WO2012067043A1 - 回転電機のロータコア - Google Patents

回転電機のロータコア Download PDF

Info

Publication number
WO2012067043A1
WO2012067043A1 PCT/JP2011/076094 JP2011076094W WO2012067043A1 WO 2012067043 A1 WO2012067043 A1 WO 2012067043A1 JP 2011076094 W JP2011076094 W JP 2011076094W WO 2012067043 A1 WO2012067043 A1 WO 2012067043A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
core plate
caulking
width
rotor core
Prior art date
Application number
PCT/JP2011/076094
Other languages
English (en)
French (fr)
Inventor
広明 三治
山口 康夫
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to CN201180042943.5A priority Critical patent/CN103081302B/zh
Priority to DE112011102611T priority patent/DE112011102611T5/de
Publication of WO2012067043A1 publication Critical patent/WO2012067043A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]

Definitions

  • the present invention relates to a rotor core of a rotating electrical machine formed by laminating a plurality of core plates, and more particularly to a caulking structure thereof.
  • a rotor core of a rotating electrical machine formed by laminating core plates punched out of electromagnetic steel sheets to reduce the generation of eddy currents is known.
  • a rotor core in which a plurality of core plates (iron core blanks 9) are laminated, a circular caulking portion 16 is formed on the core plate 9 by a punch, and the laminated core plates are joined together.
  • the thing which caulks by dowel caulking is devised (for example, refer patent document 1).
  • a plurality of core plates are required. If the shape of the core plate is an annular shape, the core plate is removed from the base material. When punching, the center of the ring cannot be used, resulting in a low yield. Therefore, the core plate is formed by connecting a plurality of divided core plate pieces, and the core plates are laminated so that the phase (circumferential position) of the seam of the core plate pieces is shifted (so-called brick stacking). ) A rotor core may be formed (see Patent Document 2).
  • the core plate pieces are bricked in this way to form the rotor core, and when the core plates are caulked together by dowel caulking, a rotor core having a high yield and capable of holding the shape alone can be formed. .
  • JP 2010-142114 A Japanese Patent Laid-Open No. 2002-262496
  • the caulking portion is directed toward the circumferential direction of the core plate based on the centrifugal force acting on each of the core plate pieces of each layer when the rotor core rotates. Strong stress is generated.
  • the caulking portion of the circular shape causes tensile residual stress over the entire circumference, and the portion of the caulking portion where the stress is generated based on the centrifugal force causes the residual stress of the tensile force. Both stress and stress based on centrifugal force work.
  • an object of the present invention is to provide a rotor core that solves the above problems by separating a portion that receives stress based on centrifugal force of a caulking portion and a portion that generates residual stress.
  • the present invention is formed by laminating a plurality of annular core plates (2), and arc-shaped core plate pieces (3) obtained by equally dividing the core plate (2) are connected to form the core plate ( 2) and the circumferential position of the seams (D 1 , D 2 ) of the core plate pieces (3) is the stacking direction of the core plates (2) for each predetermined number of core plates.
  • the core plate piece (3) is formed on one surface and at the end in the circumferential direction (C) is formed with a convex portion (11) formed in an arc shape, and on the other surface, the core plate Concave part (12) in which the end part in the circumferential direction (C) is formed in an arc shape while fitting with the convex part (11) of the core plate piece (3) of the other layer when (2) is laminated.
  • the width (W r2 ) in the radial direction (R) of the core plate (2) of the convex portion (11) is the width (W r1 ) in the radial direction (R) of the core plate (2) of the concave portion (12).
  • the fitting in the radial direction (R) of the convex portion (11) and the concave portion (12) is an interference fit
  • the width (W c2 ) in the circumferential direction (C) of the core plate (2) of the convex portion (11) is the width in the circumferential direction (C) of the core plate (2) in the concave portion (12) ( Smaller than W c1 )
  • the fitting in the circumferential direction of the convex portion (11) and the concave portion (12) was defined as a gap fitting. It is characterized by that.
  • the fitting between the convex portion and the concave portion of the core plate piece is an interference fit in the radial direction of the core plate, so that the core plates can be fastened at the portion of the interference fit. I can do it.
  • the fitting between the convex portion and the concave portion is a gap fitting with respect to a portion where a large stress is applied based on an attempt to move the core plate pieces away from each other by centrifugal force.
  • the convex portions formed in the arc shape and the circumferential ends of the concave portions come into contact with each other. It can receive in the part which the residual stress of a convex part and a recessed part does not produce. Thereby, the strength of the caulking portion is improved, and even in the rotor core obtained by dividing the core plate, the necessary rotational strength can be achieved with a radially compact configuration.
  • the core plate can be formed thin, eddy currents generated in the rotor core can be suppressed to a low level, and a rotating electrical machine with high yield and efficiency can be produced using the rotor core.
  • the schematic diagram which shows the rotor core which concerns on the 1st Embodiment of this invention The schematic diagram which shows the core plate piece which concerns on the 1st Embodiment of this invention. It is a schematic diagram explaining the shape of the crimping part which concerns on the 1st Embodiment of this invention, Comprising: (a) The top view of a crimping part, (b) AA sectional drawing of a crimping part, (c) The crimping part BB sectional drawing.
  • FIG.4 It is a schematic diagram explaining the residual stress applied to the crimping part of the core plate piece concerning the 1st Embodiment of this invention, Comprising: (a) The figure which shows the state before laminating
  • FIG. 5 It is a schematic diagram explaining the stress based on the centrifugal force applied to the crimping part of the core plate piece which concerns on the 1st Embodiment of this invention, Comprising: (a) The schematic diagram explaining the centrifugal force which arises in the core plate piece of a different layer (B) The principal part enlarged view of Fig.5 (a). (A) The schematic diagram explaining the shape of the crimping part which concerns on the 2nd Embodiment of this invention, (b) The modification of Fig.6 (a). (A) The schematic diagram explaining the shape of the crimping part which concerns on the 3rd Embodiment of this invention, (b) The modification of Fig.7 (a).
  • an interference fit refers to a fit of a type in which the width of the convex portion to be fitted is slightly larger than the width of the concave portion, and the gap fit is a gap between the convex portion and the concave portion. This means a type of fit with a predetermined gap.
  • a rotor core 1 for an IPM motor (rotary electric machine) is formed by laminating a plurality of annular core plates 2.
  • the core plate 2 is a plate-shaped member punched out from the base material of the electromagnetic steel plate, and in order to improve the yield, the arc-shaped core plate piece 3 that is equally divided (in this embodiment, divided into five). Are connected.
  • one end portion of the core plate piece 3 is formed with a protruding portion 5a for connecting to the circumferentially adjacent core plate piece 3, and the other end portion is provided with the core plate piece.
  • a fitting portion 5b into which the protruding portion 5a of the piece 3 is fitted is formed.
  • joints D 1 and D 2 between these core plate pieces that is, the number of joints between the projections 5 a and the fitting portions 5 b are formed in the same number as the number of the core plate pieces 3.
  • the core plate 2 is formed in an annular shape by connecting the core plate pieces 3 having the same shape to any one of the core plates 2, but the joint of the core plate pieces 3 with respect to the adjacent core plates 2 in the stacking direction. They are laminated by bricks that shift the positions (phases) of D 1 and D 2 in the circumferential direction C. That is, the positions in the circumferential direction C of the joints D 1 and D 2 of the core plate piece 3 are configured to be different between the core plates adjacent in the stacking direction.
  • the even layer core plate piece 3 E has a joint D 1 whose core plate is an odd layer. It is provided so that the position in the circumferential direction C is deviated from the joint D 2 of the piece 3 O by a predetermined angle.
  • the core plate piece 3 has a magnet insertion hole 6 into which a rare earth permanent magnet such as a neodymium magnet is inserted, and a caulking portion 10 for fastening the plurality of stacked core plates 2 to each other in the circumferential direction. A plurality are formed.
  • the caulking portions 10 are respectively provided on the inner peripheral sides of both end portions of the magnet fitting insertion holes 6, and the rotor core 1 is connected to each core plate 2 by caulking the caulking portions 10 after the core plates 2 are temporarily assembled. The shape can be maintained without being separated.
  • the caulking portion 10 includes a convex portion (a dowel) 11 in which a core plate piece is projected to one surface side by pressing, and the convex portion 11 is formed, thereby forming the core plate It is comprised from the recessed part 12 formed in the surface (other surface) on the opposite side to the convex part 11 of the piece 3, The convex part 11 of the other core plate piece 3 fits into this recessed part 12 As a result, dowels are caulked.
  • a convex portion (a dowel) 11 in which a core plate piece is projected to one surface side by pressing, and the convex portion 11 is formed, thereby forming the core plate It is comprised from the recessed part 12 formed in the surface (other surface) on the opposite side to the convex part 11 of the piece 3,
  • the convex part 11 of the other core plate piece 3 fits into this recessed part 12 As a result, dowels are caulked.
  • the residual stress is a stress caused by the caulking portion 10 is interference fit
  • a ⁇ C layer L A stacked together is shown in FIG. 4, L B, L C of the core plate pieces 3 A, 3 B, 3
  • the caulking portion 10 is formed as in the portion 10a serving as the interference fit is greater than the width W r1 width W r2 is the interference d 1 minute only recess 12 of the protrusion 11 (See FIG. 4A).
  • the core plate pieces 3 A , 3 B , 3 C are inserted into the concave portion 12 that is narrow by the tightening allowance d 1 so that the core plate pieces 3 A , 3 B , 3 C are While being connected to the stacking direction, as the core plate pieces 3 B of FIG. 4 (c), when the protrusion 11 is press-fitted into the core plate pieces 3 C recesses 12 of the other layer (C layer L C) , projections 11 that are press-fitted is subjected to a C layer L C stress Tc in the direction to compress the walls 12a of the recess 12 (direction toward the projections 11 of the C layer L C recess from B layer L B) of the.
  • the stress based on the centrifugal force is a stress generated in the caulking portion 10 when the rotor core 1 rotates.
  • the overlapping core plate pieces 3 E Centrifugal forces F E and F O act on 3 O , respectively.
  • Centrifugal forces F E and F O acting on these overlapping core plate pieces 3 E and 3 O are converted into circumferential components F EX and F OX and radial components F EY and F OY of the core plate pieces 3 E and 3 O , respectively.
  • the radial components F EY and F OY both act in the direction from the center of the core plate 2 toward the outer diameter side, the overlapping core plate pieces 3 E 1 and 3 O cannot receive each other's reaction force, and almost no force acts on the caulking portion 10 that connects the core plate pieces 3 E and 3 O of different layers.
  • the circumferential direction components F OX , F EX of the centrifugal forces F E , F O have different directions of action between the overlapping core plate pieces 3 E , 3 O , so that these core plate pieces 3 E , 3 O are connected.
  • the caulking portions 10 can receive reaction forces from each other. That is, when attention is focused on the caulking portion 10 P that is formed on the end portion of the core plate piece 3 E, by a core plate overlapping tends to move to the opposite side along the circumferential direction, the caulking portion 10 P, the core Stress based on centrifugal force is generated in the circumferential direction of the plate 2.
  • the radial components F EY and F OY of the centrifugal forces F E and F O are distributed and received by the caulking portion of the entire core plate 2, and particularly near the joints D 1 and D 2 of the core plate piece 3. A large force acts on the crimped portion.
  • the caulking portion 10 according to the present invention shown in FIG. 3 described above is configured so that the stress based on the centrifugal force and the residual stress of the tensile force do not occur in the same place, and the interference fit causes the residual stress.
  • the portion 10a and the portion 10b where the stress due to the centrifugal force is generated are configured separately.
  • the caulking portion 10 includes a linear portion 10a in which the wall portions 11a and 12a in the circumferential direction (tangential direction of the core plate piece 3) C of the convex portion 11 and the concave portion 12 are formed linearly.
  • the wall portions 11b and 12b in the radial direction R of the core plate 2 of the convex portion 11 and the concave portion 12 are formed in an arc shape having a predetermined curvature, and the arc portion 10b is formed between the straight portions 10a.
  • the straight part 10a forms a part that is an interference fit of the caulking part 10.
  • the caulking portion 10 has a width W r2 in the radial direction R of the core plate 2 of the convex portion 11 which is a width between the linear wall portions 11a and 11a, and is a width between the linear wall portions 12a and 12a.
  • the width W r1 of the concave portion 12 in the radial direction R of the core plate 2 is larger (W r2 > W r1 ), and the fitting of the convex portions 11 and the concave portion 12 in the radial direction R is an interference fit.
  • the arc portion 10b which is the circumferential end portion of the convex portion 11 and the concave portion 12 has an arc shape. wall 11b of, and has a clearance fit with a predetermined gap d 2 between 12b. That is, the arc portion 10b forms a gap fitting portion of the caulking portion 10, and the width in the circumferential direction C of the core plate 2 of the convex portion 11 corresponding to the width between the arc-shaped wall portions 11b and 11b.
  • W c2 is smaller than the circumferential width W c1 of the core plate 2 of the recess 12 corresponding to the width between the arcuate wall portions 12 b and 12 b (W c1 > W c2 ).
  • the arcuate wall portion 11b and the arcuate wall portion 12b of the recess 12 are formed so as to be in contact with each other. In other words, during rotation of the rotor core 1 has a gap d 2 as with these projections 11 and recesses 12 are in contact.
  • the operator forms the core plate 2 by arranging the core plate pieces 3 in a ring shape on a cage (not shown), and stacks a plurality of the core plates. go.
  • the core plate 2 is arranged in the circumferential direction of the joints D1 and D2 between the core plate 2 and the core plate piece 3 adjacent to each other in the stacking direction. Lamination is performed so that the position of C is shifted. Further, when the layer of the core plate 2 is changed, the core plate 2 is blurred by a press, so that the stacked core plates 2 are connected in the stacking direction.
  • a predetermined number of core plates 2 are laminated to form the rotor core 1.
  • the straight portion 10a of the caulking portion 10 is fitted by interference fitting, the core plate pieces 3 are connected in the stacking direction, and a plurality of these core plates 2 stacked.
  • one rotor core 1 is formed.
  • the operator inserts a neodymium magnet into the magnet insertion hole 6 of the rotor core 1 to form a rotor, and creates a rotating electrical machine by incorporating the rotor.
  • each core plate piece 3 has a direction in which the overlapping core plate pieces 3 O and 3 E are separated in the circumferential direction C of the core plate 2 (for example, the core plate piece 3 E In the case of, it tries to move in the M direction in the figure.
  • the gap d 2 between the wall portions 11 b and 12 b of the arc portion 10 b that is the gap fitting is a circle of the core plate pieces 3 O and 3 E. Loss due to circumferential displacement or elastic deformation. And the force of the circumferential direction component of the centrifugal force applied to the caulking portion 10 is received by the contact of these arcuate wall portions 11b and 12b.
  • the centrifugal force applied to the caulking portion 10 is received by the contact of the wall portions 11b and 12b formed in an arc shape, the stress is not concentrated, so that it can withstand a large stress (centrifugal force). Further, the fitting in the radial direction of the caulking portion 10 is an interference fit, and the arc portion 10b that receives the stress generated based on the centrifugal force is a gap fit. No stress is generated and it can withstand a greater centrifugal force.
  • the portion to be the interference fit is constituted by the straight portion 10a linearly extending in the tangential direction of the core plate piece 3, the residual stress due to the interference fit can be uniformly received by the straight portion.
  • the overlapping core plate pieces 3 O and 3 E are easily displaced in the circumferential direction. Then, by separating the portion receiving the stress based on the centrifugal force and the portion where the residual stress is generated, the caulking portion can withstand a large centrifugal force, and the rotational strength of the rotor core 1 can be improved.
  • the necessary rotational strength can be achieved with a radially compact configuration.
  • the core plate 2 can be formed with a small thickness, an eddy current generated in the rotor core 1 can be suppressed to be small, and a rotating electrical machine having a high yield and high efficiency can be produced using the rotor core 1. it can.
  • the caulking portions 10 21 of the second embodiment which has an arcuate portion 10b 21 formed by two arcs of curvature r 1, r 2, a straight portion 10a 21
  • the curvature r 1 of the arc of the connecting portion to be connected is configured to be larger than the curvature r 2 of the arc of the central portion that receives stress mainly due to centrifugal force (r 1 > r 2 ).
  • the curvature r 2 of the arc of the central portion for receiving the stress based on the centrifugal force, it is possible to reduce the stress concentration at the arc portion 10b 21.
  • the curvature r 1 of the arc of the connecting portion is made larger than the curvature r 2 of the arc of the center portion, the straight portion 10 a 21 can be formed longer, and the residual stress due to the interference fit is caused by this long straight portion 10 a 21 . Can be received in a distributed manner.
  • the caulking portions 10 31 of the third embodiment is a circular arc portion 10b 31 is formed by small single large arc of curvature, the arcuate portion 10b 31 the core plate
  • the straight part 10a 31 is also formed long so as not to extend in the tangential direction of the piece 3.
  • stress concentration at the arc portion 10b 31 can be reduced by receiving the stress based on the centrifugal force by the arc having a small curvature. Further, by forming the straight portion 10a 31 long, residual stress based on the interference fit can be distributed and received by the long straight portion 10a 21 .
  • the caulking portion 10 is formed such that the circumferential length is longer than the radial length.
  • the length in the radial direction may be longer than the length in the circumferential direction.
  • the core plate piece 3 does not necessarily need to form a plurality of caulking portions 10, and may form at least one caulking portion 10. That is, in this embodiment, the core plate piece 3 has a plurality of convex portions 11 on one surface and a plurality of concave portions 12 on the other surface, and forms a large number of caulking portions 10. However, it is sufficient that at least one convex portion 11 is provided on one surface and at least one concave portion 12 is provided on the other surface.
  • the rotor core 1 only needs to be able to reinforce the connection in the circumferential direction C of the core plate 2 by the core plate 2 of the other layer with the entire rotor core 1.
  • the positions D 1 and D 2 in the circumferential direction C may be different in the stacking direction of the core plate 2.
  • the rotor core 1 may be configured such that the positions D 1 and D 2 in the circumferential direction C of the seam of the core plate piece 3 are alternately different for each core plate, and every two or three sheets.
  • the positions D 1 and D 2 may be different for each of a plurality of core plates.
  • a plurality of the core plates 2 may be configured to be pressed at a time.
  • the above-described caulking structure may be combined in any way, and naturally, it is not limited to the IPM motor and may be used for the rotor core of any rotating electrical machine.
  • the present invention relates to a rotor core of a rotating electrical machine formed by laminating a plurality of core plates, and is mounted on any product such as a rotating electrical machine mounted as a drive source on a vehicle such as a passenger car, a bus, or a truck. It can be used for rotating electrical machines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

 回転電機のロータコアは、コアプレートが複数積層されて形成されていると共に、このコアプレートは、円弧状のコアプレート片を環状に連結して形成されている。コアプレート片には、これら積層されたコアプレート片同士を積層方向に連結するかしめ部(10)が設けられており、このかしめ部(10)は、コアプレート片の一方の面から突出した凸部(11)と、コアプレート片の他方の面に形成されると共に、凸部(11)と嵌合する凹部(12)と、から構成されている。凸部(11)は、コアプレートの半径方向Rの幅(Wr2)が凹部(12)よりも大きく形成されている(Wr2>Wr1)と共に、コアプレートの円周方向(C)の幅(Wr2)が凹部(12)よりも小さく形成されている(Wc1>Wc2)。そのため、かしめ部(10)は、半径方向Rの嵌め合いが締り嵌めとなると共に、円周方向(C)の嵌め合いが隙間嵌めとなる。

Description

回転電機のロータコア
 本発明は、複数のコアプレートを積層して形成する回転電機のロータコアに係り、詳しくは、そのかしめ構造に関する。
 一般に、渦電流の発生を低減するために電磁鋼板を打ち抜いたコアプレートを積層して形成された回転電機のロータコアが知られている。従来、このような複数のコアプレート(鉄心用抜き板9)を積層したロータコア(回転子鉄心8)において、コアプレート9にポンチによって円形のかしめ部16を形成し、積層されたコアプレート同士をダボかしめによってかしめるものが案出されている(例えば、特許文献1参照)。
 ところで、上記特許文献1のようにコアプレートを積層してロータコアを形成するには、複数のコアプレートが必要となるが、コアプレートの形状が円環形状であると、母材からコアプレートを打ち抜く際に、円環の中心部が使用できず歩留まりが低くなる。そのため、このコアプレートを分割された複数のコアプレート片を連結して形成すると共に、コアプレート片の継ぎ目の位相(円周方向の位置)がずれるようにコアプレートを積層して(いわゆるレンガ積み)ロータコアを形成することがある(特許文献2参照)。
 そして、このようにコアプレート片をレンガ積みしてロータコアを形成すると共に、ダボかしめによってコアプレート同士をかしめると、歩留まりが高く、かつ単体でその形状を保持可能なロータコアを形成することができる。
特開2010-142114号公報 特開2002-262496号公報
 しかしながら、上記コアプレートを、コアプレート片を連結して形成すると、ロータコアが回転した際に各層のコアプレート片のそれぞれに働く遠心力に基づいて、コアプレートの円周方向に向かってかしめ部に強い応力が発生する。
 また、円形のかしめ部には、かしめられることによって、その全周に亘って引っ張りの残留応力が生じており、かしめ部の遠心力に基づいて応力が発生する部分には、これら引っ張りの残留応力と、遠心力に基づく応力との両方の応力が働いてしまう。
 そのため、ロータコアの回転強度を必要な強度に保つためには、コアプレートを分割せずにロータコアを形成する場合に比して、上記かしめ部の強度を向上させる必要がある。かしめ部の強度を向上させるには、上記遠心力に基づく応力及び残留応力が働く面積を大きくして、これらの応力を分散して受けることが考えられるが、円形のかしめ部の直径を大きくするとロータコアの径方向の幅を大きくする必要があり、ロータコアが大きくなる虞があると共に、歩留まりも悪化してしまうという問題があった。
 一方、ロータコアを厚くして、遠心力に基づく応力及び残留応力が働く面積を大きくしようとした場合、発生する渦電流が大きくなり、回転電機の効率が低下するという問題があった。
 そこで、本発明は、かしめ部の遠心力に基づく応力を受ける部分と、残留応力が生じる部分とを分離することによって、上記課題を解決したロータコアを提供することを目的とする。
 本発明は、円環状のコアプレート(2)を複数積層して形成されると共に、前記コアプレート(2)を均等に分割した円弧状のコアプレート片(3)が連結されて前記コアプレート(2)の一層が形成され、かつ前記コアプレート片(3)の継ぎ目(D,D)の円周方向の位置が、所定枚数の前記コアプレート毎に前記コアプレート(2)の積層方向で異なるように構成された回転電機のロータコア(1)において、
 前記コアプレート片(3)は、一方の面に形成されると共に円周方向(C)の端部が円弧形状に形成された凸部(11)と、他方の面に形成され、前記コアプレート(2)が積層された際に他の層のコアプレート片(3)の凸部(11)と嵌合すると共に円周方向(C)の端部が円弧形状に形成された凹部(12)と、を有し、
 前記凸部(11)の前記コアプレート(2)の半径方向(R)の幅(Wr2)を、前記凹部(12)の前記コアプレート(2)の半径方向(R)の幅(Wr1)よりも大きくし、これら凸部(11)及び凹部(12)の半径方向(R)の嵌め合いを締り嵌めにすると共に、
 前記凸部(11)の前記コアプレート(2)の円周方向(C)の幅(Wc2)を、前記凹部(12)の前記コアプレート(2)の円周方向(C)の幅(Wc1)よりも小さくし、これら凸部(11)及び凹部(12)の円周方向の嵌め合いを隙間嵌めとした、
 ことを特徴とする。
 なお、上記カッコ内の符号は、図面と対照するためのものであるが、これにより各請求項の構成に何等影響を及ぼすものではない。
 請求項1に係る発明によると、コアプレート片の凸部と凹部との嵌め合いを、コアプレートの半径方向では締り嵌めとしたことによって、この締り嵌めの部分でコアプレート同士を締結することが出来る。また、ロータコアが回転すると、遠心力によって各コアプレート片同士が離れる方向に移動しようとすることに基づいて大きな応力が働く部分については、上記凸部と凹部との嵌め合いを隙間嵌めとしたことによって、かしめることによって引っ張りの残留応力は発生することを防止することができる。更に、ロータコアが回転時には、隙間嵌めの隙間がなくなって、円弧形状に形成された凸部及び凹部の円周方向の端部が当接するため、遠心力に基づく応力を応力集中することなく、これら凸部及び凹部の残留応力の生じていない部分で受けることができる。これにより、かしめ部の強度が向上し、コアプレートを分割したロータコアにおいても、径方向にコンパクトな構成で必要な回転強度を達成することができる。また、コアプレートの厚さも薄く形成することができるので、ロータコアに発生する渦電流も小さく抑えることができ、歩留まりが高く効率の良い回転電機を、上記ロータコアを用いて作成することができる。
本発明の第1の実施形態に係るロータコアを示す模式図。 本発明の第1の実施形態に係るコアプレート片を示す模式図。 本発明の第1の実施形態に係るかしめ部の形状を説明する模式図であって、(a)かしめ部の平面図、(b)かしめ部のA-A断面図、(c)かしめ部のB―B断面図。 本発明の第1の実施形態に係るコアプレート片のかしめ部に掛る残留応力を説明する模式図であって、(a)コアプレート片を積層する前の状態を示す図、(b)コアプレート片を積層した後の状態を示す図、(c)図4(b)の要部拡大図。 本発明の第1の実施形態に係るコアプレート片のかしめ部に掛る遠心力に基づく応力を説明する模式図であって、(a)異なる層のコアプレート片に生じる遠心力を説明する模式図、(b)図5(a)の要部拡大図。 (a)本発明の第2の実施形態に係るかしめ部の形状を説明する模式図、(b)図6(a)の変形例。 (a)本発明の第3の実施形態に係るかしめ部の形状を説明する模式図、(b)図7(a)の変形例。
 以下、本発明の実施形態に係る回転電機のロータコアについて、図面に基づいて説明をする。なお、以下の説明中において、締り嵌めとは、嵌め合わす凸部の幅を凹部の幅よりも少し大きくした形式の嵌め合いのことを言い、隙間嵌めとは、凸部と凹部との間に所定の隙間を有した形式の嵌め合いのことを言う。
 [第1の実施形態]
 図1及び図2に示すように、IPMモータ(回転電機)用のロータコア1は、円環状のコアプレート2が複数積層されて形成されている。該コアプレート2は、電磁鋼板の母材から打ち抜かれた板状の部材であり、歩留まりの向上を図るために、均等に分割(本実施形態では5分割)された円弧状のコアプレート片3を連結して形成されている。
 具体的には、このコアプレート片3の一端部には、円周方向に隣接するコアプレート片3と連結するための突起部5aが形成されていると共に、他端部には、上記コアプレート片3の突起部5aが嵌め込まれる嵌め込み部5bが形成されている。1つのコアプレート2には、これらコアプレート片同士の継ぎ目D,D、即ち突起部5aと嵌め込み部5bとの接合箇所がコアプレート片3の数と同数だけ形成されている。
 上記コアプレート2は、どの一層のコアプレート2も同じ形状のコアプレート片3を結合して円環状に形成されているが、積層方向に隣接するコアプレート2に対してコアプレート片3の継ぎ目D,Dの円周方向Cの位置(位相)をずらすレンガ積みによって積層されている。即ち、コアプレート片3の継ぎ目D,Dの円周方向Cの位置が、積層方向に隣接する前記コアプレート同士で異なるように構成されている。例えば図1において、便宜的にロータコア1の底部から数えてコアプレート2を奇数層と、偶数層とに分けると、偶数層のコアプレート片3は、その継ぎ目Dが奇数層のコアプレート片3の継ぎ目Dに対して円周方向Cの位置が所定角度ずれるように設けられている。
 また、上記コアプレート片3には、ネオジウム磁石などの希土類永久磁石が嵌挿される磁石嵌挿穴6と、積層された複数のコアプレート2同士を締結するかしめ部10と、がその円周方向に複数、形成されている。かしめ部10は、磁石嵌挿穴6の両端部の内周側にそれぞれ設けられており、コアプレート2が仮組された後にかしめ部10をかしめることによって、ロータコア1は、各コアプレート2がばらばらにならずに、その形状を保持できるようになっている。
 ついで、上記かしめ部10について詳しく説明をする。図2及び図3に示すように、かしめ部10は、プレスによってコアプレート片を一方の面側に突出させた凸部(ダボ)11と、この凸部11が形成されることにより、コアプレート片3の凸部11とは反対側の面(他方の面)に形成される凹部12と、から構成されており、この凹部12に他のコアプレート片3の凸部11が嵌合することによって、ダボかしめされるようになっている。
 ところで、これら凸部11及び凹部12からなるかしめ部10には、かしめられる際に発生する残留応力と、ロータコア1が回転する際に掛る遠心力に基づく応力と、の2つの応力が作用する。
 上記残留応力は、かしめ部10が締り嵌めされることによって生じる応力であり、図4に示す互いに積層されるA~C層L,L,Lのコアプレート片3,3,3を例に取って説明すると、かしめ部10は、締り嵌めとなる部分10aにおいて、凸部11の幅Wr2が締め代d分だけ凹部12の幅Wr1よりも大きくなるように形成されている(図4(a)参照)。
 図4(b)に示すように、コアプレート片3,3,3は、凸部11が締め代分dだけ幅狭な凹部12に圧入されて締り嵌めされることによって、その積層方向に連結されるが、図4(c)のコアプレート片3のように、凸部11が他の層(C層L)のコアプレート片3の凹部12に圧入されると、圧入された凸部11は、C層Lの凹部12の壁部12aから圧縮する方向(C層Lの凹部からB層Lの凸部11に向かう方向)の応力Tcを受ける。
 一方、凹部12に他の層(A層L)の凸部が圧入されると、その凹部12には、A層Lの凸部11の壁部11aから拡大する方向(A層Lの凸部11からB層Lの凹部12向かう方向)の応力Ttを受ける。そして、これら凸部11及び凹部12を接続するB層Lの接続部Iでは、互いに反対方向に向かって働く上記応力Tc,Ttが掛り、これら凸部側及び凹部側からの応力Tc,Ttが釣り合って、上述した引っ張りの残留応力が発生する。
 また、上記遠心力に基づく応力は、ロータコア1が回転することによってかしめ部10に発生する応力であり、ロータコア1が回転すると、図5(a)に示すように、重なり合うコアプレート片3,3のそれぞれには遠心力F,Fが作用する。
 これら重なり合うコアプレート片3,3に作用する遠心力F,Fを、コアプレート片3,3の円周方向成分FEX,FOXと半径方向成分FEY,FOYとに分けて考えると、図5(b)に示すように、半径方向成分FEY,FOYは、どちらもコアプレート2の中心から外径側に向かう方向に作用するため、重なり合うコアプレート片3,3間で互いに反力を受けることができず、層の異なるコアプレート片3,3同士を連結するかしめ部10には、ほとんど力が作用しない。
 一方、遠心力F,Fの円周方向成分FOX,FEXは、重なり合うコアプレート片3,3間でその作用方向が異なるため、これらコアプレート片3,3を連結するかしめ部10で互いに反力を受けることができる。即ち、コアプレート片3の端部に形成されたかしめ部10に着目すると、重なり合うコアプレートが円周方向に沿って反対側に移動しようとすることによって、かしめ部10には、コアプレート2の円周方向に遠心力に基づく応力が発生する。なお、遠心力F,Fの半径方向成分FEY,FOYは、その力をコアプレート2全体のかしめ部で分散して受けるが、特にコアプレート片3の継ぎ目D,D近くのかしめ部に大きな力が作用する。
 上述した図3に示す本発明に係るかしめ部10は、これら遠心力に基づく応力と、引っ張りの残留応力とが同じ場所に生じないように構成されており、上記残留応力が生じる締り嵌めとなる部分10aと、遠心力による応力が生じる部分10bと、が別々に分かれて構成されている。
 具体的には、かしめ部10は、凸部11及び凹部12のコアプレート2の円周方向(コアプレート片3の接線方向)Cの壁部11a,12aを直線状に形成した直線部10aと、これら凸部11及び凹部12のコアプレート2の半径方向Rの壁部11b,12bを所定の曲率の円弧状に形成した円弧部10bと、を有し、上記直線部10a間を円弧部10bによって結んだ長円形状をしており、この直線部10aによってかしめ部10の締り嵌めとなる部分を形成している。
 即ち、かしめ部10は、直線形状の壁部11a,11a間の幅である凸部11のコアプレート2の半径方向Rの幅Wr2を、直線状の壁部12a,12a間の幅である凹部12のコアプレート2の半径方向Rの幅Wr1よりも大きくし(Wr2>Wr1)、これら凸部11及び凹部12の半径方向Rの嵌め合いを締り嵌めとしている。
 また、かしめ部10は、その円周方向に遠心力F,Fに基づく応力が作用するため、凸部11及び凹部12の円周方向の端部である上記円弧部10bは、円弧形状の壁部11b,12b間に所定の隙間dを有する隙間嵌めとなっている。即ち、この円弧部10bによりかしめ部10の隙間嵌めとなる部分を形成しており、円弧状の壁部11b,11b間の幅に相当する凸部11のコアプレート2の円周方向Cの幅Wc2が、円弧状の壁部12b,12b間の幅に相当する凹部12のコアプレート2の円周方向の幅Wc1よりも小さくなっている(Wc1>Wc2)。
 なお、上記円弧部10bでは、かしめ部10がかしめられた時点では、凸部11の円弧状の壁部11bと、凹部12の円弧状の壁部12bとの間に隙間dが存在しているため、これら壁部11b,12b間で遠心力F,Fの円周方向成分FOX,FEXの反力を受けることができないが、この隙間dは、ロータコア1が回転して重なり合うコアプレート片3,3が円周方向に離れるように移動しようとすると、これらコアプレート片間の微小なズレや、コアプレート片3,3の弾性変形により、凸部11の円弧状の壁部11bと凹部12の円弧状の壁部12bとが当接できるように形成されている。言い換えると、ロータコア1の回転時にはこれら凸部11と凹部12とが当接するような隙間dとなっている。
 ついで、本発明の第1の実施形態に係るロータコア1の作用について説明をする。作業者は、ロータコア1を作成するにあたり、図1に示すように、保持器(不図示)にコアプレート片3を環状に並べてコアプレート2を形成すると共に、このコアプレートを複数枚積層して行く。この時、保持器はコアプレートの層が変わる度に所定角度だけ回転させられるため、上記コアプレート2は、積層方向に隣接するコアプレート2とコアプレート片3の継ぎ目D1,D2の円周方向Cの位置がずれるように積層される。また、このコアプレート2の層が変わる際にはプレスによってだぼかしめされるため、積層されたコアプレート2が積層方向に連結される。そして、このコアプレート2が規定枚数積層されてロータコア1が形成される。
 即ち、仮組されたコアプレート2がプレスされると、かしめ部10の直線部10aが締り嵌めによって嵌合し、コアプレート片3を積層方向に連結し、これら積層された複数のコアプレート2によって1つのロータコア1を形成する。そして、作業者、このロータコア1の磁石嵌挿穴6にネオジム磁石を挿入してロータとすると共に、このロータを組み込んで回転電機を作成する。
 ところで、回転電機に電力が供給されて上記ロータが回転すると、ロータコア1のコアプレート片3には、それぞれロータの回転速度に応じた遠心力が発生する。この遠心力が発生すると、図5に示すように、各コアプレート片3は、重なり合うコアプレート片3,3がコアプレート2の円周方向Cに離れる方向(例えば、コアプレート片3の場合、図中M方向)に移動しようとする。すると、これら重なり合うコアプレート片3,3を連結するかしめ部10では、隙間嵌めであった円弧部10bの壁部11b,12b間の隙間dがコアプレート片3,3の円周方向へのズレもしくは弾性変形によって無くなる。そして、かしめ部10に掛る遠心力の円周方向成分の力は、これら円弧状の壁部11b,12bが当接することによって受けられる。
 このように、かしめ部10に掛る遠心力を、円弧状に形成された壁部11b,12bの当接によって受けると、応力集中しないために大きな応力(遠心力)にも耐えることができる。また、かしめ部10の半径方向の嵌め合いを締り嵌めとし、この遠心力に基づいて発生する応力を受ける円弧部10bを隙間嵌めとしたことによって、円弧部10bには、締り嵌めによる引っ張りの残留応力が発生しておらず、より大きな遠心力に耐えることができる。
 更に、上記締り嵌めとなる部分をコアプレート片3の接線方向に直線状に延接された直線部10aによって構成したことにより、この直線部で締り嵌めによる残留応力を均等に受けることができると共に、重なり合うコアプレート片3,3の円周方向へのズレを容易にしている。そして、これら遠心力に基づく応力を受ける部分と、残留応力が生じる部分とを分けることによって、かしめ部が大きな遠心力にも耐えられるようになり、ロータコア1の回転強度を向上させることができる。
 これにより、コアプレート2を分割したロータコア1においても、径方向にコンパクトな構成で必要な回転強度を達成することができる。また、コアプレート2の厚さも薄く形成することができるので、ロータコア1に発生する渦電流も小さく抑えることができ、歩留まりが高く効率の良い回転電機を、上記ロータコア1を用いて作成することができる。
 [第2の実施形態]
 ついで、本発明の第2の実施形態について説明する。なお、第2の実施形態は、第1の実施形態に対してかしめ部の形状を変更したものであり、共通する構成については説明を省略すると共に、同一作用効果の部材については、第1の実施形態と同一の名称を使用する。
 図6(a)に示すように、第2の実施形態に係るかしめ部1021は、円弧部10b21を2つの曲率r,rの円弧によって形成したものであり、直線部10a21と接続する接続部の円弧の曲率rが主に遠心力に基づく応力を受ける中央部の円弧の曲率rよりも大きくなるように構成されている(r>r)。
 このように、主に遠心力に基づく応力を受ける中央部分の円弧の曲率rを小さくすることによって、円弧部10b21での応力集中を小さくすることができる。また、接続部の円弧の曲率rを中央部の円弧の曲率rよりも大きくすると、直線部10a21を長く形成することができ、締り嵌めに基づく残留応力をこの長い直線部10a21で分散して受けることができる。
 [第3の実施形態]
 ついで、本発明の第3の実施形態について説明する。この第3の実施形態は、第1の実施形態に対してかしめ部の形状が相違したものであり、共通する構成については説明を省略すると共に、同一作用効果の部材については、第1の実施形態と同一の名称を使用する。
 図7(a)に示すように、第3の実施形態に係るかしめ部1031は、円弧部10b31を曲率の小さな1つの大きな円弧によって形成したものであり、この円弧部10b31がコアプレート片3の接線方向に延接しないように構成して直線部10a31をも長く形成している。
 このように、曲率の小さな円弧によって遠心力に基づく応力を受けることによって、円弧部10b31での応力集中を小さくすることができる。また、直線部10a31を長く形成することによって、締り嵌めに基づく残留応力をこの長い直線部10a21で分散して受けることができる。
 なお、第1乃至第3の実施形態において、かしめ部10は、円周方向の長さが半径方向の長さよりも長く形成されていたが、例えば、図6(b),図7(b)に示すように、半径方向の長さを円周方向の長さよりも長く形成しても良い。
 更に、コアプレート片3には、その円周方向に沿って多数のかしめ部10が形成されるが、必ずしもすべてのかしめ部において本発明のかしめ構造を適用する必要はなく、最も強く応力が発生する部分のかしめ部(例えば、コアプレート片3の端部のかしめ部10p)だけに適用しても良い。また、コアプレート片3は、必ずしも複数のかしめ部10を形成する必要はなく、少なくとも1つのかしめ部10を形成すれば良い。即ち、本実施形態では、コアプレート片3は、一方の面に複数の凸部11を有していると共に、他方の面に複数の凹部12を有し、多数のかしめ部10を形成しているが、一方の面に少なくとも1つの凸部11を有し、他方の面に少なくとも1つの凹部12を有していれば良い。
 また、上記ロータコア1は、コアプレート2の円周方向Cの連結を、他の層のコアプレート2よってロータコア1全体で補強できれば良いため、所定枚数のコアプレート2毎にコアプレート片3の継ぎ目の円周方向Cの位置D,Dがコアプレート2の積層方向で異なるように構成されれば良い。例えば、ロータコア1は、1枚のコアプレート毎にコアプレート片3の継ぎ目の円周方向Cの位置D,Dが交互に異なるように構成されても良いと共に、2枚や3枚毎のように、複数枚のコアプレート毎に上記位置D,Dが異なるように構成しても良い。
 更に、上記コアプレート2は、複数枚、一度にプレスされるように構成されても良い。また、上述したかしめ構造は、どのように組み合わされても良いと共に、IPMモータに限らずどのような回転電機のロータコアに使用されても良いことは当然である。
 本発明は、複数のコアプレートを積層して形成される回転電機のロータコアに係り、例えば、乗用自動車、バス、トラック等の車両に駆動源として搭載される回転電機など、あらゆる製品に搭載される回転電機に利用可能である。
1  ロータコア
2  コアプレート
3  コアプレート片
10b 隙間嵌めとなる部分(円弧部)
11 凸部
12 凹部
r1 凹部のコアプレート半径方向の幅
r2 凸部のコアプレート半径方向の幅
c1 凹部のコアプレート円周方向の幅
c2 凸部のコアプレート円周方向の幅
 隙間
,D 継ぎ目
R  半径方向
C  円周方向

Claims (1)

  1.  円環状のコアプレートを複数積層して形成されると共に、前記コアプレートを均等に分割した円弧状のコアプレート片が連結されて前記コアプレートの一層が形成され、かつ前記コアプレート片の継ぎ目の円周方向の位置が、所定枚数の前記コアプレート毎に前記コアプレートの積層方向で異なるように構成された回転電機のロータコアにおいて、
     前記コアプレート片は、一方の面に形成されると共に円周方向の端部が円弧形状に形成された凸部と、他方の面に形成され、前記コアプレートが積層された際に他の層のコアプレート片の凸部と嵌合すると共に円周方向の端部が円弧形状に形成された凹部と、を有し、
     前記凸部の前記コアプレートの半径方向の幅を、前記凹部の前記コアプレートの半径方向の幅よりも大きくし、これら凸部及び凹部の半径方向の嵌め合いを締り嵌めにすると共に、
     前記凸部の前記コアプレートの円周方向の幅を、前記凹部の前記コアプレートの円周方向の幅よりも小さくし、これら凸部及び凹部の円周方向の嵌め合いを隙間嵌めとした、
     ことを特徴とする回転電機のロータコア。
PCT/JP2011/076094 2010-11-18 2011-11-11 回転電機のロータコア WO2012067043A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180042943.5A CN103081302B (zh) 2010-11-18 2011-11-11 旋转电机的转子铁芯
DE112011102611T DE112011102611T5 (de) 2010-11-18 2011-11-11 Rotorkern für eine drehende Elektromaschine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-258353 2010-11-18
JP2010258353A JP5510285B2 (ja) 2010-11-18 2010-11-18 回転電機のロータコア

Publications (1)

Publication Number Publication Date
WO2012067043A1 true WO2012067043A1 (ja) 2012-05-24

Family

ID=46063699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076094 WO2012067043A1 (ja) 2010-11-18 2011-11-11 回転電機のロータコア

Country Status (5)

Country Link
US (1) US8456056B2 (ja)
JP (1) JP5510285B2 (ja)
CN (1) CN103081302B (ja)
DE (1) DE112011102611T5 (ja)
WO (1) WO2012067043A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012016141A (ja) * 2010-06-30 2012-01-19 Denso Corp 回転電機の固定子

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6050084B2 (ja) * 2012-10-19 2016-12-21 ミネベア株式会社 スピンドルモータおよびハードディスク駆動装置
DE102013201199A1 (de) * 2013-01-25 2014-07-31 Magna Powertrain Ag & Co. Kg Elektrische Maschine und Verfahren zur Herstellung eines Elektroblechs
ES2705549T3 (es) * 2013-06-20 2019-03-25 Otis Elevator Co Máquina eléctrica que tiene un rotor con imanes permanentes inclinados
KR20160051677A (ko) * 2013-09-05 2016-05-11 스키카르 인크. 동기 전기 기계
JP6401466B2 (ja) * 2014-03-10 2018-10-10 株式会社三井ハイテック 積層鉄心及びその製造方法
DE102017201438A1 (de) 2017-01-30 2018-08-02 Thyssenkrupp Ag Blechpaketscheibe mit einer Mehrzahl von Blechpaketscheibensegmenten sowie Rotor
DE102017010685A1 (de) * 2017-11-16 2019-05-16 Wieland-Werke Ag Kurzschlussläufer und Verfahren zur Herstellung eines Kurzschlussläufers
CN113555983A (zh) * 2020-04-24 2021-10-26 采埃孚汽车英国有限公司 马达转子
EP3958443A1 (en) 2020-08-20 2022-02-23 ATOP S.p.A. Stator, apparatus and method for preparing a pre-shaped insulator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3848804B2 (ja) * 1999-10-26 2006-11-22 松下電器産業株式会社 積層固着品
JP2009005449A (ja) * 2007-06-20 2009-01-08 Panasonic Corp モータ用の積層コアとこれを用いるモータ
JP2009118704A (ja) * 2007-11-09 2009-05-28 Mitsui High Tec Inc 回転電機の回転子積層鉄心及びその製造方法
JP2009273202A (ja) * 2008-05-01 2009-11-19 Nissan Motor Co Ltd 積層鉄心の製造方法および製造装置、並びに積層鉄心

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075150A (en) * 1987-06-22 1991-12-24 Linton And Hirst Pack of laminations with projections and depressions in torsionally flexible contact
JPH0614481A (ja) * 1992-06-25 1994-01-21 Mitsubishi Electric Corp 電機子鉄心
US5894182A (en) * 1997-08-19 1999-04-13 General Electric Company Motor with rotor and stator core paired interlocks
US5992003A (en) * 1997-11-13 1999-11-30 Oberg Industries, Inc. Method for spacing laminations
JP2002262496A (ja) 2001-03-05 2002-09-13 Hitachi Ltd 回転電機のコア構造
JP3987027B2 (ja) * 2003-03-31 2007-10-03 三菱電機株式会社 回転電機の電機子
JP4599088B2 (ja) 2004-05-13 2010-12-15 東芝コンシューマエレクトロニクス・ホールディングス株式会社 回転電機の回転子及びその製造方法
JP5418837B2 (ja) * 2008-01-22 2014-02-19 株式会社安川電機 積層巻きコア及びこれを備えた回転子、回転電機
JP5072989B2 (ja) 2010-03-05 2012-11-14 東芝コンシューマエレクトロニクス・ホールディングス株式会社 回転電機の回転子鉄心及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3848804B2 (ja) * 1999-10-26 2006-11-22 松下電器産業株式会社 積層固着品
JP2009005449A (ja) * 2007-06-20 2009-01-08 Panasonic Corp モータ用の積層コアとこれを用いるモータ
JP2009118704A (ja) * 2007-11-09 2009-05-28 Mitsui High Tec Inc 回転電機の回転子積層鉄心及びその製造方法
JP2009273202A (ja) * 2008-05-01 2009-11-19 Nissan Motor Co Ltd 積層鉄心の製造方法および製造装置、並びに積層鉄心

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012016141A (ja) * 2010-06-30 2012-01-19 Denso Corp 回転電機の固定子

Also Published As

Publication number Publication date
CN103081302B (zh) 2015-04-08
US8456056B2 (en) 2013-06-04
CN103081302A (zh) 2013-05-01
JP2012110161A (ja) 2012-06-07
DE112011102611T5 (de) 2013-05-08
US20120126658A1 (en) 2012-05-24
JP5510285B2 (ja) 2014-06-04

Similar Documents

Publication Publication Date Title
JP5510285B2 (ja) 回転電機のロータコア
US8970085B2 (en) Rotor for electric rotating machine and method of manufacturing the same
US8581468B2 (en) Stator for electric rotating machine
JP5231082B2 (ja) 回転電機の回転子
US20120248918A1 (en) Rotor for electric rotating machine and method of manufacturing the same
KR20110085874A (ko) 듀얼 로터 모터 및 그 제조 방법
WO2014208582A1 (ja) 回転電機用同期ロータと回転電機用同期ロータの製造方法
JP2010148329A (ja) 回転電機のステータコア構造
JP2013099047A (ja) 永久磁石式回転電機の回転子、及び永久磁石式回転電機
JP5326642B2 (ja) 回転電機及び回転電機の製造方法
US11355975B2 (en) Stator for motor and method of manufacturing
WO2017195498A1 (ja) 回転子および回転電機
WO2012081397A1 (ja) 回転電機のステータコア
JP2013046466A (ja) 回転子
WO2011125183A1 (ja) ロータ及びその製造方法
JP6117608B2 (ja) 回転電機の積層鉄心
JP2012110163A (ja) 回転電機のロータコア
JP5633507B2 (ja) 回転電機のロータ
JP6447206B2 (ja) 回転電機のロータ及びその製造方法
JP5025258B2 (ja) 回転電機のロータ
JP2011254616A (ja) 固定子積層鉄心
JP2013143872A (ja) 回転電機のロータコア及びその製造方法
EP3723241B1 (en) Rotor core for rotating electric machine and method for manufacturing rotor core for rotating electric machine
JP2012110164A (ja) 回転電機のロータコア
JP2012110162A (ja) 回転電機のロータコア

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180042943.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841697

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112011102611

Country of ref document: DE

Ref document number: 1120111026110

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11841697

Country of ref document: EP

Kind code of ref document: A1