WO2012070562A1 - 光電変換素子およびその製造方法 - Google Patents

光電変換素子およびその製造方法 Download PDF

Info

Publication number
WO2012070562A1
WO2012070562A1 PCT/JP2011/076886 JP2011076886W WO2012070562A1 WO 2012070562 A1 WO2012070562 A1 WO 2012070562A1 JP 2011076886 W JP2011076886 W JP 2011076886W WO 2012070562 A1 WO2012070562 A1 WO 2012070562A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
photoelectric conversion
support
counter electrode
insulating layer
Prior art date
Application number
PCT/JP2011/076886
Other languages
English (en)
French (fr)
Inventor
福井 篤
恵 扇谷
純幸 三浦
山中 良亮
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2012545759A priority Critical patent/JP5956929B2/ja
Priority to EP11842987.7A priority patent/EP2645470A4/en
Publication of WO2012070562A1 publication Critical patent/WO2012070562A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a photoelectric conversion element and a manufacturing method thereof.
  • Patent Document 1 proposes a wet solar cell applying photo-induced electron transfer of a metal complex as a new type of solar cell.
  • a wet solar cell has a photoelectric conversion material composed of a photoelectric conversion material having an absorption spectrum in the visible light region by adsorbing a photosensitizing dye between the electrodes of two glass substrates on which electrodes are formed. The conversion layer is sandwiched between them.
  • Patent Document 2 JP-A-2001-357897 discloses a wet solar cell called a dye-sensitized solar cell using two conductive substrates.
  • a porous semiconductor layer which is a photoelectrode, is formed on one conductive substrate, a catalyst layer is formed on the other conductive substrate, and the surroundings are stacked together so that they are combined.
  • the cell is completed by sealing.
  • the porous porous semiconductor layer of the negative electrode present on the support and the positive electrode counter conductive layer of the positive electrode present on the counter electrode support are electrically connected to each other when they are in contact with each other. Since it does not occur, it is not necessary to adjust the interval between the support and the counter electrode support.
  • a gap material may be mixed in the sealing material, or a spacer may be installed between both supports.
  • Patent Document 3 discloses a single-substrate (monolithic) dye-sensitized solar cell as a structure that contributes to cost reduction.
  • This structure has a structure in which a porous semiconductor layer, a porous insulating layer, a catalyst layer, and a counter electrode conductive layer are laminated in this order on a glass with a transparent conductive film.
  • the porous insulating layer is installed to electrically insulate the electrons in the porous semiconductor layer as the negative electrode from the electrons in the counter electrode conductive layer as the positive electrode and suppress leakage. Is done.
  • a porous insulating layer is formed on a porous semiconductor layer using a screen printing method or the like.
  • a counter electrode or a counter electrode conductive layer is formed by screen printing, vapor deposition, sputtering, spraying, or the like. Since the porous semiconductor layer, the porous insulating layer, and the counter electrode conductive layer are formed in this manner, the layers cannot be separated unless separation or peeling such as etching is attempted.
  • the photoelectric conversion element represented by the dye-sensitized solar cell has a problem that durability is reduced by factors of an external environment such as light, heat, and humidity, and an increase in reverse current is cited as one cause of such a problem. It is done.
  • the reverse current is a phenomenon in which the electrons generated in the photoelectric conversion layer flow to the carrier transport layer and further to the counter electrode conductive layer having the catalyst layer without being taken out by the external electric circuit in the series of electron flows. It is. By suppressing the reverse current, it is possible to prevent a decrease in conversion efficiency of the photoelectric conversion element. For this reason, a technique for suppressing the reverse current generated in the photoelectric conversion element is desired.
  • the monolithic dye-sensitized solar cell has a structure similar to that of the photoelectric conversion element of the present invention, but the performance deterioration against thermal stress is larger than that of the structure of the present invention.
  • the cause of this performance degradation is unknown, but it is probably due to the direct formation of a catalyst layer and a conductive layer on the porous insulating layer.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a photoelectric conversion element that suppresses an increase in reverse current due to thermal stress and improves the retention of photoelectric conversion efficiency. It is.
  • the photoelectric conversion element of the present invention comprises at least a support, a conductive layer, a photoelectric conversion layer, a porous insulating layer, a catalyst layer, a counter electrode conductive layer, and a counter electrode support in this order, and the photoelectric conversion layer Includes a porous semiconductor layer containing a semiconductor material and a photosensitizer adsorbed on the porous semiconductor layer, and a carrier transport material is filled between the porous insulating layer and the catalyst layer.
  • the layer and the porous insulating layer have voids therein, and the voids are filled with a carrier transport material.
  • screen printing, vapor deposition, sputtering It does not have a strong bonding force obtained by film formation by the method.
  • the projected area of the porous insulating layer on the support is preferably larger than the projected area of the photoelectric conversion layer on the support.
  • the porous insulating layer preferably has a layer thickness of 5 ⁇ m or more.
  • the porous insulating layer has fine particles formed in a layer shape and has a gap of 20 nm to 100 nm.
  • the fine particles constituting the porous insulating layer are preferably composed of one or more selected from the group consisting of zirconium oxide, aluminum oxide, silicon oxide, and magnesium oxide.
  • the present invention is also a method for producing a photoelectric conversion element, comprising: a support comprising a conductive layer, a photoelectric conversion layer, and a porous insulating layer in this order; and a counter electrode support comprising a counter electrode conductive layer and a catalyst layer in this order. And bonding the support and the counter electrode support so that the conductive insulating layer and the catalyst layer face each other, and injecting a carrier transport material between the support and the counter electrode support, To do.
  • the present invention can suppress the occurrence of reverse current by having the above-described configuration, and thus can improve the photoelectric conversion efficiency of the photoelectric conversion element.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of a photoelectric conversion element (hereinafter also referred to as “solar cell”) of the present invention.
  • the photoelectric conversion element 10 of the present invention includes at least a support 1, a conductive layer 2, a photoelectric conversion layer 3, a porous insulating layer 4, a catalyst layer 5, a counter electrode conductive layer 6, and a counter electrode support. 8 in this order.
  • the conductive layer 2 was formed on the support body 1 may be called the transparent electrode substrate 11.
  • a sealing member 7 is provided on both sides of the photoelectric conversion layer 3 and the porous insulating layer 4 on the support 1, and the sealing member 7 is connected to both the support 1 and the counter electrode support 8. Has been.
  • the photoelectric conversion layer 3 includes a porous semiconductor layer containing a semiconductor material and a photosensitizer adsorbed on the porous semiconductor layer, and a carrier between the porous insulating layer 4 and the catalyst layer 5.
  • the transport material 9 is filled.
  • the porous semiconductor layer and the porous insulating layer 4 have voids therein, and the voids are filled with a carrier transport material 9.
  • the present invention is characterized in that the porous insulating layer 4 and the catalyst layer 5 do not have a strong bonding force obtained by film formation by screen printing, vapor deposition, or sputtering.
  • does not have a strong bonding force means a state in which the porous semiconductor layer and the catalyst layer are bonded with a bonding force that can be separated without causing separation or decomposition.
  • the support body 1 since the support body 1 is located in the part used as the light-receiving surface of a photoelectric conversion element, a light transmittance is required. Therefore, it is necessary that the support 1 is made of at least a light transmissive material.
  • the support 1 preferably has a thickness of about 0.2 mm to 5 mm.
  • Such a support 1 can be used without particular limitation as long as it is a material that can generally be used for solar cells and can exhibit the effects of the present invention.
  • the material used for the support 1 include glass substrates such as soda glass, fused silica glass, and crystal quartz glass, and heat-resistant resin plates such as flexible films.
  • examples of the material constituting the flexible film include tetraacetyl cellulose (TAC), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), and polycarbonate (PC). , Polyarylate (PA), polyetherimide (PEI), phenoxy resin, polytetrafluoroethylene (PTFE), and the like.
  • TAC tetraacetyl cellulose
  • PET polyethylene terephthalate
  • PPS polyphenylene sulfide
  • PC polycarbonate
  • PA Polyarylate
  • PEI polyetherimide
  • PTFE polytetrafluoroethylene
  • the flexible film is configured.
  • PTFE polytetrafluoroethylene
  • the support 1 can be used when the photoelectric conversion element is attached to another structure. That is, the peripheral part of the support body 1 such as a glass substrate can be easily attached to another support body 1 using metal processed parts and screws.
  • the counter electrode support 8 to be described later can be the same as the support 1.
  • the conductive layer 2 is provided on the light receiving surface side of the photoelectric conversion element 10, it is preferably made of a light transmissive material.
  • the light transmissive material does not necessarily need to be a material that is transmissive to light in all wavelength regions, and transmits light having a wavelength having effective sensitivity to the photosensitizer described later. Any material can be used.
  • Such a conductive layer 2 is not particularly limited as long as it is a material that can generally be used for solar cells and can exhibit the effects of the present invention, and any material can be used. Examples of such materials include indium tin composite oxide (ITO), fluorine-doped tin oxide (FTO), and zinc oxide (ZnO).
  • ITO indium tin composite oxide
  • FTO fluorine-doped tin oxide
  • ZnO zinc oxide
  • a substrate in which the conductive layer 2 is laminated on the support 1 may be referred to as a transparent electrode substrate 11.
  • a transparent electrode substrate 11 specifically, a laminate in which a conductive layer 2 made of FTO is laminated on a support 1 made of soda-lime float glass is suitably used.
  • the conductive layer 2 preferably has a thickness of about 0.02 ⁇ m to 5 ⁇ m. Further, the film resistance of the conductive layer 2 is preferably as low as possible, and is preferably 40 ⁇ / sq or less.
  • the conductive layer 2 may be provided with a metal lead wire to reduce resistance. Examples of the metal lead wire material include platinum, gold, silver, copper, aluminum, nickel, and titanium. When such a metal lead wire is used to reduce the amount of incident light from the light receiving surface, the thickness of the metal lead wire is preferably about 0.1 mm or more and 4 mm or less.
  • the photoelectric conversion layer 3 is formed by adsorbing a dye or quantum dots to a porous semiconductor layer and filling a carrier transport material.
  • the porous semiconductor layer used for the photoelectric conversion layer 3 includes a semiconductor material, specifically, a semiconductor layer in which semiconductor particles are arranged in a layer, or a film having a large number of micropores, although various forms can be used, it is preferably a film having a large number of micropores. This is because the carrier transport material can be injected into such a large number of fine holes, and the photoelectric conversion efficiency can be increased.
  • the semiconductor material constituting the porous semiconductor layer can be used without particular limitation as long as it is generally used for a photoelectric conversion material.
  • Such a semiconductor material may be composed of one compound or a mixture of two or more compounds.
  • the semiconductor material examples include titanium oxide, zinc oxide, tin oxide, iron oxide, niobium oxide, cerium oxide, tungsten oxide, nickel oxide, strontium titanate, cadmium sulfide, lead sulfide, zinc sulfide, indium phosphide, and copper.
  • -Compounds such as indium sulfide (CuInS 2 ), CuAlO 2 , SrCu 2 O 2 , and combinations of these compounds.
  • the above-mentioned titanium oxide includes not only various narrow titanium oxides such as anatase type titanium oxide, rutile type titanium oxide, amorphous titanium oxide, metatitanic acid, orthotitanic acid, but also titanium hydroxide and hydrous titanium oxide. Is. These titanium oxides can be used alone or in combination of two or more. The two types of crystal systems, anatase type and rutile type, can be in any form depending on the production method and thermal history, but the anatase type is common.
  • the semiconductor material constituting the porous semiconductor layer is preferably a polycrystalline sintered body composed of fine particles from the viewpoints of stability, ease of crystal growth, manufacturing cost, and the like.
  • the average particle size of the fine particles is preferably 5 nm or more and 50 nm or less, and more preferably 10 nm or more and 30 nm or less.
