WO2012066947A1 - 緩衝器 - Google Patents
緩衝器 Download PDFInfo
- Publication number
- WO2012066947A1 WO2012066947A1 PCT/JP2011/075474 JP2011075474W WO2012066947A1 WO 2012066947 A1 WO2012066947 A1 WO 2012066947A1 JP 2011075474 W JP2011075474 W JP 2011075474W WO 2012066947 A1 WO2012066947 A1 WO 2012066947A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- valve
- valve seat
- shock absorber
- valve body
- motor
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62K—CYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
- B62K25/00—Axle suspensions
- B62K25/04—Axle suspensions for mounting axles resiliently on cycle frame or fork
- B62K25/06—Axle suspensions for mounting axles resiliently on cycle frame or fork with telescopic fork, e.g. including auxiliary rocking arms
- B62K25/08—Axle suspensions for mounting axles resiliently on cycle frame or fork with telescopic fork, e.g. including auxiliary rocking arms for front wheel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F9/00—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
- F16F9/32—Details
- F16F9/34—Special valve constructions; Shape or construction of throttling passages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F9/00—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
- F16F9/32—Details
- F16F9/44—Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
- F16F9/46—Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
- F16F9/464—Control of valve bias or pre-stress, e.g. electromagnetically
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F9/00—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
- F16F9/32—Details
- F16F9/44—Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
- F16F9/46—Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
- F16F9/466—Throttling control, i.e. regulation of flow passage geometry
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62K—CYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
- B62K25/00—Axle suspensions
- B62K25/04—Axle suspensions for mounting axles resiliently on cycle frame or fork
- B62K2025/048—Axle suspensions for mounting axles resiliently on cycle frame or fork with suspension manual adjustment details
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F2230/00—Purpose; Design features
- F16F2230/18—Control arrangements
Definitions
- the present invention relates to a shock absorber.
- JP 2008-14431 discloses a shock absorber including a shock absorber body including a cylinder, a piston, and a piston rod, a passage, a needle valve, and a stepping motor.
- the cylinder is connected to the outer tube.
- the piston is slidably inserted into the cylinder and partitions the cylinder into a compression side chamber and an extension side chamber.
- the piston rod is inserted into the cylinder, and one end is connected to an inner tube that is slidably inserted into the outer tube, and the other end is connected to the piston.
- the passage communicates the compression side chamber and extension side chamber of the shock absorber body.
- the check valve is provided in the middle of the passage and allows only the flow from the compression side chamber to the expansion side chamber, or conversely, allows only the flow from the expansion side chamber to the compression side chamber.
- the needle valve is provided in the middle of the passage.
- the stepping motor is fixed to the other end side of the piston rod and drives the needle valve.
- This shock absorber exerts a damping force by resisting the flow of hydraulic oil by a piston valve provided at the piston when extended, and a base valve provided at the end of the cylinder at the time of contraction of the hydraulic oil flowing out from the cylinder to the reservoir. Provides resistance to the flow and exhibits damping force.
- the check valve allows the flow of hydraulic oil in the passage only when extended or contracted, and the needle valve provides resistance to the flow of hydraulic oil. Attenuating force is exhibited in cooperation with either one of expansion or contraction. Furthermore, the damping force in the needle valve is made variable by driving the needle valve by the motor.
- the needle valve will exhibit a damping function only when the shock absorber is extended or contracted, but the front fork that suspends the wheels of a two-wheeled vehicle normally suspends the wheels in a pair of left and right, so it is built into one front fork. If the needle valve of the shock absorber exerts a damping function when extended, and the needle valve of the shock absorber incorporated in the other front fork exhibits a damping function when contracted, the left and right front forks as a whole The damping force on the extension side and the contraction side can be adjusted.
- the shock absorber ensures a stable flow by always making the flow of hydraulic oil passing through the needle valve one-way, the damping force generated by the shock absorber can be accurately adjusted.
- the needle valve When the needle valve shuts off the passage, the needle valve must be driven by overcoming the fluid force and pressure due to the flow of hydraulic oil in order to shut off the passage. Therefore, it is necessary to use a stepping motor capable of outputting a large torque in order to block the passage while the shock absorber is operating and hydraulic oil is flowing through the passage. In order to output a large torque to the stepping motor, the stepping motor is increased in size, the cost is increased, and economic efficiency and mountability on the vehicle are sacrificed.
- the needle valve When the passage is blocked while the hydraulic oil is flowing, the needle valve can be driven with a relatively small torque until the passage is cut off, and the possibility of step-out is low. Therefore, the conventional shock absorber does not completely block the passage, thereby enabling the use of a stepping motor having a relatively small maximum torque and solving the above problem.
- the buffer cannot completely block the passage, the variable width of the flow path of the needle valve is inevitably reduced. Therefore, the damping force adjustment range of the shock absorber becomes small, and if the stepping motor steps out during traveling, it cannot be corrected during traveling and the damping force cannot be adjusted correctly.
- An object of the present invention is to provide a shock absorber capable of adjusting the step-out and improving the damping force adjustment range while enabling the use of a low-cost and small motor.
- a cylinder a piston that is slidably inserted into the cylinder and divides the cylinder into an extension side chamber and a pressure side chamber, and a piston rod that is inserted into the cylinder and connected to the piston
- a shock absorber body a flow passage that allows passage of fluid only when the shock absorber body is extended or contracted, a valve seat provided in the middle of the flow passage, and a valve seat
- a damping force adjustment mechanism having a motor that adjusts the flow area of the flow path by driving the valve body and moving it forward and backward with respect to the valve seat.
- valve body moves from the separated position separated from the valve seat to the seated position seated on the valve seat to shut off the flow path, the valve body moves at a distance more than twice the distance from the separated position to the seated position.
- a shock absorber for energizing the motor is provided.
- FIG. 1 is a cross-sectional view of a shock absorber according to an embodiment of the present invention.
- FIG. 2 is an enlarged sectional view showing a section of the damping force adjusting mechanism of the shock absorber according to the embodiment of the present invention.
- FIG. 3 is a diagram illustrating a vibration state of the shock absorber according to the embodiment of the present invention.
- FIG. 4 is a diagram showing a drive pattern of the valve body of the shock absorber according to the embodiment of the present invention.
- the shock absorber 1 in this embodiment includes a shock absorber body D including a cylinder 2, a piston 3, and a piston rod 4, a flow path 5, a valve seat 6, a valve body 7, and a motor 8. And a damping force adjusting mechanism V.
- the piston 3 is slidably inserted into the cylinder 2 to partition the cylinder 2 into an extension side chamber R1 and a pressure side chamber R2.
- the piston rod 4 is inserted into the cylinder 2 and connected to the piston 3.
- the flow path 5 allows the passage of fluid only when the shock absorber body D is extended.
- the valve seat 6 is provided in the middle of the flow path 5.
- the valve body 7 can advance and retract with respect to the valve seat 6.
- the motor 8 adjusts the flow path area by driving the valve body 7 and moving it forward and backward with respect to the valve seat 6.
- the shock absorber main body D is accommodated in a front fork F constituted by the vehicle body side tube 10 and the axle side tube 11.
- the vehicle body side tube 10 is coupled together with the piston rod 4 to the vehicle body of a saddle-ride type vehicle such as a motorcycle.
- the axle side tube 11 is connected to an axle (not shown) of the saddle-ride type vehicle and is slidably inserted into the vehicle body side tube 10.
- the piston rod 4 is connected to the vehicle body side tube 10, and the cylinder 2 is connected to the axle side tube 11.
- the shock absorber body D is accommodated in a front fork F closed by the vehicle body side tube 10 and the axle side tube 11 so as to be interposed between the vehicle body side tube 10 and the axle side tube 11.
- the front fork F is an inverted front fork that inserts the axle tube 11 into the vehicle body side tube 10, but on the contrary, an upright type that inserts the vehicle body side tube 10 into the axle tube 11.
- the front fork may be used.
- the suspension spring 12 is interposed between the piston rod 4 and the cylinder 2 of the shock absorber body D, and the direction in which the vehicle body side tube 10 and the axle side tube 11 are separated via the shock absorber body D, that is, It exerts elasticity in the direction to extend the front fork F.
- the suspension spring 12 elastically supports the vehicle body of the saddle-ride type vehicle.
- the shock absorber body D built in the front fork F will be described in detail. As shown in FIG. 1, the shock absorber body D includes a cylinder 2, a piston 3, a piston rod 4, a damping passage 13, and a bottom member 14.
- the cylinder 2 is connected to the axle side tube 11.
- the piston 3 is slidably inserted into the cylinder 2 and divides the cylinder 2 into an extension side chamber R1 and a pressure side chamber R2, which are two working chambers.
- the piston rod 4 has one end connected to the piston 3 and the other end connected to the vehicle body side tube 10.
- the damping passage 13 is provided in the piston 3 and communicates the extension side chamber R1 and the pressure side chamber R2 and provides resistance to the flow of fluid passing therethrough.
