WO2012068828A1 - 一种防止高硅带钢断带的冷轧方法 - Google Patents

一种防止高硅带钢断带的冷轧方法 Download PDF

Info

Publication number
WO2012068828A1
WO2012068828A1 PCT/CN2011/073415 CN2011073415W WO2012068828A1 WO 2012068828 A1 WO2012068828 A1 WO 2012068828A1 CN 2011073415 W CN2011073415 W CN 2011073415W WO 2012068828 A1 WO2012068828 A1 WO 2012068828A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold rolling
strip
unit tension
emulsion
rolling
Prior art date
Application number
PCT/CN2011/073415
Other languages
English (en)
French (fr)
Inventor
宿德军
李勇
林润杰
沈明华
王红兵
朱华群
游学昌
周桂岭
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to RU2012131947/02A priority Critical patent/RU2518847C2/ru
Priority to KR1020127018772A priority patent/KR101475577B1/ko
Priority to JP2012547446A priority patent/JP5818812B2/ja
Priority to EP11843157.6A priority patent/EP2532450B1/en
Priority to US13/576,115 priority patent/US9056343B2/en
Priority to MX2012008623A priority patent/MX342651B/es
Publication of WO2012068828A1 publication Critical patent/WO2012068828A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/30Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process
    • B21B1/32Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process in reversing single stand mills, e.g. with intermediate storage reels for accumulating work
    • B21B1/36Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process in reversing single stand mills, e.g. with intermediate storage reels for accumulating work by cold-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/14Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories having counter-pressure devices acting on rolls to inhibit deflection of same under load; Back-up rolls
    • B21B13/147Cluster mills, e.g. Sendzimir mills, Rohn mills, i.e. each work roll being supported by two rolls only arranged symmetrically with respect to the plane passing through the working rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/221Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by cold-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2265/00Forming parameters
    • B21B2265/14Reduction rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0239Lubricating
    • B21B45/0245Lubricating devices
    • B21B45/0248Lubricating devices using liquid lubricants, e.g. for sections, for tubes
    • B21B45/0251Lubricating devices using liquid lubricants, e.g. for sections, for tubes for strips, sheets, or plates