  • required from the diffraction peak of XRD is employ
  • the light scattering property of such a photoelectric conversion layer 3 varies depending on the conditions for forming the porous semiconductor layer, but is generally adjusted by the particle diameter (average particle diameter) of the semiconductor fine particles used for layer formation. That is, since the porous semiconductor layer formed of fine particles having a large average particle diameter has high light scattering properties, it is possible to scatter incident light and improve the light capture rate. On the other hand, the photoelectric conversion layer 3 composed of fine particles having a small average particle diameter has a low light scattering property and more dye adsorption points, so that the amount of adsorption of the sensitizing dye can be increased.
  • the photoelectric conversion layer 3 in the present invention is preferably a laminate of two or more porous semiconductor layers, rather than a single porous semiconductor layer.
  • a porous semiconductor layer is preferably composed of semiconductor fine particles having an average particle diameter of 50 nm or more, and more preferably is composed of semiconductor fine particles having an average particle diameter of 50 nm to 600 nm.
  • the average particle diameter of the fine particles constituting the porous semiconductor layer is not particularly limited as long as it is within the range in which the effects of the present invention can be exerted. From the viewpoint of effectively using incident light for photoelectric conversion, commercially available semiconductor fine particles are used. It is more preferable to use a material having a certain average particle diameter.
  • the film thickness of the photoelectric conversion layer 3 (that is, the porous semiconductor layer) is not particularly limited, but is preferably about 0.5 ⁇ m or more and 50 ⁇ m or less from the viewpoint of photoelectric conversion efficiency.
  • the photoelectric conversion layer 3 preferably has a layer thickness of 0.1 ⁇ m to 40 ⁇ m. More preferably, it is 5 ⁇ m or more and 20 ⁇ m or less.
  • the film thickness is preferably 0.1 ⁇ m or more and 50 ⁇ m or less, more preferably 10 ⁇ m or more and 40 ⁇ m or less. is there.
  • the membrane-like porous semiconductor layer preferably has a large specific surface area, and is preferably about 10 m 2 / g or more and 200 m 2 / g or less.
  • examples of the photosensitizer that is adsorbed on the porous semiconductor layer include dyes and quantum dots. It is necessary to use such a dye that functions as a photosensitizer, and examples thereof include organic dyes and metal complex dyes having absorption in the visible light region and / or infrared light region. 1 type (s) or 2 or more types can be used for a pigment
  • organic dyes examples include azo dyes, quinone dyes, quinone imine dyes, quinacridone dyes, squarylium dyes, cyanine dyes, merocyanine dyes, triphenylmethane dyes, xanthene dyes, porphyrin dyes, Examples include perylene dyes, indigo dyes, phthalocyanine dyes, and naphthalocyanine dyes.
  • the extinction coefficient of an organic dye is generally larger than the extinction coefficient of a metal complex dye that takes a form in which molecules are coordinated to a transition metal.
  • dye Cu, Ni, Fe, Co, V, Sn, Si, Ti, Ge, Cr, Zn, Ru, Mg, Al, Pb, Mn, In, Mo, Y, Zr, Nb, Sb, La, W, Pt, Ta, Ir, Pd, Os, Ga, Tb, Eu, Rb, Bi, Se, As, Sc, Ag, Cd, Hf, Re, Au, Ac, Tc, Te,
  • phthalocyanine-based metal complex dyes and ruthenium-based metal complex dyes are preferably used, and ruthenium-based metal complex dyes are more preferable.
  • the carboxylic acid group, carboxylic anhydride group, alkoxy group, hydroxyl group, hydroxyalkyl group, sulfonic acid group, ester group, mercapto group, Those having an interlock group such as a phosphonyl group are preferably used. Among these, it is particularly preferable to use a carboxylic acid group and a carboxylic anhydride group.
  • the interlock group provides an electrical bond that facilitates electron transfer between the excited dye and the conduction band of the porous semiconductor layer.
  • quantum dots used in the photosensitizer cadmium compounds, lead compounds, indium compounds, and the like can be used, and examples thereof include CdS, CdSe, PbS, PbSe, and InAs.
  • a porous insulating layer 4 is provided between the photoelectric conversion layer 3 and the catalyst layer 5.
  • a material constituting the porous insulating layer 4 a material having a high conduction band level is preferably used, but glass or the like may be used.
  • the material having a high conduction band level it is preferable to use one or more selected from the group consisting of zirconium oxide, silicon oxide, aluminum oxide, niobium oxide, magnesium oxide, and strontium titanate.
  • Examples of the porous insulating layer 4 include those composed of a particulate porous material.
  • the average particle size of the fine particles constituting the porous insulating layer 4 is 5 to 500 nm.
  • the thickness is preferably 10 to 300 nm, more preferably 30 to 200 nm.
  • the pore diameter of the porous insulating layer 4 is preferably 20 to 100 nm.
  • the porous insulating layer preferably has a thickness of 5 ⁇ m or more from the viewpoint of suppressing reverse current.
  • the projected area of the porous insulating layer 4 on the support 1 is preferably larger than the projected area of the photoelectric conversion layer 3 on the support 1. Since the porous insulating layer 4 covers the side surface of the photoelectric conversion layer 3 with such a projected area relationship, leakage of electrons from the side surface of the photoelectric conversion layer 3 can be suppressed.
  • the projected area refers to an area when a structure is projected in a direction perpendicular to the support.
  • the counter electrode support 8 is provided to prevent the volatilization of the electrolytic solution and the entry of water or the like into the solar cell.
  • the material which comprises this counter electrode support body 8 will not be specifically limited if it is a material which can generally be used for a solar cell and can exhibit the effect of this invention. Examples of such materials include soda lime glass, lead glass, borosilicate glass, fused quartz glass, and crystalline quartz glass. Particularly preferred materials include soda lime float glass.
  • the counter electrode conductive layer 6 is provided on the counter electrode support 8 and has a function of collecting electrons and connecting them in series with adjacent photoelectric conversion elements.
  • Any material can be used for the counter electrode conductive layer 6 without particular limitation as long as it is a material that can generally be used for a solar cell and can exhibit the effects of the present invention.
  • Such materials include indium tin composite oxide (ITO), metal oxides such as fluorine-doped tin oxide (FTO), zinc oxide (ZnO), titanium, tungsten, gold, silver, copper, nickel, etc.
  • ITO indium tin composite oxide
  • FTO fluorine-doped tin oxide
  • ZnO zinc oxide
  • titanium tungsten
  • gold silver, copper, nickel, etc.
  • a metal material can be mentioned.
  • titanium is most preferable in view of film strength.
  • the counter electrode conductive layer 6 needs to be dense in order to suppress penetration of the fine particles.
  • the holes in the counter electrode conductive layer 6 may be formed simultaneously with the formation of the holes in the catalyst layer 5.
  • the catalyst layer 5 is laminated on the counter electrode conductive layer 6 and has a catalytic function and functions to reduce holes in the carrier transport material. By providing such a catalyst layer 5, carrier transport can be performed smoothly.
  • the material which comprises this catalyst layer 5 will not be specifically limited if it is a material which can generally be used for a solar cell and can exhibit the effect of this invention. As such a material, for example, platinum and carbon are preferable. As the form of carbon, carbon black, graphite, glass carbon, amorphous carbon, hard carbon, soft carbon, carbon whisker, carbon nanotube, fullerene and the like are preferable.
  • the sealing member 7 is provided to prevent volatilization of the electrolyte contained in the carrier transport material and intrusion of water or the like into the solar cell.
  • the sealing member 7 is important for (i) absorbing falling objects and stress (impact) acting on the support 1, and (ii) absorbing deflection acting on the support 1 during long-term use. is there.
  • the material which comprises the sealing member 7 will not be specifically limited if it is a material which can generally be used for a solar cell and can exhibit the effect of this invention.
  • a material as with the material constituting the support 1, for example, a silicone resin, an epoxy resin, a polyisobutylene resin, a polyamide resin, a polyolefin resin, a hot melt resin such as an ionomer resin, a glass frit, or the like.
  • a silicone resin an epoxy resin, a polyisobutylene resin, a polyamide resin, a polyolefin resin, a hot melt resin such as an ionomer resin, a glass frit, or the like.
  • two or more of these may be used in combination, or two or more may be used in a laminated structure of two or more layers.
  • silicone resins When a nitrile solvent or a carbonate solvent is used as the solvent for the redox electrolyte, silicone resins, hot melt resins (for example, ionomer resins), polyisobutylene resins, and glass frit are particularly preferable.
  • the carrier transport material 9 means a material that is sandwiched between the porous insulating layer 4 and the catalyst layer 5 inside the sealing member 7 and injected into a region carried by the sealing member 7. . Accordingly, at least the photoelectric conversion layer 3 and the porous insulating layer 4 are filled with the carrier transport material 9.
  • Such a carrier transport material 9 is composed of a conductive material capable of transporting ions. Suitable materials for the carrier transport material 9 include, for example, a liquid electrolyte, a solid electrolyte, a gel electrolyte, a molten salt gel electrolyte, and the like.
  • the liquid electrolyte is not particularly limited as long as it is a liquid containing an oxidation-reduction species, and can be generally used in a battery, a solar battery, or the like. Specifically, those comprising a redox species and a solvent capable of dissolving this, those comprising a redox species and a molten salt capable of dissolving this, and those comprising a redox species, a solvent capable of dissolving this and a molten salt. Is mentioned. Examples of the redox species include I ⁇ / I 3 ⁇ series, Br 2 ⁇ / Br 3 ⁇ series, Fe 2 + / Fe 3+ series, and quinone / hydroquinone series.
  • a combination of metal iodide such as lithium iodide (LiI), sodium iodide (NaI), potassium iodide (KI), calcium iodide (CaI 2 ) and iodine (I 2 ), tetraethylammonium ion Combinations of tetraalkylammonium salts and iodine such as dye (TEAI), tetrapropylammonium iodide (TPAI), tetrabutylammonium iodide (TBAI), tetrahexylammonium iodide (THAI), and lithium bromide (LiBr);
  • a combination of a metal bromide such as sodium bromide (NaBr), potassium bromide (KBr), calcium bromide (CaBr 2 ) and bromine is preferable, and among these, a combination of LiI and I 2 is particularly preferable.
  • examples of the solvent for the redox species include carbonate compounds such as propylene carbonate, nitrile compounds such as acetonitrile, alcohols such as ethanol, water, and aprotic polar substances. Among these, carbonate compounds and nitrile compounds are particularly preferable. Two or more of these solvents can be used in combination.
  • the solid electrolyte is a conductive material that can transport electrons, holes, and ions, and can be used as an electrolyte for a solar cell and has no fluidity.
  • hole transport materials such as polycarbazole, electron transport materials such as tetranitrofluororenone, conductive polymers such as polyroll, polymer electrolytes obtained by solidifying liquid electrolytes with polymer compounds, copper iodide, thiocyanate
  • Examples thereof include a p-type semiconductor such as copper acid, and an electrolyte obtained by solidifying a liquid electrolyte containing a molten salt with fine particles.
  • Gel electrolyte usually consists of electrolyte and gelling agent.
  • gelling agents include polymer gelation such as crosslinked polyacrylic resin derivatives, crosslinked polyacrylonitrile derivatives, polyalkylene oxide derivatives, silicone resins, and polymers having a nitrogen-containing heterocyclic quaternary compound salt structure in the side chain. An agent etc. can be mentioned.
  • the molten salt gel electrolyte is usually composed of the gel electrolyte as described above and a room temperature molten salt.
  • the room temperature molten salt include nitrogen-containing heterocyclic quaternary ammonium salt compounds such as pyridinium salts and imidazolium salts.
  • Additives may be added to the above electrolyte as necessary.
  • Additives include nitrogen-containing aromatic compounds such as t-butylpyridine (TBP), dimethylpropylimidazole iodide (DMPII), methylpropylimidazole iodide (MPII), ethylmethylimidazole iodide (EMII), ethylimidazoleioio
  • TBP t-butylpyridine
  • DMPII dimethylpropylimidazole iodide
  • MPII methylpropylimidazole iodide
  • EMII ethylmethylimidazole iodide
  • ethylimidazoleioioio examples thereof include imidazole salts such as dye (EII) and hexylmethylimidazole iodide (HMII).
  • the electrolyte concentration in the electrolyte is preferably in the range of 0.001 to 1.5 mol / liter, particularly preferably in the range of 0.01 to 0.7 mol / liter.
  • incident light reaches the porous semiconductor layer on which the dye is adsorbed through the electrolytic solution, and the carriers are excited. For this reason, the performance may deteriorate depending on the electrolyte concentration used in the unit cell having the catalyst layer on the light receiving surface side. Therefore, it is preferable to set the electrolyte concentration in consideration of this point.
  • the counter electrode conductive layer 6 is provided with an extraction electrode (not shown) as necessary. A current is taken out from the solar cell by the take-out electrode.
