WO2011125183A1 - ロータ及びその製造方法 - Google Patents

ロータ及びその製造方法 Download PDF

Info

Publication number
WO2011125183A1
WO2011125183A1 PCT/JP2010/056292 JP2010056292W WO2011125183A1 WO 2011125183 A1 WO2011125183 A1 WO 2011125183A1 JP 2010056292 W JP2010056292 W JP 2010056292W WO 2011125183 A1 WO2011125183 A1 WO 2011125183A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot
rotor core
electromagnetic steel
protrusions
rotor
Prior art date
Application number
PCT/JP2010/056292
Other languages
English (en)
French (fr)
Inventor
靖 西隈
靖治 竹綱
勝彦 建部
晋吾 雪吹
智裕 竹永
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/056292 priority Critical patent/WO2011125183A1/ja
Publication of WO2011125183A1 publication Critical patent/WO2011125183A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect

Definitions

  • the present invention relates to a rotor which is one of components of a motor, and relates to a rotor core configured by laminating a plurality of electromagnetic steel plates and a field permanent magnet assembled to each of a plurality of slots formed in the rotor core. And a method of manufacturing the same.
  • a rotor having a permanent magnet for a field in which a permanent magnet is accommodated in a plurality of slots formed in a rotor core and fixed with an adhesive.
  • the permanent magnet fixing operation requires steps such as degreasing, cleaning, applying an adhesive, and curing the rotor core and permanent magnet, and the number of manufacturing steps is large.
  • the fixed position in the surface direction of the permanent magnet in the slot may vary, and the motor characteristics may be deteriorated.
  • the adhesive force of the adhesive is weakened, and there is a problem in quality that the position of the permanent magnet is shifted.
  • Patent Document 1 there is a rotor described in Patent Document 1 below.
  • This rotor has a rotor core configured by laminating a plurality of electromagnetic steel plates.
  • Each magnetic steel sheet is integrally formed by arranging a plurality of fan-shaped cores on the outer periphery of an annular portion made of a magnetic material in the circumferential direction while forming slots between the respective fan-shaped cores, and connected by connecting portions. .
  • Protrusions that can be bent in the axial direction are provided at a plurality of locations in the axial direction of the rotor core in each slot on the outer periphery of the annular portion.
  • a permanent magnet is inserted and fixed in each slot in a state where the protrusion is bent.
  • each protrusion has a role of forming a magnetic gap between the permanent magnet and the annular portion and fixing the permanent magnet in the slot without backlash.
  • the number of the electromagnetic steel sheets on which the protrusions are formed is about one or two of all the electromagnetic steel sheets in consideration of the ease of bending of the protrusions.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to improve the fixing performance of permanent magnets and reduce the manufacturing cost with respect to those in which permanent magnets are press-fitted into each slot and brought into contact with protrusions. It is an object of the present invention to provide a rotor and a method for manufacturing the same.
  • a rotor core configured by laminating a plurality of electromagnetic steel sheets, and an outer circumferential portion of the rotor core are arranged at equiangular intervals, and the axial direction of the rotor core
  • the plurality of electromagnetic steel sheets have the same shape as each other, and a plurality of slot holes constituting the plurality of slots are arranged on the outer periphery.
  • a plurality of electromagnetic steel sheets are for a specific slot having protrusions between adjacent upper and lower electromagnetic steel sheets.
  • a plurality of protrusions are arranged in each slot at intervals in the axial direction of the slot, and each permanent magnet is connected to each slot.
  • the plurality of electromagnetic steel plates constituting the rotor core have the same shape, there is no need to make different electromagnetic steel plates having different shapes.
  • a plurality of protrusions are arranged in the slot in the axial direction in each slot, unlike the case where the protrusions are stacked and arranged in the slot in the axial direction, each protrusion is inserted into the slot. The space for deforming in the axial direction is secured, and the load when the permanent magnet is press-fitted into the slot is reduced.
  • the plurality of protrusions arranged in each slot are provided only on the inner wall closer to the radially inner side of the rotor core in each slot. It is desirable that one side surface of the permanent magnet is in contact with the inner wall on the outer side in the radial direction.
  • the inner wall of the permanent magnet on one side of the rotor core is located closer to the outer side in the radial direction due to the action of centrifugal force in the slot.
  • the permanent magnet is supported in contact with. Accordingly, the protrusion provided on the inner wall closer to the inner side in the radial direction of the rotor core only needs to be strong enough to push the permanent magnet to the outer side in the radial direction of the rotor core.
  • another aspect of the present invention provides a rotor core configured by laminating a plurality of electromagnetic steel sheets, and is arranged at equiangular intervals on the outer periphery of the rotor core, and is arranged in the axial direction of the rotor core.
  • a method of manufacturing a rotor including a plurality of slots penetrating and a permanent magnet assembled to each of the plurality of slots, wherein a plurality of slot holes constituting the plurality of slots are formed at equiangular intervals in the outer peripheral portion.
  • the magnetic steel sheet forming step for forming the plurality of magnetic steel sheets in the same shape so that the projections are formed at the inner edges of the plurality of slot holes, and the plurality of magnetic steel sheets, between the adjacent upper and lower electromagnetic steel sheets,
  • the rotor core is manufactured by laminating specific slot holes having protrusions while shifting by a predetermined phase in the circumferential direction, and a plurality of protrusions are provided in each slot in the axial direction of the slot.
  • each of the plurality of electromagnetic steel sheets constituting the rotor core is formed so as to have the same shape, so there is no need to make different electromagnetic steel sheets having different shapes.
  • the rotor core manufacturing process since a plurality of protrusions are arranged at intervals in the axial direction of the slot in each slot, unlike the case where the protrusions are arranged without being spaced apart in the axial direction of the slot, A space for deforming each protrusion in the axial direction of the slot is secured.
  • each projection can be greatly deformed in the axial direction of the slot, so that a load when the permanent magnet is press-fitted into the slot is reduced.
  • a permanent magnet can be press-fitted into each slot of the rotor core, and the fixing performance of the permanent magnet can be improved and the manufacturing cost can be reduced for the rotor fixed in contact with the protrusion.
  • FIG. 2 is a sectional view taken along line 2-2 of FIG. 1 showing the rotor according to the same embodiment.
  • the top view which expands and shows the part of the permanent magnet enclosed with the chain-line ellipse of FIG. 1 about the rotor concerning the embodiment.
  • the top view which expands and shows the part of the slot enclosed with the chain-line ellipse of FIG. 4 about the rotor core concerning the embodiment.
  • FIG. 6 is a sectional view taken along line 6-6 of FIG. 5 showing a portion of one slot of the rotor core according to the same embodiment.
  • the flowchart which concerns on the embodiment and shows the manufacturing method of a rotor The top view which concerns on the same embodiment and shows the one electromagnetic steel plate shape
  • the top view according to FIG. 5 which concerns on 2nd Embodiment and expands and shows the part of a slot about a rotor core.
  • the top view according to FIG. 3 which expands and shows the part of a permanent magnet about a rotor concerning the embodiment.
  • FIG. 1 is a plan view showing the rotor 11 of this embodiment.
  • FIG. 2 shows the rotor 11 by a cross-sectional view taken along line 2-2 of FIG.
  • this rotor 11 includes a rotor core 12 having a cylindrical shape, a single shaft fastening hole 13 formed at the center of the rotor core 12, and a rotor shaft assembled to the shaft fastening hole 13. 14.
  • the rotor core 12 is configured by laminating a plurality of electromagnetic steel plates 22.
  • a plurality of slots 15 that are arranged at equiangular intervals and penetrate in the axial direction of the rotor core 12 are formed on the outer periphery of the rotor core 12.
  • the plurality of slots 15 are arranged along the outer peripheral edge of the rotor core 12, and are arranged so that two adjacent slots 15 form a “C” shape or “reverse C shape”.
  • a permanent magnet 16 for field is assembled and fixed.
  • a plurality (“8” in this embodiment) of lightening holes 17 are formed around the shaft tightening hole 13 between the shaft tightening hole 13 and the plurality of slots 15. .
  • These thinning holes 17 have a substantially trapezoidal shape in plan view and penetrate the rotor core 12 in the axial direction.
  • These thinning holes 17 are arranged one by one between two pairs of slots 15 having an “inverted C shape”.
  • the rotor shaft 14 has a cylindrical shape, and a flange 14a that engages with the rotor core 12 is formed on the outer periphery thereof.
  • the rotor shaft 14 is formed by forging a metal material.
  • the rotor shaft 14 is assembled to the shaft tightening hole 13 of the rotor core 12 by intermediate fitting or press fitting.
  • FIG. 3 is an enlarged plan view of the portion of the permanent magnet 16 surrounded by the chain ellipse S1 of FIG.
  • a first bridge portion 18 is formed between two adjacent slots 15 having an “inverted C shape” as a meat portion that divides both slots 15.
  • a second bridge portion 19 as a flesh portion is formed between each slot 15 and the outer peripheral edge of the rotor core 12.
  • the second permanent magnet 16 in each slot 15 is moved closer to the stator located around the rotor 11. It is necessary to make the width of the bridge portion 19 as small as possible.
  • projections 31 and 32 are provided at two positions on the inner edge of each slot 15.
  • the permanent magnet 16 is fixed in a state in which the projections 31 and 32 are brought into contact with and deformed in each slot 15.
  • FIG. 4 is a plan view showing the rotor core 12 before the permanent magnet 16 is assembled.
  • FIG. 5 is an enlarged plan view of the portion of the slot 15 surrounded by the chain ellipse S2 in FIG.
  • FIG. 6 shows a portion of one slot 15 of the rotor core 12 by a sectional view taken along line 6-6 in FIG.
  • projections 31 and 32 are provided at two positions on the inner edge of each slot 15 of the rotor core 12.
  • the protrusions 31 and 32 are formed in the slots 15 on the inner wall of the rotor core 12 on the radially inner side and on the inner wall of the rotor core 12 on the radially outer side. 32.
  • FIG. 5 is an enlarged plan view of the portion of the slot 15 surrounded by the chain ellipse S2 in FIG.
  • FIG. 6 shows a portion of one slot 15 of the rotor core 12 by a sectional view taken along line 6-6 in FIG.
  • projections 31 and 32 are provided at two positions on the
  • a plurality of protrusions 31 and 32 at two positions in each slot 15 are arranged at predetermined intervals in the axial direction of the slot 15 (vertical direction in FIG. 6). This “predetermined interval” corresponds to the height of the seven electromagnetic steel plates 22 stacked.
  • FIG. 7 is a flowchart showing this manufacturing method.
  • FIG. 8 is a plan view showing one formed electromagnetic steel sheet 22.
  • the electromagnetic steel plate 22 is formed by pressing a thin plate material of about “0.3 mm”.
  • the electromagnetic steel sheet 22 has a circular outer shape, and a plurality of slot holes 25 constituting the plurality of slots 15 are formed at equiangular intervals in the outer peripheral portion.
  • a central hole 23 corresponding to the shaft fastening hole 13 is formed at the center of the electromagnetic steel plate 22.
  • a plurality of intermediate holes 27 corresponding to the plurality of lightening holes 17 are formed between the center hole 23 and the plurality of slot holes 25.
  • two protrusions 31 and 32 are formed on the inner edges of two specific slot holes 25A and 25B that face each other with the center hole 23 therebetween.
  • the rotor core 12 is manufactured by laminating the plurality of electromagnetic steel sheets 22 formed in the above process.
  • the plurality of electromagnetic steel plates 22 are moved between adjacent upper and lower electromagnetic steel plates 22 while shifting specific slot holes 25A and 25B having projections 31 and 32 by a predetermined phase in the circumferential direction (relatively). Laminate while rotating.
  • the rotor core 12 is produced, and a plurality of protrusions 31 and 32 are arranged in the axial direction at intervals in each slot 15 as shown in FIG.
  • FIG. 9 is a plan view showing a state in which two electromagnetic steel plates 22 are laminated.
  • FIG. 10 is a plan view showing a state in which three electromagnetic steel plates 22 are laminated.
  • the protrusions 31 and 32 are arranged in all the slots 15, and as shown in FIG. Then, the rotor core 12 in which a plurality of protrusions 31 and 32 are arranged at intervals in the axial direction of the slot 15 is manufactured.
  • a plurality of permanent magnets 16 are manufactured.
  • the magnet material is formed into a predetermined shape by a well-known method, and then fired to produce a permanent magnet. This step can be performed in parallel with each step described above.
  • each permanent magnet 16 is deformed into the plurality of protrusions 31 and 32 in each slot 15 of the rotor core 12 produced in the above step.
  • the permanent magnet 16 is assembled and fixed by press-fitting while pressing. That is, as shown in the sectional view of FIG. 11, each permanent magnet 16 is press-fitted into each slot 15 of the rotor core 12.
  • the permanent magnet 16 is brought into contact with the plurality of protrusions 31 and 32 and press-fitted while the protrusions 31 and 32 are deformed.
  • the rotor shaft manufacturing step shown in FIG. 7 (5), the rotor shaft 14 is manufactured by a known method. This step can be performed in parallel with each step described above.
  • the rotor shaft 14 is assembled by intermediate fitting or press fitting into the shaft fastening hole 13 shown in FIG. In this way, the rotor 11 shown in FIGS. 1 and 2 can be manufactured.
  • the rotor 11 of this embodiment described above since a plurality of electromagnetic steel plates 22 constituting the rotor core 12 have the same shape, there is no need to make different electromagnetic steel plates having different shapes. That is, unlike the prior art, there is no need to make a magnetic steel sheet with protrusions and a magnetic steel sheet without protrusions. For this reason, it is only necessary to provide a manufacturing process and manufacturing equipment for forming one type of electrical steel sheet 22, and it is possible to reduce manufacturing effort, and as a result, manufacturing cost of the rotor 11 can be reduced. .
  • the protrusions 31 and 32 are arranged at intervals in the axial direction of the slot 15 in each slot 15, the protrusions are stacked without any interval in the axial direction of the slot. Unlike this, a space for deforming the protrusions 31 and 32 in the axial direction of the slot 15 is secured. For this reason, when the permanent magnet 16 is press-fitted into the slot 15, the protrusions 31 and 32 can be deformed relatively easily, and the load when the permanent magnet 16 is press-fitted is reduced. As a result, the equipment for press-fitting the permanent magnet 16 into the slot 15 can be made small and inexpensive. Further, there is almost no risk that the permanent magnet 16 during press-fitting will be broken or broken.
  • each projection 31, 32 can be made relatively short, the formation accuracy of the slot 15 and the permanent magnet 16 can be relaxed, and their processing costs can be reduced. Can be reduced.
  • the plurality of electromagnetic steel sheets 22 constituting the rotor core 12 are formed so as to have the same shape. There is no need to make it separately. For this reason, it is only necessary to provide a manufacturing process and manufacturing equipment for forming one type of electrical steel sheet 22, and it is possible to reduce manufacturing effort, and as a result, manufacturing cost of the rotor 11 can be reduced. .
  • the plurality of protrusions 31 and 32 are arranged at predetermined intervals in the axial direction of the slot 15 in each slot 15, so that the protrusions are not spaced in the axial direction of the slot. Unlike the case where they are stacked, a space for deforming the protrusions 31 and 32 in the axial direction of the slot 15 is secured. Furthermore, in the “permanent magnet assembling step”, the protrusions 31 and 32 can be greatly deformed in the axial direction of the slot 15, so that the load when the permanent magnet 16 is press-fitted into the slot 15 is reduced.
  • the protrusions 31 and 32 can be deformed relatively easily, and the load when the permanent magnet 16 is press-fitted is reduced.
  • the equipment for press-fitting the permanent magnet 16 into the slot 15 can be made small and inexpensive. Further, there is almost no risk that the permanent magnet 16 will be broken or broken during press-fitting. In this sense, the fixing performance of the permanent magnet 16 in the slot 15 can be improved.
  • FIG. 13 is an enlarged plan view of the slot 15 of the rotor core 12 according to FIG.
  • FIG. 14 is an enlarged plan view of the permanent magnet 16 of the rotor core 11 according to FIG.
  • the plurality of protrusions 33 and 34 provided in each slot 15 are provided only on the inner walls 15 a and 15 b on the radially inner side of the rotor core 12 in each slot 15. No protrusions are provided on the inner walls 15c, 15d on the outer side in the radial direction of the rotor core 12.
  • the protrusions 33 and 34 are in contact with the two side surfaces 16 a and 16 b of the permanent magnet 16.
  • the two side surfaces 16c and 16d are in contact with the two inner walls 15c and 15d of the slot 15 described above.
  • the two side walls 16 c and 16 d of the permanent magnet 16 are moved toward the outer side of the slot 15 by the action of centrifugal force in the slot 15. , 15d and the permanent magnet 16 is supported. Accordingly, the protrusions 33 and 34 provided on the inner walls 15 a and 15 b closer to the inner side of the slot 15 only need to have a strength enough to push the permanent magnet 16 outward in the radial direction of the rotor core 12. Further, it is not necessary to provide protrusions on the inner walls 15c and 15d near the outside of the slot 15. In this sense, the formation of the projections 33 and 34 in the electromagnetic steel sheet 22 can be made relatively easy.
  • the protrusions 31 and 32 are provided in the specific two slot holes 25A and 25B among the plurality of slot holes 25 formed in the electromagnetic steel sheet 22.
  • the number of holes may be increased or decreased as appropriate.
  • the two protrusions 31 and 32 are provided in the specific slot holes 25A and 25B in the electromagnetic steel sheet 22, but the number of protrusions can be increased or decreased as appropriate.
  • the number of protrusions may be one or three.
  • the present invention can be used for manufacturing a motor used in an electric vehicle or the like.
  • Rotor 12 Rotor core 15 Slot 15a Inner wall (near side) 15b Inner wall (inward) 15c Inner wall (near outside) 15d inner wall (closer to the outside) 16 Permanent magnet 16a Side surface 16b Side surface 16c Side surface 16d Side surface 22 Magnetic steel sheet 25 Slot hole 31 Protrusion 32 Protrusion 33 Protrusion 34 Protrusion

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

 ロータは、複数の電磁鋼板を積層して構成されるロータコアと、ロータコアの外周部に等角度間隔に配置され、ロータコアの軸方向に貫通する複数のスロットと、複数のスロットのそれぞれに組み付けられる永久磁石とを備える。複数の電磁鋼板は、互いに同一形状をなし、複数のスロットを構成する複数のスロット用孔が外周部に等角度間隔に形成されると共に、複数のスロット用孔の内縁に突起が形成される。複数の電磁鋼板は、隣接する上下の電磁鋼板の間で、突起を有する特定のスロット用孔が円周方向へ所定の位相分ずれて積層される。これにより、各スロットの中に複数の突起がスロットの軸方向に間隔を置いて配列される。各永久磁石は、各スロットの中にて、複数の突起に接触しそれらを変形させた状態で固定される。

Description

ロータ及びその製造方法
 この発明は、モータの構成部品の一つであるロータに係り、複数の電磁鋼板を積層して構成されるロータコアと、ロータコアに形成された複数のスロットのそれぞれに組み付けられる界磁用の永久磁石とを備えたロータ及びその製造方法に関する。
 一般に、界磁用の永久磁石を有するロータとして、ロータコアに形成された複数のスロットに永久磁石を収容し、接着剤により固定したものが知られている。この種のロータでは、永久磁石の固定作業において、ロータコア及び永久磁石の脱脂、洗浄や接着剤の塗布、硬化などの工程が必要となり、製造工程数が多くなっていた。また、スロット内において永久磁石の面方向における固定位置がばらつき、モータ特性が悪化するおそれがあった。さらに、モータ使用時にロータが高温になると、接着剤の接着力が弱まり、永久磁石の位置がずれるという品質上の問題もあった。また、永久磁石の固定に接着剤を用いると、ロータを廃棄する際に、ロータコアと永久磁石との分離や解体が困難となり、リサイクル性の面でも問題があった。ここで、ロータを炉に入れて接着剤の接着力を弱め、ロータコアと永久磁石とを分離して解体する方法が知られている。しかし、そのような解体作業には多くの工程が必要となり、ロータコアに接着剤が残ってしまうおそれもあった。
 そこで、従来は、ロータの製造工程を削減し、永久磁石をロータコアのスロットに強固に固定すると共に、リサイクル性も考慮した技術が幾つか提案されている。その一例として、下記の特許文献1に記載されるロータが挙げられる。このロータは、複数の電磁鋼板を積層して構成されたロータコアを有する。各電磁鋼板は、磁性体からなる環状部の外周に、複数の扇状コアが、それぞれの扇状コアの間にスロットを形成しながら周方向に配列され、連結部により連結されて一体に形成される。環状部の外周であって、各スロットの中には、ロータコアの軸方向における複数個所に、軸方向に折り曲げ可能な突起が設けられる。このように構成されたロータコアにおいて、各スロット内に、突起を折り曲げた状態で永久磁石が挿入され、固定される。この固定状態において、各突起は、永久磁石と環状部との間に磁気的空隙を形成すると共に、永久磁石をスロット内にてガタツキなく固定する役目を有する。ここで、複数の電磁鋼板のうち、突起を形成した電磁鋼板は、突起の曲げ易さを考慮すると、全部の電磁鋼板のうちの1~2枚程度となる。
特開2001-037121号公報 特開2007-037202号公報 特開平5-056583号公報 特開2001-258187号公報
 ところが、特許文献1に記載のロータでは、ロータコアを構成する複数の電磁鋼板につき、突起を形成した電磁鋼板と突起を形成しない電磁鋼板の2種類の電磁鋼板を予め成形しておき、それらを組み合わせて積層しなければならなかった。このため、2種類の電磁鋼板を成形する分だけ製造工程や製造設備が増え、製造コストが増えてしまう。
 この発明は上記事情に鑑みてなされたものであって、その目的は、各スロット内に永久磁石を圧入し、突起と接触させて組み付けるものにつき、永久磁石の固定性能の向上と製造コストの低減とを図ることを可能としたロータ及びその製造方法を提供することにある。
 (1)上記目的を達成するために、本発明の第1の態様は、複数の電磁鋼板を積層して構成されるロータコアと、ロータコアの外周部に等角度間隔に配置され、ロータコアの軸方向に貫通する複数のスロットと、複数のスロットのそれぞれに組み付けられる永久磁石とを備えたロータにおいて、複数の電磁鋼板は、互いに同一形状をなし、複数のスロットを構成する複数のスロット用孔が外周部に等角度間隔に形成されると共に、複数のスロット用孔の内縁に突起が形成されることと、複数の電磁鋼板は、隣接する上下の電磁鋼板の間で、突起を有する特定のスロット用孔が円周方向へ所定の位相分ずれて積層されることにより、各スロットの中に複数の突起がスロットの軸方向に間隔を置いて配列されることと、各永久磁石は、各スロットの中にて、複数の突起に接触しそれらを変形させた状態で固定されることとを備えたことを趣旨とする。
 上記発明の構成によれば、ロータコアを構成する複数の電磁鋼板が互いに同一形状をなすことから、形状の異なる電磁鋼板を作り分ける必要がない。また、各スロットの中にて複数の突起がスロットの軸方向に間隔を置いて配列されるので、突起がスロットの軸方向に間隔なく積層されて配列されている場合と異なり、各突起をスロットの軸方向に変形させるスペースが確保され、スロットの中に永久磁石を圧入するときの荷重が小さくなる。
 (2)上記目的を達成するために、上記(1)の構成において、各スロットの中に配列された複数の突起は、各スロットにおいて、ロータコアの半径方向内側寄りの内壁のみに設けられ、ロータコアの半径方向外側寄りの内壁には永久磁石の一側面が当接することが望ましい。
 上記発明の構成によれば、上記(1)の構成の作用に加え、ロータの回転時には、スロット内にて、遠心力の作用により、永久磁石の一側面が、ロータコアの半径方向外側寄りの内壁に当接して永久磁石が支持される。従って、ロータコアの半径方向内側寄りの内壁に設けた突起には、永久磁石を、ロータコアの半径方向外側へ押す程度の強度があればよい。
 (3)上記目的を達成するために、本発明の別の態様は、複数の電磁鋼板を積層して構成されるロータコアと、ロータコアの外周部に等角度間隔に配置され、ロータコアの軸方向に貫通する複数のスロットと、複数のスロットのそれぞれに組み付けられる永久磁石とを備えたロータの製造方法であって、複数のスロットを構成する複数のスロット用孔が外周部に等角度間隔に形成され、複数のスロット用孔の内縁に突起が形成されるように、複数の電磁鋼板を互いに同一形状に成形する電磁鋼板成形工程と、複数の電磁鋼板を、隣接する上下の電磁鋼板の間で、突起を有する特定のスロット用孔が円周方向へ所定の位相分ずらしながら積層することにより、ロータコアを作製すると共に、各スロットの中に複数の突起をスロットの軸方向に間隔を置いて配列するロータコア作製工程と、各スロットの中に、各永久磁石を複数の突起を変形させながら圧入する永久磁石組付工程とを備えたことを趣旨とする。
 上記発明の構成によれば、電磁鋼板成形工程では、ロータコアを構成する複数の電磁鋼板のそれぞれが互いに同一形状をなすように成形されることから、形状の異なる電磁鋼板を作り分ける必要がない。また、ロータコア作製工程では、各スロットの中にて複数の突起がスロットの軸方向に間隔を置いて配列されるので、突起がスロットの軸方向に間隔なく積層されて配列される場合と異なり、各突起をスロットの軸方向に変形させるスペースが確保される。更に、永久磁石圧入工程では、各突起がスロットの軸方向に大きく変形できるので、スロットの中に永久磁石を圧入するときの荷重が小さくなる。
 この発明によれば、ロータコアの各スロット内に永久磁石を圧入し、突起と接触させて固定するロータにつき、永久磁石の固定性能を向上させることができ、製造コストを低減させることができる。
第1実施形態に係り、ロータを示す平面図。 同実施形態に係り、ロータを示す図1の2-2線断面図。 同実施形態に係り、ロータにつき、図1の鎖線楕円で囲んだ永久磁石の部分を拡大して示す平面図。 同実施形態に係り、永久磁石を組み付ける前のロータコアを示す平面図。 同実施形態に係り、ロータコアにつき、図4の鎖線楕円で囲んだスロットの部分を拡大して示す平面図。 同実施形態に係り、ロータコアの一つのスロットの部分を示す図5の6-6線断面図。 同実施形態に係り、ロータの製造方法を示すフローチャート。 同実施形態に係り、成形された1枚の電磁鋼板を示す平面図。 同実施形態に係り、2枚の電磁鋼板を積層した状態を示す平面図。 同実施形態に係り、3枚の電磁鋼板を積層した状態示す平面図。 同実施形態に係り、ロータコアのスロットに永久磁石を圧入するところを示す断面図。 同実施形態に係り、ロータコアのスロットに永久磁石を圧入した状態を示す断面図。 第2実施形態に係り、ロータコアにつき、スロットの部分を拡大して示す図5に準ずる平面図。 同実施形態に係り、ロータにつき、永久磁石の部分を拡大して示す図3に準ずる平面図。
<第1実施形態>
 以下、本発明のロータ及びその製造方法を具体化した第1実施形態につき図面を参照して詳細に説明する。
 図1に、この実施形態のロータ11を平面図により示す。図2に、ロータ11を図1の2-2線断面図により示す。図1,2に示すように、このロータ11は、円柱形状をなすロータコア12と、ロータコア12の中心に形成された一つのシャフト締付孔13と、シャフト締付孔13に組み付けられたロータシャフト14とを備える。
 この実施形態で、図2に示すように、ロータコア12は、複数の電磁鋼板22を積層することにより構成される。図1,2に示すように、ロータコア12の外周部には、等角度間隔に配置され、ロータコア12の軸方向に貫通する複数のスロット15が形成される。複数のスロット15は、ロータコア12の外周縁に沿って配列され、隣り合う2つのスロット15が「ハの字状」又は「逆ハの字状」をなすように配置される。各スロット15には、それぞれ界磁用の永久磁石16が組み付けられて固定される。ロータコア12には、シャフト締付孔13と複数のスロット15との間にて、シャフト締付孔13の周囲に、複数(この実施形態では「8個」)の肉抜き孔17が形成される。これらの肉抜き孔17は、平面視で略台形状をなし、ロータコア12を軸方向に貫通する。これらの肉抜き孔17は、「逆ハの字状」をなす二つ一組のスロット15の間に対応して一つずつ配置される。
 図1,2に示すように、ロータシャフト14は、筒形をなし、その外周には、ロータコア12に係合するフランジ14aが形成される。この実施形態で、ロータシャフト14は、金属材料を鍛造することにより成形される。ロータシャフト14は、ロータコア12のシャフト締付孔13に中間ばめ又は圧入により組み付けられる。
 図3に、ロータ11につき、図1の鎖線楕円S1で囲んだ永久磁石16の部分を拡大して平面図により示す。「逆ハの字状」をなす隣り合う二つのスロット15の間には、両スロット15を区画する肉部分としての第1のブリッジ部18が形成される。また、各スロット15からロータコア12の外周縁までの間には、肉部分としての第2のブリッジ部19が形成される。モータを構成するために、このロータ11がステータ(図示略)に組み付けられた状態で、各スロット15の中の永久磁石16を、ロータ11の周囲に位置するステータに近付けるためには、第2のブリッジ部19の幅を極力小さくする必要がある。
 図3に示すように、この実施形態では、各スロット15の中の内縁の二つの位置に、突起31,32が設けられる。永久磁石16は、各スロット15の中にて、各突起31,32に接触しそれらを変形させた状態で固定される。
 図4に、永久磁石16を組み付ける前のロータコア12を平面図により示す。図5に、ロータコア12につき、図4の鎖線楕円S2で囲んだスロット15の部分を拡大して平面図により示す。図6に、ロータコア12の一つのスロット15の部分を図5の6-6線断面図により示す。図4に示すように、ロータコア12の各スロット15の中の内縁には、それぞれ二つの位置に突起31,32が設けられる。図5に示すように、これら突起31,32は、各スロット15において、ロータコア12の半径方向内側寄りの内壁に設けられた突起31と、ロータコア12の半径方向外側寄りの内壁に設けられた突起32とを含む。図6に示すように、各スロット15の中の二つの位置の突起31,32は、それぞれ複数個がスロット15の軸方向(図6の上下方向)に所定の間隔を置いて配列される。この「所定の間隔」は、積層された7枚の電磁鋼板22の高さに相当する。
 次に、この実施形態のロータ11の製造方法について説明する。図7に、この製造方法をフローチャートにより示す。
 図7の(1)に示す「電磁鋼板成形工程」では、複数の電磁鋼板22を互いに同一形状に成形する。図8に、成形された1枚の電磁鋼板22を平面図により示す。この電磁鋼板22は、「0.3mm」程度の薄板材をプレスすることにより成形する。図8に示すように、この電磁鋼板22は、円形の外形をなし、複数のスロット15を構成する複数のスロット用孔25が外周部に等角度間隔に形成される。電磁鋼板22の中心には、シャフト締付孔13に対応する一つの中心孔23が形成される。また、電磁鋼板22において、中心孔23と複数のスロット用孔25との間には、複数の肉抜き孔17に対応する複数の中間孔27が形成される。そして、複数のスロット用孔25のうち、中心孔23を挟んで相対向する二つの特定のスロット用孔25A,25Bの内縁には、それぞれ二つの突起31,32が形成される。
 次に、図7の(2)に示す「ロータコア作製工程」では、上記工程で成形された複数の電磁鋼板22を積層することによりロータコア12を作製する。このとき、複数の電磁鋼板22を、隣接する上下の電磁鋼板22の間で、突起31,32を有する特定のスロット用孔25A,25Bを円周方向へ所定の位相分ずらしながら(相対的に回転させながら)積層する。この実施形態では、所定の位相分として、図8に示すように、円周方向に配置される複数のスロット15、すなわちスロット用孔25の角度間隔α(α=45°)が想定される。これにより、ロータコア12を作製すると共に、図6に示すように、各スロット15の中にて複数の突起31,32を間隔を置いて軸方向に配列する。
 すなわち、図8に示す1枚目の電磁鋼板22の下に2枚目の電磁鋼板22を積層するには、1枚目の電磁鋼板22の突起31,32を有する特定のスロット用孔25A,25Bに対し、2枚目の電磁鋼板22の突起31,32を有する特定のスロット用孔25A,25Bを、基準位置P1,P2から角度間隔αだけ回転させた状態で両電磁鋼板22,22を積層する。また、これら電磁鋼板22を互いに「かしめ」により接合する。これにより、図9に示すように、平面視で合計4つのスロット用孔25に突起31,32が配置されることとなる。図9は、2枚の電磁鋼板22を積層した状態を示す平面図である。次に、2枚目の電磁鋼板22の下に3枚目の電磁鋼板22を積層するには、2枚目の電磁鋼板22の突起31,32を有する特定のスロット用孔25A,25Bに対し、3枚目の電磁鋼板22の突起31,32を有する特定のスロット用孔25A,25Bを、基準位置P1,P2から角度間隔αの2倍だけ回転させた状態で両電磁鋼板22,22を積層する。また、これら電磁鋼板22を互いに「かしめ」により接合する。これにより、図10に示すように、平面視で合計6つのスロット用孔25に突起31,32が配置されることとなる。図10は、3枚の電磁鋼板22を積層した状態を示す平面図である。その後、このように角度間隔αだけ回転させながら順次に電磁鋼板22を積層することにより、図4に示すように、全てのスロット15に突起31,32が配置され、かつ、図6に示すように、スロット15の軸方向に複数の突起31,32が間隔を置いて配列された、ロータコア12が作製される。
 また、図7の(3)に示す「永久磁石作製工程」では、複数の永久磁石16を作製する。この工程では、周知の方法により、磁石材料を所定形状に成形し、その後、焼成することにより永久磁石を作製する。この工程は、上記した各工程と並行して行うことができる。
 その後、図7の(4)に示す「永久磁石組付工程」では、上記工程で作製されたロータコア12の各スロット15の中に、各永久磁石16を、複数の突起31,32を変形させながら圧入することにより、永久磁石16を組み付けて固定する。すなわち、図11の断面図に示すように、ロータコア12の各スロット15に各永久磁石16を圧入する。このとき、図12の断面図に示すように、永久磁石16を、複数の突起31,32に接触させ、それら突起31,32を変形させながら圧入する。
 また、図7の(5)に示す「ロータシャフト作製工程」では、周知の方法によりロータシャフト14を作製する。この工程は、上記した各工程と並行して行うことができる。
 そして、図7の(6)に示す「ロータシャフト組付工程」では、図4に示すシャフト締付孔13に、ロータシャフト14を中間ばめ又は圧入して組み付ける。このようにして、図1,2に示すロータ11を製造することができる。
 以上説明したこの実施形態のロータ11によれば、ロータコア12を構成する複数の電磁鋼板22が互いに同一形状をなすことから、形状の異なる電磁鋼板を作り分ける必要がない。すなわち、従来技術と異なり、突起の有る電磁鋼板と突起の無い電磁鋼板とを作り分ける必要がない。このため、1種類の電磁鋼板22を成形するための製造工程と製造設備を設けるだけで済み、製造上の手間を削減することができ、その結果としてロータ11の製造コストを低減することができる。
 また、この実施形態では、各スロット15の中にて複数の突起31,32がスロット15の軸方向に間隔を置いて配列されるので、突起がスロットの軸方向に間隔なく積層されている場合とは異なり、各突起31,32をスロット15の軸方向へ変形させるスペースが確保される。このため、スロット15の中に永久磁石16を圧入するときに、各突起31,32を比較的容易に変形させことができ、永久磁石16を圧入するときの荷重が小さくなる。この結果、永久磁石16をスロット15に圧入するための設備を小規模で安価なものにすることができる。また、圧入時の永久磁石16に、割れ等の破損が生じる危険がほとんど無くなる。この意味で、スロット15における永久磁石16の固定性能を向上させることができると共に、磁石性能を確保することができる。更に、各突起31,32の変形代を大きく確保できることとなり、各突起31,32を比較的短くすることができ、スロット15や永久磁石16の形成精度を緩和することができ、それらの加工コストを低減させることができる。
 上記したロータの製造方法によれば、「電磁鋼板成形工程」では、ロータコア12を構成する複数の電磁鋼板22のそれぞれが互いに同一形状をなすように成形されることから、形状の異なる電磁鋼板を作り分ける必要がない。このため、1種類の電磁鋼板22を成形するための製造工程と製造設備を設けるだけで済み、製造上の手間を削減することができ、その結果としてロータ11の製造コストを低減することができる。
 また、「ロータコア作製工程」では、各スロット15の中にて複数の突起31,32がスロット15の軸方向に所定の間隔を置いて配列されるので、各突起がスロットの軸方向に間隔なく積層される場合とは異なり、各突起31,32をスロット15の軸方向に変形させるスペースが確保される。更に、「永久磁石組付工程」では、各突起31,32がスロット15の軸方向に大きく変形できるので、スロット15の中に永久磁石16を圧入するときの荷重が小さくなる。このため、スロット15の中に永久磁石16を圧入するときに、各突起31,32を比較的容易に変形させることができ、永久磁石16を圧入するときの荷重が小さくなる。この結果、永久磁石16をスロット15に圧入するための設備を小規模で安価なものにすることができる。また、圧入時の永久磁石16に割れ等の破損が生じる危険がほとんど無くなる。この意味で、スロット15における永久磁石16の固定性能を向上させることができる。
<第2実施形態>
 次に、本発明のロータを具体化した第2実施形態につき図面を参照して詳細に説明する。この実施形態において、第1実施形態と同等の構成要素については同一の符号を付して説明を省略し、異なった点を中心に説明する。
 この実施形態では、各スロット15における突起33,34の配置の点で第1実施形態と異なる。図13に、ロータコア12につき、スロット15の部分を拡大して図5に準ずる平面図により示す。図14に、ロータコア11につき、永久磁石16の部分を拡大して図3に準ずる平面図により示す。
 図13に示すように、この実施形態では、各スロット15の中に設けられた複数の突起33,34が、各スロット15において、ロータコア12の半径方向内側寄りの内壁15a,15bのみに設けられ、ロータコア12の半径方向外側寄りの内壁15c,15dには、突起が設けられていない。そして、図14に示すように、スロット15に永久磁石16を組み付けた状態では、上記した突起33,34が、永久磁石16の二つの側面16a,16bに接触しており、永久磁石16の他の二つの側面16c,16dが、スロット15の上記した二つの内壁15c,15dに当接している。
 この実施形態では、モータでロータ11が回転するときに、スロット15の中にて、遠心力の作用により、永久磁石16の二つの側面16c,16dが、スロット15の外側寄りの二つの内壁15c,15dに当接して永久磁石16が支持される。従って、スロット15の内側寄りの内壁15a,15bに設けた突起33,34には、永久磁石16を、ロータコア12の半径方向外側へ押す程度の強度があればよい。また、スロット15の外側寄りの内壁15c,15dに突起を設ける必要がない。この意味で、電磁鋼板22における突起33,34の成形を比較的容易なものにすることができる。
 なお、この発明は前記各実施形態に限定されるものではなく、発明の趣旨を逸脱することのない範囲で構成の一部を適宜変更して実施することもできる。
 (1)前記第1実施形態では、電磁鋼板22に形成された複数のスロット用孔25のうちの特定の二つのスロット用孔25A,25Bに突起31,32を設けたが、突起を設けるスロット用孔の数を適宜増減してもよい。
 (2)前記各実施形態では、電磁鋼板22における特定のスロット用孔25A,25Bに二つの突起31,32を設けたが、突起の数を適宜増減することもできる。例えば、突起の数を1つにしたり、3つにしたりしてもよい。
 (3)前記各実施形態に対し、スロット15及び永久磁石16の数を適宜増減することもできる。
 この発明は、電気自動車等に使用されるモータの製造に利用することができる。
11 ロータ
12 ロータコア
15 スロット
15a 内壁(内側寄り)
15b 内壁(内側寄り)
15c 内壁(外側寄り)
15d 内壁(外側寄り)
16 永久磁石
16a 側面
16b 側面
16c 側面
16d 側面
22 電磁鋼板
25 スロット用孔
31 突起
32 突起
33 突起
34 突起

Claims (3)

  1.  複数の電磁鋼板を積層して構成されるロータコアと、
     前記ロータコアの外周部に等角度間隔に配置され、前記ロータコアの軸方向に貫通する複数のスロットと、
     前記複数のスロットのそれぞれに組み付けられる永久磁石と
    を備えたロータにおいて、
     前記複数の電磁鋼板は、互いに同一形状をなし、前記複数のスロットを構成する複数のスロット用孔が外周部に等角度間隔に形成されると共に、前記複数のスロット用孔の内縁に突起が形成されることと、
     前記複数の電磁鋼板は、隣接する上下の電磁鋼板の間で、前記突起を有する特定のスロット用孔が円周方向へ所定の位相分ずれて積層されることにより、前記各スロットの中に複数の前記突起が前記スロットの軸方向に間隔を置いて配列されることと、
     前記各永久磁石は、前記各スロットの中にて、前記複数の突起に接触しそれらを変形させた状態で固定されることと
    を備えたことを特徴とするロータ。
  2.  前記各スロットの中に配列された前記複数の突起は、前記各スロットにおいて、前記ロータコアの半径方向内側寄りの内壁のみに設けられ、前記ロータコアの半径方向外側寄りの内壁には前記永久磁石の一側面が当接することを特徴とする請求項1に記載のロータ。
  3.  複数の電磁鋼板を積層して構成されるロータコアと、
     前記ロータコアの外周部に等角度間隔に配置され、前記ロータコアの軸方向に貫通する複数のスロットと、
     前記複数のスロットのそれぞれに組み付けられる永久磁石と
    を備えたロータの製造方法であって、
     前記複数のスロットを構成する複数のスロット用孔が外周部に等角度間隔に形成され、前記複数のスロット用孔の内縁に突起が形成されるように、前記複数の電磁鋼板を互いに同一形状に成形する電磁鋼板成形工程と、
     前記複数の電磁鋼板を、隣接する上下の電磁鋼板の間で、前記突起を有する特定のスロット用孔が円周方向へ所定の位相分ずらしながら積層することにより、前記ロータコアを作製すると共に、前記各スロットの中に複数の前記突起を前記スロットの軸方向に間隔を置いて配列するロータコア作製工程と、
     前記各スロットの中に、前記各永久磁石を前記複数の突起を変形させながら圧入する永久磁石組付工程と
    を備えたことを特徴とするロータの製造方法。
PCT/JP2010/056292 2010-04-07 2010-04-07 ロータ及びその製造方法 WO2011125183A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/056292 WO2011125183A1 (ja) 2010-04-07 2010-04-07 ロータ及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/056292 WO2011125183A1 (ja) 2010-04-07 2010-04-07 ロータ及びその製造方法

Publications (1)

Publication Number Publication Date
WO2011125183A1 true WO2011125183A1 (ja) 2011-10-13

Family

ID=44762170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056292 WO2011125183A1 (ja) 2010-04-07 2010-04-07 ロータ及びその製造方法

Country Status (1)

Country Link
WO (1) WO2011125183A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012170190A (ja) * 2011-02-10 2012-09-06 Mitsui High Tec Inc 回転子積層鉄心
EP3001539A1 (en) * 2014-09-26 2016-03-30 ALSTOM Renewable Technologies Electrical machines
KR20160139415A (ko) * 2015-05-27 2016-12-07 엘지이노텍 주식회사 로터 및 상기 로터를 포함하는 모터
CN106451858A (zh) * 2016-12-16 2017-02-22 合肥巨动力系统有限公司 一种轻量化电机转子铁芯及其减重孔设计方法
WO2018168226A1 (ja) * 2017-03-15 2018-09-20 日立オートモティブシステムズ株式会社 回転電機のロータおよび回転電機
DE102022131793A1 (de) 2022-11-30 2024-06-06 Valeo Eautomotive Germany Gmbh Rotor für eine elektrische Maschine mit einer mechanischen Befestigung von Rotormagneten

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258187A (ja) * 2000-03-10 2001-09-21 Mitsubishi Electric Corp 永久磁石モータの永久磁石埋め込み型回転子
JP2004236366A (ja) * 2003-01-28 2004-08-19 Yaskawa Electric Corp 永久磁石形モータ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258187A (ja) * 2000-03-10 2001-09-21 Mitsubishi Electric Corp 永久磁石モータの永久磁石埋め込み型回転子
JP2004236366A (ja) * 2003-01-28 2004-08-19 Yaskawa Electric Corp 永久磁石形モータ

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012170190A (ja) * 2011-02-10 2012-09-06 Mitsui High Tec Inc 回転子積層鉄心
EP3001539A1 (en) * 2014-09-26 2016-03-30 ALSTOM Renewable Technologies Electrical machines
US20160094094A1 (en) * 2014-09-26 2016-03-31 Alstom Renewable Technologies Electrical machines
US10193402B2 (en) 2014-09-26 2019-01-29 Ge Renewable Technologies Wind B.V. Fastening system for coupling electrical machine components
KR20160139415A (ko) * 2015-05-27 2016-12-07 엘지이노텍 주식회사 로터 및 상기 로터를 포함하는 모터
JP2016226274A (ja) * 2015-05-27 2016-12-28 エルジー イノテック カンパニー リミテッド ロータアセンブリ及びこのロータアセンブリを有するモータ
KR102446182B1 (ko) 2015-05-27 2022-09-22 엘지이노텍 주식회사 로터 및 상기 로터를 포함하는 모터
CN106451858A (zh) * 2016-12-16 2017-02-22 合肥巨动力系统有限公司 一种轻量化电机转子铁芯及其减重孔设计方法
WO2018168226A1 (ja) * 2017-03-15 2018-09-20 日立オートモティブシステムズ株式会社 回転電機のロータおよび回転電機
CN110383636A (zh) * 2017-03-15 2019-10-25 日立汽车系统株式会社 旋转电机的转子以及旋转电机
EP3598610A4 (en) * 2017-03-15 2020-12-23 Hitachi Automotive Systems, Ltd. ROTOR FOR DYNAMOELECTRIC MACHINE AND DYNAMOELECTRIC MACHINE
DE102022131793A1 (de) 2022-11-30 2024-06-06 Valeo Eautomotive Germany Gmbh Rotor für eine elektrische Maschine mit einer mechanischen Befestigung von Rotormagneten

Similar Documents

Publication Publication Date Title
JP4666500B2 (ja) 永久磁石埋込型モータの回転子
WO2011125183A1 (ja) ロータ及びその製造方法
JP5324673B2 (ja) 分割式コアを有する電動機の回転子及びその製造方法
JP5040988B2 (ja) ステータおよびこのステータを備えるモータ
US8896189B2 (en) Stator for electric rotating machine and method of manufacturing the same
JP5510285B2 (ja) 回転電機のロータコア
CN103378701A (zh) 用于马达的转子和马达
US20140041207A1 (en) Method for producing a motor rotor
US20160049836A1 (en) Embedded magnet rotor for rotary electric machine
US8970084B2 (en) Stator core of rotating electrical machine with alternately laminated core plates
JP6232641B2 (ja) 固定子鉄心の製造方法
JP2007143257A (ja) 積層鉄心及びその製造方法
CN112640258B (zh) 旋转电机
JP2013034335A (ja) 磁石埋め込み型モータ用ロータ構造
JP2002010588A (ja) 回転体
JP5633507B2 (ja) 回転電機のロータ
JP2000299947A (ja) リラクタンスモータ
WO2011125209A1 (ja) ロータ及びその製造方法
CN111987822B (zh) 定子组件及马达
JP2011172335A (ja) 電動機
JP2015056911A (ja) ロータ及びこのロータを備える回転電機
JP6910413B2 (ja) 回転電機
CN116169808B (zh) 一种电机磁铁固定结构及固定方法
JP5607591B2 (ja) ステータ用外筒、ステータ、及びステータの製造方法
WO2022085316A1 (ja) ブラシレスモータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10849427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10849427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP