WO2012067061A1 - 高純度ランタンの製造方法、高純度ランタン、高純度ランタンからなるスパッタリングターゲット及び高純度ランタンを主成分とするメタルゲート膜 - Google Patents
高純度ランタンの製造方法、高純度ランタン、高純度ランタンからなるスパッタリングターゲット及び高純度ランタンを主成分とするメタルゲート膜 Download PDFInfo
- Publication number
- WO2012067061A1 WO2012067061A1 PCT/JP2011/076162 JP2011076162W WO2012067061A1 WO 2012067061 A1 WO2012067061 A1 WO 2012067061A1 JP 2011076162 W JP2011076162 W JP 2011076162W WO 2012067061 A1 WO2012067061 A1 WO 2012067061A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lanthanum
- wtppm
- purity
- purity lanthanum
- less
- Prior art date
Links
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 title claims abstract description 219
- 229910052746 lanthanum Inorganic materials 0.000 title claims abstract description 209
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 66
- 239000002184 metal Substances 0.000 title claims abstract description 64
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 31
- 238000005477 sputtering target Methods 0.000 title claims abstract description 28
- 239000011575 calcium Substances 0.000 claims abstract description 85
- 238000010894 electron beam technology Methods 0.000 claims abstract description 56
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 44
- BYMUNNMMXKDFEZ-UHFFFAOYSA-K trifluorolanthanum Chemical compound F[La](F)F BYMUNNMMXKDFEZ-UHFFFAOYSA-K 0.000 claims abstract description 34
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 31
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims abstract description 29
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 23
- 229910052742 iron Inorganic materials 0.000 claims abstract description 18
- 239000000126 substance Substances 0.000 claims abstract description 17
- 229910052802 copper Inorganic materials 0.000 claims abstract description 15
- 239000002994 raw material Substances 0.000 claims description 46
- 239000004065 semiconductor Substances 0.000 claims description 9
- 238000002844 melting Methods 0.000 abstract description 63
- 230000008018 melting Effects 0.000 abstract description 63
- 238000000034 method Methods 0.000 abstract description 9
- 239000010409 thin film Substances 0.000 abstract description 5
- 239000007858 starting material Substances 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 57
- 239000010949 copper Substances 0.000 description 44
- 239000010408 film Substances 0.000 description 37
- 239000000463 material Substances 0.000 description 36
- 239000012535 impurity Substances 0.000 description 35
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 29
- 238000006722 reduction reaction Methods 0.000 description 29
- 230000009467 reduction Effects 0.000 description 26
- 229910052715 tantalum Inorganic materials 0.000 description 22
- 238000006243 chemical reaction Methods 0.000 description 21
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 16
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 14
- 229910052760 oxygen Inorganic materials 0.000 description 13
- 238000004090 dissolution Methods 0.000 description 12
- 239000002893 slag Substances 0.000 description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 11
- 239000001301 oxygen Substances 0.000 description 11
- 229910017768 LaF 3 Inorganic materials 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 238000000926 separation method Methods 0.000 description 8
- 238000004544 sputter deposition Methods 0.000 description 8
- 229910052786 argon Inorganic materials 0.000 description 7
- 238000004821 distillation Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 150000003481 tantalum Chemical class 0.000 description 5
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 description 4
- 239000013065 commercial product Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000011109 contamination Methods 0.000 description 4
- 230000001678 irradiating effect Effects 0.000 description 4
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 238000009461 vacuum packaging Methods 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000012776 electronic material Substances 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052747 lanthanoid Inorganic materials 0.000 description 3
- 150000002602 lanthanoids Chemical class 0.000 description 3
- 230000007257 malfunction Effects 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- OFIYHXOOOISSDN-UHFFFAOYSA-N tellanylidenegallium Chemical compound [Te]=[Ga] OFIYHXOOOISSDN-UHFFFAOYSA-N 0.000 description 3
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- 229910052777 Praseodymium Inorganic materials 0.000 description 2
- 229910052772 Samarium Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 239000013077 target material Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- CSDQQAQKBAQLLE-UHFFFAOYSA-N 4-(4-chlorophenyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine Chemical compound C1=CC(Cl)=CC=C1C1C(C=CS2)=C2CCN1 CSDQQAQKBAQLLE-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910001361 White metal Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000003064 anti-oxidating effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002604 lanthanum compounds Chemical class 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 235000014593 oils and fats Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010969 white metal Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
- C23C14/165—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B5/00—General methods of reducing to metals
- C22B5/02—Dry methods smelting of sulfides or formation of mattes
- C22B5/04—Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B59/00—Obtaining rare earth metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B9/00—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
- C22B9/02—Refining by liquating, filtering, centrifuging, distilling, or supersonic wave action including acoustic waves
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B9/00—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
- C22B9/05—Refining by treating with gases, e.g. gas flushing also refining by means of a material generating gas in situ
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B9/00—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
- C22B9/16—Remelting metals
- C22B9/22—Remelting metals with heating by wave energy or particle radiation
- C22B9/221—Remelting metals with heating by wave energy or particle radiation by electromagnetic waves, e.g. by gas discharge lamps
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C28/00—Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/51—Insulating materials associated therewith
- H01L29/517—Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
Definitions
- the present invention relates to a method for producing high-purity lanthanum, a high-purity lanthanum, a sputtering target composed of high-purity lanthanum, and a metal gate film mainly composed of high-purity lanthanum.
- Lanthanum (La) is contained in rare earth elements, but is contained in the earth's crust as a mixed complex oxide as a mineral resource. Since rare earth elements were separated from relatively rare (rare) minerals, they were named as such, but they are not rare when viewed from the entire crust.
- Lanthanum is a white metal having an atomic number of 57 and an atomic weight of 138.9, and has a double hexagonal close-packed structure at room temperature. The melting point is 921 ° C., the boiling point is 3500 ° C., and the density is 6.15 g / cm 3.
- the surface is oxidized in the air and gradually dissolved in water. Soluble in hot water and acid. There is no ductility, but there is slight malleability.
- the resistivity is 5.70 ⁇ 10 ⁇ 6 ⁇ cm. It burns at 445 ° C or higher to become oxide (La 2 O 3 ) (see Physics and Chemistry Dictionary).
- lanthanum is a metal that is attracting attention because of research and development as an electronic material such as a metal gate material and a high dielectric constant material (High-k). Since lanthanum metal has a problem that it is easily oxidized during refining, it is a material that is difficult to achieve high purity, and no high-purity product exists. In addition, when lanthanum metal is left in the air, it oxidizes in a short time and turns black, so that there is a problem that handling is not easy. Recently, thinning is required as a gate insulating film in next-generation MOSFETs, but in SiO 2 that has been used as a gate insulating film so far, leakage current due to a tunnel effect increases and normal operation has become difficult. .
- HfO 2 , ZrO 2 , Al 2 O 3 , La 2 O 3 having a high dielectric constant, high thermal stability, and a high energy barrier against holes and electrons in silicon are proposed.
- La 2 O 3 is highly evaluated, electrical characteristics have been investigated, and research reports as a gate insulating film in next-generation MOSFETs have been made (see Non-Patent Document 1).
- the subject of research is the La 2 O 3 film, and the characteristics and behavior of the La element are not particularly mentioned.
- lanthanum lanthanum oxide
- the lanthanum metal itself exists as a sputtering target material
- lanthanum is a material that is difficult to purify, but in addition to the carbon (graphite), the content of Al, Fe, and Cu is preferably reduced in order to make use of the characteristics of lanthanum.
- alkali metals and alkaline earth metals, transition metal elements, refractory metal elements, and radioactive elements also affect the characteristics of semiconductors, so that reduction is desired. For these reasons, the purity of lanthanum is desired to be 4N or higher.
- lanthanoids other than lanthanum are extremely difficult to remove.
- lanthanoids other than lanthanum have similar properties, so that some contamination is not a problem.
- it goes without saying that it is desirable to reduce elements belonging to rare earths (including lanthanoids other than lanthanum). Further, some mixing of gas components does not cause a big problem.
- the gas component is generally difficult to remove, it is common to exclude this gas component in the purity display.
- the present invention relates to a method for producing high-purity lanthanum, high-purity lanthanum, a sputtering target produced using this high-purity lanthanum, a metal gate film formed using the sputtering target, and a semiconductor device comprising the metal gate film, It is an object to provide a technology capable of stably providing a device.
- a raw material of lanthanum fluoride having a purity of 4N or more excluding rare earth elements other than lanthanum and gas components is reduced with distilled calcium to produce lanthanum having a purity of 4N or more.
- the present invention also relates to 2) producing a lanthanum having a purity of 4N or more by reducing a raw material of lanthanum fluoride having a purity of 4N or more excluding gas components with distilled calcium, and dissolving the reduced lanthanum with an electron beam.
- a method for producing high-purity lanthanum having a purity of 4N or more, excluding gas components characterized by removing volatile substances is provided.
- the present invention also relates to 3) a method for producing high-purity lanthanum, wherein each of Al, Fe, and Cu is 10 wtppm or less, and the method for producing high-purity lanthanum according to 1) or 2) above, 4) A method for producing high-purity lanthanum according to claim 1 or 2, characterized in that each of Al and Fe is 5 wtppm or less and Cu is 1 wtppm or less.
- the present invention also relates to 5) a method for producing high-purity lanthanum according to 1) or 2) above, which has a purity of 4N5 or higher, and 6) a method for producing high-purity lanthanum, wherein C is 200 wtppm or less.
- the total amount of gas components is 1000 wtppm or less, 1) to 6 above 8)
- the manufacturing method of the high purity lanthanum as described in any one of 7) is provided.
- the present invention is 9) high-purity lanthanum, the purity excluding rare earth elements other than lanthanum and gas components is 4N or more, and each of Al, Fe, and Cu is 10 wtppm or less. Providing lanthanum purity.
- the present invention is 10) High purity lanthanum, the purity excluding gas components is 4N5 or more, Al and Fe are each 5 wtppm or less, and Cu is 1 wtppm or less.
- the high-purity lanthanum according to any one of 9) to 11) above characterized in that it is 1000 wtppm or less, 13) high-purity lanthanum, and the total amount of rare earth elements other than lanthanum is 10 wtppm or less
- the high-purity lanthanum according to any one of 9) to 12) above is provided.
- the present invention also includes: 14) a sputtering target produced using the high-purity lanthanum according to any one of 9 to 13, 15) a metal gate film formed using the sputtering target of 14), 16 ) A semiconductor element and a device provided with the metal gate film as described in 15) above.
- the above high-purity lanthanum is a novel substance, and the present invention includes this.
- a LaOx film When used as a gate insulating film in a MOSFET, a LaOx film is mainly formed. However, when such a film is formed, an arbitrary film is formed in order to increase the degree of freedom of film formation. High purity lanthanum metal is required.
- the present invention can provide a material suitable for this.
- rare earth elements contained in lanthanum include Sc, Y, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
- Ce approximates La, it is not easy to reduce Ce.
- the rare earth element content is preferably 100 wtppm or less, and more preferably 10 wtppm or less.
- the present invention can realize this.
- the main object of the present invention is to achieve a purity of 4N or higher excluding rare earth elements other than lanthanum and gas components, and solve the problem. And it aims at obtaining the high purity lanthanum of 10 wtppm or less respectively for aluminum (Al), iron (Fe), and copper (Cu) in lanthanum.
- C, N, O, S, and H exist as gas components. These may exist as a single element, but may exist in the form of a compound (CO, CO 2 , SO 2 etc.) or a compound with a constituent element. Since these gas component elements have a small atomic weight and atomic radius, even if they are present as impurities, they do not significantly affect the properties of the material unless they are contained in large amounts. Therefore, when displaying the purity, it is usual to use the purity excluding the gas component. In this sense, the purity of the lanthanum of the present invention excludes gas components.
- the total amount of gas components such as oxygen, nitrogen, and hydrogen is preferably set to 1000 wtppm or less as will be described later.
- the premise of the present invention is to produce high-purity lanthanum of 4N level or higher, or 4N5 or higher.
- the present invention can provide a sputtering target manufactured using the above-described high-purity lanthanum, a metal gate film formed using the sputtering target, and a semiconductor element and a device including the metal gate film.
- a LaOx film is mainly formed.
- high purity lanthanum metal is required in order to increase the degree of freedom in forming the film, that is, forming an arbitrary film.
- the present invention can provide a material suitable for this. Therefore, the high-purity lanthanum of the present invention includes any combination with other substances at the time of producing the target.
- the high-purity lanthanum obtained as described above is dissolved in an electron beam (EB) in a vacuum and solidified to obtain an ingot.
- Electron beam melting can greatly reduce gas components, and the total amount of gas components such as carbon, oxygen, nitrogen, sulfur, and hydrogen can be 1000 wtppm or less. Further, although the gas component is removed during the electron beam melting, several to several tens of ppm of Ca remaining during the Ca reduction reacts with the gas component, and Ca is simultaneously removed.
- the ingot thus produced can be further cut into a predetermined size and made into a sputtering target through a polishing process.
- a high-purity lanthanum target having a purity excluding rare earth elements other than lanthanum and gas components of 4N or higher and Al, Fe, and Cu of 10 wtppm or lower can be manufactured.
- a metal gate film of the same component can be obtained by sputtering using the above target.
- These sputtering targets, metal gate films, and semiconductor elements and devices using these are all novel substances, and the present invention includes them.
- the present invention relates to a method for producing high-purity lanthanum, high-purity lanthanum, a sputtering target produced using this high-purity lanthanum, a metal gate film formed using the sputtering target, and a semiconductor device comprising the metal gate film, It has the outstanding effect that a device can be provided stably.
- a raw material of lanthanum fluoride having a purity excluding rare earth elements other than lanthanum and gas components and a purity of 4N or more can be used as a lanthanum raw material for high purity.
- These raw materials include, as main impurities, Li, Na, K, Ca, Mg, Al, Si, Ti, Fe, Cr, Ni, Mn, Mo, Ce, Pr, Nd, Sm, Ta, W, gas components (N, O, C, H) and the like are contained.
- a commercially available lanthanum fluoride raw material has a purity of 4N or more and can be said to have few ordinary impurities. However, since it contains a large amount of gas components, it cannot be used as it is.
- Aluminum (Al) and copper (Cu) contained in lanthanum are often used in alloy materials such as substrates, sources, and drains in semiconductors, and if they are contained in a small amount in the gate material, it causes malfunction. Moreover, since iron (Fe) contained in lanthanum is easily oxidized, it causes spatter failure when used as a target. Further, when oxidized after being sputtered even if not oxidized in the target, the volume increases. This is a particular problem because it swells and easily causes malfunctions such as defective insulation and causes malfunctions. This needs to be reduced.
- a melting crucible used for the reduction is a tantalum (Ta) crucible.
- Ta tantalum
- powdery LaF 3 and massive Ca are mixed and charged.
- Ca which is a reducing material, is added in excess of about 10% from the calculated amount.
- the filling in the tantalum crucible placed in the reducing device is slowly heated to 600 ° C., and during this time, the inside of the reducing device is evacuated to degas the filling. Thereafter, purified argon gas is fed in to 0.5 atm.
- reaction formula is 2LaF 3 + 3Ca ⁇ 2La + 3CaF 2 .
- This reaction is exothermic and completes quickly.
- it may be maintained at a temperature about 50 ° C. higher than the melting point of La metal for several minutes.
- the yield of metal La reaches about 97%.
- the main impurities are unreacted reducing material and slag.
- Ta which is a crucible material may be mixed as an impurity, it is desirable to carry out the reduction reaction at a temperature as low as possible. In this way, metal La is obtained.
- Electrode beam melting In the electron beam melting of the lanthanum molding obtained as described above, a low-power electron beam is irradiated over a wide range to the lanthanum melting raw material in the furnace. Usually, it is performed at 9 kW to 32 kW. This electron beam melting can be repeated several times (2 to 4 times). When the number of times of electron beam melting is increased, the removal of high vapor pressure elements such as Ca, Mg, Mn, and Pb is further improved. Furthermore, gas components such as oxygen, nitrogen, and hydrogen can be greatly reduced, and the total amount can be reduced to 1000 wtppm or less. Further, during this electron beam melting, the gas component is removed as described above, but several to several ppm of Ca remaining during the Ca reduction react with the gas component, and Ca is also removed at the same time.
- rare earth elements are excluded from high-purity lanthanum because, in the production of high-purity lanthanum, other rare earths themselves are similar in chemical characteristics to lanthanum, so that it is technically very easy to remove them. This is because it is difficult, and from the closeness of this characteristic, even if it is mixed as an impurity, it does not cause a significant change in characteristic.
- the contamination of other rare earths is tolerated to some extent, but it is needless to say that it is desirable to reduce the amount of lanthanum itself in order to improve the characteristics.
- the total of rare earth elements other than lanthanum can be made 10 wtppm or less. This is one of the remarkable features of the present invention.
- the reason why the purity excluding the gas component is 4N or more, and further 4N5 or more is that it is difficult to remove the gas component, and counting this does not serve as a measure for improving the purity. In general, the presence of some amount is harmless compared to other impurity elements.
- a thin film of an electronic material such as a gate insulating film or a thin film for a metal gate
- most of them are performed by sputtering, which is an excellent method for forming a thin film. Therefore, it is effective to produce a high-purity lanthanum sputtering target using the lanthanum ingot.
- the target can be manufactured by normal processing such as forging, rolling, cutting, and finishing (polishing). In particular, the manufacturing process is not limited and can be arbitrarily selected.
- high-purity lanthanum having a purity excluding rare earth elements other than lanthanum and gas components of 4N or more and Al, Fe, and Cu of 10 wtppm or less. Further, a high purity lanthanum ingot having a purity excluding gas components of 4N5 or more, C of 200 wtppm or less, Al and Fe of 5 wtppm or less, and Cu of 1 wtppm or less can be obtained.
- carbon (C) is a gas component, it means that the characteristics of lanthanum are further improved by limiting the gas component of C to 200 wtppm or less.
- high purity lanthanum can be formed on the substrate by sputtering using this high purity target.
- the purity removed is 4N5 or more, C is 200 wtppm or less, aluminum (Al) and iron (Fe) are each 5 wtppm or less, copper (Cu) is 1 wtppm or less, and rare earth elements other than lanthanum
- a metal gate film mainly composed of high-purity lanthanum having a total of 10 wtppm or less can be formed on the substrate.
- the film on the substrate reflects the composition of the target, and a high-purity lanthanum film can be formed.
- Use as a metal gate film can be used as the composition of the high-purity lanthanum itself, but it can be mixed with other gate materials or formed as an alloy or compound. In this case, it can be achieved by simultaneous sputtering with another gate material target or sputtering using a mosaic target.
- the present invention includes these.
- the content of impurities varies depending on the amount of impurities contained in the raw material, but by adopting the above method, each impurity can be adjusted within the above numerical range.
- the present invention provides a technique capable of efficiently and stably providing the high-purity lanthanum obtained as described above, a sputtering target composed of high-purity lanthanum, and a metal gate thin film mainly composed of high-purity lanthanum.
- Example 1 The raw material of lanthanum fluoride having a purity of 4N was used as the raw material of lanthanum to be treated.
- Metallic lanthanum is a material that has recently attracted attention, but there is a problem that commercial products of metallic lanthanum have low purity and the quality is not constant.
- lanthanum fluoride it is possible to obtain a high-purity material even with a commercial product.
- this lanthanum fluoride cannot be used as it is, it is necessary and important to produce a highly pure metal lanthanum efficiently and stably using this 4N pure lanthanum fluoride raw material.
- Table 2 shows the analytical values of the lanthanum fluoride raw material. Among these, the following elements can be mentioned as impurities contained abundantly. Na: 33 wtppm, Al: 3.5 wtppm, Si: 8.5 wtppm, S: 63 wtppm, Cl: 17 wtppm, Cu: 1.4 wtppm, Zn: 5.1 wtppm, C: 61 wtppm, N: 200 wtppm, O: 5600 wtppm, H: It is 1200 wtppm and contains many gas components.
- the rare earth elements are Ce: 63 wtppm, Pr: 14 wtppm, Nd: 9.2 wtppm :, Sm: ⁇ 0.1 wtppm, etc., and the impurities are relatively large.
- a tantalum (Ta) crucible of ⁇ 250 ⁇ H400 was used as a melting crucible used for the reduction.
- powdery LaF 3 : 14.1 kg and massive Ca: 6 kg were mixed and charged.
- Ca that is a reducing material was Ca that was subjected to the distillation of the analytical values shown in Table 1 once, and was added in excess by about 10% from the calculated amount.
- the filling in the tantalum crucible placed in the reducing device was slowly heated to 600 ° C., and during this time, the inside of the reducing device was evacuated to degas the filling. Thereafter, purified argon gas was introduced to a pressure of 0.5 atm.
- the heating temperature was further increased.
- the reaction started when the charge was heated to 800 ° C-1000 ° C.
- the reaction formula is 2LaF 3 + 3Ca ⁇ 2La + 3CaF 2 .
- This reaction was exothermic and completed quickly.
- the temperature was kept at about 50 ° C. higher than the melting point of the La metal. Since the melting point of La is 950 ° C., the heating temperature was adjusted to + 50 ° C., that is, 1000 ° C. In this way, metal La is obtained.
- Table 3 shows analytical values of the metal La. As shown in Table 3, Al: 8.1 wtppm, Si: 4.4 wtppm, Ca: 3.9 wtppm, Fe: 8.3 wtppm, Cu: 4.3 wtppm, Mo ⁇ 0.05 wtppm, Ta ⁇ 5 wtppm, W: The results were 0.12 wtppm, C: 100 wtppm, N: 93 wtppm, O: 1400 wtppm, S ⁇ 10 wtppm, and H: 12 wtppm. Although it was a result by Ca reduction, there was much Ca and oxygen (O) content was also high.
- O oxygen
- Electrode melting Next, the lanthanum molded body obtained above was melted with an electron beam. This is performed by irradiating a lanthanum melting raw material in the furnace over a wide range with a low-power electron beam. Irradiation was performed at a vacuum degree of 6.0 ⁇ 10 ⁇ 5 to 7.0 ⁇ 10 ⁇ 4 mbar and a dissolution power of 32 kW. This electron beam melting was repeated twice. Each dissolution time is 30 minutes. This produced an EB melted ingot. At the time of electron beam melting, highly volatile substances can be volatilized and removed.
- Table 4 shows analytical values of the high-purity lanthanum after the electron beam dissolution.
- Li ⁇ 0.005 wtppm, Na ⁇ 0.05 wtppm, Al: 2.4 wtppm, Si: 0.55 wtppm, Ca: 1.9 wtppm, Fe: 3.5 wtppm, Cu: 5.8 wtppm, Zn ⁇ 0.05 wtppm, Mo ⁇ 0.05 wtppm, Ta ⁇ 5 wtppm, W: 0.09 wtppm, C: 110 wtppm, N: 100 wtppm, O: 440 wtppm, S ⁇ 10 wtppm, H: 10 wtppm, all of which are the conditions of the present invention was met.
- oxygen and Ca that could not be reduced when calcium was reduced could be greatly reduced.
- the present invention has conditions for producing high-purity lanthanum having a purity of 4N or more excluding rare earth elements other than lanthanum and gas components. It should be easily understood that all of them are included.
- the lanthanum ingot thus obtained was hot-pressed as necessary, further machined and polished to obtain a disk-shaped target having a diameter of 140 ⁇ 14 t.
- the weight of this target was 1.42 kg.
- This is further bonded to a backing plate to obtain a sputtering target.
- a high-purity lanthanum sputtering target having the above component composition could be obtained.
- this target since this target has high oxidizability, it can be said that it is preferable to store or transport it by vacuum packing.
- Comparative Example 1 As raw materials for the lanthanum to be treated, commercial products having a purity of 2N5 to 3N shown in Table 5 were used.
- the commercially available lantern used in Comparative Example 1 is a 120 mm square ⁇ 30 mmt plate. The weight of one sheet was 2.0 kg to 3.3 kg, and 12 sheets of this, a total of 24 kg of raw materials were used. Since these plate-like lanthanum raw materials are very easily oxidized, they are vacuum packed with aluminum.
- the main impurities shown in Table 5 are Li: 1200 wtppm, Na: 4.3 wtppm, Mg: 33 wtppm, Al: 120 wtppm, Si: 160 wtppm, S: 50 wtppm, Ti: 5.7 wtppm, Cr: 21 wtppm, Mn: It was 36 wtppm, Fe: 330 wtppm, Cu: 17 wtppm, Zr: 0.31 wtppm, C: 920 wtppm, N ⁇ 10 wtppm, O: 540 wtppm, S ⁇ 10 wtppm, and H: 26 wtppm.
- the main impurity elements in lanthanum after electron beam melting are as follows. Li: 12 wtppm, Na: 0.86 wtppm, Mg: 2.7 wtppm, Al: 72 wtppm, Si: 29 wtppm, S: 30 wtppm, Ti: 1.9 wtppm, Cr: 4.2 wtppm, Mn: 6.4 wtppm, Fe: 130 wtppm, Cu: 9.2 wtppm, Zr: 0.22 wtppm, C: 1100 wtppm, N ⁇ 10 wtppm, O: 680 wtppm, S: 13 wtppm, H: 23 wtppm. As is clear from the above, Al and Fe could not be reduced, and the gas components were not sufficiently reduced. Overall, the amount of impurities was larger than in the above-described example, and the object of the present invention could not be achieved.
- Example 2 The raw material of lanthanum fluoride having a purity of 4N was used as the raw material of lanthanum to be treated.
- Metallic lanthanum is a material that has recently attracted attention, but there is a problem that commercial products of metallic lanthanum have low purity and the quality is not constant.
- lanthanum fluoride it is possible to obtain a high-purity material even with a commercial product.
- this lanthanum fluoride cannot be used as it is, it is necessary and important to produce a highly pure metal lanthanum efficiently and stably using this 4N pure lanthanum fluoride raw material.
- Table 7 shows the analytical values of the lanthanum fluoride raw material. Among these, the following elements can be mentioned as main impurities. Na: 33 wtppm, Al: 3.5 wtppm, Si: 8.5 wtppm, S: 63 wtppm, Cl: 17 wtppm, Cu: 1.4 wtppm, Zn: 5.1 wtppm, C: 61 wtppm, N: 200 wtppm, O: 5600 wtppm, H: It is 1200 wtppm and contains many gas components.
- the rare earth elements are Ce: 63 wtppm, Pr: 14 wtppm, Nd: 9.2 wtppm :, Sm: ⁇ 0.1 wtppm, etc., and the impurities are relatively large.
- a tantalum (Ta) crucible of ⁇ 250 ⁇ H400 was used as a melting crucible used for the reduction.
- powdery LaF 3 : 14.1 kg and massive Ca: 6 kg were mixed and charged.
- Ca that is a reducing material was Ca that was subjected to distillation of the analytical values shown in Table 1 twice, and was added in excess of about 10% from the calculated amount.
- the filling in the tantalum crucible placed in the reducing device was slowly heated to 600 ° C., and during this time, the inside of the reducing device was evacuated to degas the filling. Thereafter, purified argon gas was introduced to a pressure of 0.5 atm.
- the heating temperature was further increased.
- the reaction started when the charge was heated to 800 ° C-1000 ° C.
- the reaction formula is 2LaF 3 + 3Ca ⁇ 2La + 3CaF 2 .
- This reaction was exothermic and completed quickly.
- the temperature was kept at about 50 ° C. higher than the melting point of the La metal. Since the melting point of La is 950 ° C., the heating temperature was adjusted to + 50 ° C., that is, 1000 ° C. In this way, the metal La can be obtained.
- Table 8 shows the analytical values of the calcium reduced metal La.
- Electrode melting Next, the lanthanum molded body obtained above was melted with an electron beam. This is performed by irradiating a lanthanum melting raw material in the furnace over a wide range with a low-power electron beam. Irradiation was performed at a vacuum degree of 6.0 ⁇ 10 ⁇ 5 to 7.0 ⁇ 10 ⁇ 4 mbar and a dissolution power of 32 kW. This electron beam melting was repeated twice. Each dissolution time is 30 minutes. This produced an EB melted ingot. At the time of electron beam melting, highly volatile substances can be volatilized and removed.
- Table 9 shows analytical values of the high-purity lanthanum after the electron beam dissolution.
- Li ⁇ 0.005 wtppm, Na ⁇ 0.05 wtppm, Al: 1.5 wtppm, Si: 0.42 wtppm, S: 4.9 wtppm, Ca: 0.16 wtppm, Fe: 0.65 wtppm, Cu ⁇ 0.05 wtppm, Zn ⁇ 0.05 wtppm, Mo ⁇ 0.05 wtppm, Ta ⁇ 5 wtppm, W ⁇ 0.05 wtppm, C: 140 wtppm, N: 50 wtppm, O: 150 wtppm, S ⁇ 10 wtppm, H: 22 wtppm, By using Ca which has been distilled twice, this purity was further improved, and both satisfied the conditions of the present invention. In addition, oxygen and Ca that could not be reduced when calcium was reduced could be greatly reduced
- the lanthanum ingot thus obtained was hot-pressed as necessary, further machined and polished to obtain a disk-shaped target having a diameter of 140 ⁇ 14 t.
- the weight of this target was 1.42 kg.
- This is further bonded to a backing plate to obtain a sputtering target.
- a high-purity lanthanum sputtering target having the above component composition could be obtained.
- this target since this target has high oxidizability, it can be said that it is preferable to store or transport it by vacuum packing.
- Example 3 As a raw material of lanthanum to be treated, a raw material of lanthanum fluoride having a purity of 4N and rare earths was used.
- Metallic lanthanum is a material that has recently attracted attention, but there is a problem that commercial products of metallic lanthanum have low purity and the quality is not constant.
- lanthanum fluoride it is possible to obtain a high-purity material even with a commercial product.
- this lanthanum fluoride cannot be used as it is, it is necessary and important to produce a highly pure metal lanthanum efficiently and stably using this 4N pure lanthanum fluoride raw material.
- Table 10 shows analytical values of the lanthanum fluoride raw material. Among these, the following elements can be mentioned as impurities contained abundantly. Na: 0.2 wtppm, Al ⁇ 0.05 wtppm, Si: 0.94 wtppm, Cl: 12 wtppm, Cu ⁇ 0.05 wtppm, Zn ⁇ 0.1 wtppm, C: 180 wtppm, N: 70 wtppm, O: 5200 wtppm, H: 540 wtppm Yes, it contains many gas components.
- the rare earth elements are Ce: 1.1 wtppm, Pr ⁇ 0.1 wtppm, Nd: 0.24 wtppm :, Sm: 0.17 wtppm, etc., and there are not many impurities.
- the purity can be 4N including rare earths (excluding lanthanum).
- a tantalum (Ta) crucible of ⁇ 250 ⁇ H400 was used as a melting crucible used for the reduction.
- powdery LaF 3 : 14.1 kg and massive Ca: 6 kg were mixed and charged.
- Ca which is a reducing material, was Ca that was subjected to the distillation of the analytical values shown in Table 1 once, and was added in excess by about 10% from the calculated amount.
- the filling in the tantalum crucible placed in the reducing device was slowly heated to 600 ° C., and during this time, the inside of the reducing device was evacuated to degas the filling. Thereafter, purified argon gas was introduced to a pressure of 0.5 atm.
- the heating temperature was further increased.
- the reaction started when the charge was heated to 800 ° C-1000 ° C.
- the reaction formula is 2LaF 3 + 3Ca ⁇ 2La + 3CaF 2 .
- This reaction was exothermic and completed quickly.
- the temperature was kept at about 50 ° C. higher than the melting point of the La metal. Since the melting point of La is 950 ° C., the heating temperature was adjusted to + 50 ° C., that is, 1000 ° C. In this way, metal La is obtained.
- Table 11 shows analytical values of the metal La. As shown in Table 11, Al: 8.1 wtppm, Si: 4.5 wtppm, Ca: 9.9 wtppm, Fe: 9.2 wtppm, Cu: 4.3 wtppm, Mo ⁇ 0.05 wtppm, Ta ⁇ 5 wtppm, W: The results were 0.12 wtppm, C: 100 wtppm, N: 93 wtppm, O: 400 wtppm, S ⁇ 10 wtppm, and H: 12 wtppm. Although it was a result by Ca reduction, there was much Ca and oxygen (O) content was also high.
- Electrode melting Next, the lanthanum molded body obtained above was melted with an electron beam. This is performed by irradiating a lanthanum melting raw material in the furnace over a wide range with a low-power electron beam. Irradiation was performed at a vacuum degree of 6.0 ⁇ 10 ⁇ 5 to 7.0 ⁇ 10 ⁇ 4 mbar and a dissolution power of 32 kW. This electron beam melting was repeated twice. Each dissolution time is 30 minutes. This produced an EB melted ingot. At the time of electron beam melting, highly volatile substances can be volatilized and removed.
- Table 12 shows analytical values of the high-purity lanthanum after the electron beam dissolution.
- Li ⁇ 0.005 wtppm, Na ⁇ 0.05 wtppm, Al: 7.5 wtppm, Si: 5.5 wtppm, Ca: 1.9 wtppm, Fe: 8.4 wtppm, Cu: 5.8 wtppm, Zn ⁇ 0.05 wtppm, Mo ⁇ 0.05 wtppm, Ta ⁇ 5 wtppm, W: 0.09 wtppm, C: 110 wtppm, N: 100 wtppm, O: 240 wtppm, S ⁇ 10 wtppm, H: 10 wtppm, and high purity lanthanum fluoride. By using it, this purity was further improved, and all satisfied the conditions of the present invention.
- the lanthanum ingot thus obtained was hot-pressed as necessary, further machined and polished to obtain a disk-shaped target having a diameter of 140 ⁇ 14 t.
- the weight of this target was 1.42 kg.
- This is further bonded to a backing plate to obtain a sputtering target.
- a high-purity lanthanum sputtering target having the above component composition could be obtained.
- this target since this target has high oxidizability, it can be said that it is preferable to store or transport it by vacuum packing.
- Example 4 The raw material of lanthanum fluoride having a purity of 4N was used as the raw material of lanthanum to be treated.
- Metallic lanthanum is a material that has recently attracted attention, but there is a problem that commercial products of metallic lanthanum have low purity and the quality is not constant.
- lanthanum fluoride it is possible to obtain a high-purity material even with a commercial product.
- this lanthanum fluoride cannot be used as it is, it is necessary and important to produce a highly pure metal lanthanum efficiently and stably using this 4N pure lanthanum fluoride raw material.
- Table 13 shows the analytical values of the lanthanum fluoride raw material. Among these, the following elements can be mentioned as impurities contained abundantly. Na: 0.2 wtppm, Al ⁇ 0.05 wtppm, Si: 0.94 wtppm, Cl: 12 wtppm, Cu ⁇ 0.05 wtppm, Zn ⁇ 0.1 wtppm, C: 180 wtppm, N: 70 wtppm, O: 5200 wtppm, H: 540 wtppm Yes, it contains many gas components.
- the rare earth elements are Ce: 1.1 wtppm, Pr ⁇ 0.1 wtppm, Nd: 0.24 wtppm :, Sm: 0.17 wtppm, etc., and there are not many impurities.
- the purity can be 4N including rare earths (excluding lanthanum).
- a tantalum (Ta) crucible of ⁇ 250 ⁇ H400 was used as a melting crucible used for the reduction.
- powdery LaF 3 : 14.1 kg and massive Ca: 6 kg were mixed and charged.
- Ca that is a reducing material was Ca that was subjected to distillation of the analytical values shown in Table 1 twice, and was added in excess of about 10% from the calculated amount.
- the filling in the tantalum crucible placed in the reducing device was slowly heated to 600 ° C., and during this time, the inside of the reducing device was evacuated to degas the filling. Thereafter, purified argon gas was introduced to a pressure of 0.5 atm.
- the heating temperature was further increased.
- the reaction started when the charge was heated to 800 ° C-1000 ° C.
- the reaction formula is 2LaF 3 + 3Ca ⁇ 2La + 3CaF 2 .
- This reaction was exothermic and completed quickly.
- the temperature was kept at about 50 ° C. higher than the melting point of the La metal. Since the melting point of La is 950 ° C., the heating temperature was adjusted to + 50 ° C., that is, 1000 ° C. In this way, metal La is obtained.
- Table 14 shows analytical values of the metal La. As shown in Table 14, Al: 0.82 wtppm, Si: 0.47 wtppm, Ca: 2.1 wtppm, Fe: 1.3 wtppm, Cu ⁇ 0.05 wtppm, Mo ⁇ 0.05 wtppm, Ta ⁇ 5 wtppm, W ⁇ 0.05 wtppm, C: 120 wtppm, N: 90 wtppm, O: 260 wtppm, S ⁇ 10 wtppm, H: 16 wtppm. Although it was a result by Ca reduction, there was much Ca and oxygen (O) content was also high.
- Electrode melting Next, the lanthanum molded body obtained above was melted with an electron beam. This is performed by irradiating a lanthanum melting raw material in the furnace over a wide range with a low-power electron beam. Irradiation was performed at a vacuum degree of 6.0 ⁇ 10 ⁇ 5 to 7.0 ⁇ 10 ⁇ 4 mbar and a dissolution power of 32 kW. This electron beam melting was repeated twice. Each dissolution time is 30 minutes. This produced an EB melted ingot. At the time of electron beam melting, highly volatile substances can be volatilized and removed.
- Table 15 shows analytical values of the high-purity lanthanum after the electron beam melting.
- Li ⁇ 0.005 wtppm, Na ⁇ 0.05 wtppm, Al: 0.75 wtppm, Si: 0.36 wtppm, Ca: 0.41 wtppm, Fe: 0.71 wtppm, Cu: 0.24 wtppm, Zn ⁇ 0.05 wtppm, Mo ⁇ 0.05 wtppm, Ta ⁇ 5 wtppm, W ⁇ 0.05 wtppm, C: 110 wtppm, N: 80 wtppm, O: 150 wtppm, S ⁇ 10 wtppm, H: 9.4 wtppm, high purity fluoride By using lanthanum, this purity was further improved and both satisfied the conditions of the present invention.
- the lanthanum ingot thus obtained was hot-pressed as necessary, further machined and polished to obtain a disk-shaped target having a diameter of 140 ⁇ 14 t.
- the weight of this target was 1.42 kg.
- This is further bonded to a backing plate to obtain a sputtering target.
- a high-purity lanthanum sputtering target having the above component composition could be obtained.
- this target since this target has high oxidizability, it can be said that it is preferable to store or transport it by vacuum packing.
- the melting crucible used for the reduction was a tantalum (Ta) crucible.
- the tantalum crucible the powdery LaF 3 and massive Ca are mixed and charged.
- Ca which is a reducing material, is added in excess of about 10% from the calculated amount.
- the filling in the tantalum crucible placed in the reducing device is slowly heated to 600 ° C., and during this time, the inside of the reducing device is evacuated to degas the filling. Thereafter, purified argon gas was introduced to a pressure of 0.5 atm.
- the rare earth elements are Ce: 80 wtppm, Pr: 33 wtppm, Nd: 16 wtppm: Sm: 6.8 wtppm, Gd: 10 wtppm, Tb: 11 wtppm, and the like, and there are many impurities.
- the main impurity elements in lanthanum after electron beam melting are as follows. Al: 8 wtppm, Si: 16 wtppm, S: 20 wtppm, Ca: 2.9 wtppm, Ti: 2.2 wtppm, Cr: 2.1 wtppm, Mn: 1.2 wtppm, Fe: 5.1 wtppm, Cu: 165 wtppm, C: 330 wtppm, N: 110 wtppm, O: 1100 wtppm, and H: 20 wtppm.
- Al, Fe, and Cu could not be reduced, and particularly a large amount of Cu remained. Moreover, the reduction of the gas component was not sufficient. Overall, the amount of impurities was larger than in the above-described example, and the object of the present invention could not be achieved.
- the melting crucible used for the reduction was a tantalum (Ta) crucible.
- the tantalum crucible the powdery LaF 3 and massive Ca are mixed and charged.
- Ca which is a reducing material, is added in excess of about 10% from the calculated amount.
- the filling in the tantalum crucible placed in the reducing device is slowly heated to 600 ° C., and during this time, the inside of the reducing device is evacuated to degas the filling. Thereafter, purified argon gas was introduced to a pressure of 0.5 atm.
- Al 3.2 wtppm, Si: 2.1 wtppm, S: 11 wtppm, Ca: 4.4 wtppm, Fe: 0.44 wtppm, Mn: 14 wtppm, Cl: 1.8 wtppm, Cu: 110 wtppm, C: 320 wtppm, N: 85 wtppm, O: 450 wtppm, H: 22 wtppm, and contains many gas components.
- Ce: 2.4 wtppm, Pr: 0.16 wtppm, Nd: 0.64 wtppm, and others were ⁇ 0.05 wtppm, which were low concentrations.
- the main impurity elements in lanthanum after electron beam melting are as follows. Al: 4.2 wtppm, Si: 1.1 wtppm, S: 9 wtppm, Ti: 1.8 wtppm, Cr: 0.36 wtppm, Mn: 1.7 wtppm, Fe: 0.65 wtppm, Cu: 98 wtppm, C: 420 wtppm, N: They were 140 wtppm, O: 900 wtppm, and H: 13 wtppm.
- the selection of raw materials in particular, the selection of lanthanum fluoride having a purity of 4N or more excluding rare earth elements other than lanthanum and gas components as the raw material, and further distillation It is important to produce lanthanum with a purity of 4N or more by reduction with calcium, and to remove the volatile substances by dissolving the reduced lanthanum with an electron beam, thereby removing rare earth elements and gas components other than lanthanum, It can be seen that high-purity lanthanum having a purity of 4N or more can be produced.
- the high purity lanthanum obtained by the present invention, the sputtering target prepared from the high purity lanthanum, and the metal gate thin film mainly composed of the high purity lanthanum are used as an electronic material disposed in the vicinity of the silicon substrate. Since the function is not deteriorated or disturbed, it is useful as a material for a gate insulating film or a metal gate thin film.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electromagnetism (AREA)
- Plasma & Fusion (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Ceramic Engineering (AREA)
- Acoustics & Sound (AREA)
- Computer Hardware Design (AREA)
- Physical Vapour Deposition (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
ランタンの原子番号は57、原子量138.9の白色の金属であり、常温で複六方最密構造を備えている。融点は921°C、沸点3500°C、密度6.15g/cm3であり、空気中では表面が酸化され、水には徐々にとける。熱水、酸に可溶である。延性はないが、展性はわずかにある。抵抗率は5.70×10-6Ωcmである。445°C以上で燃焼して酸化物(La2O3)となる(理化学辞典参照)。
ランタン金属は精製時に酸化し易いという問題があるため、高純度化が難しい材料であり、高純度製品は存在していなかった。また、ランタン金属を空気中に放置した場合には短時間で酸化し黒色に変色するので、取り扱いが容易でないという問題がある。
最近、次世代のMOSFETにおけるゲート絶縁膜として薄膜化が要求されているが、これまでゲート絶縁膜として使用されてきたSiO2では、トンネル効果によるリーク電流が増加し、正常動作が難しくなってきた。
このために、ターゲット作製後、すぐ真空パックするか又は油脂で覆い酸化防止策を講ずる必要があるが、これは著しく煩雑な作業である。このような問題から、ランタン元素のターゲット材は、実用化に至っていないのが現状である。
パーティクル発生は、メタルゲート膜や半導体素子及びデバイスの不良率を劣化させる原因となる。ランタンに含まれる炭素(グラファイト)が固形物であることから、特に問題であり、この炭素(グラファイト)は、導電性を有するため、検知が難しく、低減化が求められる。
また、ガス成分の多少の混入も大きな問題とならない。しかも、ガス成分は、一般に除去が難しいため、純度の表示には、このガス成分を除外するのが一般的である。
ランタンに含有される希土類元素には、ランタン(La)以外に、Sc,Y,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luがあるが、特性が似ているために、Laから分離精製することが難しい。特に、CeはLaと近似しているので、Ceの低減化は容易ではない。
本願発明は、主としてランタン以外の希土類元素とガス成分を除いた純度を4N以上とすることを中心的な課題とし、それを解決するものである。そして、ランタン中のアルミニウム(Al)、鉄(Fe)及び銅(Cu)を、それぞれ10wtppm以下の高純度ランタンを得ることを目途とする。
しかし、多量のガス成分の存在は好ましくないので、後述するように、酸素、窒素、水素等の、ガス成分の総量を1000wtppm以下とすることが良い。
本願発明の前提となるのは、4Nレベル以上、さらには4N5以上の高純度ランタンを製造することである。
MOSFETにおけるゲート絶縁膜として利用する場合には、上記の通り、形成するのは主としてLaOx膜である。このような膜を形成する場合において、任意の膜を形成するという、膜形成の自由度を増すために、純度の高いランタン金属が必要となる。
本願発明は、これに適合する材料を提供することができる。したがって、本願発明の高純度ランタンは、ターゲットの作製時において、他の物質との任意の組み合わせを包含するものである。
表1に、市販Caと蒸留Ca(蒸留1回、蒸留2回)の分析値の対比を示す。この表1の市販Caでは、Cuが95wtppmと高く、この市販Caを使用した場合には、Cuの混入のリスクが高くなる。
還元の際に使用する溶解るつぼは、タンタル(Ta)製るつぼを使用する。このタンタル製るつぼ内に、粉状のLaF3と塊状Caを混合して投入する。通常、還元材であるCaは、計算量よりも10%程度過剰に添加する。
還元装置内に配置したタンタル製るつぼ内の充填物を、ゆっくりと600°Cまで加熱し、この間還元装置内を真空に引き、充填物の脱ガスを行う。その後、精製したアルゴンガスを送入して0.5気圧とする。
金属Laの収率は97%程度に達する。主な不純物は、未反応の還元材とスラグである。なお、るつぼ材であるTaが不純物として混入する可能性があるので、還元反応はできるだけ低い温度で実施するのが望ましい。このように金属Laを得る。
上記に得られたランタン成型体の電子ビーム溶解に際しては、低出力の電子ビームを、炉中のランタン溶解原料に広範囲に照射することにより行う。通常、9kW~32kWで行う。この電子ビーム溶解は、数回(2~4回)繰り返すことができる。電子ビーム溶解の回数を増やすと、Ca、Mg,Mn,Pb等の高蒸気圧元素の除去がより向上する。さらに酸素、窒素、水素等のガス成分も大きく低減でき、総量で1000wtppm以下とすることができる。
また、この電子ビーム溶解の際に、上記の通りガス成分が除去されるが、Ca還元の際に残留した数~数+ppmのCaがガス成分と反応し、Caも同時に除去される。
本願発明では、ランタン以外の希土類元素の合計を10wtppm以下とすることができる。これは本願発明の著しい特徴の一つである。
また、ガス成分を除いた純度を4N以上、さらには4N5以上とするのは、ガス成分は除去が難しく、これをカウントすると純度の向上の目安とならないからである。また、一般に他の不純物元素に比べ多少の存在は無害である場合が多いからである。
ターゲットの製造は、鍛造・圧延・切削・仕上げ加工(研磨)等の、通常の加工により製造することができる。特に、その製造工程に制限はなく、任意に選択することができる。
また、ガス成分を除いた純度が4N5以上であり、Cを200wtppm以下、Al及びFeをそれぞれ5wtppm以下、Cuを1wtppm以下の高純度ランタンインゴットを得ることができる。なお、上記炭素(C)についてはガス成分ではあるが、Cのガス成分を200wtppm以下に限定することにより、ランタンの特性をより向上させることを意味するものである。
ターゲットの製作に際しては、上記高純度ランタンインゴットを所定サイズに切断し、これを切削及び研磨して作製する。
本願発明は、上記によって得られた高純度ランタン、高純度ランタンからなるスパッタリングターゲット及び高純度ランタンを主成分とするメタルゲート用薄膜を効率的かつ安定して提供できる技術を提供するものである。
処理するランタンの原料として、純度4Nのフッ化ランタンの原料を用いた。金属ランタンは、最近注目されている材料であるが、金属ランタンの市販品は純度が低く、かつ品位が一定しないという問題がある。
一方、フッ化ランタンについては、市販品でも高純度の材料を得ることが可能である。しかし、このフッ化ランタンそのままでは使用できないので、この純度4Nのフッ化ランタン原料を使用し、効率的にかつ安定して高純度の金属ランタンを製造することが、必要かつ重要となる。
一方、希土類元素については、Ce:63wtppm、Pr:14wtppm、Nd:9.2wtppm:、Sm:<0.1wtppmなどであり、不純物は比較的多い。
還元の際に使用する溶解るつぼは、φ250×H400のタンタル(Ta)製るつぼを使用した。このタンタル製るつぼ内に、粉状のLaF3:14.1kgと塊状Ca:6kgを混合して投入した。還元材であるCaは、前記表1に示す分析値の蒸留を1回を行ったCaを使用し、計算量よりも10%程度、過剰に添加した。
還元装置内に配置したタンタル製るつぼ内の充填物を、ゆっくりと600°Cまで加熱し、この間還元装置内を真空に引き、充填物の脱ガスを行った。その後、精製したアルゴンガスを送入して0.5気圧とした。
Ca還元による結果ではあるが、Caが多く、また酸素(O)含有量も高かった。
次に、上記に得られたランタン成型体を電子ビーム溶解した。低出力の電子ビームを、炉中のランタン溶解原料に広範囲に照射することにより行う。真空度6.0×10-5~7.0×10-4mbar、溶解出力32kWで照射を行った。この電子ビーム溶解は、2回繰り返した。それぞれの溶解時間は、30分である。これによってEB溶解インゴットを作成した。電子ビーム溶解時に、揮発性の高い物質は揮散除去が可能となった。
また、カルシウム還元した際に低減ができなかった酸素及びCaも、大きく低減が可能となった。
用途によっては、ランタン以外の希土類元素の含有が、特に問題とならない場合があるので、本願発明は、ランタン以外の希土類元素及びガス成分を除く純度が4N以上である高純度ランタンを製造する条件を、全て包含することは容易に理解されるべきものである。
処理するランタンの原料として、前記表5に示す純度が2N5~3Nレベルの市販品を用いた。本比較例1で使用した市販品のランタンは、120mm角×30mmtの板状物からなる。1枚の重量は、2.0kg~3.3kgであり、これを12枚、合計で24kgの原料を使用した。これらの板状のランタン原料は非常に酸化され易い物質のため、アルミニウムで真空パックされていた。
以上によって、高純度ランタンインゴット22.54kgを製造することができた。このようにして得た高純度ランタンの分析値を表6に示す。
以上から明らかなように、Al、Feの低減化はできず、またガス成分の低減化も十分でなかった。全体的に、前記実施例に比べて不純物量は多く、本願発明の目的を達成することができなかった。
処理するランタンの原料として、純度4Nのフッ化ランタンの原料を用いた。金属ランタンは、最近注目されている材料であるが、金属ランタンの市販品は純度が低く、かつ品位が一定しないという問題がある。
一方、フッ化ランタンについては、市販品でも高純度の材料を得ることが可能である。しかし、このフッ化ランタンそのままでは使用できないので、この純度4Nのフッ化ランタン原料を使用し、効率的にかつ安定して高純度の金属ランタンを製造することが、必要かつ重要となる。
一方、希土類元素については、Ce:63wtppm、Pr:14wtppm、Nd:9.2wtppm:、Sm:<0.1wtppmなどであり、不純物は比較的多い。
還元の際に使用する溶解るつぼは、φ250×H400のタンタル(Ta)製るつぼを使用した。このタンタル製るつぼ内に、粉状のLaF3:14.1kgと塊状Ca:6kgを混合して投入した。還元材であるCaは、表1に示す分析値の蒸留を2回行ったCaを使用し、計算量よりも10%程度過剰に添加した。
還元装置内に配置したタンタル製るつぼ内の充填物を、ゆっくりと600°Cまで加熱し、この間還元装置内を真空に引き、充填物の脱ガスを行った。その後、精製したアルゴンガスを送入して0.5気圧とした。
このようにして金属Laを得ることができる。カルシウム還元した金属Laの分析値を表8に示す。
次に、上記に得られたランタン成型体を電子ビーム溶解した。低出力の電子ビームを、炉中のランタン溶解原料に広範囲に照射することにより行う。真空度6.0×10-5~7.0×10-4mbar、溶解出力32kWで照射を行った。この電子ビーム溶解は、2回繰り返した。それぞれの溶解時間は、30分である。これによってEB溶解インゴットを作成した。電子ビーム溶解時に、揮発性の高い物質は揮散除去が可能となった。
処理するランタンの原料として、希土類込みの純度4Nのフッ化ランタンの原料を用いた。金属ランタンは、最近注目されている材料であるが、金属ランタンの市販品は純度が低く、かつ品位が一定しないという問題がある。
一方、フッ化ランタンについては、市販品でも高純度の材料を得ることが可能である。しかし、このフッ化ランタンそのままでは使用できないので、この純度4Nのフッ化ランタン原料を使用し、効率的にかつ安定して高純度の金属ランタンを製造することが、必要かつ重要となる。
一方、希土類元素については、Ce:1.1wtppm、Pr<0.1wtppm、Nd:0.24wtppm:、Sm:0.17wtppmなどであり、不純物は多くない。このように希土類元素が低い原料を用いた場合には、希土類(但し、ランタンを除く)を含めて純度4Nとすることができる。
還元の際に使用する溶解るつぼは、φ250×H400のタンタル(Ta)製るつぼを使用した。このタンタル製るつぼ内に、粉状のLaF3:14.1kgと塊状Ca:6kgを混合して投入した。還元材であるCaは、表1に示す分析値の蒸留を1回行ったCaを使用し、計算量よりも10%程度、過剰に添加した。
還元装置内に配置したタンタル製るつぼ内の充填物を、ゆっくりと600°Cまで加熱し、この間還元装置内を真空に引き、充填物の脱ガスを行った。その後、精製したアルゴンガスを送入して0.5気圧とした。
Ca還元による結果ではあるが、Caが多く、また酸素(O)含有量も高かった。
次に、上記に得られたランタン成型体を電子ビーム溶解した。低出力の電子ビームを、炉中のランタン溶解原料に広範囲に照射することにより行う。真空度6.0×10-5~7.0×10-4mbar、溶解出力32kWで照射を行った。この電子ビーム溶解は、2回繰り返した。それぞれの溶解時間は、30分である。これによってEB溶解インゴットを作成した。電子ビーム溶解時に、揮発性の高い物質は揮散除去が可能となった。
処理するランタンの原料として、純度4Nのフッ化ランタンの原料を用いた。金属ランタンは、最近注目されている材料であるが、金属ランタンの市販品は純度が低く、かつ品位が一定しないという問題がある。
一方、フッ化ランタンについては、市販品でも高純度の材料を得ることが可能である。しかし、このフッ化ランタンそのままでは使用できないので、この純度4Nのフッ化ランタン原料を使用し、効率的にかつ安定して高純度の金属ランタンを製造することが、必要かつ重要となる。
一方、希土類元素については、Ce:1.1wtppm、Pr<0.1wtppm、Nd:0.24wtppm:、Sm:0.17wtppmなどであり、不純物は多くない。このように希土類元素が低い原料を用いた場合には、希土類(但し、ランタンを除く)を含めて純度4Nとすることができる。
還元の際に使用する溶解るつぼは、φ250×H400のタンタル(Ta)製るつぼを使用した。このタンタル製るつぼ内に、粉状のLaF3:14.1kgと塊状Ca:6kgを混合して投入した。還元材であるCaは、表1に示す分析値の蒸留を2回行ったCaを使用し、計算量よりも10%程度、過剰に添加した。
還元装置内に配置したタンタル製るつぼ内の充填物を、ゆっくりと600°Cまで加熱し、この間還元装置内を真空に引き、充填物の脱ガスを行った。その後、精製したアルゴンガスを送入して0.5気圧とした。
Ca還元による結果ではあるが、Caが多く、また酸素(O)含有量も高かった。
次に、上記に得られたランタン成型体を電子ビーム溶解した。低出力の電子ビームを、炉中のランタン溶解原料に広範囲に照射することにより行う。真空度6.0×10-5~7.0×10-4mbar、溶解出力32kWで照射を行った。この電子ビーム溶解は、2回繰り返した。それぞれの溶解時間は、30分である。これによってEB溶解インゴットを作成した。電子ビーム溶解時に、揮発性の高い物質は揮散除去が可能となった。
(市販LaF3を市販Caで還元後、EB溶解)
処理するランタンの原料として、フッ化ランタン(LaF3)と市販カルシウム(Ca)を用いた。
次に、市販カルシウムを用いてカルシウム還元を行った。還元の際に使用する溶解るつぼは、タンタル(Ta)製るつぼを使用した。このタンタル製るつぼ内に、前記粉状のLaF3と塊状Caを混合して投入する。通常、還元材であるCaは、計算量よりも10%程度過剰に添加する。
還元装置内に配置したタンタル製るつぼ内の充填物を、ゆっくりと600°Cまで加熱し、この間還元装置内を真空に引き、充填物の脱ガスを行う。その後、精製したアルゴンガスを送入して0.5気圧とした。
金属Laの収率は97%程度に達する。主な不純物は、未反応の還元材とスラグである。なお、るつぼ材であるTaが不純物として混入する可能性があるので、還元反応はできるだけ低い温度で実施するのが望ましい。このように金属Laを得る。金属Laの分析値を、表16に示す。
一方、希土類元素については、Ce:80wtppm、Pr:33wtppm、Nd:16wtppm:、Sm:6.8wtppm、Gd:10wtppm、Tb:11wtppmなどであり、不純物は多い。
以上によって、高純度ランタンインゴット22.54kgを製造することができた。このようにして得た高純度ランタンの分析値を表17に示す。
以上から明らかなように、Al、Fe、Cuの低減化はできず、特にCuが多量に残存した。またガス成分の低減化も十分でなかった。全体的に、前記実施例に比べて不純物量は多く、本願発明の目的を達成することができなかった。
(低REのLaF3を市販Caで還元後、EB溶解)
処理するランタンの原料として、低REのフッ化ランタン(LaF3)と市販カルシウム(Ca)を用いた。
次に、市販カルシウムを用いてカルシウム還元を行った。還元の際に使用する溶解るつぼは、タンタル(Ta)製るつぼを使用した。このタンタル製るつぼ内に、前記粉状のLaF3と塊状Caを混合して投入する。通常、還元材であるCaは、計算量よりも10%程度過剰に添加する。
還元装置内に配置したタンタル製るつぼ内の充填物を、ゆっくりと600°Cまで加熱し、この間還元装置内を真空に引き、充填物の脱ガスを行う。その後、精製したアルゴンガスを送入して0.5気圧とした。
金属Laの収率は97%程度に達する。主な不純物は、未反応の還元材とスラグである。なお、るつぼ材であるTaが不純物として混入する可能性があるので、還元反応はできるだけ低い温度で実施するのが望ましい。このように金属Laを得る。金属Laの分析値を、表18に示す。
一方、希土類元素については、Ce:2.4wtppm、Pr:0.16wtppm、Nd:0.64wtppm、他は<0.05wtppmであり、低濃度であった。
以上によって、高純度ランタンインゴット22.54kgを製造することができた。このようにして得た高純度ランタンの分析値を表19に示す。
Claims (16)
- ランタン以外の希土類元素及びガス成分を除く純度が4N以上であるフッ化ランタンの原料を、蒸留カルシウムにより還元して純度4N以上のランタンを作製し、この還元したランタンを電子ビーム溶解して揮発性物質を除去することを特徴とするランタン以外の希土類元素及びガス成分を除き、4N以上の純度を有する高純度ランタンの製造方法。
- ガス成分を除く純度が4N以上であるフッ化ランタンの原料を、蒸留カルシウムにより還元して純度4N以上のランタンを作製し、この還元したランタンを電子ビーム溶解して揮発性物質を除去することを特徴とするガス成分を除き、4N以上の純度を有する高純度ランタンの製造方法。
- 高純度ランタンの製造方法であって、Al、Fe、Cuのそれぞれを10wtppm以下とすることを特徴とする請求項1又は2記載の高純度ランタンの製造方法。
- 高純度ランタンの製造方法であって、Al及びFeのそれぞれを5wtppm以下、Cuを1wtppm以下とすることを特徴とする請求項1又は2記載の高純度ランタンの製造方法。
- 4N5以上の純度を有することを特徴とする請求項1又は2記載の高純度ランタンの製造方法。
- 高純度ランタンの製造方法であって、Cを200wtppm以下とすることを特徴とする請求項1~5のいずれか一項に記載の高純度ランタンの製造方法。
- ガス成分を、総量で1000wtppm以下とすることを特徴とする請求項1~6のいずれか一項に記載の高純度ランタンの製造方法。
- 高純度ランタンの製造方法であって、ランタン以外の希土類元素を、総量で10wtppm以下とすることを特徴とする請求項1~7のいずれか一項に記載の高純度ランタンの製造方法。
- 高純度ランタンであって、ランタン以外の希土類元素及びガス成分を除く純度が4N以上であり、Al、Fe、Cuのそれぞれが10wtppm以下であることを特徴とする高純度ランタン。
- 高純度ランタンであって、ガス成分を除いた純度が4N5以上であり、Al及びFeがそれぞれ5wtppm以下、Cuが1wtppm以下であることを特徴とする請求項9記載の高純度ランタン。
- 高純度ランタンであって、Cが200wtppm以下であることを特徴とする請求項9~10のいずれか一項に記載の高純度ランタン。
- ガス成分が、総量で1000wtppm以下であることを特徴とする請求項9~11のいずれか一項に記載の高純度ランタン。
- 高純度ランタンであって、ランタン以外の希土類元素が、総量で10wtppm以下であることを特徴とする請求項9~12のいずれか一項に記載の高純度ランタン。
- 請求項9~13のいずれか一項に記載の高純度ランタンを用いて作製したスパッタリングターゲット。
- 請求項14のスパッタリングターゲットを用いて成膜したメタルゲート膜。
- 請求項15記載のメタルゲート膜を備えた半導体素子及びデバイス。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/883,126 US9234257B2 (en) | 2010-11-19 | 2011-11-14 | Production method for high-purity lanthanum, high-purity lanthanum, sputtering target composed of high-purity lanthanum, and metal gate film containing high-purity lanthanum as main component |
EP11841845.8A EP2641982B1 (en) | 2010-11-19 | 2011-11-14 | Production method for high-purity lanthanum, high-purity lanthanum, sputtering target composed of high-purity lanthanum, and metal gate film containing high-purity lanthanum as main component |
JP2012544233A JP5497913B2 (ja) | 2010-11-19 | 2011-11-14 | 高純度ランタンの製造方法 |
AU2011330345A AU2011330345B2 (en) | 2010-11-19 | 2011-11-14 | Production method for high-purity lanthanum, high-purity lanthanum, sputtering target composed of high-purity lanthanum, and metal gate film containing high-purity lanthanum as main component |
KR1020137010931A KR101516099B1 (ko) | 2010-11-19 | 2011-11-14 | 고순도 란탄의 제조 방법, 고순도 란탄, 고순도 란탄으로 이루어지는 스퍼터링 타깃 및 고순도 란탄을 주성분으로 하는 메탈 게이트막 |
CN201180055511.8A CN103221560B (zh) | 2010-11-19 | 2011-11-14 | 高纯度镧的制造方法、高纯度镧、包含高纯度镧的溅射靶和以高纯度镧作为主要成分的金属栅膜 |
KR1020147029165A KR20140129388A (ko) | 2010-11-19 | 2011-11-14 | 고순도 란탄의 제조 방법, 고순도 란탄, 고순도 란탄으로 이루어지는 스퍼터링 타깃 및 고순도 란탄을 주성분으로 하는 메탈 게이트막 |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-259008 | 2010-11-19 | ||
JP2010-259418 | 2010-11-19 | ||
JP2010259008 | 2010-11-19 | ||
JP2010259418 | 2010-11-19 | ||
JP2011-034613 | 2011-02-21 | ||
JP2011-034614 | 2011-02-21 | ||
JP2011034614 | 2011-02-21 | ||
JP2011034613 | 2011-02-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012067061A1 true WO2012067061A1 (ja) | 2012-05-24 |
Family
ID=46083988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/076162 WO2012067061A1 (ja) | 2010-11-19 | 2011-11-14 | 高純度ランタンの製造方法、高純度ランタン、高純度ランタンからなるスパッタリングターゲット及び高純度ランタンを主成分とするメタルゲート膜 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9234257B2 (ja) |
EP (1) | EP2641982B1 (ja) |
JP (2) | JP5497913B2 (ja) |
KR (2) | KR20140129388A (ja) |
CN (1) | CN103221560B (ja) |
AU (1) | AU2011330345B2 (ja) |
WO (1) | WO2012067061A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014189837A (ja) * | 2013-03-27 | 2014-10-06 | Jx Nippon Mining & Metals Corp | 高純度ネオジムの製造方法、高純度ネオジム、高純度ネオジムからなるスパッタリングターゲット及び高純度ネオジムを成分とする希土類磁石 |
CN115029599A (zh) * | 2022-06-24 | 2022-09-09 | 江西中锡金属材料有限公司 | 一种La-Hf合金靶材及其制备方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101910431B (zh) * | 2007-12-28 | 2015-01-21 | Jx日矿日石金属株式会社 | 高纯度镧、包含高纯度镧的溅射靶以及以高纯度镧为主成分的金属栅膜 |
JP5497740B2 (ja) | 2009-03-27 | 2014-05-21 | Jx日鉱日石金属株式会社 | スパッタリング用ランタンターゲット |
JP5456763B2 (ja) | 2009-03-31 | 2014-04-02 | Jx日鉱日石金属株式会社 | スパッタリング用ランタンターゲット |
CA2825301C (en) | 2011-01-21 | 2015-05-12 | Jx Nippon Mining & Metals Corporation | Method for producing high-purity lanthanum, high-purity lanthanum, sputtering target formed from high-purity lanthanum, and metal gate film having high-purity lanthanum as main component |
DE102017222543A1 (de) | 2017-12-13 | 2019-06-13 | Continental Automotive Gmbh | Federklemme zum Aufstecken auf einen elektrischen Leiter einer elektrischen Maschine |
CN108128779B (zh) * | 2018-01-30 | 2020-05-19 | 青岛蓝光晶科新材料有限公司 | 一种去除多晶硅中碳、氮杂质的方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6311628A (ja) | 1986-06-30 | 1988-01-19 | Mitsubishi Chem Ind Ltd | 希土類金属の製造法 |
JPH0446014A (ja) * | 1990-06-11 | 1992-02-17 | Nikko Kyodo Co Ltd | 希土類無水フッ化物の製造装置及びその製造方法 |
JPH04214824A (ja) * | 1990-12-14 | 1992-08-05 | Shin Etsu Chem Co Ltd | 低酸素含有希土類金属の製造方法 |
JPH0517134A (ja) * | 1991-04-12 | 1993-01-26 | Nikko Kyodo Co Ltd | 無水塩化イツトリウムの真空蒸留装置 |
JPH10287402A (ja) * | 1997-04-04 | 1998-10-27 | Nippon Telegr & Teleph Corp <Ntt> | 金属フッ化物の製造方法 |
JP2007169683A (ja) * | 2005-12-20 | 2007-07-05 | Canon Inc | 成膜装置及び方法、露光装置、並びに、デバイス製造方法 |
WO2009084318A1 (ja) * | 2007-12-28 | 2009-07-09 | Nippon Mining & Metals Co., Ltd. | 高純度ランタン、高純度ランタンからなるスパッタリングターゲット及び高純度ランタンを主成分とするメタルゲート膜 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1739196B1 (en) * | 2005-06-29 | 2009-02-18 | Shin-Etsu Chemical Co., Ltd. | Rare earth metal member of high surface purity and making method |
CN104232946A (zh) * | 2007-10-23 | 2014-12-24 | Jx日矿日石金属株式会社 | 高纯度镱、包含高纯度镱的溅射靶、含有高纯度镱的薄膜及高纯度镱的制造方法 |
CN101896441B (zh) * | 2007-12-13 | 2014-04-23 | 株式会社尼康 | Ca-La-F系透光性陶瓷的制造方法、Ca-La-F系透光性陶瓷、光学构件、光学系统 |
KR101222789B1 (ko) | 2008-07-07 | 2013-01-15 | 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 | 산화란탄기 소결체, 동 소결체로 이루어지는 스퍼터링 타겟, 산화란탄기 소결체의 제조 방법 및 동 제조 방법에 의한 스퍼터링 타겟의 제조 방법 |
JP5497740B2 (ja) | 2009-03-27 | 2014-05-21 | Jx日鉱日石金属株式会社 | スパッタリング用ランタンターゲット |
JP5456763B2 (ja) | 2009-03-31 | 2014-04-02 | Jx日鉱日石金属株式会社 | スパッタリング用ランタンターゲット |
KR20120023725A (ko) | 2009-11-17 | 2012-03-13 | 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 | 란탄 산화물 타겟의 보관 방법 및 진공 밀봉한 란탄 산화물 타겟 |
WO2012011946A2 (en) * | 2010-07-20 | 2012-01-26 | Iowa State University Research Foundation, Inc. | Method for producing la/ce/mm/y base alloys, resulting alloys, and battery electrodes |
CA2825301C (en) | 2011-01-21 | 2015-05-12 | Jx Nippon Mining & Metals Corporation | Method for producing high-purity lanthanum, high-purity lanthanum, sputtering target formed from high-purity lanthanum, and metal gate film having high-purity lanthanum as main component |
US20140199203A1 (en) | 2011-09-28 | 2014-07-17 | Jx Nippon Mining & Metals Corporation | High-purity lanthanum, method for producing same, sputtering target comprising high-purity lanthanum, and metal gate film comprising high-purity lanthanum as main component |
JP5290387B2 (ja) | 2011-12-07 | 2013-09-18 | Jx日鉱日石金属株式会社 | 高純度カルシウムの製造方法 |
-
2011
- 2011-11-14 JP JP2012544233A patent/JP5497913B2/ja active Active
- 2011-11-14 KR KR1020147029165A patent/KR20140129388A/ko not_active Application Discontinuation
- 2011-11-14 WO PCT/JP2011/076162 patent/WO2012067061A1/ja active Application Filing
- 2011-11-14 EP EP11841845.8A patent/EP2641982B1/en active Active
- 2011-11-14 US US13/883,126 patent/US9234257B2/en active Active
- 2011-11-14 KR KR1020137010931A patent/KR101516099B1/ko active IP Right Grant
- 2011-11-14 AU AU2011330345A patent/AU2011330345B2/en active Active
- 2011-11-14 CN CN201180055511.8A patent/CN103221560B/zh active Active
-
2013
- 2013-12-10 JP JP2013254621A patent/JP6083673B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6311628A (ja) | 1986-06-30 | 1988-01-19 | Mitsubishi Chem Ind Ltd | 希土類金属の製造法 |
JPH0446014A (ja) * | 1990-06-11 | 1992-02-17 | Nikko Kyodo Co Ltd | 希土類無水フッ化物の製造装置及びその製造方法 |
JPH04214824A (ja) * | 1990-12-14 | 1992-08-05 | Shin Etsu Chem Co Ltd | 低酸素含有希土類金属の製造方法 |
JPH0517134A (ja) * | 1991-04-12 | 1993-01-26 | Nikko Kyodo Co Ltd | 無水塩化イツトリウムの真空蒸留装置 |
JPH10287402A (ja) * | 1997-04-04 | 1998-10-27 | Nippon Telegr & Teleph Corp <Ntt> | 金属フッ化物の製造方法 |
JP2007169683A (ja) * | 2005-12-20 | 2007-07-05 | Canon Inc | 成膜装置及び方法、露光装置、並びに、デバイス製造方法 |
WO2009084318A1 (ja) * | 2007-12-28 | 2009-07-09 | Nippon Mining & Metals Co., Ltd. | 高純度ランタン、高純度ランタンからなるスパッタリングターゲット及び高純度ランタンを主成分とするメタルゲート膜 |
Non-Patent Citations (3)
Title |
---|
EISUKE TOKUMITSU: "Study of oxide materials for High-k gate insulator film", vol. 6-13, 21 September 2001, THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN, pages: 37 - 41 |
KABUSHIKI KAISHA CMC: "Kojundo Kinzoku no Seizo to Oyo", vol. 8, KENTARO SHIMA, pages: 124 - 129, XP008170911 * |
See also references of EP2641982A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014189837A (ja) * | 2013-03-27 | 2014-10-06 | Jx Nippon Mining & Metals Corp | 高純度ネオジムの製造方法、高純度ネオジム、高純度ネオジムからなるスパッタリングターゲット及び高純度ネオジムを成分とする希土類磁石 |
CN115029599A (zh) * | 2022-06-24 | 2022-09-09 | 江西中锡金属材料有限公司 | 一种La-Hf合金靶材及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2641982B1 (en) | 2019-07-24 |
JP2014111833A (ja) | 2014-06-19 |
US9234257B2 (en) | 2016-01-12 |
AU2011330345B2 (en) | 2015-12-10 |
EP2641982A1 (en) | 2013-09-25 |
EP2641982A4 (en) | 2016-10-19 |
KR20130069829A (ko) | 2013-06-26 |
KR101516099B1 (ko) | 2015-05-04 |
KR20140129388A (ko) | 2014-11-06 |
JPWO2012067061A1 (ja) | 2014-05-12 |
US20130241010A1 (en) | 2013-09-19 |
CN103221560A (zh) | 2013-07-24 |
CN103221560B (zh) | 2014-09-24 |
JP5497913B2 (ja) | 2014-05-21 |
AU2011330345A1 (en) | 2013-05-23 |
JP6083673B2 (ja) | 2017-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6083673B2 (ja) | 高純度ランタンからなるスパッタリングターゲット | |
JP6099018B2 (ja) | 高純度ランタンからなるスパッタリングターゲット | |
TWI418638B (zh) | High purity lanthanum, high purity lanthanum composed of sputtering target and high purity lanthanum as the main component of the metal gate film | |
WO2013047104A1 (ja) | 高純度ランタンの製造方法、高純度ランタン、高純度ランタンからなるスパッタリングターゲット及び高純度ランタンを主成分とするメタルゲート膜 | |
JP6087186B2 (ja) | 高純度ネオジムの製造方法、高純度ネオジム、高純度ネオジムからなるスパッタリングターゲット及び高純度ネオジムを成分とする希土類磁石 | |
JP5738993B2 (ja) | 高純度イットリウム、高純度イットリウムの製造方法、高純度イットリウムスパッタリングターゲット、高純度イットリウムスパッタリングターゲットを用いて成膜したメタルゲート膜並びに該メタルゲート膜を備える半導体素子及びデバイス | |
TWI542704B (zh) | A high purity lanthanum, a high purity lanthanum, a sputtering target composed of a high purity lanthanum, and a metal gate film having a high purity lanthanum as a main component | |
JP2018111867A (ja) | 高純度セリウム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11841845 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012544233 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20137010931 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011841845 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2011330345 Country of ref document: AU Date of ref document: 20111114 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13883126 Country of ref document: US |