  • the constituent material of the extraction electrode is not particularly limited as long as it is a material that can generally be used for a solar cell and can exhibit the effects of the present invention.
  • the method for producing a photoelectric conversion element of the present invention includes a support 1 having a conductive layer 2, a photoelectric conversion layer 3, and a porous insulating layer 4 in this order, and a counter electrode support having a counter electrode conductive layer 6 and a catalyst layer 5 in this order. 8, the step of bonding the support 1 and the counter electrode support 8 so that the porous insulating layer 4 and the catalyst layer 5 face each other, and the carrier transport material between the support 1 and the counter electrode support 8. Injecting 9.
  • the bonding force between the porous insulating layer 4 and the catalyst layer 5 can be reduced by forming a photoelectric conversion element through such steps.
  • the porous insulating layer 4 and the catalyst layer 5 can be formed at a distance via a carrier transport material 9. Thereby, generation
  • each step which produces the photoelectric conversion element of this invention is demonstrated.
  • the method for forming the conductive layer 2 on the support 1 is not particularly limited, and examples thereof include a known sputtering method and spray method.
  • a metal lead wire (not shown) is provided on the conductive layer 2, for example, a metal lead wire is formed on the support 1 by a known sputtering method, vapor deposition method, etc., and the support including the obtained metal lead wire
  • the conductive layer 2 can be formed on the substrate 1, or the conductive layer 2 can be formed on the support 1, and the metal lead wire can be formed on the conductive layer 2.
  • a known method can be used as a method for forming the porous semiconductor layer on the conductive layer 2. Specifically, (1) a method in which a paste containing semiconductor particles is applied onto a conductive layer by a screen printing method, an ink jet method, and the like, followed by firing, (2) a CVD method or MOCVD using a desired source gas (3) PVD method using raw material solid, vapor deposition method, sputtering method, etc., (4) Sol-gel method, electricity Examples thereof include a method of forming a film on the conductive layer by a method using a chemical redox reaction. Among these methods, since a thick porous semiconductor layer can be formed at low cost, a screen printing method using a paste is particularly preferable.
  • a method for forming a porous semiconductor layer using semiconductor particles made of titanium oxide will be specifically described. First, 125 mL of titanium isopropoxide (manufactured by Kishida Chemical Co., Ltd.) is dropped into 750 mL of a 0.1 M aqueous nitric acid solution (manufactured by Kishida Chemical Co., Ltd.), hydrolyzed, and heated at 80 ° C. for 8 hours, whereby a sol solution To prepare.
  • the obtained sol solution was heated in a titanium autoclave at 230 ° C. for 11 hours to grow fine particles of titanium oxide, subjected to ultrasonic dispersion for 30 minutes, and had an average particle diameter (average primary particle diameter) of 15 nm.
  • a colloidal solution containing titanium oxide particles is prepared.
  • semiconductor particles made of titanium oxide are obtained by adding 2 volumes of ethanol to the obtained colloidal solution and centrifuging the ethanol at a rotational speed of 5000 rpm.
  • the obtained semiconductor particles made of titanium oxide are washed, a solution obtained by dissolving ethyl cellulose and terpineol in absolute ethanol is added, and the semiconductor particles made of titanium oxide are dispersed by stirring. Thereafter, the mixed solution is heated under vacuum to evaporate ethanol to obtain a titanium oxide paste.
  • the titanium oxide solid concentration is adjusted to 20 wt%, ethyl cellulose 10 wt%, and terpineol 64 wt%.
  • Solvents used to prepare a paste containing semiconductor particles (suspended) include, besides the above, glyme solvents such as ethylene glycol monomethyl ether, alcohol solvents such as isopropyl alcohol, and mixtures such as isopropyl alcohol / toluene. A solvent, water, etc. are mentioned.
  • a paste containing semiconductor particles is applied onto the conductive layer by the above method and fired to obtain a porous semiconductor layer.
  • conditions such as temperature, time, and atmosphere depending on the type of support and semiconductor particles used. Firing can be performed, for example, in an air atmosphere or an inert gas atmosphere within a range of about 50 to 800 ° C. for about 10 seconds to 12 hours. This drying and baking can be performed once at a single temperature or twice or more at different temperatures.
  • the method for forming the porous insulating layer 4 on the porous semiconductor layer is not particularly limited, and may be a known method. Specifically, (1) a method in which a paste containing semiconductor particles is applied onto a conductive layer by a screen printing method, an ink jet method, and the like, followed by firing, (2) a CVD method or MOCVD using a desired source gas (3) PVD method using raw material solid, vapor deposition method, sputtering method, etc., (4) Sol-gel method, electricity Examples thereof include a method of forming a film on the conductive layer by a method using a chemical redox reaction. Among these methods, a screen printing method using a paste is particularly preferable because a thick porous insulating layer can be formed at low cost.
  • Step of adsorbing the dye to the porous semiconductor layer examples include a method of immersing the porous semiconductor layer formed on the conductive layer 2 in a solution in which the dye is dissolved (dye adsorption solution).
  • the solvent for dissolving the dye may be any solvent that dissolves the dye. Specifically, alcohols such as ethanol, ketones such as acetone, ethers such as diethyl ether and tetrahydrofuran, and nitrogen compounds such as acetonitrile.
  • Halogenated aliphatic hydrocarbons such as chloroform, aliphatic hydrocarbons such as hexane, aromatic hydrocarbons such as benzene, esters such as ethyl acetate, and water. Two or more of these solvents can be used in combination.
  • the concentration of the dye in the solution can be appropriately adjusted depending on the kind of the dye and the solvent to be used, but is preferably as high as possible in order to improve the adsorption function, for example, 5 ⁇ 10 ⁇ 4 mol / liter. That is all you need.
  • Step of forming each layer on the counter electrode support a step of forming the counter electrode conductive layer 6 and the catalyst layer 5 in this order on the counter electrode support 8 using the counter electrode support 8 different from the support 1 is performed.
  • a method of forming the counter electrode conductive layer 6 the same method as the method of forming the conductive layer 2 can be used.
  • Step of bonding the support and the counter electrode support is performed so that the porous insulating layer and the catalyst layer face each other.
  • the sealing member 7 is disposed between the transparent electrode substrate 11 and the counter electrode support 8 so as to be bonded together, and is fixed by heating or ultraviolet irradiation.
  • the sealing member 7 is manufactured by cutting a heat-sealing film, an ultraviolet curable resin, or the like into a shape surrounding the porous insulating layer.
  • the pattern of the sealing member 7 can be formed by a dispenser when silicone resin, epoxy resin, or glass frit is used.
  • silicone resin, epoxy resin, or glass frit is used.
  • a hot melt resin it can be formed by making a patterned hole in a sheet-like hot melt resin.
  • ⁇ Injecting carrier transport material> It fills by inject
  • the electrolyte injection hole is sealed with an ultraviolet curable resin after the carrier transport material is injected.
  • the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples and comparative examples.
  • the film thickness of each layer was measured using a three-dimensional surface microstructure measuring machine (trade name: Surfcom 1400A, manufactured by Tokyo Seimitsu Co., Ltd.) unless otherwise specified.
  • Example 1 First, a transparent electrode substrate 11 (manufactured by Nippon Sheet Glass Co., Ltd., glass with SnO 2 film) of 10 mm ⁇ 10 mm ⁇ 4 mm thickness was prepared.
  • the transparent electrode substrate 11 is obtained by forming a conductive layer 2 made of a SnO 2 film on a support 1 made of glass.
  • the porous semiconductor layer (titanium oxide layer) 3 having a thickness of 15 ⁇ m was formed by alternately repeating the application and firing of the titanium oxide paste 5 times.
  • a zirconium oxide paste was applied on the porous semiconductor layer, and leveling was performed for 1 hour at room temperature.
  • Such a zirconium oxide paste is prepared by dispersing fine particles of zirconium oxide having a particle diameter of 50 nm (manufactured by C.I. Kasei Co., Ltd.) in terpineol, and further mixing ethyl cellulose to prepare a paste.
  • the weight ratio of the zirconium oxide fine particles, terpineol, and ethyl cellulose was 65: 30: 5.
  • the coating film obtained above was preliminarily dried at 80 ° C. for 20 minutes, and further fired at 450 ° C. for 1 hour, thereby forming a porous insulating layer (zirconium oxide film) 4 having a thickness of 5 ⁇ m.
  • adsorbing a dye is performed on the porous semiconductor layer produced above.
  • dye adsorption was prepared first.
  • a dye adsorption solution is a sensitizing dye N719 (manufactured by Solaronix) in a mixed solvent in which acetonitrile (manufactured by Aldrich Chemical Company) and t-butyl alcohol (manufactured by Aldrich Chemical Company) are mixed at a volume ratio of 1: 1.
  • Trade name: Ruthenium 535-bis TBA) was prepared by dissolving so as to be 4 ⁇ 10 ⁇ 4 mol / L.
  • the sensitizing dye was adsorbed on the porous semiconductor layer by immersing the porous semiconductor layer in the dye adsorption solution at a temperature of 40 ° C. for 20 hours. Then, it was made to dry at about 40 degreeC for about 10 minutes by wash
  • cleaning with ethanol The product made from Aldrich Chemical Company).
  • This electrolytic solution uses acetonitrile as a solvent, and methylpropylimidazolium iodide (manufactured by Toyama Pharmaceutical Co., Ltd.) as a redox species has a concentration of 0.8 mol / liter, and I 2 (manufactured by Kishida Chemical Co., Ltd.) has a concentration of 0.15. Further, guanidine thiocyanate (manufactured by Aldrich Chemical Company) was added at a concentration of 0.1 mol / liter, and N-methylbenzimidazole (manufactured by Aldrich Chemical Company) was added at a concentration of 0.5 mol / liter so as to have a mole / liter. It was added to dissolve and dissolved.
  • ⁇ Step of forming each layer on the counter electrode support> In addition to the transparent electrode substrate, another transparent electrode substrate (manufactured by Nippon Sheet Glass Co., Ltd., glass with SnO 2 film) is prepared, and a batch-type high vacuum deposition apparatus (ULVAC, Inc.) is applied to the transparent electrode substrate. A catalyst layer made of Pt with a thickness of 5 nm was formed using a product name: ei-5).
  • This transparent electrode substrate has a counter electrode support 8 and a counter electrode conductive layer 6 formed thereon.
  • the sealing member 7 was formed by irradiating the applied portion with ultraviolet rays and curing the ultraviolet curable material using an ultraviolet irradiation lamp (trade name: Novacure, manufactured by EFD). In this way, the support 1 and the counter electrode support 8 were fixed.
  • an ultraviolet irradiation lamp (trade name: Novacure, manufactured by EFD).
  • Example 2 A photoelectric conversion element was produced by the same method as in Example 1 except that the size of the porous insulating layer was 7 mm ⁇ 7 mm.
  • Example 3 A photoelectric conversion element was produced in the same manner as in Example 2 except that the sensitizing dye was a black dye (trade name: Ruthenium 620-1H3TBA, manufactured by Solaronix).
  • the sensitizing dye was a black dye (trade name: Ruthenium 620-1H3TBA, manufactured by Solaronix).
  • Example 4 to 6 photoelectric conversion elements were produced in the same manner as in Example 1 except that the thickness of the porous semiconductor layer was 7 ⁇ m, 10 ⁇ m, and 14 ⁇ m.
  • Example 7 to 9 the particle size and material of the fine particles constituting the porous semiconductor layer are aluminum oxide having a particle size of about 30 nm, silicon oxide having a particle size of about 20 nm, and magnesium oxide having a particle size of 30 nm (all of which are C-I Kasei Co., Ltd.).
  • a photoelectric conversion element was produced by the same method as in Example 1 except that the product was manufactured by the same company.
  • Example 1 A photoelectric conversion element was produced by the same method as in Example 1 except that the porous insulating layer was not formed. That is, the photoelectric conversion element shown in FIG. 2 was produced.
  • Comparative Example 2 A photoelectric conversion element was produced in the same manner as in Comparative Example 1 except that the sensitizing dye was a black dye (trade name: Ruthenium 620-1H3TBA, manufactured by Solaronix).
  • the sensitizing dye was a black dye (trade name: Ruthenium 620-1H3TBA, manufactured by Solaronix).
  • Comparative Examples 3 and 4 Photoelectric conversion elements were produced by the same method as Comparative Example 1 except that the thickness of the porous semiconductor layer was 1.5 ⁇ m and 3 ⁇ m.
  • the open-circuit voltage was measured by irradiating the photoelectric conversion elements of Examples 1 to 9 and Comparative Examples 1 to 4 with light having an intensity of 1 kW / m 2 using an AM1.5 solar simulator. Then, after holding at 85 ° C. for 1000 hours, the open circuit voltage was measured again under the same conditions. Then, the open voltage holding ratio (%) of the photoelectric conversion element was measured by dividing the open voltage before holding at 85 ° C. by the open voltage after holding at 85 ° C. The results are shown in Table 1 below.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

 逆電流の発生を抑制し、光電変換効率を向上させた光電変換素子(10)を提供する。本発明の光電変換素子(10)は、少なくとも支持体(1)、導電層(2)、光電変換層(3)、多孔性絶縁層(4)、触媒層(5)、対極導電層(6)、および対極支持体(8)をこの順で備えたものであって、該光電変換層(3)は、半導体材料を含む多孔性半導体層および該多孔性半導体層に吸着された光増感素子を含み、多孔性絶縁層(4)と触媒層(5)との間にキャリア輸送材料(9)が充填されており、多孔性半導体層および多孔性絶縁層(4)は、その内部に空隙を有し、かつ該空隙にはキャリア輸送材料(9)が充填されており、多孔性絶縁層(4)と触媒層(5)との間で、スクリーン印刷法、蒸着法、またはスパッタリング法による成膜により得られる強固な結合力を有さないことを特徴とする。

Description

光電変換素子およびその製造方法
 本発明は、光電変換素子およびその製造方法に関する。
 化石燃料に代わるエネルギー源として、太陽光を電力に変換できる太陽電池が注目されている。現在、結晶系シリコン基板を用いた太陽電池や薄膜シリコン太陽電池が一部実用化され始めている。しかし、前者はシリコン基板の製造コストが高いという問題があり、後者は多種の半導体製造用ガスや複雑な装置を用いる必要があるために製造コストが高くなるという問題がある。このため、いずれの太陽電池においても光電変換の高効率化による発電出力当たりのコストを低減する努力が続けられているが、上記の問題を解決するには至っていない。
 特開平01-220380号公報(特許文献1)には、新しいタイプの太陽電池として、金属錯体の光誘起電子移動を応用した湿式太陽電池が提案されている。かかる湿式太陽電池は、表面上に電極を形成した2枚のガラス基板の電極間に、光増感色素を吸着させて可視光領域に吸収スペクトルをもたせた光電変換材料と電解質材料とからなる光電変換層を挟持したものである。
 上記の湿式太陽電池に光が照射されると、光電変換層で電子が発生し、発生した電子が外部電気回路を通って電極に移動する。このようにして移動した電子が電解質中のイオンにより対向する電極に運ばれて光電変換層に戻る。このような一連の電子の流れにより、電気エネルギーが取り出される。
 特開2001-357897号公報(特許文献2)には、2枚の導電性基板を用いた色素増感太陽電池と呼ばれる湿式太陽電池が開示されている。この湿式太陽電池は、一方の導電性基板上に光電極である多孔性半導体層を形成し、他方の導電性基板上に触媒層を形成し、両者を合わせるように重ねた上で、周囲を封止することによりセルを完成させる。
 一般的には、支持体上に存在する負極の多孔性半導体層と、対極支持体上に存在する正極の対極導電層とは、重ねて設置する程度の接触では、両者間で電気的導通が生じないため、支持体と対極支持体との間隔を調整しなくてもよい。しかし、多孔性半導体層と、対極導電層とを確実に接触しないようにするために、封止材にギャップ材を混合したり、両支持体間にスペーサを設置したりする場合もある。
 また、国際公開第97/16838号パンフレット(特許文献3)には、低コスト化に寄与する構造として、基板一枚型(モノリシック型)の色素増感太陽電池が開示されている。この構造は、透明導電膜付きのガラスの上に、多孔性半導体層、多孔性絶縁層、触媒層、および対極導電層がこの順で積層された構造のものである。かかる色素増感太陽電池において、多孔性絶縁層は、負極である多孔性半導体層内の電子と、正極である対極導電層内の電子とを電気的に絶縁し、リークを抑制するために設置される。
 特許文献3の色素増感太陽電池は、多孔性半導体層上にスクリーン印刷法などを用いて多孔性絶縁層を形成する。かかる多孔性絶縁層上に、スクリーン印刷法、蒸着法、スパッタリング法、スプレー法などを用いて対極または対極導電層を形成する。このようにして多孔性半導体層と多孔性絶縁層と対極導電層とを形成するため、エッチングなどの分離や剥離を試みない限り、各層を分離することができない。
特開平01-220380号公報 特開2001-357897号公報 国際公開第97/16838号パンフレット
 ところで、色素増感太陽電池に代表される光電変換素子は、光や熱や湿度といった外的環境の因子によって耐久性が低下するという課題があり、かかる課題の一因として逆電流の増加が挙げられる。
 ここで、逆電流とは、上記一連の電子の流れにおいて、光電変換層で発生した電子が、外部電気回路に取り出されることなく、キャリア輸送層、さらには触媒層を有する対極導電層に流れる現象である。かかる逆電流を抑制することにより、光電変換素子の変換効率の低下を防ぐことも可能となる。このことから、光電変換素子に発生する逆電流を抑制する技術が望まれている。
 また、上記のモノリシック型の色素増感太陽電池は、本発明の光電変換素子と類似の構造となるが、本発明の構造に比して熱ストレスに対する性能劣化が大きくなる。この性能劣化の原因は不明だが、おそらく多孔性絶縁層上に触媒層や導電層が直接形成されることが一因と考えられる。
 本発明は、上記課題に鑑みてなされたものであり、その目的とするところは、熱ストレスによる逆電流の増加を抑制し、光電変換効率の保持率を向上させた光電変換素子を提供することである。
 本発明の光電変換素子は、少なくとも支持体、導電層、光電変換層、多孔性絶縁層、触媒層、対極導電層、および対極支持体をこの順で備えたものであって、該光電変換層は、半導体材料を含む多孔性半導体層および該多孔性半導体層に吸着された光増感素子を含み、多孔性絶縁層と触媒層との間にキャリア輸送材料が充填されており、多孔性半導体層および多孔性絶縁層は、その内部に空隙を有し、かつ該空隙にはキャリア輸送材料が充填されており、多孔性絶縁層と触媒層との間で、スクリーン印刷法、蒸着法、スパッタリング法による成膜により得られる強固な結合力を有さないことを特徴とする。
 上記の多孔性絶縁層の支持体への投影面積は、光電変換層の支持体への投影面積よりも大きいことが好ましい。上記の多孔性絶縁層は、5μm以上の層厚であることが好ましい。
 上記の多孔性絶縁層は、微粒子が層状に形成されたものであり、かつ20nm以上100nm以下の空隙を有することが好ましい。上記の多孔性絶縁層を構成する微粒子は、酸化ジルコニウム、酸化アルミニウム、酸化ケイ素、および酸化マグネシウムからなる群から選ばれる1種以上からなることが好ましい。
 本発明は、光電変換素子の製造方法でもあり、導電層、光電変換層、および多孔性絶縁層をこの順に備える支持体と、対極導電層および触媒層をこの順に備える対極支持体とを、多孔性絶縁層と触媒層とが互いに対向するように支持体と対極支持体とを貼り合わせるステップと、支持体と対極支持体との間にキャリア輸送材料を注入するステップとを含むことを特徴とする。
 本発明は、上記の構成を有することにより、逆電流の発生を抑制することができ、もって光電変換素子の光電変換効率を向上させることができる。
本発明の光電変換素子の構造を示す概略断面図である。 比較例の光電変換素子の構造を示す概略断面図である。
 本発明の好適な実施形態について、図面を用いて説明する。なお、この実施形態は一例であり、種々の形態での実施が本発明の範囲内で可能である。本願の図面において同一の参照符号を付したものは、同一部分または相当部分を示している。
 図1は、本発明の光電変換素子(以下、「太陽電池」ともいう)の構成を示す概略断面図である。本発明の光電変換素子10は、図1に示されるように、少なくとも支持体1、導電層2、光電変換層3、多孔性絶縁層4、触媒層5、対極導電層6、および対極支持体8をこの順で備えたものである。なお、支持体1上に導電層2が形成されたものを透明電極基板11ということもある。また、支持体1上の光電変換層3および多孔性絶縁層4の両脇には封止部材7が設けられ、かかる封止部材7は、支持体1と対極支持体8との両者に接続されている。
 そして、光電変換層3は、半導体材料を含む多孔性半導体層および該多孔性半導体層に吸着された光増感素子を含むものであり、多孔性絶縁層4と触媒層5との間にキャリア輸送材料9が充填されている。また、多孔性半導体層および多孔性絶縁層4は、その内部に空隙を有し、かつ該空隙にはキャリア輸送材料9が充填されている。ここで、本発明は、多孔性絶縁層4と触媒層5との間で、スクリーン印刷法、蒸着法、スパッタリング法による成膜により得られる強固な結合力を有さないことを特徴とする。
 このように多孔性絶縁層4と触媒層5との間で、強固な結合力を有さないことにより(特に図1に示すように、多孔性絶縁層4と触媒層5とが間隔を設けて配置されることにより)、熱ストレス下における光電変換層3から触媒層5および対極導電層6への逆電流の増加を抑制することができる。逆電流が発生しにくい構造となるため、熱ストレス下での光電変換効率の保持率を向上させることができる。
 上記の「強固な結合力を有さない」とは、多孔性半導体層と触媒層とのそれぞれが剥離、分解などを起こすことなく、分離できる程度の結合力で結合された状態を意味する。
 本発明のように支持体1と対極支持体8との2枚の透光性基板を用いる場合、モノリシック型のように支持体1と対極支持体8との間の電気的導通を考慮する必要がない。このため、光電変換層3上に設けられる多孔性絶縁層4は、支持体1と対極支持体8との電気的な導通を抑制するために形成されるのではなく、熱劣化によって光電変換層3を構成する微粒子から電解液に漏れ電流(リーク)が発生するのを抑制するために形成される。以下においては、本発明の光電変換素子を構成する各部を詳細に説明する。
 <支持体>
 本発明において、支持体1は、光電変換素子の受光面となる部分に位置するものであるため、光透過性が必要となる。よって、支持体1は、少なくとも光透過性を有する材料からなるものであることが必要である。かかる支持体1は、0.2mm以上5mm以下程度の厚みであることが好ましい。
 このような支持体1は、一般に太陽電池に使用可能で、かつ本発明の効果を発揮し得る材料であれば、特に限定することなく用いることができる。支持体1に用いられる材料としては、たとえばソーダガラス、溶融石英ガラス、結晶石英ガラスなどのガラス基板、可撓性フィルムなどの耐熱性樹脂板などを挙げることができる。
 ここで、上記の可撓性フィルム(以下、「フィルム」ともいう)を構成する材料としては、たとえばテトラアセチルセルロース(TAC)、ポリエチレンテレフタレート(PET)、ポリフェニレンスルファイド(PPS)、ポリカーボネート(PC)、ポリアリレート(PA)、ポリエーテルイミド(PEI)、フェノキシ樹脂、ポリテトラフルオロエチレン(PTFE)などを挙げることができる。
 上記の支持体1上に加熱を伴って他の層を形成する場合、すなわちたとえば、支持体1上に250℃程度の加熱を伴って導電層2を形成する場合、上記可撓性フィルムを構成する材料の中でも、250℃以上の耐熱性を有するポリテトラフルオロエチレン(PTFE)を用いることが特に好ましい。
 また、光電変換素子を他の構造体に取り付けるときに支持体1を利用することができる。すなわち、ガラス基板などの支持体1の周辺部を、金属加工部品とねじを用いて他の支持体1に容易に取り付けることができる。なお、後述する対極支持体8も、支持体1と同様のものを用いることができる。
 <導電層>
 本発明において、導電層2は、光電変換素子10の受光面側に設けられるものであるため、光透過性の材料からなることが好ましい。ここで、光透過性の材料とは、必ずしもすべての波長領域の光に対して透過性を有する材料である必要はなく、後述する光増感素子に実効的な感度を有する波長の光を透過させる材料であればよい。
 このような導電層2は、一般に太陽電池に使用可能で、かつ本発明の効果を発揮し得る材料であれば、特に限定されることなく、いかなるものをも使用することができる。このような材料としては、インジウム錫複合酸化物(ITO)、フッ素をドープした酸化錫(FTO)、酸化亜鉛(ZnO)などを挙げることができる。
 本発明において、上記の支持体1に導電層2が積層されたものを透明電極基板11ということがある。このような透明電極基板11として、具体的には、ソーダ石灰フロートガラスからなる支持体1上に、FTOからなる導電層2を積層したものが好適に用いられる。
 上記の導電層2は、その厚みが0.02μm以上5μm以下程度であることが好ましい。また、該導電層2の膜抵抗は低いほど好ましく、40Ω/sq以下であることが好ましい。また、導電層2には、低抵抗化のために金属リード線を設けてもよい。かかる金属リード線の材料としては、たとえば白金、金、銀、銅、アルミニウム、ニッケル、チタンなどを挙げることができる。このような金属リード線を設けることにより、受光面からの入射光量の低下を招く場合には、金属リード線の太さを0.1mm以上4mm以下程度にするのが好ましい。
 <光電変換層>
 本発明において、光電変換層3は、多孔性半導体層に色素や量子ドットを吸着させ、かつキャリア輸送材料を充填させてなるものである。ここで、光電変換層3に用いられる多孔性半導体層は、半導体材料を含むものであり、具体的には半導体粒子を層状に並べたもの、または多数の微細孔を有する膜状のものなど、種々の形態のものを用いることができるが、多数の微細孔を有する膜状のものであることが好ましい。かかる多数の微細孔にキャリア輸送材料を注入することができ、光電変換効率を高めることができるからである。
 上記の多孔性半導体層を構成する半導体材料は、一般に光電変換材料に使用されるものであれば特に限定されることなく用いることができる。このような半導体材料は、1種の化合物からなるものであってもよいし、2種以上の化合物を組み合わせた混合物を用いてもよい。
 上記の半導体材料としては、たとえば酸化チタン、酸化亜鉛、酸化錫、酸化鉄、酸化ニオブ、酸化セリウム、酸化タングステン、酸化ニッケル、チタン酸ストロンチウム、硫化カドミウム、硫化鉛、硫化亜鉛、リン化インジウム、銅-インジウム硫化物(CuInS2)、CuAlO2、SrCu22などの化合物、および該化合物の組み合わせを挙げることができる。これらの中でも、多孔性半導体層には、酸化チタン、酸化亜鉛、酸化錫、酸化ニオブなどを用いることがより好ましく、光電変換効率、安定性、および安全性の観点から、酸化チタンを用いることがさらに好ましい。
 上記の酸化チタンは、アナターゼ型酸化チタン、ルチル型酸化チタン、無定形酸化チタン、メタチタン酸、オルソチタン酸などの各種の狭義の酸化チタンの他、水酸化チタン、含水酸化チタンなどをも包含するものである。これらの酸化チタンは、単独または2種以上の混合物を用いることができる。アナターゼ型とルチル型の2種類の結晶系は、その製法や熱履歴によりいずれの形態にもなり得るが、アナターゼ型が一般的である。
 上記の多孔性半導体層を構成する半導体材料は、安定性、結晶成長の容易さ、製造コストなどの観点から、微粒子からなる多結晶焼結体が好ましい。かかる半導体材料が微粒子からなる場合、その微粒子の平均粒径は、5nm以上50nm以下であることが好ましく、より好ましくは10nm以上30nm以下である。このような平均粒径の微粒子からなる半導体材料を用いることにより、入射光を高い収率で電気エネルギーに変換し、投影面積に対して十分に大きい実効表面積を得ることができる。
 なお、本明細書において、多孔性半導体層を構成する微粒子の平均粒径は、XRD(X線回折)の回折ピークから求めた値を採用する。具体的には、XRDのθ/2θ測定における回折角の半値幅とシェラーの式から平均粒径を算出する。たとえば、アナターゼ型酸化チタンの場合、(101)面に対応する回折ピーク(2θ=25.3°付近)の半値幅を測定することによって算出する。
 このような光電変換層3の光散乱性は、多孔性半導体層を形成する条件によっても異なるが、一般的には層形成に用いる半導体微粒子の粒子径(平均粒径)によって調整される。すなわち、平均粒径の大きい微粒子で形成した多孔性半導体層は、光散乱性が高いため、入射光を散乱させて光捕捉率を向上させることができる。一方、平均粒径の小さい微粒子で構成した光電変換層3は、光散乱性が低く、かつ色素の吸着点がより多くなるため、増感色素の吸着量を増加させることができる。
 したがって、本発明における光電変換層3は、1層の多孔性半導体層のみによって構成されるよりも、2層以上の多孔性半導体層を積層したものであることが好ましい。かかる多孔性半導体層は、平均粒径が50nm以上の半導体微粒子からなることが好ましく、より好ましくは、平均粒径が50nm以上600nm以下の半導体微粒子からなることである。
 多孔性半導体層を構成する微粒子の平均粒径は、本発明の効果を発揮し得る範囲内であれば、特に限定されないが、入射光を光電変換に有効利用するという観点から、市販の半導体微粒子のようにある程度平均粒径が揃っているものを用いることがより好ましい。
 光電変換層3(すなわち多孔性半導体層)の膜厚は、特に限定されるものではないが、光電変換効率の観点から、0.5μm以上50μm以下程度であることが好ましい。平均粒径50nm以上の半導体材料の微粒子を用いて光電変換層3を構成する場合、光散乱性が高くなりやすいため、光電変換層3は0.1μm以上40μm以下の層厚であることが好ましく、より好ましくは5μm以上20μm以下である。また、平均粒径が5nm以上50nm未満の半導体微粒子を用いて光電変換層3を構成する場合、その膜厚は、0.1μm以上50μm以下であることが好ましく、より好ましくは10μm以上40μm以下である。
 光電変換素子の光電変換効率を向上させるためには、後述する色素を多孔性半導体層により多く吸着させて、光電変換層3を形成することが必要である。このため、膜状の多孔性半導体層は、比表面積が大きいことが好ましく、10m2/g以上200m2/g以下程度であることが好ましい。
 <光増感素子>
 本発明において、多孔性半導体層に吸着させる光増感素子として、色素または量子ドットなどを挙げることができる。かかる色素は、光増感剤として機能するものを用いることが必要であり、可視光領域および/または赤外光領域に吸収をもつ有機色素、金属錯体色素などを挙げることができ、このような色素を1種または2種以上を用いることができる。
 上記の有機色素としては、たとえばアゾ系色素、キノン系色素、キノンイミン系色素、キナクリドン系色素、スクアリリウム系色素、シアニン系色素、メロシアニン系色素、トリフェニルメタン系色素、キサンテン系色素、ポルフィリン系色素、ペリレン系色素、インジゴ系色素、フタロシアニン系色素、ナフタロシアニン系色素などを挙げることができる。ここで、有機色素の吸光係数は、一般的に、遷移金属に分子が配位結合した形態をとる金属錯体色素の吸光係数に比して大きい。
 また、上記の金属錯体色素としては、Cu、Ni、Fe、Co、V、Sn、Si、Ti、Ge、Cr、Zn、Ru、Mg、Al、Pb、Mn、In、Mo、Y、Zr、Nb、Sb、La、W、Pt、Ta、Ir、Pd、Os、Ga、Tb、Eu、Rb、Bi、Se、As、Sc、Ag、Cd、Hf、Re、Au、Ac、Tc、Te、Rhなどの金属に分子が配位結合した形態のものを挙げることができる。これらの中でも、フタロシアニン系金属錯体色素、ルテニウム系金属錯体色素を用いることが好ましく、より好ましくはルテニウム系金属錯体色素である。特に、下記化学式(1)~(3)で表されるルテニウム系金属錯体色素が好ましい。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 また、多孔性半導体層に色素を強固に吸着させるためには、色素分子中にカルボン酸基、カルボン酸無水基、アルコキシ基、ヒドロキシル基、ヒドロキシアルキル基、スルホン酸基、エステル基、メルカプト基、ホスホニル基などのインターロック基を有するものを用いることが好ましい。これらの中でも、カルボン酸基およびカルボン酸無水基を用いることが特に好ましい。なお、インターロック基は、励起状態の色素と多孔性半導体層の伝導帯との間の電子移動を容易にする電気的結合を提供するものである。
 また、光増感素子に用いる量子ドットとしては、カドミウム化合物、鉛化合物、インジウム化合物などを用いることができ、たとえばCdS、CdSe、PbS、PbSe、InAsなどを挙げることができる。
 <多孔性絶縁層>
 本発明の光電変換素子において、光電変換層3と触媒層5との間には多孔性絶縁層4を設けることを特徴とする。かかる多孔性絶縁層4を構成する材料としては、伝導帯準位の高い材料を用いることが好ましいが、ガラス等を用いてもよい。伝導帯準位の高い材料としては、酸化ジルコニウム、酸化ケイ素、酸化アルミニウム、酸化ニオブ、酸化マグネシウム、チタン酸ストロンチウムからなる群より選択される1種以上を用いることが好ましい。
 また、多孔性絶縁層4としては、粒子状の多孔質によって構成されるものを例示することができ、この場合の多孔性絶縁層4を構成する微粒子の平均粒径は、5~500nmであることが好ましく、10~300nmであることがより好ましく、さらに好ましくは、30~200nm以下である。また、多孔性絶縁層4の細孔径は、20~100nmであることが好ましい。上記の多孔性絶縁層は、逆電流を抑制するという観点から、5μm以上の膜厚であることが好ましい。
 ここで、図1に示されるように、多孔性絶縁層4の支持体1への投影面積は、光電変換層3の支持体1への投影面積よりも大きいことが好ましい。このような投影面積の関係となることにより、多孔性絶縁層4が光電変換層3の側面を覆うため、光電変換層3の側面からの電子のリークを抑制することができる。なお、投影面積とは、支持体に対して垂直方向に構造物を投影したときの面積をいうものとする。
 <対極支持体>
 本発明において、対極支持体8は、電解液の揮発と太陽電池内への水などの浸入を防止するために設けられるものである。かかる対極支持体8を構成する材料は、一般に太陽電池に使用可能で、かつ本発明の効果を発揮し得る材料であれば、特に限定されない。このような材料としては、たとえばソーダ石灰ガラス、鉛ガラス、ホウケイ酸ガラス、溶融石英ガラス、結晶石英ガラスなどが挙げられる。特に好ましい材料は、ソーダ石灰フロートガラスを挙げることができる。
 <対極導電層>
 本発明において、対極導電層6は、対極支持体8上に設けられるものであり、電子を収集し、かつ隣接する光電変換素子と直列接続する働きを有するものである。かかる対極導電層6は、一般に太陽電池に使用可能で、かつ本発明の効果を発揮し得る材料であれば、特に限定することなくいかなるものを用いることができる。このような材料としては、インジウム錫複合酸化物(ITO)、フッ素をドープした酸化錫(FTO)、酸化亜鉛(ZnO)等の金属酸化物、チタン、タングステン、金、銀、銅、ニッケルなどの金属材料を挙げることができる。これらの中でも、膜強度を考慮するとチタンが最も好ましい。
 また、白金あるいはカーボンの微粒子分散ペーストから塗布法によって触媒層5を形成する場合、微粒子の貫通を抑制するために対極導電層6が緻密である必要がある。この場合、対極導電層6上に触媒層5を積層した後に、触媒層5の孔を形成するのと同時に対極導電層6に孔を形成すればよい。
 <触媒層>
 本発明において、触媒層5は、対極導電層6上に積層されるものであり、触媒能を有しキャリア輸送材料中の正孔を還元する働きを有するものである。このような触媒層5を設けることにより、キャリア輸送を円滑に行なうことができる。かかる触媒層5を構成する材料は、一般に太陽電池に使用可能で、かつ本発明の効果を発揮し得る材料であれば、特に限定されない。このような材料としては、例えば、白金、カーボンが好ましい。カーボンの形態としては、カーボンブラック、グラファイト、ガラス炭素、アモルファス炭素、ハードカーボン、ソフトカーボン、カーボンホイスカー、カーボンナノチューブ、フラーレン等が好ましい。
 <封止部材>
 本発明において、封止部材7は、キャリア輸送材料に含まれる電解液の揮発と太陽電池内への水などの浸入を防止するために設けられるものである。かかる封止部材7は、(i)支持体1に作用する落下物や応力(衝撃)を吸収する、(ii)長期にわたる使用時において支持体1に作用するたわみなどを吸収するために重要である。
 封止部材7を構成する材料は、一般に太陽電池に使用可能で、かつ本発明の効果を発揮し得る材料であれば特に限定されない。このような材料としては、支持体1を構成する材料と同様に、たとえばシリコーン樹脂、エポキシ樹脂、ポリイソブチレン系樹脂、ポリアミド系樹脂やポリオレフィン系樹脂やアイオノマー樹脂などのホットメルト樹脂、ガラスフリットなどが好ましく、これらは2種類以上混合して用いたり、または2種以上を2層以上の積層構造にして用いることもできる。酸化還元性電解質の溶剤としてニトリル系溶剤、カーボネート系溶剤を使用する場合には、シリコーン樹脂、ホットメルト樹脂(たとえばアイオノマー樹脂)、ポリイソブチレン系樹脂、ガラスフリットが特に好ましい。
 <キャリア輸送材料>
 本発明において、キャリア輸送材料9は、封止部材7の内側の多孔性絶縁層4と触媒層5との間に挟持され、封止部材7によって担持される領域に注入されるものを意味する。したがって、少なくとも光電変換層3および多孔性絶縁層4にはキャリア輸送材料9が充填される。
 このようなキャリア輸送材料9は、イオンを輸送できる導電性材料で構成されるものである。かかるキャリア輸送材料9の好適な材料として、たとえば、液体電解質、固体電解質、ゲル電解質、溶融塩ゲル電解質などが挙げられる。
 上記の液体電解質は、酸化還元種を含む液状物であればよく、一般に電池や太陽電池などにおいて使用することができるものであれば特に限定されない。具体的には、酸化還元種とこれを溶解可能な溶剤からなるもの、酸化還元種とこれを溶解可能な溶融塩からなるもの、酸化還元種とこれを溶解可能な溶剤と溶融塩からなるものが挙げられる。酸化還元種としては、例えば、I-/I3-系、Br2-/Br3-系、Fe2+/Fe3+系、キノン/ハイドロキノン系などが挙げられる。
 具体的には、ヨウ化リチウム(LiI)、ヨウ化ナトリウム(NaI)、ヨウ化カリウム(KI)、ヨウ化カルシウム(CaI2)などの金属ヨウ化物とヨウ素(I2)の組み合わせ、テトラエチルアンモニウムアイオダイド(TEAI)、テトラプロピルアンモニウムアイオダイド(TPAI)、テトラブチルアンモニウムアイオダイド(TBAI)、テトラヘキシルアンモニウムアイオダイド(THAI)などのテトラアルキルアンモニウム塩とヨウ素の組み合わせ、および臭化リチウム(LiBr)、臭化ナトリウム(NaBr)、臭化カリウム(KBr)、臭化カルシウム(CaBr2)などの金属臭化物と臭素の組み合わせが好ましく、これらの中でも、LiIとI2の組み合わせが特に好ましい。
 また、酸化還元種の溶媒としては、プロピレンカーボネートなどのカーボネート化合物、アセトニトリルなどのニトリル化合物、エタノールなどのアルコール類、水、非プロトン極性物質などが挙げられる。これらの中でも、カーボネート化合物やニトリル化合物が特に好ましい。これらの溶媒は2種類以上を混合して用いることもできる。
 固体電解質は、電子、ホール、イオンを輸送できる導電性材料で、太陽電池の電解質として用いることができ、流動性がないものであればよい。具体的には、ポリカルバゾールなどのホール輸送材、テトラニトロフロオルレノンなどの電子輸送材、ポリロールなどの導電性ポリマー、液体電解質を高分子化合物により固体化した高分子電解質、ヨウ化銅、チオシアン酸銅などのp型半導体、溶融塩を含む液体電解質を微粒子により固体化した電解質などが挙げられる。
 ゲル電解質は、通常、電解質とゲル化剤からなる。ゲル化剤としては、例えば、架橋ポリアクリル樹脂誘導体や架橋ポリアクリロニトリル誘導体、ポリアルキレンオキシド誘導体、シリコーン樹脂類、側鎖に含窒素複素環式四級化合物塩構造を有するポリマーなどの高分子ゲル化剤などを挙げることができる。
 溶融塩ゲル電解質は、通常、上記のようなゲル電解質と常温型溶融塩からなる。常温型溶融塩としては、例えば、ピリジニウム塩類、イミダゾリウム塩類などの含窒素複素環式四級アンモニウム塩化合物類などが挙げられる。
 上記の電解質には、必要に応じて添加剤を加えてもよい。添加剤としては、t-ブチルピリジン(TBP)などの含窒素芳香族化合物、ジメチルプロピルイミダゾールアイオダイド(DMPII)、メチルプロピルイミダゾールアイオダイド(MPII)、エチルメチルイミダゾールアイオダイド(EMII)、エチルイミダゾールアイオダイド(EII)、ヘキシルメチルイミダゾールアイオダイド(HMII)などのイミダゾール塩が挙げられる。
 電解質中の電解質濃度は、0.001~1.5モル/リットルの範囲が好ましく、0.01~0.7モル/リットルの範囲が特に好ましい。ただし、本発明の光電変換素子において受光面側に触媒層がある場合、入射光が電解液を通して色素が吸着された多孔性半導体層に達し、キャリアが励起する。そのため、受光面側に触媒層があるユニットセルに用いる電解質濃度により、性能は低下する場合があるので、この点を考慮して電解質濃度を設定するのが好ましい。
 <取り出し電極>
 上記の対極導電層6には、必要に応じて、取り出し電極(図示せず)が設けられる。取り出し電極によって、太陽電池から外部に電流を取り出す。取り出し電極の構成材料は、一般に太陽電池に使用可能で、かつ本発明の効果を発揮し得る材料であれば、特に限定されない。
 <光電変換素子の製造方法>
 図1に示された光電変換素子の製造方法を説明する。本発明の光電変換素子の製造方法は、導電層2、光電変換層3、および多孔性絶縁層4をこの順に備える支持体1と、対極導電層6および触媒層5をこの順に備える対極支持体8とを、多孔性絶縁層4と触媒層5とが互いに対向するように支持体1と対極支持体8とを貼り合わせるステップと、支持体1と対極支持体8との間にキャリア輸送材料9を注入するステップとを含むことを特徴とする。
 このような各ステップによって、光電変換素子を形成することにより、多孔性絶縁層4と触媒層5との結合力を小さくすることができる。たとえば図1に示すように、多孔性絶縁層4と触媒層5がキャリア輸送材料9を介して距離をおいて形成することもできる。これにより多孔性半導体層3から触媒層5への逆電流の発生を抑制することができ、もって熱ストレス下での光電変換効率の保持率を向上させることができる。以下においては、本発明の光電変換素子を作製する各ステップを説明する。
 <支持体上に各層を形成するステップ>
 本発明において、支持体1上に導電層2を形成する方法は、特に限定されず、例えば公知のスパッタ法、スプレー法などを挙げることができる。導電層2に金属リード線(図示せず)を設ける場合は、例えば、公知のスパッタ法、蒸着法などにより支持体1上に金属リード線を形成し、得られた金属リード線を含む支持体1上に導電層2を形成するか、または支持体1上に導電層2を形成し、かかる導電層2上に金属リード線を形成することができる。
 次に、導電層2上に多孔性半導体層を形成する方法としては、公知の方法を用いることができる。具体的には、(1)スクリーン印刷法、インクジェット法などにより、半導体粒子を含有するペーストを導電層上に塗布した後、焼成する方法、(2)所望の原料ガスを用いたCVD法またはMOCVD法などにより、導電層上に成膜する方法、(3)原料固体を用いたPVD法、蒸着法、スパッタリング法などにより、導電層上に成膜する方法、(4)ゾル-ゲル法、電気化学的な酸化還元反応を利用した方法などにより、導電層上に成膜する方法などが挙げられる。これらの方法の中で、厚膜の多孔性半導体層を低コストで成膜できることから、ペーストを用いたスクリーン印刷法が特に好ましい。
 酸化チタンからなる半導体粒子を用いて多孔性半導体層を形成する方法を、具体的に説明する。まず、チタンイソプロポキシド(キシダ化学株式会社製)125mLを0.1Mの硝酸水溶液(キシダ化学株式会社製)750mLに滴下して加水分解をさせ、80℃で8時間加熱することにより、ゾル液を調製する。
 その後、得られたゾル液をチタン製オートクレーブ中で230℃で11時間加熱して、酸化チタンからなる微粒子を成長させ、超音波分散を30分間行ない、平均粒径(平均一次粒径)15nmの酸化チタン粒子を含むコロイド溶液を調製する。次いで、得られたコロイド溶液に2倍容量のエタノールを加え、これを回転数5000rpmで遠心分離することにより、酸化チタンからなる半導体粒子を得る。
 次いで、得られた酸化チタンからなる半導体粒子を洗浄した後、エチルセルロースとテルピネオールを無水エタノールに溶解させたものを加え、攪拌することにより酸化チタンからなる半導体粒子を分散させる。その後、混合液を真空条件下で加熱してエタノールを蒸発させ、酸化チタンペーストを得る。最終的な組成として、例えば、酸化チタン固体濃度20wt%、エチルセルロース10wt%、テルピネオール64wt%となるように濃度を調整する。
 半導体粒子を含有する(懸濁させた)ペーストを調製するために用いる溶剤としては、上記以外にエチレングリコールモノメチルエーテルなどのグライム系溶剤、イソプロピルアルコールなどのアルコール系溶剤、イソプロピルアルコール/トルエンなどの混合溶剤、水などが挙げられる。
 次いで、上記の方法により半導体粒子を含有するペーストを導電層上に塗布し、焼成して多孔性半導体層を得る。乾燥および焼成は、使用する支持体や半導体粒子の種類により、温度、時間、雰囲気などの条件を適宜調整する必要がある。焼成は、例えば、大気雰囲気下または不活性ガス雰囲気下、50~800℃程度の範囲内で、10秒~12時間程度で行なうことができる。この乾燥および焼成は、単一の温度で1回または温度を変化させて2回以上行なうことができる。
 多孔性半導体層上に多孔性絶縁層4を形成する方法としては、特に限定されず、公知の方法が挙げられる。具体的には、(1)スクリーン印刷法、インクジェット法などにより、半導体粒子を含有するペーストを導電層上に塗布した後、焼成する方法、(2)所望の原料ガスを用いたCVD法またはMOCVD法などにより、導電層上に成膜する方法、(3)原料固体を用いたPVD法、蒸着法、スパッタリング法などにより、導電層上に成膜する方法、(4)ゾル-ゲル法、電気化学的な酸化還元反応を利用した方法などにより、導電層上に成膜する方法などが挙げられる。これらの方法の中で、厚膜の多孔性絶縁層を低コストで成膜できることから、ペーストを用いたスクリーン印刷法が特に好ましい。
 <多孔性半導体層に色素を吸着させるステップ>
 多孔性半導体層に色素を吸着させる方法としては、例えば導電層2上に形成された多孔性半導体層を、色素を溶解した溶液(色素吸着用溶液)に浸漬する方法が挙げられる。色素を溶解させる溶剤としては、色素を溶解するものであればよく、具体的には、エタノールなどのアルコール類、アセトンなどのケトン類、ジエチルエーテル、テトラヒドロフランなどのエーテル類、アセトニトリルなどの窒素化合物類、クロロホルムなどのハロゲン化脂肪族炭化水素、ヘキサンなどの脂肪族炭化水素、ベンゼンなどの芳香族炭化水素、酢酸エチルなどのエステル類、水などが挙げられる。これらの溶剤は2種類以上を混合して用いることもできる。
 溶液中の色素濃度は、使用する色素および溶剤の種類により適宜調整することができるが、吸着機能を向上させるためにはできるだけ高濃度である方が好ましく、例えば、5×10-4モル/リットル以上であればよい。
 <対極支持体上に各層を形成するステップ>
 次に、上記の支持体1とは別の対極支持体8を用いて、かかる対極支持体8上に、対極導電層6、および触媒層5をこの順に形成するステップを行なう。ここで、対極導電層6を形成する方法としては、上記の導電層2を形成する方法と同様の方法を用いることができる。
 <支持体と対極支持体とを貼り合わせるステップ>
 次に、多孔性絶縁層と触媒層とが互いに対向するように上記の支持体と上記の対極支持体とを貼り合わせるステップを行なう。かかるステップは、透明電極基板11と対極支持体8とを貼り合わせるように、これらの間に封止部材7を配置し、加熱または紫外線照射によって固定する。
 封止部材7は、熱融着フィルムや紫外線硬化樹脂などを多孔性絶縁層の周囲を囲う形に切り出して作製する。封止部材7のパターンは、シリコーン樹脂、エポキシ樹脂、ガラスフリットを使用する場合には、ディスペンサーによって形成することができる。一方、ホットメルト樹脂を使用する場合には、シート状のホットメルト樹脂にパターニングした穴を開けることによって形成することができる。
 <キャリア輸送材料を注入するステップ>
 対極支持体に予め設けてあった電解質(キャリア輸送材料)注入用孔からキャリア輸送材料を注入することにより充填する。電解質注入孔はキャリア輸送材料の注入後に、紫外線硬化樹脂を用いて封止する。以上の各ステップによって、図1に示すような光電変換素子10が製造される。
 実施例および比較例によって本発明をさらに具体的に説明するが、これらの実施例および比較例により本発明が限定されるものではない。なお、以下の実施例および比較例において、各層の膜厚は、特に断りがない限り、3次元表面微細構造測定機(株式会社東京精密製、商品名:サーフコム1400A)を用いて測定した。
 (実施例1)
 まず、10mm×10mm×厚さ4mmの透明電極基板11(日本板硝子株式会社製、SnO2膜付ガラス)を用意した。かかる透明電極基板11は、ガラスからなる支持体1上にSnO2膜からなる導電層2が成膜されたものである。
 <支持体上に各層を形成するステップ>
 次いで、5mm×5mmの開口部を有するスクリーン版とスクリーン印刷機(ニューロング精密工業株式会社製、型番:LS-34TVA)を用いて、透明電極基板11上に市販の酸化チタンペースト(Solaronix社製、商品名:Ti-Nanoxide D/SP、平均粒径13nm)を塗布し、室温で1時間レベリングした。
 その後、得られた塗膜を80℃に設定したオーブンで20分間乾燥させて、さらに450℃に設定した焼成炉(株式会社デンケン製、型番:KDF P-100)を用いて空気中で60分間焼成した。上記の酸化チタンペーストの塗布および焼成を交互に各5回繰り返すことにより、膜厚15μmの多孔性半導体層(酸化チタン層)3を形成した。
 上記のスクリーン印刷機を用いて、多孔性半導体層上に酸化ジルコニウムペーストを塗布し、室温で1時間レベリングを行なった。かかる酸化ジルコニウムペーストは、粒径50nmの酸化ジルコニウムの微粒子(シーアイ化成株式会社製)をテルピネオールに分散させて、さらにエチルセルロースを混合してペースト状に調製したものである。なお、酸化ジルコニウム微粒子とテルピネオールとエチルセルロースの重量比は、65:30:5とした。
 次いで、上記で得られた塗膜を80℃で20分間予備乾燥し、さらに450℃で1時間焼成することにより、膜厚5μmの多孔性絶縁層(酸化ジルコニウム膜)4を形成した。
 <多孔性半導体層に色素を吸着させるステップ>
 上記で作製した多孔性半導体層に対し、色素を吸着するステップを行なう。ここで色素を吸着させるために、まずは色素吸着用溶液を調製した。かかる色素吸着用溶液は、アセトニトリル(Aldrich Chemical Company製)とt-ブチルアルコール(Aldrich Chemical Company製)とを1:1の体積比で混合させた混合溶剤に対し、増感色素 N719(Solaronix社製、商品名:Ruthenium535-bis TBA)の濃度が4×10-4mol/Lになるように溶解させりことにより準備した。
 かかる色素吸着用溶液に対し、多孔性半導体層を40℃の温度条件で20時間浸漬させることにより、多孔性半導体層に増感色素を吸着させた。その後、エタノール(Aldrich Chemical Company製)で洗浄することにより、約40℃で約10分間乾燥させた。
 かかる電解液は、アセトニトリルを溶剤として、これに酸化還元種としてメチルプロピルイミダゾリウムアイオダイド(富山薬品社製)が濃度0.8モル/リットル、I2(キシダ化学社製)が濃度0.15モル/リットルになるように、さらに添加剤としてグアニジンチオシアナート(Aldrich Chemical Company製)が濃度0.1モル/リットル、N-メチルベンズイミダゾール(Aldrich Chemical Company製)が濃度0.5モル/リットルとなるように添加し、溶解させて調製した。
 <対極支持体上に各層を形成するステップ>
 上記の透明電極基板とは別に、さらにもう1枚の透明電極基板(日本板硝子株式会社製、SnO2膜付ガラス)を用意し、かかる透明電極基板に対し、バッチ式高真空蒸着装置(アルバック社製、製品名:ei―5)を用いて、5nmの厚みのPtからなる触媒層を形成した。この透明電極基板は、対極支持体8とその上に形成された対極導電層6とを有するものである。
 <支持体と対極支持体とを貼り合わせるステップ>
 多孔性半導体層および多孔性絶縁層4を形成した透明電極基板11の周囲部に、紫外線硬化材(スリーボンド社製、型番:31X-101)を塗布した。一方、対極支持体8には予め電解質注入用孔を設け、これを上記の支持体1に貼り合せた。
 次いで、紫外線照射ランプ(EFD社製、商品名:Novacure)を用いて、塗布部分に紫外線を照射して紫外線硬化材を硬化させることにより封止部材7を形成した。このようにして支持体1と対極支持体8とを固定した。
 <キャリア輸送材料を注入するステップ>
 次に、対極支持体8の電解質注入用孔から電解質を注入した。その後、電解質注入用孔を樹脂にて封止することにより、図1に相当する光電変換素子を完成した。
 (実施例2)
 多孔性絶縁層の大きさを7mm×7mmにしたことを除いては、実施例1と同様の方法によって光電変換素子を作製した。
 (実施例3)
 増感色素をブラックダイ色素(商品名:Ruthenium620-1H3TBA、Solaronix社製)にしたことを除いては、実施例2と同様の方法によって光電変換素子を作製した。
 (実施例4~6)
 実施例4~6においては、多孔性半導体層の膜厚を7μm、10μm、14μmとしたことを除いては、実施例1と同様の方法によって光電変換素子を作製した。
 (実施例7~9)
 実施例7~9においては、多孔性半導体層を構成する微粒子の粒径および材料を、粒径約30nmの酸化アルミニウム、粒径約20nmの酸化ケイ素、粒径30mnの酸化マグネシウム(いずれもシーアイ化成株式会社製)としたことを除いては、実施例1と同様の方法によって光電変換素子を作製した。
 (比較例1)
 多孔性絶縁層を形成しなかったことを除いては、実施例1と同様の方法によって光電変換素子を作製した。すなわち、図2に示される光電変換素子を作製した。
 (比較例2)
 増感色素を、ブラックダイ色素(商品名:Ruthenium620-1H3TBA、Solaronix社製)とした以外は、比較例1と同様の方法によって光電変換素子を作製した。
 (比較例3、4)
 比較例3および4においては、多孔性半導体層の膜厚を1.5μm、3μmとしたことを除いては、比較例1と同様の方法によって光電変換素子を作製した。
 (評価方法および結果)
 実施例1~9および比較例1~4の光電変換素子に対し、AM1.5ソーラーシミュレータを用いて1kW/m2の強度の光を照射することにより、その開放電圧を測定した。その後、85℃で1000時間保持した後に、再度同様の条件で開放電圧を測定した。そして、85℃保持前の開放電圧を85℃保持後の開放電圧で除することにより、光電変換素子の開放電圧の保持率(%)を測定した。この結果を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000004
 表1に示される結果から、実施例1~9の光電変換素子は、比較例1~4に比して、開放電圧の保持率が高いことが明らかとなった。このため、実施例1~9の光電変換素子は、比較例1~4のそれに比して、熱ストレス下において、光電変換効率の保持率が高いことが明らかである。このように各実施例の光電変換素子が85℃保持前後でも開放電圧が低下しなかったのは、光電変換層3と触媒層5との間に多孔性絶縁層4を形成したことにより、リーク電流が発生しにくくなったことによるものと考えられる。
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 支持体、2 導電層、3 光電変換層、4 多孔性絶縁層、5 触媒層、6 対極導電層、7 封止部材、8 対極支持体、9 キャリア輸送材料、10,20 光電変換素子、11 透明電極基板。

Claims (6)

  1.  少なくとも支持体(1)、導電層(2)、光電変換層(3)、多孔性絶縁層(4)、触媒層(5)、対極導電層(6)、および対極支持体(8)をこの順で備えた光電変換素子(10)であって、
     前記光電変換層(3)は、半導体材料を含む多孔性半導体層および該多孔性半導体層に吸着された光増感素子を含み、
     前記多孔性絶縁層(4)と前記触媒層(5)との間にキャリア輸送材料(9)が充填されており、
     前記多孔性半導体層および前記多孔性絶縁層(4)は、その内部に空隙を有し、かつ該空隙には前記キャリア輸送材料(9)が充填されており、
     前記多孔性絶縁層(4)と前記触媒層(5)との間でスクリーン印刷法、蒸着法、またはスパッタリング法による成膜により得られる強固な結合力を有さない、光電変換素子(10)。
  2.  前記多孔性絶縁層(4)の前記支持体(1)への投影面積は、前記光電変換層(3)の前記支持体(1)への投影面積よりも大きい、請求項1に記載の光電変換素子(10)。
  3.  前記多孔性絶縁層(4)は、5μm以上の層厚である、請求項1または2に記載の光電変換素子(10)。
  4.  前記多孔性絶縁層(4)は、微粒子が層状に形成されたものであり、かつ20nm以上100nm以下の空隙を有する、請求項1~3のいずれかに記載の光電変換素子(10)。
  5.  前記微粒子は、酸化ジルコニウム、酸化アルミニウム、酸化ケイ素、および酸化マグネシウムからなる群から選ばれる1種以上からなる、請求項4に記載の光電変換素子(10)。
  6.  導電層(2)、光電変換層(3)、および多孔性絶縁層(4)をこの順に備える支持体(1)と、対極導電層(6)および触媒層(5)をこの順に備える対極支持体(8)とを、前記多孔性絶縁層(4)と前記触媒層(5)とが互いに対向するように前記支持体(1)と前記対極支持体(8)とを貼り合わせるステップと、
     前記支持体(1)と前記対極支持体(8)との間にキャリア輸送材料(9)を注入するステップとを含む、光電変換素子(10)の製造方法。
PCT/JP2011/076886 2010-11-24 2011-11-22 光電変換素子およびその製造方法 WO2012070562A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012545759A JP5956929B2 (ja) 2010-11-24 2011-11-22 光電変換素子およびその製造方法
EP11842987.7A EP2645470A4 (en) 2010-11-24 2011-11-22 Photoelectric transducer and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010261236 2010-11-24
JP2010-261236 2010-11-24

Publications (1)

Publication Number Publication Date
WO2012070562A1 true WO2012070562A1 (ja) 2012-05-31

Family

ID=46145904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076886 WO2012070562A1 (ja) 2010-11-24 2011-11-22 光電変換素子およびその製造方法

Country Status (3)

Country Link
EP (1) EP2645470A4 (ja)
JP (1) JP5956929B2 (ja)
WO (1) WO2012070562A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014053150A (ja) * 2012-09-06 2014-03-20 Sharp Corp 光電変換素子および光電変換モジュール

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01220380A (ja) 1988-02-12 1989-09-04 Gebr Sulzer Ag 光電気化学電池・その製法及び使用法
WO1997016838A1 (en) 1995-10-31 1997-05-09 Ecole Polytechnique Federale De Lausanne A battery of photovoltaic cells and process for manufacturing the same
JPH11339866A (ja) * 1998-05-28 1999-12-10 Sharp Corp 光電変換素子及び色素増感型太陽電池
JP2001357897A (ja) 2000-06-14 2001-12-26 Fuji Xerox Co Ltd 光電変換モジュール
WO2004036683A1 (ja) * 2002-10-15 2004-04-29 Sharp Kabushiki Kaisha 色素増感型太陽電池及び色素増感型太陽電池モジュール
WO2011052731A1 (ja) * 2009-11-02 2011-05-05 シャープ株式会社 湿式太陽電池および湿式太陽電池モジュール

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311197A (ja) * 2003-04-07 2004-11-04 Hitachi Metals Ltd 光電極およびそれを使用した色素増感型太陽電池
JP2004319383A (ja) * 2003-04-18 2004-11-11 Sharp Corp 色素増感太陽電池モジュール
JP2005158470A (ja) * 2003-11-25 2005-06-16 Ngk Spark Plug Co Ltd 色素増感型太陽電池
JP4063802B2 (ja) * 2004-08-04 2008-03-19 シャープ株式会社 光電極
JP5273709B2 (ja) * 2008-07-02 2013-08-28 シャープ株式会社 色素増感太陽電池、その製造方法および色素増感太陽電池モジュール

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01220380A (ja) 1988-02-12 1989-09-04 Gebr Sulzer Ag 光電気化学電池・その製法及び使用法
WO1997016838A1 (en) 1995-10-31 1997-05-09 Ecole Polytechnique Federale De Lausanne A battery of photovoltaic cells and process for manufacturing the same
JPH11339866A (ja) * 1998-05-28 1999-12-10 Sharp Corp 光電変換素子及び色素増感型太陽電池
JP2001357897A (ja) 2000-06-14 2001-12-26 Fuji Xerox Co Ltd 光電変換モジュール
WO2004036683A1 (ja) * 2002-10-15 2004-04-29 Sharp Kabushiki Kaisha 色素増感型太陽電池及び色素増感型太陽電池モジュール
WO2011052731A1 (ja) * 2009-11-02 2011-05-05 シャープ株式会社 湿式太陽電池および湿式太陽電池モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2645470A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014053150A (ja) * 2012-09-06 2014-03-20 Sharp Corp 光電変換素子および光電変換モジュール

Also Published As

Publication number Publication date
EP2645470A4 (en) 2017-04-12
JP5956929B2 (ja) 2016-07-27
JPWO2012070562A1 (ja) 2014-05-19
EP2645470A1 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
JP4523549B2 (ja) 色素増感太陽電池および色素増感太陽電池モジュール
JP5273709B2 (ja) 色素増感太陽電池、その製造方法および色素増感太陽電池モジュール
JP4761327B2 (ja) 湿式太陽電池および湿式太陽電池モジュール
WO2010044445A1 (ja) 色素増感太陽電池および色素増感太陽電池モジュール
JP5714005B2 (ja) 湿式太陽電池および湿式太陽電池モジュール
JP5118233B2 (ja) 光電変換素子および光電変換素子モジュール
JP2012009374A (ja) 色素増感太陽電池およびその製造方法、並びに色素増感太陽電池モジュール
JP5657780B2 (ja) 光電変換素子および光電変換モジュール
JP6029982B2 (ja) 光電変換素子
WO2013164967A1 (ja) 光電変換素子および光電変換モジュール
JPWO2014038570A1 (ja) 光電変換素子、その製造方法、光電変換素子モジュールおよびその製造方法
JP2014238969A (ja) 太陽電池
JP5930970B2 (ja) 光電変換素子および光電変換素子モジュール
JP6104177B2 (ja) 光電変換素子
JP6050247B2 (ja) 湿式太陽電池および湿式太陽電池モジュール
JP5956929B2 (ja) 光電変換素子およびその製造方法
WO2013114733A1 (ja) 光電変換素子モジュール
WO2013024642A1 (ja) 光電変換素子
JP6062376B2 (ja) 光電変換素子
JP2013251229A (ja) 光電変換素子および色素増感太陽電池
JP2013200960A (ja) 光電変換素子モジュールおよびその製造方法
WO2013161557A1 (ja) 光電変換素子モジュールおよびその製造方法
WO2013094447A1 (ja) 光電変換素子
JP2013251228A (ja) 光電変換素子および色素増感太陽電池
JP2014053150A (ja) 光電変換素子および光電変換モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11842987

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012545759

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011842987

Country of ref document: EP