Definitions

  • the invention relates to a silicon steel rolling technology, in particular to a cold rolling method for preventing high silicon strip breakage in a high-strand steel strip (Si content ⁇ 2.3%) in a single-stand reversing mill or a continuous rolling mill. Background technique
  • Silicon steel is a kind of soft magnetic material with excellent magnetic properties. It is widely used in our production and life. However, its production process is complicated and difficult. Especially the high-silicon material cold-rolling has always been a problem that plagues various production plants. As the silicon content increases, the yield limit, strength limit and hardness of the alloy increase, while the properties of the material become brittle, the mechanical strength increases and the elongation decreases, making it difficult to process high silicon materials.
  • the object of the present invention is to provide a cold rolling method for preventing high silicon strip breakage.
  • a high silicon strip with a Si content of ⁇ 2.3% the head-to-tail strip is reduced, the yield of the rolled product is increased, and the production efficiency is improved. , with significant economic benefits.
  • the flow rate of the emulsion in the rolling direction inlet is less than or equal to 3,500 liters/min, and the flow rate of the emulsion in the rolling direction is 1,500 to 4,000 liters/min.
  • the temperature of the strip steel is above 45 °C.
  • the first pass reduction rate is 20 ⁇ 40%
  • the rear unit tension is 8 ⁇ 30 N/mm 2
  • the front unit tension is 50 ⁇ 200 N/mm 2
  • the middle pass reduction rate is 18 ⁇ 38%
  • the rear unit tension is 40.
  • the front unit tension is 60 ⁇ 350 N/mm 2
  • the finished pass reduction rate is 15 ⁇ 35%, after unit Tension 60 ⁇ 300, front unit tension 90 ⁇ 450N/mm 2 .
  • Oriented silicon steel and high-grade non-oriented silicon steel will undergo preheating process (water bath, induction, etc.) before cold rolling, but due to rolling rhythm, heat dissipation and other reasons, there is always a certain part of the head and tail strip temperature is higher than the central part. Reduced, poor rolling stability, seriously affecting production efficiency and equipment safety.
  • the present invention employs process cooling and process lubrication in cold rolling.
  • the severe deformation heat and friction heat generated during the cold rolling process increase the temperature of the rolling stock and the roll. If the temperature of the roll surface is too high, the hardness of the quenching layer of the work roll may decrease, and the structure of the quenched layer may be decomposed to make the roll surface. Additional tissue stresses occur. In addition, when the temperature of the surface of the rolled piece and the surface of the roll is too high, the rolling oil lubricating film between the interfaces will be destroyed, and the hot rolling will occur between the rolling piece and the roll in a local area, causing the surface of the rolled piece and the roll. Scars, called "hot scratches.” Therefore, an effective emulsion cooling method is employed in the cold rolling process.
  • the main function of cold rolling using emulsion for process lubrication is to reduce the deformation resistance of the metal, which not only helps to ensure greater reduction under the existing equipment capacity, but also enables the mill to produce thickness economically. Smaller finished products.
  • the use of effective process lubrication also directly affects the heat generation rate of the cold rolling process and the temperature rise of the rolls. When rolling certain types, the process lubrication can also prevent the metal sticking rolls.
  • the process of the present invention provides a preferred control of the tension rolling in prior cold rolling processes.
  • the existing tension rolling in the cold rolling process means that the rolling deformation of the rolled piece is realized under a certain pre-tension and post-tension, and the effect of the tension is mainly: preventing the strip from deviating during the rolling process;
  • the rolled strip is kept flat and has a good shape; the deformation resistance of the metal is reduced, and the thinner product is facilitated; the effect of the main motor load of the cold rolling mill can be appropriately adjusted.
  • the invention combines the characteristics of high silicon material rolling and brittle fracture, and takes into account the deviation and flatness control.
  • a large reduction ratio and a small tension are used to advance the occurrence of cold rolling and breaking. Once improved, the effect is obvious.
  • the invention performs targeted process control on a region with a low head-to-tail temperature, overcomes the deficiencies of the prior art, and has the advantages of low breaking rate, high yield, and high operating efficiency of the unit.
  • the stripping rate is reduced by about 80.6%, the finished product rate and the unit operating efficiency are greatly improved. Good economic benefits.
  • the technology of the present invention is applicable to cold rolling mills such as single rack, 4 rack, 5 rack, 6 rack, etc., and tests the brittle temperature range of different steel grades. Detailed description of the invention
  • the flow rate of the emulsion in the rolling direction inlet is less than or equal to 3,500 liters/min, and the flow rate of the emulsion in the rolling direction is 1,500 to 4,000 liters/min.
  • the temperature of the strip steel is above 45 °C.
  • the first pass reduction rate is 20 ⁇ 40%
  • the rear unit tension is 8 ⁇ 30 N/mm 2
  • the front unit tension is 50 ⁇ 200 N/mm 2
  • the middle pass reduction rate is 18 ⁇ 38%.
  • the high silicon strip has a Si content of 2.7 wt%.
  • the inlet strip temperature is greater than 45 °C.
  • the emulsion is sprayed on the strip, and the flow direction of the emulsion in the rolling direction is 3000 liters/min.
  • the direction of the emulsion at the outlet is 3,500 liters/min. Ensure that the strip temperature is above 45 °C while ensuring process lubrication.
  • the first pass reduction rate is 28%
  • the rear unit tension is 10N/mm 2
  • the front unit tension is 80 N/mm 2
  • the middle pass reduction rate is 18 ⁇ 30%
  • the rear unit tension is 40 ⁇ : L50 N/mm 2
  • the front unit tension is 60 ⁇ 350 N/mm 2
  • the finished pass reduction rate is 23%
  • the rear unit tension is 90N/mm 2
  • the front unit tension is 190N/mm 2 .
  • the high silicon strip has a Si content of 3.0wt%.
  • the inlet strip temperature is greater than 50 °C.
  • the emulsion is sprayed on the strip, and the flow direction of the inlet emulsion is 2000 liters/min.
  • the direction of the emulsion at the outlet is 3000 liters/min. Ensure that the strip temperature is above 50 °C while ensuring process lubrication.
  • the first pass reduction rate is 31%
  • the rear unit tension is 20N/mm 2
  • the front unit tension is 160 N/mm 2
  • the intermediate pass reduction ratio is 20 ⁇ 28%
  • the rear unit tension is 50 ⁇ : 140 N/mm 2 , front unit tension 60 ⁇ 350 N/mm 2
  • finished product pass reduction rate 30% rear unit tension 180N/mm 2 , front unit tension 310N/mm 2 .
  • the Si content of the high silicon strip is 3.1wt%.
  • the inlet strip temperature is greater than 55 °C.
  • the emulsion is sprayed on the strip, and the flow direction of the emulsion in the rolling direction is 1000 liters/min.
  • the direction of the emulsion at the outlet is 2000 liters/min. Ensure that the strip temperature is above 55 °C while ensuring process lubrication.
  • the first pass reduction rate is 36%
  • the rear unit tension is 30N/mm 2
  • the front unit tension is 190 N/mm 2
  • the intermediate pass reduction rate is 18 ⁇ 25%
  • the rear unit tension is 44 ⁇ : 120 N/mm 2 , front unit tension 70 ⁇ 300 N/mm 2 ; finished product pass reduction rate 33%, rear unit tension 260N/mm 2 , front unit tension 400N/mm 2 .
  • Example 4
  • the high silicon strip has a Si content of 2.4wt%.
  • the inlet strip temperature is greater than 50 °C.
  • the emulsion is sprayed on the strip, and the flow direction of the inlet emulsion is 2800 l/min.
  • the flow rate of the emulsion at the outlet is 1600 liters/min. Ensure that the temperature of the strip is above 45 °C while ensuring process lubrication.
  • the first pass reduction rate is 22%
  • the rear unit tension is 9N/mm 2
  • the front unit tension is 65 N/mm 2
  • the intermediate pass reduction ratio is 16 ⁇ 28%
  • the rear unit tension is 40 ⁇ : 145 N/mm 2
  • the front unit tension is 65 to 340 N/mm 2
  • the finished pass reduction rate is 24%
  • the rear unit tension is 70 N/mm 2
  • the front unit tension is 120 N/mm 2 .
  • the high silicon strip has a Si content of 3.2wt%.
  • the first pass reduction rate is 27%
  • the rear unit tension is 25N/mm 2
  • the front unit tension is 170 N/mm 2
  • the middle pass reduction rate is 20 ⁇ 25%
  • the rear unit tension is 40 ⁇ : 140 N/mm 2 , front unit tension 60 ⁇ 330 N/mm 2

