WO2012070531A1 - 光電変換素子 - Google Patents

光電変換素子 Download PDF

Info

Publication number
WO2012070531A1
WO2012070531A1 PCT/JP2011/076803 JP2011076803W WO2012070531A1 WO 2012070531 A1 WO2012070531 A1 WO 2012070531A1 JP 2011076803 W JP2011076803 W JP 2011076803W WO 2012070531 A1 WO2012070531 A1 WO 2012070531A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
photoelectric conversion
core
conversion element
porous semiconductor
Prior art date
Application number
PCT/JP2011/076803
Other languages
English (en)
French (fr)
Inventor
純幸 三浦
福井 篤
恵 扇谷
山中 良亮
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2012545742A priority Critical patent/JP6029982B2/ja
Publication of WO2012070531A1 publication Critical patent/WO2012070531A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2036Light-sensitive devices comprising an oxide semiconductor electrode comprising mixed oxides, e.g. ZnO covered TiO2 particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to a photoelectric conversion element.
  • Patent Document 1 Japanese Patent No. 2664194
  • Patent Document 2 Japanese Patent Laid-Open No. 2008-287900
  • the photoelectric conversion layer is composed of a photoelectric conversion material and an electrolyte material that have adsorbed a photosensitizing dye and have an absorption spectrum in the visible light region.
  • a photoelectric conversion element is also called a “dye-sensitized solar cell”.
  • photoelectric conversion is performed by injecting a carrier transport material 48 such as an electrolytic solution between a light transmissive support 41 and a light transmissive support 42 which are glass substrates.
  • a carrier transport material 48 such as an electrolytic solution between a light transmissive support 41 and a light transmissive support 42 which are glass substrates.
  • the device is manufactured.
  • a conductive layer 43, a sealing material 44, a photoelectric conversion layer 45, a catalyst layer 46, a counter electrode conductive layer 47, and a carrier transport material 48 are formed on a light transmissive support 41 that is a glass substrate.
  • a light-transmitting support 42 which is a glass substrate.
  • the photoelectric conversion element When the photoelectric conversion element is irradiated with light, electrons are generated in the photoelectric conversion layer 45, the generated electrons move from the conductive layer 43 to the counter electrode conductive layer 47 through the external electric circuit, and the moved electrons are transferred to the electrolytic solution. It returns to the photoelectric conversion layer 45 by the ions in the (carrier transport material 48). Electrical energy is extracted by such a series of electron flows.
  • Patent Document 3 a porous insulating layer in which an insulating covering portion is formed is provided between the porous semiconductor layer and the catalyst layer constituting the photoelectric conversion layer.
  • Patent Document 3 describes a porous structure formed by particles made of a first insulating layer material such as zirconium oxide as a porous insulating layer covered with a second insulating layer material such as silicon oxide. Has been.
  • One of the problems in such a photoelectric conversion element is a decrease in performance against heat stress.
  • One of the mechanisms of deterioration due to thermal stress is an increase in reverse current. This is a phenomenon in which the electrons generated in the photoelectric conversion layer in the series of electrons flow are not taken out by the external electric circuit but flow to the carrier transport material and further to the catalyst layer. If the reverse current in this performance deterioration can be suppressed, it becomes possible to prevent the performance deterioration of the photoelectric conversion element.
  • the present invention suppresses an increase in reverse current which is one of the deterioration factors of durability in a photoelectric conversion element, in particular, an increase in reverse current from the photoelectric conversion layer through the carrier transport material to the catalyst layer.
  • the purpose is to improve the retention of conversion efficiency.
  • the present invention is a photoelectric conversion element comprising at least a light transmissive support, a conductive layer, a photoelectric conversion layer, a catalyst layer, and a counter electrode conductive layer in this order
  • the photoelectric conversion layer includes a porous semiconductor layer containing a semiconductor material and a photosensitizer adsorbed on the porous semiconductor layer, Core particles made of a semiconductor material in the porous semiconductor layer or on the catalyst layer side of the porous semiconductor layer, and a shell portion made of an insulating oxide covering at least a part of the surface of the core particles It is a photoelectric conversion element characterized by having the core-shell type particle
  • the core-shell type particles are in contact with each other at least at a part of the shell portion, but the core particles are preferably not in direct contact with each other.
  • a carrier transport material is provided between the conductive layer and the catalyst layer, and the carrier transport material is in contact with the photoelectric conversion layer and the catalyst layer.
  • the photoelectric conversion layer preferably includes a core-shell type particle layer made of the core-shell type particle on the catalyst layer side of the porous semiconductor layer made of the semiconductor material.
  • the projected area of the core-shell particle layer on the light transmissive support is preferably larger than the projected area of the porous semiconductor layer on the light transmissive support.
  • the porous semiconductor layer preferably includes a single layer type particle made of a semiconductor material and the core shell type particle.
  • Titanium oxide is preferable as the semiconductor material.
  • the insulating oxide is preferably at least one selected from the group consisting of magnesium oxide, zirconium oxide, aluminum oxide, and silicon oxide.
  • the photoelectric conversion element of the present invention includes a conductive layer, a photoelectric conversion layer, a catalyst layer, and a counter electrode conductive layer in this order on a support made of a light transmissive material (light transmissive support).
  • the photoelectric conversion layer includes a porous semiconductor layer containing a semiconductor material and a photosensitizer element adsorbed on the porous semiconductor layer.
  • the photoelectric conversion device of the present invention includes a core particle made of a semiconductor material in the porous semiconductor layer and / or another layer (a core-shell type particle layer described later), and at least a part of the surface of the core particle. And a core-shell type particle comprising a shell portion made of an insulating oxide covering the surface.
  • FIG. 1 is a schematic cross-sectional view showing the laminated structure of the main part of the photoelectric conversion element of the present invention.
  • a conductive layer 13, a photoelectric conversion layer 15, a core-shell type particle layer 19, a catalyst layer 16, and a counter electrode conductive layer 17 are stacked in this order on a light transmissive support 11.
  • the carrier transport material 18 penetrates from the photoelectric conversion layer 15 to the core-shell type particle layer 19, the catalyst layer 16, and the counter electrode conductive layer 17.
  • the side surfaces are sealed with a sealing material 14, and the light transmissive support 12 is provided on the top surface.
  • the light transmissive support 11 is a member that becomes a light receiving surface of the photoelectric conversion element and needs to be light transmissive.
  • the thickness of the light transmissive support 11 is not particularly limited, but is preferably 0.2 to 5 mm.
  • the light-transmitting material constituting the light-transmitting support 11 is not particularly limited as long as it is a material that can generally be used for a photoelectric conversion element and can exhibit the effects of the present invention.
  • Examples of such materials include glass substrates such as soda glass, fused silica glass, and crystal quartz glass, and heat resistant resin plates such as flexible films.
  • film examples include tetraacetylcellulose (TAC), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), polycarbonate (PC), and polyarylate. (PA), polyetherimide (PEI), phenoxy resin, polytetrafluoroethylene (PTFE), and the like.
  • TAC tetraacetylcellulose
  • PET polyethylene terephthalate
  • PPS polyphenylene sulfide
  • PC polycarbonate
  • PA polyarylate
  • PA polyetherimide
  • PTFE polytetrafluoroethylene
  • the conductive layer 13 serves as a light receiving surface of the photoelectric conversion element and needs to be light transmissive, and thus is made of a light transmissive material.
  • any material can be used as long as it is a material that substantially transmits light having a wavelength having effective sensitivity to at least a photosensitizer described later, and is not necessarily transparent to light in all wavelength regions.
  • the light-transmitting material constituting the conductive layer is not particularly limited as long as it is a material that can generally be used for a photoelectric conversion element and can exhibit the effects of the present invention.
  • Examples of the material constituting such a conductive layer include indium tin composite oxide (ITO), fluorine-doped tin oxide (FTO), and zinc oxide (ZnO).
  • the thickness of the conductive layer 13 is preferably 0.02 to 5 ⁇ m, and the lower the film resistance, the better.
  • the resistance is preferably 40 ⁇ / sq or less.
  • Membrane resistance is the resistance in each layer.
  • a metal lead wire may be provided in the conductive layer 13 in order to reduce the film resistance.
  • the metal lead wire material include platinum, gold, nickel, and titanium.
  • the metal lead wire can be formed on the light transmissive support by, for example, a known sputtering method or vapor deposition method, and the conductive layer is formed by forming a conductive layer on the light transmissive support including the metal lead wire. 13 can be provided with metal lead wires. Further, for example, after forming the conductive layer 13 on the light transmissive support, a metal lead wire may be formed on the surface of the conductive layer by a known method.
  • the width of the metal lead wire is preferably 10 ⁇ m to 200 ⁇ m. When the metal lead wire is provided with such a width, there is no possibility that the amount of incident light is reduced and the photoelectric conversion efficiency is good. A photoelectric conversion element can be manufactured.
  • the photoelectric conversion layer 15 shown in FIG. 1 is a laminated body in which a porous semiconductor layer 151 and a core-shell type particle layer 152 are laminated.
  • a photosensitizer is adsorbed on the surface of the porous semiconductor layer 151 (the entire surface of the porous semiconductor layer including the inner surface of the pores).
  • the carrier transport material 18 is filled in the pores of the porous semiconductor layer 151 and the core-shell type particle layer 152.
  • the “porous semiconductor layer” is composed of a semiconductor material, and the form thereof is not particularly limited as long as it is porous.
  • Various forms such as a provided film can be used. Among these, it is preferable to use a film-like layer in which particles made of a large number of semiconductor materials are fixed as the porous semiconductor layer.
  • porous means that the specific surface area is 0.5 to 300 m 2 / g and the porosity is 20% or more.
  • the specific surface area is a value determined by the BET method which is a gas adsorption method for measuring the surface area
  • the porosity is the thickness (film thickness) and mass of the porous semiconductor layer, and the density of the material. It is a value obtained by calculation from In this way, by increasing the specific surface area, it is possible to adsorb many photosensitizer element molecules and to absorb sunlight efficiently.
  • the porosity by setting the porosity to a value equal to or higher than a certain value, it is possible to sufficiently diffuse the carrier transport material for returning electrons to the photoelectric conversion layer.
  • the semiconductor material which comprises a porous semiconductor layer will not be specifically limited if it is generally used for the material of a photoelectric conversion element.
  • semiconductor materials include titanium oxide, zinc oxide, tin oxide, iron oxide, cadmium sulfide, lead sulfide, zinc sulfide, indium phosphide, copper-indium sulfide (CuInS 2 ), CuAlO 2 , and SrCu.
  • a compound such as 2 O 2 or a combination thereof may be mentioned.
  • metal oxides, particularly titanium oxide, zinc oxide, and tin oxide are preferable, and titanium oxide is particularly preferable from the viewpoint of photoelectric conversion efficiency, stability, and safety.
  • These semiconductor materials can also be used as a mixture of two or more as described above, and the mixing ratio in this case may be adjusted as appropriate.
  • the titanium oxide is not limited to various narrow titanium oxides such as anatase type titanium oxide, rutile type titanium oxide, amorphous titanium oxide, metatitanic acid, orthotitanic acid, etc., but also titanium hydroxide and hydrous titanium oxide. These can be used alone or as a mixture.
  • the two types of crystal systems, anatase type and rutile type can be in any form depending on the production method and thermal history, but the anatase type is common.
  • the semiconductor material constituting the porous semiconductor layer is preferably a polycrystalline sintered body composed of fine particles from the viewpoints of stability, ease of crystal growth, manufacturing cost, and the like. From the viewpoint of obtaining an effective surface area sufficiently large with respect to the projected area of the porous semiconductor layer onto the light-transmitting support in order to convert incident light into electrical energy with high yield,
  • the average particle size is preferably 5 nm or more and less than 50 nm, more preferably 10 nm or more and 30 nm or less.
  • the light scattering property of the porous semiconductor layer can be adjusted by the particle diameter (average particle diameter) of the semiconductor material used for forming this layer. Although it depends on the formation conditions of the porous semiconductor layer, in general, the porous semiconductor layer formed of semiconductor particles having a large average particle diameter has high light scattering properties and can scatter incident light and improve the light capture rate. .
