WO2012066657A1 - 充放電制御装置及び方法 - Google Patents

充放電制御装置及び方法 Download PDF

Info

Publication number
WO2012066657A1
WO2012066657A1 PCT/JP2010/070490 JP2010070490W WO2012066657A1 WO 2012066657 A1 WO2012066657 A1 WO 2012066657A1 JP 2010070490 W JP2010070490 W JP 2010070490W WO 2012066657 A1 WO2012066657 A1 WO 2012066657A1
Authority
WO
WIPO (PCT)
Prior art keywords
hunting
charge
battery
soc
discharge
Prior art date
Application number
PCT/JP2010/070490
Other languages
English (en)
French (fr)
Inventor
河合 高志
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201080069881.2A priority Critical patent/CN103189260B/zh
Priority to DE112010006004T priority patent/DE112010006004T5/de
Priority to PCT/JP2010/070490 priority patent/WO2012066657A1/ja
Priority to US13/882,570 priority patent/US8700248B2/en
Priority to JP2012544051A priority patent/JP5354110B2/ja
Publication of WO2012066657A1 publication Critical patent/WO2012066657A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the present invention relates to a technical field of a charge / discharge control device and method for controlling charge / discharge of a battery mounted on a vehicle such as a hybrid vehicle.
  • This type of device is mounted on a hybrid vehicle that includes a generator that generates power using engine power and a battery (storage battery) that is charged by the generator.
  • the battery is charged and discharged using the SOC (State Of Charge: There is known one that controls the state of charge) to be a target SOC (see, for example, Patent Documents 1 and 2).
  • Patent Document 1 discloses that the SOC usage range of the battery is expanded by appropriately changing the target SOC based on the average charge / discharge amount of the battery, and the battery is used efficiently.
  • Patent Document 2 discloses that charge / discharge control is performed in consideration of variations in the amount of electricity stored in a battery.
  • Patent Document 3 as a prior art document related to the present invention.
  • JP 2000-152420 A Japanese Patent Laid-Open No. 11-185823 JP 2010-193665 A
  • the present invention has been made in view of, for example, the above-described problems. For example, charging / discharging capable of quickly converging the battery SOC to the target SOC with little or no discomfort to the vehicle occupant. It is an object to provide a control device and method.
  • a charge / discharge control device of the present invention in a vehicle including an engine, a generator capable of generating electricity with the engine power of the engine, and a battery charged with electric power generated by the generator.
  • a charging / discharging control device that is mounted and controls charging / discharging of the battery, setting means for setting a hunting allowable period that is a hunting period in which hunting of the engine power is permitted, and the SOC of the battery and the SOC Calculating means for calculating a charge / discharge amount of the battery by multiplying a difference from the target SOC, which is a target value, by a charge / discharge coefficient determined based on the hunting allowable period.
  • the charge / discharge control apparatus of the present invention during the operation, the charge / discharge of the battery is controlled so that the SOC of the battery (storage battery) becomes the target SOC.
  • SOC is an index value indicating the state of charge of the battery, and is the ratio of the current charge amount (that is, the remaining capacity or the remaining power storage amount) to the full charge capacity of the battery.
  • the SOC is 100 [%] when the battery is fully charged, and 0 [%] when the battery is completely discharged and the remaining capacity is zero.
  • the “target SOC” is an SOC target value for controlling the charging / discharging of the battery, in other words, an SOC serving as a control center when controlling the charging / discharging of the battery, and is set to 50 to 60 [%], for example. Is done.
  • the charge / discharge control device of the present invention charges the battery with the electric power generated by the generator using the engine power, thereby bringing the SOC closer to the target SOC, and the SOC is the target SOC. If it is larger, the SOC is brought close to the target SOC by discharging the battery.
  • the setting means sets a hunting allowable period.
  • the “hunting allowable period” is a hunting period (that is, a vibration period) in which engine power hunting (that is, engine power vibration) is allowed. This is a hunting cycle in which a sense of incongruity does not occur (i.e., sensuously allowed by a vehicle occupant).
  • the setting means sets, for example, the shortest hunting cycle as the allowable hunting cycle in a relatively long hunting cycle range in which the vehicle occupant does not feel uncomfortable.
  • the allowable hunting period can be determined in advance based on, for example, experiments or simulations.
  • the predetermined hunting allowable period is stored in advance in a memory included in the setting unit.
  • the setting means sets the hunting allowable period by reading it from the memory.
  • the calculating means calculates the charge / discharge amount of the battery by multiplying the difference between the SOC of the battery and the target SOC by the charge / discharge coefficient determined based on the hunting allowable period. That is, the calculation means first determines the charge / discharge coefficient based on the hunting allowable period.
  • the charge / discharge coefficient is the slope (or proportionality constant) of the charge / discharge amount of the battery with respect to the difference between the SOC and the target SOC, and when determining the charge / discharge amount of the battery based on the difference between the SOC and the target SOC. It can be paraphrased as a gain value.
  • the calculation means calculates the charge / discharge coefficient by dividing the product of the battery capacity and the battery voltage of the battery by the hunting allowable period.
  • the calculating means calculates the charge / discharge amount of the battery by multiplying the difference between the SOC of the battery and the target SOC by a charge / discharge coefficient.
  • the charge / discharge coefficient is determined based on the hunting allowable period, engine power hunting is temporarily generated by controlling the charge / discharge of the battery based on the calculated charge / discharge amount. Even so, there is little or no discomfort for the vehicle occupants.
  • the calculation means can determine the charging / discharging coefficient to, for example, the largest value within a range in which the occupant of the vehicle does not feel uncomfortable due to engine power hunting.
  • the calculation means can calculate, for example, the largest value as the charge / discharge amount of the battery within a range in which the occupant of the vehicle does not feel uncomfortable due to engine power hunting. Accordingly, the SOC of the battery can be quickly converged to the target SOC with little or no discomfort due to engine power hunting for the vehicle occupant (that is, the convergence of the battery SOC to the target SOC can be achieved). Can be increased).
  • the SOC of the battery can be rapidly converged to the target SOC with little or no discomfort for the vehicle occupant.
  • the setting means sets the hunting allowable period according to a parameter indicating a running state of the vehicle.
  • the setting means sets the hunting allowable period according to the parameters (for example, the amount of change in engine power, the vehicle speed, the accelerator opening, etc.) indicating the running state of the vehicle.
  • the setting means may be such that the driving state of the vehicle is such that the vehicle occupant is less likely to feel discomfort due to engine power hunting (for example, the vehicle is traveling on a mountain road and the engine power changes greatly).
  • the hunting allowance period is set to be relatively short, and the vehicle running state is likely to cause the vehicle occupant to feel uncomfortable due to engine power hunting (for example, the vehicle is running at high speed and steady, and the engine power changes In the case of a small state), the hunting allowable period is set relatively long.
  • the SOC of the battery can be more quickly converged to the target SOC while reliably preventing the vehicle occupant from feeling uncomfortable.
  • the setting means sets the hunting allowable cycle according to the parameter indicating the running state of the vehicle
  • the parameter includes the amount of change in the engine power
  • the setting means The larger the amount of change, the smaller the hunting allowable period may be set.
  • the setting means sets the hunting allowable period according to the parameter indicating the running state of the vehicle as described above
  • the parameter includes the vehicle speed of the vehicle
  • the setting means increases the vehicle speed
  • the hunting allowable period may be set to a small value.
  • the setting means sets the hunting allowable period according to the parameter indicating the running state of the vehicle
  • the parameter includes the accelerator opening of the vehicle
  • the setting means includes the accelerator opening. The larger the is, the smaller the hunting allowable period may be set.
  • a charge / discharge control method of the present invention is provided in a vehicle including an engine, a generator capable of generating electricity with the engine power of the engine, and a battery charged with electric power generated by the generator.
  • a charging / discharging control method for controlling charging / discharging of the battery wherein a setting step for setting a hunting allowable cycle that is a hunting cycle in which hunting of the engine power is allowed, a SOC of the battery, and a target value of the SOC
  • the charge / discharge control method of the present invention can also adopt various aspects.
  • 1 is a schematic configuration diagram conceptually showing the configuration of a hybrid vehicle according to a first embodiment. It is a graph for demonstrating the outline of the charging / discharging control of the battery which concerns on 1st Embodiment. It is a flowchart which shows the flow of the charging / discharging control of the battery which concerns on 1st Embodiment. It is a flowchart which shows the flow of the charging / discharging control of the battery which concerns on 2nd Embodiment. It is a graph which shows notionally the relationship between the vehicle speed and the hunting permissible period in the map for setting the hunting permissible period.
  • FIG. 1 is a schematic configuration diagram conceptually showing the configuration of the hybrid vehicle according to the present embodiment.
  • a hybrid vehicle 10 is an example of a “vehicle” according to the present invention, and includes an ECU (Electronic Control Unit) 100, an engine 200, a motor generator MG1, a motor generator MG2, a power split mechanism 300, A PCU (Power Control Unit) 400, a battery 500, a vehicle speed sensor 12, an accelerator opening sensor 13, a speed reduction mechanism 30, an axle 40 and wheels 50 are provided.
  • ECU Electronic Control Unit
  • the ECU 100 is an electronic control unit that includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like, and is capable of controlling the entire operation of the hybrid vehicle 10.
  • the ECU 100 is configured to be able to execute various controls in the hybrid vehicle 10 according to a control program stored in a ROM or the like, for example.
  • the ECU 100 functions as an example of a “charge / discharge control device” according to the present invention.
  • the ECU 100 functions as an example of each of “setting means” and “calculation means” according to the present invention.
  • the engine 200 is a gasoline engine as an example of the “engine” according to the present invention, and is configured to function as a power source of the hybrid vehicle 10.
  • the “engine” according to the present invention includes, for example, a two-cycle or four-cycle reciprocating engine, and has at least one cylinder, and various fuels such as gasoline, light oil, or alcohol in a combustion chamber inside the cylinder.
  • An internal combustion engine configured to be able to take out a force generated when an air-fuel mixture containing a gas is burned as a driving force through an appropriate physical or mechanical transmission means such as a piston, a connecting rod, and a crankshaft. It is a comprehensive concept.
  • Motor generator MG1 is a motor generator as an example of a “generator” according to the present invention, and has a power running function that converts electrical energy into kinetic energy and a regeneration function that converts kinetic energy into electrical energy. Yes.
  • Motor generator MG1 is configured to function as a generator for charging battery 500 or a generator for supplying electric power to motor generator MG2 and an electric motor for cranking engine 200.
  • Motor generator MG1 is configured to be able to generate electric power using engine power (that is, output of engine 200) supplied from engine 200 via power split mechanism 300 described later.
  • the motor generator MG2 is a motor generator, and has a power running function that converts electrical energy into kinetic energy and a regeneration function that converts kinetic energy into electrical energy, similar to the motor generator MG1.
  • the motor generator MG2 is mainly configured to function as an electric motor that assists (supplements) the output of the engine 200, and can transmit power to the axle 40 via the reduction mechanism 30 including various reduction gear devices such as a differential. It is configured.
  • the axle 40 is connected to wheels 50 that are drive wheels of the hybrid vehicle 10.
  • the motor generators MG1 and MG2 described above are configured as, for example, synchronous motor generators.
  • the motor generators MG1 and MG2 include a rotor having a plurality of permanent magnets on an outer peripheral surface, and a stator wound with a three-phase coil that forms a rotating magnetic field.
  • it has the structure with which it comprises, it may have another structure.
  • PCU 400 converts DC power extracted from battery 500 into AC power and supplies it to motor generators MG1 and MG2, and also converts AC power generated by motor generators MG1 and MG2 into DC power and supplies it to battery 500.
  • This is a control unit that includes an inverter or the like that is configured to be capable of individually controlling power input / output between the battery 500 and each motor generator.
  • the PCU 400 is electrically connected to the ECU 100, and its operation is controlled by the ECU 100.
  • Battery 500 is a rechargeable storage battery that functions as a power supply source related to power for powering motor generators MG1 and MG2. Charging / discharging of the battery 500 is controlled by the ECU 100.
  • the battery 500 is an example of the “battery” according to the present invention.
  • the power split mechanism 300 is a planetary gear (planetary gear mechanism) configured to be able to distribute the output of the engine 200 (that is, engine power) to the motor generator MG1 and the axle 40.
  • the power split mechanism 300 is disposed between a sun gear provided at the center, a ring gear provided concentrically on the outer periphery of the sun gear, and the sun gear and the ring gear, while rotating on the outer periphery of the sun gear.
  • a plurality of revolving pinion gears and a carrier that supports the rotation shaft of each pinion gear are provided.
  • the sun gear is coupled to the rotor of motor generator MG1 so as to share its rotational axis, and the rotational speed thereof is equivalent to the rotational speed of motor generator MG1.
  • the ring gear is connected to the axle 40 via the speed reduction mechanism 11, and the rotational speed thereof is equivalent to the rotational speed of the axle 40.
  • the carrier is connected to the crankshaft 205 of the engine 200, and the rotational speed thereof is equivalent to the rotational speed of the engine 200.
  • the power split mechanism 300 is a planetary gear mechanism having a plurality of rotational elements having a differential relationship with each other, and has two rotational degrees of freedom, and the rotational speed of two elements of the sun gear, the carrier, and the ring gear is determined. In some cases, the number of rotations of the remaining one rotation element is inevitably determined.
  • the vehicle speed sensor 12 is a sensor configured to be able to detect the vehicle speed of the hybrid vehicle 10.
  • the vehicle speed sensor 12 is electrically connected to the ECU 100, and the detected vehicle speed is grasped by the ECU 100 at a constant or indefinite period.
  • the accelerator opening sensor 13 is a sensor configured to be able to detect the accelerator opening of an accelerator pedal (not shown) provided in the hybrid vehicle 10.
  • the accelerator opening sensor 13 is electrically connected to the ECU 100, and the detected accelerator opening is grasped by the ECU 100 at a constant or indefinite period.
  • FIG. 2 is a graph for explaining an outline of charge / discharge control of the battery 500.
  • the horizontal axis indicates the SOC of the battery 500
  • the vertical axis indicates the charge / discharge amount Pchg that is the amount of power (power) for charging or discharging the battery 500.
  • the charge / discharge amount Pchg indicates a discharge amount that discharges the battery 500 when the value is positive (+), and indicates a charge amount that charges the battery 500 when the value is negative (+).
  • the straight line L1 shows an example of the charge / discharge amount Pchg set for the SOC.
  • the ECU 100 performs charge / discharge control of the battery 500 so that the SOC of the battery 500 becomes the control center SOC.
  • the SOC is an index value indicating the state of charge of the battery 500, and is the ratio of the current charge amount (ie, remaining capacity) to the full charge capacity of the battery 500.
  • the SOC is 100 [%] when the battery 500 is fully charged, and is 0 [%] when the battery 500 is completely discharged and the remaining capacity is zero.
  • the control center SOC is an SOC that becomes a control center when the charge / discharge control of the battery 500 is performed, and is set to 50 to 60%, for example.
  • the control center SOC is an example of the “target SOC” according to the present invention.
  • the ECU 100 sets the charge / discharge amount Pchg according to the SOC so that the relationship between the SOC and the charge / discharge amount Pchg becomes the relationship indicated by the straight line L1.
  • the ECU 100 sets the charge / discharge amount Pchg to a negative value and charges the battery 500 in order to bring the SOC closer to the control center SOC. That is, when the SOC is smaller than the control center SOC, the charge amount is set as the charge / discharge amount Pchg so that the SOC approaches the control center SOC, and the battery 500 is charged with the electric power of the set charge / discharge amount Pchg. The Further, when the SOC is larger than the control center SOC, ECU 100 sets charge / discharge amount Pchg to a positive value and discharges battery 500 in order to bring the SOC closer to control center SOC.
  • the discharge amount is set as the charge / discharge amount Pchg so that the SOC approaches the control center SOC, and the electric power of the set charge / discharge amount Pchg is discharged from the battery 500.
  • ECU 100 sets charge / discharge amount Pchg to zero when the SOC coincides with control center SOC.
  • ECU 100 sets charge / discharge amount Pchg so that the charge amount or the discharge amount increases as the difference between the SOC and the control center SOC increases.
  • the ECU 100 sets the charge / discharge amount Pchg so that the absolute value of the charge / discharge amount Pchg increases as the difference between the SOC and the control center SOC increases.
  • FIG. 3 is a flowchart showing a flow of charge / discharge control of the battery 500.
  • the hunting allowable period T is set by the ECU 100 (step S10).
  • the allowable hunting cycle T is a hunting cycle (that is, a vibration cycle) in which engine power hunting (that is, vibration of the engine power) of the engine 200 is allowed.
  • This is a hunting cycle in which a sense of incongruity does not occur in the occupant (that is, sensuously allowed by the occupant of hybrid vehicle 10).
  • the longer the engine power hunting cycle the less likely the passenger of the hybrid vehicle 10 feels uncomfortable, and the shorter the engine power hunting cycle, the more likely the passenger of the hybrid vehicle 10 feels uncomfortable.
  • the ECU 100 sets, for example, the shortest hunting cycle as the allowable hunting cycle T in a relatively long hunting cycle range in which the passenger of the hybrid vehicle 10 does not feel discomfort.
  • the hunting allowable period T can be determined in advance based on, for example, experiments or simulations.
  • the ECU 100 sets the hunting allowable period T thus determined in advance by reading it from the memory. As shown in a second embodiment to be described later, the hunting allowable period T may be set according to the traveling state of the hybrid vehicle 10.
  • the inclination ⁇ of the charge / discharge amount Pchg is determined by the ECU 100 based on the hunting allowable period T (step S20). Specifically, ECU 100 determines slope ⁇ of charge / discharge amount Pchg with respect to the difference between SOC and control center SOC (that is, slope ⁇ of straight line L1 shown in FIG. 2) based on the following equation (1).
  • the slope ⁇ is an example of the “charge / discharge coefficient” according to the present invention.
  • Inclination ⁇ 3600 ⁇ Cb ⁇ Vb / hunting allowable period T (1)
  • Cb is the battery capacity of the battery 500, and the unit is ampere-hour (ie, A ⁇ h).
  • Vb is the battery voltage of the battery 500, and its unit is volts (ie, V).
  • the unit of the hunting allowable period T is second (that is, s).
  • the unit of the slope ⁇ is watts (ie, W).
  • Reference numeral 3600 denotes a conversion constant for converting a unit of time (that is, converting “hour” into “second”).
  • the charge / discharge amount Pchg is calculated by the ECU 100 based on the inclination ⁇ , the SOC of the battery 500, and the control center SOC (step S30). Specifically, ECU 100 calculates charge / discharge amount Pchg based on the following equation (2).
  • Charge / discharge amount Pchg slope ⁇ ⁇ (SOC ⁇ control center SOC) (2)
  • the ECU 100 performs charge / discharge control of the battery 500 according to the charge / discharge amount Pchg thus calculated.
  • the slope ⁇ (see also FIG. 2) of the charge / discharge amount Pchg with respect to the difference between the SOC and the control center SOC is determined based on the equation (1) (step S20). That is, the inclination ⁇ is set to a smaller value as the hunting allowable period T is longer, and is set to a larger value as the hunting allowable period T is shorter. Therefore, even if engine power hunting occurs by performing charge / discharge control of the battery 500 based on the calculated charge / discharge amount Pchg, there is little or no discomfort for the occupant of the hybrid vehicle 10.
  • a hunting allowable period that is a hunting period that does not cause a sense of incongruity to the occupant of the hybrid vehicle 10 even if engine hunting occurs (that is, sensuously allowed by the occupant of the hybrid vehicle 10) Since the inclination ⁇ is determined so that engine power hunting does not occur in a cycle shorter than T, there is little or no sense of incongruity in the occupant of the hybrid vehicle 10.
  • the ECU 100 sets, for example, the shortest hunting cycle as the hunting allowable cycle T in a relatively long hunting cycle range in which the occupant of the hybrid vehicle 10 does not feel uncomfortable. Therefore, the inclination ⁇ can be determined to be, for example, the largest value within a range in which the occupant of the hybrid vehicle 10 does not feel discomfort due to engine power hunting. Therefore, the SOC of the battery 500 can be quickly converged to the control center SOC with little or no discomfort due to engine power hunting in the occupant of the hybrid vehicle 10 (that is, the SOC of the battery 500 is controlled by the control center SOC). To improve convergence.
  • the SOC of the battery 500 becomes larger than an upper limit value (for example, 80 to 90%) set to protect the battery 500 from overcharging, It is possible to reduce or prevent the battery 500 from becoming smaller than a lower limit value (for example, 20 to 30%) set to protect the battery 500 from overdischarge. Therefore, since the decrease in the input / output of the battery 500 due to the use of the battery 500 in a state where the SOC is larger than the upper limit value or smaller than the lower limit value can be suppressed, the fuel efficiency and power performance of the hybrid vehicle 10 can be improved. Can do. In addition, deterioration of the battery 500 can be suppressed.
  • an upper limit value for example, 80 to 90%
  • a lower limit value for example, 20 to 30%
  • the SOC of the battery 500 can be quickly converged to the control center SOC without causing any or no discomfort to the passenger of the hybrid vehicle 10.
  • FIG. 4 is a flowchart showing a flow of charge / discharge control of the battery according to the second embodiment.
  • the same step numbers are assigned to the same steps as the battery charge control steps according to the first embodiment shown in FIG. 3, and description thereof will be omitted as appropriate.
  • the charge / discharge control of the battery according to the second embodiment is the same as that of the first embodiment described above in that the hunting allowable period T is set based on the traveling state of the hybrid vehicle 10 (see Steps S11 and S12). Unlike the charge / discharge control, the other points are substantially the same as the charge / discharge control according to the first embodiment described above.
  • the traveling state of the hybrid vehicle 10 is specified by the ECU 100 (step S11). That is, the ECU 100 acquires the vehicle speed, the accelerator opening, and the engine power change amount that are parameters indicating the traveling state of the hybrid vehicle 10. The ECU 100 acquires the vehicle speed from the vehicle speed sensor 12 and acquires it from the accelerator opening sensor 13. Further, the engine power change amount is a change amount of the engine power output from the engine 200. The ECU 100 acquires the engine rotation speed and the engine torque from sensors provided in the engine 200, and calculates the engine power change amount.
  • the hunting allowable period T is set by the ECU 100 based on the running state (step S12). Specifically, the ECU 100 sets the allowable hunting period T based on the vehicle speed, the accelerator opening, the engine power change amount, and the maps shown in FIGS.
  • FIG. 5 conceptually shows the relationship between the vehicle speed and the hunting allowable period T in the map for setting the hunting allowable period T.
  • FIG. 6 conceptually shows the relationship between the accelerator opening and the hunting allowable period T in the map for setting the hunting allowable period T.
  • FIG. 7 conceptually shows the relationship between the engine power change amount and the hunting allowable period T in the map for setting the hunting allowable period T.
  • the ECU 100 sets the hunting allowable period T to a smaller value (that is, a shorter period) as the vehicle speed, the accelerator opening, and the engine power change amount are larger. As the vehicle speed, accelerator opening, and engine power change amount are smaller, the hunting allowable period T is set to a larger value (that is, a longer period).
  • the engine power change amount is relatively large, for example, when the hybrid vehicle 10 is traveling on a mountain road, the original engine power even if hunting of the engine power occurs in a relatively short hunting cycle. Since the amount of change is large, it is difficult for the passengers of the hybrid vehicle 10 to feel discomfort due to engine power hunting. Conversely, when the amount of change in engine power is relatively small, such as when the hybrid vehicle 10 is traveling at high speed and steady, a sense of incongruity due to engine power hunting is likely to occur in the occupant of the hybrid vehicle 10.
  • the vehicle speed or the accelerator opening is large, for example, vibration of the hybrid vehicle 10 such as vibration caused by contact between the wheels 50 of the hybrid vehicle 10 and the road surface is generated relatively large. Uncomfortable feeling due to hunting.
  • the vibration of the hybrid vehicle 10 such as the vibration caused by the contact between the wheels 50 of the hybrid vehicle 10 and the road surface is small. A sense of incongruity is likely to occur.
  • the larger the vehicle speed, accelerator opening, and engine power change amount the smaller the hunting allowable period T is set, and the smaller the vehicle speed, accelerator opening, and engine power change amount are,
  • the hunting allowable period T is set to a large value.
  • the ECU 100 is in a state where the traveling state of the hybrid vehicle 10 is a state in which the occupant of the hybrid vehicle 10 is less likely to feel discomfort due to engine power hunting (that is, the vehicle speed, the accelerator opening, or the engine change).
  • the allowable hunting period T is set to be relatively short, and the traveling state of the hybrid vehicle 10 is a state in which the occupant of the hybrid vehicle 10 is likely to feel uncomfortable due to engine power hunting (that is, the vehicle speed).
  • the hunting allowable period T is set to be relatively long (step S12).
  • the ECU 100 determines the slope ⁇ to be a relatively large value (formula (1)). Reference), when the traveling state of the hybrid vehicle 10 is a state in which the occupant of the hybrid vehicle 10 is likely to feel uncomfortable due to engine power hunting, the slope ⁇ is determined to be a relatively small value (see Expression (1)). .
  • the present embodiment it is possible to further improve the convergence of the SOC that converges to the control center SOC when the traveling state of the hybrid vehicle 10 is in a state in which a sense of incongruity due to engine power hunting is unlikely to occur. Further, even if the traveling state of the hybrid vehicle 10 is a state in which a sense of incongruity due to engine power hunting is likely to occur, the passenger in the hybrid vehicle 10 causes little or no incongruity due to engine power hunting.
  • the SOC of the battery 500 is changed to the control center SOC according to the traveling state of the hybrid vehicle 10 with little or no discomfort for the passenger of the hybrid vehicle 10. It can be converged more quickly.
  • Vehicle speed sensor 13 Accelerator opening sensor 50 Wheel 100 ECU 200 Engine 300 Power split mechanism 400 PCU MG1, MG2 Motor generator 500 Battery

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 充放電制御装置(100)は、エンジンパワーのハンチングが許容されるハンチング周期であるハンチング許容周期(T)を設定する設定手段と、バッテリのSOCと、このSOCの目標値である目標SOCとの差に、ハンチング許容周期に基づいて決定した充放電係数を掛けることにより、バッテリの充放電量を算出する算出手段とを備える。

Description

充放電制御装置及び方法
 本発明は、例えばハイブリッド車両等の車両に搭載されたバッテリの充放電を制御する充放電制御装置及び方法の技術分野に関する。
 この種の装置として、エンジンパワーにより発電する発電機と、この発電機により充電されるバッテリ(蓄電池)とを備えたハイブリッド車両に搭載され、バッテリの充放電を、バッテリのSOC(State Of Charge:充電状態)が目標SOCとなるように制御するものが知られている(例えば特許文献1及び2参照)。
 例えば特許文献1には、電池の平均充放電量に基づいて、目標SOCを適宜変更することにより、電池のSOCの使用域を拡大し、電池を効率的に使用することが開示されている。例えば特許文献2には、電池の蓄電量のばらつきを考慮して充放電制御を行うことが開示されている。その他、本発明に関連する先行技術文献として特許文献3が存在する。
特開2000-152420号公報 特開平11-185823号公報 特開2010-193665号公報
 しかしながら、例えば前述した特許文献1に開示された技術によれば、SOCと目標SOCとの差に対する充放電量の傾きが一定であるので、SOCを目標SOCに収束させる収束性を高めることが困難であるという技術的問題点がある。更に、例えば、SOCの収束性を高めるために、SOCと目標SOCとの差に対する充放電量の傾きを単に大きくすると、バッテリの充電と放電とが頻繁に繰り返されてしまうおそれがある。このため、発電機を動作させるためのエンジンパワーが振動するハンチング現象(以下、単に「ハンチング」と適宜称する)が生じてしまうおそれがある。この結果、車両の乗員に、ハンチングによる違和感が生じてしまうおそれがある。
 本発明は、例えば前述した問題点に鑑みなされたものであり、例えば、車両の乗員に違和感を殆ど或いは全く生じさせることなく、バッテリのSOCを目標SOCに迅速に収束させることが可能な充放電制御装置及び方法を提供することを課題とする。
 本発明の充放電制御装置は上記課題を解決するために、エンジンと、該エンジンのエンジンパワーにより発電可能な発電機と、該発電機が発電した電力により充電されるバッテリとを備えた車両に搭載され、前記バッテリの充放電を制御する充放電制御装置であって、前記エンジンパワーのハンチングが許容されるハンチング周期であるハンチング許容周期を設定する設定手段と、前記バッテリのSOCと該SOCの目標値である目標SOCとの差に、前記ハンチング許容周期に基づいて決定した充放電係数を掛けることにより、前記バッテリの充放電量を算出する算出手段とを備える。
 本発明の充放電制御装置によれば、その動作時には、バッテリ(蓄電池)のSOCが目標SOCとなるようにバッテリの充放電を制御する。ここで「SOC」は、バッテリの充電状態を示す指標値であり、バッテリの満充電容量に対する現在の充電量(即ち、残容量或いは残蓄電量)の割合である。SOCは、バッテリが満充電の状態で100[%]をとり、バッテリが完全に放電して残容量がゼロである場合に0[%]をとる。また「目標SOC」は、バッテリの充放電を制御する際のSOCの目標値、言い換えれば、バッテリの充放電を制御する際の制御中心となるSOCであり、例えば50~60[%]に設定される。例えば、本発明の充放電制御装置は、SOCが目標SOCよりも小さい場合には、エンジンパワーにより発電機が発電した電力によってバッテリを充電することにより、SOCを目標SOCに近づけ、SOCが目標SOCよりも大きい場合には、バッテリを放電させることにより、SOCを目標SOCに近づける。
 本発明では特に、設定手段は、ハンチング許容周期を設定する。本発明に係る「ハンチング許容周期」とは、エンジンパワーのハンチング(即ち、エンジンパワーの振動)が許容されるハンチング周期(即ち、振動周期)であり、エンジンパワーのハンチングが生じても車両の乗員に違和感が生じないような(即ち、車両の乗員に官能上許容される)ハンチング周期である。一般的には、エンジンパワーのハンチング周期が長いほど、車両の乗員に違和感が生じにくく、エンジンパワーのハンチング周期が短いほど、車両の乗員に違和感が生じやすい。設定手段は、例えば、車両の乗員に違和感が生じない比較的長いハンチング周期の範囲のうち最短のハンチング周期をハンチング許容周期として設定する。ハンチング許容周期は、例えば実験或いはシミュレーション等に基づいて予め定めることができる。例えば、このように予め定められたハンチング許容周期は、設定手段が有するメモリに予め記憶される。設定手段は、ハンチング許容周期をメモリから読み出すことにより設定する。
 算出手段は、バッテリのSOCと目標SOCとの差に、ハンチング許容周期に基づいて決定した充放電係数を掛けることにより、バッテリの充放電量を算出する。即ち、算出手段は、先ず、ハンチング許容周期に基づいて充放電係数を決定する。ここで、充放電係数は、SOCと目標SOCとの差に対するバッテリの充放電量の傾き(或いは比例定数)であり、SOCと目標SOCとの差に基づいてバッテリの充放電量を決定する際のゲイン値と言い換えることもできる。算出手段は、例えば、バッテリの電池容量と電池電圧との積をハンチング許容周期で割ることにより、充放電係数を算出する。次に、算出手段は、バッテリのSOCと目標SOCとの差に充放電係数を掛けることにより、バッテリの充放電量を算出する。ここで、本発明では特に、充放電係数は、ハンチング許容周期に基づいて決定されるので、算出された充放電量に基づいてバッテリの充放電の制御を行うことにより仮にエンジンパワーのハンチングが生じたとしても車両の乗員に違和感が生じることは殆ど或いは全くない。更に、算出手段は、車両の乗員にエンジンパワーのハンチングによる違和感が生じない範囲内で、充放電係数を例えば最も大きな値に決定することができる。よって、算出手段は、バッテリの充放電量として、車両の乗員にエンジンパワーのハンチングによる違和感が生じない範囲内で例えば最も大きな値を算出することができる。したがって、車両の乗員にエンジンパワーのハンチングによる違和感を殆ど或いは全く生じさせることなく、バッテリのSOCを目標SOCに迅速に収束させることができる(即ち、バッテリのSOCが目標SOCに収束する収束性を高めることができる)。
 以上説明したように、本発明の充放電制御装置によれば、車両の乗員に違和感を殆ど或いは全く生じさせることなく、バッテリのSOCを目標SOCに迅速に収束させることができる。
 本発明の充放電制御装置の一態様では、前記設定手段は、前記車両の走行状態を示すパラメータに応じて前記ハンチング許容周期を設定する。
 この態様によれば、設定手段は、車両の走行状態を示すパラメータ(例えば、エンジンパワーの変化量や、車速、アクセル開度など)に応じてハンチング許容周期を設定する。例えば、設定手段は、車両の走行状態が、車両の乗員にエンジンパワーのハンチングによる違和感が生じにくい状態(例えば、車両が山岳路を走行中であり、エンジンパワーの変化が大きい状態)である場合には、ハンチング許容周期を比較的短く設定し、車両の走行状態が、車両の乗員にエンジンパワーのハンチングによる違和感が生じやすい状態(例えば、車両が高速定常走行中であり、エンジンパワーの変化が小さい状態)である場合には、ハンチング許容周期を比較的長く設定する。これにより、車両の乗員に違和感が生じることを確実に防止しつつ、より迅速にバッテリのSOCを目標SOCに収束させることができる。
 前述した、設定手段が、車両の走行状態を示すパラメータに応じてハンチング許容周期を設定する態様では、前記パラメータには、前記エンジンパワーの変化量が含まれ、前記設定手段は、前記エンジンパワーの変化量が大きいほど、前記ハンチング許容周期を小さな値に設定してもよい。
 この場合には、車両の乗員に違和感が生じることを確実に防止しつつ、より迅速にバッテリのSOCを目標SOCに収束させることができる。
 前述した、設定手段が、車両の走行状態を示すパラメータに応じてハンチング許容周期を設定する態様では、前記パラメータには、前記車両の車速が含まれ、前記設定手段は、前記車速が高いほど、前記ハンチング許容周期を小さな値に設定してもよい。
 この場合には、車両の乗員に違和感が生じることを確実に防止しつつ、より迅速にバッテリのSOCを目標SOCに収束させることができる。
 前述した、設定手段が、車両の走行状態を示すパラメータに応じてハンチング許容周期を設定する態様では、前記パラメータには、前記車両のアクセル開度が含まれ、前記設定手段は、前記アクセル開度が大きいほど、前記ハンチング許容周期を小さな値に設定してもよい。
 この場合には、車両の乗員に違和感が生じることを確実に防止しつつ、より迅速にバッテリのSOCを目標SOCに収束させることができる。
 本発明の充放電制御方法は上記課題を解決するために、エンジンと、該エンジンのエンジンパワーにより発電可能な発電機と、該発電機が発電した電力により充電されるバッテリとを備えた車両における前記バッテリの充放電を制御する充放電制御方法であって、前記エンジンパワーのハンチングが許容されるハンチング周期であるハンチング許容周期を設定する設定工程と、前記バッテリのSOCと該SOCの目標値である目標SOCとの差に、前記ハンチング許容周期に基づいて決定した充放電係数を掛けることにより、前記バッテリの充放電量を算出する算出工程とを備える。
 本発明の充放電制御方法によれば、前述した本発明の充放電制御装置が有する各種利益を享受することが可能となる。
 なお、前述した本発明の充放電制御装置が有する各種態様に対応して、本発明の充放電制御方法も各種態様を採ることが可能である。
 本発明の作用及び他の利得は次に説明する発明を実施するための形態から明らかにされる。
第1実施形態に係るハイブリッド車両の構成を概念的に示す概略構成図である。 第1実施形態に係るバッテリの充放電制御の概略を説明するためのグラフである。 第1実施形態に係るバッテリの充放電制御の流れを示すフローチャートである。 第2実施形態に係るバッテリの充放電制御の流れを示すフローチャートである。 ハンチング許容周期を設定するためのマップにおける車速とハンチング許容周期との関係を概念的に示すグラフである。 ハンチング許容周期を設定するためのマップにおけるアクセル開度とハンチング許容周期Tとの関係を概念的に示すグラフである。 ハンチング許容周期を設定するためのマップにおけるエンジンパワー変化量とハンチング許容周期Tとの関係を概念的に示すグラフである。
 以下では、本発明の実施形態について図を参照しつつ説明する。
 <第1実施形態>
 第1実施形態に係る充放電制御装置について、図1から図3を参照して説明する。
 先ず、本実施形態に係る充放電制御装置が適用されたハイブリッド車両の全体構成について、図1を参照して説明する。
 図1は、本実施形態に係るハイブリッド車両の構成を概念的に示す概略構成図である。
 図1において、本実施形態に係るハイブリッド車両10は、本発明に係る「車両」の一例であり、ECU(Electronic Control Unit)100、エンジン200、モータジェネレータMG1、モータジェネレータMG2、動力分割機構300、PCU(Power Control Unit)400、バッテリ500、車速センサ12、アクセル開度センサ13、減速機構30、車軸40及び車輪50を備えている。
 ECU100は、CPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)等を備え、ハイブリッド車両10の動作全体を制御することが可能に構成された電子制御ユニットである。ECU100は、例えばROM等に格納された制御プログラムに従って、ハイブリッド車両10における各種制御を実行可能に構成されている。ECU100は、本発明に係る「充放電制御装置」の一例として機能する。具体的には、ECU100は、本発明に係る「設定手段」及び「算出手段」の各々の一例として機能する。
 エンジン200は、本発明に係る「エンジン」の一例としてのガソリンエンジンであり、ハイブリッド車両10の動力源として機能するように構成されている。なお、本発明に係る「エンジン」とは、例えば2サイクル又は4サイクルレシプロエンジン等を含み、少なくとも一の気筒を有し、当該気筒内部の燃焼室において、例えばガソリン、軽油或いはアルコール等の各種燃料を含む混合気が燃焼した際に発生する力を、例えばピストン、コネクティングロッド及びクランクシャフト等の物理的又は機械的な伝達手段を適宜介して駆動力として取り出すことが可能に構成された内燃機関を包括する概念である。
 モータジェネレータMG1は、本発明に係る「発電機」の一例としての電動発電機であり、電気エネルギを運動エネルギに変換する力行機能と、運動エネルギを電気エネルギに変換する回生機能とを有している。モータジェネレータMG1は、バッテリ500を充電するための発電機或いはモータジェネレータMG2に電力を供給するための発電機、及びエンジン200をクランキングするための電動機として機能するように構成されている。モータジェネレータMG1は、後述する動力分割機構300を介してエンジン200から供給されるエンジンパワー(即ち、エンジン200の出力)により発電可能に構成されている。
 モータジェネレータMG2は、電動発電機であり、モータジェネレータMG1と同様に、電気エネルギを運動エネルギに変換する力行機能と、運動エネルギを電気エネルギに変換する回生機能と有している。モータジェネレータMG2は、主としてエンジン200の出力をアシスト(補助)する電動機として機能するように構成され、デファレンシャル等各種減速ギア装置を含む減速機構30を介して車軸40に動力を伝達することができるように構成されている。車軸40は、ハイブリッド車両10の駆動輪である車輪50に連結されている。
 尚、前述したモータジェネレータMG1及びMG2は、例えば同期電動発電機として構成され、例えば外周面に複数個の永久磁石を有するロータと、回転磁界を形成する三相コイルが巻回されたステータとを備える構成を有するが、他の構成を有していてもよい。
 PCU400は、バッテリ500から取り出した直流電力を交流電力に変換してモータジェネレータMG1及びMG2に供給すると共に、モータジェネレータMG1及びMG2によって発電された交流電力を直流電力に変換してバッテリ500に供給することが可能に構成されたインバータ等を含み、バッテリ500と各モータジェネレータとの間の電力の入出力を個別に制御することが可能に構成された制御ユニットである。PCU400は、ECU100と電気的に接続されており、ECU100によってその動作が制御される構成となっている。
 バッテリ500は、モータジェネレータMG1及びMG2を力行するための電力に係る電力供給源として機能する充電可能な蓄電池である。バッテリ500の充放電は、ECU100によって制御される。なお、バッテリ500は、本発明に係る「バッテリ」の一例である。
 動力分割機構300は、エンジン200の出力(即ち、エンジンパワー)をモータジェネレータMG1及び車軸40に分配することが可能に構成されたプラネタリギア(遊星歯車機構)である。例えば、動力分割機構300は、中心部に設けられた、サンギアと、サンギアの外周に同心円状に設けられたリングギアと、サンギアとリングギアとの間に配置されてサンギアの外周を自転しつつ公転する複数のピニオンギアと、これら各ピニオンギアの回転軸を軸支するキャリアとを備えている。サンギアは、モータジェネレータMG1のロータに、その回転軸を共有する形で連結されて、その回転数はモータジェネレータMG1の回転数と等価となる。また、リングギアは、減速機構11を介して車軸40に連結され、その回転数は、車軸40の回転数と等価となる。更に、キャリアは、エンジン200のクランクシャフト205に連結され、その回転数は、エンジン200の回転数と等価となる。この場合、動力分割機構300は、相互に差動関係にある複数の回転要素を備えた回転二自由度の遊星歯車機構であり、サンギア、キャリア及びリングギアのうち二要素の回転数が定まった場合に、残余の一回転要素の回転数が必然的に定まる。
 車速センサ12は、ハイブリッド車両10の車速を検出することが可能に構成されたセンサである。車速センサ12は、ECU100と電気的に接続されており、検出された車速は、ECU100によって一定又は不定の周期で把握される構成となっている。
 アクセル開度センサ13、ハイブリッド車両10に備わる不図示のアクセルペダルのアクセル開度を検出可能に構成されたセンサである。アクセル開度センサ13は、ECU100と電気的に接続されており、検出されたアクセル開度は、ECU100により一定又は不定の周期で把握される構成となっている。
 次に、ECU100により実行される、バッテリ500の充放電制御の概略について、図2を参照して説明する。
 図2は、バッテリ500の充放電制御の概略を説明するためのグラフである。図2では、横軸はバッテリ500のSOCを示し、縦軸はバッテリ500を充電する又は放電させる電力量(パワー)である充放電量Pchgを示している。充放電量Pchgは、正(+)の値である場合には、バッテリ500を放電させる放電量を示し、負(+)の値である場合には、バッテリ500を充電する充電量を示す。直線L1は、SOCに対して設定される充放電量Pchgの一例を示してる。
 図2において、ECU100は、バッテリ500のSOCが制御中心SOCとなるように、バッテリ500の充放電制御を行う。ここで、SOCは、バッテリ500の充電状態を示す指標値であり、バッテリ500の満充電容量に対する現在の充電量(即ち、残容量)の割合である。SOCは、バッテリ500が満充電の状態で100[%]をとり、バッテリ500が完全に放電して残容量がゼロである場合に0[%]をとる。また、制御中心SOCは、バッテリ500の充放電制御を行う際の制御中心となるSOCであり、例えば50~60[%]に設定される。なお、制御中心SOCは、本発明に係る「目標SOC」の一例である。
 言い換えれば、ECU100は、SOCと充放電量Pchgとの関係が、直線L1に示す関係となるように、SOCに応じて充放電量Pchgを設定する。
 具体的には、ECU100は、SOCが制御中心SOCよりも小さい場合には、SOCを制御中心SOCに近づけるために、充放電量Pchgを負の値に設定し、バッテリ500を充電する。即ち、SOCが制御中心SOCよりも小さい場合には、SOCが制御中心SOCに近づくように充放電量Pchgとして充電量が設定され、この設定された充放電量Pchgの電力がバッテリ500に充電される。また、ECU100は、SOCが制御中心SOCよりも大きい場合には、SOCを制御中心SOCに近づけるために、充放電量Pchgを正の値に設定し、バッテリ500を放電させる。即ち、SOCが制御中心SOCよりも大きい場合には、SOCが制御中心SOCに近づくように充放電量Pchgとして放電量が設定され、この設定された充放電量Pchgの電力がバッテリ500から放電される。また、ECU100は、SOCが制御中心SOCに一致している場合には、充放電量Pchgをゼロに設定する。また、ECU100は、SOCと制御中心SOCとの差が大きいほど、充電量或いは放電量が大きくなるように充放電量Pchgを設定する。言い換えれば、ECU100は、SOCと制御中心SOCとの差が大きいほど、充放電量Pchgの絶対値が大きくなるように、充放電量Pchgを設定する。
 次に、ECU100により実行される、バッテリ500の充放電制御について、図3を参照して詳細に説明する。
 図3は、バッテリ500の充放電制御の流れを示すフローチャートである。
 図3において、バッテリ500の充放電制御では、先ず、ハンチング許容周期TがECU100によって設定される(ステップS10)。ここで、ハンチング許容周期Tは、エンジン200のエンジンパワーのハンチング(即ち、エンジンパワーの振動)が許容されるハンチング周期(即ち、振動周期)であり、エンジンパワーのハンチングが生じてもハイブリッド車両10の乗員に違和感が生じないような(即ち、ハイブリッド車両10の乗員に官能上許容される)ハンチング周期である。一般的には、エンジンパワーのハンチング周期が長いほど、ハイブリッド車両10の乗員に違和感が生じにくく、エンジンパワーのハンチング周期が短いほど、ハイブリッド車両10の乗員に違和感が生じやすい。ECU100は、ハイブリッド車両10の乗員に違和感が生じない比較的長いハンチング周期の範囲のうち例えば最短のハンチング周期をハンチング許容周期Tとして設定する。ハンチング許容周期Tは、例えば実験或いはシミュレーション等に基づいて予め定めることができる。ECU100は、このように予め定められたハンチング許容周期Tをメモリから読み出すことにより設定する。なお、後述する第2実施形態に示すように、ハンチング許容周期Tは、ハイブリッド車両10の走行状態に応じて設定されてもよい。
 次に、ハンチング許容周期Tに基づいて充放電量Pchgの傾きαがECU100によって決定される(ステップS20)。具体的には、ECU100は、SOCと制御中心SOCとの差に対する充放電量Pchgの傾きα(即ち、図2に示した直線L1の傾きα)を次式(1)に基づいて決定する。なお、傾きαは、本発明に係る「充放電係数」の一例である。
 傾きα=3600×Cb×Vb/ハンチング許容周期T ・・・(1)
 式(1)において、Cbは、バッテリ500の電池容量であり、単位はアンペア時(即ち、A・h)である。Vbは、バッテリ500の電池電圧であり、単位はボルト(即ち、V)である。ハンチング許容周期Tの単位は、秒(即ち、s)である。傾きαの単位はワット(即ち、W)である。3600は、時間の単位を換算する(即ち、「時」を「秒」に換算する)ための換算定数である。
 次に、傾きα、バッテリ500のSOC及び制御中心SOCに基づいて充放電量PchgがECU100によって算出される(ステップS30)。具体的には、ECU100は、充放電量Pchgを次式(2)に基づいて算出する。
 充放電量Pchg=傾きα×(SOC-制御中心SOC) ・・・(2)
 ECU100は、このように算出した充放電量Pchgに応じてバッテリ500の充放電制御を行う。
 本実施形態では特に、前述したように、SOCと制御中心SOCとの差に対する充放電量Pchgの傾きα(図2も参照)は、式(1)に基づいて決定される(ステップS20)。即ち、傾きαは、ハンチング許容周期Tが長いほど、小さな値として設定され、ハンチング許容周期Tが短いほど、大きな値として設定される。よって、算出された充放電量Pchgに基づいてバッテリ500の充放電制御を行うことにより仮にエンジンパワーのハンチングが生じたとしてもハイブリッド車両10の乗員に違和感が生じることは殆ど或いは全くない。つまり、本実施形態では特に、エンジンパワーのハンチングが生じてもハイブリッド車両10の乗員に違和感が生じないような(即ち、ハイブリッド車両10の乗員に官能上許容される)ハンチング周期であるハンチング許容周期Tよりも短い周期でエンジンパワーのハンチングが生じないように、傾きαを決定するので、ハイブリッド車両10の乗員に違和感が生じることは殆ど或いは全くない。
 更に、本実施形態では特に、ECU100は、ハイブリッド車両10の乗員に違和感が生じない比較的長いハンチング周期の範囲のうち例えば最短のハンチング周期をハンチング許容周期Tとして設定する。よって、傾きαを、ハイブリッド車両10の乗員にエンジンパワーのハンチングによる違和感が生じない範囲内で例えば最も大きな値に決定することができる。したがって、ハイブリッド車両10の乗員にエンジンパワーのハンチングによる違和感を殆ど或いは全く生じさせることなく、バッテリ500のSOCを制御中心SOCに迅速に収束させることができる(即ち、バッテリ500のSOCが制御中心SOCに収束する収束性を高めることができる)。
 更に、このようにSOCの収束性を高めることができるので、バッテリ500のSOCが、バッテリ500を過充電から保護するために設定される上限値(例えば80~90%)よりも大きくなったり、バッテリ500を過放電から保護するために設定される下限値(例えば20~30%)よりも小さくなったりすることを低減或いは防止できる。よって、SOCが上限値よりも大きい状態或いは下限値よりも小さい状態でバッテリ500が使用されることによるバッテリ500の入出力の低下を抑制できるので、ハイブリッド車両10の燃費や動力性能を向上させることができる。加えて、バッテリ500の劣化を抑制できる。
 以上説明したように、本実施形態によれば、ハイブリッド車両10の乗員に違和感を殆ど或いは全く生じさせることなく、バッテリ500のSOCを制御中心SOCに迅速に収束させることができる。
 <第2実施形態>
 第2実施形態に係る充放電制御装置について、図4から図7を参照して説明する。
 図4は、第2実施形態に係るバッテリの充放電制御の流れを示すフローチャートである。尚、図4において、図3に示した第1実施形態に係るバッテリの充電制御のステップと同様のステップに同一のステップ番号を付し、それらの説明は適宜省略する。
 図4において、第2実施形態に係るバッテリの充放電制御は、ハイブリッド車両10の走行状態に基づいてハンチング許容周期Tを設定する点(ステップS11及びS12参照)で、前述した第1実施形態に係る充放電制御と異なり、その他の点については、前述した第1実施形態に係る充放電制御と概ね同様である。
 図4において、第2実施形態に係るバッテリ500の充放電制御では、先ず、ハイブリッド車両10の走行状態がECU100によって特定される(ステップS11)。即ち、ECU100は、ハイブリッド車両10の走行状態を示すパラメータである車速、アクセル開度及びエンジンパワー変化量を取得する。なお、ECU100は、車速を車速センサ12から取得し、アクセル開度センサ13から取得する。また、エンジンパワー変化量は、エンジン200が出力しているエンジンパワーの変化量である。ECU100は、エンジン200に設けられたセンサからエンジン回転速度及びエンジントルクを取得し、エンジンパワー変化量を算出する。
 次に、走行状態に基づいてハンチング許容周期TがECU100によって設定される(ステップS12)。具体的には、ECU100は、車速、アクセル開度及びエンジンパワー変化量並びに図5から図7に示すマップに基づいてハンチング許容周期Tを設定する。
 図5は、ハンチング許容周期Tを設定するためのマップにおける車速とハンチング許容周期Tとの関係を概念的に示している。図6は、ハンチング許容周期Tを設定するためのマップにおけるアクセル開度とハンチング許容周期Tとの関係を概念的に示している。図7は、ハンチング許容周期Tを設定するためのマップにおけるエンジンパワー変化量とハンチング許容周期Tとの関係を概念的に示している。
 図5から図7に示すように、本実施形態では、ECU100は、車速、アクセル開度及びエンジンパワー変化量の各々が大きいほど、ハンチング許容周期Tを小さな値(即ち、短い周期)に設定し、車速、アクセル開度及びエンジンパワー変化量の各々が小さいほど、ハンチング許容周期Tを大きな値(即ち、長い周期)に設定する。
 ここで、例えば、ハイブリッド車両10が山岳路を走行中である場合など、エンジンパワー変化量が比較的大きい場合には、比較的短いハンチング周期でエンジンパワーのハンチングが生じても、もともとのエンジンパワー変化量が大きいので、ハイブリッド車両10の乗員にエンジンパワーのハンチングによる違和感が生じにくい。逆に、ハイブリッド車両10が高速定常走行中である場合など、エンジンパワー変化量が比較的小さい場合には、エンジンパワーのハンチングによる違和感がハイブリッド車両10の乗員に生じやすい。また、車速やアクセル開度が大きい場合には、例えばハイブリッド車両10の車輪50と路面との接触による振動などのハイブリッド車両10の振動が比較的大きく発生するので、ハイブリッド車両10の乗員にエンジンパワーのハンチングによる違和感が生じにくい。逆に、車速やアクセル開度が小さい場合には、例えばハイブリッド車両10の車輪50と路面との接触による振動などのハイブリッド車両10の振動が小さいので、ハイブリッド車両10の乗員にエンジンパワーのハンチングによる違和感が生じやすい。
 そこで、本実施形態では、車速、アクセル開度及びエンジンパワー変化量の各々が大きいほど、ハンチング許容周期Tを小さな値に設定し、車速、アクセル開度及びエンジンパワー変化量の各々が小さいほど、ハンチング許容周期Tを大きな値に設定する。
 これにより、ハイブリッド車両10の乗員に違和感が生じることを確実に防止しつつ、より迅速にバッテリ500のSOCを制御中心SOCに収束させることができる。
 即ち、本実施形態によれば、ECU100は、ハイブリッド車両10の走行状態が、ハイブリッド車両10の乗員にエンジンパワーのハンチングによる違和感が生じにくい状態である場合(即ち、車速、アクセル開度又はエンジン変化量が大きい場合)には、ハンチング許容周期Tを比較的短く設定し、ハイブリッド車両10の走行状態が、ハイブリッド車両10の乗員にエンジンパワーのハンチングによる違和感が生じやすい状態である場合(即ち、車速、アクセル開度又はエンジン変化量が小さい場合)には、ハンチング許容周期Tを比較的長く設定する(ステップS12)。よって、ECU100は、ハイブリッド車両10の走行状態が、ハイブリッド車両10の乗員にエンジンパワーのハンチングによる違和感が生じにくい状態である場合には、傾きαを比較的大きな値に決定し(式(1)参照)、ハイブリッド車両10の走行状態が、ハイブリッド車両10の乗員にエンジンパワーのハンチングによる違和感が生じやすい状態である場合には、傾きαを比較的小さな値に決定する(式(1)参照)。
 したがって、本実施形態によれば、ハイブリッド車両10の走行状態が、エンジンパワーのハンチングによる違和感が生じにくい状態である場合における、SOCが制御中心SOCに収束する収束性をより高めることができる。更に、ハイブリッド車両10の走行状態が、エンジンパワーのハンチングによる違和感が生じやすい状態である場合であっても、ハイブリッド車両10の乗員にエンジンパワーのハンチングによる違和感を殆ど或いは全く生じさせない。
 以上説明したように、第2実施形態によれば、ハイブリッド車両10の乗員に違和感を殆ど或いは全く生じさせることなく、ハイブリッド車両10の走行状態に応じて、バッテリ500のSOCを制御中心SOCに、より迅速に収束させることができる。
 本発明は、前述した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う充放電制御装置及び方法もまた本発明の技術的範囲に含まれるものである。
 12 車速センサ
 13 アクセル開度センサ
 50 車輪
 100 ECU
 200 エンジン
 300 動力分割機構
 400 PCU
 MG1、MG2 モータジェネレータ
 500 バッテリ

Claims (6)

  1.  エンジンと、該エンジンのエンジンパワーにより発電可能な発電機と、該発電機が発電した電力により充電されるバッテリとを備えた車両に搭載され、前記バッテリの充放電を制御する充放電制御装置であって、
     前記エンジンパワーのハンチングが許容されるハンチング周期であるハンチング許容周期を設定する設定手段と、
     前記バッテリのSOCと該SOCの目標値である目標SOCとの差に、前記ハンチング許容周期に基づいて決定した充放電係数を掛けることにより、前記バッテリの充放電量を算出する算出手段と
     を備えることを特徴とする充放電制御装置。
  2.  前記設定手段は、前記車両の走行状態を示すパラメータに応じて前記ハンチング許容周期を設定する請求項1に記載の充放電制御装置。
  3.  前記パラメータには、前記エンジンパワーの変化量が含まれ、
     前記設定手段は、前記エンジンパワーの変化量が大きいほど、前記ハンチング許容周期を小さな値に設定する
     請求項2に記載の充放電制御装置。
  4.  前記パラメータには、前記車両の車速が含まれ、
     前記設定手段は、前記車速が高いほど、前記ハンチング許容周期を小さな値に設定する
     請求項2又は3に記載の充放電制御装置。
  5.  前記パラメータには、前記車両のアクセル開度が含まれ、
     前記設定手段は、前記アクセル開度が大きいほど、前記ハンチング許容周期を小さな値に設定する
     請求項2から4のいずれか一項に記載の充放電制御装置。
  6.  エンジンと、該エンジンのエンジンパワーにより発電可能な発電機と、該発電機が発電した電力により充電されるバッテリとを備えた車両における前記バッテリの充放電を制御する充放電制御方法であって、
     前記エンジンパワーのハンチングが許容されるハンチング周期であるハンチング許容周期を設定する設定工程と、
     前記バッテリのSOCと該SOCの目標値である目標SOCとの差に、前記ハンチング許容周期に基づいて決定した充放電係数を掛けることにより、前記バッテリの充放電量を算出する算出工程と
     を備えることを特徴とする充放電制御方法。
PCT/JP2010/070490 2010-11-17 2010-11-17 充放電制御装置及び方法 WO2012066657A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080069881.2A CN103189260B (zh) 2010-11-17 2010-11-17 充放电控制装置以及方法
DE112010006004T DE112010006004T5 (de) 2010-11-17 2010-11-17 Lade- und Entladesteuervorichtung und Verfahren
PCT/JP2010/070490 WO2012066657A1 (ja) 2010-11-17 2010-11-17 充放電制御装置及び方法
US13/882,570 US8700248B2 (en) 2010-11-17 2010-11-17 Charge and discharge control apparatus and method
JP2012544051A JP5354110B2 (ja) 2010-11-17 2010-11-17 充放電制御装置及び方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/070490 WO2012066657A1 (ja) 2010-11-17 2010-11-17 充放電制御装置及び方法

Publications (1)

Publication Number Publication Date
WO2012066657A1 true WO2012066657A1 (ja) 2012-05-24

Family

ID=46083619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070490 WO2012066657A1 (ja) 2010-11-17 2010-11-17 充放電制御装置及び方法

Country Status (5)

Country Link
US (1) US8700248B2 (ja)
JP (1) JP5354110B2 (ja)
CN (1) CN103189260B (ja)
DE (1) DE112010006004T5 (ja)
WO (1) WO2012066657A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103569104B (zh) * 2013-11-07 2016-02-17 阿尔特汽车技术股份有限公司 使用少缸发动机的hev动力转动系统的充电控制方法
JP6149772B2 (ja) * 2014-03-24 2017-06-21 トヨタ自動車株式会社 ハイブリッド車両
JP6412522B2 (ja) * 2016-05-23 2018-10-24 本田技研工業株式会社 動力システム及び輸送機器、並びに、電力伝送方法
WO2018102041A2 (en) * 2016-10-20 2018-06-07 Top Flight Technologies Hybrid power system characterization
US11285948B2 (en) * 2019-05-20 2022-03-29 Caterpillar Inc. Work machine speed control braking

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000282969A (ja) * 1999-03-31 2000-10-10 Mazda Motor Corp ハイブリッド自動車のエンジン制御装置
JP2006033969A (ja) * 2004-07-14 2006-02-02 Fuji Heavy Ind Ltd ハイブリッド車の制御装置
JP2010023731A (ja) * 2008-07-22 2010-02-04 Toyota Motor Corp ハイブリッド車の回生制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2790779B2 (ja) * 1994-08-22 1998-08-27 本田技研工業株式会社 ハイブリッド車両の発電制御装置
JP3533076B2 (ja) 1997-10-13 2004-05-31 トヨタ自動車株式会社 組電池の蓄電状態検出方法、検出装置、および組電池の充放電制御装置
JP3257486B2 (ja) * 1997-11-12 2002-02-18 トヨタ自動車株式会社 動力出力装置および内燃機関制御装置
JP3728946B2 (ja) 1998-11-10 2005-12-21 トヨタ自動車株式会社 ハイブリッド車における電池の充電状態制御方法
KR100669476B1 (ko) * 2005-12-21 2007-01-16 삼성에스디아이 주식회사 배터리의 soc보정 방법 및 이를 이용한 배터리 관리시스템
JP4538418B2 (ja) * 2006-02-15 2010-09-08 トヨタ自動車株式会社 二次電池の充放電制御装置
JP5354269B2 (ja) 2009-02-19 2013-11-27 アイシン精機株式会社 交流機制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000282969A (ja) * 1999-03-31 2000-10-10 Mazda Motor Corp ハイブリッド自動車のエンジン制御装置
JP2006033969A (ja) * 2004-07-14 2006-02-02 Fuji Heavy Ind Ltd ハイブリッド車の制御装置
JP2010023731A (ja) * 2008-07-22 2010-02-04 Toyota Motor Corp ハイブリッド車の回生制御装置

Also Published As

Publication number Publication date
DE112010006004T5 (de) 2013-08-29
US20130226386A1 (en) 2013-08-29
CN103189260B (zh) 2015-11-25
CN103189260A (zh) 2013-07-03
JPWO2012066657A1 (ja) 2014-05-12
JP5354110B2 (ja) 2013-11-27
US8700248B2 (en) 2014-04-15

Similar Documents

Publication Publication Date Title
JP5423898B2 (ja) 電動車両およびその制御方法
US9415698B2 (en) Hybrid vehicle
US20180236996A1 (en) Hybrid vehicle
US9555799B2 (en) Control device for hybrid vehicle, hybrid vehicle provided with same, and control method for hybrid vehicle
JP5131175B2 (ja) 電動車両およびその制御方法
JP2007239511A (ja) 車両の駆動制御装置
JP6344336B2 (ja) 電池システム
JP6179504B2 (ja) ハイブリッド車両
CN104812644A (zh) 混合动力车辆的行驶状态控制装置
JP5354110B2 (ja) 充放電制御装置及び方法
CN109131303A (zh) 混合动力车辆
US20190184965A1 (en) Hybrid vehicle
CN102763320A (zh) 车辆的再生控制系统
JP2009040094A (ja) ハイブリッド式の車両の出力制御装置、及び方法
JP2007230366A (ja) 動力出力装置、それを搭載する車両及び動力出力装置の制御方法
JP5331065B2 (ja) 車載内燃機関制御装置
JP2011178200A (ja) ハイブリッド車両の制御装置
JP2012176652A (ja) 車両および車両用制御方法
JP2005151620A (ja) 動力出力装置およびこれを搭載する自動車並びに動力出力装置の制御方法
JP2009303414A (ja) 車両及びその制御方法
JP2013006430A (ja) ハイブリッド車両およびその制御方法
JP2010184520A (ja) ハイブリッド車両の制御装置
JP2011105240A (ja) ハイブリッド車両
JP7087999B2 (ja) ハイブリッド車両の駆動力制御装置
JP2015093575A (ja) ハイブリッド車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10859859

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012544051

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13882570

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120100060045

Country of ref document: DE

Ref document number: 112010006004

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10859859

Country of ref document: EP

Kind code of ref document: A1