス(2-エチルヘキサノエート)スズの代わりにジルコニウムテトラキス(アセチルアセトネート)を用いた以外は実施例1と同様の方法で、変性共役ジエン系ゴムEを得た。
 変性共役ジエン系ゴムEの重合処方を表1に、得られた変性共役ジエン系ゴムEの性質を表2に示す。また、変性共役ジエン系ゴムEを用いて、表3及び表4に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
実施例6〔変性共役ジエン系ゴムFの合成、およびその評価〕
 実施例5で、N-〔3-(トリメトキシシリル)-プロピル〕-N,N’-ジエチル-N’-トリメチルシリル-エタン-1,2-ジアミンの代わりに3-(4-トリメチルシリル-1-ピペラジノ)プロピルトリエトキシシランを用いた以外は実施例5と同様の方法で、変性共役ジエン系ゴムFを得た。
 変性共役ジエン系ゴムFの重合処方を表1に、得られた変性共役ジエン系ゴムFの性質を表2に示す。また、変性共役ジエン系ゴムFを用いて、表3及び表4に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
実施例7〔変性共役ジエン系ゴムGの合成、およびその評価〕
 実施例1で、N,N-ビス(トリエチルシリル)アミノプロピルトリメトキシシランの代わりにS-トリメチルシリルメルカプトプロピルトリエトキシシランを用いた以外は実施例1と同様の方法で、変性共役ジエン系ゴムGを得た。
 変性共役ジエン系ゴムGの重合処方を表1に、得られた変性共役ジエン系ゴムGの性質を表2に示す。また、変性共役ジエン系ゴムGを用いて、表3及び表4に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
実施例8〔変性共役ジエン系ゴムHの合成、およびその評価〕
 実施例1で、3-アミノプロピルトリエトキシシランの代わりにメルカプトプロピルトリエトキシシランを用いた以外は実施例1と同様の方法で、変性共役ジエン系ゴムHを得た。
 変性共役ジエン系ゴムHの重合処方を表1に、得られた変性共役ジエン系ゴムHの性質を表2に示す。また、変性共役ジエン系ゴムHを用いて、表3及び表4に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
実施例9〔変性共役ジエン系ゴムIの合成、およびその評価〕
 実施例1で、テトラヒドロフラン50.0gの代わりに2,2-ジ(テトラヒドロフリル)プロパン3.25mmolを用い、かつ、3-アミノプロピルトリエトキシシランの代わりにN-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシランを用いた以外は実施例1と同様の方法で、変性共役ジエン系ゴムIを得た。
 変性共役ジエン系ゴムIの重合処方を表1に、得られた変性共役ジエン系ゴムIの性質を表2に示す。また、変性共役ジエン系ゴムIを用いて、表3及び表4に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
実施例10〔変性共役ジエン系ゴムJの合成、およびその評価〕
 実施例1で、テトラヒドロフラン50.0gの代わりに2,2-ジ(テトラヒドロフリル)プロパン3.25mmolを用い、かつ、3-アミノプロピルトリエトキシシランの添加量を4.96mmolから9.92mmolに変更した以外は実施例1と同様の方法で、変性共役ジエン系ゴムJを得た。
 変性共役ジエン系ゴムJの重合処方を表1に、得られた変性共役ジエン系ゴムJの性質を表2に示す。また、変性共役ジエン系ゴムJを用いて、表3及び表4に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
実施例11〔変性共役ジエン系ゴムKの合成、およびその評価〕
 窒素置換された内容積5リットルのオートクレーブ反応器に、シクロヘキサン2,750g、テトラヒドロフラン100.0g、スチレン180g、1,3-ブタジエン310gを仕込んだ。反応器内容物の温度を20℃に調整した後、n-ブチルリチウム(4.60mmol)を含むシクロヘキサン溶液を添加して重合を開始した。重合は断熱条件で実施し、最高温度は85℃に達した。
 重合転化率が99%に達した時点で、ブタジエン10gを追加し、さらに5分間重合させた後、変性前分子量測定用に10gのポリマー溶液をサンプリングし、N,N-ビス(トリエチルシリル)アミノプロピルトリメトキシシラン(3.93mmol)を含むシクロヘキサン溶液を加えて15分間反応を行った。反応後の重合体溶液に、3-アミノプロピルトリエトキシシラン(3.93mmol)を含むシクロヘキサン溶液を加えて5分間混合後、更にジルコニウムテトラキス(アセチルアセトネート)(4.96mmol)を含むシクロヘキサン溶液を加えて5分間混合を行った。次に、得られたポリマー溶液に2,6-ジ-tert-ブチル-p-クレゾール2.0gを添加した後、ナフテン系オイル(三共油化工業社製、商品名;SNH46)187.5gを加えて5分間混合を行った。次いで、水酸化ナトリウムでpH=9に調整した熱水を用いてスチームストリッピングを行うことにより脱溶媒を行い、110℃に調温された熱ロールによりゴムを乾燥し、変性共役ジエン系ゴムKを得た。
 変性共役ジエン系ゴムKの重合処方を表1に、得られた変性共役ジエン系ゴムKの性質を表2に示す。また、変性共役ジエン系ゴムKを用いて、表3及び表4に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
実施例12〔変性共役ジエン系ゴムLの合成、およびその評価〕
 実施例4で、最初に1-(3-トリエトキシシリルプロピル)-2,2,5,5-テトラメチル-1-アザ-2,5-ジシラシクロペンタンを、次にテトラキス(2-エチルヘキシルオキシ)チタンを、最後に3-アミノプロピルトリエトキシシランを、添加した以外は実施例4と同様の方法で、変性共役ジエン系ゴムLを得た。
 変性共役ジエン系ゴムLの重合処方を表1に、得られた変性共役ジエン系ゴムLの性質を表2に示す。また、変性共役ジエン系ゴムLを用いて、表3及び表4に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
実施例13〔変性共役ジエン系ゴムMの合成、およびその評価〕
 実施例4で、最初に1-(3-トリエトキシシリルプロピル)-2,2,5,5-テトラメチル-1-アザ-2,5-ジシラシクロペンタンを、次にテトラキス(2-エチルヘキシルオキシ)チタンと3-アミノプロピルトリエトキシシランを同時に添加した以外は実施例4と同様の方法で、変性共役ジエン系ゴムMを得た。
 変性共役ジエン系ゴムMの重合処方を表1に、得られた変性共役ジエン系ゴムMの性質を表2に示す。また、変性共役ジエン系ゴムMを用いて、表3及び表4に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
比較例1〔変性共役ジエン系ゴムNの合成、およびその評価〕
 実施例1で、N,N-ビス(トリエチルシリル)アミノプロピルトリメトキシシランを添加しない以外は実施例1と同様の方法で、変性共役ジエン系ゴムNを得た。
 変性共役ジエン系ゴムNの重合処方を表1に、得られた変性共役ジエン系ゴムNの性質を表2に示す。また、変性共役ジエン系ゴムNを用いて、表3及び表4に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
比較例2〔変性共役ジエン系ゴムOの合成、およびその評価〕
 実施例1で、3-アミノプロピルトリエトキシシランを添加しない以外は実施例1と同様の方法で、変性共役ジエン系ゴムOを得た。
 変性共役ジエン系ゴムOの重合処方を表1に、得られた変性共役ジエン系ゴムOの性質を表2に示す。また、変性共役ジエン系ゴムOを用いて、表3及び表4に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
比較例3〔変性共役ジエン系ゴムPの合成、およびその評価〕
 実施例11で、3-アミノプロピルトリエトキシシランを添加しない以外は実施例11と同様の方法で、変性共役ジエン系ゴムPを得た。
 変性共役ジエン系ゴムPの重合処方を表1に、得られた変性共役ジエン系ゴムPの性質を表2に示す。また、変性共役ジエン系ゴムPを用いて、表3及び表4に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
比較例4〔変性共役ジエン系ゴムQの合成、およびその評価〕
 実施例1で、N,N-ビス(トリエチルシリル)アミノプロピルトリメトキシシランの代わりにテトラエトキシシランを用いた以外は実施例1と同様の方法で、変性共役ジエン系ゴムQを得た。
 変性共役ジエン系ゴムQの重合処方を表1に、得られた変性共役ジエン系ゴムQの性質を表2に示す。また、変性共役ジエン系ゴムQを用いて、表3及び表4に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
[ゴム組成物の混練り方法、及び特性評価]
 温度制御装置を付属したプラストミル(内容量250cc)を使用し、一段目の混練として、充填率72%、回転数60rpmの条件で、各実施例及び比較例によって得られた変性共役ジエン系ゴムを、表3及び表4に示す配合処方に従って、伸展油、カーボンブラック、シリカ、シランカップリング剤、ステアリン酸、老化防止剤、亜鉛華と共に混練した。次いで、二段目の混練として、上記で得た配合物を室温まで冷却後、該配合物を、表3、4に示す配合処方に従って、硫黄、加硫促進剤と共に混練した。これを成型し、160℃で所定時間、加硫プレスにて加硫し、タイヤ性能を表すものとして以下の特性を評価した。
(i)ムーニー粘度:加硫前のゴム組成物を測定用試料とし、JIS K6300に準拠し、Lローターを使用して、予熱1分、ローター作動時間4分、温度100℃の条件で測定した。
(ii)引張強度:JISK6301に従って300%モジュラスを測定した。指数で表示し、数値が大きいほど、引張強度が大きく、良好である。
(iii)0℃tanδ:加硫ゴムを測定用試料とし、動的スペクトロメーター(米国レオメトリックス社製)を使用し、引張動歪0.14%、角速度100ラジアン毎秒、0℃の条件で測定した。指数で表示し、数値が大きいほど、ウェットスキッド抵抗が大きく、ウェットスキッド抵抗性が良好である。
(iv)70℃tanδ:加硫ゴムを測定用試料とし、動的スペクトロメーター(米国レオメトリックス社製)を使用し、引張動歪0.7%、角速度100ラジアン毎秒、70℃の条件で測定した。指数で表示し、数値が大きいほど、ヒステリシスロスが小さく、低ヒステリシスロス特性が良好である。
(v)耐摩耗性:加硫ゴムを測定用試料とし、DIN摩耗試験機(東洋精機社製)を使用し、JIS K 6264に準拠し、荷重10Nで25℃にて測定した。指数で表示し、数値が大きいほど耐摩耗性が良好である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表4から明らかなように、本発明の変性共役ジエン系ゴムを使用した本発明の架橋ゴム組成物は、引張強度や耐摩耗性を損なうことなく、ウェットスキッド抵抗性と低ヒステリシスロス特性のバランスが著しく改良されていることが分かる。
 比較例1~3の変性共役ジエン系ゴムN~Pの物性評価結果から、本発明の工程(a)~(b)の全てがウェットスキッド抵抗性と低ヒステリシスロス特性のバランス改良に重要であることが確認できる。
 比較例4の変性共役ジエン系ゴムQの物性評価結果から、工程(a)において、オニウムになり得る基を有するアルコキシシラン化合物を用いて、共役ジエン系重合体を変性させることが、ウェットスキッド抵抗性及び低ヒステリシスロス特性の向上に重要であることが、確認できる。

Claims (10)

  1. (a)共役ジエン系化合物、又は共役ジエン系化合物と芳香族ビニル化合物を重合して得られるアルカリ金属もしくはアルカリ土類金属活性末端を有する共役ジエン系重合体と、2つ以上のアルコキシ基を有するアルコキシシリル基及び脱保護可能な保護基により保護された基を有する第一のアルコキシシラン化合物とを反応させて、アルコキシシリル基を有する変性共役ジエン系重合体を得る工程と、
    (b)上記アルコキシシリル基を有する変性共役ジエン系重合体と、アルコキシシリル基を有する第二のアルコキシシラン化合物を反応させる工程と、
    を含む変性共役ジエン系ゴムの製造方法。
  2.  前記第一のアルコキシシラン化合物の脱保護可能な保護基により保護された基が、1級アミンの2つの水素原子が2つの保護基によって置換されてなる窒素含有基、2級アミンの1つの水素原子が1つの保護基によって置換されてなる窒素含有基、チオールの1つの水素原子が1つの保護基によって置換されてなる硫黄含有基、1級ホスフィンの2つの水素原子が2つの保護基によって置換されてなるリン含有基、及び、2級ホスフィンの1つの水素原子が1つの保護基によって置換されてなるリン含有基、からなる群より選ばれる1種以上である請求項1に記載の変性共役ジエン系ゴムの製造方法。
  3.  工程(b)が、金属元素を含むアルコキシシラン化合物の縮合触媒の存在下で行われる請求項1又は2に記載の変性共役ジエン系ゴムの製造方法。
  4.  前記縮合触媒が、周期律表の4族、12族、13族、14族及び15族に含まれる金属元素のうち少なくとも一つの金属元素を含有する金属化合物である請求項3に記載の変性共役ジエン系ゴムの製造方法。
  5.  前記縮合触媒として、前記金属元素のアルコキシド、カルボン酸塩、又はアセチルアセトナート錯塩を用いる請求項4に記載の変性共役ジエン系ゴムの製造方法。
  6. (c)工程(b)で得られた混合物と水を接触させる工程、
    を含む請求項1~5のいずれか1項に記載の変性共役ジエン系ゴムの製造方法。
  7.  請求項1~6のいずれか1項に記載の変性共役ジエン系ゴムの製造方法によって得られた変性共役ジエン系ゴム。
  8.  請求項7に記載の変性共役ジエン系ゴムと、シリカ及び/又はカーボンブラックと、架橋剤を含む、ゴム組成物。
  9.  請求項8に記載のゴム組成物を架橋させてなる架橋ゴム組成物。
  10.  請求項9に記載の架橋ゴム組成物からなるタイヤ。
PCT/JP2011/077357 2010-12-01 2011-11-28 変性共役ジエン系ゴムの製造方法、変性共役ジエン系ゴム、及びゴム組成物 WO2012073880A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2012546854A JP6003651B2 (ja) 2010-12-01 2011-11-28 変性共役ジエン系ゴムの製造方法、変性共役ジエン系ゴム、及びゴム組成物
US13/991,005 US8980987B2 (en) 2010-12-01 2011-11-28 Method for producing modified conjugated diene rubber, modified conjugated diene rubber, and rubber composition
SG2013041900A SG190443A1 (en) 2010-12-01 2011-11-28 Method for producing modified conjugated diene rubber, modified conjugated diene rubber, and rubber composition
EP11845388.5A EP2647657B1 (en) 2010-12-01 2011-11-28 Method for producing modified conjugated diene rubber, modified conjugated diene rubber, and rubber composition
CN201180057588.9A CN103237833B (zh) 2010-12-01 2011-11-28 改性共轭二烯系橡胶的制造方法、改性共轭二烯系橡胶及橡胶组合物
BR112013013418A BR112013013418B8 (pt) 2010-12-01 2011-11-28 Método para produzir uma borracha de dieno conjugado modificado, borracha de dieno conjugado modificado, composição de borracha, composição de borracha reticulada, e, pneu
KR1020137012112A KR101824466B1 (ko) 2010-12-01 2011-11-28 변성 공액 디엔계 고무, 고무 조성물, 가교 고무 조성물 및 타이어의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-268132 2010-12-01
JP2010268132 2010-12-01