  • a porous semiconductor layer formed of semiconductor particles having a small average particle diameter has low light scattering properties, but the amount of adsorption can be increased by increasing the number of adsorption points (adsorption sites) of the photosensitizer.
  • the porous semiconductor layer of the present invention is formed by further providing a layer made of semiconductor particles having an average particle diameter of 50 nm or more, more preferably 50 nm or more and 600 nm or less on the polycrystalline sintered body made of the fine particles. May be.
  • the porous semiconductor layer has a layer made of a porous semiconductor having a high light scattering property (a porous semiconductor layer formed of semiconductor particles having a large average particle diameter), the average particle diameter of the constituent semiconductor material is large.
  • the mechanical strength is low, and there may be a problem as a structure of the photoelectric conversion element.
  • the mechanical strength of the porous semiconductor layer is compensated by blending a semiconductor material having a small average particle diameter with a semiconductor material having a large average particle diameter at a ratio of, for example, 10% by mass or less. Can do.
  • the layer thickness of the porous semiconductor layer is not particularly limited, but is preferably 0.5 to 50 ⁇ m from the viewpoint of photoelectric conversion efficiency.
  • the layer thickness of the layer is preferably 0.1 to 40 ⁇ m, more preferably 5 to 20 ⁇ m
  • the layer thickness of the particle composed of particles having a diameter of 5 nm or more and less than 50 nm is preferably 0.1 to 50 ⁇ m, more preferably 10 to 40 ⁇ m.
  • the method for forming a film-like porous semiconductor layer on the conductive layer is not particularly limited, and a known method may be mentioned. Specifically, (1) a method in which a paste containing fine particles made of a semiconductor material is applied on a conductive layer by a screen printing method, an ink jet method, etc., and then fired. (2) CVD using a desired source gas (3) A method for forming a film on a conductive layer by a PVD method using a raw material solid, a vapor deposition method, a sputtering method, or the like, and (4) a sol-gel. And a method of forming a film on the conductive layer by a method using an electrochemical oxidation-reduction reaction or the like. Among these methods, a screen printing method using a paste is particularly preferable because a relatively thick porous semiconductor layer can be formed at low cost.
  • a photoelectric conversion layer in which more photosensitizers described below are adsorbed.
  • a porous semiconductor layer having a large specific surface area is preferable, and when a film-shaped one is used, for example, a specific surface area of 10 to 200 m 2 / g is preferable.
  • the above specific surface area is preferable from the viewpoint of the amount of adsorption of the photosensitizer.
  • 125 mL of titanium isopropoxide is dropped into 750 mL of 0.1 M nitric acid aqueous solution to cause hydrolysis, and heated at 80 ° C. for 8 hours to prepare a sol solution. Thereafter, the obtained sol solution was heated in a titanium autoclave at 230 ° C. for 11 hours to grow titanium oxide particles, and then subjected to ultrasonic dispersion for 30 minutes at room temperature to obtain an average particle size (average primary particle). A colloidal solution containing titanium oxide particles having a diameter of 15 nm is prepared. Next, ethanol twice the volume of the solution is added to the obtained colloidal solution, and this is centrifuged at a rotational speed of 5000 rpm to separate the titanium oxide particles and the solvent to obtain titanium oxide particles.
  • a mixed solution obtained by adding a solution obtained by dissolving ethyl cellulose and terpineol in absolute ethanol to the titanium oxide particles is stirred to disperse the titanium oxide particles. Thereafter, the mixed solution is heated under vacuum to evaporate ethanol to obtain a titanium oxide paste.
  • the concentration is adjusted so that the solid concentration of titanium oxide is 20 wt%, the ethyl cellulose is 10 wt%, and the terpineol is 70 wt%.
  • the final composition is exemplary and is not limited thereto.
  • Solvents used to prepare (suspended) paste containing semiconductor particles include, in addition to the above, glyme solvents such as ethylene glycol monomethyl ether, alcohol solvents such as isopropyl alcohol, and mixtures of isopropyl alcohol and toluene. A solvent, water, etc. are mentioned.
  • a paste containing semiconductor particles is applied onto the conductive layer by the above method and fired to obtain a porous semiconductor layer.
  • conditions such as temperature, time, and atmosphere according to the type of the light-transmitting support and the semiconductor particles to be used. Firing can be performed, for example, in an air atmosphere or an inert gas atmosphere within a range of about 50 to 800 ° C. for about 10 seconds to 12 hours. This drying and baking can be performed once at a single temperature or twice or more at different temperatures.
  • the specific surface area of the porous semiconductor layer thus produced is 10 to 200 m 2 / g.
  • the average particle diameter in this specification is the value calculated
  • D (K ⁇ ⁇ ) / ( ⁇ ⁇ cos ⁇ ) (where D is the crystal grain size ( ⁇ ), and K is The average particle size is determined from Scherrer's constant, ⁇ is the wavelength of X-rays [ ⁇ ], ⁇ is the half width (rad) of the diffraction line, and ⁇ is the diffraction angle.
  • the core-shell type particle layer 19 is a layer formed by fixing core-shell type particles.
  • the “core-shell type particle” is a particle composed of a core particle made of a semiconductor material and a shell portion made of an insulating oxide (insulating oxide) covering at least a part of the surface of the core particle. .
  • the thickness of the shell portion is preferably 1 nm to 10 nm.
  • the form of the core-shell type particle layer 19 is not particularly limited as long as it is porous, and various forms can be used, but a film formed by fixing a large number of core-shell type particles made of a semiconductor material Is preferred.
  • the state of the core-shell type particles in such a core-shell type particle layer is shown in FIG.
  • the core-shell type particles are in contact with each other at least at a part of the shell portion, but the core particles are preferably not in direct contact with each other. This is to reduce the electron conductivity between the core-shell particles and suppress the increase of current in the counter electrode direction.
  • the projected area of the core-shell particle layer on the light transmissive support is larger than the projected area of the porous semiconductor layer on the light transmissive support. This is because an increase in reverse current due to electrons moving to the catalyst layer side through the electron carrier transport material in the photoelectric conversion layer exposed to thermal stress is suppressed, and performance degradation is suppressed.
  • the production method of the core-shell type particle is not particularly limited, and a known method can be mentioned. Specifically, a spray drying method, a fluidized bed method, a CVD (chemical vapor deposition), a PVD (physical adsorption), a wet chemical method (liquid phase method) and the like can be mentioned.
  • a core-shell type particle production method by a wet chemical method (liquid phase method) will be described.
  • a first solution in which core particles are dispersed in a first organic solvent with a first dispersant is prepared.
  • the dispersant is peeled off from the core particles to aggregate and collect the core particles (nanoparticles).
  • the recovered core particles are dispersed in the second organic solvent by the second dispersant to form a second solution.
  • an insulating oxide serving as a precursor of the shell portion is added to the second solution, thereby forming a shell portion on the surface of the core particle.
  • Various pastes are prepared using the core-shell type particles thus prepared, and a core-shell type particle layer can be obtained using the paste in the same manner as the porous semiconductor layer forming method.
  • the insulating oxide is preferably composed of at least one selected from the group consisting of magnesium oxide, zirconium oxide, aluminum oxide, and silicon oxide.
  • the semiconductor material is preferably titanium oxide.
  • the core portion and the porous semiconductor layer portion use the same material. If the core part, the shell part, and the porous semiconductor part are made of different materials, but only the shell part is made of a different material, the yield is improved from the viewpoint of expansion rate and the cost is also reduced. It is thought.
  • the core-shell type particle and the single-layer type particle composed of the semiconductor material are mixed to obtain the two types obtained.
  • the porous semiconductor layer may be formed using a mixture of these particles.
  • the state of the core-shell type particles in such a porous semiconductor layer is shown in FIG.
  • the porous semiconductor layer functions as the photoelectric conversion layer 15 by adsorbing a dye, quantum dots, or the like as a photosensitizer and filling a carrier transport material 18 described later.
  • Examples of the dye that functions as a photosensitizer by being adsorbed on the porous semiconductor layer include organic dyes and metal complex dyes that absorb in various visible light regions and / or infrared light regions. One type or two or more types can be selectively used.
  • organic dyes examples include azo dyes, quinone dyes, quinone imine dyes, quinacridone dyes, squarylium dyes, cyanine dyes, merocyanine dyes, triphenylmethane dyes, xanthene dyes, porphyrin dyes, and perylenes. And dyes such as indigo dyes and naphthalocyanine dyes. These organic dyes generally have a larger extinction coefficient than metal complex dyes in which molecules are coordinated to transition metals.
  • metal complex dyes Cu, Ni, Fe, Co, V, Sn, Si, Ti, Ge, Cr, Zn, Ru, Mg, Al, Pb, Mn, In, Mo, Y, Zr, Nb, Sb, Metals such as La, W, Pt, Ta, Ir, Pd, Os, Ga, Tb, Eu, Rb, Bi, Se, As, Sc, Ag, Cd, Hf, Re, Au, Ac, Tc, Te, Rh Among these, phthalocyanine dyes and ruthenium dyes are preferable, ruthenium metal complex dyes are particularly preferable, and the compounds represented by the following formulas (1) to (3) are particularly preferable. Ruthenium-based metal complex dyes are preferred.
  • the carboxylic acid group, carboxylic anhydride group, alkoxy group, hydroxyl group, hydroxyalkyl group, sulfonic acid group, ester group, mercapto group, phosphonyl group in the dye molecule It is preferable to use those having an interlock group such as. Among these, a carboxylic acid group and a carboxylic anhydride group are particularly preferable.
  • the interlock group provides an electrical bond that facilitates electron transfer between the excited dye and the conduction band of the porous semiconductor layer.
  • Quantum dots that adsorb to a porous semiconductor and function as a photosensitizer include CdS, CdSe, PbS, PbSe, and the like. These sizes are appropriately adjusted depending on the absorption wavelength and the like, but are preferably about 1 nm to 10 nm.
  • a porous semiconductor layer formed on a conductive layer is prepared by dissolving a photosensitizer in a solution (hereinafter referred to as a photosensitizer adsorbing solution).
  • a photosensitizer adsorbing solution a solution
  • immersing a method of immersing in What is necessary is just to adjust immersion conditions suitably.
  • Solvents that dissolve the photosensitizing element may be any solvent that dissolves the element. Specifically, alcohols such as ethanol, ketones such as acetone, ethers such as diethyl ether and tetrahydrofuran, acetonitrile, and the like Nitrogen compounds, halogenated aliphatic hydrocarbons such as chloroform, aliphatic hydrocarbons such as hexane, aromatic hydrocarbons such as benzene, esters such as ethyl acetate, and water. Two or more of these solvents can be used in combination.
  • alcohols such as ethanol, ketones such as acetone, ethers such as diethyl ether and tetrahydrofuran, acetonitrile, and the like
  • Nitrogen compounds halogenated aliphatic hydrocarbons such as chloroform, aliphatic hydrocarbons such as hexane, aromatic hydrocarbons such as benzene, esters such as ethyl a
  • the concentration of the photosensitizer in the solution for adsorbing the photosensitizer can be appropriately adjusted depending on the type of the photosensitizer and the solvent to be used, but in order to improve the adsorption function (efficiency) Some are preferable, for example, 5 ⁇ 10 ⁇ 4 mol / liter or more.
  • carrier transport material In the photoelectric conversion element shown in FIG. 1, the space sealed with the sealing material 14 between the conductive layer 13 and the catalyst layer 16 is filled with a carrier transport material 18.
  • the photoelectric conversion layer 15 (the porous semiconductor layer 151 and the core cell type particle layer 152) is provided. That is, the pores of the photoelectric conversion layer 15 are filled with the carrier transport material 18.
  • the porous catalyst layer 16, the conductive layer, and the counter electrode conductive layer may be filled with the carrier transport material 18.
  • Such a carrier transport material is composed of a conductive material capable of transporting ions, and examples of suitable materials include a liquid electrolyte, a solid electrolyte, a gel electrolyte, and a molten salt gel electrolyte.
  • the liquid electrolyte is not particularly limited as long as it can be used in a battery, a photoelectric conversion element, or the like, as long as it is a liquid substance containing a redox species. Specifically, those comprising a redox species and a solvent capable of dissolving this, those comprising a redox species and a molten salt capable of dissolving this, and those comprising a redox species, a solvent capable of dissolving this and a molten salt. Is mentioned.
  • Examples of the redox species include I ⁇ / I 3 ⁇ series, Br 2 ⁇ / Br 3 ⁇ series, Fe 2 + / Fe 3+ series, and quinone / hydroquinone series.
  • metal iodides such as lithium iodide (LiI), sodium iodide (NaI), potassium iodide (KI), calcium iodide (CaI 2 ) and iodine (I 2 ), tetraethylammonium Combinations of tetraalkylammonium salts such as iodide (TEAI), tetrapropylammonium iodide (TPAI), tetrabutylammonium iodide (TBAI), tetrahexylammonium iodide (THAI) and iodine (I 2 ), bromide
  • a metal bromide such as lithium (LiBr), sodium bromide (NaBr),
  • examples of the solvent for the redox species include carbonate compounds such as propylene carbonate, nitrile compounds such as acetonitrile, alcohols such as ethanol, water, and aprotic polar substances. Among these, carbonate compounds and nitrile compounds are particularly preferable. Two or more of these solvents can be used in combination.
  • the solid electrolyte is a conductive material that can transport electrons, holes, and ions, and can be used as an electrolyte of a photoelectric conversion element and has no fluidity.
  • hole transport materials such as polycarbazole, electron transport materials such as tetranitrofluororenone, conductive polymers such as polyroll, polymer electrolytes obtained by solidifying liquid electrolytes with polymer compounds, copper iodide, thiocyanate
  • Examples thereof include a p-type semiconductor such as copper acid, and an electrolyte obtained by solidifying a liquid electrolyte containing a molten salt with fine particles.
  • the gel electrolyte is usually composed of an electrolyte and a gelling agent. What is necessary is just to prepare mixing of electrolyte and a gelatinizer suitably, and the said solid electrolyte can be used as electrolyte.
  • the gelling agent for example, a crosslinked polyacrylic resin derivative, a crosslinked polyacrylonitrile derivative, a polyalkylene oxide derivative, a silicone resin, a polymer having a quaternary salt structure of a nitrogen-containing heterocyclic compound in the side chain is used.
  • examples thereof include molecular gelling agents.
  • the molten salt gel electrolyte is usually composed of the gel electrolyte as described above and a room temperature molten salt.
  • the room temperature molten salt include quaternary ammonium salts of nitrogen-containing heterocyclic compounds such as pyridinium salts and imidazolium salts.
  • an additive may be added to each electrolyte constituting the carrier transport material.
  • additives include nitrogen-containing aromatic compounds such as t-butylpyridine (TBP), dimethylpropylimidazole iodide (DMPII), methylpropylimidazole iodide (MPII), ethylmethylimidazole iodide (EMII),
  • TBP t-butylpyridine
  • DMPII dimethylpropylimidazole iodide
  • MPII methylpropylimidazole iodide
  • EMII ethylmethylimidazole iodide
  • imidazole salts such as ethylimidazole iodide (EII) and hexylmethylimidazole iodide (HMII).
  • the electrolyte concentration in the electrolyte constituting the carrier transport material is preferably in the range of 0.001 to 1.5 mol / liter, particularly preferably in the range of 0.01 to 0.7 mol / liter.
  • incident light reaches the porous semiconductor layer where the photosensitizer is adsorbed through the electrolytic solution, and carriers are excited. Therefore, depending on the electrolyte concentration used in the unit cell having the catalyst layer on the light receiving surface side, the performance may be lowered. Therefore, it is preferable to set the electrolyte concentration in consideration of this point.
  • the material which comprises the catalyst layer 16 will not be specifically limited if it is generally used for the photoelectric conversion material in the said field
  • Examples of such a material include carbon materials such as platinum, carbon black, ketjen black, graphite, carbon nanotube, and fullerene.
  • the catalyst layer 16 can be formed by a known method such as a PVC method, a sputtering method, a vapor deposition method, thermal decomposition of chloroplatinic acid, or electrodeposition.
  • the layer thickness is suitably about 0.5 nm to 1000 nm, for example.
  • carbon paste dispersed in an arbitrary solvent and applied in a paste form is applied under the counter conductive layer 17 by screen printing or the like.
  • the catalyst layer 16 can be formed.
  • the layer thickness is suitably 0.5 nm to 1000 nm, for example.
  • the counter electrode conductive layer 17 is provided on the catalyst layer 16.
  • the material which comprises the counter electrode layer 17 will not be specifically limited if it is a material which can generally be used for a photoelectric conversion element and can exhibit the effect of this invention.
  • Such materials include indium tin composite oxide (ITO), metal oxides such as fluorine doped tin oxide (FTO), zinc oxide (ZnO), titanium, tungsten, gold, silver, copper, nickel, etc. A metal material is mentioned.
  • the form of the counter electrode conductive layer 17 is not particularly limited, and may be a dense film shape, a porous film shape, or a cluster shape.
  • the layer thickness may be, for example, in the range of 20 to 5000 nm, and the film resistance of the counter electrode conductive layer is preferably 40 ⁇ / sq or less.
  • the formation of the counter electrode conductive layer 17 can be performed by a known formation method such as a screen printing method, a vapor deposition method, or a CVD method.
  • the counter electrode conductive layer 17 is provided with an extraction electrode as necessary.
  • the constituent material and structure of the extraction electrode are not particularly limited as long as they are materials and structures that can generally be used for a photoelectric conversion element and can exhibit the effects of the present invention.
  • the laminated structure formed on the light transmissive support is sealed with a sealing material 14 as in the known photoelectric conversion element.
  • the sealing material 14 is important for preventing volatilization of the electrolyte and preventing water and the like from entering the battery.
  • the sealing material is important for absorbing falling objects and stress (impact) acting on the light-transmitting support, and for absorbing deflection acting on the light-transmitting support during long-term use. It is.
  • the material which comprises the sealing material 14 will not be specifically limited if it is a material which can be generally used for a photoelectric conversion element and can exhibit the effect of this invention.
  • a material for example, a silicone resin, an epoxy resin, a polyisobutylene resin, a hot melt resin, a glass frit and the like are preferable, and these can be used in two or more layers.
  • silicone resins, hot melt resins (for example, ionomer resins), polyisobutylene resins, and glass frit are particularly preferable.
  • the photoelectric conversion element in which the core-shell type particle layer is installed on the catalyst layer side of the porous semiconductor layer which is an embodiment of the present invention described above, is a conventional photoelectric conversion element in which the core-shell type particle layer is not installed.
  • the reverse current from the photoelectric conversion layer to the carrier transport material and further to the catalyst layer is suppressed, and the performance deterioration is suppressed.
  • the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to these examples and comparative examples.
  • the thickness of each layer was measured with a step gauge (E-VS-S28A, manufactured by Tokyo Seimitsu Co., Ltd.).
  • Example 1 The photoelectric conversion element shown in FIG. 1 was produced. First, a 30 mm ⁇ 30 mm ⁇ 1.0 mm thick transparent electrode substrate (Nippon Sheet Glass Co., Ltd.) having a conductive layer made of tin oxide (FTO) doped with fluorine on a light transmissive support made of glass. Manufactured, glass with SnO 2 film).
  • a 30 mm ⁇ 30 mm ⁇ 1.0 mm thick transparent electrode substrate (Nippon Sheet Glass Co., Ltd.) having a conductive layer made of tin oxide (FTO) doped with fluorine on a light transmissive support made of glass.
  • FTO tin oxide
  • a screen plate having a 5 mm ⁇ 5 mm porous semiconductor layer pattern on the surface of the transparent electrode substrate on the conductive layer side and a screen printing machine (manufactured by Neurong Seimitsu Kogyo Co., Ltd., model number: LS-150)
  • a commercially available titanium oxide paste (manufactured by Solaronix, trade name: D / SP) was applied and leveled at room temperature for 1 hour. Thereafter, the obtained coating film was dried in an oven set at 80 ° C. for 20 minutes, and further baked in the air for 60 minutes in a firing furnace (model number: KDF P-100, manufactured by Denken Co., Ltd.) set at 500 ° C. did.
  • a porous semiconductor layer having a thickness of about 6 ⁇ m was formed on the transparent electrode substrate.
  • core-shell type particles formed by coating titanium oxide with magnesium oxide in the same manner as in the porous semiconductor layer forming step.
  • a core-shell type particle layer was formed on the porous semiconductor layer using a paste containing.
  • the thickness of the layer composed of the core-shell type particles was about 5 ⁇ m.
  • core-shell type particles formed by coating titanium oxide with magnesium oxide were produced by a wet chemical method (liquid phase method).
  • the laminated structure composed of the transparent electrode substrate, the porous semiconductor layer and the core-shell type particle layer thus obtained is immersed in a dye adsorption solution prepared in advance at room temperature for 100 hours.
  • the laminated structure was washed with ethanol and dried at about 60 ° C. for about 5 minutes to adsorb the dye to the porous semiconductor layer.
  • the dye adsorbing solution is a solution prepared by dissolving the dye of the above formula (2) (manufactured by Solaronix, trade name: Ruthenium 620 1H3TBA) in a mixed solvent of acetonitrile and t-butanol having a volume ratio of 1: 1.
  • the dye concentration in the solution is 4 ⁇ 10 ⁇ 4 mol / liter.
  • Another transparent electrode substrate (Nippon Sheet Glass Co., Ltd., glass with SnO 2 film) is prepared, and platinum is sputtered to a thickness of about 7 nm as a catalyst layer so as to cover the surface of the SnO 2 film. A film was formed.
  • an electrolytic solution is injected from an electrolytic solution injection hole provided in advance on a glass substrate which is a light-transmitting support, and the electrolytic solution is injected using an ultraviolet curable resin (manufactured by ThreeBond, model number: 31X-101).
  • the hole for use was sealed and filled with a carrier transport material to obtain a photoelectric conversion element (single cell).
  • the electrolyte solution is acetonitrile, which is a solvent, with a concentration of 0.1 mol / liter of LiI (manufactured by Aldrich) as a redox species and a concentration of 0.01 mol / liter of I 2 (manufactured by Kishida Chemical). Furthermore, t-butylpyridine (manufactured by Aldrich) as an additive was added to a concentration of 0.5 mol / liter, and dimethylpropylimidazole iodide (manufactured by Shikoku Kasei Kogyo Co., Ltd.) was added to a concentration of 0.6 mol / liter, It has been dissolved.
  • LiI manufactured by Aldrich
  • I 2 manufactured by Kishida Chemical
  • Example 2 A photoelectric conversion element was produced in the same manner as in Example 1 except that after forming the porous semiconductor layer in Example 1, a layer composed of core-shell type particles in which titanium oxide was coated with silicon oxide was formed.
  • Example 3 A photoelectric conversion element was produced in the same manner as in Example 1 except that after forming the porous semiconductor layer in Example 1, a layer composed of core-shell type particles in which titanium oxide was coated with aluminum oxide was formed.
  • Example 4 A photoelectric conversion element was produced in the same manner as in Example 1 except that after forming the porous semiconductor layer in Example 1, a layer composed of core-shell type particles in which titanium oxide was coated with zirconium oxide was formed.
  • Example 5 Rather than laminating a porous semiconductor layer and a core-shell type particle layer in Example 1, a core shell formed by coating particles made of titanium oxide and titanium oxide similar to that used in Example 1 with magnesium oxide A photoelectric conversion element was produced in the same manner as in Example 1 except that the photoelectric conversion layer was formed using the composite particle paste obtained by mixing the mold particles.
  • Example 6 the photoelectric conversion element was produced by the same method as in Example 5 except that the core-shell type particles to be mixed were core-shell type particles obtained by coating titanium oxide with silicon oxide, and the durability test was performed. The cell performance was measured. Table 1 shows the retention rate of the cell performance before and after the durability test.
  • Example 7 the photoelectric conversion element was produced by the same method as Example 5 except having made the core-shell type particle
  • Example 8 a photoelectric conversion element was produced in the same manner as in Example 5 except that the core-shell type particles to be mixed were core-shell type particles obtained by coating titanium oxide with zirconium oxide.
  • Example 1 After forming the porous semiconductor layer in Example 1, a photoelectric conversion element was produced in the same manner as in Example 1 except that the core-shell type particle layer was not formed.
  • Comparative Example 2 After forming the porous semiconductor layer in Example 1, the catalyst layer side of the porous semiconductor layer is formed by applying a precursor solution of MgO, which is an insulating oxide, from the surface side of the porous semiconductor layer and performing a heat treatment. A photoelectric conversion element was produced by the same method as in Example 1 except that the surface (including the inner surface of the pores) was coated with MgO. In Comparative Example 2, as in Comparative Example 1, the core-shell type particle layer was not formed.
  • MgO which is an insulating oxide
  • ⁇ Durability test> The photoelectric conversion elements obtained in Examples 1 to 8 and Comparative Examples 1 and 2 were subjected to a durability test in which thermal stress described in JIS C8938 test was applied. After producing the photoelectric conversion element, the cell performance immediately after the production and the cell performance after being left at a temperature of 85 ° C. for 1000 hours were measured.
  • Table 1 shows the ratio of the open-circuit voltage measured after the endurance test to the open-circuit voltage measured before the endurance test (retention ratio of the open-circuit voltage before and after the endurance test).
  • the photoelectric conversion elements of Examples 1 to 8 that satisfy the structural requirements of the present invention are more open to thermal stress than Comparative Examples 1 and 2 that are conventional photoelectric conversion elements. It can be seen that the voltage holding ratio is excellent.
  • Comparative Example 2 the surface of the porous semiconductor layer on the catalyst layer side (including the inner surface of the vacancies) is coated with MgO, but the core particles are electrically connected to each other. It is considered that the effect of suppressing the current in the direction is smaller than that of the present invention, and the retention ratio of the open circuit voltage is lower than those of Examples 1 to 8 and Comparative Example 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

