WO2012066715A1 - リークディテクタ - Google Patents

リークディテクタ Download PDF

Info

Publication number
WO2012066715A1
WO2012066715A1 PCT/JP2011/005491 JP2011005491W WO2012066715A1 WO 2012066715 A1 WO2012066715 A1 WO 2012066715A1 JP 2011005491 W JP2011005491 W JP 2011005491W WO 2012066715 A1 WO2012066715 A1 WO 2012066715A1
Authority
WO
WIPO (PCT)
Prior art keywords
intake port
leak
leak detector
mass spectrometer
turbo molecular
Prior art date
Application number
PCT/JP2011/005491
Other languages
English (en)
French (fr)
Inventor
松本 善和
瀬戸 規正
大輔 中邨
章弘 前田
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to CN201180052834.1A priority Critical patent/CN103189724B/zh
Priority to EP11841122.2A priority patent/EP2642266A4/en
Priority to KR1020137015207A priority patent/KR101456843B1/ko
Priority to JP2012544083A priority patent/JP5581398B2/ja
Priority to RU2013127277/28A priority patent/RU2545468C2/ru
Priority to US13/879,484 priority patent/US20130199275A1/en
Publication of WO2012066715A1 publication Critical patent/WO2012066715A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/202Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material using mass spectrometer detection systems
    • G01M3/205Accessories or associated equipment; Pump constructions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material

Definitions

  • the present invention relates to a leak detector, and relates to a user-friendly one that can detect leaks at an early stage.
  • a leak detector is used for leak detection (leak test) for detecting the presence or absence of minute leaks from a test body such as an airtight container, piping or a valve.
  • This type of leak detector has a mass analysis tube that can quantitatively detect the search gas leaking into the vacuum as an ionic current, and multiple stages of rotating blades and fixed blades mounted on a rotating shaft in the housing.
  • a turbo molecular pump provided with a drive source for rotationally driving the rotating shaft and a fore pump on the back pressure side of the turbo molecular pump are generally used. In this case, as shown in FIG.
  • Patent Document 1 discloses a configuration in which a mass spectrometer tube c is interposed.
  • the intake port a1 of the turbo molecular pump a is usually provided so as to face the rotor blade a2 located at the uppermost stage (that is, at the place where the exhaust speed of the turbo molecular pump a is the fastest).
  • the mass spectrometer tube c exists in the main pipe line b through which the search gas such as helium gas introduced into the test port of the test body flows, there is an advantage that the detection sensitivity is high and the reaction speed with respect to the helium gas is high. .
  • the mass analysis tube c and the intake port a1 communicate with each other, and no pressure difference is generated between the two, so that the pressure of the intake port a1 is measured by the mass analysis tube c.
  • the leak test cannot be started unless the possible pressure is reached. For this reason, for example, when the volume of the specimen is large and it takes time to evacuate the inside of the specimen, it takes time to start the leak test, which is inconvenient.
  • the present invention provides an easy-to-use leak detector that can start a leak test immediately after evacuation of a test specimen without impairing functions such as high detection sensitivity and high reaction speed to helium gas.
  • the issue is to provide.
  • the present invention has a mass analysis tube for detecting a search gas, a plurality of stages of rotating blades and fixed blades mounted on a rotating shaft in a housing, and the rotational shaft is driven to rotate.
  • a turbo molecular pump provided with a drive source that connects the intake port of the turbo molecular pump and a test body via a connecting pipe, and introduces a search gas from the test body into the mass spectrometer tube to detect leakage.
  • the intake port communicating with the specimen and the connection port connected to the mass spectrometer tube are separated from each other on the opposite wall surface of the rotary blade located on the highest vacuum side of the housing. It is characterized by that.
  • the test port of the test body and the intake port of the leak detector are connected via the connection pipe.
  • the turbo molecular pump is operated (usually, a fore pump is provided on the back pressure side of the turbo molecular pump, and the test body is evacuated through this fore pump.
  • the test body is provided with a vacuum pump. If this is the case, the vacuum pump may be operated), and the specimen is evacuated.
  • the mass spectrometer tube is also evacuated.
  • the rotor blade on the highest vacuum side (for example, each blade constituting the rotor blade is provided radially outward of the rotating shaft, Since the intake port and the connection port are separated from each other on the opposite wall surface of the rotor blade located on the uppermost stage with the direction from the rotor to the rotor blade as the top, it exists between the inner wall surface and the rotor blade on the highest vacuum side Due to the conductance of the space, a pressure difference is generated between the intake port and the connection port (that is, the connection port has a lower pressure than the intake port). For this reason, if the pressure in the mass spectrometer tube reaches a pressure at which the measurement operation can be performed, the leak test can be started regardless of the pressure in the intake port, and hence the pressure in the test body.
  • the leak test is started.
  • helium gas as a search gas is blown locally from the outside of the test body, and when there is a leak, this helium gas is sucked into the test body and guided to the intake port of the turbo molecular pump through the connecting pipe.
  • the components contained in the atmosphere such as nitrogen and oxygen are present between the inside of the wall surface and the rotor blade on the highest vacuum side. The diffusivity in the space is low, and the air is exhausted by the rotor blade on the highest vacuum side.
  • helium gas or the like generally used as a search gas is lighter than the nitrogen and oxygen, and the average velocity when introduced into the space is increased. For this reason, the diffusibility of the search gas in the space is high, and a large amount of the search gas reaches the mass spectrometer tube via the intake port. As a result, leak detection can be reliably performed without impairing the functions of high detection sensitivity and high reaction speed with helium gas.
  • the conductance between the intake port and the connection port may be 1/10 or less of the effective exhaust speed of the intake port. According to this, a pressure difference of at least one digit can be generated between the intake port and the connection port, and the leak test can be started promptly after the evacuation of the specimen is started.
  • the conductance of the space is, for example, the volume of the space (for example, the distance between the inner surface of the housing and the uppermost rotor blade), the connection port in consideration of the exhaust speed and gas type of the turbo molecular pump itself.
  • the opening diameter of the intake port and the distance between the hole axes of the connection port and the intake port can be set and adjusted as appropriate.
  • FIG. 2 is a sectional view taken along line II-II in FIG. 1.
  • the graph which shows an experimental result.
  • a leak detector according to an embodiment of the present invention that detects the presence or absence of minute leaks from a test body TP such as an airtight container including a vacuum chamber of a vacuum processing apparatus, piping, and valves will be described with reference to the drawings.
  • the leak detector LD includes a housing 1 and includes a mass analysis tube 2, a turbo molecular pump 3, and a fore pump 4 on the back pressure side.
  • the turbo molecular pump 3 includes a housing 31 in which a rotary blade 33 and a fixed blade 34 mounted on a rotary shaft 32 are alternately provided in a plurality of stages, and a drive source 35 that rotationally drives the rotary shaft 32 is provided. Available.
  • the direction from the drive source 35 toward the rotor blade 33 is described as being upward (the vertical direction in FIG. 1).
  • the rotary blade 33a located at the uppermost stage is the highest vacuum side during operation.
  • turbo molecular pump 3 As the turbo molecular pump 3, a known one can be used, but as will be described later, the interval between the rotor blade 33 a located at the uppermost stage and the wall surface 31 a of the housing 31 facing this is set to a predetermined value. It is different in point.
  • the fore pump 4 is also not particularly limited, and a rotary pump or the like can be used.
  • an intake port 36 is provided with a predetermined opening diameter (see FIG. 2).
  • a main pipeline 5 that leads to a flanged port 11 provided on the upper surface of the housing 1.
  • An electromagnetic open / close valve 6 a is interposed in the main pipeline 5, and a sub pipeline 7 is connected to the main pipeline 5 between the electromagnetic open / close valve 6 a and the port 11.
  • 6 c is another electromagnetic on-off valve 6 c that opens and closes the path between the turbo molecular pump 3 and the fore pump 4.
  • a connection port 37 is provided on the wall surface 31 a of the housing 31 symmetrically with the intake port 36 with respect to the axis of the rotary shaft 32.
  • the mass spectrometer tube 2 is attached to the connection port 37.
  • a magnetic field deflection type tube can be used as the mass spectrometer tube.
  • the mass spectrometer tube 2 is generated by an ion source having a filament and a grid to ionize internal gas components, an ion collector for collecting helium ions, and an ion source. And a magnet for guiding only helium ions out of the positive ions to the ion collector.
  • the mass spectrometer tube 2 of the present embodiment is provided with another ion collector around the ion source, and serves as an ionization vacuum gauge for measuring the total pressure in the mass spectrometer tube 2. Yes.
  • the mass spectrometer tube 2 is not limited to the above, and other types can be used, and a vacuum gauge may be provided separately.
  • the control of the operation of each of the above components is controlled by a control means (not shown) equipped with a computer, a sequencer and the like.
  • the control means is provided with a storage means such as a ROM in which a calculation table for calculating a leak value from the ion current and a control program (operation sequence) of the leak detector LD at the time of the leak test are stored in advance. Yes.
  • a leak test for the specimen TP using the leak detector LD of the present embodiment using helium as the search gas will be described.
  • the on-off valve 6c is opened and the other on-off valves 6a and 6b are closed, the turbo molecular pump 3 and the fore pump 4 are operated, and the leak detector LD is set to the standby state. In this state, the port 11 of the leak detector LD and the test port TP1 of the test body TP are connected via the connection pipe 8. Next, the on-off valve 6 c is closed, the on-off valve 6 b is opened, and the specimen TP is evacuated through the connecting pipe 8.
  • the pressure in the secondary pipe 7 is measured with a Pirani vacuum gauge (not shown), and when evacuated to a predetermined pressure, the on-off valves 6c and 6a are sequentially opened, and the test body TP is mainly opened by the turbo molecular pump 3. Evacuate.
  • the intake port 36 and the connection port 37 communicating with the mass spectrometer tube 2 are spaced apart from each other at a predetermined interval on the wall surface 31a of the housing 31 of the turbo molecular pump 3, so Due to the conductance of the space S existing between the upper rotor blades 33a, a pressure difference is generated between the intake port 36 and the connection port 37 (that is, the connection port 37 has a lower pressure than the intake port 36).
  • the conductance C between the intake port 36 and the connection port 37 through the space S is set to 1/10 or less of the effective exhaust speed S ′ at the intake port 36, the intake port 36 and the connection port 37.
  • a pressure difference of at least one digit or more can be generated.
  • the conductance of the space S is, for example, the volume of the space (the distance D between the inner surface of the housing 31 and the uppermost rotor blade 33a, preferably 5 mm, considering the exhaust speed and gas type of the turbo molecular pump 3 itself. Or the respective opening diameters of the intake port 36 and the connection port 37 (for example, set to 7 mm or more when the exhaust speed is 70 L / s), or the holes of the intake port 36 and the connection port 37. It can be adjusted as desired by appropriately setting the distance L between the shafts (preferably 50 mm or more in the case of the same exhaust speed as described above).
  • the conductance C between the intake port 36 and the connection port 37 through the space S is estimated to be about 0.2 L / s when considered as a model of the molecular flow conductance Ct of two thin parallel surfaces.
  • the conductance C is 2% or less of the effective exhaust speed S ′ of the intake port, and as a result, the pressure of the connection port 37 is maintained at 2% or less of the pressure of the intake port 36, that is, 1/50 or less. it can.
  • the gas can be introduced at a pressure 50 times or more the operating pressure of the mass spectrometer tube 2. From the above, it can be seen that the conductance should be as small as possible in order to advance the start of the leak test of the specimen TP.
  • the pressure measured by the mass spectrometer tube 2 reaches a predetermined value (in this case, the pressure of the intake port 36 is higher by one digit or more than the pressure of the connection port 37), a spray gun or the like from the outside of the specimen TP. Helium gas is blown by. At this time, if a leak exists in the test body TP, helium gas is sucked into the test body TP from the leaked portion, and is drawn into the turbo molecular pump 3 from the intake port 36 via the connection pipe 8 and the main pipe line 5.
  • helium gas which is a search gas
  • helium gas is lighter than the above nitrogen and oxygen, has a high average speed when introduced into the space S, has high diffusivity, and passes through the connection port 37 to the mass spectrometer tube 2. Will also reach a lot.
  • leak detection can be reliably performed without impairing the functions of high detection sensitivity and high reaction speed with helium gas.
  • the leak test is performed regardless of the pressure in the intake port 36 and hence the pressure in the specimen TP.
  • the leak test can be started promptly after the evacuation of the specimen is started.
  • the functions of high detection sensitivity and high reaction speed with respect to helium gas are not impaired, and leak detection can be performed reliably.
  • the leak detector shown in FIG. 1 is equipped with a turbo molecular pump having a nitrogen gas exhaust speed of 70 L / s, a distance between the intake port and the connection port of 35 mm, and a distance between the wall of the housing and the rotor blades of 1 mm. (Invention product), the pressures of the intake port and the mass spectrometer were measured.
  • FIG. 4 is a graph showing the relationship between the pressure of the intake port and the mass spectrometer tube.
  • is a conventional product and ⁇ is an invention. According to this, it was confirmed that in the conventional product, there is almost no pressure difference between the mass spectrometer tube and the intake port because of the communication. In contrast, in the invention, the pressure of the mass spectrometer tube is approximately 1/100 of the pressure of the intake port, and a pressure difference can be effectively generated between the intake port 36 and the connection port 37. Was confirmed.
  • the leak detector of embodiment of this invention is not limited to the said form.
  • the intake port and the connection port do not need to be provided symmetrically, and can be arbitrarily changed within a range in which a desired conductance can be obtained.
  • the turbo molecular pump is described as an example in which each blade constituting the rotor blade is provided toward the radially outer side of the cylindrical rotary shaft.
  • the rotor blade is configured.
  • the present invention can also be applied to those in which blades are provided along the generatrix direction of the cylindrical rotating shaft.
  • the intake port and the connection port may be opened apart from each other on the wall surface located on the highest vacuum side of the turbo molecular pump housing.
  • an example in which the components are integrally incorporated in the housing is taken as an example, but the form of the leak detector is not limited to this.
  • LD Leak detector
  • 2 Mass spectrometer tube
  • 3 Turbo molecular pump
  • 31 Housing
  • 32 Rotating shaft
  • 33 Rotating blade
  • 33a Rotating blade located at the uppermost stage
  • 34 Fixed wing
  • 35 ... Drive source
  • 36 intake port
  • 37 connection port
  • 5 main pipe line (connection pipe)
  • 8 connection pipe
  • TP test body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

 検出感度が高く、ヘリウムガスに対する反応速度も速いといった機能を損なうことなく、試験体の真空引き開始後に速やかにリークテストを開始し得る使い勝手の良いリークディテクタを提供する。 サーチガスを検知する質量分析管2と、ハウジング31内に回転軸32に装着された回転翼33と固定翼34とを交互に複数段有し、回転軸を回転駆動する駆動源35を設けたターボ分子ポンプ3とを備える。ハウジングのうち、最上段に位置する回転翼33aの対向する壁面31aに、試験体TPに連通する吸気ポート36と質量分析管が接続される接続ポート37とを相互に離隔させて開設する。そして、ターボ分子ポンプの吸気ポートと試験体とを接続管を介して接続し、当該試験体内からサーチガスを質量分析管に導入して漏洩検知を行う。

Description

リークディテクタ
 本発明は、リークディテクタに関し、早期に漏洩検知が行い得る使い勝手のよいものに関する。
 気密容器、配管やバルブ等の試験体から微小なリークの有無を検知する漏洩検知(リークテスト)にリークディテクタを用いることが従来から知られている。この種のリークディテクタは、真空中に漏れるサーチガスをイオン電流として定量的に検知し得る質量分析管と、ハウジング内に回転軸に装着された回転翼と固定翼とを交互に複数段有し、回転軸を回転駆動する駆動源を設けたターボ分子ポンプと、当該ターボ分子ポンプの背圧側のフォアポンプとを備えるものが一般に用いられる。この場合、図4に示すように、ターボ分子ポンプaの吸気ポートa1に通じる主管路bの端部と、図外の試験体とが接続管を介して接続されると共に、当該主管路bに質量分析管cを介設したものが例えば特許文献1で知られている。
 ここで、ターボ分子ポンプaの吸気ポートa1は、通常、最上段に位置する回転翼a2を臨むように(つまり、ターボ分子ポンプaの排気速度が最も速くなる箇所に)設けられている。これによれば、試験体のテストポートに導入されたヘリウムガス等のサーチガスが流れる主管路bに質量分析管cが存するため、検出感度が高く、ヘリウムガスに対する反応速度も速いという利点がある。
 然しながら、上記従来例のものでは、質量分析管cと吸気ポートa1とが連通し、両者間には圧力差が生じない構造であるため、吸気ポートa1の圧力が、質量分析管cの測定動作可能な圧力まで到達しないと、リークテストを開始することができないという問題がある。このため、例えば試験体の容積が大きくて、その内部の真空引きに時間がかかる場合には、リークテスト開始までに時間がかかり、使い勝手が悪い。
特許第2655315号公報
 本発明は、以上の点に鑑み、検出感度が高く、ヘリウムガスに対する反応速度も速いといった機能を損なうことなく、試験体の真空引き開始後に速やかにリークテストを開始し得る使い勝手の良いリークディテクタを提供することをその課題とするものである。
 上記課題を解決するために、本発明は、サーチガスを検知する質量分析管と、ハウジング内に回転軸に装着された回転翼と固定翼とを交互に複数段有し、回転軸を回転駆動する駆動源を設けたターボ分子ポンプとを備え、当該ターボ分子ポンプの吸気ポートと試験体とを接続管を介して接続し、当該試験体内からサーチガスを質量分析管に導入して漏洩検知を行うリークディテクタにおいて、前記ハウジングのうち、最も高真空側に位置する回転翼の対向する壁面に、試験体に連通する吸気ポートと質量分析管が接続される接続ポートとを相互に離隔させて開設したことを特徴とする。
 本発明によれば、リークテストの開始に先立って、例えば試験体のテストポートと、リークディテクタの吸気ポート(または、吸気ポートから延びる主管路の端部)とを接続管を介して接続する。次に、ターボ分子ポンプを稼働させ(通常、ターボ分子ポンプの背圧側にフォアポンプが設けられ、このフォアポンプを介して試験体が粗真空引きされる。なお、試験体に真空ポンプが設けられている場合には当該真空ポンプを稼働させてもよい。)、試験体を真空引きしていく。このとき、質量分析管もまた真空引きされる。ここで、本発明では、ターボ分子ポンプのハウジングのうち、最も高真空側の回転翼(例えば、回転翼を構成する各羽根が回転軸の径方向外側に向かって設けられたものでは、駆動源から回転翼に向かう方向を上として、最上段に位置する回転翼)の対向する壁面に吸気ポートと接続ポートとを離隔配置したため、当該壁面内側と最も高真空側の回転翼との間に存する空間のコンダクタンスにより、吸気ポートと接続ポートとの間に圧力差が生じる(つまり、接続ポートが、吸気ポートより低い圧力となる)。このため、質量分析管内の圧力が測定動作可能な圧力に到達すれば、吸気ポートの圧力、ひいては試験体内の圧力に関係なく、リークテストを開始することができる。
 例えば接続ポートに設けた真空計が所定値に達すると、リークテストを開始する。この場合、試験体外側からサーチガスたるヘリウムガスを局所的に吹き付けていき、リークが存すると、このヘリウムガスが試験体内に吸い込まれて接続管を経てターボ分子ポンプの吸気ポートへと導かれる。ここで、試験体内からターボ分子ポンプの吸気ポートへと導入された気体のうち、窒素や酸素といった大気中に多く含まれる成分は、上記壁面内側と最も高真空側の回転翼との間に存する上記空間での拡散性が低く、最も高真空側の回転翼により排気されてしまう。
 一方で、サーチガスとして一般に用いられるヘリウムガス等は、上記窒素や酸素と比較して軽く、上記空間に導入されたときの平均速度が速くなる。このため、サーチガスの当該空間での拡散性が高く、サーチガスが吸気ポートを経て質量分析管にも多く到達するようになる。その結果、検出感度が高く、ヘリウムガスに対する反応速度も速いといった機能を損なうことなく、確実にリーク検知を行うことができる。
 本発明においては、吸気ポートと接続ポートとの間のコンダクタンスが、吸気ポートの実効排気速度の1/10以下とすればよい。これによれば、吸気ポートと接続ポートとの間に少なくとも1桁以上の圧力差が生じさせることができ、試験体の真空引き開始後に速やかにリークテストを開始し得る。この場合、上記空間のコンダクタンスは、ターボ分子ポンプ自体の排気速度やガス種を考慮して、例えば当該空間の容積(例えば、筐体内面と最上段の回転翼との間の距離)、接続ポート及び吸気ポートの開口径や接続ポートと吸気ポートとの各孔軸間の距離を適宜設定して調節することができる。
本発明のリークディテクタの構成を模式的に示す図。 図1のII-II線に沿った断面図。 実験結果を示すグラフ。 従来例のリークディテクタの構成を模式的に示す図。
 以下、図面を参照して、真空処理装置の真空チャンバを含む気密容器、配管やバルブ等の試験体TPから微小なリークの有無を検知する本発明の実施形態のリークディテクタを説明する。
 図1及び図2を参照して、リークディテクタLDは筐体1を備え、その内部には、質量分析管2と、ターボ分子ポンプ3と、その背圧側のフォアポンプ4とを備える。ターボ分子ポンプ3としては、ハウジング31内に、回転軸32に装着された回転翼33と固定翼34とを交互に複数段有し、回転軸32を回転駆動する駆動源35を設けたものが利用できる。以下においては、駆動源35から回転翼33に向かう方向を上(図1中、上下方向)として説明する。この場合、上記構成のターボ分子ポンプ3では、稼働時、最上段に位置する回転翼33a側が最も高真空側となる。なお、ターボ分子ポンプ3については、公知のものが利用できるが、後述のように、最上段に位置する回転翼33aと、これに対向するハウジング31の壁面31aとの間隔が所定値に設定される点で異なる。また、フォアポンプ4もまた特に制限はなく、ロータリポンプ等を用いることができる。
 ハウジング31のうち、最上段に位置する回転翼33aの対向する壁面(最も高真空側に位置する回転翼33aに対向するハウジングの上面)31aには回転軸32の軸線から径方向一側にずらして、所定の開口径で吸気ポート36が設けられている(図2参照)。吸気ポート36には、筐体1の上面に設けたフランジ付きのポート11に通じる主管路5が接続されている。主管路5には電磁開閉弁6aが介設され、また、電磁開閉弁6aとポート11との間で主管路5には副管路7が接続されている。副管路7には、他の電磁開閉弁6bが介設され、フォアポンプ4に接続されている。なお、図1中、6cは、ターボ分子ポンプ3とフォアポンプ4との間の経路を開閉する他の電磁開閉弁6cである。
 また、ハウジング31の壁面31aには、回転軸32の軸線に対して吸気ポート36と対称に接続ポート37が設けられている。そして、この接続ポート37に、質量分析管2が装着されている。ここで、質量分析管としては、例えば磁場偏向型のものが用いることができる。この場合、特に図示して説明しないが、質量分析管2は、フィラメントとグリッドを有して内部のガス成分をイオン化するイオンソースと、ヘリウムイオンを捕集するイオンコレクタと、イオンソースにて生成された正イオンのうちヘリウムイオンのみをイオンコレクタへと導くマグネットとを備える。そして、イオンコレクタに付設された図外の電流計にて、このイオンコレクタを流れるイオン電流が検出される。また、本実施形態の質量分析管2は、イオンソースの周囲に他のイオンコレクタが設けられ、当該質量分析管2内の全圧をも測定する電離真空計としての役割を果たすようになっている。なお、質量分析管2は、上記に限定されるものではなく、他の形態のものを用いることができ、また、真空計は別個設けるようにしてもよい。
 上記各部品の作動等の制御は、コンピュータやシーケンサ等を備えた図外の制御手段によって統括制御される。この場合、制御手段には、イオン電流からリーク値を算出するための算出表やリークテスト時のリークディテクタLDの制御プログラム(作動シーケンス)等が予め記憶されたROM等の記憶手段が付設されている。以下に、サーチガスとしてヘリウムを用いた、本実施形態のリークディテクタLDを用いた試験体TPに対するリークテストを説明する。
 先ず、開閉弁6cのみを開弁し、他の開閉弁6a、6bを閉弁した状態で、ターボ分子ポンプ3とフォアポンプ4を稼働し、リークディテクタLDをスタンバイ状態とする。この状態で、リークディテクタLDのポート11と試験体TPのテストポートTP1とを接続管8を介して接続する。次に、開閉弁6cを閉弁すると共に、開閉弁6bを開弁し、接続管8を介して試験体TPを粗真空引きする。そして、副管路7内の圧力を図外のピラニ真空計で測定し、所定圧力まで真空引きされると、開閉弁6c、6aを順次開弁し、主としてターボ分子ポンプ3にて試験体TPを真空引きする。
 ここで、本実施形態では、ターボ分子ポンプ3のハウジング31の壁面31aに吸気ポート36と、質量分析管2に通じる接続ポート37とを所定間隔を置いて離隔配置したため、壁面31aの内面と最上段の回転翼33aとの間に存する空間Sのコンダクタンスにより、吸気ポート36と接続ポート37との間には圧力差が生じる(つまり、接続ポート37が、吸気ポート36より低い圧力となる)。この場合、上記空間Sを通じた吸気ポート36と接続ポート37との間のコンダクタンスCが吸気ポート36における実効排気速度S’の1/10以下となるようにすれば、吸気ポート36と接続ポート37との間に少なくとも1桁以上の圧力差が生じさせることができる。
 上記空間Sのコンダクタンスは、ターボ分子ポンプ3自体の排気速度やガス種を考慮して、例えば当該空間の容積(ハウジング31内面と最上段の回転翼33aとの間の間隔Dを、好ましくは5mm以下に設定)、吸気ポート36及び接続ポート37の夫々の開口径(例えば排気速度が70L/sのものでは、例えば、7mm以上に設定)、または、吸気ポート36と接続ポート37との各孔軸間の距離L(上記と同じ排気速度の場合、好ましくは50mm以上)等を適宜設定することで所望に調節することができる。
 具体的には、排気速度Sが70L/sのターボ分子ポンプにて、吸気ポート36及び接続ポート37の開口径をφ7mm、孔軸間距離Lを50mm、間隔Dを2mmに設定した場合、上記空間Sを通じた吸気ポート36と接続ポート37との間におけるコンダクタンスCは、薄い平行2面の分子流コンダクタンスCtのモデルとして考えた場合、0.2L/s程度と見積もられる。そして、吸気ポート36における実効排気速度をS’を、コンダクタンスCの合成式1/S’=1/S+1/Cから算出すると、10L/s以上と見積もられる。よって、コンダクタンスCは、吸気ポートの実効排気速度S’の2%以下となり、結果として、接続ポート37の圧力は、吸気ポート36の圧力の2%以下、即ち、1/50以下の圧力に維持できる。言い換えると、質量分析管2の動作圧力の50倍以上の圧力で気体を導入することができる。また、上記から、試験体TPのリークテスト開始時期を早めるには、コンダクタンスを可能な限り小さくすればよいことが判る。
 次に、質量分析管2にて測定した圧力が所定値に達すると(この場合、吸気ポート36の圧力は、接続ポート37の圧力より1桁以上高い)、試験体TPの外側からスプレーガン等によってヘリウムガスを吹き付けていく。このとき、試験体TPにリークが存すると、その漏洩箇所からヘリウムガスが試験体TP内に吸い込まれ、接続管8及び主管路5を経て吸気ポート36からターボ分子ポンプ3へと引き込まれる。
 ここで、試験体TP内からターボ分子ポンプ3の吸気ポート36へと導入された気体のうち、窒素や酸素といった大気中に多く含まれる成分は、空間Sでの拡散性が低く、最上段の回転翼33aにより排気される。一方で、サーチガスたるヘリウムガスは、上記窒素や酸素と比較して軽く、上記空間Sに導入されたときの平均速度が速くなり、拡散性が高く、接続ポート37を経て質量分析管2にも多く到達するようになる。その結果、検出感度が高く、ヘリウムガスに対する反応速度も速いといった機能を損なうことなく、確実にリーク検知を行うことができる。
 以上説明したように、本実施形態によれば、質量分析管2内の圧力が測定動作可能な圧力に到達すれば、吸気ポート36の圧力、ひいては試験体TP内の圧力に関係なく、リークテストを開始することができ、結果として、上記従来例のものと比較して、試験体の真空引き開始後に速やかにリークテストを開始し得る。しかも、検出感度が高く、ヘリウムガスに対する反応速度も速いといった機能は損なわれず、確実にリーク検知を行うことができる。
 次に、吸気ポート36と接続ポート37との間に圧力差が生じることを確認する実験を行った。ターボ分子ポンプとして窒素ガスの排気速度が70L/s、吸気ポートと接続ポートの間の距離を35mm、ハウジングの壁面と回転翼との間隔を1mmとしたものを備えた、図1に示すリークディテクタを用い(発明品)、吸気ポート及び質量分析管の圧力を夫々測定した。
 比較実験として、ターボ分子ポンプとして窒素ガスの排気速度が70L/sのものを備えた、図4に示すリークディテクタを用い(従来品)、吸気ポート及び質量分析管の圧力を夫々測定した。図3は、吸気ポート及び質量分析管の圧力の関係を示すグラフである。なお、図3中、■が従来品であり、○が発明品である。これによれば、従来品では、質量分析管と吸気ポートとが連通していることで両者間には圧力差が殆ど生じないことが確認された。それに対して、発明品では、質量分析管の圧力は、吸気ポートの圧力より約1/100になり、効果的に吸気ポート36と接続ポート37との間には圧力差を生じさせることができることが確認できた。
 以上、本発明の実施形態のリークディテクタについて説明したが、本発明は、上記形態のものに限定されるものではない。例えば、吸気ポートと接続ポートは対称に設ける必要がなく、所望のコンダクタンスが得られる範囲で任意に変更できる。また、本実施形態では、ターボ分子ポンプとして、回転翼を構成する各羽根が筒状の回転軸の径方向外側に向かって設けられたものを例に説明しているが、回転翼を構成する羽根が筒状の回転軸の母線方向に沿って設けられたようなものにも、本発明は適用できる。この場合もまた、ターボ分子ポンプのハウジングのうち、最も高真空側に位置する壁面に、吸気ポートと接続ポートとを相互に離隔させて開設すればよい。さらに、本実施形態では、筐体内に各部品を一体に内蔵したものを例としたが、リークディテクタの形態はこれに限定されない。
 LD…リークディテクタ、2…質量分析管、3…ターボ分子ポンプ、31…ハウジング、32…回転軸、33…回転翼、33a…最上段に位置する回転翼、34…固定翼、35…駆動源、36…吸気ポート、37…接続ポート、5…主管路(接続管)、8…接続管、TP…試験体。

Claims (2)

  1.  サーチガスを検知する質量分析管と、ハウジング内に回転軸に装着された回転翼と固定翼とを交互に複数段有し、回転軸を回転駆動する駆動源を設けたターボ分子ポンプとを備え、当該ターボ分子ポンプの吸気ポートと試験体とを接続管を介して接続し、当該試験体内からサーチガスを質量分析管に導入して漏洩検知を行うリークディテクタにおいて、

     前記ハウジングのうち、最も高真空側に位置する回転翼に対向する壁面に、試験体に連通する吸気ポートと質量分析管が接続される接続ポートとを相互に離隔させて開設したことを特徴とするリークディテクタ。
  2.  吸気ポートと接続ポートとの間のコンダクタンスが吸気ポートの実効排気速度の1/10以下となるように構成したことを特徴とする請求項1記載のリークディテクタ。
PCT/JP2011/005491 2010-11-16 2011-09-29 リークディテクタ WO2012066715A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201180052834.1A CN103189724B (zh) 2010-11-16 2011-09-29 检漏仪
EP11841122.2A EP2642266A4 (en) 2010-11-16 2011-09-29 Leak detector
KR1020137015207A KR101456843B1 (ko) 2010-11-16 2011-09-29 리크 디텍터
JP2012544083A JP5581398B2 (ja) 2010-11-16 2011-09-29 リークディテクタ
RU2013127277/28A RU2545468C2 (ru) 2010-11-16 2011-09-29 Устройство обнаружения утечки
US13/879,484 US20130199275A1 (en) 2010-11-16 2011-09-29 Leak Detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010256030 2010-11-16
JP2010-256030 2010-11-16

Publications (1)

Publication Number Publication Date
WO2012066715A1 true WO2012066715A1 (ja) 2012-05-24

Family

ID=46083669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005491 WO2012066715A1 (ja) 2010-11-16 2011-09-29 リークディテクタ

Country Status (8)

Country Link
US (1) US20130199275A1 (ja)
EP (1) EP2642266A4 (ja)
JP (1) JP5581398B2 (ja)
KR (1) KR101456843B1 (ja)
CN (1) CN103189724B (ja)
RU (1) RU2545468C2 (ja)
TW (1) TWI519772B (ja)
WO (1) WO2012066715A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015059440A (ja) * 2013-09-17 2015-03-30 Dowaサーモテック株式会社 真空排気方法及び真空排気設備
TWI607208B (zh) * 2013-02-21 2017-12-01 史華曲集團研發有限公司 設有自動偵漏手段之電子裝置
JP2020197127A (ja) * 2019-05-30 2020-12-10 株式会社島津製作所 真空ポンプおよびリークディテクタ

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103925385B (zh) * 2014-04-11 2016-03-30 北京中科科仪股份有限公司 一种真空阀门和可切换流导真空阀门
US20160260594A1 (en) * 2015-03-02 2016-09-08 Bayspec, Inc. Sample Inlet and Vacuum System for Portable Mass Spectrometer
WO2017037842A1 (ja) * 2015-08-31 2017-03-09 島津エミット株式会社 ヘリウムリークディテクタ
CN107091716A (zh) * 2017-04-13 2017-08-25 深圳市卓誉自动化科技有限公司 一种用于检测电池密封性的真空氦检装置和方法
KR101950798B1 (ko) 2018-03-22 2019-02-21 이승우 가스 탐지를 이용한 배관의 용접 부위 검사 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090105A (ja) * 1996-09-12 1998-04-10 Ulvac Japan Ltd 漏洩探知方法と装置
JP2006517291A (ja) * 2003-01-25 2006-07-20 インフィコン ゲゼルシャフト ミット ベシュレンクテル ハフツング 流入部を備えたリーク検出器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3616680A (en) * 1969-10-27 1971-11-02 Sargent Welch Scientific Co Leak detector
DE3133781A1 (de) * 1981-08-26 1983-03-10 Leybold-Heraeus GmbH, 5000 Köln Fuer die durchfuehrung der gegenstrom-lecksuche geeignete turbomolekularpumpe
JPH07286928A (ja) * 1994-04-15 1995-10-31 Anelva Corp ヘリウムリークディテクタ
JP2655315B2 (ja) * 1994-06-29 1997-09-17 日本真空技術株式会社 複合分子ポンプを使用した漏洩探知装置
JPH1089260A (ja) * 1996-09-10 1998-04-07 Toshiba Corp 回転機械のクラック検出方法及びクラック検出装置
FR2761776B1 (fr) * 1997-04-03 1999-07-23 Alsthom Cge Alcatel Detecteur de fuite a gaz traceur
FR2787192B1 (fr) * 1998-12-10 2001-01-05 Cit Alcatel Vitesse variable sur le pompage primaire d'un detecteur de fuites par gaz traceur
DE10055057A1 (de) * 2000-11-07 2002-05-08 Pfeiffer Vacuum Gmbh Leckdetektorpumpe
JP4130968B2 (ja) * 2003-05-15 2008-08-13 株式会社アルバック 漏洩検知装置
DE10334455B4 (de) * 2003-07-29 2013-01-31 Pfeiffer Vacuum Gmbh Lecksuchverfahren und Lecksuchanordnung zur Durchführung des Verfahrens
US7036359B2 (en) * 2003-07-31 2006-05-02 Aisan Kogyo Kabushiki Kaisha Failure diagnostic system for fuel vapor processing apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090105A (ja) * 1996-09-12 1998-04-10 Ulvac Japan Ltd 漏洩探知方法と装置
JP2006517291A (ja) * 2003-01-25 2006-07-20 インフィコン ゲゼルシャフト ミット ベシュレンクテル ハフツング 流入部を備えたリーク検出器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI607208B (zh) * 2013-02-21 2017-12-01 史華曲集團研發有限公司 設有自動偵漏手段之電子裝置
JP2015059440A (ja) * 2013-09-17 2015-03-30 Dowaサーモテック株式会社 真空排気方法及び真空排気設備
JP2020197127A (ja) * 2019-05-30 2020-12-10 株式会社島津製作所 真空ポンプおよびリークディテクタ
JP7192660B2 (ja) 2019-05-30 2022-12-20 株式会社島津製作所 真空ポンプおよびリークディテクタ

Also Published As

Publication number Publication date
CN103189724A (zh) 2013-07-03
KR101456843B1 (ko) 2014-11-04
TW201237384A (en) 2012-09-16
KR20130090419A (ko) 2013-08-13
US20130199275A1 (en) 2013-08-08
JP5581398B2 (ja) 2014-08-27
JPWO2012066715A1 (ja) 2014-05-12
EP2642266A4 (en) 2017-08-09
RU2013127277A (ru) 2014-12-27
TWI519772B (zh) 2016-02-01
RU2545468C2 (ru) 2015-03-27
CN103189724B (zh) 2015-03-04
EP2642266A1 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
JP5581398B2 (ja) リークディテクタ
JP5292261B2 (ja) リークディテクタ
JP2655315B2 (ja) 複合分子ポンプを使用した漏洩探知装置
JP2005330967A (ja) 軽量気体用真空ポンプシステム
JPH02110335A (ja) 漏れ検出器用のポンプ系
JP3568536B2 (ja) 真空ポンプを有する漏れ検出器及び漏れ検出器を運転する方法
JP7142089B2 (ja) 検査対象物の密閉性をチェックするための漏れ検出器
JP4357528B2 (ja) リークディテクタ
JP5470449B2 (ja) 漏洩検知方法及び真空処理装置
CN103119413A (zh) 渗漏检测装置
CN101473208B (zh) 相对高试验压力下大泄漏处痕量气体泄漏检测系统和方法
JP2015017846A (ja) 漏洩検知装置
TW202225657A (zh) 用於辨識測試目標內的漏氣之漏氣偵測裝置及漏氣偵測方法
JPH11153508A (ja) 真空装置用ヘリウムリークディテクター装置
CN115434930A (zh) 真空泵及检漏仪
JP2011209082A (ja) 漏洩検知補助装置
JPH08145835A (ja) スニッファー用ヘリウムリークディテクタ
US6282946B1 (en) Leak detector
JP2001050852A (ja) スニッファープローブ及びそれを用いたガス漏れ試験方法
JPH03225245A (ja) トレーサ用気体による試験すべき容器の漏れ検出設備
JP2607208B2 (ja) サンプルガス導入機構
US20140349826A1 (en) Centrifuge
JP2008241533A (ja) 試料導入装置および試料導入方法
JP2606568B2 (ja) リークデテクタ
JP2004340726A (ja) 漏洩検知装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841122

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012544083

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13879484

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011841122

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137015207

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013127277

Country of ref document: RU

Kind code of ref document: A