Publications (1)

Publication Number Publication Date
WO2012073880A1 true WO2012073880A1 (ja) 2012-06-07

Family

ID=46171812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077357 WO2012073880A1 (ja) 2010-12-01 2011-11-28 変性共役ジエン系ゴムの製造方法、変性共役ジエン系ゴム、及びゴム組成物

Country Status (10)

Country Link
US (1) US8980987B2 (ja)
EP (1) EP2647657B1 (ja)
JP (1) JP6003651B2 (ja)
KR (1) KR101824466B1 (ja)
CN (1) CN103237833B (ja)
BR (1) BR112013013418B8 (ja)
HU (1) HUE029141T2 (ja)
SG (1) SG190443A1 (ja)
TW (1) TWI510502B (ja)
WO (1) WO2012073880A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015015679A1 (ja) * 2013-07-31 2015-02-05 東洋ゴム工業株式会社 ゴム-シリカ複合体及びその製造方法、並びにゴム組成物及び空気入りタイヤ
JP2015030756A (ja) * 2013-07-31 2015-02-16 東洋ゴム工業株式会社 ゴム−シリカ複合体及びその製造方法
JP2015030757A (ja) * 2013-07-31 2015-02-16 東洋ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
KR20150060697A (ko) * 2012-09-25 2015-06-03 제이에스알 가부시끼가이샤 변성 공액 디엔계 중합체의 제조 방법, 중합체 조성물, 가교 중합체 및 타이어
EP2876115A4 (en) * 2012-07-20 2016-05-25 Jsr Corp PROCESS FOR PRODUCING MODIFIED CONJUGATED DIENE POLYMER, MODIFIED CONJUGATED DIENE POLYMER, POLYMER COMPOSITION, CROSSLINKED POLYMER, AND TIRE
JP2016176002A (ja) * 2015-03-20 2016-10-06 信越化学工業株式会社 オルガノポリフルオロシロキサンの製造方法
WO2017026288A1 (ja) * 2015-08-10 2017-02-16 Jsr株式会社 共役ジエン系重合体及びその製造方法、重合体組成物、架橋重合体、並びにタイヤ
JP2020090665A (ja) * 2018-11-27 2020-06-11 Toyo Tire株式会社 防振ゴム用ゴム組成物および防振ゴム

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103298839B (zh) 2011-01-12 2015-06-10 Jsr株式会社 改性共轭二烯系橡胶、其制造方法、及橡胶组合物
KR101656144B1 (ko) * 2013-09-30 2016-09-08 주식회사 엘지화학 개질 공액 디엔계 중합체, 그 제조방법 및 이를 포함하는 고무 조성물
KR101668567B1 (ko) * 2014-11-13 2016-10-24 주식회사 엘지화학 변성 공역디엔계 중합체, 이의 제조방법, 및 이를 포함하는 고무 조성물
KR101700012B1 (ko) * 2014-12-22 2017-01-25 한화토탈 주식회사 변성 공액디엔계 중합체 및 그를 포함하는 조성물
WO2016111445A1 (ko) * 2015-01-05 2016-07-14 주식회사 엘지화학 변성 공역디엔계 중합체, 이를 포함하는 변성 고무 조성물 및 변성 공역디엔계 중합체의 제조방법
KR101745788B1 (ko) 2015-01-05 2017-06-09 주식회사 엘지화학 변성 공역디엔계 중합체, 이를 포함하는 변성 고무 조성물 및 변성 공역디엔계 중합체의 제조방법
TWI663177B (zh) * 2015-09-21 2019-06-21 日商Etic有限公司 二氧化矽調配用改質溶液聚合二烯系橡膠的製造方法及其橡膠組成物
EP3246344B1 (en) * 2015-10-08 2019-12-25 LG Chem, Ltd. Modified conjugated diene-based polymer, method for preparing same, and rubber composition containing same
EP3383949A4 (en) * 2015-11-30 2019-10-30 Bridgestone Americas Tire Operations, LLC RUBBER COMPOSITION COMPRISING A MIXTURE OF SILICONE ACIDS AND RELATED METHODS FOR IMPROVING WEAR RESISTANCE
KR102394014B1 (ko) * 2016-09-02 2022-05-03 주식회사 쿠라레 고무 조성물
CN118507104B (zh) * 2024-07-17 2024-09-20 常州碳禾新材料科技有限公司 一种低温导电银浆及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003029299A1 (en) * 2001-09-27 2003-04-10 Jsr Corporation Conjugated diolefin (co)polymer rubber, process for producing (co)polymer rubber, rubber composition, composite, and tire
WO2003046020A1 (fr) * 2001-11-27 2003-06-05 Bridgestone Corporation Polymere dienique conjugue, procede de fabrication et compositions elastomeres contenant ce polymere
WO2003048216A1 (fr) * 2001-12-03 2003-06-12 Bridgestone Corporation Procede de production de polymere modifie, polymere modifie obtenu par ce procede et composition de caoutchouc
JP2006137858A (ja) * 2004-11-12 2006-06-01 Yokohama Rubber Co Ltd:The 共役ジエン系重合体及びそれを含むゴム組成物
WO2007034785A1 (ja) * 2005-09-22 2007-03-29 Asahi Kasei Chemicals Corporation 共役ジエン系重合体およびその製造方法
WO2008050845A1 (fr) * 2006-10-25 2008-05-02 Bridgestone Corporation Procédé de production de polymères diènes conjugués modifiés, polymères diènes conjugués modifiés produits par ce procédé, compositions de caoutchouc et pneus
WO2008123164A1 (ja) * 2007-03-23 2008-10-16 Jsr Corporation 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及びゴム組成物
WO2009133888A1 (ja) * 2008-04-30 2009-11-05 株式会社ブリヂストン 変性共役ジエン系共重合体の製造方法、その方法により得られた変性共役ジエン系共重合体、ゴム組成物及びタイヤ
WO2011049180A1 (ja) * 2009-10-21 2011-04-28 Jsr株式会社 変性共役ジエン系ゴムの製造方法、変性共役ジエン系ゴム、及びゴム組成物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8106130B2 (en) * 2006-07-24 2012-01-31 Asahi Kasei Chemicals Corporation Modified conjugated diene polymer and process for producing thereof
JPWO2009072650A1 (ja) 2007-12-07 2011-04-28 株式会社ブリヂストン タイヤ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003029299A1 (en) * 2001-09-27 2003-04-10 Jsr Corporation Conjugated diolefin (co)polymer rubber, process for producing (co)polymer rubber, rubber composition, composite, and tire
WO2003046020A1 (fr) * 2001-11-27 2003-06-05 Bridgestone Corporation Polymere dienique conjugue, procede de fabrication et compositions elastomeres contenant ce polymere
WO2003048216A1 (fr) * 2001-12-03 2003-06-12 Bridgestone Corporation Procede de production de polymere modifie, polymere modifie obtenu par ce procede et composition de caoutchouc
JP2006137858A (ja) * 2004-11-12 2006-06-01 Yokohama Rubber Co Ltd:The 共役ジエン系重合体及びそれを含むゴム組成物
WO2007034785A1 (ja) * 2005-09-22 2007-03-29 Asahi Kasei Chemicals Corporation 共役ジエン系重合体およびその製造方法
WO2008050845A1 (fr) * 2006-10-25 2008-05-02 Bridgestone Corporation Procédé de production de polymères diènes conjugués modifiés, polymères diènes conjugués modifiés produits par ce procédé, compositions de caoutchouc et pneus
WO2008123164A1 (ja) * 2007-03-23 2008-10-16 Jsr Corporation 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及びゴム組成物
WO2009133888A1 (ja) * 2008-04-30 2009-11-05 株式会社ブリヂストン 変性共役ジエン系共重合体の製造方法、その方法により得られた変性共役ジエン系共重合体、ゴム組成物及びタイヤ
WO2011049180A1 (ja) * 2009-10-21 2011-04-28 Jsr株式会社 変性共役ジエン系ゴムの製造方法、変性共役ジエン系ゴム、及びゴム組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2647657A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9951167B2 (en) 2012-07-20 2018-04-24 Jsr Corporation Method for producing modified conjugated diene polymer, modified conjugated diene polymer, polymer composition, crosslinked polymer, and tire
EP2876115A4 (en) * 2012-07-20 2016-05-25 Jsr Corp PROCESS FOR PRODUCING MODIFIED CONJUGATED DIENE POLYMER, MODIFIED CONJUGATED DIENE POLYMER, POLYMER COMPOSITION, CROSSLINKED POLYMER, AND TIRE
US20150252133A1 (en) * 2012-09-25 2015-09-10 Jsr Corporation Method for producing modified conjugated diene polymer, polymer composition, crosslinked polymer and tire
KR20150060697A (ko) * 2012-09-25 2015-06-03 제이에스알 가부시끼가이샤 변성 공액 디엔계 중합체의 제조 방법, 중합체 조성물, 가교 중합체 및 타이어
EP2902415A4 (en) * 2012-09-25 2016-05-18 Jsr Corp METHOD FOR MANUFACTURING MODIFIED CONJUGATED DIENE POLYMER, POLYMER COMPOSITION, CROSSLINKED POLYMER, AND PNEUMATIC POLYMER
US10072114B2 (en) * 2012-09-25 2018-09-11 Jsr Corporation Method for producing modified conjugated diene polymer, polymer composition, crosslinked polymer and tire
KR102021426B1 (ko) * 2012-09-25 2019-09-16 제이에스알 가부시끼가이샤 변성 공액 디엔계 중합체의 제조 방법, 변성 공액 디엔계 중합체, 중합체 조성물, 가교 중합체 및 타이어
JP2015030756A (ja) * 2013-07-31 2015-02-16 東洋ゴム工業株式会社 ゴム−シリカ複合体及びその製造方法
JP2015030757A (ja) * 2013-07-31 2015-02-16 東洋ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
US9976013B2 (en) 2013-07-31 2018-05-22 Toyo Tire & Rubber Co., Ltd. Rubber-silica composite and method for producing same, and rubber composition and pneumatic tire
WO2015015679A1 (ja) * 2013-07-31 2015-02-05 東洋ゴム工業株式会社 ゴム-シリカ複合体及びその製造方法、並びにゴム組成物及び空気入りタイヤ
JP2016176002A (ja) * 2015-03-20 2016-10-06 信越化学工業株式会社 オルガノポリフルオロシロキサンの製造方法
WO2017026288A1 (ja) * 2015-08-10 2017-02-16 Jsr株式会社 共役ジエン系重合体及びその製造方法、重合体組成物、架橋重合体、並びにタイヤ
JP2020090665A (ja) * 2018-11-27 2020-06-11 Toyo Tire株式会社 防振ゴム用ゴム組成物および防振ゴム

Also Published As

Publication number Publication date
CN103237833A (zh) 2013-08-07
US20130245192A1 (en) 2013-09-19
BR112013013418B1 (pt) 2020-12-15
KR101824466B1 (ko) 2018-02-01
BR112013013418A2 (pt) 2016-09-06
TWI510502B (zh) 2015-12-01
TW201233688A (en) 2012-08-16
SG190443A1 (en) 2013-07-31
JPWO2012073880A1 (ja) 2014-05-19
EP2647657A1 (en) 2013-10-09
EP2647657B1 (en) 2016-03-02
JP6003651B2 (ja) 2016-10-05
HUE029141T2 (hu) 2017-02-28
EP2647657A4 (en) 2014-09-10
US8980987B2 (en) 2015-03-17
KR20130139992A (ko) 2013-12-23
BR112013013418B8 (pt) 2023-04-18
CN103237833B (zh) 2015-08-05

Similar Documents

Publication Publication Date Title
JP5761185B2 (ja) 変性共役ジエン系ゴム、その製造方法、及びゴム組成物
JP6003651B2 (ja) 変性共役ジエン系ゴムの製造方法、変性共役ジエン系ゴム、及びゴム組成物
JP5692084B2 (ja) 変性共役ジエン系ゴムの製造方法、変性共役ジエン系ゴム、及びゴム組成物
JP5835232B2 (ja) 変性共役ジエン系ゴム、その製造方法、及びゴム組成物
JP5196070B2 (ja) 変性共役ジエン系ゴムの製造方法、変性共役ジエン系ゴム、及びゴム組成物
JP5871011B2 (ja) 変性共役ジエン系重合体及びその製造方法
JPWO2012147565A1 (ja) 変性共役ジエン系ゴム、その製造方法、及びゴム組成物
JP5630344B2 (ja) 変性共役ジエン系ゴムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11845388

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012546854

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137012112

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13991005

Country of ref document: US

Ref document number: 2011845388

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013013418

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013013418

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130529