 本発明は、少なくとも光透過性支持体(11,12,41,42)、導電層(13,43)、光電変換層(15,45)、触媒層(16,46)、および、対極導電層(17,47)をこの順で備えた光電変換素子であって、前記光電変換層(15,45)は、半導体材料を含む多孔性半導体層(151)および該多孔性半導体層(151)に吸着された光増感素子を含み、前記多孔性半導体層(151)中または前記多孔性半導体層(151)の触媒層(16,46)側の層上に、半導体材料からなるコア粒子と、該コア粒子の表面の少なくとも一部を被覆する絶縁性酸化物からなるシェル部分とからなるコアシェル型粒子を有することを特徴とする、光電変換素子である。

Description

光電変換素子
 本発明は、光電変換素子に関する。
 化石燃料に代るエネルギー源として、太陽光を電力に変換することができる電池、すなわち太陽電池が注目されている。現在、結晶系シリコン基板を用いた太陽電池および薄膜シリコン太陽電池が一部実用化され始めている。しかし、前者はシリコン基板の製造コストが高いという問題があり、後者は多くの種類の半導体製造用ガスや複雑な装置を用いる必要があるために製造コストが高くなるという問題がある。このため、いずれの太陽電池においても発電出力当たりのコストを低減するために光電変換の高効率化の努力が続けられているが、上記の問題を十分に解決できるまでには至っていない。
 一方、新しいタイプの太陽電池として、金属錯体の光誘起電子移動を応用した色素増感太陽電池や量子ドットを用いた光電変換素子が提案されている。前者は特許第2664194号公報(特許文献1)に示され、後者は特開2008-287900号公報(特許文献2)に示されている。
 これらの光電変換素子は、2枚のガラス基板の表面にそれぞれ電極を形成し、これらの電極が内側となるように2枚のガラス基板を配置し、電極間に光電変換層を挟み込むように配置したものである。光電変換層は、光増感色素を吸着させて可視光領域に吸収スペクトルをもたせた光電変換材料と電解質材料とからなる。このような光電変換素子は「色素増感太陽電池」とも呼ばれる。
 具体的には、図4に示すように、ガラス基板である光透過性支持体41と光透過性支持体42との間に、電解液などのキャリア輸送材料48を注入することで、光電変換素子を作製している。図4中、ガラス基板である光透過性支持体41上に導電層43と、封止材44と、光電変換層45と、触媒層46と、対極導電層47と、キャリア輸送材料48とが、ガラス基板である光透過性支持体42との間に設けられている。
 上記光電変換素子に光が照射されると、光電変換層45で電子が発生し、発生した電子が導電層43から外部電気回路を通って対極導電層47に移動し、移動した電子が電解液(キャリア輸送材料48)中のイオンにより光電変換層45に戻る。このような一連の電子の流れにより、電気エネルギーが取り出される。
 また、国際公開第2010/044445号公報(特許文献3)では、光電変換層を構成する多孔性半導体層と触媒層との間に、絶縁性被覆部が形成された多孔性絶縁層を設けることが提案されている。特許文献3には、この多孔性絶縁層として、酸化ジルコニウム等の第一絶縁層材料からなる粒子により形成された多孔性構造体を、酸化ケイ素等の第二絶縁層材料で被覆したものが記載されている。
特許第2664194号公報 特開2008-287900号公報 国際公開第2010/044445号公報
 このような光電変換素子において、問題となっている一つに熱ストレスに対する性能低下が挙げられる。熱ストレスによる劣化のメカニズムの一つとして考えられていることに逆電流の増加がある。これは、上記一連の電子の流れにおいて、光電変換層で発生した電子が、外部電気回路に取り出されず、キャリア輸送材料、さらには触媒層に流れる現象である。この性能劣化における逆電流を抑制することが出来れば、光電変換素子の性能低下を防ぐことが可能となる。
 本発明は、光電変換素子における耐久性の劣化要因の一つである逆電流、特に、光電変換層からキャリア輸送材料を経て、触媒層に至る逆電流の増加を抑制することにより、光電変換素子の変換効率の保持率を向上させることを目的とする。
 本発明は、少なくとも光透過性支持体、導電層、光電変換層、触媒層、および、対極導電層をこの順で備えた光電変換素子であって、
 上記光電変換層は、半導体材料を含む多孔性半導体層および該多孔性半導体層に吸着された光増感素子を含み、
 上記多孔性半導体層中または上記多孔性半導体層の触媒層側の層上に、半導体材料からなるコア粒子と、該コア粒子の表面の少なくとも一部を被覆する絶縁性酸化物からなるシェル部分とからなるコアシェル型粒子を有することを特徴とする、光電変換素子である。
 上記コアシェル型粒子は、上記シェル部分の少なくとも一部で相互に接しているが、コア粒子同士は直接接触していないことが好ましい。
 上記導電層と上記触媒層との間にキャリア輸送材料を備え、上記キャリア輸送材料は上記光電変換層と上記触媒層に接触していることが好ましい。
 上記光電変換層は、上記半導体材料からなる多孔性半導体層の上記触媒層側に、上記コアシェル型粒子からなるコアシェル型粒子層を備えることが好ましい。
 上記コアシェル型粒子層の上記光透過性支持体への投影面積は、上記多孔性半導体層の上記光透過性支持体への投影面積よりも大きいことが好ましい。
 上記多孔性半導体層は、半導体材料からなる単層型粒子と上記コアシェル型粒子とを含むことが好ましい。
 上記半導体材料として好ましいのは、酸化チタンである。
 上記絶縁性酸化物は、酸化マグネシウム、酸化ジルコニウム、酸化アルミニウム、酸化ケイ素からなる群から選ばれる少なくとも1種であることが好ましい。
 本発明によれば、変換効率の低下を抑制することが出来る。
本発明の光電変換素子の要部である積層構造を示す概略断面図である。 本発明の光電変換素子におけるコアシェル型粒子層を示す概略図である。 本発明の光電変換素子における多孔性半導体粒子とコアシェル型粒子とが混合された膜を示す概略図である。 特許文献1の光電変換素子の層構成を示す要部の概略断面図である。
 本発明の光電変換素子は、光透過性材料からなる支持体(光透過性支持体)上に、導電層、光電変換層、触媒層、対極導電層をこの順で備えている。該光電変換層は、半導体材料を含む多孔性半導体層および該多孔性半導体層に吸着された光増感素子を含んでいる。そして、本発明の光電変換素子は、上記多孔性半導体層中および/または他の層(後述のコアシェル型粒子層)中に、半導体材料からなるコア粒子と、該コア粒子の表面の少なくとも一部を被覆する絶縁性酸化物からなるシェル部分とからなるコアシェル型粒子を含むことを特徴とするものである。
 本発明の光電変換素子の好適な実施形態について、図面を用いて説明する。なお、この実施形態は一例であり、種々の形態での実施が本発明の範囲内で可能である。また、以下の実施の形態の説明では、図面を用いて説明しているが、本願の図面において同一の参照符号を付したものは、同一部分または相当部分を示している。
 図1は、本発明の光電変換素子の要部の積層構造を示す概略断面図である。図1において、光透過性支持体11上に、導電層13と、光電変換層15と、コアシェル型粒子層19と、触媒層16と、対極導電層17とがこの順で積層されている。キャリア輸送材料18は、光電変換層15から、コアシェル型粒子層19と、触媒層16と、対極導電層17とにかけて浸透している。これらの積層構造は側面が封止材14により封止され、上面に光透過性支持体12が設けられる。
 (光透過性支持体)
 光透過性支持体11は、光電変換素子の受光面となる部材であり光透過性が必要であるので、光透過性を有する材料からなる。光透過性支持体11の厚さは、特に限定されないが0.2~5mmとすることが好ましい。
 光透過性支持体11を構成する光透過性を有する材料は、一般に光電変換素子に使用可能で、かつ本発明の効果を発揮し得る材料であれば、特に限定されない。このような材料としては、例えば、ソーダガラス、溶融石英ガラス、結晶石英ガラスなどのガラス基板、可撓性フィルムなどの耐熱性樹脂板などが挙げられる。
 上記可撓性フィルム(以下、「フィルム」ともいう)を構成する材料としては、例えば、テトラアセチルセルロース(TAC)、ポリエチレンテレフタレート(PET)、ポリフェニレンスルファイド(PPS)、ポリカーボネート(PC)、ポリアリレート(PA)、ポリエーテルイミド(PEI)、フェノキシ樹脂、ポリテトラフルオロエチレン(PTFE)などが挙げられる。
 光透過性支持体上に他の層を形成する際に加熱を伴う場合、例えば、250℃程度の加熱を伴って光透過性支持体上に導電層13を形成する場合には、上記可撓性フィルムを構成する材料の中でも、250℃以上の耐熱性を有するポリテトラフルオロエチレン(PTFE)が特に好ましい。このように、加熱する温度にあわせて上記フィルムを構成する材料を選択すればよい。
 (導電層)
 導電層13は、光電変換素子の受光面となり光透過性が必要であるので、光透過性材料からなる。ただし、少なくとも後述する光増感素子に実効的な感度を有する波長の光を実質的に透過させる材料であればよく、必ずしもすべての波長領域の光に対して透過性を有する必要はない。
 導電層を構成する光透過性材料は、一般に光電変換素子に使用可能で、かつ本発明の効果を発揮し得る材料であれば、特に限定されない。このような導電層を構成する材料としては、インジウム錫複合酸化物(ITO)、フッ素がドープされた酸化錫(FTO)、酸化亜鉛(ZnO)などが挙げられる。
 上記導電層13の厚さは0.02~5μmが好ましく、膜抵抗は低いほどよく、40Ω/sq以下が好ましい。膜抵抗とは各層における抵抗である。
 また、膜抵抗を低化させるために、導電層13に金属リード線を設けてもよい。金属リード線の材料としては、例えば、白金、金、ニッケル、チタンなどが挙げられる。金属リード線は、例えば公知のスパッタ法、蒸着法等で光透過性支持体上に形成することができ、この金属リード線を含む光透過性支持体上に導電層を形成することで導電層13に金属リード線を設けることができる。また、例えば光透過性支持体上に導電層13を形成した後、導電層表面上に金属リード線を公知の方法で形成してもよい。金属リード線を設ける場合は金属リード線の幅は10μm~200μmとすることが好ましく、このような幅で金属リード線を設ける場合は、入射光量が低下する虞がなく、また光電変換効率のよい光電変換素子を製造することができる。
 (光電変換層)