- the bottom member 14 includes a compression side attenuation passage 15 and a suction passage 16.
- the pressure side damping passage 15 is provided at the lower end of the cylinder 2 and provides resistance to the flow of fluid from the pressure side chamber R2 toward the reservoir R.
- the suction passage 16 allows only the flow of fluid from the reservoir R toward the pressure side chamber.
- the extension side chamber R1 and the pressure side chamber R2 are filled with a fluid such as hydraulic oil as a fluid, and the reservoir R is filled with a liquid and a gas.
- the cylinder 2 is fixed to the bottom of the axle-side tube 11 formed in a bottomed cylindrical shape via a bottom member 14 fitted to the lower end of the cylinder 2.
- a rod guide 17 that pivotally supports the piston rod 4 is provided at the upper end of the cylinder 2.
- the piston rod 4 has a cylindrical shape, and includes a piston rod body 4a having a hollow portion 4b and a piston connecting portion 4c that holds the piston 3 by being fixed to the lower end of the piston rod body 4a in FIG.
- the upper end of the piston rod body 4a in FIG. 1 is fixed to the upper end of the vehicle body side tube 10 via a valve housing 9 that houses the valve body 7 of the damping force adjusting mechanism V.
- the piston connecting portion 4c includes a communication passage 4d that allows the hollow portion 4b and the extension side chamber R1 to communicate with each other, and a check valve that is provided in the middle of the communication passage 4d and allows only a liquid flow from the extension side chamber R1 toward the hollow portion 4b. 4e.
- the annular piston 3 is fixed to the lower end of the piston rod 4 in FIG.
- the suspension spring 12 is interposed between the rod guide 17 and a cylindrical spring receiver 18 provided on the outer periphery of the valve housing 9, and biases the shock absorber body D in the extending direction. As a result, the front fork F is also urged in the extending direction.
- the piston 3 is fixed to the lower end of the piston rod 4 in FIG.
- the damping passage 13 provided in the piston 3 includes a passage 13a communicating the extension side chamber R1 and the pressure side chamber R2, and a damping valve 13b provided in the middle of the passage 13a, and provides resistance to the flow of liquid passing therethrough.
- the damping valve 13b is a throttle valve or the like, and the damping passage 13 has both a flow of liquid from the expansion side chamber R1 to the compression side chamber R2 and a flow of liquid from the compression side chamber R2 to the expansion side chamber R1. Allow direction flow.
- a damping valve that allows only the flow of liquid from the extension side chamber R1 to the pressure side chamber R2 is provided in some passages, and the pressure side chamber R2 to the extension side chamber R1 are provided in other passages.
- a damping valve may be provided that allows only the flow of liquid to the front.
- the reservoir R is formed in a space between the shock absorber body D and the front fork F, and the reservoir R is filled with liquid and gas.
- the pressure-side attenuation passage 15 formed in the bottom member 14 allows only the flow of liquid from the pressure-side chamber R2 to the reservoir R and resistance to the flow of liquid passing through the passage 15a communicating the pressure-side chamber R2 and the reservoir R. And a damping valve 15b.
- the pressure-side attenuation passage 15 is a one-way passage that allows only the flow of liquid from the pressure-side chamber R2 toward the reservoir R.
- the suction passage 16 formed in the bottom member 14 includes a passage 16a that connects the pressure side chamber R2 and the reservoir R, and a check valve 16b that allows only the flow of liquid from the reservoir R to the pressure side chamber R2.
- the suction passage 16 is a one-way passage that allows only the flow of liquid from the reservoir R toward the pressure-side chamber R2 in the opposite direction to the pressure-side attenuation passage 15.
- the damping force adjusting mechanism V includes a flow path 5, a valve seat 6, a valve body 7, and a motor 8.
- the flow path 5 allows only the passage of liquid from the extension side chamber R1 to the reservoir R through the extension side chamber R1 and the reservoir R.
- the valve seat 6 is provided in the middle of the flow path 5.
- the valve body 7 can advance and retract with respect to the valve seat 6.
- the motor 8 can adjust the flow path area by driving the valve body 7 and moving it forward and backward with respect to the valve seat 6.
- the flow path 5 includes a hollow portion 4b, a communication passage 4d, a hollow portion 9a, and a lateral hole 9b.
- the hollow portion 4b and the communication passage 4d are provided in the piston rod 4.
- the hollow portion 9a is provided in the valve housing 9 connected to the upper end of the piston rod 4 in FIG. 1 and communicates with the hollow portion 4b.
- the lateral hole 9b allows the hollow portion 9a and the reservoir R to communicate with each other.
- the flow path 5 allows the extension side chamber R1 and the reservoir R to communicate with each other, and allows only passage of liquid from the extension side chamber R1 toward the reservoir R by a check valve 4e provided in the middle of the communication path 4d.
- the check valve for setting the flow path 5 to be one-way is not provided in the piston coupling portion 4c but may be provided in another location, for example, in the hollow portion 4b of the piston rod body 4a.
- the piston rod body 4a may be provided at the open end of the hollow portion 4b at the upper end in FIG.
- the valve housing 9 has a cylindrical shape, a hollow portion 9a formed inside, a lateral hole 9b that opens from the side and communicates with the hollow portion 9a, and a flange 9g provided on the outer periphery. Is provided.
- the hollow portion 9a includes a small-diameter portion 9c, a transverse hole intersecting portion 9d, a valve accommodating portion 9e, and an enlarged-diameter portion 9f.
- the small-diameter portion 9c is formed with a small inner diameter on the lower side in FIG. 1 that is closer to the piston rod than the intersection of the hollow portion 9a with the horizontal hole 9b.
- the horizontal hole intersecting portion 9d is connected to the small diameter portion 9c and has a larger inner diameter than the small diameter portion 9c and intersects the horizontal hole 9b.
- the valve housing portion 9e has a larger inner diameter than the transverse hole intersecting portion 9d, and the valve body 7 is slidably inserted therein.
- the enlarged diameter portion 9f has an inner diameter larger than that of the valve accommodating portion 9e.
- the valve seat 6 is formed at a step portion at the boundary between the small diameter portion 9c and the side hole intersecting portion 9d. That is, the valve seat 6 is formed in the valve housing 9.
- the valve body 7 includes a body portion 7a, a valve portion 7b, a valve head 7c, and a seal ring 7d.
- drum 7a is slidably contacted with the valve accommodating part 9e.
- the valve portion 7b extends from the body portion 7a toward the valve seat 6 and has an outer diameter smaller than the body portion 7a and larger than an inner diameter of the small diameter portion 9c.
- the valve head 7c is a needle-type valve head 7c that extends from the lower end in FIG. 1 and that can be inserted into the small diameter portion 9c.
- the seal ring 7d is an annular seal ring 7d that is attached to the outer periphery of the body portion 7a and is in sliding contact with the inner periphery of the valve housing portion 9e.
- the coil spring 19 is interposed between the lower end in FIG. 1 of the body portion 7a and the stepped portion at the boundary between the horizontal hole intersecting portion 9d and the valve accommodating portion 9e in the hollow portion 9a. It is energizing in the direction away from 6.
- the valve body 7 is accommodated in the hollow portion 9 a so as to be movable back and forth in the axial direction with respect to the valve seat 6, and is driven by the motor 8 to move forward and backward with respect to the valve seat 6.
- the valve body 7 is driven by the motor 8 and the outer periphery of the lower end in FIG. 1 of the valve portion 7b facing the valve seat 6 is seated on the valve seat 6, the flow path 5 is blocked as shown in FIG.
- the valve body 7 is driven away from the valve seat 6 from the blocked state shown in FIG. 2, the valve portion 7 b is separated from the valve seat 6 to create a gap, and the flow path 5 is opened.
- the flow channel area of the flow channel 5 changes. That is, the flow path area of the flow path 5 varies depending on the positional relationship between the valve body 7 and the valve seat 6, and when the valve body 7 is farthest from the valve seat 6, the flow path area of the flow path 5 is maximized. Is seated on the valve seat 6, that is, when the valve portion 7 b comes into contact with the valve seat 6, the flow path 5 is completely blocked and the flow path area becomes zero.
- the extension side chamber R1 and the reservoir R are communicated, and when the shock absorber 1 extends, the liquid passes through the flow path 5 and is discharged to the reservoir R, and the flow path 5 has a flow area. Accordingly, resistance is given to the flow of the liquid.
- valve body 7 is driven by the motor 8.
- a feed screw mechanism S is interposed between the motor 8 and the valve body 7, and the feed screw mechanism S converts the rotational motion of the motor 8 into motion of the valve body 7 in the advancing / retreating direction. Drive.
- the motor 8 is a stepping motor.
- the feed screw mechanism S includes a screw member 20 and a nut member 21.
- the screw member 20 is coupled to the shaft 8a of the motor 8 fitted in the enlarged diameter portion 9f of the hollow portion 9a of the valve housing 9 so as not to rotate and to be movable in the axial direction.
- the nut member 21 has a cylindrical shape, and is screwed with the screw member 20 and is fixed to the enlarged diameter portion 9f of the hollow portion 9a.
- the screw member 20 has a shaft shape, and includes a shaft insertion hole 20a that opens to the end side on the motor 8 side that is the base end, and a screw portion 20b that is provided on the outer periphery on the side opposite to the motor side that is the tip end side.
- the cross section of the shaft insertion hole 20a has a shape other than a perfect circle, and the cross section of the shaft 8a of the motor 8 is a shape that matches and fits the cross section of the shaft insertion hole 20a.
- the nut member 21 has a cylindrical shape and is fixed to the enlarged diameter portion 9f of the hollow portion 9a.
- a screw portion 21a that is screwed into the screw portion 20b of the screw member 20 is provided on the inner periphery.
- the screw member 20 is in screw contact with the nut member 21 and protrudes from the lower end of the nut member 21 to be in contact with the valve body 7.
- valve body 7 is urged in the direction away from the valve seat 6 by the coil spring 19 as described above. Accordingly, when the motor 8 is driven to move the screw member 20 to the valve seat 6 side with respect to the nut member 21, the valve body 7 is pushed and proceeds to the valve seat 6 side, and conversely, the screw member 20 is moved to the nut member. When the valve body 7 is moved away from the valve seat 6, the valve body 7 is pushed by the coil spring 19 and retracts from the valve seat 6.
- the motor 8 is clamped by an annular outer nut member 22 and a cap-shaped cap 23 and fixed to the valve housing 9.
- the outer peripheral nut member 22 has a screw portion on the outer peripheral side and is mounted on the outer periphery of the valve housing 9 and engages with the flange 9g.
- the cap-like cap 23 covers the open end of the valve housing 9 and is screwed into the outer nut member 22.
- the cap 23 includes an opening 23a that opens to the side, and the connector 8b of the motor 8 faces outward through the opening 23a.
- the connector 8b of the motor 8 and an external power source can be connected via a power line through the opening 23a, and power can be supplied to the motor 8 from outside the vehicle body side tube 10.
- the shock absorber 1 has a damping passage 13 in the flow of the liquid moving from the expansion side chamber R1 compressed by the piston 3 to the pressure side chamber R2 when the piston 3 moves upward in FIG.
- a resistance is given by the damping force adjusting mechanism V against the flow of liquid from the extension side chamber R1 to the reservoir R.
- the shock absorber 1 exerts the extension side damping force by the damping passage 13 and the damping force adjusting mechanism V during extension.
- Liquid is supplied from the reservoir R through the suction passage 16 provided in the bottom member 14 to the pressure side chamber R ⁇ b> 2 that expands when the buffer member 1 extends, and the piston rod 4 is retracted from the cylinder 2 when the shock absorber 1 extends. The volume change in the cylinder 2 is compensated.
- the shock absorber 1 causes the liquid flow moving from the compression side chamber R2 to the extension side chamber R1 to be compressed by the piston 3 through the damping passage 13. Give resistance.
- the liquid corresponding to the volume decrease in the cylinder 2 caused by the piston rod 4 entering the cylinder 2 is discharged to the reservoir R through the compression side damping passage 15 of the bottom member 14 to compensate for the volume change in the cylinder 2. Therefore, the shock absorber 1 provides resistance to the liquid flow even in the compression side damping passage 15. That is, when the shock absorber 1 is contracted, the damping side 13 and the pressure side damping passage 15 exert a compression side damping force, and no liquid flows through the flow path 5. Therefore, the damping force adjusting mechanism V is not involved in the generation of the compression side damping force.
- the shock absorber 1 can adjust the extension side damping force at the time of extension. .
- valve body 7 When the valve body 7 is separated from the valve seat 6 and the flow path 5 is in an open state, and the valve body 7 is driven to adjust the damping force and the flow path 5 is completely blocked, the valve body 7
- the motor 8 is energized for the time required to move the valve body 7 by a distance from the separated position away from the valve seat 6 to the position where the valve body 7 is seated on the valve seat 6. In this case, since the liquid passes through the flow path 5 while the shock absorber 1 exhibits the extension operation, the valve body 7 receives the fluid force and pressure due to the flow of the liquid. If the motor 8 loses its fluid force and pressure, the valve body 7 cannot be driven to the valve seat 6 side.
- the valve body 7 when the valve body 7 is separated from the valve seat 6 and the flow path 5 is in an open state, and the valve body 7 is driven and the flow path 5 is completely blocked, the valve body 7 Is energized to the motor 8 so as to move a distance twice as long as the distance from the separated position away from the valve seat 6 to the position where the valve body 7 is seated on the valve seat 6.
- the motor 8 is a stepping motor and is driven according to a pulse signal having a specific cycle.
- the time corresponding to the pulse signal more than the number necessary to move the distance twice the distance from the separated position where the valve body 7 is separated from the valve seat 6 to the position where the valve body 7 is seated on the valve seat 6
- the number of pulse signals necessary to move the distance from the spaced position where the valve body 7 is separated from the valve seat 6 to the position where the valve body 7 is seated on the valve seat 6 is 160 times
- the pulse signal of 80 times can be applied, the required number of movements from the separated position where the valve body 7 is separated from the valve seat 6 to the position where the valve body 7 is seated on the valve seat 6 are performed.
- the motor 8 the pulse signal of 320 times or more which is twice the pulse signal (160 times). Since the energization time corresponding to 320 pulse signals is 4 seconds, the motor 8 may be energized for at least 4 seconds.
- the shock absorber 1 is repeatedly expanded and contracted by vibration input from the road surface when the saddle riding type vehicle is running. Therefore, as shown in FIG. 3, when the vibration of the shock absorber 1 during vehicle travel is cut off at an arbitrary time t, the extension operation and the contraction operation appear in half. The liquid flows through the flow path 5 only when the shock absorber 1 exhibits the extension operation.
- the valve body 7 is separated from the valve seat 6 and the flow path 5 is opened.
- the motor 8 is energized for the time necessary for the above.
- the shock absorber 1 is in a contracting operation and no liquid flows through the flow path 5, so that the fluid force and pressure during the passage of the liquid do not act on the valve body 7.
- the energization time to the motor 8 is set to be longer than the time required to drive the valve element 7 at a distance twice as long as the distance from the separated position to the position at which the valve seat 6 is seated. That is, the energization time to the motor 8 is set to be twice or more the time required to drive the distance from the separated position to the position where the valve body 7 is seated on the valve seat 6.
- the energization time for the motor 8 is set to be twice or more the time required to drive the distance from the separated position to the position where the valve body 7 is seated on the valve seat 6, and the energization time.
- the half of the time is a time during which the liquid does not pass through the flow path 5, and during that time, the valve body 7 can be driven with no load except the urging force of the coil spring 19.
- the valve body 7 can be reliably seated on the valve seat 6 and the flow path 5 can be shut off.
- the step-out correction of the motor 8 can be performed by seating the valve body 7. Therefore, the step-out correction can be performed even during traveling.
- the shock absorber 1 since the flow path 5 can be shut off, the flow area adjustment width in the damping force adjustment mechanism V is increased, the damping force adjustment width is also increased, and the riding comfort in the vehicle is further improved. Can be made. Furthermore, since the step-out correction is performed even during traveling, the desired damping force can be generated accurately.
- the torque required for the motor 8 is sufficient to overcome the urging force of the coil spring 19 and press the valve body 7 toward the valve seat 6, so that the fluid force of the liquid passing through the flow path 5 is sufficient. And does not require a large torque to overcome the pressure. Therefore, even if it is designed assuming that the flow path 5 is required to be blocked, the motor 8 can be prevented from being enlarged. Furthermore, since the motor 8 is not increased in size, the mounting property on the saddle-ride type vehicle is improved, which is advantageous in terms of cost.
- valve body 7 When the valve body 7 is retracted from the valve seat 6 and the shock absorber 1 is contracted and the valve body 7 is in an unloaded state, as a matter of course, in the case where the shock absorber 1 is extended However, since the fluid force and pressure of the liquid passing through the flow path 5 act in the direction in which the valve body 7 is retracted from the valve seat 6, the motor 8 does not step out when the valve body 7 is retracted.
- the valve body 7 can be reliably positioned at a desired position.
- valve body 7 When adjusting the damping force and reducing the distance between the valve body 7 and the valve seat 6 to a desired distance in order to increase the damping force, the valve body 7 is seated on the valve seat 6 after the valve body 7 is seated.
- the step-out of the motor 8 can be prevented by retracting from the valve seat 6 and setting the distance between the valve body 7 and the valve seat 6 to a desired distance.
- valve body 7 is not driven in the direction in which the valve body 7 is seated on the valve seat 6 until the valve body 7 reaches the restriction position that is the farthest from the valve seat 6.
- the drive pattern of the valve body 7 is as follows.
- Step 3 when it is desired to make the flow channel area smaller than the current flow channel area, the flow channel area is shut off after maximizing the flow channel area, and then the flow channel area is increased to increase the flow channel area. Is controlled to be the above desired area.
- the valve body 7 when the damping force is desired to be lower than the current damping force, it is only necessary to retract the valve body 7 from the valve seat 6 to a position where a desired damping force is realized.
- the valve body 7 in the process of pushing the valve body 7 toward the valve seat 6 against the liquid flow, the valve body 7 is always seated once on the valve seat 6, so that the step-out of the motor 8 is corrected by the seating.
- the fluid force and pressure of the liquid passing through the flow path 5 act in the direction of retracting the valve body 7 from the valve seat 6.
- the motor 8 does not step out. Thereby, the valve body 7 can be reliably positioned to a desired position.
- the valve body 7 When adjusting so as to increase the damping force, the valve body 7 is always seated once on the valve seat 6, so that the motor 8 is stepped out and the valve body 7 moves backward to a desired distance from the motor 7.
- the damping force adjustment is performed in a state where there is no step-out of 8. Therefore, a desired damping force can be reliably generated in the shock absorber 1.
- the motor 8 since the valve body 7 is retracted from the valve seat 6 to the maximum retracted position and then driven to the valve seat 6 side, the motor 8 is largely stepped out for some reason. Even if a state in which the seat 6 is not seated occurs, the motor 8 is energized so that the valve body 7 is seated on the valve seat 6 with the maximum retracted position as a reference. Can be corrected.
- the damping force adjusting mechanism V functions as a damping force generating element that allows the passage 5 to pass the fluid only when the shock absorber 1 is extended and generates the extension side damping force of the shock absorber 1. Therefore, the extension side damping force of the shock absorber 1 can be adjusted.
- the flow path 5 is set so as to allow the passage of fluid only when the shock absorber 1 contracts, and functions as a damping force generating element that generates the compression side damping force of the shock absorber 1. May be adjusted.
- the damping force adjusting mechanism V adjusts the compression side damping force. It can be carried out.
- the liquid can be set to pass through the flow path 5 only when the shock absorber 1 is contracted, the distance of at least twice the distance for seating the valve body 7 on the valve seat 6 is moved as described above. If the motor 8 is energized so as to cause the valve body 7 to be seated on the valve seat 6. Therefore, also in this case, the same effect as the shock absorber 1 set so that the liquid can pass through the flow path 5 only at the time of extension can be obtained.
- a valve housing 9 having a valve seat 6 and accommodating a valve body 7 is provided at the tip of the piston rod 4.
- the flow path 5 passes through the piston rod 4 and communicates the expansion side chamber R1 or the pressure side chamber R2 in the shock absorber body D with the reservoir R provided outside the cylinder 2.
- the vehicle body side tube 10 connected to the vehicle body of the saddle riding type vehicle and the wheel side tube 11 connected to the wheel of the saddle riding type vehicle connect the piston rod 4 in the shock absorber body D via the valve housing 9 to the vehicle body side.
- the cylinder 2 is connected to the axle tube 11 while being connected to the tube 10.
- the motor 8 is fixed to the valve housing 9 so as to protrude from the vehicle body side tube 10.
- valve body 7 and the motor 8 can be disposed close to each other so that the valve body 7 can be driven without using a long control rod, and the valve body 7 can be accurately driven to a desired position. Controllability is improved, power supply from the outside to the motor 8 is facilitated, and convenience and versatility are improved.
- valve body 7 is not limited to the above-described place, and can be changed or modified as long as the effects of the present invention are achieved. it can.
- valve body 7 is not limited to a needle valve, and may be a poppet valve or the like.
- the shock absorber body D may be configured to exhibit the damping force only when the damping force adjusting mechanism V discards the damping force when the shock absorber 1 is extended. Similarly, when the damping force adjusting mechanism V exhibits a damping force when the shock absorber 1 contracts, the shock absorber main body D may be configured to exhibit a damping force only when contracting.
- the present invention can be used for a shock absorber.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Fluid-Damping Devices (AREA)
- Axle Suspensions And Sidecars For Cycles (AREA)
Abstract
緩衝器は、シリンダと、シリンダ内に摺動自在に挿入されてシリンダ内を伸側室と圧側室とに区画するピストンと、シリンダ内に挿入されてピストンに連結されるピストンロッドと、を有する緩衝器本体と、緩衝器本体の伸長時或いは収縮時のいずれか一方でのみ流体の通過を許容する流路と、流路の途中に設けられた弁座と、弁座に対して進退可能な弁体と、弁体を駆動して弁座に対して進退させることで流路の流路面積を調節するモータと、を有する減衰力調整機構と、を備える。緩衝器は、弁体が弁座から離間した離間位置から弁座に着座した着座位置まで移動して流路を遮断する場合、離間位置から着座位置までの距離の2倍以上の距離を弁体が移動するようにモータに通電する。
Description
本発明は、緩衝器に関する。
緩衝器は、二輪車のフロントフォークに内蔵されて減衰力調整をモータによって行う。JP2008-14431は、シリンダとピストンとピストンロッドとを備える緩衝器本体と、通路とニードル弁とステッピングモータとを備える緩衝器を開示している。
シリンダは、アウターチューブに連結される。ピストンは、シリンダ内に摺動自在に挿入されてシリンダ内を圧側室と伸側室とに区画する。ピストンロッドは、シリンダ内に挿入されて一端がアウターチューブに摺動自在に挿入されるインナーチューブに連結され、他端が上記ピストンに連結される。
通路は、緩衝器本体の圧側室と伸側室とを連通する。チェック弁は、通路の途中に設けられて圧側室から伸側室へ向かう流れのみを許容するか反対に伸側室から圧側室へ向かう流れのみを許容する。ニードル弁は、通路の途中に設けられる。ステッピングモータは、ピストンロッドの他端側に固定され、ニードル弁を駆動する。
この緩衝器は、伸長時にはピストンに設けたピストンバルブによって作動油の流れに抵抗を与えて減衰力を発揮し、収縮時にはシリンダの端部に設けたベースバルブによってシリンダからリザーバへ流出する作動油の流れに抵抗を与えて減衰力を発揮する。
これに加えて、チェック弁は伸長時のみ或いは収縮時のみ通路における作動油の流れを許容し、さらにニードル弁は作動油の流れに抵抗を与えるので、チェック弁とニードル弁とは、緩衝器の伸長時或いは収縮時のいずれか一方では協働して減衰力を発揮する。さらに、モータがニードル弁を駆動することで、ニードル弁における減衰力を可変にする。
ニードル弁は、緩衝器の伸長時或いは収縮時にのみ減衰機能を発揮することになるが、二輪車の車輪を懸架するフロントフォークは、通常左右一対で車輪を懸架するので、一方のフロントフォークに内蔵される緩衝器のニードル弁を伸長時に減衰機能を発揮させるようにし、他方のフロントフォークに内蔵される緩衝器のニードル弁を収縮時に減衰機能を発揮させるようにすれば、左右のフロントフォークは全体として伸長側と収縮側の減衰力を調節することができる。
上記緩衝器は、ニードル弁を通過する作動油の流れを常に一方通行として安定した流れを確保するので、緩衝器で発生する減衰力を正確に調節できる。
ニードル弁が上記通路を遮断する場合、通路の遮断には作動油の流れによる流体力と圧力とに打ち勝ってニードル弁を駆動しなければならない。よって、緩衝器が作動中であって通路を作動油が流れている最中に通路を遮断するためには、大トルクを出力可能なステッピングモータを用いる必要がある。ステッピングモータに大きなトルクを出力させるためには、ステッピングモータが大型化するともに、コストが高くなり、経済性と車両への搭載性とが犠牲になる。
作動油が通路を流れている間に通路を遮断する場合、通路を遮断する寸前までは比較的小さなトルクでニードル弁を駆動することができ、脱調の可能性も少ない。よって、従来の緩衝器は、通路を完全に遮断しないようにすることで、最大トルクが比較的小さいステッピングモータの使用を可能とし、上記問題の解消を図っている。
しかし、上記緩衝器は、通路の遮断を完全には行うことができないため、ニードル弁の流路可変幅が必然的に小さくなる。よって、緩衝器の減衰力調整幅が小さくなり、ステッピングモータが走行中に脱調すると走行中に補正することができず、減衰力を正しく調整できなくなる。
この発明の目的は、低コストかつ小型なモータの使用を可能としながら、脱調補正も可能で、減衰力調整幅を向上させることができる緩衝器を提供することである。
本発明のある態様によれば、シリンダと、シリンダ内に摺動自在に挿入されてシリンダ内を伸側室と圧側室とに区画するピストンと、シリンダ内に挿入されてピストンに連結されるピストンロッドと、を有する緩衝器本体と、緩衝器本体の伸長時或いは収縮時のいずれか一方でのみ流体の通過を許容する流路と、流路の途中に設けられた弁座と、弁座に対して進退可能な弁体と、弁体を駆動して弁座に対して進退させることで流路の流路面積を調節するモータと、を有する減衰力調整機構と、を備えた緩衝器であって、弁体が弁座から離間した離間位置から弁座に着座した着座位置まで移動して流路を遮断する場合、離間位置から着座位置までの距離の2倍以上の距離を弁体が移動するようにモータに通電する緩衝器が提供される。
本発明の実施形態、本発明の利点については、添付された図面を参照しながら以下に詳細に説明する。
図1に示すように、本実施形態における緩衝器1は、シリンダ2とピストン3とピストンロッド4とを備えた緩衝器本体Dと、流路5と弁座6と弁体7とモータ8とを有する減衰力調整機構Vと、を備える。
ピストン3は、シリンダ2内に摺動自在に挿入されてシリンダ2内を伸側室R1と圧側室R2とに区画する。ピストンロッド4は、シリンダ2内に挿入されてピストン3に連結される。流路5は、緩衝器本体Dの伸長時でのみ流体の通過を許容する。弁座6は、流路5の途中に設けられる。弁体7は、弁座6に対して進退可能である。モータ8は、弁体7を駆動して弁座6に対して進退させることで流路面積を調節する。
以下、各部について詳細に説明する。緩衝器本体Dは、車体側チューブ10と車軸側チューブ11とで構成されるフロントフォークF内に収容されている。車体側チューブ10は、ピストンロッド4とともに二輪車などの鞍乗り型車両の車体に連結される。車軸側チューブ11は、鞍乗り型車両の図示しない車軸に連結されて車体側チューブ10内へ摺動自在に挿入される。
ピストンロッド4は車体側チューブ10へ連結され、シリンダ2は車軸側チューブ11に連結される。緩衝器本体Dは、車体側チューブ10と車軸側チューブ11との間に介装されるように、車体側チューブ10と車軸側チューブ11とで閉鎖されたフロントフォークF内に収容されている。本実施形態では、フロントフォークFは、車体側チューブ10内に車軸側チューブ11を挿入する倒立型のフロントフォークであるが、反対に、車体側チューブ10を車軸側チューブ11へ挿入する正立型のフロントフォークであってもよい。
懸架ばね12は、緩衝器本体Dのピストンロッド4とシリンダ2との間に介装されており、緩衝器本体Dを介して車体側チューブ10と車軸側チューブ11とを離間させる方向、つまり、フロントフォークFを伸長させる方向に弾発力を発揮している。懸架ばね12は、鞍乗り型車両の車体を弾性支持している。
フロントフォークF内に内蔵される緩衝器本体Dについて詳細に説明する。図1に示すように、緩衝器本体Dは、シリンダ2と、ピストン3と、ピストンロッド4と、減衰通路13と、ボトム部材14と、を備える。
シリンダ2は、車軸側チューブ11に連結される。ピストン3は、シリンダ2内に摺動自在に挿入されシリンダ2内を2つの作動室である伸側室R1および圧側室R2に区画する。ピストンロッド4は、一端がピストン3に連結されるとともに他端が車体側チューブ10に連結される。
減衰通路13は、ピストン3に設けられ、伸側室R1と圧側室R2とを連通するとともに通過する流体の流れに抵抗を与える。ボトム部材14は、圧側減衰通路15と吸込通路16とを有する。圧側減衰通路15は、シリンダ2の下端に設けられて圧側室R2からリザーバRへ向かう流体の流れに抵抗を与える。吸込通路16は、リザーバRから圧側室へ向かう流体の流れのみを許容する。伸側室R1および圧側室R2には流体として作動油等の液体が充満され、リザーバR内には液体と気体とが充填されている。
シリンダ2は、シリンダ2の下端に嵌合されたボトム部材14を介して、有底筒状に形成された車軸側チューブ11の底部に固定されている。シリンダ2の上端には、ピストンロッド4を摺動自在に軸支するロッドガイド17が設けられている。ピストンロッド4は、筒状であり、中空部4bを備えたピストンロッド本体4aと、ピストンロッド本体4aの図1中下端に固定されてピストン3を保持するピストン連結部4cとを備える。ピストンロッド本体4aの図1中上端が、減衰力調整機構Vの弁体7を収容するバルブハウジング9を介して、車体側チューブ10の上端に固定されている。ピストン連結部4cは、中空部4bと伸側室R1とを連通する連通路4dと、連通路4dの途中に設けられて伸側室R1から中空部4bへ向かう液体の流れのみを許容する逆止弁4eと、を備える。環状のピストン3は、ピストンロッド4の図1中下端にピストンナット24を用いて固定される。
懸架ばね12は、ロッドガイド17とバルブハウジング9の外周に設けた筒状のばね受け18との間に介装され、緩衝器本体Dを伸長方向に附勢する。これにより、フロントフォークFも伸長方向に附勢される。
ピストン3は、ピストンロッド4の図1中下端に固定される。ピストン3に設けられる減衰通路13は、伸側室R1と圧側室R2とを連通する通路13aと、通路13aの途中に設けた減衰弁13bとを備え、通過する液体の流れに抵抗を与える。本実施形態では、減衰弁13bが絞り弁などであり、減衰通路13は、伸側室R1から圧側室R2へ向かう液体の流れと、圧側室R2から伸側室R1へ向かう液体の流れと、の双方向の流れを許容する。これに代えて、通路を二つ以上設け、一部の通路に伸側室R1から圧側室R2へ向かう液体の流れのみを許容する減衰弁を設けるとともにそれ以外の通路に圧側室R2から伸側室R1へ向かう液体の流れのみを許容する減衰弁を設けてもよい。
リザーバRは、緩衝器本体DとフロントフォークFとの間の空間に形成され、リザーバRには、液体と気体とが充填されている。ボトム部材14に形成される圧側減衰通路15は、圧側室R2とリザーバRとを連通する通路15aと、圧側室R2からリザーバRへ向かう液体の流れのみを許容するとともに通過する液体の流れに抵抗を与える減衰弁15bと、を備える。圧側減衰通路15は、圧側室R2からリザーバRへ向かう液体の流れのみを許容する一方通行の通路である。
ボトム部材14に形成される吸込通路16は、圧側室R2とリザーバRとを連通する通路16aと、リザーバRから圧側室R2へ向かう液体の流れのみを許容する逆止弁16bとを備える。吸込通路16は、圧側減衰通路15とは逆向きに、リザーバRから圧側室R2へ向かう液体の流れのみを許容する一方通行の通路である。