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

一种防止高硅带钢断带的冷轧方法 发明领域
本发明涉及硅钢轧制技术,具体涉及在单机架可逆轧机或连轧机轧制 高硅带钢 (Si含量≥2.3%) 中的一种防止高硅带钢断带的冷轧方法。 背景技术
硅钢是一种磁性优良的软磁材料, 广泛应用于我们的生产和生活中, 然而其生产过程则是复杂和困难的,尤其是高硅料冷轧断一直是困扰各生 产厂的难题。 随着硅含量增加, 材料的合金屈服极限、 强度极限和硬度提 高, 同时材料的性能变脆, 机械强度提高及延展率降低, 使高硅料轧制加 工困难。
取向硅钢及高牌号无取向硅钢在现场冷轧前都会经要经过预热工序, 但由于轧制节奏, 散热冷却等原因, 总有一部分头尾带钢温度较中部有一 定降低, 轧制稳定性差, 冷轧时经常会发生断带 (尤其是带钢头尾部, 头 尾断带占总断带次数的约 70%) , 严重影响生产效率和设备安全。 发明概述
本发明的目的在于提供一种防止高硅带钢断带的冷轧方法, 针对 Si 含量≥2.3%的高硅带钢, 减少头尾断带, 提高轧件成材率, 提高生产效率 等效果明显, 具有显著的经济效益。
本发明的技术方案是:
一种防止高硅带钢断带的冷轧方法, 高硅带钢的 Si含量≥2.3wt%, 开 始冷轧时, 入口带钢温度大于 45 °C ; 冷轧过程中对带钢喷射乳化液, 轧 制方向入口乳化液流量小于等于 3500升 /分钟, 轧制方向出口乳化液流量 1500〜4000升 /分钟,在保证工艺润滑的前提下确保带钢温度在 45 °C以上。
进一歩, 冷轧过程中:
第一道次压下率 20〜40%, 后单位张力 8〜30 N/mm2, 前单位张力 50〜200 N/mm2 ; 中间各道次压下率 18〜38%, 后单位张力 40〜: 150 N/mm2 , 前单位张力 60〜350 N/mm2; 成品道次压下率 15〜35%, 后单位 张力 60〜300, 前单位张力 90〜450N/mm2
取向硅钢及高牌号无取向硅钢在冷轧前都会经要经过预热工序 (水 浴、 感应等方式), 但由于轧制节奏, 散热冷却等原因, 总有一部分头尾 带钢温度较中部有一定降低, 轧制稳定性差, 严重影响生产效率和设备安 全。
冷轧板带材生产过程中, 如加工温度低, 在轧制中产生不同程度的加 工硬化。由于加工硬化,使轧制过程中金属变形抗力增大,轧制压力提高。 当钢种一定时,加工硬化的剧烈程度与冷轧变形程度有关。由于加工硬化, 成品冷轧板带材在出厂之前也都需要进行一定的热处理, 以使金属软化, 全面提高冷轧成品的综合性能, 或获得所需的特殊组织和性能。
本发明在冷轧中采用工艺冷却和工艺润滑。
冷轧过程中产生的剧烈变形热和摩擦热, 使轧件和轧辊温度升高, 辊 面温度过高会引起工作辊淬火层硬度的下降,并有可能促使淬火层内组织 分解, 使辊面出现附加的组织应力。此外当轧件表面与轧辊表面的温度过 高时, 界面之间的轧制油润滑膜将遭到破坏, 轧件与轧辊之间在局部地区 发生热悍合, 给轧件和轧辊造成了表面伤痕, 称为 "热划伤"。 因此冷轧 过程中采用有效的乳化液冷却方式。
冷轧采用乳化液进行工艺润滑的主要作用是减少金属的变形抗力,这 不但有助于保证在已有的设备能力条件下实现更大的压下,而且还可使轧 机能够经济可行地生产厚度更小的成品。此外, 采用有效的工艺润滑也直 接对冷轧过程的发热率以及轧辊的温升起到良好影响, 在轧制某些品种 时, 采用工艺润滑还可以起到防止金属粘辊的作用。
作为优选, 本发明方法对现有冷轧工艺中的张力轧制做了优选的控 制。
现有冷轧工艺中的张力轧制是指轧件的轧制变形是在有一定的前张 力和后张力作用下实现的, 张力的作用主要为: 防止带材在轧制过程中跑 偏; 使所轧带材保持平直和良好的板形; 降低金属的变形抗力, 便于轧制 更薄的产品; 可以起适当调整冷轧机主电机负荷的作用。
本发明结合高硅料轧制易脆断的特点兼顾跑偏和平直度控制的情况 下,冷轧过程中使用较大的压下率及较小张力来对冷轧断带情况的发生进 行进一歩改善, 效果明显。 本发明的有益效果
本发明对带钢头尾温度偏低的区域进行针对性工艺控制,克服了现有 技术的不足, 具有断带率低、 成材率高、 机组运行效率高等优点。
以本发明技术在 20辊森吉米尔单机架轧机, 轧制厚度小于 0. 3mm 的带钢为例, 应用本技术后断带率降低了约 80.6%, 成材率和机组运行效 率大大提高, 带来良好的经济效益。