 図1に示される光電変換層15は、多孔性半導体層151およびコアシェル型粒子層152が積層された積層体である。多孔性半導体層151の表面(空孔の内表面を含む多孔性半導体層の全表面)には光増感素子が吸着されている。多孔性半導体層151およびコアシェル型粒子層152の空孔内は、キャリア輸送材料18が充填されている。
 <多孔性半導体層>
 「多孔性半導体層」とは、半導体材料から構成され、その形態は多孔性であれば特に限定されず、多数の半導体材料からなる粒子が固定化されてなる膜状や、多数の微細孔が設けられた膜状など種々の形態のものを用いることができる。これらの中でも、多数の半導体材料からなる粒子が固定化されてなる膜状の層を多孔性半導体層として用いることが好ましい。
 なお、本発明において「多孔性」とは、比表面積が0.5~300m2/gであり、空孔率が20%以上であることをいう。ここで、比表面積は、表面積の測定法には気体吸着法であるBET法によって求められる値であり、空孔率は、多孔性半導体層の厚さ(膜厚)と質量、および材質の密度から計算によって求められる値である。このように、比表面積を大きくすることにより多くの光増感素子分子を吸着することができ、太陽光を効率よく吸収することが可能となる。また、空孔率を一定以上の値とすることにより、光電変換層に電子を戻すためのキャリア輸送材料の十分な拡散が可能となる。
 多孔性半導体層を構成する半導体材料は、一般に光電変換素子の材料に使用されるものであれば特に限定されない。このような半導体の材料としては、例えば、酸化チタン、酸化亜鉛、酸化錫、酸化鉄、硫化カドミウム、硫化鉛、硫化亜鉛、リン化インジウム、銅-インジウム硫化物(CuInS2)、CuAlO2、SrCu22などの化合物またはこれらの組み合わせが挙げられる。これらの中でも、金属酸化物、特に酸化チタン、酸化亜鉛、酸化錫が好ましく、光電変換効率、安定性および安全性の点から酸化チタンが特に好ましい。これらの半導体の材料は、上記のように2種以上の混合物として用いることもでき、この場合の混合比は適宜調整すればよい。
 本発明において、上記酸化チタンとしては、アナターゼ型酸化チタン、ルチル型酸化チタン、無定形酸化チタン、メタチタン酸、オルソチタン酸などの各種の狭義の酸化チタンに限られず、水酸化チタン、含水酸化チタンなどを包含し、これらは単独または混合物として用いることができる。アナターゼ型とルチル型の2種類の結晶系は製法や熱履歴によりいずれの形態にもなり得るが、アナターゼ型が一般的である。
 多孔性半導体層を構成する半導体材料は、安定性、結晶成長の容易さ、製造コストなどの観点から、微粒子からなる多結晶焼結体が好ましい。上記微粒子の粒径は、入射光を高い収率で電気エネルギーに変換するために、多孔性半導体層の上記光透過性支持体への投影面積に対して十分に大きい実効表面積を得る観点から、平均粒径5nm以上50nm未満であることが好ましく、より好ましくは10nm以上30nm以下である。
 多孔性半導体層の光散乱性は、この層形成に用いる半導体の材料の粒子径(平均粒径)により調整することができる。多孔性半導体層の形成条件にもよるが、一般に、平均粒径の大きい半導体粒子で形成した多孔性半導体層は、光散乱性が高く、入射光を散乱させ光捕捉率を向上させることができる。また、平均粒径の小さい半導体粒子で形成した多孔性半導体層は光散乱性が低いが、光増感素子の吸着点(吸着サイト)をより多くすることにより吸着量を増加させることができる。したがって、上記微粒子からなる多結晶焼結体の上に、平均粒径が50nm以上、より好ましくは50nm以上600nm以下の半導体粒子からなる層をさらに設けることにより、本発明の多孔性半導体層を形成してもよい。
 多孔性半導体層が光散乱性の高い多孔性半導体からなる層(平均粒径の大きい半導体粒子で形成した多孔性半導体層)を有する場合は、構成する半導体材料の平均粒径が大きいので、機械的強度が低く、光電変換素子の構造としての問題が起こることもある。このような場合には、平均粒径の大きい半導体材料に対して平均粒径の小さい半導体材料を、例えば10質量%以下の割合で配合することにより、多孔性半導体層の機械的強度を補うことができる。
 多孔性半導体層の層厚は、特に限定されるものではないが、光電変換効率の観点から、0.5~50μmが好ましい。特に、光散乱性の高い平均粒径50nm以上の半導体粒子からなる層を含む場合、その層の層厚は、0.1~40μmが好ましく、より好ましくは5~20μmであり、一方、平均粒径5nm以上50nm未満の粒子よりなる層の層厚は、0.1~50μmが好ましく、より好ましくは10~40μmである。
 導電層上に膜状の多孔性半導体層を形成する方法としては、特に限定されず、公知の方法が挙げられる。具体的には、(1)スクリーン印刷法、インクジェット法などにより、半導体材料からなる微粒子を含有するペーストを導電層上に塗布した後、焼成する方法、(2)所望の原料ガスを用いてCVD法またはMOCVD法などにより、導電層上に成膜する方法、(3)原料固体を用いたPVD法、蒸着法、スパッタリング法などにより、導電層上に成膜する方法、(4)ゾル-ゲル法、電気化学的な酸化還元反応を利用した方法などにより、導電層上に成膜する方法などが挙げられる。これらの方法の中でも、比較的厚い多孔性半導体層を低コストで成膜できることから、ペーストを用いたスクリーン印刷法が特に好ましい。
 光電変換素子の光電変換効率を向上させるためには、後述する光増感素子がより多く吸着した光電変換層を形成することが好ましい。このため、多孔性半導体層として比表面積の大きなものが好ましく、膜状のものを用いる場合、例えば10~200m2/gの比表面積であることが好ましい。また、多孔性半導体層が粒子状であっても上記比表面積とすることが光増感素子吸着量の点から好ましい。
 半導体粒子としてアナターゼ型酸化チタン(以下の説明において、単に「酸化チタン」という)を用いて、多孔性半導体層を形成する方法について、具体的に説明する。
 まず、チタンイソプロポキシド125mLを0.1Mの硝酸水溶液750mLに滴下して加水分解をさせ、80℃で8時間加熱して、ゾル液を調製する。その後、得られたゾル液をチタン製オートクレーブ中で230℃で11時間加熱して、酸化チタン粒子を成長させ、その後室温下で超音波分散を30分間行なうことにより、平均粒径(平均一次粒径)15nmの酸化チタン粒子を含むコロイド溶液を調製する。次いで、得られたコロイド溶液に該溶液の2倍容量のエタノールを加え、これを回転数5000rpmで遠心分離して、酸化チタン粒子と溶剤とを分離させて酸化チタン粒子を得る。
 次いで、得られた酸化チタン粒子を洗浄した後、酸化チタン粒子に、エチルセルロースとテルピネオールを無水エタノールに溶解させた溶液を加えた混合液を攪拌して、酸化チタン粒子を分散させる。その後、混合液を真空条件下で加熱してエタノールを蒸発させ、酸化チタンペーストを得る。最終的な組成として、例えば、酸化チタン固体濃度20wt%、エチルセルロース10wt%、テルピネオール70wt%となるように濃度を調整する。上記最終的な組成は例示的なものであって、これに限定されるものではない。
 半導体粒子を含有する(懸濁させた)ペーストを調製するために用いる溶剤としては、上記以外にエチレングリコールモノメチルエーテルなどのグライム系溶剤、イソプロピルアルコールなどのアルコール系溶剤、イソプロピルアルコールとトルエンなどの混合溶剤、水などが挙げられる。
 次いで、上記の方法により半導体粒子を含有するペーストを導電層上に塗布し、焼成して多孔性半導体層を得る。乾燥および焼成は、使用する光透過性支持体や半導体粒子の種類により、温度、時間、雰囲気などの条件を適宜調整する必要がある。焼成は、例えば、大気雰囲気下または不活性ガス雰囲気下、50~800℃程度の範囲内で、10秒~12時間程度で行なうことができる。この乾燥および焼成は、単一の温度で1回または温度を変化させて2回以上行なうことができる。このようにして製造した多孔性半導体層の比表面積は、10~200m2/gである。
 なお、本明細書における平均粒径は、XRD(X線回折)の回折ピークから求めた値である。具体的には、XRDのθ/2θ測定における回折角の半値幅とシェラーの式;D=(K・λ)/(β・cosθ)(式中、Dは結晶粒径(Å)、Kはシェラーの定数、λはX線の波長[Å]、βは回折線の半値幅(rad)、θは回折角である。)とから平均粒径を求める。例えば、アナターゼ型酸化チタンの場合、(101)面に対応する回折ピーク(2θ=25.3°付近)の半値幅を測定すればよい。
 <コアシェル型粒子層>
 コアシェル型粒子層19は、コアシェル型粒子が固定化されてなる層である。「コアシェル型粒子」とは、半導体材料からなるコア粒子と、該コア粒子の表面の少なくとも一部を被覆する絶縁性を有する酸化物(絶縁性酸化物)からなるシェル部分とからなる粒子である。光電変換層15の触媒層側に該コアシェル層を積層することで、性能劣化が抑制される。該シェル部分の厚さは、1nmから10nmの厚さであることが好ましい。
 コアシェル型粒子層19の形態は、多孔性であれば特に限定されず種々の形態のものを用いることができるが、半導体材料からなる多数のコアシェル型粒子が固定化されることによって形成された膜状のものが好ましい。そのようなコアシェル型粒子層におけるコアシェル型粒子の状態を図2に示す。
 上記コアシェル型粒子は、上記シェル部分の少なくとも一部で相互に接しているが、コア粒子同士は直接接触していないことが好ましい。これは、コアシェル粒子間の電子伝導性を低下させ、対極方向への電流の増加を抑制するためである。
 上記コアシェル型粒子層の光透過性支持体への投影面積は、上記多孔性半導体層の光透過性支持体への投影面積よりも大きいことが好ましい。これにより、熱ストレスに曝される光電変換層中の電子キャリア輸送材料を経て、電子が触媒層側へ移動することによる逆電流の増加が抑制され、性能劣化が抑制されるからである。
 コアシェル型粒子の製造方法としては特に限定されず、公知の方法が挙げられる。具体的には、噴霧乾燥による方法、流動床法、CVD(化学蒸着)、PVD(物理吸着)、湿式化学法(液相法)などが上げられる。
 ここで、湿式化学法(液相法)でのコアシェル型粒子作製方法について説明する。まず、コア粒子が第1分散剤により第1有機溶媒中に分散している第1溶液を用意する。次に、第1溶液に極性溶媒を添加することにより、コア粒子から分散剤を剥離除去しコア粒子(ナノ粒子)を凝集させて回収する。回収したコア粒子を第2分散剤により第2有機溶媒中に分散させて第2溶液を形成する。さらに、第2溶液中にシェル部分の前駆体となる絶縁性酸化物を添加し、コア粒子の表面にシェル部分を形成する。この手法によりコアシェル型粒子が得られる。
 このようにして作製されたコアシェル型粒子を用いて各種ペーストを作製し、該ペーストを用いて上記多孔性半導体層の形成方法と同様にして、コアシェル型粒子層を得ることが出来る。
 上記絶縁性酸化物は、酸化マグネシウム、酸化ジルコニウム、酸化アルミニウム、酸化ケイ素からなる群から選ばれる少なくとも1種からなることが好ましい。
 また、上記半導体材料(コア部分)は、酸化チタンが好ましい。多孔性半導体層が酸化チタンからなり、コアに酸化チタンを使用した場合、コア部分と多孔性半導体層部分が同じ物質を使用することとなる。コア部分、シェル部分、多孔性半導体部分の3箇所が異なった物質となるのに対して、シェル部分だけが違う物質となる場合は、膨張率の観点からも歩留まりが向上し、コストも削減されると考えられる。
 なお、上述のようにコアシェル型粒子からなるコアシェル型粒子層を多孔性半導体層とは別に設ける以外にも、コアシェル型粒子と半導体材料からなる単層型粒子とを混合し、得られた2種類の粒子の混合物を用いて上記多孔性半導体層を形成しても良い。そのような多孔性半導体層におけるコアシェル型粒子の状態をその時の粒子状態を図3に示す。このようにして多孔性半導体層を形成することによっても、コアシェル型粒子からなるコアシェル型粒子層を多孔性半導体層とは別に設けた場合と同様の効果を得ることができる。
 (光増感素子)
 上記多孔性半導体層は、光増感素子として色素や量子ドットなどを吸着させて、後述するキャリア輸送材料18を充填させることにより光電変換層15として機能する。
 多孔性半導体層に吸着して光増感素子として機能する色素としては、種々の可視光領域および/または赤外光領域に吸収をもつ有機色素、金属錯体色素などが挙げられ、これらの色素を1種または2種以上を選択的に用いることができる。
 有機色素としては、例えば、アゾ系色素、キノン系色素、キノンイミン系色素、キナクリドン系色素、スクアリリウム系色素、シアニン系色素、メロシアニン系色素、トリフェニルメタン系色素、キサンテン系色素、ポルフィリン系色素、ペリレン系色素、インジゴ系色素、ナフタロシアニン系色素などが挙げられる。これらの有機色素の吸光係数は、一般的に、遷移金属に分子が配位結合した形態をとる金属錯体色素に比べて大きい。
 金属錯体色素としては、Cu、Ni、Fe、Co、V、Sn、Si、Ti、Ge、Cr、Zn、Ru、Mg、Al、Pb、Mn、In、Mo、Y、Zr、Nb、Sb、La、W、Pt、Ta、Ir、Pd、Os、Ga、Tb、Eu、Rb、Bi、Se、As、Sc、Ag、Cd、Hf、Re、Au、Ac、Tc、Te、Rhなどの金属に分子が配位結合した形態のものが挙げられ、これらの中でも、フタロシアニン系色素、ルテニウム系色素が好ましく、ルテニウム系金属錯体色素が特に好ましく、特に、次式(1)~(3)で表されるルテニウム系金属錯体色素が好ましい。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 多孔性半導体層に色素を強固に吸着させるためには、色素分子中にカルボン酸基、カルボン酸無水基、アルコキシ基、ヒドロキシル基、ヒドロキシアルキル基、スルホン酸基、エステル基、メルカプト基、ホスホニル基などのインターロック基を有するものを用いることが好ましい。これらの中でも、カルボン酸基およびカルボン酸無水基が特に好ましい。なお、インターロック基は、励起状態の色素と多孔性半導体層の伝導帯との間の電子移動を容易にする電気的結合を提供するものである。
 多孔性半導体に吸着して光増感剤として機能する量子ドットとしては、CdS、CdSe、PbS、PbSeなどが挙げられる。これらの大きさは、吸収波長などにより、適宜調節されるが、1nm~10nm程度が望ましい。
 多孔性半導体層に光増感素子を吸着させる方法としては、例えば導電層上に形成された多孔性半導体層を、光増感素子を溶解した溶液(以下、光増感素子吸着用溶液ということがある)に浸漬する方法が挙げられる。浸漬条件は適宜調整すればよい。
 光増感素子を溶解させる溶剤としては、該素子を溶解するものであればよく、具体的には、エタノールなどのアルコール類、アセトンなどのケトン類、ジエチルエーテル、テトラヒドロフランなどのエーテル類、アセトニトリルなどの窒素化合物類、クロロホルムなどのハロゲン化脂肪族炭化水素、ヘキサンなどの脂肪族炭化水素、ベンゼンなどの芳香族炭化水素、酢酸エチルなどのエステル類、水などが挙げられる。これらの溶剤は2種類以上を混合して用いることもできる。
 光増感素子吸着用溶液中の光増感素子濃度は、使用する光増感素子および溶剤の種類により適宜調整することができるが、吸着機能(効率)を向上させるためにはできるだけ高濃度である方が好ましく、例えば、5×10-4モル/リットル以上であればよい。
(キャリア輸送材料)
 図1に示す光電変換素子においては、導電層13と触媒層16との間の封止材14で封止された空間には、キャリア輸送材料18が充填されており、該キャリア輸送材料18中に光電変換層15(多孔性半導体層151およびコアセル型粒子層152)が設けられている。すなわち、光電変換層15の空孔はキャリア輸送材料18で満たされている。なお、多孔性の触媒層16、導電層、対極導電層に、キャリア輸送材料18が充填されていてもよい。
 このようなキャリア輸送材料は、イオンを輸送できる導電性材料で構成され、好適な材料として、例えば、液体電解質、固体電解質、ゲル電解質、溶融塩ゲル電解質などが挙げられる。
 上記液体電解質は、酸化還元種を含む液状物であればよく、一般に電池や光電変換素子などにおいて使用することができるものであれば特に限定されない。具体的には、酸化還元種とこれを溶解可能な溶剤からなるもの、酸化還元種とこれを溶解可能な溶融塩からなるもの、酸化還元種とこれを溶解可能な溶剤と溶融塩からなるものが挙げられる。
 酸化還元種としては、例えば、I-/I3-系、Br2-/Br3-系、Fe2+/Fe3+系、キノン/ハイドロキノン系などが挙げられる。具体的には、ヨウ化リチウム(LiI)、ヨウ化ナトリウム(NaI)、ヨウ化カリウム(KI)、ヨウ化カルシウム(CaI2)などの金属ヨウ化物とヨウ素(I2)との組み合わせ、テトラエチルアンモニウムアイオダイド(TEAI)、テトラプロピルアンモニウムアイオダイド(TPAI)、テトラブチルアンモニウムアイオダイド(TBAI)、テトラヘキシルアンモニウムアイオダイド(THAI)などのテトラアルキルアンモニウム塩とヨウ素(I2)との組み合わせ、臭化リチウム(LiBr)、臭化ナトリウム(NaBr)、臭化カリウム(KBr)、臭化カルシウム(CaBr2)などの金属臭化物と臭素(Br2)との組み合わせが好ましく、これらの中でも、LiIとI2の組み合わせが特に好ましい。
 また、酸化還元種の溶媒としては、プロピレンカーボネートなどのカーボネート化合物、アセトニトリルなどのニトリル化合物、エタノールなどのアルコール類、水、非プロトン極性物質などが挙げられる。これらの中でも、カーボネート化合物やニトリル化合物が特に好ましい。これらの溶媒は2種類以上を混合して用いることもできる。
 固体電解質は、電子、ホール、イオンを輸送できる導電性材料であり、光電変換素子の電解質として用いることができて、流動性がないものであればよい。具体的には、ポリカルバゾールなどのホール輸送材、テトラニトロフロオルレノンなどの電子輸送材、ポリロールなどの導電性ポリマー、液体電解質を高分子化合物により固体化した高分子電解質、ヨウ化銅、チオシアン酸銅などのp型半導体、溶融塩を含む液体電解質を微粒子により固体化した電解質などが挙げられる。
 上記ゲル電解質は、通常、電解質とゲル化剤からなる。電解質とゲル化剤との混合は適宜調製すればよく、電解質としては、上記固体電解質を用いることができる。
 一方、ゲル化剤としては、例えば、架橋ポリアクリル樹脂誘導体や架橋ポリアクリロニトリル誘導体、ポリアルキレンオキシド誘導体、シリコーン樹脂類、側鎖に含窒素複素環式化合物の四級塩構造を有するポリマーなどの高分子ゲル化剤などが挙げられる。
 溶融塩ゲル電解質は、通常、上記のようなゲル電解質と常温型溶融塩からなる。
 常温型溶融塩としては、例えば、ピリジニウム塩類、イミダゾリウム塩類などの含窒素複素環式化合物の四級アンモニウム塩類などが挙げられる。
 上記キャリア輸送材料を構成する各電解質には、必要に応じて添加剤を加えてもよい。
 このような添加剤としては、t-ブチルピリジン(TBP)などの含窒素芳香族化合物、ジメチルプロピルイミダゾールアイオダイド(DMPII)、メチルプロピルイミダゾールアイオダイド(MPII)、エチルメチルイミダゾールアイオダイド(EMII)、エチルイミダゾールアイオダイド(EII)、ヘキシルメチルイミダゾールアイオダイド(HMII)などのイミダゾール塩が挙げられる。
 キャリア輸送材料を構成する電解質中の電解質濃度は、0.001~1.5モル/リットルの範囲が好ましく、0.01~0.7モル/リットルの範囲が特に好ましい。ただし、後述する本発明のモジュールにおいて受光面側に触媒層がある場合、入射光が電解液を通して光増感素子が吸着された多孔性半導体層に達し、キャリアが励起される。そのため、受光面側に触媒層があるユニットセルに用いる電解質濃度によっては性能が低下する場合があるので、この点を考慮して電解質濃度を設定するのが好ましい。
 (触媒層)
 触媒層16を構成する材料は、当該分野で一般に光電変換材料に使用されるものであれば特に限定されない。このような材料としては、例えば、白金や、カーボンブラック、ケッチェンブラック、グラファイト、カーボンナノチューブ、フラーレンなどのカーボン材料が挙げられる。
 例えば、白金を用いる場合には、触媒層16は、PVC法、スパッタ法、蒸着法、塩化白金酸の熱分解、電着などの公知の方法により形成することができる。その層厚は、例えば、0.5nm~1000nm程度が適当である。
 また、カーボンブラック、ケッチェンブラック、カーボンナノチューブ、フラーレンなどのカーボン材料を用いる場合には、任意の溶剤に分散してペースト状にしたカーボンをスクリーン印刷法などにより対極導電層17下に塗布して触媒層16を形成することができる。この場合も、層厚は、例えば、0.5nm~1000nmが適当である。
 (対極導電層)
 対極導電層17は、触媒層16上に設けられる。対極電極層17を構成する材料は、一般に光電変換素子に使用可能で、かつ本発明の効果を発揮し得る材料であれば、特に限定されない。このような材料としては、インジウム錫複合酸化物(ITO)、フッ素をドープした酸化錫(FTO)、酸化亜鉛(ZnO)等の金属酸化物、チタン、タングステン、金、銀、銅、ニッケルなどの金属材料が挙げられる。
 対極導電層17の形態としては特に限定されず、緻密な膜状、多孔性膜状あるいはクラスター状とすることができる。また、層厚は、例えば、20~5000nmの範囲とすればよく、対極導電層の膜抵抗が40Ω/sq以下であることが好ましい。
 対極導電層17の形成は、スクリーン印刷法、蒸着法、CVD法など公知の形成方法を用いることができる。
 また、対極導電層17には、必要に応じて、取り出し電極が設けられる。取り出し電極の構成材料および構造は、一般に光電変換素子に使用可能で、かつ本発明の効果を発揮し得る材料および構造であれば、特に限定されない。
 (封止材)
 本発明の光電変換素子は、公知の光電変換素子と同様に、上記光透過性支持体上に形成された積層構造体が封止材14により封止される。封止材14は、電解液の揮発防止と電池内への水などの浸入を防止するために重要である。また、封止材は、光透過性支持体に作用する落下物や応力(衝撃)を吸収したり、長期にわたる使用時において光透過性支持体に作用するたわみなどを吸収したりするために重要である。
 封止材14を構成する材料は、一般に光電変換素子に使用可能で、かつ本発明の効果を発揮し得る材料であれば、特に限定されない。このような材料としては、例えば、シリコーン樹脂、エポキシ樹脂、ポリイソブチレン系樹脂、ホットメルト樹脂、ガラスフリットなどが好ましく、これらは2種類以上を2層以上にして用いることもできる。酸化還元性電解質の溶剤としてニトリル系溶剤、カーボネート系溶剤を使用する場合には、シリコーン樹脂やホットメルト樹脂(例えば、アイオノマー樹脂)、ポリイソブチレン系樹脂、ガラスフリットが特に好ましい。
 また、上記に記した本発明の一形態である、コアシェル型粒子層が多孔性半導体層の触媒層側に設置された光電変換素子は、コアシェル型粒子層が設置されていない従来の光電変換素子と比して、光電変換層からキャリア輸送材料、さらには触媒層への逆電流が抑制されると考えられ、性能劣化が抑制される。
 本発明を実施例および比較例によりさらに具体的に説明する。ただし、これらの実施例および比較例により本発明が限定されるものではない。以下の実施例および比較例において、各層の厚みは段差計((株)東京精密製 E-VS-S28A)により測定した。
 (実施例1)
 図1に示す光電変換素子の作製を行った。まず、ガラスからなる光透過性支持体上に、フッ素がドープされた酸化錫(FTO)からなる導電層が形成された、30mm×30mm×厚さ1.0mmの透明電極基板(日本板硝子株式会社製、SnO2膜付ガラス)を用意した。
 次に、該透明電極基板の導電層側の表面上に、5mm×5mmの多孔性半導体層のパターンを有するスクリーン版とスクリーン印刷機(ニューロング精密工業株式会社製、型番:LS-150)を用いて、市販の酸化チタンペースト(Solaronix社製、商品名:D/SP)を塗布し、室温で1時間レベリングを行なった。その後、得られた塗膜を80℃に設定したオーブンで20分間乾燥し、さらに500℃に設定した焼成炉(株式会社デンケン製、型番:KDF P-100)を用いて空気中で60分間焼成した。この塗布、乾燥および焼成工程を経て、透明電極基板上に厚さ6μm程度の多孔性半導体層を形成した。
 さらに、酸化チタンを酸化マグネシウムで被覆してなるコアシェル型粒子を含有するペーストを用いて、上記多孔性半導体層の形成工程と同様の手法により、酸化チタンを酸化マグネシウムで被覆してなるコアシェル型粒子を含有するペーストを用いて、多孔性半導体層上にコアシェル型粒子層を形成した。このコアシェル型粒子で構成された層の厚さは、5μm程度であった。また、酸化チタンを酸化マグネシウムで被覆してなるコアシェル型粒子の作製は、湿式化学法(液相法)で行った。
 次いで、このようにして得られた透明電極基板、多孔性半導体層およびコアシェル型粒子層からなる積層構造体を、予め調製しておいた色素吸着用溶液に室温で100時間浸漬し、その後、該積層構造体をエタノールで洗浄し、約60℃で約5分間乾燥させて、多孔性半導体層に色素を吸着させた。
 上記色素吸着用溶液は、上記式(2)の色素(Solaronix社製、商品名:Ruthenium620 1H3TBA)を、体積比1:1のアセトニトリルとt-ブタノールの混合溶剤に溶解させて調製した溶液であり、該溶液中の色素濃度は4×10-4モル/リットルである。
 次いで、上記透明電極基板(日本板硝子株式会社製、SnO2膜付ガラス)をもう1枚用意し、触媒層として、SnO2膜の表面を覆うように白金をスパッタ法により厚み約7nmとなるよう成膜した。
 積層構造体が形成された基板(光透過性支持体)と、触媒層が成膜された基板とを、積層体の周囲を囲う形に切り出した熱融着フィルム(デュポン社製、ハイミラン1855)を用いて貼り合せ、約100℃に設定したオーブンで10分間加熱することによりこれらを圧着した。
 次いで、光透過性支持体であるガラス基板に予め設けてあった電解液注入用孔から電解液を注入して、紫外線硬化樹脂(スリーボンド社製、型番:31X-101)を用いて電解液注入用孔を封止して、キャリア輸送材料を充填させて光電変換素子(単セル)を得た。
 上記電解液は、溶剤であるアセトニトリルに、酸化還元種としてLiI(アルドリッチ社製)を濃度0.1モル/リットル、I2(キシダ化学社製)を濃度0.01モル/リットルになるように、さらに添加剤としてt-ブチルピリジン(アルドリッチ社製)を濃度0.5モル/リットル、ジメチルプロピルイミダゾールアイオダイド(四国化成工業社製)を濃度0.6モル/リットルになるように添加し、溶解させたものである。
 (実施例2)
 実施例1において多孔性半導体層を形成した後、酸化チタンを酸化ケイ素で被覆したコアシェル型粒子で構成される層を形成した以外は、実施例1と同様の方法により光電変換素子を作製した。
 (実施例3)
 実施例1において多孔性半導体層を形成した後、酸化チタンを酸化アルミニウムで被覆したコアシェル型粒子で構成される層を形成した以外は、実施例1と同様の方法により光電変換素子を作製した。
 (実施例4)
 実施例1において多孔性半導体層を形成した後、酸化チタンを酸化ジルコニウムで被覆したコアシェル型粒子で構成される層を形成した以外は、実施例1と同様の方法により光電変換素子を作製した。
 (実施例5)
 実施例1において、多孔性半導体層とコアシェル型粒子層とを積層するのではなく、酸化チタンからなる粒子と、実施例1で用いたものと同様の酸化チタンを酸化マグネシウムで被覆してなるコアシェル型粒子とを混合して得られた複合粒子ペーストを用いて、光電変換層を形成したこと以外は、実施例1と同様の方法により光電変換素子を作製した。
 (実施例6)
 実施例5において、混合するコアシェル型粒子を、酸化チタンを酸化ケイ素で被覆したコアシェル型粒子としたこと以外は、実施例5と同様の方法により光電変換素子を作製し、耐久性試験を実施し、セル性能を測定した。耐久性試験前後でのセル性能の保持率を表1に示す。
 (実施例7)
 実施例5において、混合するコアシェル型粒子を、酸化チタンを酸化アルミニウムで被覆したコアシェル型粒子としたこと以外は、実施例5と同様の方法により光電変換素子を作製した。
 (実施例8)
 実施例5において、混合するコアシェル型粒子を、酸化チタンを酸化ジルコニウムで被覆したコアシェル型粒子としたこと以外は、実施例5と同様の方法により光電変換素子を作製した。
 (比較例1)
 実施例1において多孔性半導体層を形成した後、コアシェル型粒子層の形成を行わなかったこと以外は、実施例1と同様の方法により光電変換素子を作製した。
 (比較例2)
 実施例1において多孔性半導体層を形成した後、絶縁性酸化物であるMgOの前駆体溶液を多孔性半導体層の表面側から塗布して熱処理を行う方法により、多孔性半導体層の触媒層側の表面(空孔の内表面を含む)をMgOで被覆したこと以外は、実施例1と同様の方法により光電変換素子を作製した。なお、比較例2では、比較例1と同様に、コアシェル型粒子層の形成は行わなかった。
 <耐久性試験>
 実施例1~8ならびに比較例1および2で得られた光電変換素子に対して、JIS C8938試験に記されている熱ストレスをかける耐久試験を行った。光電変換素子を作製後、作製直後のセル性能と、85℃の温度下に1000時間放置した後のセル性能を測定した。
 <セル性能の測定>
 実施例1~8ならびに比較例1および2で得られた光電変換素子に、集電電極部としてAgペースト(藤倉化成株式会社製、商品名:ドータイト)を公知の方法により塗布した。次いで、光電変換素子の受光面に、開口部の面積が0.22cm2である黒色のマスクを設置して、この光電変換素子に1kW/m2の強度の光(AM1.5ソーラーシミュレータ)を照射して、開放電圧(Voc)を測定した。
 開放電圧の測定は、上記耐久性試験の前後で行った。耐久性試験前に測定した開放電圧に対する耐久性試験後に測定した開放電圧の比率(耐久性試験前後での開放電圧の保持率)を、表1に示す。
Figure JPOXMLDOC01-appb-T000004
 表1に示す結果から明らかなように、本発明の構成要件を満たす実施例1~8の光電変換素子は、従来の光電変換素子である比較例1および2に比べて、熱ストレスに対する、開放電圧の保持率が優れたものであることが分かる。なお、比較例2は、多孔性半導体層の触媒層側の表面(空孔の内表面を含む)がMgOで被覆されているが、コア粒子同士が電気的に接続していることにより、対極方向への電流の抑制効果が本発明より小さくなり、開放電圧の保持率は実施例1~8や比較例1よりも低くなったと考えられる。
 以上のように本発明の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせることも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 11,12,41,42 光透過性支持体、13,43 導電層、14,44 封止材、15,45 光電変換層、151 多孔性半導体層、152 コアシェル型粒子層、16,46 触媒層、17,47 対極導電層、18,48 キャリア輸送材料。

Claims (8)

  1.  少なくとも光透過性支持体(11,12,41,42)、導電層(13,43)、光電変換層(15,45)、触媒層(16,46)、および、対極導電層(17,47)をこの順で備えた光電変換素子であって、
     前記光電変換層(15,45)は、半導体材料を含む多孔性半導体層(151)および該多孔性半導体層(151)に吸着された光増感素子を含み、
     前記多孔性半導体層(151)中または前記多孔性半導体層(151)の触媒層(16,46)側の層上に、半導体材料からなるコア粒子と、該コア粒子の表面の少なくとも一部を被覆する絶縁性酸化物からなるシェル部分とからなるコアシェル型粒子を有することを特徴とする、光電変換素子。
  2.  前記コアシェル型粒子は、前記シェル部分の少なくとも一部で相互に接しているが、コア粒子同士は直接接触していない、請求項1に記載の光電変換素子。
  3.  前記導電層(13,43)と前記触媒層(16,46)との間にキャリア輸送材料(18,48)を備え、前記キャリア輸送材料(18,48)は前記光電変換層(15,45)と前記触媒層(16,46)に接触している、請求項1に記載の光電変換素子。
  4.  前記多孔性半導体層(151)の前記触媒層(16,46)側に、前記コアシェル型粒子からなるコアシェル型粒子層(152)を備える、請求項1~3のいずれかに記載の光電変換素子。
  5.  前記コアシェル型粒子層(152)の前記光透過性支持体(11,12,41,42)への投影面積は、前記多孔性半導体層(151)の前記光透過性支持体(11,12,41,42)への投影面積よりも大きい、請求項4に記載の光電変換素子。
  6.  前記多孔性半導体層(151)は、前記半導体材料からなる単層型粒子と前記コアシェル型粒子とを含む、請求項1~5のいずれかに記載の光電変換素子。
  7.  前記半導体材料は、酸化チタンである、請求項1~6のいずれかに記載の光電変換素子。
  8.  前記絶縁性酸化物は、酸化マグネシウム、酸化ジルコニウム、酸化アルミニウム、酸化ケイ素からなる群から選ばれる少なくとも1種である、請求項1~7のいずれかに記載の光電変換素子。
PCT/JP2011/076803 2010-11-24 2011-11-21 光電変換素子 WO2012070531A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012545742A JP6029982B2 (ja) 2010-11-24 2011-11-21 光電変換素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-261246 2010-11-24
JP2010261246 2010-11-24

Publications (1)

Publication Number Publication Date
WO2012070531A1 true WO2012070531A1 (ja) 2012-05-31

Family

ID=46145873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076803 WO2012070531A1 (ja) 2010-11-24 2011-11-21 光電変換素子

Country Status (2)

Country Link
JP (1) JP6029982B2 (ja)
WO (1) WO2012070531A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129608A1 (ja) * 2014-02-26 2015-09-03 住友大阪セメント株式会社 多孔質光反射絶縁層用ペースト、多孔質光反射絶縁層、及び色素増感型太陽電池
JP2016524321A (ja) * 2013-05-08 2016-08-12 コリア アトミック エナジー リサーチ インスティチュート 染料感応太陽電池用電極及びその製造方法
JP2020504455A (ja) * 2017-10-24 2020-02-06 ▲華▼中科技大学Huazhong University Of Science And Technology 強誘電体強化太陽電池及びその製造方法
CN113909011A (zh) * 2020-07-10 2022-01-11 高利科技股份有限公司 碳棒的制备方法及其结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155791A (ja) * 1999-11-25 2001-06-08 Catalysts & Chem Ind Co Ltd 光電気セル
JP2002110261A (ja) * 2000-10-02 2002-04-12 Catalysts & Chem Ind Co Ltd 新規な金属酸化物粒子およびその用途
JP2003298032A (ja) * 2002-03-28 2003-10-17 Asahi Kasei Corp 薄膜層を有する複合半導体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4716636B2 (ja) * 2002-03-28 2011-07-06 旭化成株式会社 複合半導体
JP2004010403A (ja) * 2002-06-05 2004-01-15 Fuji Photo Film Co Ltd 多重構造酸化チタン微粒子、及びその作製方法、及びそれを含有する光電変換素子並びに光電池
JP2009076426A (ja) * 2007-09-25 2009-04-09 Konica Minolta Holdings Inc 色素増感型太陽電池
JP5217581B2 (ja) * 2008-04-04 2013-06-19 コニカミノルタホールディングス株式会社 色素増感型太陽電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155791A (ja) * 1999-11-25 2001-06-08 Catalysts & Chem Ind Co Ltd 光電気セル
JP2002110261A (ja) * 2000-10-02 2002-04-12 Catalysts & Chem Ind Co Ltd 新規な金属酸化物粒子およびその用途
JP2003298032A (ja) * 2002-03-28 2003-10-17 Asahi Kasei Corp 薄膜層を有する複合半導体

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016524321A (ja) * 2013-05-08 2016-08-12 コリア アトミック エナジー リサーチ インスティチュート 染料感応太陽電池用電極及びその製造方法
JP2018074165A (ja) * 2013-05-08 2018-05-10 コリア アトミック エナジー リサーチ インスティチュート ナノ複合体及び製造方法
WO2015129608A1 (ja) * 2014-02-26 2015-09-03 住友大阪セメント株式会社 多孔質光反射絶縁層用ペースト、多孔質光反射絶縁層、及び色素増感型太陽電池
JPWO2015129608A1 (ja) * 2014-02-26 2017-03-30 住友大阪セメント株式会社 多孔質光反射絶縁層用ペースト、多孔質光反射絶縁層、及び色素増感型太陽電池
JP2020504455A (ja) * 2017-10-24 2020-02-06 ▲華▼中科技大学Huazhong University Of Science And Technology 強誘電体強化太陽電池及びその製造方法
US11127535B2 (en) 2017-10-24 2021-09-21 Huazhong University Of Science And Technology Ferroelectric enhanced solar cell and preparation method thereof
JP7012282B2 (ja) 2017-10-24 2022-01-28 ▲華▼中科技大学 強誘電体強化太陽電池及びその製造方法
CN113909011A (zh) * 2020-07-10 2022-01-11 高利科技股份有限公司 碳棒的制备方法及其结构

Also Published As

Publication number Publication date
JP6029982B2 (ja) 2016-11-24
JPWO2012070531A1 (ja) 2014-05-19

Similar Documents

Publication Publication Date Title
US10366842B2 (en) Dye-sensitized solar cell and method for manufacturing thereof
JP5002595B2 (ja) 色素増感太陽電池モジュールおよびその製造方法
JP5273709B2 (ja) 色素増感太陽電池、その製造方法および色素増感太陽電池モジュール
WO2010044445A1 (ja) 色素増感太陽電池および色素増感太陽電池モジュール
JP4761327B2 (ja) 湿式太陽電池および湿式太陽電池モジュール
JP5714005B2 (ja) 湿式太陽電池および湿式太陽電池モジュール
JP6029982B2 (ja) 光電変換素子
JP5657780B2 (ja) 光電変換素子および光電変換モジュール
WO2013164967A1 (ja) 光電変換素子および光電変換モジュール
JP2006164697A (ja) 色素増感太陽電池および色素増感太陽電池モジュール
JP2014238969A (ja) 太陽電池
JP5930970B2 (ja) 光電変換素子および光電変換素子モジュール
JP6104177B2 (ja) 光電変換素子
JP6050247B2 (ja) 湿式太陽電池および湿式太陽電池モジュール
JP5956929B2 (ja) 光電変換素子およびその製造方法
WO2013024642A1 (ja) 光電変換素子
JP6062376B2 (ja) 光電変換素子
JP2015170761A (ja) 光電変換素子および光電変換モジュール
WO2014057942A1 (ja) 光電変換素子およびその製造方法ならびに光電変換モジュール
WO2013094447A1 (ja) 光電変換素子
JP2014053150A (ja) 光電変換素子および光電変換モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843636

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012545742

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11843636

Country of ref document: EP

Kind code of ref document: A1