WO2012072262A1 - Elektrischer leistungswiderstand - Google Patents

Elektrischer leistungswiderstand Download PDF

Info

Publication number
WO2012072262A1
WO2012072262A1 PCT/EP2011/006050 EP2011006050W WO2012072262A1 WO 2012072262 A1 WO2012072262 A1 WO 2012072262A1 EP 2011006050 W EP2011006050 W EP 2011006050W WO 2012072262 A1 WO2012072262 A1 WO 2012072262A1
Authority
WO
WIPO (PCT)
Prior art keywords
power resistor
resistance
resistance plates
resistor according
plates
Prior art date
Application number
PCT/EP2011/006050
Other languages
English (en)
French (fr)
Inventor
Bertram Schott
Otto Hampl
Original Assignee
Vishay Electronic Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vishay Electronic Gmbh filed Critical Vishay Electronic Gmbh
Priority to JP2013541249A priority Critical patent/JP5887356B2/ja
Priority to US13/884,415 priority patent/US9117575B2/en
Priority to ES11796917.0T priority patent/ES2502742T3/es
Priority to KR1020137017425A priority patent/KR101878422B1/ko
Priority to CN201180057749.4A priority patent/CN103262181B/zh
Priority to DK11796917T priority patent/DK2619770T3/da
Priority to PL11796917T priority patent/PL2619770T3/pl
Priority to EP20110796917 priority patent/EP2619770B1/de
Publication of WO2012072262A1 publication Critical patent/WO2012072262A1/de
Priority to IL226661A priority patent/IL226661A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/01Mounting; Supporting
    • H01C1/016Mounting; Supporting with compensation for resistor expansion or contraction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/001Mass resistors

Definitions

  • the invention relates to an electrical power resistor which is typically used in electrical generators and frequency converters.
  • a power resistor is used to convert electrical energy into thermal energy in special operating states in electrical systems in which the electrical energy present must typically be significantly reduced in periods of a few milliseconds to a few seconds. This is the case, for example, in wind and hydroelectric plants.
  • Such a power resistor may be formed by a stack of a plurality of metal resistance plates, each resistance plate of the stack having at least one meandering structure formed by a plurality of successive mutually interconnected transverse webs.
  • a resistance unit is created, which can be easily adapted to the respective application with a simple structure.
  • the individual resistance plates must therefore be used in a stable holder or other fastening device which receives the described repulsion and expansion forces and gives the resistance unit formed the necessary mechanical stability.
  • a holder or other fastening device must prevent the end regions of the respective resistance plate from being torn off and ensure a sufficient dimensional stability of the resistance unit with regard to an attachment of the power resistor to another structure (eg in a control cabinet).
  • the power resistor comprises a stack of at least two resistance plates, which are arranged one above the other along the stacking direction, in particular parallel to each other and spaced from each other.
  • the orientation of each second resistor plate is relative to the orientation the previous resistance plate of the stack rotated by 90 ° in the respective plane of the plate, and with respect to the respective direction of extension of the meandering structure (ie longitudinal direction). This means that the repulsion and expansion forces occurring perpendicular to the orientation of the transverse webs of the respective resistance plate from resistance plate to resistance plate are likewise rotated by 90 ° with respect to one another.
  • all resistance plates of the stack are fastened to each other by means of a common fastening device.
  • a fastening device may have a simple and inexpensive construction, since it is mainly necessary to achieve that the longitudinal expansion forces of the one resistance plate are transmitted to the adjacent or adjacent (twisted by 90 °) resistance plate or resistance plates. Due to the inherent stability of the resistance plates in the transverse direction, ie along the direction of extension of the transverse webs of the respective meandering structure, forces in this direction can be absorbed by a resistance plate without requiring special requirements for the fastening device.
  • the resistance plates are quadrangular, with pointed or rounded corners.
  • the resistance plates are rectangular, in particular square, wherein in the case of unequal side lengths, the longer side length does not necessarily define the aforementioned longitudinal direction (which is determined solely by the extension direction of the meandering structure of the resistance plate).
  • a fastening opening is provided for receiving a respective fastening element.
  • the attachment openings of the various resistance plates are arranged in alignment with each other.
  • common fasteners can be used, which are performed by the flush mounting holes.
  • the resistance plates of the stack may be fastened to each other via attachment rods which are guided through the attachment openings of the resistance plates.
  • the mounting rods may be threaded rods or screws.
  • a self-supporting structure of the stack is formed in a simple manner, without an external support, for example in the form of a cage, for mutually securing the resistance plates is required.
  • said fastening elements, in particular the said attachment rods are electrically insulated from the resistance plates. This can be done for example by plugged mica tubes.
  • the arrangement of said fastening openings and fastening elements with respect to a rotation of the respective resistance plate is 90 ° rotationally symmetrical.
  • the attachment openings of one resistance plate are aligned with the attachment openings of another, adjacent thereto resistance plate, even if said one resistance plate is rotated by 90 ° relative to the other resistance plate.
  • the power resistor can be reconfigured even easier for other applications, since the resistance plates can be combined with each other in a particularly flexible manner, and the resistance plates can be designed as a common part.
  • connection means for electrically contacting the resistance plate.
  • This connection means can be designed, for example, as an opening (for example a hole) or as an inserted, attached and / or welded-on bolt. If several or all resistor plates of the stack are provided with the same connection means, the adaptation of the power resistor to a desired resistance value can be carried out in a particularly flexible way. For example, each resistance plate at the two ends of the meander-shaped structure have a connection means for electrical contacting.
  • At least one of the resistance plates has at least one respective connection means for fixing an insulator.
  • the connecting means may be, for example, openings, screws or bolts.
  • the insulators attached to the respective resistor plate allow arranging and attaching the power resistor to another structure, for example in a control cabinet.
  • connection means and connection means three groups of different mechanical and / or electrical means are available which can be easily introduced by means of the same tool (for example, in the case of holes).
  • two successive resistance plates in the stacking direction are separated from one another by respective spacers, wherein the spacers may optionally be designed to be electrically insulating or electrically conductive.
  • the spacers cause a predetermined distance of the preferably plane-parallel arranged resistance plates relative to each other.
  • a respective intermediate space between two adjacent resistance plates is formed in the stacking direction, which can be used in particular for cooling purposes (air cooling or liquid cooling).
  • air cooling or liquid cooling By using separate spacers, the respective spacing between two adjacent resistance plates can be flexibly adjusted depending on the desired application.
  • the spacers may be formed by sleeves, which allow a particularly good air circulation between the resistance plates and thus a good heat transfer to the ambient air.
  • continuous spacers may be provided, for example in the form of webs or plates.
  • electrically insulating materials are ceramics, mica, rubber, silicone or plastic.
  • the resistance plates preferably have a respective end connection web (so-called terminal), which is formed wider than the transverse webs of the meandering structure.
  • the already mentioned fastening openings for the fastening device can be provided on the particularly stable end connection webs in order to be able to reliably absorb the explained expansion forces of the respective adjacent resistance plate.
  • the said attachment openings can also be provided on the transverse webs.
  • the resistance plates in a respective middle region can have at least one center connection web, which is also wider than the transverse webs.
  • the meander-shaped structure of the respective resistance plate which forms the active region of the electrical resistance, is subdivided into a plurality of segments. These segments may be shaped the same or different, and they may have the same or different electrical resistance.
  • Such a middle connection web also contributes to increasing the mechanical stability in the transverse direction.
  • further attachment openings are preferably provided for receiving a respective fastening element, in addition to the attachment openings on the end connection webs.
  • at least one connection means for electrical contacting is provided on the respective center connection web (eg opening or bolt).
  • the transverse webs of the meander-shaped structure of a respective resistance plate are electrically insulated from one another along the intermediate spaces formed between two adjacent transverse webs, either only in sections or over the full length of the respective intermediate space.
  • unwanted arc ignition can be prevented.
  • the deformation of the individual transverse webs can be so strong that adjacent webs adjacent to one another touch each other or almost contact each other at least for a short time. This effect can ignite an arc that could damage or destroy the power resistor or associated electrical equipment.
  • the mutual electrical insulation of the transverse webs can be accomplished in particular by insulating strips (ie electrically insulating strip-shaped plates) which are inserted into the interspaces between two adjacent transverse webs and in particular consist of ceramic, mica or plastic, for example polybenzimidazole (PBI).
  • insulating strips ie electrically insulating strip-shaped plates
  • PBI polybenzimidazole
  • insulating strips and granules or other filler can be pressed into the spaces between two adjacent transverse webs, for example, heated polybenzimidazole.
  • a sufficiently cured liquid insulating material can be used, which by filling, injecting or foaming the spaces between two adjacent transverse webs completely or partially fills, for example, silicone, cement or concrete.
  • a sufficiently hardened liquid insulating material may be used, which covers the transverse webs as a coating, for example in the form of a thin polybenzimidazole film, which forms a protection against moisture in addition to the electrical insulation (corrosion protection).
  • a particularly simple and cost-effective production of the individual resistance plates results when the meander-shaped structure of each resistance plate is formed by mutual incisions, which are preferably offset from one another.
  • the cuts between adjacent transverse webs can be introduced for example by means of a laser beam, high-pressure water jet, a saw or a milling cutter, in particular in the same operation, in which the respective resistance plate is cut out of a larger plate.
  • all the resistive plates of the stack, or all of the resistive plates of the stack, with the exception of a base plate, are made identical to each other, i. as equal parts. This results in a particularly cost-effective production and storage, and the respective power resistance can be configured in a flexible manner.
  • Fig. 1 shows a perspective view of an electrical power resistor.
  • Fig. 2 shows a plan view of a first resistor plate.
  • Fig. 3 shows a plan view of a second resistance plate.
  • Fig. 4 shows a plan view of a third resistance plate.
  • Fig. 5 shows a detail of a cross-sectional view.
  • the power resistor shown in FIG. 1 comprises a stack of resistance plates arranged plane-parallel to one another, namely with a first resistance plate 11 (FIG. 2) forming a base plate, a second resistance plate 12 (FIG. 3) and a third resistance plate 13 (FIG ).
  • the rectangular resistance plates 11, 12, 13 are made of metal, typically made of stainless steel or other suitable alloy, and may also have rounded corners, notwithstanding the illustration in FIGS. 1 to 4.
  • the resistance plates 1 1, 12, 13 are attached to each other and electrically connected to each other, as will be explained below.
  • Each resistance plate 1 1, 12, 13 has a meandering
  • transverse webs 15 Structure formed by a plurality of successive transverse webs 15.
  • Mutually adjacent transverse webs 15 are mutually separated by a slot-shaped intermediate space 17 and connected to each other by means of a short connecting web 19.
  • the transverse webs 15 extend along a transverse direction Q, while the meander-shaped structure of the respective resistance plate thus formed extends perpendicular to the orientation of the transverse webs 15 and to the transverse direction Q, namely, along a longitudinal direction L.
  • the transverse webs 15 extend over the full side length of the respective resistance plate 1 1, 12, 13.
  • the resistance plates 11, 12, 13 may also comprise a plurality of meander-shaped structures which run next to one another.
  • Each resistance plate 11, 12, 13 has at the two ends of the meander-shaped structure a respective end connection web 21, which is wider than the transverse webs 15. Furthermore, each resistance plate 11, 12, 13 has a center connection web in a middle region 23, which is also wider than the transverse webs 15. The center connecting web 23 divides the meandering structure of the respective resistance plate 1 1, 12, 13 in two active areas 25th
  • the resistance plates 1 1, 12, 13 following each other in the stacking direction are related to the respective extension direction of the meandering structure
  • Each resistance plate 11, 12, 13 has nine attachment openings 31: Four attachment openings 31 are provided in the region of the corners of the respective resistance plate 11, 12, 13. A respective further attachment opening 31 is provided in a middle region of the end connection webs 21. Finally, the respective center connection web 23 also has three attachment openings 31, namely at the two Ends and in a middle area. This results in a matrix of 3 x 3 mounting holes 31.
  • the respective attachment openings 31 of the three resistance plates 1 1, 12, 13 are arranged in alignment with one another and serve to receive a common attachment device which comprises a plurality of fastening elements 33 common to the three resistance plates 11, 12, 13.
  • a common attachment device which comprises a plurality of fastening elements 33 common to the three resistance plates 11, 12, 13.
  • only six fasteners 33 are provided, i. three mounting holes 31 of the respective resistance plates 1 1, 12, 13 remain unused.
  • the fasteners 33 are formed in the embodiment shown here as hexagon screws, which cooperate with hex nuts 35 to hold the stack of resistance plates 1 1, 12, 13 together.
  • spacers ensure that the resistance plates 11, 12, 13 are arranged at a distance from each other.
  • electrically insulating spacers 37 are provided, for example mica flakes having a passage opening for the respective fastening element 33.
  • electrically conductive spacers 39 eg metal sleeves
  • connection web 21 of the first resistance plate 1 1 and at an end connecting web 21 of the third resistance plate 13 connecting means are provided which serve for electrical contacting of the power resistor with the associated electrical system.
  • the respective connection means comprise a connection opening 41 (FIGS. 2 and 4) into which a connection opening 41 (FIGS. Locking bolt 43 is inserted (Fig. 1).
  • a cable lug can be attached to the respective connecting bolt 43 (not shown).
  • Such connection means (connection opening 41 with connecting bolt 43) can also be provided on the middle connection web 23 of at least the third resistance plate 13 in order to be able to adapt the resistance of the power resistor shown even more flexibly and to be able to use the power resistor as a voltage divider.
  • connection means for fixing an insulator are provided on the first resistance plate 11 to fix the power resistor to an associated support structure (e.g., in a cabinet).
  • connection means comprise six connection openings 45 (FIG. 2) into which a respective connection screw 47 is inserted, which is screwed to a respective insulator block 49 (FIG. 1).
  • FIG. 5 shows a detailed view of the power resistor according to FIG. 1 in cross section. It can be seen that the fastening element 33, ie the hexagonal screw, is surrounded by a mica tube 51, which likewise penetrates the fastening openings 31 of the resistance plates 11, 12, 13 and thus electrically isolates the hexagonal screw from the resistance plates 11, 12, 13.
  • the fastening element 33 ie the hexagonal screw
  • the power resistor shown in Figs. 1 to 5 has a simple structure and can be produced in a cost effective manner.
  • the resistance plates 1 1, 12, 13 can be cut from larger plates, wherein at the same time the intermediate spaces 17 can be introduced as incisions in order to form the transverse webs 15 of the respective meander-shaped structure.
  • the attachment openings 31, the connection openings 41 and the connection openings 45 can be designed in a simple manner as bores.
  • any desired ratio of width of the transverse webs 15 to the thickness of the respective resistance plate 11, 12, 13 can be realized, for example the ratio one (ie square cross-section). It is also possible to produce the resistance plates 1 1, 12, 13 by punching, in which case, however, larger ratios of web width to plate thickness are to be provided.
  • the power resistor can be flexibly adapted to different requirements, for example, by changing the number of resistance plates 11, 12, 13 of the stack, or alternatively, by changing the arrangement of the electrically insulating spacers 37 and the electrically conductive spacers 39, a series circuit or a parallel circuit is realized.
  • the power resistor can be used as a voltage divider by means of the middle connection web 23 of the respective resistor plate 11, 12, 13. If the voltage drop across the power resistor or parts of the power resistor is measured, the power resistor can be used as a current sensor.
  • the resistance value of the power resistor can be easily adjusted by means of an electrically conductive bridge connecting, for example, two transverse webs 15 across a gap 17 (e.g., by clamping or welding).
  • the said expansion forces therefore do not have to be absorbed by an outer supporting structure, and it is only necessary to ensure that the fastening elements 33 (eg hexagon screws) are dimensioned sufficiently strongly.
  • a non-rotationally symmetrical arrangement of the attachment openings 31 may be provided to thereby realize directional coding and to ensure that the individual resistance plates 11, 12, 13 can be mounted relative to each other only in a single predetermined orientation. This can thus be ensured in a simple manner that the 90 ° to each other twisted orientation of the respective Extension direction of the meander-shaped structure of adjacent resistance plates 1 1, 12, 13 is always maintained.
  • intermediate spaces 17 between adjacent transverse webs 15 can also be completely or partially filled with an electrically insulating material.
  • This filling material can serve as a spacer between adjacent transverse webs 15 and reliably prevent unwanted ignition of arcs that could arise if adjacent transverse webs 15 are too close due to magnetic interaction, thermal effects and / or external vibrations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Details Of Resistors (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

Ein elektrischer Leistungswiderstand weist einen Stapel von mehreren Widerstandsplatten aus Metall auf. Jede Widerstandsplatte besitzt wenigstens eine mäanderförmige Struktur, die durch eine Vielzahl von wechselseitig miteinander verbundenen Querstegen gebildet ist. In Stapelrichtung aufeinander folgende Widerstandsplatten sind um 90° zueinander verdreht.

Description

ELEKTRISCHER LEISTUNGSWIDERSTAND
Die Erfindung betrifft einen elektrischen Leistungswiderstand, der typischerweise in elektrischen Generatoren und Frequenzumrichtern zum Einsatz gelangt. Ein derartiger Leistungswiderstand dient zur Umsetzung von elektrischer Energie in thermische Energie bei speziellen Betriebszu- ständen in elektrischen Anlagen, in denen die vorhandene elektrische Energie typischerweise in Zeiträumen von einigen Millisekunden bis einigen Sekunden signifikant vermindert werden muss. Dies ist beispielsweise in Wind- und Wasserkraftanlagen der Fall.
Ein derartiger Leistungswiderstand kann durch einen Stapel von mehre- ren Widerstandsplatten aus Metall gebildet werden, wobei jede Widerstandsplatte des Stapels wenigstens eine mäanderförmige Struktur aufweist, die durch eine Vielzahl von aufeinander folgenden, wechselseitig miteinander verbundenen Querstegen gebildet ist. Hierdurch wird eine Widerstandseinheit geschaffen, die bei einfachem Aufbau leicht an die jeweilige Anwendung angepasst werden kann.
Allerdings kann es bei einer derartigen Widerstandseinheit zu mechanischen Stabilitätsproblemen kommen. Falls nämlich ein elektrischer Strom durch die jeweilige Widerstandsplatte fließt, so fließt der Strom in zueinander benachbarten Querstegen in entgegengesetzte Richtung. Die Wechselwirkung der in den benachbarten Querstegen induzierten Magnetfelder führt zu einem gegenseitigen Abstoßen der Querstege. Die jeweilige Widerstandsplatte ist aufgrund der zwischen den benachbarten Querstegen vorhandenen Zwischenräume indes flexibel. Daher führt das gegensei- tige Abstoßen der Querstege zu einem Ausdehnen der Widerstandsplatte innerhalb der Plattenebene senkrecht zu der Orientierung der Querstege, d.h. entlang der Erstreckungsrichtung der mäanderförmigen Struktur (nachfolgend auch als "Längsrichtung" der jeweiligen Widerstandsplatte bezeichnet). Die einzelnen Widerstandsplatten müssen deshalb in eine stabile Halterung oder sonstige Befestigungseinrichtung eingesetzt werden, die die erläuterten Abstoßungs- und Ausdehnungskräfte aufnimmt und der gebildeten Widerstandseinheit die notwendige mechanische Stabilität verleiht. Insbesondere muss eine solche Halterung oder sonstige Be- festigungseinrichtung einen Abriss der Endbereiche der jeweiligen Widerstandsplatte verhindern und im Hinblick auf eine Befestigung des Leistungswiderstandes an einer anderen Struktur (z.B. in einem Schaltschrank) eine hinreichende Formstabilität der Widerstandseinheit gewährleisten.
Es ist eine Aufgabe der Erfindung, einen elektrischen Leistungswiderstand zu schaffen, der einen Stapel von mehreren Widerstandsplatten mit einer mäanderförmigen Struktur aufweist, und der bei einfachem und kostengünstigem Aufbau eine stabile Anordnung der Widerstandsplatten trotz der darin entstehenden Ausdehnungskräfte ermöglicht.
Diese Aufgabe wird durch einen elektrischen Leistungswiderstand mit den Merkmalen des Anspruchs 1 gelöst, und insbesondere dadurch, dass in Stapelrichtung aufeinander folgende Widerstandsplatten um 90° zueinan- der verdreht sind.
Der Leistungswiderstand umfasst einen Stapel von wenigstens zwei Widerstandsplatten, die entlang der Stapelrichtung übereinander angeordnet sind, insbesondere parallel zueinander und beabstandet voneinander. Die Ausrichtung jeder zweiten Widerstandsplatte ist relativ zu der Ausrichtung der vorhergehenden Widerstandsplatte des Stapels um 90° in der jeweiligen Plattenebene gedreht, und zwar bezogen auf die jeweilige Erstre- ckungsrichtung der mäanderförmigen Struktur (d.h. Längsrichtung). Dies bedeutet, dass die senkrecht zur Orientierung der Querstege der jeweili- gen Widerstandsplatte auftretenden Abstoßungs- und Ausdehnungskräfte von Widerstandsplatte zu Widerstandsplatte ebenfalls um 90° zueinander verdreht sind. Hierdurch können die Querstege und/ oder die an den Enden der mäanderförmigen Struktur vorgesehenen, zu den Querstegen parallel verlaufenden Endanschlussstege einer jeweiligen Widerstandsplat- te die Abstoßungs- und Ausdehnungskräfte einer benachbarten (um 90° verdrehten) Widerstandsplatte aufnehmen. Somit bestehen deutlich geringere mechanische Anforderungen an die Halterung oder Befestigungseinrichtung, die zur gegenseitigen Befestigung der Widerstandsplatten vorgesehen ist, im Vergleich zu einer Anordnung der Widerstandsplatten mit gleich bleibender Ausrichtung.
Vorzugsweise sind sämtliche Widerstandsplatten des Stapels mittels einer gemeinsamen Befestigungseinrichtung aneinander befestigt. Eine derartige Befestigungseinrichtung kann einen einfachen und kostengünstigen Aufbau besitzen, da hauptsächlich lediglich erreicht werden muss, dass die in Längsrichtung auftretenden Ausdehnungskräfte der einen Widerstandsplatte auf die benachbarte bzw. benachbarten (um 90° verdrehte bzw. verdrehten) Widerstandsplatte oder Widerstandsplatten übertragen werden. Aufgrund der inhärenten Stabilität der Widerstandsplatten in Querrichtung, d.h. entlang der Erstreckungsrichtung der Querstege der jeweiligen mäanderförmigen Struktur, können Kräfte in dieser Richtung von einer Widerstandsplatte aufgenommen werden, ohne dass hierfür besondere Anforderungen an die Befestigungseinrichtung gestellt werden müssen. Gemäß einer besonders vorteilhaften Ausführungsform sind die Widerstandsplatten viereckig, mit spitzen oder abgerundeten Ecken. Vorzugsweise sind die Widerstandsplatten rechteckig, insbesondere quadratisch, wobei im Falle ungleicher Seitenlängen die längere Seitenlänge nicht not- wendigerweise die vorgenannte Längsrichtung definiert (die allein durch die Erstreckungsrichtung der mäanderförmigen Struktur der Widerstandsplatte bestimmt ist). Bevorzugt ist im Falle derartiger viereckiger Widerstandsplatten zumindest im Bereich einer jeden Ecke eine Befestigungsöffnung zum Aufnehmen eines jeweiligen Befestigungselements vor- gesehen. Hierdurch ist eine besonders einfache und gleichwohl stabile Befestigung der Widerstandsplatten aneinander möglich. Vorzugsweise sind die Befestigungsöffnungen der verschiedenen Widerstandsplatten in Flucht zueinander angeordnet. Somit können gemeinsame Befestigungselemente verwendet werden, die durch die fluchtenden Befestigungsöff- nungen durchgeführt werden.
Beispielsweise können die Widerstandsplatten des Stapels über Befestigungsstangen aneinander befestigt sein, die durch die Befestigungsöffnungen der Widerstandsplatten geführt sind. Bei den Befestigungsstangen kann es sich um Gewindestangen oder Schrauben handeln. Hierdurch wird auf einfache Weise eine selbsttragende Struktur des Stapels gebildet, ohne dass eine äußere Halterung, beispielsweise in Form eines Käfigs, zum gegenseitigen Befestigen der Widerstandsplatten erforderlich ist. Vorzugsweise sind die genannten Befestigungselemente, insbesondere die genannten Befestigungsstangen, von den Widerstandsplatten elektrisch isoliert. Dies kann beispielsweise durch aufgesteckte Glimmerrohre erfolgen. Gemäß einer Ausführungsform ist die Anordnung der genannten Befestigungsöffnungen und Befestigungselemente bezüglich einer Drehung der jeweiligen Widerstandsplatte um 90° rotationssymmetrisch. Dies bedeutet, dass die Befestigungsöffnungen einer Widerstandsplatte mit den Befesti- gungsöffnungen einer anderen, hierzu benachbarten Widerstandsplatte auch dann fluchten, wenn die genannte eine Widerstandsplatte um 90° relativ zu der anderen Widerstandsplatte verdreht wird. Hierdurch kann der Leistungswiderstand noch einfacher für andere Anwendungen umkonfiguriert werden, da die Widerstandsplatten auf besonders flexible Weise miteinander kombiniert werden können, und die Widerstandsplatten können als Gleichteile ausgeführt sein.
Weiterhin ist es bevorzugt, wenn wenigstens zwei der Widerstandsplatten wenigstens ein jeweiliges Anschlussmittel zur elektrischen Kontaktierung der Widerstandsplatte aufweist. Dieses Anschlussmittel kann beispielsweise als Öffnung (z.B. Bohrung) oder als eingesteckter, aufgesetzter und /oder angeschweißter Bolzen ausgebildet sein. Falls mehrere oder sämtliche Widerstandsplatten des Stapels mit denselben Anschlussmitteln versehen sind, kann die Anpassung des Leistungswiderstandes an einen erwünschten Widerstandswert auf besonders flexible Weise erfolgen. Beispielsweise kann jede Widerstandsplatte an den beiden Enden der mäan- derförmigen Struktur ein Anschlussmittel zur elektrischen Kontaktierung aufweisen.
Ferner ist es bevorzugt, wenn wenigstens eine der Widerstandsplatten wenigstens ein jeweiliges Verbindungsmittel zum Befestigen eines Isolators aufweist. Bei den genannten Verbindungsmitteln kann es sich beispielsweise um Öffnungen, Schrauben oder Bolzen handeln. Die an der jeweiligen Widerstandsplatte befestigten Isolatoren gestatten ein Anordnen und Befestigen des Leistungswiderstands an einer anderen Struktur, beispielsweise in einem Schaltschrank.
Sofern eine jeweilige Widerstandsplatte mit den genannten Befestigungs- Öffnungen, Anschlussmitteln und Verbindungsmitteln versehen ist, stehen drei Gruppen von unterschiedlichen mechanischen und / oder elektrischen Mitteln zur Verfügung, die auf einfache Weise mittels desselben Werkzeugs eingebracht werden können (beispielsweise falls es sich um Bohrungen handelt).
Gemäß einer weiteren vorteilhaften Ausführungsform sind zwei in Stapelrichtung aufeinander folgende Widerstandsplatten durch jeweilige Abstandshalter voneinander getrennt, wobei die Abstandshalter wahlweise elektrisch isolierend oder elektrisch leitend ausgebildet sein können. Die Abstandshalter bewirken einen vorbestimmten Abstand der vorzugsweise planparallel angeordneten Widerstandsplatten relativ zueinander. Somit wird in Stapelrichtung ein jeweiliger Zwischenraum zwischen zwei benachbarten Widerstandsplatten gebildet, der insbesondere zu Kühlungszwecken genutzt werden kann (Luftkühlung oder Flüssigkeitskühlung). Durch Verwendung separater Abstandshalter kann der jeweilige Abstand zwischen zwei benachbarten Widerstandsplatten in Abhängigkeit von der gewünschten Anwendung flexibel eingestellt werden. Die Abstandshalter können durch Hülsen gebildet sein, die eine besonders gute Luftzirkulation zwischen den Widerstandsplatten und somit eine gute Wärmeabgabe an die Umgebungsluft ermöglichen. Alternativ können auch durchgehende Abstandshalter beispielsweise in Form von Stegen oder Platten vorgesehen sein. Als elektrisch isolierende Materialien kommen insbesondere Keramik, Glimmer, Gummi, Silikon oder Kunststoff in Betracht. Durch entsprechende Auswahl elektrisch isolierender oder elektrisch leitender Ab- Standshalter kann der Leistungswiderstand eine Parallelschaltung oder eine Reihenschaltung der einzelnen Widerstandsplatten des Stapels bilden, oder auch eine Anzahl von Einzelwiderständen (falls sämtliche Widerstandsplatten voneinander elektrisch isoliert sind) . An den beiden Enden der mäanderförmigen Struktur, d.h. entlang der jeweiligen Längsrichtung gelegen, besitzen die Widerstandsplatten vorzugsweise einen jeweiligen Endanschlusssteg (sogenanntes Terminal), der breiter ausgebildet ist als die Querstege der mäanderförmigen Struktur. Somit können die bereits genannten Befestigungsöffnungen für die Befes- tigungseinrichtung an den besonders stabilen Endanschlussstegen vorgesehen sein, um die erläuterten Ausdehnungskräfte der jeweiligen benachbarten Widerstandsplatte zuverlässig aufnehmen zu können. Alternativ oder zusätzlich können die genannten Befestigungsöffnungen allerdings auch an den Querstegen vorgesehen sein.
Zusätzlich zu den genannten Endanschlussstegen können die Widerstandsplatten in einem jeweiligen mittleren Bereich wenigstens einen Mittenanschlusssteg aufweisen, der ebenfalls breiter ausgebildet ist als die Querstege. Hierdurch wird die mäanderförmige Struktur der jeweiligen Widerstandsplatte, die den aktiven Bereich des elektrischen Widerstands bildet, in mehrere Segmente unterteilt. Diese Segmente können gleich oder unterschiedlich geformt sein, und sie können einen gleichen oder unterschiedlichen elektrischen Widerstand haben. Ein derartiger Mittenanschlusssteg trägt auch zur Erhöhung der mechanischen Stabilität in Querrichtung bei. An dem Mittenanschlusssteg sind vorzugsweise weitere Befestigungsöffnungen zum Aufnehmen eines jeweiligen Befestigungselements vorgesehen, zusätzlich zu den Befestigungsöffnungen an den Endanschlussstegen. Weiterhin ist es bevorzugt, wenn an dem jeweiligen Mittenanschlusssteg wenigstens ein Anschlussmittel zur elektrischen Kon- taktierung vorgesehen ist (z.B. Öffnung oder Bolzen). Gemäß einer weiteren vorteilhaften Ausführungsform sind die Querstege der mäanderförmigen Struktur einer jeweiligen Widerstandsplatte entlang der zwischen zwei benachbarten Querstegen gebildeten Zwischenräume voneinander elektrisch isoliert, und zwar entweder lediglich abschnittsweise oder auf voller Länge des jeweiligen Zwischenraums. Hierdurch kann unerwünschten Lichtbogenzündungen vorgebeugt werden. Die Deformation der einzelnen Querstege kann aufgrund der magnetischen Wechselwirkung oder auch aufgrund thermischer Ausdehnung oder ex- terner Vibrationen nämlich so stark sein, dass benachbart zueinander angeordnete Querstege sich berühren oder sich zumindest kurzzeitig nahezu kontaktieren. Dieser Effekt kann zur Zündung eines Lichtbogens führen, der den Leistungswiderstand oder die zugeordnete elektrische Anlage beschädigen oder zerstören könnte. Durch eine gegenseitige elekt- rische Isolierung der Querstege wird dieser Gefahr vorgebeugt, und umgekehrt können die Zwischenräume zwischen zwei benachbarten Querstegen schmal ausgeführt sein, was zu einer erhöhten Stabilität und einer kompakten Bauform beiträgt. Die gegenseitige elektrische Isolierung der Querstege kann insbesondere durch Isolierstreifen (d.h. elektrisch isolierende streifenförmige Platten) bewerkstelligt werden, die in die Zwischenräume zwischen zwei benachbarte Querstege eingesetzt werden und die insbesondere aus Keramik, Glimmer oder Kunststoff bestehen, beispielsweise aus Polybenzimidazol (PBI). Anstelle derartiger Isolier streifen kann auch ein Granulat oder ein sonstiger Füllstoff in die Zwischenräume zwischen zwei benachbarten Querstegen eingepresst werden, beispielsweise erhitztes Polybenzimidazol. Alternativ kann auch ein hinreichend ausgehärtetes flüssiges Isoliermaterial zum Einsatz gelangen, das durch Einfüllen, Einspritzen oder Auf- schäumen die Zwischenräume zwischen zwei benachbarten Querstegen vollständig oder teilweise ausfüllt, beispielsweise Silikon, Zement oder Beton. Ferner kann ein hinreichend ausgehärtetes flüssiges Isoliermaterial verwendet werden, das die Querstege als Überzug bedeckt, beispielsweise in Form eines dünnen Polybenzimidazol-Films, welcher zusätzlich zu der elektrischen Isolierung einen Schutz vor Feuchtigkeit bildet (Korrosionsschutz).
Eine besonders einfache und kostengünstige Fertigung der einzelnen Widerstandsplatten ergibt sich, wenn die mäanderförmige Struktur einer jeden Widerstandsplatte durch wechselseitige Einschnitte gebildet ist, die vorzugsweise versetzt zueinander angeordnet sind. Die Einschnitte zwischen benachbarten Querstegen können beispielsweise mittels Laserstrahl, Hochdruckwasserstrahl, einer Säge oder einer Fräse eingebracht werden, insbesondere in demselben Arbeitsgang, in dem auch die jeweilige Widerstandsplatte aus einer größeren Platte ausgeschnitten wird.
Gemäß einer vorteilhaften Ausführungsform sind sämtliche Widerstandsplatten des Stapels, oder sämtliche Widerstandsplatten des Stapels mit Ausnahme einer Grundplatte, identisch zueinander ausgebildet sind, d.h. als Gleichteile. Hierdurch ergibt sich eine besonders kostengünstige Herstellung und Lagerhaltung, und der jeweilige Leistungswiderstand lässt sich auf flexible Weise konfigurieren.
Die Erfindung wird nachfolgend lediglich beispielhaft unter Bezugnahme auf die Zeichnungen erläutert.
Fig. 1 zeigt eine Perspektivansicht eines elektrischen Leistungswiderstands.
Fig. 2 zeigt eine Draufsicht einer ersten Widerstandsplatte. Fig. 3 zeigt eine Draufsicht einer zweiten Widerstandsplatte.
Fig. 4 zeigt eine Draufsicht einer dritten Widerstandsplatte.
Fig. 5 zeigt ein Detail einer Querschnittsansicht.
Der in Fig. 1 dargestellte Leistungswiderstand umfasst einen Stapel von planparallel zueinander angeordneten Widerstandsplatten, nämlich mit einer eine Grundplatte bildenden ersten Widerstandsplatte 1 1 (Fig. 2), einer zweiten Widerstandsplatte 12 (Fig. 3) und einer dritten Widerstandsplatte 13 (Fig. 4). Die rechteckigen Widerstandsplatten 11 , 12, 13 bestehen aus Metall, typischerweise aus Edelstahl oder einer sonstigen geeigneten Legierung, und können abweichend von der Darstellung in Fig. 1 bis 4 auch abgerundete Ecken besitzen. Die Widerstandsplatten 1 1, 12, 13 sind aneinander befestigt und elektrisch leitend miteinander verbunden, wie nachfolgend noch erläutert wird.
Eine jede Widerstandsplatte 1 1, 12, 13 besitzt eine mäanderförmige
Struktur, die durch eine Vielzahl von aufeinander folgenden Querstegen 15 gebildet ist. Zueinander benachbarte Querstege 15 sind wechselseitig durch einen schlitzförmigen Zwischenraum 17 voneinander getrennt und mittels eines kurzen Verbindungsstegs 19 miteinander verbunden. Wie in Fig. 4 beispielhaft für die dritte Widerstandsplatte 13 gezeigt ist, erstre- cken sich die Querstege 15 entlang einer Querrichtung Q, während die somit gebildete mäanderförmige Struktur der jeweiligen Widerstandsplatte sich senkrecht zu der Orientierung der Querstege 15 und zu der Querrichtung Q erstreckt, nämlich entlang einer Längsrichtung L. Bei dem hier gezeigten Ausführungsbeispiel erstrecken sich die Querstege 15 über die volle Seitenlänge der jeweiligen Widerstandsplatte 1 1 , 12, 13. Anstelle der gezeigten einzigen jeweiligen mäanderförmigen Struktur können die Widerstandsplatten 11 , 12, 13 jedoch auch mehrere mäanderförmige Strukturen umfassen, die nebeneinander verlaufen. Eine jede Widerstandsplatte 1 1, 12, 13 besitzt an den beiden Enden der mäanderförmigen Struktur einen jeweiligen Endanschlusssteg 21, der breiter ausgebildet ist als die Querstege 15. Ferner besitzt eine jede Widerstandsplatte 1 1 , 12, 13 in einem mittleren Bereich einen Mittenan- schlusssteg 23, der ebenfalls breiter ausgebildet ist als die Querstege 15. Der Mittenanschlusssteg 23 unterteilt die mäanderförmige Struktur der jeweiligen Widerstandsplatte 1 1, 12, 13 in zwei aktive Bereiche 25.
Wie die Perspektivansicht gemäß Fig. 1 erkennen lässt, sind die in Stapelrichtung aufeinander folgenden Widerstandsplatten 1 1, 12, 13 bezogen auf die jeweilige Erstreckungsrichtung der mäanderförmigen Struktur
(jeweilige Längsrichtung L gemäß Fig. 4) um 90° zueinander verdreht. Mit anderen Worten ist die zweite Widerstandsplatte 12 relativ zu der ersten Widerstandsplatte 1 1 innerhalb der Plattenebene um 90° verdreht, und die dritte Widerstandsplatte 13 ist wiederum relativ zu der zweiten Wider- standsplatte 12 innerhalb der Plattenebene um 90° verdreht. Die Orientierung der Querstege 15 zweier benachbarter Widerstandsplatten 1 1 und 12 bzw. 12 und 13 ist dementsprechend um 90° verdreht.
Eine jede Widerstandsplatte 11 , 12, 13 besitzt neun Befestigungsöffnun- gen 31 : Vier Befestigungsöffnungen 31 sind im Bereich der Ecken der jeweiligen Widerstandsplatte 1 1, 12, 13 vorgesehen. Eine jeweilige weitere Befestigungsöffnung 31 ist in einem mittleren Bereich der Endanschlussstege 21 vorgesehen. Schließlich besitzt auch der jeweilige Mittenanschlusssteg 23 drei Befestigungsöffnungen 31, nämlich an den beiden Enden und in einem mittleren Bereich. Hierdurch ergibt sich eine Matrix von 3 x 3 Befestigungsöffnungen 31.
Die jeweiligen Befestigungsöffnungen 31 der drei Widerstandsplatten 1 1 , 12, 13 sind in Flucht zueinander angeordnet und dienen zum Aufnehmen einer gemeinsamen Befestigungseinrichtung, die mehrere den drei Widerstandsplatten 11, 12, 13 gemeinsame Befestigungselemente 33 umfasst. Bei dem hier gezeigten Ausführungsbeispiel sind lediglich sechs Befestigungselemente 33 vorgesehen, d.h. drei Befestigungsöffnungen 31 der jeweiligen Widerstandsplatten 1 1, 12, 13 bleiben ungenutzt. Die Befestigungselemente 33 sind bei dem hier gezeigten Ausführungsbeispiel als Sechskantschrauben ausgebildet, die mit Sechskantmuttern 35 zusammenwirken, um den Stapel von Widerstandsplatten 1 1 , 12, 13 zusammenzuhalten.
Hierbei sorgen Abstandshalter dafür, dass die Widerstandsplatten 11, 12, 13 beabstandet voneinander angeordnet sind. Zum einen sind elektrisch isolierende Abstandshalter 37 vorgesehen, beispielsweise Glimmerplätt- chen mit einer Durchtrittsöffnung für das jeweilige Befestigungselement 33. Zum anderen sorgen elektrisch leitende Abstandshalter 39 (z.B. Metallhülsen) dafür, dass ein Endanschlusssteg 21 einer Widerstandsplatte mit einem Endanschlusssteg 21 einer anderen Widerstandsplatte 1 1, 12, 13 elektrisch leitend verbunden wird. Zusätzlich zu den genannten Befestigungsöffnungen 31 sind an einem
Endanschlusssteg 21 der ersten Widerstandsplatte 1 1 und an einem Endanschlusssteg 21 der dritten Widerstandsplatte 13 Anschlussmittel vorgesehen, die zur elektrischen Kontaktierung des Leistungswiderstandes mit der zugeordneten elektrischen Anlage dienen. Die jeweiligen Anschluss- mittel umfassen eine Anschlussöffnung 41 (Fig. 2 und 4), in die ein An- schlussbolzen 43 eingesetzt ist (Fig. 1). An dem jeweiligen Anschlussbolzen 43 kann beispielsweise ein Kabelschuh befestigt werden (nicht gezeigt) . Derartige Anschlussmittel (Anschlussöffnung 41 mit Anschlussbolzen 43) können auch an dem Mittenanschlusssteg 23 zumindest der drit- ten Widerstandsplatte 13 vorgesehen sein, um den Widerstandswert des gezeigten Leistungswiderstandes noch flexibler anpassen zu können und den Leistungswiderstand als Spannungsteiler nutzen zu können.
An der ersten Widerstandsplatte 1 1 sind ferner Verbindungsmittel zum Befestigen eines Isolators vorgesehen, um den Leistungswiderstand an einer zugeordneten Tragestruktur (z.B. in einem Schaltschrank) befestigen zu können. Diese Verbindungsmittel umfassen sechs Verbindungsöffnungen 45 (Fig. 2), in die eine jeweilige Verbindungsschraube 47 eingeführt ist, welche mit einem jeweiligen Isolatorblock 49 verschraubt ist (Fig. 1).
Fig. 5 zeigt eine Detailansicht des Leistungswiderstandes gemäß Fig. 1 im Querschnitt. Es ist zu erkennen, dass das Befestigungselement 33, also die Sechskantschraube, von einem Glimmerrohr 51 umgeben ist, welches die Befestigungsöffnungen 31 der Widerstandsplatten 1 1 , 12, 13 ebenfalls durchdringt und die Sechskantschraube somit von den Widerstandsplatten 11, 12, 13 elektrisch isoliert.
Der in den Fig. 1 bis 5 gezeigte Leistungswiderstand besitzt einen einfachen Aufbau und lässt sich in kostengünstiger Weise herstellen. Die Wi- derstandsplatten 1 1 , 12, 13 können aus größeren Platten geschnitten werden, wobei zugleich die Zwischenräume 17 als Einschnitte eingebracht werden können, um die Querstege 15 der jeweiligen mäanderförmigen Struktur zu bilden. Die Befestigungsöffnungen 31 , die Anschlussöffnungen 41 und die Verbindungsöffnungen 45 können auf einfache Weise als Bohrungen ausgeführt sein. Durch geeignete Auswahl des Materials, der Größe und der Dicke der Widerstandsplatten 1 1 , 12, 13, der Anzahl der Querstege 15 und Zwischenräume 17 sowie der Breite der Querstege 15 kann der erwünschte Widerstandswert der jeweiligen Widerstandsplatte 1 1 , 12, 13 eingestellt werden. Hierbei kann grundsätzlich jedes beliebige Verhältnis von Breite der Querstege 15 zu Dicke der jeweiligen Widerstandsplatte 11 , 12, 13 realisiert werden, beispielsweise das Verhältnis eins (d.h. quadratischer Querschnitt). Es ist auch möglich, die Widerstandsplatten 1 1, 12, 13 durch Stanzen herzustellen, wobei dann allerdings größere Verhältnisse von Stegbreite zu Plattendicke vorzusehen sind.
Der Leistungswiderstand kann flexibel an unterschiedliche Anforderungen angepasst werden, beispielsweise indem die Anzahl der Widerstandsplatten 1 1 , 12, 13 des Stapels geändert wird, oder indem durch Änderung der Anordnung der elektrisch isolierenden Abstandshalter 37 und der elektrisch leitenden Abstandshalter 39 wahlweise eine Serienschaltung oder eine Parallelschaltung verwirklicht wird. Zusätzlich kann der Leistungswiderstand aufgrund der Unterteilung in zwei aktive Bereiche 25 durch den Mittenanschiusssteg 23 der jeweiligen Widerstandsplatte 1 1, 12, 13 als Spannungsteiler genutzt werden. Falls der Spannungsabfall an dem Leistungswiderstand oder an Teilen des Leistungswiderstands gemessen wird, kann der Leistungswiderstand als Stromsensor genutzt werden. Der Widerstandswert des Leistungswiderstands kann auf einfache Weise mittels einer elektrisch leitenden Brücke abgeglichen werden, die beispielsweise zwei Querstege 15 über einen Zwischenraum 17 hinweg verbindet (z.B. durch Klemmen oder Schweißen).
Durch das in Fig. 1 gezeigte gegenseitige Verspannen der Widerstandsplatten 1 1, 12, 13 zu einem Stapel mittels der Befestigungselemente 33 wird auf einfache Weise eine stabile, selbsttragende Struktur geschaffen. Hier- bei ist es von besonderem Vorteil, dass die Widerstandsplatten 11 , 12, 13 entlang der Stapelrichtung jeweils um 90° zueinander verdreht sind. Die durch den Stromfluss in den Querstegen 15 erzeugten magnetischen Abstoßungskräfte führen nämlich zu Ausdehnungskräften, die senkrecht zu der Orientierung der Querstege 15 gerichtet sind (entlang der jeweiligen Längsrichtung L gemäß Fig. 4). Diese Ausdehnungskräfte können über die Befestigungselemente 33 von den relativ breiten Endanschlussstegen 21 (und gegebenenfalls dem Mittenanschlusssteg 23) der jeweiligen benachbarten Widerstandsplatte 1 1, 12, 13 aufgenommen werden. Die genannten Ausdehnungskräfte müssen also nicht von einer äußeren tragenden Struktur aufgenommen werden, und es ist lediglich darauf zu achten, dass die Befestigungselemente 33 (z.B. Sechskantschrauben) ausreichend stark dimensioniert sind. Bei dem gezeigten Ausführungsbeispiel ist das Raster der 3 x 3 Befestigungsöffnungen 31 der drei Widerstandsplatten 11 , 12, 13 bezüglich einer Drehung der jeweiligen Widerstandsplatte 11 , 12, 13 um 90° rotationssymmetrisch. Hierdurch kann der Leistungswiderstand noch einfacher für andere Anwendungen umkonfiguriert werden, da somit mehrere zur Ver- fügung stehende Typen von Widerstandsplatten auf besonders flexible Weise miteinander kombiniert werden können. Insbesondere ist es hierdurch auch möglich, für benachbarte Widerstandsplatten eines Stapels Gleichteile zu verwenden, wodurch sich der Herstellungs- und Lagerhaltungsaufwand verringert. Alternativ hierzu kann jedoch eine nicht- rota- tionssymmetrische Anordnung der Befestigungsöffnungen 31 vorgesehen sein, um hierdurch eine Richtungskodierung zu verwirklichen und zu gewährleisten, dass die einzelnen Widerstandsplatten 1 1, 12, 13 lediglich in einer einzigen vorbestimmten Ausrichtung relativ zueinander montiert werden können. Hierdurch kann also auf einfache Weise sichergestellt werden, dass die um 90° zueinander verdrehte Ausrichtung der jeweiligen Erstreckungsrichtung der mäanderförmigen Struktur benachbarter Widerstandsplatten 1 1 , 12, 13 stets beibehalten wird.
Zu dem gezeigten Ausführungsbeispiel ist schließlich anzumerken, dass die Zwischenräume 17 zwischen benachbarten Querstegen 15 auch noch vollständig oder teilweise mit einem elektrisch isolierenden Material ausgefüllt werden können. Dieses Füllmaterial kann als Abstandshalter zwischen benachbarten Querstegen 15 dienen und eine unerwünschte Zündung von Lichtbögen zuverlässig verhindern, die entstehen könnten, falls benachbarte Querstege 15 sich aufgrund magnetischer Wechselwirkung, thermischer Effekte und/ oder äußerer Vibrationen zu sehr annähern.
Bezugszeichenliste
11 erste Widerstandsplatte
12 zweite Widerstandsplatte
13 dritte Widerstandsplatte
15 Quersteg
17 Zwischenraum
19 Verbindungssteg
21 Endanschlusssteg
23 Mittenanschlusssteg
25 aktiver Bereich
31 Befestigungsöffnung
33 Befestigungselement
35 Sechskantmutter
37 elektrisch isolierender Abstandshalter
39 elektrisch leitender Abstandshalter
41 Anschlussöffnung
43 Anschlussbolzen
45 Verbindungsöffnung
47 Verbindungsschraube
49 Isolatorblock
51 Glimmerrohr
L Längsrichtung
Q Querrichtung

Claims

Patentansprüche
Elektrischer Leistungswiderstand, der einen Stapel von mehreren Widerstandsplatten (1 1 , 12, 13) aus Metall aufweist, wobei jede Widerstandsplatte wenigstens eine mäanderförmige Struktur aufweist, die durch eine Vielzahl von wechselseitig miteinander verbundenen Querstegen (15) gebildet ist,
dadurch gekennzeichnet,
dass in Stapelrichtung aufeinander folgende Widerstandsplatten (11, 12, 13) um 90° zueinander verdreht sind.
2. Leistungswiderstand nach Anspruch 1 ,
dadurch gekennzeichnet,
dass sämtliche Widerstandsplatten (1 1, 12, 13) des Stapels mittels einer gemeinsamen Befestigungsreinrichtung aneinander befestigt sind.
Leistungswiderstand nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
dass die Widerstandsplatten (11, 12, 13) viereckig sind, wobei im Bereich einer jeden Ecke eine Befestigungsöffnung (31) zum Aufnehmen eines jeweiligen Befestigungselements (33) vorgesehen ist.
Leistungswiderstand nach Anspruch 3,
dadurch gekennzeichnet,
dass die Widerstandsplatten (1 1, 12, 13) über Befestigungsstangen aneinander befestigt sind, die durch die Befestigungsöffnungen (31) der Widerstandsplatten geführt sind.
Leistungswiderstand nach Anspruch 3 oder 4,
dadurch gekennzeichnet,
dass die Befestigungselemente (33) von den Widerstandsplatten (1 1, 12, 13) elektrisch isoliert sind.
Leistungswiderstand nach einem der Ansprüche 3 bis 5,
dadurch gekennzeichnet,
dass die Anordnung der Befestigungsöffnungen (31) und Befestigungselemente (33) bezüglich einer Drehung der jeweiligen Widerstandsplatte (1 1 , 12, 13) um 90° rotationssymmetrisch ist.
Leistungswiderstand nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass wenigstens zwei der Widerstandsplatten (11, 13) wenigstens ein jeweiliges Anschlussmittel (41 , 43) zur elektrischen Kontaktie- rung aufweist.
Leistungswiderstand nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass wenigstens eine der Widerstandsplatten (11) wenigstens ein jeweiliges Verbindungsmittel (45, 47) zum Befestigen eines Isolators (49) aufweist.
Leistungswiderstand nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass zwei in Stapelrichtung aufeinander folgende Widerstandsplatten (1 1, 12, 13) durch Abstandshalter (37, 39) voneinander getrennt sind, wobei die Abstandhalter wahlweise elektrisch isolierend oder elektrisch leitend ausgebildet sind.
Leistungswiderstand nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass die Widerstandsplatten (1 1, 12, 13) an den beiden Enden der mäanderförmigen Struktur einen jeweiligen Endanschlusssteg (21) aufweisen, der breiter ausgebildet ist als die Querstege (15).
Leistungswiderstand nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass die Widerstandsplatten (1 1, 12, 13) in einem mittleren Bereich wenigstens einen Mittenanschlusssteg (23) aufweisen, der breiter ausgebildet ist als die Querstege (15).
12. Leistungswiderstand nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass die Querstege (15) entlang der zwischen zwei benachbarten Querstegen gebildeten Zwischenräume (17) abschnittsweise oder auf voller Länge voneinander elektrisch isoliert sind.
Leistungswiderstand nach Anspruch 12,
dadurch gekennzeichnet,
dass die Querstege (15) entlang der Zwischenräume (17) durch streifenförmige Einsätze, durch einen eingepressten, gegossenen, gespritzten oder geschäumten Füllstoff, oder durch einen Überzug voneinander elektrisch isoliert sind.
Leistungswiderstand nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass die mäanderförmige Struktur einer jeden Widerstandsplatte (1 1, 12, 13) durch wechselseitige Einschnitte gebildet ist. Leistungswiderstand nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass sämtliche Widerstandsplatten des Stapels, oder sämtliche Widerstandsplatten des Stapels mit Ausnahme einer Grundplatte, identisch zueinander ausgebildet sind.
PCT/EP2011/006050 2010-12-03 2011-12-01 Elektrischer leistungswiderstand WO2012072262A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2013541249A JP5887356B2 (ja) 2010-12-03 2011-12-01 電力抵抗器
US13/884,415 US9117575B2 (en) 2010-12-03 2011-12-01 Electrical power resistor
ES11796917.0T ES2502742T3 (es) 2010-12-03 2011-12-01 Resistencia de potencia eléctrica
KR1020137017425A KR101878422B1 (ko) 2010-12-03 2011-12-01 전력 레지스터
CN201180057749.4A CN103262181B (zh) 2010-12-03 2011-12-01 电气功率电阻器
DK11796917T DK2619770T3 (da) 2010-12-03 2011-12-01 Elektrisk effektmodstand
PL11796917T PL2619770T3 (pl) 2010-12-03 2011-12-01 Elektryczny rezystor mocy
EP20110796917 EP2619770B1 (de) 2010-12-03 2011-12-01 Elektrischer leistungswiderstand
IL226661A IL226661A (en) 2010-12-03 2013-05-30 Against electrical power

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010053389.0 2010-12-03
DE102010053389A DE102010053389A1 (de) 2010-12-03 2010-12-03 Elektrischer Leistungswiderstand

Publications (1)

Publication Number Publication Date
WO2012072262A1 true WO2012072262A1 (de) 2012-06-07

Family

ID=45349446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/006050 WO2012072262A1 (de) 2010-12-03 2011-12-01 Elektrischer leistungswiderstand

Country Status (12)

Country Link
US (1) US9117575B2 (de)
EP (1) EP2619770B1 (de)
JP (1) JP5887356B2 (de)
KR (1) KR101878422B1 (de)
CN (1) CN103262181B (de)
DE (1) DE102010053389A1 (de)
DK (1) DK2619770T3 (de)
ES (1) ES2502742T3 (de)
IL (1) IL226661A (de)
PL (1) PL2619770T3 (de)
TW (1) TWI529752B (de)
WO (1) WO2012072262A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016107931A1 (de) * 2016-04-28 2017-11-02 Epcos Ag Elektronisches Bauelement zur Einschaltstrombegrenzung und Verwendung eines elektronischen Bauelements
CN107393667A (zh) * 2017-05-27 2017-11-24 广东福德电子有限公司 一种结构稳定的电阻器
DE102017113600A1 (de) * 2017-06-20 2018-12-20 Vishay Electronic Gmbh Leistungswiderstand
WO2019175953A1 (ja) * 2018-03-13 2019-09-19 株式会社辰巳菱機 負荷試験装置
KR102134601B1 (ko) 2018-08-17 2020-07-16 엘에스일렉트릭(주) 모듈형 한류 저항기
CN110136902A (zh) * 2019-05-08 2019-08-16 凌海科诚电气股份公司 一种高压无感电阻器及其制作方法
ES2905143T3 (es) * 2019-09-20 2022-04-07 Zahnradfabrik Friedrichshafen Tubo de paso eléctricamente aislado
JP2023507276A (ja) * 2019-12-18 2023-02-22 ミルウォーキー エレクトリック ツール コーポレイション スタンピング加工されたブレーキ抵抗器を有する電動工具

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4225724A1 (de) * 1992-01-25 1993-07-29 Abb Patent Gmbh Leistungswiderstand fuer fluessigkeitskuehlung
DE4225723A1 (de) * 1992-08-04 1994-02-10 Abb Patent Gmbh Leistungswiderstand für Flüssigkeitskühlung

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB173291A (en) * 1920-09-22 1921-12-22 Crompton & Co Ltd Improvements in electric resistances
DE950867C (de) * 1939-12-06 1956-10-18 Sachsenwerk Licht & Kraft Ag Aus Blechstreifen bestehender Widerstandskoerper
US2769885A (en) * 1954-04-26 1956-11-06 Cutler Hammer Inc Resistor units
DE1146956B (de) * 1961-09-28 1963-04-11 Siemens Ag Blattfoermiges Widerstandselement fuer hohe Stroeme
US3299388A (en) * 1965-01-27 1967-01-17 Smith Corp A O Electric resistance unit
GB1236580A (en) * 1967-12-20 1971-06-23 Sangamo Weston Improvements in or relating to electrical resistors
JPS5934601A (ja) * 1982-08-23 1984-02-25 株式会社日立製作所 車両用抵抗器
JPH06100640B2 (ja) * 1986-03-20 1994-12-12 西日本鉄道株式会社 三相交流発電機の負荷試験方法
US5192940A (en) * 1988-10-07 1993-03-09 Fujikura, Ltd. Flat resistance for blower control unit for automobile air conditioner and blower control unit using the same
DE3933956C2 (de) 1989-10-11 1994-03-24 Abb Patent Gmbh Spannverband für einen Stromrichter
US5068637A (en) * 1990-02-08 1991-11-26 General Electric Company Plate-like metal element for electrical resistor grid assembly
US5917404A (en) * 1997-01-13 1999-06-29 Ipc Resistors, Inc. Power resistor
GB2323479A (en) * 1997-03-19 1998-09-23 Eaton Ltd Mounting resistor elements
JPH10284301A (ja) * 1997-04-07 1998-10-23 Yaskawa Electric Corp Sf6 ガス封入抵抗器
US6018288A (en) * 1997-05-09 2000-01-25 Indak Manufacturing Corp. Flat resistors for automotive blower motor speed control or other service
DE102004033680B4 (de) * 2004-07-09 2009-03-12 Wobben, Aloys, Dipl.-Ing. Lastwiderstand
EP2215639A1 (de) * 2007-09-27 2010-08-11 Vishay Dale Electronics, Inc. Leistungswiderstand

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4225724A1 (de) * 1992-01-25 1993-07-29 Abb Patent Gmbh Leistungswiderstand fuer fluessigkeitskuehlung
DE4225723A1 (de) * 1992-08-04 1994-02-10 Abb Patent Gmbh Leistungswiderstand für Flüssigkeitskühlung

Also Published As

Publication number Publication date
KR101878422B1 (ko) 2018-07-13
DE102010053389A1 (de) 2012-06-06
EP2619770A1 (de) 2013-07-31
EP2619770B1 (de) 2014-08-06
ES2502742T3 (es) 2014-10-06
DK2619770T3 (da) 2014-09-22
TW201239913A (en) 2012-10-01
US20130328660A1 (en) 2013-12-12
US9117575B2 (en) 2015-08-25
JP2014504001A (ja) 2014-02-13
IL226661A (en) 2016-12-29
JP5887356B2 (ja) 2016-03-16
TWI529752B (zh) 2016-04-11
KR20130128429A (ko) 2013-11-26
PL2619770T3 (pl) 2015-01-30
CN103262181A (zh) 2013-08-21
CN103262181B (zh) 2016-01-27

Similar Documents

Publication Publication Date Title
EP2619770B1 (de) Elektrischer leistungswiderstand
EP2100350B1 (de) Stromschienenpaket
EP0123822B1 (de) Querverbinder für Reihenklemmen
DE2907985C2 (de) Überspannungsableiter
EP1977433B1 (de) Überspannungsableiter mit käfig-design
DE2354663C3 (de) Stromrichter
DE7512573U (de) Halbleitergleichrichteranordnung
EP2911253B1 (de) Sammelschienenadapter und System aus Sammelschienen und einem Sammelschienenadapter
WO2012059311A1 (de) Elektrische verbindung zwischen zwei busbars aus ebenen leitern und einer zwischen den leitern angeordneten isolationsschicht
EP0472251B1 (de) Anordnung zur Verbindung von Sammelschienen
DE69306037T2 (de) Sammelschienen-Leitersystem für Hochspannungssysteme
WO2020064869A1 (de) Isoliereinheit für eine elektrische maschine
EP2270821B1 (de) Windenergieanlage mit einem Umrichter und wenigstens einem Hochleistungswiderstand
WO2015113795A1 (de) Elektrodenanordnung
EP0616401B1 (de) Stromschienenpaket
EP2965337B1 (de) Plattenstapel für kühlvorrichtung in installationsgeräten
CH341873A (de) Steckbrett
DE102015217790B4 (de) Anordnung zur Kühlung von Batteriezellen eines Antriebsenergiespeichers eines Kraftfahrzeuges
DE4312770A1 (de) Phasenstromabtrennung für einen Schalter
DE102005047687A1 (de) Sammelschienenanordnung für eine elektrische Schaltanlage
EP2709210A1 (de) Verteilerblock
DE102010045973B4 (de) Vorrichtung zur Überwachung von Strömen
DE19748555C1 (de) Schaltschrank
EP1999829B1 (de) Schaltschranktrennwand
DE2409692A1 (de) Schaltanlage mit zellenartigem aufbau

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11796917

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011796917

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 226661

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2013541249

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137017425

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13884415

Country of ref document: US