減衰力調整機構Vについて説明する。減衰力調整機構Vは、流路5と、弁座6と、弁体7と、モータ8と、を備える。流路5は、伸側室R1とリザーバRとを連通して伸側室R1からリザーバRへ向かう液体の通過のみを許容する。弁座6は、流路5の途中に設けられる。弁体7は、弁座6に対して進退可能である。モータ8は、弁体7を駆動して弁座6に対して進退させることで流路面積を調節可能である。
流路5は、中空部4bと、連通路4dと、中空部9aと、横孔9bと、から構成される。中空部4bと連通路4dとは、ピストンロッド4に設けられる。中空部9aは、ピストンロッド4の図1中上端に連結されるバルブハウジング9に設けられて中空部4bに通じる。横孔9bは、中空部9aとリザーバRとを連通する。流路5は、伸側室R1とリザーバRとを連通するとともに、連通路4dの途中に設けられた逆止弁4eによって、伸側室R1からリザーバRへ向かう液体の通過のみを許容する。
流路5を一方通行に設定する逆止弁は、ピストン連結部4cに設けるのではなく、他の箇所へ設けてもよく、たとえば、ピストンロッド本体4aの中空部4b内に設けてもよいし、ピストンロッド本体4aの図1中上端における中空部4bの開口端に設けてもよい。
図2に示すように、バルブハウジング9は、筒状であり、内部に形成される中空部9aと、側方から開口して中空部9aに通じる横孔9bと、外周に設けたフランジ9gとを備える。中空部9aは、小径部9cと、横孔交差部9dと、弁収容部9eと、拡径部9fと、を備える。小径部9cは、中空部9aの横孔9bとの交差部よりもピストンロッド側となる図1中下方側の内径を小径にして形成される。横孔交差部9dは、小径部9cに連なり小径部9cより内径が大きく横孔9bと交差する。弁収容部9eは、横孔交差部9dよりも内径が大きく弁体7が摺動自在に挿入される。拡径部9fは、弁収容部9eよりも内径が大きい。弁座6は、小径部9cと横孔交差部9dとの境の段部に形成されている。つまり、弁座6は、バルブハウジング9に形成されている。
弁体7は、胴部7aと、弁部7bと、弁頭7cと、シールリング7dと、から構成される。胴部7aは、弁収容部9eに摺接する。弁部7bは、胴部7aから弁座6側へ向けて伸び、外径が胴部7aより小径であって小径部9cの内径より大径である。弁頭7cは、弁部7bの先端となる図1中下端から伸びて小径部9c内に挿入可能なニードル型の弁頭7cである。シールリング7dは、胴部7aの外周に装着されて弁収容部9eの内周に摺接する環状のシールリング7dである。コイルばね19は、胴部7aの図1中下端と、中空部9aにおける横孔交差部9dと弁収容部9eとの境の段部と、の間に介装され、弁体7を弁座6から遠ざかる方向へ附勢している。
弁体7は、中空部9a内に弁座6に対して軸方向へ進退可能に収容され、モータ8で駆動されて弁座6に対して進退する。弁体7がモータ8によって駆動され、弁座6に対向する弁部7bの図1中下端外周が弁座6に着座すると、図2に示すように、流路5が遮断される。図2に示す遮断された状態から、弁体7が弁座6から遠ざかる方向に駆動されると、弁座6から弁部7bが離間して隙間が生じ、流路5が開放される。
弁部7bと弁座6とが離間し流路5が開放される状態では、弁部7bが弁座6から離間すればするほど、弁頭7cと弁座6の内縁との隙間が大きくなり、これに応じて流路5の流路面積が変化する。すなわち、弁体7と弁座6との位置関係によって流路5の流路面積が変化し、弁体7が弁座6から最も遠ざかると流路5の流路面積が最大となり、弁体7が弁座6に着座する、つまり、弁部7bが弁座6に当接すると流路5が完全に遮断されて流路面積が0となる。流路5が開放状態である場合、伸側室R1とリザーバRとが連通され、緩衝器1が伸長すると液体は流路5を通過してリザーバRへ排出され、流路5の流路面積に応じて液体の流れに抵抗が与えられる。
次に、弁体7を弁座6に進退させる駆動部分について説明する。上記したように、弁体7はモータ8によって駆動される。モータ8と弁体7との間には送り螺子機構Sが介装されており、送り螺子機構Sがモータ8の回転運動を弁体7の進退方向の運動へと変換して、弁体7を駆動する。
モータ8はステッピングモータである。送り螺子機構Sは、螺子部材20と、ナット部材21と、から構成される。螺子部材20は、バルブハウジング9の中空部9aの拡径部9fに嵌合されるモータ8のシャフト8aに、回転不能であって軸方向へ移動可能に連結される。ナット部材21は、筒状であって螺子部材20が螺合されるとともに中空部9aの拡径部9fに固定される。
螺子部材20は、軸状であり、基端となるモータ8側端側に開口するシャフト挿通孔20aと、先端側となる反モータ側端側の外周に設けた螺子部20bと、から構成される。シャフト挿通孔20aの断面は真円以外の形状であり、モータ8のシャフト8aの断面はシャフト挿通孔20aの断面に符合して嵌合する形状である。
ナット部材21は、筒状であり、中空部9aの拡径部9fに固定されており、内周には螺子部材20の螺子部20bに螺合する螺子部21aが設けられている。螺子部材20は、ナット部材21に螺合しつつ、その先端をナット部材21の下端から突出させて弁体7と接触している。
モータ8を駆動すると、シャフト8aが回転し、螺子部材20はナット部材21に対して回転し、ナット部材21に対して図1中上下方向へ移動する。弁体7は、上記したようにコイルばね19によって弁座6から離間する方向へ附勢されている。したがって、モータ8を駆動して螺子部材20をナット部材21に対して弁座6側へ移動させると、弁体7が押されて弁座6側へ進み、反対に、螺子部材20をナット部材21に対して弁座6から離間する方向へ移動させると、弁体7がコイルばね19に押されて弁座6から後退する。
モータ8は、環状の外周ナット部材22と、有頂筒状のキャップ23と、によって挟持されてバルブハウジング9に固定される。外周ナット部材22は、外周側に螺子部を備えてバルブハウジング9の外周に装着されるとともにフランジ9gに係合する。有頂筒状のキャップ23は、バルブハウジング9の開口端を覆って外周ナット部材22に螺合する。キャップ23は、側方に開口する開口部23aを備え、開口部23aを介してモータ8のコネクタ8bを外方へ臨ませている。開口部23aを介してモータ8のコネクタ8bと外部電源とを電源線で接続することができ、車体側チューブ10外からモータ8へ給電することができる。
上述のように緩衝器1は、シリンダ2に対してピストン3が図1中上方へ移動する伸長時には、ピストン3によって圧縮される伸側室R1から圧側室R2へ移動する液体の流れに減衰通路13で抵抗を与えるとともに、伸側室R1からリザーバRへ向かう液体の流れに対して減衰力調整機構Vで抵抗を与える。すなわち、緩衝器1は、伸長時に減衰通路13および減衰力調整機構Vによって伸側減衰力を発揮する。伸長時に拡大する圧側室R2には、ボトム部材14に設けた吸込通路16を介してリザーバRから液体が供給されて、緩衝器1の伸長時にシリンダ2内からピストンロッド4が退出することで生じるシリンダ2内の容積変化が補償される。
反対に、緩衝器1は、シリンダ2に対してピストン3が図1中下方へ移動する収縮時には、ピストン3によって圧縮される圧側室R2から伸側室R1へ移動する液体の流れに減衰通路13で抵抗を与える。シリンダ2内ヘピストンロッド4が侵入することで生じるシリンダ2内の容積減少分の液体は、ボトム部材14の圧側減衰通路15を介してリザーバRへ排出されて、シリンダ2内の体積変化が補償されるので、緩衝器1は、圧側減衰通路15でも液体の流れに抵抗を与える。すなわち、緩衝器1は、収縮時には、減衰通路13および圧側減衰通路15で圧側減衰力を発揮し、流路5には液体が流れない。よって、減衰力調整機構Vは圧側減衰力の発生には関与しない。
減衰力調整機構Vは、弁体7を駆動することで流路5の流路面積を可変にすることができるので、この緩衝器1は、伸長時における伸側減衰力を調節することができる。
弁体7が弁座6から離間していて流路5が開放状態の場合であって、減衰力調節のため弁体7を駆動して流路5を完全に遮断する場合、弁体7が弁座6から離間した離間位置から弁体7が弁座6に着座する位置までの距離だけ弁体7を移動させるのに必要とされる時間分モータ8に通電する。この場合、緩衝器1が伸長作動を呈していながら流路5を液体が通過しているので、弁体7が液体の流れによる流体力と圧力とを受けている。仮に、モータ8が流体力と圧力とに負けて脱調すると、弁体7を弁座6側へ駆動させることができなくなる。
そこで本実施形態では、弁体7が弁座6から離間していて流路5が開放状態の場合であって、弁体7を駆動して流路5を完全に遮断する場合、弁体7が弁座6から離間した離間位置から弁体7が弁座6に着座する位置までの距離の2倍の距離を移動させるようにモータ8に通電する。モータ8は、ステッピングモータであって特定の周期のパルス信号に応じて駆動する。
したがって、弁体7が弁座6から離間した離間位置から弁体7が弁座6に着座する位置までの距離の2倍の距離を移動させるのに必要な数以上のパルス信号に対応する時間に亘ってモータ8に通電すればよい。たとえば、弁体7が弁座6から離間した離間位置から弁体7が弁座6に着座する位置までの距離を移動させるのに必要な数のパルス信号が160回であって、1秒間に80回のパルス信号を打つことができるのであれば、弁体7が弁座6から離間した離間位置から弁体7が弁座6に着座する位置までの距離を移動させるのに必要な数のパルス信号(160回)の2倍である320回以上のパルス信号をモータ8へ与えればよい。パルス信号320回に対応する通電時間が4秒であるから、モータ8を少なくとも4秒以上通電すればよいことになる。
緩衝器1は、鞍乗り型車両が走行中にあっては、路面からの振動入力により伸び縮みを繰り返している。したがって、図3に示すように、車両走行中の緩衝器1の振動は、任意の時間tで切り取ると、伸長作動と収縮作動が半分ずつ表れる。流路5には、緩衝器1が伸長作動を呈しているときにのみ液体が流れる。前述のように、鞍乗り型車両が走行中で緩衝器1が振動している場合であって、なおかつ、弁体7が弁座6から離間していて流路5が開放状態から弁体7を駆動して流路5を完全に遮断する場合、弁体7が弁座6から離間した離間位置から弁体7が弁座6に着座する位置までの距離の2倍の距離を移動させるのに必要な時間に亘ってモータ8に通電する。
通電時間の半分は緩衝器1が収縮作動中であって流路5に液体が流れていないので、弁体7には液体通過時の流体力と圧力とが作用しない。モータ8への通電時間は、弁体7を離間位置から弁座6に着座する位置までの距離の2倍の距離を駆動するのに必要とされる時間以上に設定されている。つまり、モータ8への通電時間は、弁体7を離間位置から弁座6に着座する位置までの距離を駆動するのに必要とされる時間の2倍以上に設定されている。
このように、モータ8への通電時間が弁体7を離間位置から弁座6に着座する位置までの距離を駆動するのに必要とされる時間の2倍以上に設定されるとともに、通電時間の半分は液体が流路5を通過しない時間であって、その時間中は弁体7をコイルばね19の附勢力を除いて無負荷で駆動することができる。これにより、弁体7を確実に弁座6へ着座させて流路5を遮断することができる。換言すれば、弁体7を弁座6へ確実に着座させることができるので、弁体7を着座させることでモータ8の脱調補正を行うことができる。よって、走行中にも脱調補正を行うことができる。
緩衝器1によれば、流路5の遮断を行うことができるので、減衰力調整機構Vにおける流路面積調整幅が大きくなって、減衰力調整幅も大きくなり、車両における乗り心地をより向上させることができる。さらに、走行中にも脱調補正が行われるので、所望する減衰力を正確に発生させることができる。
モータ8に要求されるトルクは、弁体7をコイルばね19の附勢力に打ち勝って弁座6へ向けて押圧することができる程度のトルクで済むので、流路5を通過する液体の流体力および圧力に打ち勝つような大きなトルクを必要としない。よって、流路5の遮断が要求される場合を想定して設計したとしても、モータ8の大型化を避けることができる。さらに、モータ8の大型化を招くことがないので、鞍乗り型車両への搭載性が向上し、コスト的に有利となる。
弁体7を弁座6から後退させる場合であって、緩衝器1が収縮していて弁体7が無負荷状態である場合には当然のこととして、緩衝器1が伸長している場合においても、流路5を通過する液体の流体力と圧力とは弁体7を弁座6から後退させる方向へ作用しているので、弁体7の後退時にはモータ8が脱調することがなく、弁体7を所望する位置へ確実に位置させることができる。
減衰力調整を行う場合であって、減衰力を大きくするために弁体7と弁座6との距離を所望距離へ縮める場合、弁体7を弁座6へ着座させてから弁体7を弁座6から後退させて弁体7と弁座6との距離を所望距離とすることで、モータ8の脱調を防止することができる。
さらに、この場合に、弁体7が弁座6から最も離間する規制位置まで到達するまでは弁体7を弁座6へ着座させる方向へ駆動しないようにする。弁体7の駆動パターンは以下のようになる。
図4に示すように、減衰力を現在の減衰力よりも高くしたい場合、弁体7を、一端、現在位置から最大後退位置まで弁座6から後退させ(ステップ1)、それから着座位置へ駆動して弁座6へ着座させ(ステップ2)、その着座した状態から今度は弁体7を弁座6から後退させて所望する減衰力を発揮する弁体7の所望位置まで弁体7を駆動する(ステップ3)。つまり、流路面積を現状の流路面積より小さい所望面積にしたい場合には、一端、流路面積を最大にしてから流路5を遮断し、その後、流路面積を大きくして流路面積を上記所望面積となるように制御する。
対して、減衰力を現在の減衰力よりも低くしたい場合、弁体7を所望の減衰力を実現する位置まで弁座6から後退させるのみでよい。これにより、弁体7を液体の流れに反して弁座6側へ向けて押し進める行程では、必ず一旦弁体7を弁座6へ着座させるので、着座によってモータ8の脱調が補正される。弁体7を弁座6から後退させる場合には流路5を通過する液体の流体力と圧力とは弁体7を弁座6から後退させる方向へ作用しているので、弁体7の後退時にはモータ8は脱調することがない。これにより、弁体7を所望する位置へ確実に位置させることができる。
減衰力を高めるように調節する際には、必ず、弁体7が一旦弁座6に着座するので、モータ8の脱調補正が行われ、そこから弁体7が所望距離まで後退するのでモータ8の脱調の無い状態で減衰力調整が行われる。よって、緩衝器1に所望の減衰力を確実に発生させることができる。
本実施形態では、弁体7を最大後退位置まで弁座6から後退させてから弁座6側へ駆動して着座させるので、仮に何らかの理由によってモータ8の脱調が大きく、弁体7が弁座6へ着座しない状態が生じたとしても、最大後退位置を基準として弁体7を弁座6へ着座させるようにモータ8へ通電することになるので、モータ8の脱調をより早期に確実に補正することができる。
上記したところでは、減衰力調整機構Vは、緩衝器1が伸長する際にのみ流路5が流体の通過を許容し、緩衝器1の伸側減衰力を発生する減衰力発生要素として機能しているので、緩衝器1の伸側減衰力を調整することができる。これに代えて、緩衝器1が収縮する際にのみ流路5が流体の通過を許容するように設定し、緩衝器1の圧側減衰力を発生する減衰力発生要素として機能させ、圧側減衰力の調整をしてもよい。
この場合には、ピストン連結部4cに設けられる連通路4dで伸側室R1の代わりに圧側室R2を中空部4bへ連通するようにすれば、減衰力調整機構Vは、圧側減衰力の調整を行うことができる。これにより、緩衝器1の収縮作動時にのみ流路5を液体が通過するように設定できるので、上記したのと同様に弁体7を弁座6へ着座させる距離の2倍以上の距離を移動させるようにモータ8へ通電すれば、弁体7を弁座6へ着座させることができる。よって、この場合にも伸長時にのみ流路5を液体が通過するように設定された緩衝器1と同様の作用効果を奏することができる。
本実施形態の緩衝器1の配置に代えて、以下のような配置にしてもよい。ピストンロッド4の先端に、弁座6を備えるとともに弁体7を収容したバルブハウジング9を設ける。流路5は、ピストンロッド4を貫通して緩衝器本体D内の伸側室R1或いは圧側室R2とシリンダ2外に設けたリザーバRとを連通する。鞍乗り型車両の車体に連結される車体側チューブ10と、鞍乗り型車両の車輪に連結される車輪側チューブ11とは、バルブハウジング9を介して緩衝器本体Dにおけるピストンロッド4を車体側チューブ10へ連結するとともにシリンダ2を車軸側チューブ11へ連結する。モータ8をバルブハウジング9に固定して車体側チューブ10から突出させて配置する。
この構成により、弁体7とモータ8とを至近に配置して長尺なコントロールロッドなどを介さずに弁体7を駆動でき、弁体7を所望の位置に正確に駆動できるので、減衰力制御性が向上するとともに、モータ8への外部からの給電が容易となり利便性および汎用性が向上する。
減衰力調整機構Vにおける弁体7、弁座6、流路5の構造は、上記した所に限定されるものではなく、本発明の作用効果を奏する限りにおいて、設計変更、改変を行うことができる。例えば、弁体7は、ニードル弁に限られず、ポペット弁等としてもよい。
緩衝器本体Dは、減衰力調整機構Vが緩衝器1の伸長時に減衰力を破棄する場合には、伸長時にのみ減衰力を発揮する構成としてもよい。同様に、緩衝器本体Dは、減衰力調整機構Vが緩衝器1の収縮時に減衰力を発揮する場合には、収縮時にのみ減衰力を発揮する構成としてもよい。
以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
本願は2010年11月17日に日本国特許庁に出願された特願2010-256744に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。
本発明は緩衝器に利用することができる。
Claims (5)
- 緩衝器であって、
シリンダと、前記シリンダ内に摺動自在に挿入されて前記シリンダ内を伸側室と圧側室とに区画するピストンと、前記シリンダ内に挿入されて前記ピストンに連結されるピストンロッドと、を有する緩衝器本体と、
前記緩衝器本体の伸長時或いは収縮時のいずれか一方でのみ流体の通過を許容する流路と、前記流路の途中に設けられた弁座と、前記弁座に対して進退可能な弁体と、前記弁体を駆動して前記弁座に対して進退させることで前記流路の流路面積を調節するモータと、を有する減衰力調整機構と、を備え、
前記弁体が前記弁座から離間した離間位置から前記弁座に着座した着座位置まで移動して前記流路を遮断する場合、前記離間位置から前記着座位置までの距離の2倍以上の距離を前記弁体が移動するように前記モータに通電する緩衝器。 - 請求項1に記載の緩衝器であって、
前記弁体と前記弁座との距離を所望距離へ縮める場合、前記弁体を前記弁座へ着座させてから前記弁座から後退させ、前記弁体と前記弁座との距離を前記所望距離とする緩衝器。 - 請求項1に記載の緩衝器であって、
前記弁体と前記弁座との距離を所望距離へ縮める場合、前記弁体を最大後退位置まで前記弁座から後退させてから前記弁体を前記弁座へ着座させ、前記弁体を前記弁座から後退させて前記弁体と前記弁座との距離を前記所望距離とする緩衝器。 - 請求項1に記載の緩衝器であって、
前記モータがステッピングモータであって、前記弁体が前記離間位置から前記着座位置まで移動して前記流路を遮断する場合、前記離間位置から前記着座位置までの距離の2倍の距離を前記弁体が移動するのに要する時間以上の間、前記モータに通電する緩衝器。 - 請求項1に記載の緩衝器であって、
前記ピストンロッドの先端に前記弁座を備えるとともに前記弁体を収容したバルブハウジングと、
鞍乗り型車両の車体に連結される車体側チューブと、
鞍乗り型車両の車輪に連結される車輪側チューブと、を備え、
前記流路は、前記ピストンロッドを貫通し、前記緩衝器本体内の前記伸側室又は前記圧側室と、前記シリンダ外に設けたリザーバと、を連通し、
前記ピストンロッドは前記バルブハウジングを介して前記車体側チューブへ連結されるとともに、前記シリンダは前記車軸側チューブへ連結され、
前記モータが前記バルブハウジングに固定されて前記車体側チューブの上端開口部から突出する配置とした緩衝器。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/813,546 US9284014B2 (en) | 2010-11-17 | 2011-11-04 | Damper |
EP11841398.8A EP2642151B1 (en) | 2010-11-17 | 2011-11-04 | Damper |
CN201180040016.XA CN103069191B (zh) | 2010-11-17 | 2011-11-04 | 缓冲器 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010256744A JP5835833B2 (ja) | 2010-11-17 | 2010-11-17 | 緩衝器 |
JP2010-256744 | 2010-11-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012066947A1 true WO2012066947A1 (ja) | 2012-05-24 |
Family
ID=46083882
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/075474 WO2012066947A1 (ja) | 2010-11-17 | 2011-11-04 | 緩衝器 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9284014B2 (ja) |
EP (1) | EP2642151B1 (ja) |
JP (1) | JP5835833B2 (ja) |
CN (1) | CN103069191B (ja) |
WO (1) | WO2012066947A1 (ja) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9033122B2 (en) * | 2009-01-07 | 2015-05-19 | Fox Factory, Inc. | Method and apparatus for an adjustable damper |