本发明技术适用于单机架、 4机架、 5机架、 6机架等冷轧轧机, 试 验测定不同钢种的脆性温度区间。 发明的详细说明
下面结合实施例对本发明所进一歩说明。
一种防止高硅带钢断带的冷轧方法, 高硅带钢的 Si含量≥2.3wt%, 开 始冷轧时, 入口带钢温度大于 45 °C ; 冷轧过程中对带钢喷射乳化液, 轧 制方向入口乳化液流量小于等于 3500升 /分钟, 轧制方向出口乳化液流量 1500〜4000升 /分钟,在保证工艺润滑的前提下确保带钢温度在 45 °C以上。
冷轧过程中: 第一道次压下率 20〜40%, 后单位张力 8〜30 N/mm2, 前单位张力 50〜200 N/mm2; 中间各道次压下率 18〜38%, 后单位张力 40〜: l50 N/mm2, 前单位张力 60〜350 N/mm2; 成品道次压下率 15〜35%, 后单位张力 60〜300, 前单位张力 90〜450N/mm2
实施例 1
高硅带钢的 Si含量 2.7wt%, 开始冷轧时, 入口带钢温度大于 45 °C ; 冷轧过程中对带钢喷射乳化液, 轧制方向入口乳化液流量 3000升 /分钟, 轧制方向出口乳化液流量 3500升 /分钟, 在保证工艺润滑的前提下确保带 钢温度在 45 °C以上。
冷轧过程中: 第一道次压下率 28%, 后单位张力 10N/mm2, 前单位 张力 80 N/mm2;中间各道次压下率 18〜30%,后单位张力 40〜: l50 N/mm2, 前单位张力 60〜350 N/mm2;成品道次压下率 23%,后单位张力 90N/mm2, 前单位张力 190N/mm2。 实施例 2
高硅带钢的 Si含量 3.0wt%, 开始冷轧时, 入口带钢温度大于 50 °C ; 冷轧过程中对带钢喷射乳化液, 轧制方向入口乳化液流量 2000升 /分钟, 轧制方向出口乳化液流量 3000升 /分钟, 在保证工艺润滑的前提下确保带 钢温度在 50 °C以上。
冷轧过程中: 第一道次压下率 31%, 后单位张力 20N/mm2, 前单位 张力 160 N/mm2 ; 中间各道次压下率 20〜28%, 后单位张力 50〜: 140 N/mm2, 前单位张力 60〜350 N/mm2; 成品道次压下率 30%, 后单位张力 180N/mm2, 前单位张力 310N/mm2。 实施例 3
高硅带钢的 Si含量 3.1wt%, 开始冷轧时, 入口带钢温度大于 55 °C ; 冷轧过程中对带钢喷射乳化液, 轧制方向入口乳化液流量 1000升 /分钟, 轧制方向出口乳化液流量 2000升 /分钟, 在保证工艺润滑的前提下确保带 钢温度在 55 °C以上。
冷轧过程中: 第一道次压下率 36%, 后单位张力 30N/mm2, 前单位 张力 190 N/mm2 ; 中间各道次压下率 18〜25%, 后单位张力 44〜: 120 N/mm2 , 前单位张力 70〜300 N/mm2; 成品道次压下率 33%, 后单位张力 260N/mm2, 前单位张力 400N/mm2。 实施例 4
高硅带钢的 Si含量 2.4wt%, 开始冷轧时, 入口带钢温度大于 50 °C ; 冷轧过程中对带钢喷射乳化液, 轧制方向入口乳化液流量 2800升 /分钟, 轧制方向出口乳化液流量 1600升 /分钟, 在保证工艺润滑的前提下确保带 钢温度在 45 °C以上。
冷轧过程中: 第一道次压下率 22%, 后单位张力 9N/mm2, 前单位张 力 65 N/mm2; 中间各道次压下率 16〜28%, 后单位张力 40〜: 145 N/mm2, 前单位张力 65〜340 N/mm2;成品道次压下率 24%,后单位张力 70N/mm2, 前单位张力 120N/mm2。 高硅带钢的 Si含量 3.2wt%, 开始冷轧时, 入口带钢温度大于 55 °C ; 冷轧过程中对带钢喷射乳化液, 轧制方向入口乳化液流量 1500升 /分钟, 轧制方向出口乳化液流量 2200升 /分钟, 在保证工艺润滑的前提下确保带 钢温度在 58 °C以上。
冷轧过程中: 第一道次压下率 27%, 后单位张力 25N/mm2, 前单位 张力 170 N/mm2 ; 中间各道次压下率 20〜25%, 后单位张力 40〜: 140 N/mm2, 前单位张力 60〜330 N/mm2; 成品道次压下率 20%, 后单位张力 220N/mm2 , 前单位张力 330N/mm2

Claims

权 利 要 求 书
1. 一种防止高硅带钢断带的冷轧方法, 高硅带钢的 Si含量≥2.3wt%, 开 始冷轧时, 入口带钢温度大于 45 °C ; 冷轧过程中对带钢喷射乳化液, 轧 制方向入口乳化液流量小于等于 3500升 /分钟, 轧制方向出口乳化液流量 1500〜4000升 /分钟,在保证工艺润滑的前提下确保带钢温度在 45 °C以上。
2. 如权利要求 1 所述的防止高硅料断带的冷轧方法, 其特征是, 冷轧过 程中:
第一道次压下率 20〜40%, 后单位张力 8〜30 N/mm2, 前单位张 力 50〜200 N/mm2;
中间各道次压下率 18〜38%, 后单位张力 40〜: 150 N/mm2, 前单 位张力 60〜350 N/mm2;
成品道次压下率 15〜35%,后单位张力 60〜300,前单位张力 90〜 450N/mm2
PCT/CN2011/073415 2010-11-26 2011-04-28 一种防止高硅带钢断带的冷轧方法 WO2012068828A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2012131947/02A RU2518847C2 (ru) 2010-11-26 2011-04-28 Способ холодной прокатки, при котором предотвращается растрескивание высококремнистой полосовой стали
KR1020127018772A KR101475577B1 (ko) 2010-11-26 2011-04-28 높은 실리콘 띠강의 균열을 방지하기 위한 냉간 압연 방법
JP2012547446A JP5818812B2 (ja) 2010-11-26 2011-04-28 高ケイ素の帯状鋼の破損を防ぐための冷間圧延方法
EP11843157.6A EP2532450B1 (en) 2010-11-26 2011-04-28 Cold rolling method for preventing high silicon strip steel from breaking
US13/576,115 US9056343B2 (en) 2010-11-26 2011-04-28 Cold-rolling method for preventing fracture of high-silicon strip steel
MX2012008623A MX342651B (es) 2010-11-26 2011-04-28 Un metodo de laminado en frio para evitar la fractura de acero en bandas con alto silicio.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010105620322A CN102476131A (zh) 2010-11-26 2010-11-26 一种防止高硅带钢断带的冷轧方法
CN201010562032.2 2010-11-26

Publications (1)

Publication Number Publication Date
WO2012068828A1 true WO2012068828A1 (zh) 2012-05-31

Family

ID=46088984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/073415 WO2012068828A1 (zh) 2010-11-26 2011-04-28 一种防止高硅带钢断带的冷轧方法

Country Status (8)

Country Link
US (1) US9056343B2 (zh)
EP (1) EP2532450B1 (zh)
JP (1) JP5818812B2 (zh)
KR (1) KR101475577B1 (zh)
CN (1) CN102476131A (zh)
MX (1) MX342651B (zh)
RU (1) RU2518847C2 (zh)
WO (1) WO2012068828A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103111465B (zh) * 2012-12-27 2014-11-05 亚洲铝业(中国)有限公司 提高罐体料终轧温度的方法
CN103394527B (zh) * 2013-08-02 2016-01-13 北京首钢股份有限公司 一种提高高硅无取向电工钢轧制成材率的方法
CN103551390B (zh) * 2013-11-05 2015-08-05 北京首钢股份有限公司 改善森吉米尔轧机轧制带钢表面乳化液残留的方法
CN104226693B (zh) * 2014-08-28 2016-03-02 首钢总公司 降低冷轧过程非焊缝断带发生率的生产方法
CN104399749B (zh) * 2014-10-28 2016-06-22 武汉钢铁(集团)公司 一种能防止Si≥3.5%硅钢边裂及脆断的冷轧方法
CN104791611A (zh) * 2015-03-31 2015-07-22 成都来宝石油设备有限公司 一种石油管道检修用气囊
CN108655173B (zh) * 2018-05-11 2019-10-29 鞍钢股份有限公司 一种无取向高牌号硅钢轧制方法
CN109622619B (zh) * 2018-12-27 2020-07-07 武汉乾冶工程技术有限公司 冷连轧生产高牌号无取向电工钢的方法及其制品
CN110369497B (zh) * 2019-07-09 2021-02-23 鞍钢股份有限公司 一种高硅薄带无取向硅钢冷轧控制方法
CN113926853A (zh) * 2021-09-15 2022-01-14 首钢智新迁安电磁材料有限公司 一种高牌号无取向硅钢的轧制方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57181719A (en) * 1981-04-30 1982-11-09 Sumitomo Metal Ind Ltd Manufacture for clean cold rolling steel plate
CN1318438A (zh) * 2001-06-05 2001-10-24 宁波宝新不锈钢有限公司 铁素体、马氏体不锈钢带的冷轧加工
JP2004018610A (ja) * 2002-06-14 2004-01-22 Nippon Parkerizing Co Ltd 冷間圧延油および冷間圧延方法
CN101091965A (zh) * 2006-06-19 2007-12-26 鞍钢股份有限公司 双电机传动冷轧带钢轧机轧制负荷平衡的控制方法
CN201399466Y (zh) * 2009-03-19 2010-02-10 湖北江重机械制造有限公司 无头轧制冷连轧设备

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49119817A (zh) * 1973-03-20 1974-11-15
JPS585731B2 (ja) * 1979-09-12 1983-02-01 川崎製鉄株式会社 冷間圧延機における給油方法
JPS61132205A (ja) * 1984-12-03 1986-06-19 Kawasaki Steel Corp 珪素鋼板の冷間圧延方法
SU1588783A1 (ru) * 1988-06-27 1990-08-30 Челябинский Политехнический Институт Им.Ленинского Комсомола Способ производства изотропной электротехнической стали
JPH0361325A (ja) * 1989-07-31 1991-03-18 Nkk Corp 難加工材の温間圧延方法
JP2890599B2 (ja) * 1990-02-06 1999-05-17 ソニー株式会社 加工方法
JPH05169103A (ja) * 1991-12-19 1993-07-09 Nippon Steel Corp 鋼帯の冷間圧延方法
US5746081A (en) * 1993-03-27 1998-05-05 Sms Schloemann-Siegmag Aktiengesellschaft Reversing compact installation for cold rolling strip-shaped rolling material
US5666842A (en) * 1993-07-22 1997-09-16 Kawasaki Steel Corporation Method of cold rolling grain-oriented silicon steel sheet having excellent and uniform magnetic characteristics along rolling direction of coil and a roll cooling controller for cold rolling mill using the cold rolling method
DE60030288T2 (de) * 2000-03-09 2007-10-31 Jfe Steel Corp. Walzölversorgungsverfahren zum kaltwalzen
JP3582455B2 (ja) * 2000-05-19 2004-10-27 Jfeスチール株式会社 鋼帯の冷間圧延方法
JP2003061325A (ja) 2001-08-20 2003-02-28 Honda Motor Co Ltd 内燃機関
KR100561996B1 (ko) 2003-04-10 2006-03-20 신닛뽄세이테쯔 카부시키카이샤 높은 자속 밀도를 갖는 무방향성 전자 강판의 제조 방법
JP4272573B2 (ja) 2003-04-10 2009-06-03 新日本製鐵株式会社 磁束密度の高い無方向性電磁鋼板の製造方法
JP2005279738A (ja) * 2004-03-30 2005-10-13 Jfe Steel Kk 冷間圧延機における自動板厚制御方法
JP4355279B2 (ja) * 2004-11-22 2009-10-28 新日本製鐵株式会社 冷間圧延における潤滑油供給方法
JP2006198661A (ja) * 2005-01-21 2006-08-03 Nippon Steel Corp 冷間タンデム圧延機および冷間タンデム圧延方法
CN100430511C (zh) * 2005-06-30 2008-11-05 宝山钢铁股份有限公司 一次冷轧荫罩带钢及其制造方法
JP2008194721A (ja) * 2007-02-13 2008-08-28 Jfe Steel Kk 金属板の冷間圧延方法
RU2448787C1 (ru) * 2008-02-13 2012-04-27 Ниппон Стил Корпорейшн Способ холодной прокатки стального листа и устройство для холодной прокатки
CN201192701Y (zh) * 2008-02-26 2009-02-11 江都市业云冶金设备厂 冷轧硅钢片的第四道次降温装置
CN101550480B (zh) * 2008-03-31 2010-10-06 鞍钢股份有限公司 一种用酸洗连轧机组生产取向硅钢的方法
CN101722188B (zh) * 2009-11-20 2012-05-30 江门市日盈不锈钢材料厂有限公司 一种奥氏体不锈钢板带材的冷轧方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57181719A (en) * 1981-04-30 1982-11-09 Sumitomo Metal Ind Ltd Manufacture for clean cold rolling steel plate
CN1318438A (zh) * 2001-06-05 2001-10-24 宁波宝新不锈钢有限公司 铁素体、马氏体不锈钢带的冷轧加工
JP2004018610A (ja) * 2002-06-14 2004-01-22 Nippon Parkerizing Co Ltd 冷間圧延油および冷間圧延方法
CN101091965A (zh) * 2006-06-19 2007-12-26 鞍钢股份有限公司 双电机传动冷轧带钢轧机轧制负荷平衡的控制方法
CN201399466Y (zh) * 2009-03-19 2010-02-10 湖北江重机械制造有限公司 无头轧制冷连轧设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2532450A4 *
XU YUEMIN: "Producing technology for cold rolling silicon steel by Sendzimir mill", WISCO TECHNOLOGY, vol. 36, no. 11, November 1998 (1998-11-01), XP008163939 *

Also Published As

Publication number Publication date
JP2013516323A (ja) 2013-05-13
US20120304721A1 (en) 2012-12-06
RU2012131947A (ru) 2014-01-27
KR20120094142A (ko) 2012-08-23
MX342651B (es) 2016-10-06
EP2532450B1 (en) 2016-05-11
EP2532450A4 (en) 2015-05-20
EP2532450A1 (en) 2012-12-12
MX2012008623A (es) 2013-01-22
KR101475577B1 (ko) 2014-12-22
JP5818812B2 (ja) 2015-11-18
RU2518847C2 (ru) 2014-06-10
CN102476131A (zh) 2012-05-30
US9056343B2 (en) 2015-06-16

Similar Documents

Publication Publication Date Title
WO2012068828A1 (zh) 一种防止高硅带钢断带的冷轧方法
JP5250038B2 (ja) 薄スラブを連続鋳造・連続圧延して広幅帯鋼を生産する方法およびシステム
CN103014445B (zh) 5052铝合金罐盖料基材及其生产方法
CN101476067A (zh) 一种伞具骨架用铝合金带材组配及其加工工艺
CN113560345A (zh) 一种采用直接轧制工艺生产tc4钛合金超宽板的方法
CN103100562B (zh) 一种不锈钢特殊钝化表面的加工方法
CN109182918A (zh) 一种钒铌微合金化低碳热轧窄带钢及其制备方法
CN110369497B (zh) 一种高硅薄带无取向硅钢冷轧控制方法
KR20140001557A (ko) 표면외관이 우수한 합금도금강판의 제조방법
JP2002273501A (ja) 熱間圧延機および細粒鋼製造方法
CN107338395B (zh) 450MPa级热轧低屈强比极薄带钢及其制造方法
CN114686751B (zh) 一种高铬铁素体不锈钢防脆断生产方法
RU2255990C1 (ru) Способ производства тонколистовой горячекатаной стали
CN115572802A (zh) 一种生产板宽≥1800mm的低合金高强钢的方法
CN107190205A (zh) 一种晶粒粗化、高延伸率的冷轧镀锌钢带及其生产方法
JPS60262921A (ja) オ−ステナイト系ステンレス鋼板又は鋼帯の製造方法
JP3482297B2 (ja) 表面特性及び成型性の良好な低炭素薄鋼板の製造方法
CN114769336A (zh) 一种抑制取向硅钢冷轧边裂的轧制方法
JPH02412B2 (zh)
SU998521A1 (ru) Способ изготовлени ленты из нержавеющей мартенситно-стареющей стали
CN117904545A (zh) 免抛丸热轧高强钢及其制备方法
CN115739989A (zh) 薄规格高硅无取向硅钢冷轧生产方法
CN115852379A (zh) 一种410s不锈钢2B产品的生产方法
CN116727438A (zh) 一种提高屈服强度235MPa级钢板轧制节奏的方法
JPH09256060A (ja) 表面特性及びイアリング特性が良好な低炭素薄鋼板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012547446

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127018772

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843157

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011843157

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012131947

Country of ref document: RU

Ref document number: MX/A/2012/008623

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 13576115

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 6730/DELNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE