WO2020179677A1 - スプール弁および緩衝器 - Google Patents

スプール弁および緩衝器 Download PDF

Info

Publication number
WO2020179677A1
WO2020179677A1 PCT/JP2020/008373 JP2020008373W WO2020179677A1 WO 2020179677 A1 WO2020179677 A1 WO 2020179677A1 JP 2020008373 W JP2020008373 W JP 2020008373W WO 2020179677 A1 WO2020179677 A1 WO 2020179677A1
Authority
WO
WIPO (PCT)
Prior art keywords
spool
valve
shock absorber
piston
side chamber
Prior art date
Application number
PCT/JP2020/008373
Other languages
English (en)
French (fr)
Inventor
宏一郎 粟野
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Publication of WO2020179677A1 publication Critical patent/WO2020179677A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K25/00Axle suspensions
    • B62K25/04Axle suspensions for mounting axles resiliently on cycle frame or fork
    • B62K25/06Axle suspensions for mounting axles resiliently on cycle frame or fork with telescopic fork, e.g. including auxiliary rocking arms
    • B62K25/08Axle suspensions for mounting axles resiliently on cycle frame or fork with telescopic fork, e.g. including auxiliary rocking arms for front wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/065Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members
    • F16K11/07Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members with cylindrical slides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/22Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution
    • F16K3/24Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution with cylindrical valve members
    • F16K3/26Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution with cylindrical valve members with fluid passages in the valve member

Definitions

  • the present invention relates to improvements in spool valves and shock absorbers.
  • a spool valve As a spool valve, a housing having a tubular shape and a port for communicating inside and outside, a tubular spool that is slidably inserted into the housing, a spool spring that urges the spool, and a spool spring.
  • a solenoid that drives the spool against the urging force of the above (see, for example, Patent Document 1).
  • a solenoid drives the spool with respect to the housing, and the outer circumference of the spool faces the port to open and close the port, and the degree of opening of the port is adjusted to change the flow path area.
  • the variable width of the flow passage area can be increased, and the damping force adjustment range of the shock absorber can be increased.
  • the spool valve when the spool is axially driven with respect to the housing so that the port on the housing and the hole on the spool face each other, the spool valve is opened. Therefore, when the flow passage area when the spool valve is fully opened is increased, the axial length of the port and the hole may be increased and the stroke amount of the spool in the axial direction may be increased.
  • the shock absorber interposed between the vehicle body and the wheels is not only restricted in overall length depending on the specifications of the vehicle, but also requires the longest possible stroke length. ..
  • the stroke length of the shock absorber is sacrificed by the total length of the spool valve, so that the stroke amount of the spool in the spool valve in the axial direction cannot be increased. Therefore, the conventional spool valve has a problem that the flow path area when fully opened cannot be increased.
  • an object of the present invention is to provide a spool valve that can secure a large flow path area at full throttle even if the stroke amount is small, and a shock absorber that can realize a large damping force adjustment range while securing a stroke length.
  • the spool valve that solves the above problems is a holder that is tubular and has a plurality of ports that communicate inside and outside, and a holder that is tubular and is inserted into the holder so as to be reciprocating in the axial direction, and is inserted into each of the ports.
  • a spool that can open and close a corresponding communication port that can face each other and an actuator that drives the spool in the axial direction are provided.
  • Each port is provided at a position displaced in the axial direction with respect to the holder, and each communication port is provided. It is provided at a position offset in the axial direction with respect to the spool in the same arrangement as the arrangement in the axial direction of each port.
  • the holder and the spool are provided with a plurality of ports and communication ports in the same arrangement and offset in the axial direction, which is the movement direction of the spool.
  • the communication ports can face each other at the same time.
  • the shock absorber is connected to the cylinder, a piston that is movably inserted into the cylinder and divides the inside of the cylinder into an extension side chamber and a compression side chamber, and one end of the shock absorber protrudes out of the cylinder.
  • the piston rod is provided with a damping passage that connects the extension side chamber and the compression side chamber, a bypass path that bypasses the damping passage and connects the extension side chamber and the compression side chamber, and a spool valve provided in the middle of the bypass path.
  • shock absorber configured in this way, a large flow path area can be secured even when the stroke amount of the spool valve is reduced, so that the stroke length of the shock absorber can be increased even if the spool valve is incorporated into the shock absorber without increasing the size.
  • the resistance of the liquid passing through the bypass can be minimized without sacrifice.
  • a large flow path area when fully opened can be secured even if the stroke amount is small, and according to the shock absorber of the present invention, a large damping force adjustment range can be secured while ensuring the stroke length. realizable.
  • FIG. 1 is a vertical sectional view of a shock absorber which is a shock absorber according to an embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view showing a part of FIG. 1 in an enlarged manner.
  • FIG. 3 is a damping force characteristic diagram showing characteristics of the compression side damping force with respect to the piston speed of the shock absorber which is the shock absorber according to the embodiment of the present invention.
  • FIG. 4 is a hydraulic circuit diagram of a shock absorber in a modified example of the embodiment of the present invention.
  • the shock absorber D according to the embodiment of the present invention is used for a front fork that suspends the front wheels of a saddle type vehicle.
  • the upper and lower sides with the front fork including the shock absorber D attached to the vehicle are simply referred to as “upper” and “lower” unless otherwise specified.
  • the spool valve V and the shock absorber D can also be used in vehicles other than saddle-mounted vehicles.
  • the spool valve V is tubular and can reciprocate axially with the holder 6 having a plurality of ports 6a and 6b communicating inside and outside, and the tubular holder 6.
  • a spool 7 that is inserted into and has communication ports 7a and 7b that can face each other corresponding to the ports 6a and 6b and can open and close the ports 6a and 6b, and as an actuator that drives the spool 7 in the axial direction. It is configured to include a solenoid 9 of the above.
  • the spool valve V is applied to the shock absorber D.
  • the shock absorber D is a one-sided shock absorber that exerts a damping force only at the time of contraction, and the spool valve V is used for adjusting the compression side damping force of the shock absorber D.
  • the shock absorber D is connected to a one-sided shock absorber that exerts a damping force only when extended by a bracket connected to the steering shaft of the saddle-type vehicle.
  • the shock absorber D and the shock absorber that exerts a damping force only when extended form a pair to form a front fork that supports the front wheels of the saddle-ride type vehicle, and cooperate to vibrate the vehicle body of the saddle-ride type vehicle.
  • the spool valve V may be used as a shock absorber that exerts a damping force only during expansion and contraction, and when the shock absorber D exerts a damping force during expansion and contraction, the spool valve V exerts a damping force during expansion and contraction. May be used to adjust
  • the shock absorber D includes a telescopic tube member T including an outer tube 10 and an inner tube 11 slidably inserted into the outer tube 10.
  • the tube member T may be an upright type
  • the outer tube 10 may be an axle side tube
  • the inner tube 11 may be a vehicle body side tube.
  • the upper end of the outer tube 10 which is the upper end of the tube member T is closed by the cap 12.
  • the lower end of the inner tube 11 which is the lower end of the tube member T is closed by the bracket B on the axle side.
  • the cylindrical gap formed between the overlapping portion of the outer tube 10 and the inner tube 11 is closed by an annular seal member 13 that is attached to the lower end of the outer tube 10 and is in sliding contact with the outer circumference of the inner tube 11. .
  • the shock absorber body S has a cylinder 1 provided in an inner tube 11, a piston 2 slidably inserted in the cylinder 1, a lower end connected to the piston 2, and an upper end outside the cylinder 1. It has a piston rod 3 that protrudes and is connected to the cap 12.
  • the cap 12 Since the cap 12 is connected to the outer tube 10, it can be said that the piston rod 3 is connected to the outer tube 10. Further, the cylinder 1 is connected to the inner tube 11. In this way, the shock absorber body S is interposed between the outer tube 10 and the inner tube 11.
  • An annular head member 14 is attached to the upper end of the cylinder 1, and the piston rod 3 penetrates the inside of the head member 14 so as to be movable in the axial direction.
  • the head member 14 slidably supports the piston rod 3, and a suspension spring 15 made of a coil spring is interposed between the head member 14 and the cap 12.
  • the suspension spring 15 when the shock absorber D contracts and the piston rod 3 enters the cylinder 1, the suspension spring 15 is compressed and exerts an elastic force to urge the shock absorber D in the extending direction. In this way, the suspension spring 15 exerts an elastic force according to the amount of compression to elastically support the vehicle body.
  • the shock absorber D of the present embodiment is a single rod type, and the piston rod 3 extends from one side of the piston 2 to the outside of the cylinder 1.
  • the shock absorber D may be a double rod type, and the piston rod may extend from both sides of the piston to the outside of the cylinder.
  • the piston rod 3 may project downward from the cylinder 1 and be connected to the axle side, and the cylinder 1 may be connected to the vehicle body side.
  • the suspension spring 15 may be a spring other than a coil spring such as an air spring.
  • a liquid chamber filled with a liquid such as hydraulic oil is formed, and this liquid chamber is divided by the piston 2 into the expansion side chamber La and the compression side chamber Lb.
  • the expansion side chamber here is the one of the two chambers partitioned by the piston that is compressed by the piston when the shock absorber extends.
  • the pressure side chamber is one of the two chambers partitioned by the piston, which is compressed by the piston when the shock absorber contracts.
  • the space between the shock absorber main body S and the tube member T is a liquid reservoir R.
  • the liquid storage chamber R the same liquid as the liquid in the cylinder 1 is stored, and a gas chamber G in which a gas such as air is sealed is formed above the liquid surface.
  • the tube member T functions as an outer shell of the tank 16 for storing the liquid separately from the liquid in the cylinder 1.
  • the liquid reservoir chamber R inside the tank 16 is communicated with the expansion side chamber La, and the pressure of the expansion side chamber La is always substantially the same pressure (tank pressure) as the pressure in the tank 16 (liquid reservoir chamber R). Further, the liquid storage chamber R is separated from the compression side chamber Lb by a valve case 4 fixed to the lower end of the cylinder 1.
  • the valve case 4 is provided with a suction passage 4a that communicates the pressure side chamber Lb and the liquid storage chamber R with a suction valve 40 that opens and closes the suction passage 4a.
  • the suction valve 40 is an extension-side check valve, which opens the suction passage 4a when the shock absorber D extends, and allows the liquid to flow from the liquid reservoir chamber R to the pressure-side chamber Lb through the suction passage 4a. When the shock absorber D contracts, the suction passage 4a is kept closed.
  • the suction valve 40 of the present embodiment is a leaf valve, it may be a poppet valve or the like.
  • the piston 2 is formed with an extension side passage 2a for communicating the extension side chamber La and the compression side chamber Lb and a compression side passage 2b as a damping passage, and an extension side check valve 20 for opening and closing the extension side passage 2a.
  • a hard-side damping element 21 is mounted to provide resistance to the flow of liquid in the pressure-side passage 2b from the pressure-side chamber Lb to the expansion-side chamber La.
  • the hard-side damping element 21 is configured to have a leaf valve 21a stacked on the upper side of the piston 2 and an orifice 21b provided in parallel with the leaf valve 21a.
  • the leaf valve 21a is a thin annular plate formed of metal or the like, or a laminated body formed by stacking the annular plates, has elasticity, and is attached to the piston 2 in a state in which the outer peripheral side is allowed to bend.
  • the pressure of the pressure side chamber Lb acts in a direction to bend the outer peripheral portion of the leaf valve 21a upward.
  • the orifice 21b is formed by a notch provided on the outer peripheral portion of the leaf valve 21a that is detached and seated on the valve seat (not indicated) of the piston 2R, but is formed by a stamp or the like provided on the valve seat. It may be formed.
  • the pressure side chamber Lb is compressed by the piston 2 when the shock absorber D contracts, and its internal pressure rises, and becomes higher than the pressure in the extension side chamber La.
  • the piston speed is in the low speed range when the shock absorber D contracts and the differential pressure between the compression side chamber Lb and the extension side chamber La is less than the valve opening pressure of the leaf valve 21a, the liquid passes through the orifice 21b. Resistance is given to the flow of the liquid while moving from the pressure side chamber Lb to the expansion side chamber La.
  • the differential pressure becomes large and becomes equal to or higher than the valve opening pressure of the leaf valve 21a, the outer peripheral portion of the leaf valve 21a bends, and the liquid passes through the gap formed between the outer peripheral portion and the piston 2 to the pressure side chamber Lb.
  • resistance is imparted to the liquid flow.
  • the hard side damping element 21 having the orifice 21b and the leaf valve 21a parallel to the orifice 21b is a liquid that goes from the compression side chamber Lb to the extension side chamber La when the shock absorber D contracts. Is the first damping element on the pressure side that provides resistance to the flow of. The resistance of the compression-side hard damping element 21 results from the orifice 21b when the piston speed is in the low speed range, and from the leaf valve 21a when the piston speed is in the medium to high speed range.
  • the extension-side check valve 20 opens the extension-side passage 2a when the shock absorber D extends, and allows the liquid to flow through the extension-side passage 2a from the expansion-side chamber La to the compression-side chamber Lb. When D contracts, the extension side passage 2a is maintained in a closed state.
  • the extension side check valve 20 of the present embodiment is a leaf valve, but may be a poppet valve or the like. Furthermore, the extension-side passage 2a and the extension-side check valve 20 may be omitted as long as the liquid is not sufficiently sucked into the cylinder 1.
  • the bypass path 3a that bypasses the hard side damping element 21 and communicates the extension side chamber La and the compression side chamber Lb is in the middle.
  • a spool valve V, which is provided in the bypass valve 3 and whose flow passage area can be changed, and a soft-side damping element 50 that is provided in series with the spool valve V are provided in the middle of the bypass passage 3a.
  • the piston rod 3 is mounted on the inner circumference of the tubular yoke 31 into which the spool valve V is inserted and the opening at the lower end of FIG. 2 which is the tip of the yoke 31. It has a piston holding member 30, and a tubular rod body 32 that is connected to the end side of the yoke 31 and extends to the outside of the cylinder 1.
  • the piston holding member 30 includes a bottomed tubular housing portion 30a and a piston mounting shaft 30b projecting downward from the bottom portion of the housing portion 30a, and an annular piston 2 is placed on the hard side on the outer periphery of the piston mounting shaft 30b. Both the damping elements 21 are fixed with nuts N.
  • a valve case 5 that partitions the inside of the cylinder portion of the housing portion 30a of the piston holding member 30 into an upper chamber 30c and a lower chamber 30d is fixed.
  • the valve case 5 is formed with a passage 5a that communicates the upper chamber 30c and the lower chamber 30d, and the soft side damping element 50 is provided in the passage 5a.
  • the piston mounting shaft 30b of the piston holding member 30 has a vertical hole 30e which opens from the lower end in FIG. 2 and communicates the pressure side chamber Lb with the spool valve V via the upper chamber 30c and the lower chamber 30d. It is provided.
  • a screw portion 30f to which a nut N is screwed is provided on the outer circumference of the tip of the piston mounting shaft 30b.
  • the piston mounting shaft 30b is provided with a horizontal hole 30g on the side thereof, which is open from above in FIG. 2 and communicates with the vertical hole 30e.
  • a leaf valve 21a, a piston 2, an extension side check valve 20 and a tubular collar 19 are mounted on the outer periphery of the piston mounting shaft 30b.
  • the leaf valve 21a, the piston 2, the extension side check valve 20 and the tubular collar 19 are attached.
  • the collar 19 is sandwiched between the nut N screwed to the screw portion 30f and the housing portion 30a and fixed to the piston mounting shaft 30b.
  • the inner circumference of the leaf valve 21a is fixed to the piston mounting shaft 30b to allow bending of the outer circumference, and the compression side passage 2b is opened and closed, and the extension side check valve 20 slides axially on the outer circumference of the piston mounting shaft 30b. Then, the extension side passage 2a is opened and closed.
  • the collar 19 has a cylindrical portion 19a having an inner diameter larger than the outer diameter of the piston mounting shaft 30b, and the piston mounting shaft 30b provided on the inner circumference of the lower end in FIG. 2 of the tubular portion 19a. And a plurality of holes 19c provided in the tubular portion 19a for communicating the inside and outside of the tubular portion 19a.
  • the tubular portion 19a faces the lateral hole 30g in the radial direction, and the lateral hole 30g of the piston mounting shaft 30b passes through the hole 19c. It is communicated with the compression side chamber Lb.
  • the total flow path area of the holes 19c of the collar 19 is set to be equal to or larger than the total flow path area of the horizontal holes 30g, and if this condition is satisfied, the number of holes 19c to be installed can be arbitrarily set. Further, the total flow path area of the vertical hole 30e and the horizontal hole 30g may be equal to or larger than the flow path area of the spool valve V in the fully opened state, and the number of the horizontal holes 30g to be installed is arbitrary. Further, the shape of the lateral hole 30g is arbitrary, and may be, for example, an elongated hole along the circumferential direction of the piston mounting shaft 30b.
  • the yoke 31 includes a flange portion 31a protruding from the outer periphery of the tip of the rod body 32 in the outer peripheral direction, a housing cylinder 31b that is hung from the flange portion 31a and into which the spool valve V is inserted, and a side surface of the housing cylinder 31b. It is configured to include a plurality of through holes 31c that are opened and lead to the inside, and a plurality of grooves 31d that are the outer periphery of the accommodating cylinder 31b and extend from the anti-piston side end and lead to each through hole 31c. Therefore, a plurality of grooves 31d extending in the axial direction are provided on the outer circumference of the yoke 31 from the end opposite to the piston to each through hole 31c.
  • a screw portion 31e that is screwed to the inner circumference of the upper end of the housing portion 30a is provided on the inner circumference of the housing cylinder 31b that is the inner circumference of the lower end of the yoke 31, and the piston holding member 30 is screwed to the yoke 31.
  • the yoke 31 and the piston holding member 30 may be fastened by a fastening method other than welding, press-fitting, or screw fastening.
  • the extension side chamber La and the inside of the yoke 31 are communicated with each other by the through hole 31c, and the spool valve V is provided in the middle of the passage connecting the through hole 31c and the upper chamber 30c.
  • the yoke 31 may house the spool valve V as a whole or a part thereof.
  • the outer diameters of the yoke 31 and the piston holding member 30 that house the spool valve V and the soft side damping element 50 are smaller than the inner diameter of the cylinder 1, so that the expansion side chamber La is not partitioned by these.
  • Six through holes 31c are provided at equal intervals along the circumferential direction of the yoke 31, but the through holes 31c are provided between the entire flow path area of the through holes 31c and between the yoke 31 and the cylinder 1.
  • the flow passage area of the annular gap X in the portion on the side opposite to the piston in the upper side of FIG. 2 where the is provided is equal to or larger than the flow passage area of the spool valve V in the fully open state.
  • the number of through holes 31c and grooves 31d installed is arbitrary. Further, the shape of the through hole 31c is arbitrary, and may be a long hole or the like along the circumferential direction of the yoke 31. Further, in the present embodiment, six grooves 31d are provided corresponding to each through hole 31c, but one groove 31d may be communicated with a plurality of through holes 31c.
  • the groove 31d is provided along the outer circumference of the yoke 31 along the axial direction, and the length of the groove 31d is determined by connecting the end of the yoke 31 on the side opposite to the piston to the through hole 31c. It will be the shortest. Therefore, it is considered that the resistance when the liquid passes through the groove 31d is minimized as compared with the case where the groove 31d is formed obliquely or meanders with respect to the axial direction of the yoke 31.
  • the bypass path 3a is configured to have a through hole 31c, an upper chamber 30c, a lower chamber 30d, a vertical hole 30e, and a horizontal hole 30g formed in the yoke 31 or the piston holding member 30 described above. Therefore, the hard side damping element 21 is bypassed and the extension side chamber La and the compression side chamber Lb are communicated with each other.
  • a spool valve V and a soft side damping element 50 are provided in series in the middle of the bypass passage 3a.
  • the soft-side damping element 50 is configured to have a leaf valve 50a stacked on the upper side of the valve case 5 and an orifice 50b provided in parallel with the leaf valve 50a.
  • the leaf valve 50a is a thin annular plate formed of metal or the like, or a laminated body in which the annular plates are stacked, has elasticity, and is attached to the valve case 5 in a state in which the outer peripheral side is allowed to bend. Then, the pressure of the lower chamber 30d acts in the direction of bending the outer peripheral portion of the leaf valve 50a upward. Further, the orifice 50b is formed by a notch provided on the outer peripheral portion of the leaf valve 50a which is seated on and off the valve seat of the valve case 5, but may be formed by stamping or the like provided on the valve seat. Good.
  • the pressure in the lower chamber 30d becomes higher than that in the upper chamber 30c when the shock absorber D is contracted and the spool valve V opens the bypass passage 3a.
  • the piston speed is in the low speed range when the shock absorber D contracts and the differential pressure between the upper chamber 30c and the lower chamber 30d is less than the opening pressure of the leaf valve 50a, the liquid passes through the orifice 50b. From the lower chamber 30d to the upper chamber 30c, that is, from the pressure side chamber Lb to the extension side chamber La, resistance is imparted to the flow of the liquid.
  • the soft side damping element 50 having the orifice 50b and the leaf valve 50a parallel to the orifice 50b makes the compression side bypass path 3a from the compression side chamber Lb to the extension side chamber when the shock absorber D contracts.
  • a second damping element on the pressure side that provides resistance to the flow of liquid towards La. The resistance of the soft-side damping element 50 results from the orifice 50b when the piston speed is in the low speed range, and from the leaf valve 50a when the piston speed is in the medium to high speed range.
  • the leaf valve 50a of the soft side damping element 50 is a valve having a lower valve rigidity (easy to bend) as compared with the leaf valve 21a of the hard side damping element 21, and when the flow rate is the same, it gives to the flow of liquid. Resistance (pressure loss) is small. In other words, the liquid is more likely to pass through the leaf valve 50a than the leaf valve 21a under the same conditions.
  • the orifice 50b of the soft-side damping element 50 is a large-diameter orifice having a larger opening area than the orifice 21b of the hard-side damping element 21, and when the flow rates are the same, the resistance (pressure loss) given to the liquid flow is small.
  • the spool valve V includes a tubular holder 6 fixed in the piston rod 3 and a spool 7 which is tubular and is reciprocally inserted into the holder 6.
  • a solenoid 9 that drives the spool 7 in the axial direction and a biasing spring 8 that biases the spool 7 in opposition to the thrust of the solenoid 9 are provided. Then, the spool valve V adjusts the position of the spool 7 in the holder 6 to adjust the opening degree.
  • the holder 6 has one end in the axial direction directed to the upper side (yoke 31 side) and the other end directed to the lower side (valve case 5 side) with respect to the valve case 5 in the piston rod 3. In this state, it is arranged along the central axis of the piston rod 3. Further, the holder 6 is formed with a plurality of ports 6a, 6b which are provided at positions displaced in the axial direction and penetrate in the radial direction.
  • the port 6a is composed of four elongated holes 6a1 and 6a2 provided at equal intervals in the circumferential direction with respect to the holder 6. Since FIG. 2 is a cross-sectional view, the elongated holes on the front side and the back side of the paper surface are not shown.
  • the port 6b is composed of four elongated holes 6b1 and 6b2 arranged at positions shifted downward from the port 6a with respect to the holder 6 and provided at equal intervals along the circumferential direction in FIG. .. Since FIG. 2 is a cross-sectional view, the elongated holes on the front side and the back side of the paper surface are not shown.
  • the holder 6 is provided with the plurality of ports 6a and 6b at positions displaced in the axial direction.
  • the ports 6 a and 6 b are communicated with the extension side chamber La through the through holes 31 c of the yoke 31 and are opened and closed by the spool 7. Further, the holder 6 is provided with a flange portion 6d at the lower end in FIG. 2 that fits into the inner circumference of the housing portion 30a of the piston holding member 30.
  • the spool 7 is cylindrical and is slidably inserted into the holder 6 so that it can be reciprocated in the vertical direction in FIG. More specifically, the spool 7 includes a communication port 7a corresponding to the port 6a and facing the port 6a, and a communication port 7b corresponding to the port 6b and facing the port 6b.
  • the communication ports 7a and 7b are arranged at positions displaced from the spool 7 in the axial direction which is the moving direction of the spool 7, and specifically, the same arrangement as the axial arrangement of the ports 6a and 6b with respect to the holder 6. Is provided on the spool 7.
  • the axial spacing of the communication ports 7a and 7b is equal to the axial spacing of the ports 6a and 6b, and when the port 6a communicates with the corresponding communication port 7a, the port 6b and the communication port 7b also communicate with each other. Therefore, when any port 6a (6b) communicates with the corresponding communication port 7a (7b), all the ports 6a and 7b communicate with the corresponding communication ports 7a and 7b, respectively.
  • the communication port 7a is composed of four elongated holes 7a1, 7a2, 7a3 provided at equal intervals in the circumferential direction with respect to the spool 7. Since FIG. 2 is a cross-sectional view, the elongated hole on the front side is not shown.
  • the communication ports 7b are four elongated holes 7b1, 7b2, 7b3 arranged at positions shifted below the communication port 7a with respect to the spool 7 and provided at equal intervals along the circumferential direction in FIG. It is configured. Since FIG. 2 is a cross-sectional view, the elongated hole on the front side is not shown.
  • the expression "communication ports 7a and 7b corresponding to each of the ports 6a and 6b" means that the communication ports 7a and 7b correspond one-to-one with each of the ports 6a and 6b, and the ports 6a are communicated with each other. This means that the port 7a corresponds to the communication port 7b with the port 6b.
  • annular groove 7c provided along the circumferential direction and communicating with all the communication ports 7a
  • annular groove 7d provided along the circumferential direction and communicating with all the communication ports 7b. Equipped with.
  • the annular groove 7c faces the communication port 7a
  • its vertical width corresponds to the vertical width in FIG. 2 of the communication port 7a
  • the annular groove 7d faces the communication port 7b.
  • the vertical width in FIG. 2 coincides with the vertical width in FIG. 2 of the communication port 7b.
  • the axial distance between the annular groove 7c and the annular groove 7d in the spool 7 is equal to the axial distance between the ports 6a and 6b.
  • the spool 7 When the spool 7 configured in this way is inserted into the holder 6, it opens and closes the ports 6a and 6b provided in the holder 6. Specifically, when the annular groove 7c provided on the outer circumference of the spool 7 faces the corresponding port 6a and the annular groove 7d provided on the outer circumference of the spool 7 faces the corresponding port 6b, the spool 7 is The ports 6a and 6b are communicated with the spool 7 through the communication ports 7a and 7b. The ports 6a and 6b are communicated with the extension side chamber La through the through holes 31c provided in the yoke 31.
  • the inside of the spool 7 is communicated with the pressure side chamber Lb through the upper chamber 30c, the passage 5a provided in the valve case 5, the lower chamber 30d and the vertical hole 30e. Therefore, a spool valve V is provided in the middle of the bypass path 3a, and when the ports 6a and 6b communicate with each other in the spool 7, the spool valve V is opened to open the bypass path 3a, and the extension side chamber La is opened through the bypass path 3a. And the compression side chamber Lb are communicated with each other.
  • the spool 7 moves with respect to the holder 6, the area where the port 6a faces the annular groove 7c and the area where the port 6b faces the annular groove 7d change.
  • the flow passage area can be changed.
  • the spool 7 moves downward in FIG. 2 with respect to the holder 6 and the ports 6a and 6b do not completely face the annular grooves 7c and 7d, respectively, and are blocked at the outer periphery of the spool 7, they correspond to the ports 6a and 6b.
  • the communication with the communication ports 7a and 7b is cut off and the bypass 3a is cut off.
  • the spool 7 moves downward with respect to the holder 6 from the position shown in FIG.
  • the annular groove 7d also starts to face the port 6b. Further, from the state where the annular groove 7c and the port 6a face each other and the annular groove 7d and the port 6b face each other, the spool 7 moves upward with respect to the holder 6, and the annular groove 7c faces the port 6a. At the same time, the annular groove 7d does not face the port 6b. Thus, when the spool 7 moves in the axial direction with respect to the holder 6, the opening degree of the ports 6a and 6b changes, and the flow passage area of the spool valve V changes greatly.
  • a plate 70 is laminated on the upper end of the spool 7, and a plunger 9a of the solenoid 9 which will be described later is in contact with the plate 70.
  • the biasing spring 8 contacts the lower end of the spool 7 and biases the spool 7 upward in FIG. 2, which is one of the moving directions.
  • the biasing spring 8 is a spiral spring that exerts a biasing force that returns the inner periphery to its original position when the inner periphery is displaced in the vertical direction in FIG. 2 relative to the outer periphery.
  • the urging spring 8 is sandwiched between a tubular spacer 22 whose outer circumference is below the urging spring 8 and which is fitted to the inner circumference of the housing portion 30a of the piston holding member 30 and a flange portion 6d of the holder 6. It is fixed to the piston rod 3.
  • the inner circumference of the urging spring 8 is fitted into the annular recess 7e provided on the outer periphery of the lower end in FIG. 2 of the spool 7, and the urging spring 8 has the spool 7 with respect to the holder 6 in the upper middle of FIG.
  • the spool 7 While the spool 7 is urged by the urging force of the urging spring 8, the spool 7 is positioned at the uppermost position as shown in FIG. 2 in a state where the solenoid 9 does not receive a thrust opposed to the urging force of the urging spring 8.
  • the annular grooves 7c and 7d are not opposed to the ports 6a and 6b. Therefore, the spool valve V shuts off the bypass path 3a when the power is not supplied.
  • the solenoid 9 of the spool valve V is housed in the yoke 31, and although not shown in detail, a tubular stator including a coil and a tubular movable iron core movably inserted into the stator. , A plunger 9a attached to the inner circumference of the movable iron core and having a tip abutting against the plate 70.
  • the harness 90 that supplies electric power to the solenoid 9 projects outward through the inside of the rod body 32 and is connected to a power source.
  • the solenoid 9 when the solenoid 9 is energized through the harness 90, the movable iron core is pulled downward, the plunger 9a moves downward, and the spool 7 is pushed down against the urging force of the urging spring 8. Then, the port 6a and the communication port 7a communicate with each other through the annular groove 7c, and the port 6b and the communication port 7b communicate with each other through the annular groove 7d, so that the spool valve V opens.
  • the relationship between the opening degree of the spool valve V and the energization amount to the solenoid 9 is a proportional relationship having a positive proportional constant, and the opening degree increases as the energization amount increases. Further, when the energization of the solenoid 9 is cut off, the spool valve V closes.
  • the spool valve V of the present embodiment is a normally closed type, and the spool 7 serving as the valve body is urged in the closing direction by the urging spring 8 and the thrust in the opening direction is applied by the solenoid 9.
  • the opening degree increases in proportion to the energization amount of the spool valve V, and the flow passage area of the bypass passage 3a increases as the opening degree increases. Therefore, it can be said that the flow passage area of the bypass passage 3a increases in proportion to the amount of electricity supplied to the spool valve V.
  • the shock absorber D of the present embodiment is provided with a manual valve 41 for manually adjusting the flow rate of the hard side damping element 21.
  • the manual valve 41 is provided in the bottom portion of the shock absorber D, and can change the flow passage area of the discharge passage 4b that connects the pressure side chamber Lb and the liquid storage chamber R by a manual operation.
  • the manual valve 41 includes a needle-shaped valve body 41a which is seated on and detached from an annular valve seat (not shown) provided in the middle of the discharge passage 4b.
  • an annular valve seat (not shown) provided in the middle of the discharge passage 4b.
  • the shock absorber D includes a cylinder 1 and a piston 2 that is slidably inserted into the cylinder 1 and divides the inside of the cylinder 1 into an extension side chamber La and a compression side chamber Lb.
  • the piston rod 3 has a tip connected to the piston 2 and a distal end protruding outside the cylinder 1, and a tank 16 connected to the expansion side chamber La in the cylinder 1, and the pressure in the expansion side chamber La is the tank pressure. It has become.
  • the shock absorber D is provided with an extension side passage 2a, a compression side passage 2b, and a bypass passage 3a as passages for communicating the extension side chamber La and the compression side chamber Lb.
  • the expansion side passage 2a is provided with an expansion side check valve 20 that allows only one-way flow of liquid from the expansion side chamber La to the compression side chamber Lb, and the liquid from the compression side chamber Lb to the expansion side chamber La is 2b or the bypass 3a.
  • the pressure side passage 2b is provided with an orifice 21b and a leaf valve 21a arranged in parallel with the orifice 21b, and a hard side damping element 21 that gives resistance to the flow of liquid.
  • the bypass passage 3a is configured to have an orifice 50b having a larger opening area than the orifice 21b and a leaf valve 50a arranged in parallel with the leaf valve 21a and having a valve rigidity lower than that of the leaf valve 21a.
  • a soft side damping element 50 having a reduced resistance is provided.
  • bypass path 3a is provided with a spool valve V in series with the soft side damping element 50, and the flow path area of the bypass path 3a can be changed by adjusting the amount of electricity supplied to the spool valve V. ing.
  • the spool valve V is a normally closed type, and is set so that the flow passage area of the bypass passage 3a is increased in proportion to the energization amount.
  • the shock absorber D is provided with a suction passage 4a and a discharge passage 4b as passages that connect the pressure side chamber Lb and the tank 16 to each other.
  • the suction passage 4a is provided with a suction valve 40 that allows only one-way flow of the liquid from the tank 16 to the pressure side chamber Lb.
  • the discharge passage 4b is provided with a normally closed manual valve 41 that is opened and closed by manual operation.
  • the shock absorber D is configured as described above, and when the shock absorber D contracts, the piston rod 3 invades into the cylinder 1 and the piston 2 compresses the compression side chamber Lb. Normally, the manual valve 41 closes the discharge passage 4b. Therefore, when the shock absorber D contracts, the liquid in the pressure side chamber Lb moves to the extension side chamber La through the pressure side passage 2b or the bypass passage 3a. A resistance is given to the flow of the liquid by the hard side damping element 21 or the soft side damping element 50, and a compression side damping force due to the resistance is generated.
  • the shock absorber D contracts in a normal state
  • the distribution ratio of the liquid passing through the hard damping element 21 and the soft damping element 50 changes depending on the flow passage area of the bypass passage 3a, whereby the damping coefficient is large or small.
  • the compression-side damping force generated as a result is adjusted in magnitude.
  • the hard-side damping element 21 and the soft-side damping element 50 are configured to have the orifices 21b and 50b and the leaf valves 21a and 50a arranged in parallel with the orifices 21b and 50b, respectively. Therefore, the damping force characteristic becomes an orifice characteristic proportional to the square of the piston speed peculiar to the orifice when the piston speed is in the low speed range, and becomes the piston speed peculiar to the leaf valve when the piston speed is in the medium to high speed range.
  • the valve characteristics are proportional.
  • the damping coefficient is increased in the soft mode in which the proportion of the liquid toward the soft side damping element 50 increases. Becomes smaller in both the low speed range and the medium and high speed range, and the compression side damping force generated with respect to the piston speed becomes small.
  • the damping coefficient becomes large or small, as shown in FIG.
  • the slope of the characteristic line indicating the damping force characteristic on the compression side changes. Then, the compression side damping force is adjusted between the hard mode in which the inclination of the characteristic line is maximized to increase the damping force generated and the soft mode in which the inclination is minimized to decrease the damping force generated.
  • the slope of the characteristic line showing the damping force characteristic becomes smaller in both the low speed region and in the middle/high speed region
  • the slope of the characteristic line showing the damping force property becomes smaller in the low speed region and the middle/high speed region. It gets bigger in both. Therefore, the change in the damping force characteristic from the orifice characteristic to the valve characteristic is gradual in any mode.
  • the soft side damping element 50 has a leaf valve 50a having low valve rigidity in parallel with the orifice 50b. Therefore, even if a valve with high valve rigidity and high valve opening pressure is adopted as the leaf valve 21a of the hard side damping element 21 and the adjustment range in the direction of increasing the compression side damping force is increased, the damping force in the soft mode is increased. Does not become too large.
  • the power supply to the spool valve V is cut off and the mode is switched to the hard mode.
  • the manual valve 41 is opened, the liquid in the compression side chamber Lb passes through not only the compression side passage 2b but also the discharge passage 4b, so that the flow rate of the liquid passing through the hard side damping element 21 is reduced. The compression side damping force is reduced.
  • the liquid equivalent to 3 volumes of the piston rod that has entered the cylinder 1 when the shock absorber D contracts is discharged from the expansion side chamber La to the tank 16.
  • the extension side check valve 20 opens, and the liquid in the extension side chamber La moves to the compression side chamber Lb through the extension side passage 2a. At this time, the liquid can pass through the extension check valve 20 without any resistance. Further, the extension side chamber La is communicated with the tank 16 and is maintained at the tank pressure. Therefore, the shock absorber D does not exert a damping force on the extension side. As described above, the shock absorber D forms a front fork by forming a pair with a shock absorber that generates a damping force only when the vehicle is extended. Therefore, when the front wheels are separated from the vehicle body, the damping is performed only when the vehicle is extended. A shock absorber that exerts power suppresses vibration of the vehicle body.
  • the spool valve V is a holder 6 which is tubular and has a plurality of ports 6a and 6b communicating inside and outside, and a tubular holder 6 which is vertically reciprocally inserted into the holder 6 and each port 6a, 6b is provided with a spool 7 that can open and close communication ports 7a and 7b that can face each other, and a solenoid (actuator) 9 that drives the spool 7 in the axial direction.
  • the communication ports 7a and 7b are provided at positions shifted in the axial direction
  • the communication ports 7a and 7b are provided at positions shifted in the axial direction with respect to the spool 7 in the same arrangement as the arrangement of the ports 6a and 6b in the axial direction. ..
  • the holder 6 and the spool 7 are displaced from each other in the axial direction, which is the moving direction of the spool 7, and in the same arrangement, the plurality of ports 6a and 6b and the communication ports 7a and 7b. Is provided, and the ports 6a and 6b and the communication ports 7a and 7b can face each other at the same time. Therefore, according to the spool valve V of the present invention, a large flow path area can be secured when the spool 7 is fully opened even if the stroke amount of the spool 7 is smaller than that of the holder 6.
  • the two ports 6a and 6b and the two communication ports 7a and 7b are provided at positions deviated in the axial direction, but three or more ports and the communication port may be provided.
  • the ports 6a and 6b are each composed of elongated holes 6a1, 6a2, 6a3, 6b1, 6b2, 6b3 provided along the circumferential direction of the holder 6, and the flow path of the port 6a itself. A large area can be secured.
  • the ports 6a and 6b may be formed of one elongated hole as long as the strength of the holder 6 is not lowered, but if the ports 6a and 6b are formed of a plurality of elongated holes, the rigidity of the holder 6 is ensured. There is an advantage that the flow passage area can be increased.
  • the communication ports 7a and 7b may be formed of one elongated hole as long as the strength of the spool 7 is not lowered, but if the spool 7 is formed of a plurality of elongated holes, the rigidity of the spool 7 is ensured. However, there is an advantage that the flow path area can be increased.
  • the actuator is a solenoid 9, but since the actuator may be any as long as it can drive the spool 7 in the axial direction, it is an electric actuator composed of a feed screw mechanism and a motor in addition to the solenoid. Alternatively, an actuator utilizing hydraulic pressure may be used.
  • the shock absorber D includes a cylinder 1, a piston 2 that is movably inserted in the cylinder 1 in the axial direction, and divides the inside of the cylinder 1 into an expansion side chamber La and a compression side chamber Lb.
  • a piston rod 3 that is connected to the piston 2 and one end of which protrudes to the outside of the cylinder 1, a compression side passage (damping passage) 2b that communicates the extension side chamber La and the compression side chamber Lb, and a compression side passage (damping passage) 2b.
  • a bypass passage 3a that bypasses the extension side chamber La and the compression side chamber Lb to communicate with each other, and a spool valve V provided in the middle of the bypass passage 3a are provided.
  • shock absorber D configured in this way, a large flow path area can be secured even when the stroke amount of the spool valve V is reduced, so that the spool valve does not become large and is incorporated into the shock absorber D.
  • the resistance of the liquid passing through the bypass path 3a can be minimized without sacrificing the stroke length of the above. Therefore, according to the shock absorber D of the present invention, a large damping force adjustment range can be realized while ensuring the stroke length.
  • the shock absorber D bypasses the hard side damping element 21 that gives resistance to the flow of the liquid from the compression side chamber Lb to the extension side chamber La, and the hard side damping element 21 and bypasses the compression side chamber Lb. It is provided with a spool valve V capable of changing the flow path area of the bypass path 3a communicating with the extension side chamber La, and a soft side damping element 50 provided in series with the spool valve V in the bypass path 3a.
  • the hard damping element 21 has an orifice 21b and a leaf valve 21a provided in parallel with the orifice 21b.
  • the soft side damping element 50 has an orifice (large diameter orifice) 50b having an opening area larger than that of the orifice 21b.
  • the characteristic of the damping force generated when the shock absorber D contracts is the orifice characteristic peculiar to the orifice when the piston speed is in the low speed range, and when the piston speed is in the medium to high speed range,
  • the valve characteristics are unique to leaf valves.
  • both the damping coefficient when the piston speed is in the low speed range and the damping coefficient when the piston speed is in the medium and high speed range can be freely set, and the piston speed can be set to the medium and high speed range.
  • the adjustment range of the compression side damping force in a certain case can be increased.
  • both the damping coefficient when the piston speed is in the low speed range and the damping coefficient when the piston speed is in the medium and high speed range become small.
  • both the damping coefficient when the piston speed is in the low speed region and the damping coefficient when the piston speed is in the medium and high speed region are large. Therefore, when the characteristic of the compression side damping force changes from the orifice characteristic in the low speed region to the valve characteristic in the medium and high speed region, the change in the slope of the characteristic line becomes gentle in any mode.
  • the shock absorber D according to the present embodiment is mounted on a vehicle, it is possible to reduce the discomfort caused by the change in the inclination and improve the ride comfort of the vehicle.
  • the soft side damping element 50 is configured to have the orifice (large diameter orifice) 50b and a leaf valve 50a provided in parallel with the orifice 50b.
  • the soft-side damping element 50 is also provided with the leaf valve 50a, even if the leaf valve 21a of the hard-side damping element 21 has a high valve rigidity and a high valve opening pressure, the damping force in the soft mode is high. It doesn't become excessive. That is, according to the above configuration, a valve having high valve rigidity can be used as the leaf valve 21a of the hard damping element 21. Then, since the adjustment range of the damping force increases in the direction of increasing the compression side damping force, the adjustment range of the compression side damping force can be further increased when the piston speed is in the middle and high speed range.
  • the piston 2 is connected to the other end of the piston rod 3 to form a single rod type.
  • the shock absorber D includes a tank 16 connected to the extension side chamber La, and a suction valve 40 that allows only the flow of liquid from the tank 16 to the compression side chamber Lb. With this configuration, the tank 16 can compensate for the volume of the piston rod 3 that moves in and out of the cylinder 1.
  • the shock absorber D can be a one-sided shock absorber that exerts a damping force only in the compression stroke.
  • the spool valve V is set so that the opening degree changes in proportion to the energization amount. With this configuration, the opening area of the bypass 3a can be changed steplessly.
  • the shock absorber D of the present embodiment is provided with a manual valve 41 capable of manually changing the flow passage area of the discharge passage 4b that connects the pressure side chamber Lb and the tank 16. According to this configuration, even if the spool valve V is closed at the time of failure, the compression side damping force generated by manually opening the manual valve 41 is reduced. For this reason, it is possible to prevent the compression side damping force in the fail mode from becoming excessive, and it is possible to improve the ride comfort of the vehicle.
  • the yoke 31 is opened from the side and communicates with the inside to form a plurality of through holes 31c forming a part of the bypass passage 3a, and the anti-piston side end provided on the outer periphery. It has a groove 31d extending from and leading to the through hole 31c.
  • the through hole 31c and the groove 31d are formed on the outer periphery of the yoke 31 in which the spool valve V is inserted and the annular gap between the cylinder 1 and the cylinder 1 becomes the narrowest.
  • the flow path area of the annular gap X between the and the yoke 31 is expanded.
  • the flow passage resistance in the annular gap X can be reduced even if the spool valve V having the solenoid 9 is housed in the piston rod 3, and the minimum damping force is determined by the flow passage resistance in the annular gap X.
  • the problem of this can be solved, and the minimum damping force can be adjusted by the spool valve V. Therefore, according to the shock absorber D of the present invention, even if the spool valve V using the solenoid 9 is provided, the damping force adjustment range can be increased and the damping force at the time of full soft can be lowered.
  • the groove 31d is provided on the outer periphery of the yoke 31 along the axial direction. According to the shock absorber D configured in this way, the length of the groove 31d is the shortest for connecting the yoke 31 from the anti-piston side end to the through hole 31c, and the liquid passes through the groove 31d. Since the resistance is minimized, the damping force at the time of full soft can be further reduced and the riding comfort in the vehicle can be improved.
  • bypass passage (attenuation passage) 3a in the shock absorber D has a vertical hole 30e that opens from the tip of the piston rod 3 and connects the pressure side chamber Lb to the spool valve V, and the piston rod 3 side. It is formed to include a horizontal hole 30 g that opens from the side and communicates the compression side chamber Lb to the vertical hole 30e.
  • the shock absorber D configured as described above, in providing the bypass passage (attenuation passage) 3a communicating with the spool valve V in the piston rod 3, in addition to the vertical hole 30e having the smallest flow passage area, the horizontal hole 30g is provided. Is provided, so that the flow path area in the bypass path (damping passage) 3a is expanded.
  • the shock absorber D even if the spool valve V having the solenoid 9 is housed in the piston rod 3, the flow passage resistance in the bypass passage (attenuation passage) 3a can be reduced, and the minimum damping force is provided in the piston rod 3.
  • the problem of being determined by the flow path resistance of the vertical hole 30e can be solved, and the minimum damping force can be adjusted by the spool valve V. Therefore, according to the shock absorber D of the present invention, even if the spool valve using the solenoid 9 is provided, the damping force adjustment range can be increased and the damping force at the time of full soft can be lowered.
  • the piston rod 3 has a piston mounting shaft 30b on the outer periphery of which the piston 2 is mounted and a nut N for fixing the piston 2 is screwed, and is a tubular shape.
  • the collar 19 is provided on the outer circumference of the piston mounting shaft 30b having a hole 19c for communicating the inside and the outside, and is provided between the piston 2 and the nut N.
  • the lateral hole 30g has a collar 19 of the piston mounting shaft 30b. It is open at a position facing the.
  • the lateral hole 30g provided in the piston mounting shaft 30b is provided in the pressure side chamber Lb by the hole 19c provided in the collar 19. Can be communicated. Therefore, according to the shock absorber D of the present embodiment, the lateral hole 30g can be communicated with the pressure side chamber Lb by merely providing the collar 19 having a simple shape. Therefore, the piston 2 and the nut N are processed to have a complicated shape. It is not necessary to provide the holes of 30 g to communicate with the compression side chamber Lb, and the manufacturing cost is reduced.
  • the shock absorber D is a one-sided shock absorber that exerts a damping force only when it contracts, but it is hard in the compression side passage 2b like the shock absorber shown in the hydraulic circuit diagram of FIG.
  • a check valve 60 that allows only the flow of liquid from the compression side chamber Lb to the extension side chamber La is provided, and the extension side passage 2a is used as a damping passage to allow the liquid flow from the extension side chamber La to the compression side chamber Lb.
  • a hard side damping element 61 that gives resistance is provided, and a soft side damping element 62 that gives resistance to the flow of liquid from the extension side chamber La to the compression side chamber Lb is provided in the bypass path 3a instead of the soft side damping element 50, and a suction passage is provided.
  • the suction valve 40 in 4a may be abolished, and the discharge passage 4b and the manual valve 41 may be abolished so that the shock absorber D exerts a damping force only when it is extended.
  • the shock absorber D is configured in this way, the damping coefficient becomes large or small when the distribution ratio of the liquid passing through the hard side damping element and the soft side damping element having the leaf valve is changed by the spool valve V.
  • the inclination of the characteristic line indicating the damping force characteristic on the side can be changed in the same manner as the shock absorber D that exerts the damping force only on the compression side.
  • the spool valve V is provided in the bypass path 3a, and the soft side damping element 50 is provided. May be omitted, or the hard side damping element 21 may be omitted and the damping force on both sides of contraction, extension or expansion and contraction may be adjusted only by the spool valve V.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)
  • Multiple-Way Valves (AREA)
  • Axle Suspensions And Sidecars For Cycles (AREA)
  • Sliding Valves (AREA)

Abstract

スプール弁(V)は、筒状であって内外を連通する複数のポート(6a,6b)を有するホルダ(6)と、筒状であってホルダ(6)内に軸方向に往復動可能に挿入されるとともに各ポート(6a,6b)のそれぞれに対応して対向可能な連通ポート(7a,7b)を開閉可能なスプール(7)と、スプール(7)を軸方向へ駆動するアクチュエータ(9)とを備え、各ポート(6a,6b)は、ホルダ(6)に対して軸方向にずれた位置に設けられ、各連通ポート(7a,7b)は、各ポート(6a,6b)の軸方向における配置と同じ配置でスプール(7)に対して軸方向にずれた位置に設けられている。

Description

スプール弁および緩衝器
 本発明は、スプール弁および緩衝器の改良に関する。
 従来、スプール弁としては、筒状であって内外を連通するポートを備えたハウジングと、ハウジング内に摺動自在に挿入される筒状のスプールと、スプールを付勢するスプールばねと、スプールばねの付勢力に抗してスプールを駆動するソレノイドとを備えたものが知られている(たとえば、特許文献1参照)。
 このようなスプール弁では、ソレノイドでハウジングに対してスプールを駆動して、スプールの外周をポートに対向させてポートを開閉したり、ポートの開き度合を調節したりして、流路面積を可変にする。このように構成されたスプール弁を緩衝器の伸縮時に作動油が通過する通路との途中に設ければ、通路を通過する作動油の流れに与える流路抵抗を可変にでき、緩衝器の減衰力を調節できる。
JP2013-139865A
 このようなスプール弁が全開になった時の流路面積を大きくすれば、流路面積の可変幅を大きくできるので、緩衝器の減衰力調整幅を大きくできる。従来のスプール弁では、ハウジングに対してスプールを軸方向に駆動して、ハウジング側のポートとスプール側の孔とを対向させると開状態となる。よって、スプール弁の全開時の流路面積を大きくする場合、ポートと孔の軸方向の長さを長くするとともにスプールの軸方向のストローク量を大きくすればよい。
 これに対して、車両の車体と車輪との間に介装される緩衝器は、車両の諸元に応じて全長に制約が課されるだけでなく、可能な限り長いストローク長が要求される。このような緩衝器にスプール弁を収容する場合、スプール弁の全長分だけ緩衝器のストローク長が犠牲になってしまうので、スプール弁におけるスプールの軸方向のストローク量を大きくできない。よって、従来のスプール弁では、全開時の流路面積を大きくできないという問題があった。
 そこで、本発明は、ストローク量を小さくしても全開時の流路面積を大きく確保できるスプール弁およびストローク長を確保しつつも大きな減衰力調整幅を実現できる緩衝器の提供を目的としている。
 上記課題を解決するスプール弁は、筒状であって内外を連通する複数のポートを有するホルダと、筒状であってホルダ内に軸方向に往復動可能に挿入されるとともに各ポートのそれぞれに対応して対向可能な連通ポートを開閉可能なスプールと、スプールを軸方向へ駆動するアクチュエータとを備え、各ポートは、ホルダに対して軸方向にずれた位置に設けられ、各連通ポートは、各ポートの軸方向における配置と同じ配置でスプールに対して軸方向にずれた位置に設けられている。
 このように構成されたスプール弁によれば、ホルダとスプールにそれぞれスプールの移動方向である軸方向へずれて、かつ、同一配置で複数のポートと連通ポートが設けられており、各ポートと各連通ポートを同時に対向させ得る。
 また、緩衝器は、シリンダと、シリンダ内に軸方向へ移動可能に挿入されてシリンダ内を伸側室と圧側室とに区画するピストンと、ピストンに連結されるとともに一端がシリンダ外へと突出するピストンロッドと、伸側室と圧側室とを連通する減衰通路と、減衰通路を迂回して伸側室と圧側室とを連通するバイパス路と、バイパス路の途中に設けられるスプール弁とを備える。
 このように構成された緩衝器では、スプール弁のストローク量を小さくしても全開時の流路面積を大きく確保できるので、スプール弁が大型化せず緩衝器に組み込んでも緩衝器のストローク長を犠牲にすることなく、バイパス路を通過する液体の抵抗を極小さくできる。
 本発明に係るスプール弁によれば、ストローク量を小さくしても全開時の流路面積を大きく確保でき、本発明の緩衝器によれば、ストローク長を確保しつつも大きな減衰力調整幅を実現できる。
図1は、本発明の一実施の形態に係る緩衝器である緩衝器の縦断面図である。 図2は、図1の一部を拡大して示した縦断面図である。 図3は、本発明の一実施の形態に係る緩衝器である緩衝器のピストン速度に対する圧側減衰力の特性を示した減衰力特性図である。 図4は、本発明の一実施の形態の一変形例における緩衝器の液圧回路図である。
 以下に本発明の実施の形態のスプール弁Vおよび緩衝器Dについて、図面を参照しながら説明する。いくつかの図面を通して付された同じ符号は、同じ部品或いは対応する部品を示す。また、本発明の実施の形態に係る緩衝器Dは、鞍乗型車両の前輪を懸架するフロントフォークに利用されている。以下の説明では、その緩衝器Dを含むフロントフォークが車両に取り付けられた状態での上下を、特別な説明がない限り、単に「上」「下」という。なお、スプール弁Vおよび緩衝器Dは、鞍乗型車両以外の車両にも利用できる。
 スプール弁Vは、図1および図2に示すように、筒状であって内外を連通する複数のポート6a,6bを有するホルダ6と、筒状であってホルダ6に軸方向に往復動可能に挿入されるとともにポート6a,6bのそれぞれに対応して対向可能な連通ポート7a,7bとを有してポート6a,6bを開閉可能なスプール7と、スプール7を軸方向へ駆動するアクチュエータとしてのソレノイド9とを備えて構成されている。
 そして、図1に示すように、スプール弁Vは、緩衝器Dに適用されている。本実施の形態では、緩衝器Dは、収縮時にのみ減衰力を発揮する片効きの緩衝器とされており、スプール弁Vは緩衝器Dの圧側減衰力の調節に利用されている。なお、図示はしないが、緩衝器Dは、鞍乗型車両のステアリングシャフトに連結されるブラケットによって伸長時にのみ減衰力を発揮する片効きの緩衝器と連結されている。よって、緩衝器Dと伸長時にのみ減衰力を発揮する緩衝器は、対を成して鞍乗型車両の前輪を支持するフロントフォークを形成し、協働して鞍乗型車両の車体の振動を抑制する。なお、スプール弁Vは、伸長時にのみ減衰力を発揮する緩衝器に利用されてもよいし、緩衝器Dが伸縮時に減衰力を発揮する場合には、スプール弁Vは、伸縮時の減衰力を調節するために利用されてもよい。
 まず、本発明の一実施の形態の緩衝器Dについて具体的に説明する。図2に示すように、緩衝器Dは、アウターチューブ10と、アウターチューブ10内に摺動自在に挿入されるインナーチューブ11とを有して構成されるテレスコピック型のチューブ部材Tを備える。
 そして、鞍乗型車両が凹凸のある路面を走行するなどして前輪が上下に振動すると、インナーチューブ11がアウターチューブ10に出入りしてチューブ部材Tが伸縮する。このように、チューブ部材Tが伸縮することを、緩衝器Dが伸縮するともいう。なお、チューブ部材Tは、正立型になっていて、アウターチューブ10が車軸側チューブ、インナーチューブ11が車体側チューブとなっていてもよい。
 つづいて、チューブ部材Tの上端となるアウターチューブ10の上端は、キャップ12で塞がれている。その一方、チューブ部材Tの下端となるインナーチューブ11の下端は、車軸側のブラケットBで塞がれている。さらに、アウターチューブ10とインナーチューブ11の重複部の間にできる筒状の隙間は、アウターチューブ10の下端に装着されてインナーチューブ11の外周に摺接する環状のシール部材13で塞がれている。
 このようにしてチューブ部材T内は密閉空間とされており、そのチューブ部材T内に緩衝器本体Sが収容されている。この緩衝器本体Sは、インナーチューブ11内に設けられるシリンダ1と、このシリンダ1内に摺動自在に挿入されるピストン2と、下端がピストン2に連結されるとともに上端がシリンダ1外へと突出してキャップ12に連結されるピストンロッド3とを有している。
 キャップ12は、アウターチューブ10に連結されているので、ピストンロッド3はアウターチューブ10に連結されているともいえる。さらに、シリンダ1は、インナーチューブ11に連結されている。このように、緩衝器本体Sは、アウターチューブ10とインナーチューブ11との間に介装されている。
 また、シリンダ1の上端には、環状のヘッド部材14が装着されており、このヘッド部材14の内側をピストンロッド3が軸方向へ移動自在に貫通する。ヘッド部材14は、ピストンロッド3を摺動自在に支えており、そのヘッド部材14とキャップ12との間に、コイルばねからなる懸架ばね15が介装されている。
 そして、緩衝器Dが伸縮してインナーチューブ11がアウターチューブ10に出入りすると、ピストンロッド3がシリンダ1に出入りしてピストン2がシリンダ1内を上下(軸方向)に移動する。
 また、緩衝器Dが収縮してピストンロッド3がシリンダ1内へと侵入すると、懸架ばね15が圧縮されて弾性力を発揮して緩衝器Dを伸長方向へ付勢する。このように、懸架ばね15は圧縮量に応じた弾性力を発揮して、車体を弾性支持する。
 なお、本実施の形態の緩衝器Dは片ロッド型で、ピストンロッド3がピストン2の片側からシリンダ1外へ延びている。しかし、緩衝器Dが両ロッド型になっていて、ピストンロッドがピストンの両側からシリンダ外へ延びていてもよい。さらには、ピストンロッド3がシリンダ1から下方へ突出して車軸側に連結されるとともに、シリンダ1が車体側に連結されていてもよい。また、懸架ばね15は、エアばね等のコイルばね以外のばねであってもよい。
 つづいて、シリンダ1内には、作動油等の液体が充填された液室が形成されており、この液室がピストン2で伸側室Laと圧側室Lbとに区画されている。ここでいう伸側室とは、ピストンで区画された二室のうち、緩衝器の伸長時にピストンで圧縮される方の部屋のことである。その一方、圧側室とは、ピストンで区画された二室のうち、緩衝器の収縮時にピストンで圧縮される方の部屋のことである。
 また、シリンダ1外、より詳しくは、緩衝器本体Sとチューブ部材Tとの間の空間は液溜室Rとされている。この液溜室Rには、シリンダ1内の液体と同じ液体が貯留されるとともに、その液面上側にエア等の気体の封入されたガス室Gが形成されている。このように、チューブ部材Tは、シリンダ1内の液体とは別に、液体を貯留するタンク16の外殻として機能する。
 そのタンク16内となる液溜室Rは、伸側室Laと連通されており、伸側室Laの圧力がタンク16内(液溜室R)の圧力と常に略同圧(タンク圧)となる。さらに、液溜室Rは、シリンダ1の下端に固定されたバルブケース4で圧側室Lbと仕切られている。このバルブケース4には、圧側室Lbと液溜室Rとを連通する吸込通路4aが形成されるとともに、この吸込通路4aを開閉する吸込バルブ40が装着されている。
 その吸込バルブ40は、伸側チェックバルブであり、緩衝器Dの伸長時に吸込通路4aを開いて、その吸込通路4aを液溜室Rから圧側室Lbへと向かう液体の流れを許容するが、緩衝器Dの収縮時には吸込通路4aを閉塞した状態に維持する。なお、本実施の形態の吸込バルブ40は、リーフバルブであるが、ポペットバルブ等であってもよい。
 また、ピストン2には、伸側室Laと圧側室Lbとを連通する伸側通路2aと減衰通路としての圧側通路2bが形成されるとともに、伸側通路2aを開閉する伸側チェックバルブ20と、圧側通路2bを圧側室Lbから伸側室Laへと向かう液体の流れに抵抗を与えるハード側減衰要素21が装着されている。
 ハード側減衰要素21は、ピストン2の上側に積層されるリーフバルブ21aと、このリーフバルブ21aと並列に設けられるオリフィス21bとを有して構成されている。
 リーフバルブ21aは、金属等で形成された薄い環状板、又はその環状板を積み重ねた積層体であって弾性を有し、外周側の撓みを許容された状態でピストン2に装着されている。そして、圧側室Lbの圧力が、リーフバルブ21aの外周部を上側へ撓ませる方向へ作用するようになっている。また、オリフィス21bは、ピストン2Rの弁座(符示せず)に離着座するリーフバルブ21aの外周部に設けられた切欠きで形成されているが、前記弁座に設けられた打刻等によって形成されてもよい。
 圧側室Lbは、緩衝器Dの収縮時にピストン2で圧縮されてその内圧が上昇し、伸側室Laの圧力よりも高くなる。このような緩衝器Dの収縮時にピストン速度が低速域にあり、圧側室Lbと伸側室Laとの差圧がリーフバルブ21aの開弁圧に満たない場合には、液体がオリフィス21bを通って圧側室Lbから伸側室Laへと向かうとともに、この液体の流れに対して抵抗が付与される。また、上記差圧が大きくなってリーフバルブ21aの開弁圧以上になると、リーフバルブ21aの外周部が撓んで、液体がその外周部とピストン2との間にできる隙間を通って圧側室Lbから伸側室Laへと向かうとともに、この液体の流れに対して抵抗が付与される。
 このように、オリフィス21bと、このオリフィス21bと並列されるリーフバルブ21aとを有して構成されるハード側減衰要素21は、緩衝器Dの収縮時に圧側室Lbから伸側室Laへと向かう液体の流れに抵抗を与える圧側の第一の減衰要素である。そして、この圧側のハード側減衰要素21による抵抗は、ピストン速度が低速域にある場合にはオリフィス21bに起因し、中高速域にある場合にはリーフバルブ21aに起因する。
 その一方、伸側チェックバルブ20は、緩衝器Dの伸長時に伸側通路2aを開いて、その伸側通路2aを伸側室Laから圧側室Lbへと向かう液体の流れを許容するが、緩衝器Dの収縮時には伸側通路2aを閉塞した状態に維持する。なお、本実施の形態の伸側チェックバルブ20は、リーフバルブであるが、ポペットバルブ等であってもよい。さらには、シリンダ1内での液体の吸込不足が生じなければ、伸側通路2aと伸側チェックバルブ20を省略してもよい。
 つづいて、ピストンロッド3には、ハード側減衰要素21を通過する液体の流量を変更するため、ハード側減衰要素21を迂回して伸側室Laと圧側室Lbとを連通するバイパス路3aの途中に設けられた流路面積を変更可能なスプール弁Vと、バイパス路3aの途中にスプール弁Vと直列に設けられるソフト側減衰要素50とが設けられている。
 より詳しくは、図2に示すように、ピストンロッド3は、スプール弁Vが挿入される筒状のヨーク31と、ヨーク31の先端となる図2中下端の開口部の内周に装着されるピストン保持部材30と、ヨーク31の末端側に連なってシリンダ1外へと延びる筒状のロッド本体32とを有する。ピストン保持部材30は、有底筒状のハウジング部30aと、このハウジング部30aの底部分から下方へ突出するピストン取付軸30bとを含み、このピストン取付軸30bの外周に環状のピストン2がハード側減衰要素21ともにナットNで固定されている。
 ピストン保持部材30におけるハウジング部30aの筒部分の内周には、その内側を上室30cと下室30dとに仕切るバルブケース5が固定されている。そのバルブケース5には、上室30cと下室30dを連通する通路5aが形成されており、その通路5aにソフト側減衰要素50が設けられている。さらに、ピストン保持部材30のピストン取付軸30bには、図2中下端である先端から開口して、圧側室Lbを上室30cおよび下室30dを介してスプール弁Vへ連通する縦孔30eが設けられている。ピストン取付軸30bの先端外周には、ナットNが螺着される螺子部30fが設けられている。さらに、ピストン取付軸30bには、その側方であって螺子部30fよりも図2中上方から開口して縦孔30eに連通する横孔30gが設けられている。ピストン取付軸30bの外周には、リーフバルブ21a、ピストン2、伸側チェックバルブ20および筒状のカラー19が装着されており、これらリーフバルブ21a、ピストン2、伸側チェックバルブ20および筒状のカラー19は、螺子部30fに螺着されるナットNとハウジング部30aとによって挟持されてピストン取付軸30bに固定される。
 リーフバルブ21aは、ピストン取付軸30bに内周が固定されて外周の撓みが許容されており、圧側通路2bを開閉し、伸側チェックバルブ20は、ピストン取付軸30bの外周で軸方向にスライドして伸側通路2aを開閉する。
 また、カラー19は、筒状であって、ピストン取付軸30bの外径よりも内径が大径な筒部19aと、筒部19aの図2中で下端内周に設けられてピストン取付軸30bの外周に嵌合するフランジ部19bと、筒部19aに設けられて筒部19aの内外を連通する複数の孔19cとを備えている。そして、カラー19は、ピストン取付軸30bの外周に前述のように取り付けられると、筒部19aが径方向にて横孔30gに対向して、ピストン取付軸30bの横孔30gが孔19cを介して圧側室Lbに連通される。
 なお、カラー19の孔19cの全部の流路面積は、横孔30gの全部の流路面積以上に設定されており、この条件を満たせば、孔19cの設置数は任意に設定できる。また、縦孔30eと横孔30gの合計の流路面積は、全開状態のスプール弁Vの流路面積以上となっていればよく、横孔30gの設置数は任意である。また、横孔30gの形状は任意であり、たとえば、ピストン取付軸30bの周方向に沿う長孔等とされてもよい。
 つづいて、ヨーク31は、ロッド本体32の先端外周から外周方向へ突出するフランジ部31aと、フランジ部31aから垂下されてスプール弁Vが挿入される収容筒31bと、収容筒31bの側方から開口して内部に通じる複数の透孔31cと、収容筒31bの外周であって反ピストン側端から延びて各透孔31cに通じる複数の溝31dとを備えて構成されている。よって、ヨーク31の外周であって反ピストン側端から各透孔31cにかけて複数の軸方向に延びる溝31dが設けられている。
 また、ヨーク31の下端の内周である収容筒31bの内周には、ハウジング部30aの上端内周に螺着する螺子部31eが設けられており、ヨーク31にピストン保持部材30が螺子締結によって装着されている。なお、ヨーク31とピストン保持部材30の締結は、溶接、圧入その他の螺子締結以外の締結方法を採用してもよい。このように、透孔31cによって伸側室Laとヨーク31の内側が連通されており、透孔31cと上室30cとをつなぐ通路の途中にスプール弁Vが設けられている。なお、ヨーク31は、スプール弁Vの全体を収容してもよいし、一部を収容するものであってもよい。
 また、スプール弁Vとソフト側減衰要素50を収容するヨーク31およびピストン保持部材30の外径は、シリンダ1の内径よりも小さく、これらで伸側室Laを仕切らないように配慮されている。
 なお、透孔31cは、ヨーク31の周方向に沿って等間隔に六個設けられているが、透孔31cの全部の流路面積と、ヨーク31とシリンダ1との間のうち透孔31cが設けられる位置よりも図2中上方の反ピストン側の部位における環状隙間Xの流路面積は、全開状態のスプール弁Vの流路面積以上となっている。透孔31cと溝31dの設置数は任意である。また、透孔31cの形状は任意であり、ヨーク31の周方向に沿う長孔等とされてもよい。また、本実施の形態では、溝31dは、透孔31c毎に対応させて六個設けられているが、一つの溝31dが複数の透孔31cに連通されてよい。
 また、溝31dは、本実施の形態では、ヨーク31の外周に軸方向に沿って設けられており、溝31dの長さはヨーク31の反ピストン側端から透孔31cまでを接続する上で最短となる。よって、溝31dがヨーク31の軸方向に対して斜めに形成されたり蛇行したりする場合に比較して、液体が溝31dを通過する際の抵抗が最少となるように配慮されている。
 本実施の形態では、バイパス路3aは、前述のヨーク31またはピストン保持部材30に形成された透孔31c、上室30c、下室30d、縦孔30eおよび横孔30gを有して構成されており、ハード側減衰要素21を迂回して伸側室Laと圧側室Lbとを連通している。そして、このバイパス路3aの途中にスプール弁Vとソフト側減衰要素50が直列に設けられている。
 ソフト側減衰要素50は、バルブケース5の上側に積層されるリーフバルブ50aと、このリーフバルブ50aと並列に設けられるオリフィス50bとを有して構成されている。
 リーフバルブ50aは、金属等で形成された薄い環状板、又はその環状板を積み重ねた積層体であって弾性を有し、外周側の撓みを許容された状態でバルブケース5に装着される。そして、下室30dの圧力が、リーフバルブ50aの外周部を上側へ撓ませる方向へ作用するようになっている。また、オリフィス50bは、バルブケース5の弁座に離着座するリーフバルブ50aの外周部に設けられた切欠きで形成されているが、前記弁座に設けられた打刻等によって形成されてもよい。
 下室30dの圧力は、緩衝器Dの収縮時であってスプール弁Vがバイパス路3aを開いているときに上室30cの圧力よりも高くなる。そして、このような緩衝器Dの収縮時にピストン速度が低速域にあり、上室30cと下室30dの差圧がリーフバルブ50aの開弁圧に満たない場合には、液体がオリフィス50bを通って下室30dから上室30c、即ち、圧側室Lbから伸側室Laへ向かうとともに、この液体の流れに対して抵抗が付与される。また、上記差圧が大きくなってリーフバルブ50aの開弁圧以上になると、リーフバルブ50aの外周部が撓んで、液体がその外周部とバルブケース5との間にできる隙間を通って下室30dから上室30c、即ち、圧側室Lbから伸側室Laへと向かうとともに、この液体の流れに対して抵抗が付与される。
 このように、オリフィス50bと、このオリフィス50bと並列されるリーフバルブ50aとを有して構成されるソフト側減衰要素50は、緩衝器Dの収縮時に圧側バイパス路3aを圧側室Lbから伸側室Laへと向かう液体の流れに抵抗を与える圧側の第二の減衰要素である。そして、このソフト側減衰要素50による抵抗は、ピストン速度が低速域にある場合にはオリフィス50bに起因し、中高速域にある場合にはリーフバルブ50aに起因する。
 また、ソフト側減衰要素50のリーフバルブ50aは、ハード側減衰要素21のリーフバルブ21aと比較してバルブ剛性の低い(撓みやすい)バルブであり、流量が同じである場合、液体の流れに与える抵抗(圧力損失)が小さい。換言すると、液体は、同一条件下において、リーフバルブ21aよりもリーフバルブ50aの方を通過しやすい。また、ソフト側減衰要素50のオリフィス50bは、ハード側減衰要素21のオリフィス21bよりも開口面積が大きい大径オリフィスであり、流量が同じである場合、液体の流れに与える抵抗(圧力損失)が小さい。
 つづいて、スプール弁Vは、図2に示すように、ピストンロッド3内に固定される筒状のホルダ6と、筒状であってホルダ6内に往復動可能に挿入されるスプール7と、スプール7を軸方向に駆動するソレノイド9と、ソレノイド9の推力に対向してスプール7を付勢する付勢ばね8とを備えて構成されている。そして、スプール弁Vは、ホルダ6内におけるスプール7の位置を調節して開度を大小調節する。
 より具体的には、ホルダ6は、ピストンロッド3内のバルブケース5よりも上側に、軸方向の一端を上側(ヨーク31側)へ、他端を下側(バルブケース5側)へ向けた状態で、ピストンロッド3の中心軸に沿って配置されている。さらに、ホルダ6には、軸方向にずれた位置に設けられて径方向に貫通する複数のポート6a,6bが形成されている。ポート6aは、ホルダ6に対して周方向に沿って等間隔に設けられた四つの長孔6a1,6a2で構成されている。なお、図2は断面図となっているので、紙面の手前側と奥側の長孔が図示されていない。ポート6bは、図2中で、ホルダ6に対してポート6aよりも下方にずれた位置に配置されて周方向に沿って等間隔に設けられた四つの長孔6b1,6b2で構成されている。なお、図2は断面図となっているので、紙面の手前側と奥側の長孔が図示されていない。このようにホルダ6には、軸方向にずれた位置に複数のポート6a,6bを備えている。ポート6a,6bは、ヨーク31の透孔31cを介して伸側室Laに連通されており、スプール7で開閉される。また、ホルダ6は、図2中下端に、ピストン保持部材30のハウジング部30aの内周に嵌合するフランジ部6dを備えている。
 スプール7は、筒状で、ホルダ6内に摺動自在に挿入されており、図2中上下方向に往復動可能とされている。より詳細には、スプール7は、ポート6aに対応してポート6aに対向可能な連通ポート7aと、ポート6bに対応してポート6bに対向可能な連通ポート7bとを備えている。連通ポート7a,7bは、スプール7に対してスプール7の移動方向である軸方向にずれた位置に配置されており、具体的には、ポート6a,6bのホルダ6に対する軸方向配置と同じ配置でスプール7に設けられている。つまり、連通ポート7a,7bの軸方向の間隔は、ポート6a,6bの軸方向の間隔と等しく、ポート6aが対応する連通ポート7aに連通すると、ポート6bと連通ポート7bも連通する。よって、任意のポート6a(6b)が対応する連通ポート7a(7b)に連通されると、全ポート6a,7bがそれぞれ対応する連通ポート7a,7bに連通する。また、連通ポート7aは、スプール7に対して周方向に沿って等間隔に設けられた四つの長孔7a1,7a2,7a3で構成されている。なお、図2は断面図となっているので、手前側の長孔が図示されていない。連通ポート7bは、図2中で、スプール7に対して連通ポート7aよりも下方にずれた位置に配置されて周方向に沿って等間隔に設けられた四つの長孔7b1,7b2,7b3で構成されている。なお、図2は断面図となっているので、手前側の長孔が図示されていない。「各ポート6a,6bのそれぞれに対応する連通ポート7a,7b」との表現は、各ポート6a,6bのそれぞれ対して一対一で各連通ポート7a,7bが対応しており、ポート6aに連通ポート7aが、ポート6bに連通ポート7bが、それぞれ対応していることを意味してする。
 また、スプール7の外周には、周方向に沿って設けられて全連通ポート7aが連通される環状溝7cと、周方向に沿って設けられて全連通ポート7bが連通される環状溝7dとを備えている。本実施の形態では、環状溝7cは、連通ポート7aに正対していて、その上下方向幅が連通ポート7aの図2中上下方向幅に一致し、環状溝7dは、連通ポート7bに正対していて、その図2中上下方向幅は、連通ポート7bの図2中上下方向幅に一致している。そして、環状溝7cと環状溝7dのスプール7の軸方向における間隔は、ポート6a,6bの軸方向における間隔に等しい。
 このように構成されたスプール7は、ホルダ6内に挿入されると、ホルダ6に設けられたポート6a,6bを開閉する。具体的には、スプール7の外周に設けた環状溝7cが対応するポート6aに対向するとともに、スプール7の外周に設けた環状溝7dが対応するポート6bに対向する状態では、スプール7は、ポート6a,6bを連通ポート7a,7bを介してスプール7内に連通させる。ポート6a,6bは、ヨーク31に設けた透孔31cを通じて伸側室Laに連通されている。他方、スプール7内は、上室30c、バルブケース5に設けた通路5a、下室30dおよび縦孔30eを介して圧側室Lbに連通されている。よって、バイパス路3aの途中にスプール弁Vが設けられており、ポート6a,6bがスプール7内に連通するとスプール弁Vが開弁してバイパス路3aが開放され、バイパス路3aを通じて伸側室Laと圧側室Lbとが連通される。
 そして、ホルダ6に対してスプール7が移動すると、ポート6aが環状溝7cに対向する面積およびポート6bが環状溝7dに対向する面積が変化するので、スプール7のホルダ6に対する軸方向位置に応じて流路面積を変更できる。スプール7がホルダ6に対して図2中下方に移動してポート6a,6bがそれぞれ環状溝7c,7dに完全に対向しなくなってスプール7の外周で閉塞されると、ポート6a,6bと対応する連通ポート7a,7bとの連通が絶たれてバイパス路3aが遮断される。スプール7が図2中に示した位置からホルダ6に対して下方へ移動して、環状溝7cがポート6aに対向し始めると同時に環状溝7dもポート6bに対向し始める。また、環状溝7cとポート6aとが対向するとともに環状溝7dとポート6bとが対向している状態から、スプール7がホルダ6に対して上方へ移動して、環状溝7cがポート6aに対向しなくなると同時に環状溝7dもポート6bに対向しなくなる。このように、スプール7がホルダ6に対して軸方向に移動すると、ポート6aとポート6bの開放度合が変化してスプール弁Vの流路面積が大小変化する。
 また、スプール7の上端にはプレート70が積層されており、そのプレート70にソレノイド9の後述するプランジャ9aが当接している。その一方、スプール7の下端には、付勢ばね8が当接し、スプール7を移動方向の一方である図2中上方へ向けて付勢している。付勢ばね8は、外周に対して内周が図2中上下方向に変位すると内周を元の位置へ戻す付勢力を発揮する螺旋形状をしたばねとされている。付勢ばね8は、外周が付勢ばね8の下方であってピストン保持部材30のハウジング部30aの内周に嵌合される筒状のスペーサ22とホルダ6のフランジ部6dとにより挟持されてピストンロッド3に固定されている。そして、付勢ばね8の内周はスプール7の図2中下端外周に設けた環状凹部7eに嵌合しており、付勢ばね8は、ホルダ6に対してスプール7を図2中上方となる移動方向の一方へ向けて付勢しており、スプール7がホルダ6に対して図2中下方へ変位するとスプール7を元の位置へ戻す付勢力を発揮する。スプール7は、付勢ばね8の付勢力によって附勢される一方、ソレノイド9から付勢ばね8の付勢力に対向する推力を受けない状態では、図2に示すように、最も上方に位置決めされて環状溝7c,7dをポート6a,6bに対向させない。よって、スプール弁Vは、非通電時には、バイパス路3aを遮断する。
 また、スプール弁Vのソレノイド9は、ヨーク31内に収容されており、詳しくは図示しないが、コイルを含む筒状のステータと、このステータ内に移動自在に挿入される筒状の可動鉄心と、可動鉄心の内周に装着されて先端がプレート70に当接するプランジャ9aとを有している。このソレノイド9に電力供給するハーネス90は、ロッド本体32の内側を通って外方へ突出し、電源に接続されている。
 そして、そのハーネス90を通じてソレノイド9へ通電すると、可動鉄心が下側へ引き寄せられてプランジャ9aが下向きに移動し、スプール7が付勢ばね8の付勢力に抗して押し下げられる。すると、環状溝7cを介してポート6aと連通ポート7aが連通するとともに環状溝7dを介してポート6bと連通ポート7bが連通するようになってスプール弁Vが開く。また、そのスプール弁Vの開度とソレノイド9への通電量との関係は正の比例定数をもつ比例関係となり、通電量を増やすほど開度が大きくなる。さらに、ソレノイド9への通電を断つとスプール弁Vが閉じる。
 このように、本実施の形態のスプール弁Vは、常閉型で、その弁体となるスプール7を付勢ばね8で閉方向へ付勢するとともに、ソレノイド9で開方向の推力をスプール7に与えるようになっている。また、スプール弁Vの通電量に比例して開度が大きくなり、その開度の増加に伴いバイパス路3aの流路面積が大きくなる。よって、スプール弁Vへの通電量に比例してバイパス路3aの流路面積が大きくなるともいえる。
 つづいて、本実施の形態の緩衝器Dは、ハード側減衰要素21の流量を手動で調節するための手動バルブ41が設けられている。手動バルブ41は、図1に示すように、緩衝器Dのボトム部分に設けられており、圧側室Lbと液溜室Rとを連通する排出通路4bの流路面積を手動操作によって変更できる。
 この手動バルブ41は、排出通路4bの途中に設けられた環状の弁座(符示せず)に離着座するニードル状の弁体41aを含む。そして、手動バルブ41を回転操作すると、その回転方向により弁体41aが弁座に遠近して排出通路4bの流路面積が大小調節される。本実施の形態では、スプール弁Vへの通電が正常になされる正常時には、弁体41aを弁座に着座させ、手動バルブ41で排出通路4bの連通を遮断した状態とする。
 以上をまとめると、緩衝器Dは、図1に示すように、シリンダ1と、シリンダ1内に摺動自在に挿入されてシリンダ1内を伸側室Laと圧側室Lbとに区画するピストン2と、先端がピストン2に連結されるとともに末端がシリンダ1外へと突出するピストンロッド3と、シリンダ1内の伸側室Laに接続されるタンク16とを備え、伸側室Laの圧力がタンク圧となっている。
 さらに、緩衝器Dには、伸側室Laと圧側室Lbとを連通する通路として、伸側通路2a、圧側通路2b、およびバイパス路3aが設けられている。伸側通路2aには、伸側室Laから圧側室Lbへ向かう液体の一方向流れのみを許容する伸側チェックバルブ20が設けられており、圧側室Lbから伸側室Laへ向かう液体は、圧側通路2bまたはバイパス路3aを通るようになっている。
 そして、圧側通路2bには、オリフィス21bと、これに並列されるリーフバルブ21aを有して構成されていて、液体の流れに抵抗を与えるハード側減衰要素21が設けられている。その一方、バイパス路3aには、オリフィス21bより開口面積の大きいオリフィス50bと、これに並列されるリーフバルブ21aよりもバルブ剛性の低いリーフバルブ50aを有して構成されていて、液体の流れに与える抵抗を小さくしたソフト側減衰要素50が設けられている。
 さらに、そのバイパス路3aには、ソフト側減衰要素50と直列にスプール弁Vが設けられており、そのスプール弁Vへの通電量の調節によりバイパス路3aの流路面積を変更できるようになっている。そして、スプール弁Vは、常閉型で、通電量に比例してバイパス路3aの流路面積を大きくするように設定されている。
 また、緩衝器Dには、圧側室Lbとタンク16とを連通する通路として、吸込通路4aと排出通路4bが設けられている。吸込通路4aには、タンク16から圧側室Lbへ向かう液体の一方向流れのみを許容する吸込バルブ40が設けられている。その一方、排出通路4bには、手動操作により開閉される常閉型の手動バルブ41が設けられている。
 緩衝器Dは、以上のように構成されており、緩衝器Dの収縮時には、ピストンロッド3がシリンダ1内へ侵入してピストン2が圧側室Lbを圧縮する。正常時には手動バルブ41が排出通路4bを閉じている。このため、緩衝器Dの収縮時には、圧側室Lbの液体が圧側通路2bまたはバイパス路3aを通って伸側室Laへと移動する。当該液体の流れに対しては、ハード側減衰要素21またはソフト側減衰要素50によって抵抗が付与されて、その抵抗に起因する圧側減衰力が発生する。
 また、正常時における緩衝器Dの収縮時に、ハード側減衰要素21とソフト側減衰要素50を通過する液体の分配比は、バイパス路3aの流路面積に応じて変わり、これにより減衰係数が大小して発生する圧側減衰力が大小調節される。
 具体的には、前述のように、ハード側減衰要素21およびソフト側減衰要素50は、それぞれオリフィス21b,50bと、これに並列されるリーフバルブ21a,50aとを有して構成されている。このため、減衰力特性は、ピストン速度が低速域にある場合、オリフィス特有のピストン速度の二乗に比例するオリフィス特性となり、ピストン速度が中高速域にある場合には、リーフバルブ特有のピストン速度に比例するバルブ特性となる。
 そして、スプール弁Vへの通電量を増やして開度を大きくすると、バイパス路3aの流量が増えてハード側減衰要素21を通過する液体の割合が減るとともに、ソフト側減衰要素50を通過する液体の割合が増える。ソフト側減衰要素50のオリフィス50bは、ハード側減衰要素21のオリフィス21bよりも開口面積の大きい大径オリフィスであるので、ソフト側減衰要素50側へ向かう液体の割合が増えるソフトモードでは、減衰係数が低速域と中高速域の両方で小さくなってピストン速度に対して発生する圧側減衰力が小さくなる。そして、スプール弁Vへ供給する電流量を最大にしたときに、減衰係数が最小になってピストン速度に対して発生する圧側減衰力が最小となる。
 これとは逆に、スプール弁Vへの通電量を減らして開度を小さくすると、バイパス路3aの流量が減ってハード側減衰要素21を通過する液体の割合が増えるとともに、ソフト側減衰要素50を通過する液体の割合が減る。すると、減衰係数が低速域と中高速域の両方で大きくなってピストン速度に対する圧側減衰力が大きくなる。そして、スプール弁Vへの通電を断ってスプール弁Vを閉じるとバイパス路3aの連通が遮断されるので、全流量がハード側減衰要素21を通過するようになる。すると、減衰係数が最大になって、ピストン速度に対して発生する圧側減衰力が最大となる。
 このように、第一、第二の減衰要素であるハード側減衰要素21とソフト側減衰要素50を通過する液体の分配比をスプール弁Vで変えると減衰係数が大小し、図3に示すように、圧側の減衰力特性を示す特性線の傾きが変わる。そして、その特性線の傾きを最大にして発生する減衰力を大きくするハードモードと、傾きを最小にして発生する減衰力を小さくするソフトモードとの間で圧側減衰力が調節される。
 そして、ソフトモードでは、減衰力特性を示す特性線の傾きが低速域と中高速域の両方で小さくなるとともに、ハードモードでは、減衰力特性を示す特性線の傾きが低速域と中高速域の両方で大きくなる。このため、減衰力特性がオリフィス特性からバルブ特性へと移行する際の変化がどのモードでも緩やかである。
 さらに、ソフト側減衰要素50は、オリフィス50bと並列に、バルブ剛性の低いリーフバルブ50aを有している。このため、ハード側減衰要素21のリーフバルブ21aとしてバルブ剛性が高く、開弁圧の高いバルブを採用し、圧側減衰力を大きくする方向の調整幅を大きくしても、ソフトモードでの減衰力が過大にならない。
 また、フェール時(非正常時)には、スプール弁Vへの通電が断たれてハードモードに切り替わる。このとき、手動バルブ41を開けば、圧側室Lbの液体が圧側通路2bのみならず排出通路4bをも通過するようになるので、ハード側減衰要素21を通過する液体の流量が減って発生する圧側減衰力が低減される。
 また、緩衝器Dの収縮時にシリンダ1内に侵入したピストンロッド3体積分の液体は、伸側室Laからタンク16へと排出される。
 反対に、緩衝器Dの伸長時には、伸側チェックバルブ20が開き、伸側室Laの液体が伸側通路2aを通って圧側室Lbへと移動する。このとき、液体は伸側チェックバルブ20を比較的抵抗なく通過できる。さらに、伸側室Laは、タンク16と連通されていてタンク圧に維持される。よって、緩衝器Dは、伸長側の減衰力を発揮しない。なお、前述したように、緩衝器Dは、伸長時にのみ減衰力を発生する緩衝器と対を成してフロントフォークを構成しているので、前輪と車体が離間する場合には伸長時にのみ減衰力を発揮する緩衝器が車体の振動を抑制する。
 以下に、本発明の一実施の形態に係るスプール弁Vとスプール弁Vを備えた緩衝器Dの作用効果について説明する。
 スプール弁Vは、筒状であって内外を連通する複数のポート6a,6bを有するホルダ6と、筒状であってホルダ6内に軸方向に往復動可能に挿入されるとともに各ポート6a,6bのそれぞれに対応して対向可能な連通ポート7a,7bを開閉可能なスプール7と、スプール7を軸方向へ駆動するソレノイド(アクチュエータ)9とを備え、各ポート6a,6bは、ホルダ6に対して軸方向にずれた位置に設けられ、各連通ポート7a,7bは、各ポート6a,6bの軸方向における配置と同じ配置でスプール7に対して軸方向にずれた位置に設けられている。
 このように構成されたスプール弁Vによれば、ホルダ6とスプール7にそれぞれスプール7の移動方向である軸方向へずれて、かつ、同一配置で複数のポート6a,6bと連通ポート7a,7bが設けられており、各ポート6a,6bと各連通ポート7a,7bを同時に対向させ得る。よって、本発明のスプール弁Vによれば、ホルダ6に対してスプール7のストローク量を小さくしても全開時に大きな流路面積を確保できる。なお、本実施の形態では、軸方向にずれた位置に二つのポート6a,6bと二つの連通ポート7a,7bを設けているが、三つ以上のポートと連通ポートを設けてもよい。
 また、本実施の形態では、ポート6a,6bは、それぞれホルダ6の周方向に沿って設けた長孔6a1,6a2,6a3,6b1,6b2,6b3で構成されており、ポート6a自体の流路面積も大きく確保できる。
 なお、ポート6a,6bは、ホルダ6の強度低下を招かないのであれば、一つの長孔で形成されてもよいが、複数の長孔で形成されるとホルダ6の剛性を確保しつつ、流路面積を大きくできるという利点がある。連通ポート7a,7bについても同様に、スプール7の強度低下を招かないのであれば、一つの長孔で形成されてもよいが、複数の長孔で形成されるとスプール7の剛性を確保しつつ、流路面積を大きくできるという利点がある。なお、本実施の形態では、アクチュエータをソレノイド9としているが、アクチュエータは、スプール7を軸方向へ駆動できるものであればよいので、ソレノイド以外にも送り螺子機構とモータとで構成される電動アクチュエータや油圧利用のアクチュエータとされてもよい。
 また、本実施の形態に係る緩衝器Dは、シリンダ1と、このシリンダ1内に軸方向へ移動可能に挿入されてシリンダ1内を伸側室Laと圧側室Lbとに区画するピストン2と、このピストン2に連結されるとともに一端がシリンダ1外へと突出するピストンロッド3と、伸側室Laと圧側室Lbとを連通する圧側通路(減衰通路)2bと、圧側通路(減衰通路)2bを迂回して伸側室Laと圧側室Lbとを連通するバイパス路3aと、バイパス路3aの途中に設けられるスプール弁Vとを備える。
 このように構成された緩衝器Dでは、スプール弁Vのストローク量を小さくしても全開時の流路面積を大きく確保できるので、スプール弁が大型化せず緩衝器Dに組み込んでも緩衝器Dのストローク長を犠牲にすることなく、バイパス路3aを通過する液体の抵抗を極小さくできる。よって、本発明の緩衝器Dによれば、ストローク長を確保しつつも大きな減衰力調整幅を実現できる。
 また、本実施の形態では、上記緩衝器Dは、圧側室Lbから伸側室Laへ向かう液体の流れに抵抗を与えるハード側減衰要素21と、このハード側減衰要素21を迂回して圧側室Lbと伸側室Laとを連通するバイパス路3aの流路面積を変更可能なスプール弁Vと、バイパス路3aにスプール弁Vと直列に設けられるソフト側減衰要素50とを備えている。そして、ハード側減衰要素21がオリフィス21bと、このオリフィス21bと並列に設けられるリーフバルブ21aとを有して構成されている。その一方、ソフト側減衰要素50は、オリフィス21bよりも開口面積の大きいオリフィス(大径オリフィス)50bを有して構成されている。
 上記構成によれば、緩衝器Dの収縮時に発生する減衰力の特性は、ピストン速度が低速域にある場合には、オリフィス特有のオリフィス特性となり、ピストン速度が中高速域にある場合には、リーフバルブ特有のバルブ特性となる。そして、電磁弁Vでバイパス路3aの開口面積を変更すれば、緩衝器Dの収縮時に圧側室Lbから伸側室Laへと移動する液体のうち、ハード側減衰要素21とソフト側減衰要素50のそれぞれを通過する流量の分配比が変わるので、ピストン速度が低速域にある場合の減衰係数と、中高速域にある場合の減衰係数の両方を自由に設定できて、ピストン速度が中高速域にある場合の圧側減衰力の調整幅を大きくできる。
 さらに、バイパス路3aの開口面積を大きくするソフトモードでは、ピストン速度が低速域にある場合の減衰係数と、中高速域にある場合の減衰係数の両方が小さくなる。その一方、バイパス路3aの開口面積を小さくするハードモードでは、ピストン速度が低速域にある場合の減衰係数と、中高速域にある場合の減衰係数の両方が大きくなる。このため、圧側減衰力の特性が低速域でのオリフィス特性から中高速域でのバルブ特性に変化する際に、その特性線の傾きの変化は、どのモードにおいても緩やかになる。これにより、本実施の形態に係る緩衝器Dを車両に搭載した場合には、上記傾きの変化に起因する違和感を軽減し、車両の乗り心地を良好にできる。
 また、本実施の形態の緩衝器Dでは、ソフト側減衰要素50が前記オリフィス(大径オリフィス)50bと、このオリフィス50bと並列に設けられるリーフバルブ50aを有して構成されている。このように、ソフト側減衰要素50にもリーフバルブ50aを設けると、ハード側減衰要素21のリーフバルブ21aをバルブ剛性が高く、開弁圧の高いバルブにしても、ソフトモードでの減衰力が過大にならない。つまり、上記構成によれば、ハード側減衰要素21のリーフバルブ21aとしてバルブ剛性の高いバルブを採用できる。そして、そのようにすると、圧側減衰力を大きくする方向へ減衰力の調整幅が大きくなるので、ピストン速度が中高速域にある場合の圧側減衰力の調整幅を一層大きくできる。
 また、本実施の形態の緩衝器Dでは、ピストン2がピストンロッド3の他端に連結されて片ロッド型になっている。さらに、緩衝器Dは、伸側室Laに接続されるタンク16と、このタンク16から圧側室Lbへ向かう液体の流れのみを許容する吸込バルブ40とを備えている。当該構成によれば、シリンダ1に出入りするピストンロッド3の体積分をタンク16で補償できる。さらには、緩衝器Dを圧縮行程でのみ減衰力を発揮する片効きの緩衝器にできる。
 また、本実施の形態の緩衝器Dでは、スプール弁Vは、通電量に比例して開度が変化するように設定されている。当該構成によれば、バイパス路3aの開口面積を無段階で変更できる。
 また、本実施の形態の緩衝器Dは、圧側室Lbとタンク16とを連通する排出通路4bの流路面積を手動操作によって変更可能な手動バルブ41を備えている。当該構成によれば、フェール時にスプール弁Vを閉じるようにしても、手動バルブ41を手動で開けば発生する圧側減衰力が低減される。このため、フェールモードでの圧側減衰力が過大になるのを防止でき、車両の乗り心地を良好にできる。
 さらに、本実施の形態に係る緩衝器Dでは、ヨーク31が側方から開口して内部に通じてバイパス路3aの一部を成す複数の透孔31cと、外周に設けられて反ピストン側端から延びて透孔31cに通じる溝31dとを有している。このように構成された緩衝器Dでは、スプール弁Vが挿入されてシリンダ1との間の環状隙間が一番狭くなるヨーク31の外周に透孔31cと溝31dが形成されるので、シリンダ1とヨーク31との環状隙間Xの流路面積が拡大される。この緩衝器Dでは、ピストンロッド3内にソレノイド9を備えたスプール弁Vを収容しても環状隙間Xにおける流路抵抗を低減でき、最小の減衰力が環状隙間Xの流路抵抗で決まってしまう問題を解消でき、スプール弁Vにより最小の減衰力を調整できる。よって、本発明の緩衝器Dによれば、ソレノイド9を利用したスプール弁Vを備えていても、減衰力調整幅を大きくできるとともにフルソフト時の減衰力も低くできる。
 また、本実施の形態では、溝31dは、ヨーク31の外周に軸方向に沿って設けられている。このように構成された緩衝器Dによれば、溝31dの長さがヨーク31の反ピストン側端から透孔31cまでを接続する上で最短となって、液体が溝31dを通過する際の抵抗が最少となるので、より一層フルソフト時の減衰力を低減でき車両における乗心地を向上できる。
 さらに、本実施の形態に係る緩衝器Dにおけるバイパス路(減衰通路)3aは、ピストンロッド3の先端から開口して圧側室Lbをスプール弁Vへ連通する縦孔30eと、ピストンロッド3の側方から開口して圧側室Lbを縦孔30eへ連通する横孔30gとを含んで形成されている。
 このように構成された緩衝器Dでは、ピストンロッド3にスプール弁Vに通じるバイパス路(減衰通路)3aを設ける上で、流路面積が一番狭くなる縦孔30eに加えて、横孔30gを設けたので、バイパス路(減衰通路)3aにおける流路面積が拡大される。この緩衝器Dでは、ピストンロッド3内にソレノイド9を備えたスプール弁Vを収容してもバイパス路(減衰通路)3aにおける流路抵抗を低減でき、最小の減衰力がピストンロッド3に設けられる縦孔30eの流路抵抗で決まってしまう問題を解消でき、スプール弁Vにより最小の減衰力を調整できる。よって、本発明の緩衝器Dによれば、ソレノイド9を利用したスプール弁を備えていても、減衰力調整幅を大きくできるとともにフルソフト時の減衰力も低くできる。
 また、本実施の形態の緩衝器Dでは、ピストンロッド3が外周にピストン2が装着されるとともにピストン2を固定するナットNが螺着されるピストン取付軸30bを有し、筒状であって内外を連通する孔19cを有してピストン取付軸30bの外周に配置されるとともにピストン2とナットNとの間に介装されるカラー19を備え、横孔30gがピストン取付軸30bのカラー19に対向する位置に開口している。このように構成された緩衝器Dでは、ピストン取付軸30bにピストン2およびナットNを装着しても、ピストン取付軸30bに設けた横孔30gをカラー19に設けた孔19cよって圧側室Lbに連通させ得る。よって、本実施の形態の緩衝器Dによれば、簡素な形状のカラー19を設けるだけで横孔30gを圧側室Lbに連通させ得るので、ピストン2やナットNに加工を施して複雑な形状の孔を設けて横孔30gを圧側室Lbに連通させる必要が無くなり、製造コストが安価となる。
 なお、本実施の形態では、緩衝器Dを収縮時にのみ減衰力を発揮する片効きの緩衝器としているが、図4の液圧回路図で示した緩衝器のように、圧側通路2bにハード側減衰要素21の代わりに圧側室Lbから伸側室Laへ向かう液体の流れのみを許容するチェックバルブ60を設け、伸側通路2aを減衰通路として伸側室Laから圧側室Lbへ向かう液体の流れに抵抗を与えるハード側減衰要素61を設け、バイパス路3aにソフト側減衰要素50の代わりに伸側室Laから圧側室Lbへと向かう液体の流れに抵抗を与えるソフト側減衰要素62を設け、吸込通路4aにおける吸込バルブ40を廃止するとともに、排出通路4bおよび手動バルブ41を廃止して、緩衝器Dを伸長時にのみ減衰力を発揮する緩衝器としてもよい。このように緩衝器Dを構成すると、リーフバルブを有して構成されるハード側減衰要素とソフト側減衰要素を通過する液体の分配比をスプール弁Vで変えると減衰係数が大小するので、伸側の減衰力特性を示す特性線の傾きを圧側のみで減衰力を発揮する緩衝器Dと同様に変えられる。
 また、各実施の形態において、ピストン速度が通常の速度域にある場合の減衰力特性をバルブ特性にする必要が無ければ、バイパス路3aにスプール弁Vのみを設けて、ソフト側減衰要素50については省略してもよいし、ハード側減衰要素21についても廃止してスプール弁Vのみで収縮、伸長或いは伸縮両側の減衰力を調整してもよい。
 以上、本発明の好ましい実施の形態を詳細に説明したが、特許請求の範囲から逸脱しない限り、改造、変形、および変更が可能である。本願は、2019年3月4日に日本国特許庁に出願された特願2019-038123に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。
1・・・シリンダ、2・・・ピストン、2b・・・圧側通路(減衰通路)、3・・・ピストンロッド、3a・・・バイパス路、6・・・ホルダ、6a,6b・・・ポート、7・・・スプール、7a,7b・・・連通ポート、9・・・ソレノイド(アクチュエータ)、D・・・緩衝器、La・・・伸側室、Lb・・・圧側室、V・・・スプール弁
 

Claims (2)

  1.  スプール弁であって、
     筒状であって内外を連通する複数のポートを有するホルダと、
     筒状であって前記ホルダ内に軸方向に往復動可能に挿入されるとともに、前記各ポートのそれぞれに対応して対向可能な連通ポートとを有して前記ポートを開閉可能なスプールと、
     前記スプールを軸方向へ駆動するアクチュエータとを備え、
     各ポートは、前記ホルダに対して軸方向にずれた位置に設けられ、
     各連通ポートは、各ポートの軸方向における配置と同じ配置で前記スプールに対して軸方向にずれた位置に設けられている
     スプール弁。
  2.  緩衝器であって、
     シリンダと、
     前記シリンダ内に軸方向へ移動可能に挿入されて前記シリンダ内を伸側室と圧側室とに区画するピストンと、
     前記ピストンに連結されるとともに一端が前記シリンダ外へと突出するピストンロッドと、
     前記伸側室と前記圧側室とを連通する減衰通路と、
     前記減衰通路を迂回して前記伸側室と前記圧側室とを連通するバイパス路と、
     前記バイパス路の途中に設けられる請求項1に記載のスプール弁とを備えた
     緩衝器。
     
PCT/JP2020/008373 2019-03-04 2020-02-28 スプール弁および緩衝器 WO2020179677A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019038123A JP2020143677A (ja) 2019-03-04 2019-03-04 スプール弁および緩衝器
JP2019-038123 2019-03-04

Publications (1)

Publication Number Publication Date
WO2020179677A1 true WO2020179677A1 (ja) 2020-09-10

Family

ID=72337074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008373 WO2020179677A1 (ja) 2019-03-04 2020-02-28 スプール弁および緩衝器

Country Status (2)

Country Link
JP (1) JP2020143677A (ja)
WO (1) WO2020179677A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302638A (ja) * 1992-04-27 1993-11-16 Nippondenso Co Ltd 減衰力可変ショックアブソーバー
JP2003106473A (ja) * 2001-07-13 2003-04-09 Eaton Corp 荷重を支える電磁弁のアセンブリと、該電磁弁を形成する方法
JP2012149717A (ja) * 2011-01-20 2012-08-09 Kyb Co Ltd 鞍乗車両用緩衝器
JP2012530879A (ja) * 2009-06-02 2012-12-06 イートン コーポレーション 2位置3方弁

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101937470B1 (ko) * 2014-04-30 2019-01-11 주식회사 만도 감쇠력 가변식 쇽업소버

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302638A (ja) * 1992-04-27 1993-11-16 Nippondenso Co Ltd 減衰力可変ショックアブソーバー
JP2003106473A (ja) * 2001-07-13 2003-04-09 Eaton Corp 荷重を支える電磁弁のアセンブリと、該電磁弁を形成する方法
JP2012530879A (ja) * 2009-06-02 2012-12-06 イートン コーポレーション 2位置3方弁
JP2012149717A (ja) * 2011-01-20 2012-08-09 Kyb Co Ltd 鞍乗車両用緩衝器

Also Published As

Publication number Publication date
JP2020143677A (ja) 2020-09-10

Similar Documents

Publication Publication Date Title
JP4840557B2 (ja) 減衰力調整式油圧緩衝器
JP5759226B2 (ja) フロントフォーク
WO2011071120A1 (ja) 緩衝装置
JP7212552B2 (ja) 緩衝器
WO2014103821A1 (ja) 緩衝器
WO2020179682A1 (ja) 緩衝器
WO2020179680A1 (ja) 緩衝器
WO2020179684A1 (ja) 緩衝器
JP5681596B2 (ja) 緩衝装置
WO2020179677A1 (ja) スプール弁および緩衝器
JP5671355B2 (ja) ソレノイドバルブおよび緩衝器
WO2020179678A1 (ja) 緩衝器
WO2020179679A1 (ja) 緩衝器
JP2018004026A (ja) 減衰弁および緩衝器
WO2020179683A1 (ja) 緩衝器
WO2020179675A1 (ja) 電磁弁および緩衝器
JP6262977B2 (ja) 液圧緩衝器
WO2020179681A1 (ja) 緩衝器
JP6204703B2 (ja) ソレノイドバルブおよび緩衝器
JP2019158001A (ja) バルブ装置、及び緩衝器
US12049940B2 (en) Shock absorber
JP2010242965A (ja) 緩衝器のバルブ構造
JP2012207750A (ja) 緩衝装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20766735

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20766735

Country of ref document: EP

Kind code of ref document: A1