JP5759226B2 (ja) * | 2011-03-31 | 2015-08-05 | カヤバ工業株式会社 | フロントフォーク |
JP5833843B2 (ja) * | 2011-06-23 | 2015-12-16 | Kyb株式会社 | 緩衝器 |
JP2013108580A (ja) * | 2011-11-22 | 2013-06-06 | Kyb Co Ltd | 減衰バルブ |
DE102012016947B4 (de) * | 2012-08-28 | 2023-11-30 | Dt Swiss Ag | Federgabel, insbesondere für Fahrräder |
ITAN20120145A1 (it) * | 2012-11-08 | 2014-05-09 | Tenneco Marzocchi S R L | Forcella con elettrovalvola. |
JP5977665B2 (ja) * | 2012-12-14 | 2016-08-24 | Kyb株式会社 | フロントフォーク |
JP6731047B2 (ja) * | 2016-06-24 | 2020-07-29 | 日立オートモティブシステムズ株式会社 | 減衰力調整式緩衝器およびソレノイド |
US10807670B2 (en) | 2017-04-21 | 2020-10-20 | Sram, Llc | Bicycle suspension component and analysis device |
JP7067885B2 (ja) * | 2017-09-27 | 2022-05-16 | Kybモーターサイクルサスペンション株式会社 | フロントフォーク、及びフロントフォークの製造方法 |
TWI847427B (zh) * | 2017-09-28 | 2024-07-01 | 美商速聯有限責任公司 | 可控制自行車懸吊技術 |
IT201800005099A1 (it) * | 2018-05-07 | 2019-11-07 | Dispositivo ammortizzatore per una sospensione di una bicicletta | |
CN109099103B (zh) * | 2018-10-12 | 2020-06-09 | 南京思达捷信息科技有限公司 | 一种电驱式长度可调阻尼杆 |
US11891146B2 (en) | 2019-12-17 | 2024-02-06 | Sram, Llc | Bicycle suspension components and electronic monitoring devices |
US11724769B2 (en) | 2019-12-17 | 2023-08-15 | Sram, Llc | Bicycle suspension components and electronic control devices |
CN113280070B (zh) * | 2021-06-10 | 2022-09-06 | 长安大学 | 一种八级阻尼自动调节减震器 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6215007U (ja) * | 1985-07-12 | 1987-01-29 | ||
JP2005140262A (ja) * | 2003-11-07 | 2005-06-02 | Matsushita Electric Ind Co Ltd | 流体遮断装置 |
JP2008014431A (ja) | 2006-07-07 | 2008-01-24 | Yamaha Motor Co Ltd | 油圧緩衝装置及び自動二輪車 |
JP2009115254A (ja) * | 2007-11-08 | 2009-05-28 | Panasonic Corp | 流体遮断装置 |
JP2010256744A (ja) | 2009-04-28 | 2010-11-11 | Kyocera Mita Corp | ドラムユニット及びこれを搭載した画像形成装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07237419A (ja) * | 1994-02-28 | 1995-09-12 | Unisia Jecs Corp | 車両懸架装置 |
JP2004347021A (ja) * | 2003-05-22 | 2004-12-09 | Matsushita Electric Ind Co Ltd | 遮断弁 |
US7963377B2 (en) * | 2005-04-06 | 2011-06-21 | GM Global Technology Operations LLC | Dual stage dampers for vehicles suspensions |
US8398105B2 (en) * | 2008-06-30 | 2013-03-19 | Fox Factory, Inc. | Methods and apparatus for suspension damping with reduced cavitation and effects |
JP5090310B2 (ja) * | 2008-10-02 | 2012-12-05 | カヤバ工業株式会社 | フロントフォーク |
-
2010
- 2010-11-17 JP JP2010256744A patent/JP5835833B2/ja active Active
-
2011
- 2011-11-04 CN CN201180040016.XA patent/CN103069191B/zh not_active Expired - Fee Related
- 2011-11-04 WO PCT/JP2011/075474 patent/WO2012066947A1/ja active Application Filing
- 2011-11-04 US US13/813,546 patent/US9284014B2/en active Active
- 2011-11-04 EP EP11841398.8A patent/EP2642151B1/en not_active Not-in-force
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6215007U (ja) * | 1985-07-12 | 1987-01-29 | ||
JP2005140262A (ja) * | 2003-11-07 | 2005-06-02 | Matsushita Electric Ind Co Ltd | 流体遮断装置 |
JP2008014431A (ja) | 2006-07-07 | 2008-01-24 | Yamaha Motor Co Ltd | 油圧緩衝装置及び自動二輪車 |
JP2009115254A (ja) * | 2007-11-08 | 2009-05-28 | Panasonic Corp | 流体遮断装置 |
JP2010256744A (ja) | 2009-04-28 | 2010-11-11 | Kyocera Mita Corp | ドラムユニット及びこれを搭載した画像形成装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2642151A4 * |
Also Published As
Publication number | Publication date |
---|---|
JP2012107696A (ja) | 2012-06-07 |
EP2642151B1 (en) | 2018-06-27 |
US20130134688A1 (en) | 2013-05-30 |
US9284014B2 (en) | 2016-03-15 |
CN103069191A (zh) | 2013-04-24 |
EP2642151A1 (en) | 2013-09-25 |
CN103069191B (zh) | 2015-06-24 |
EP2642151A4 (en) | 2014-05-07 |
JP5835833B2 (ja) | 2015-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012066947A1 (ja) | 緩衝器 | |
KR100834504B1 (ko) | 쇽업소버의 감쇠력 가변식 밸브 | |
WO2012132730A1 (ja) | フロントフォーク | |
JP5136789B2 (ja) | 緩衝器 | |
JP5833843B2 (ja) | 緩衝器 | |
US9719573B2 (en) | Shock absorber | |
WO2013077129A1 (ja) | 減衰バルブ | |
JP5559713B2 (ja) | 鞍乗車両用緩衝器 | |
US9488243B2 (en) | Damper with a vehicle height adjusting function | |
JP5042732B2 (ja) | 油圧緩衝器 | |
WO2010109697A1 (ja) | 油圧緩衝器 | |
JP5156689B2 (ja) | フロントフォーク | |
JP2010007758A (ja) | フロントフォーク | |
JP5624484B2 (ja) | 緩衝器 | |
JP5374337B2 (ja) | フロントフォーク | |
JP5395746B2 (ja) | 流体圧緩衝器 | |
JP5452372B2 (ja) | 流体圧緩衝器 | |
JP2010286076A (ja) | 緩衝装置 | |
JP5113116B2 (ja) | 減衰部構造 | |
JP2008298135A (ja) | 油圧緩衝器 | |
WO2020179677A1 (ja) | スプール弁および緩衝器 | |
JP2010038171A (ja) | 油圧緩衝器 | |
JP2008298137A (ja) | 油圧緩衝器 | |
JP2013108579A (ja) | 減衰バルブ | |
JP2011252527A (ja) | 流体圧緩衝器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180040016.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11841398 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13813546 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011841398 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |