WO2012066611A1 - アセチレン発生設備、アセチレン発生設備の制御方法及びアセチレンガスの製造方法 - Google Patents

アセチレン発生設備、アセチレン発生設備の制御方法及びアセチレンガスの製造方法 Download PDF

Info

Publication number
WO2012066611A1
WO2012066611A1 PCT/JP2010/070293 JP2010070293W WO2012066611A1 WO 2012066611 A1 WO2012066611 A1 WO 2012066611A1 JP 2010070293 W JP2010070293 W JP 2010070293W WO 2012066611 A1 WO2012066611 A1 WO 2012066611A1
Authority
WO
WIPO (PCT)
Prior art keywords
acetylene
water
gas
flow rate
generator
Prior art date
Application number
PCT/JP2010/070293
Other languages
English (en)
French (fr)
Inventor
大森 博昭
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to PCT/JP2010/070293 priority Critical patent/WO2012066611A1/ja
Priority to CN201080048301.1A priority patent/CN103189477B/zh
Priority to JP2012506036A priority patent/JP5101749B2/ja
Publication of WO2012066611A1 publication Critical patent/WO2012066611A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10HPRODUCTION OF ACETYLENE BY WET METHODS
    • C10H15/00Acetylene gas generators with carbide feed, with or without regulation by the gas pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10HPRODUCTION OF ACETYLENE BY WET METHODS
    • C10H3/00Acetylene gas generators with automatic water feed regulation by means independent of the gas-holder

Definitions

  • the present invention relates to an acetylene generating facility, an acetylene generating facility control method, and an acetylene gas manufacturing method.
  • an acetylene facility described in Japanese Patent Publication No. 31-7838 is known.
  • carbide and 1.9 to 3 times the theoretical reaction amount of water are mixed, and the mixture is stirred and gradually lowered onto a shelf provided inside the acetylene generator. ing.
  • the acetylene gas generated in the generator is taken out from an extraction pipe provided in the upper part of the generator.
  • the amount of water supplied to the acetylene generator during operation is controlled with respect to the measured value of raw material carbide, and the amount of carbide supplied is determined by the flow rate of generated acetylene and the quality of carbide. It is described that the control is performed from the measured value, and it is also described that the two elements may have a proportional relationship and may be an automatic control that controls both of them.
  • the method of controlling the amount of water supply based on the measured value of the quality of raw material carbide has insufficient control stability. That is, there are cases where it is not possible to cope with sudden changes in the temperature of the supplied water or sudden changes in the reaction when raw materials of different qualities are supplied.
  • the present invention provides an acetylene generating facility, a method for controlling the acetylene generating facility, and a method for producing acetylene gas, which can perform water supply control to the acetylene generator with higher accuracy.
  • the present invention provides an acetylene generator for generating acetylene gas by reacting carbide and water, a supply tank for supplying carbide to the acetylene generator, and water for the acetylene generator.
  • a water supply unit for supplying water, a gas flow rate detector for detecting the amount of acetylene gas discharged from the acetylene generator, a gas temperature detector for detecting the temperature of acetylene gas discharged from the acetylene generator, and acetylene
  • the apparatus further comprises a water temperature detector for detecting the temperature of the water supplied from the water supply unit, and the control device generates the amount of acetylene gas and the amount of acetylene gas.
  • the flow rate of water supplied to the acetylene generator is controlled based on the temperature and the water temperature.
  • the control device measures the amount of acetylene gas generated detected by the gas flow rate detector using the temperature of the acetylene gas detected by the gas temperature detector.
  • a correction unit that corrects a calculation unit that calculates the required supply flow rate of water supplied to the acetylene generator using the corrected generation amount of acetylene gas, a comparison unit that compares the required supply flow rate and a reference value, And an adjustment unit that increases or decreases the flow rate of water supplied to the acetylene generator when the required supply flow rate does not satisfy the reference value.
  • an acetylene generator for generating acetylene gas by reacting calcium carbide with water
  • a supply tank for supplying calcium carbide to the acetylene generator, and water for supplying water to the acetylene generator
  • a supply unit a water temperature detector for detecting the temperature of water supplied by the water supply unit, a gas flow rate detector for detecting the amount of acetylene gas generated from the acetylene generator, and the amount of acetylene gas generated and water
  • the acetylene generating facility includes a control device that controls the flow rate of water supplied to the acetylene generator based on the temperature of the acetylene generator.
  • the control device corrects the supply magnification of the water supplied to the acetylene generator based on the temperature of the water detected by the water temperature detector, and the correction
  • the calculation unit that calculates the required supply flow rate of water supplied to the acetylene generator based on the subsequent water supply magnification and the amount of acetylene gas generated, the comparison unit that compares the required supply flow rate with the reference value, and the required supply
  • an adjustment unit that increases or decreases the flow rate of water supplied to the acetylene generator when the flow rate does not satisfy the reference value.
  • the acetylene generator is provided with a calcium carbide inlet provided at the top of the acetylene generator, and provided inside the acetylene generator and connected to the inlet.
  • the reaction stage, a plurality of spray nozzles connected to the reaction stage and supplying water to the reaction stage, and the by-product slaked lime obtained by reacting calcium carbide and water are mixed in the lower stage of the reaction stage A mixing stage, and a control device controls a flow rate ratio of water supplied from the plurality of spray nozzles.
  • the inside of the supply tank is pressurized to a pressure higher than that in the acetylene generator by an inert gas.
  • the temperature and flow rate of acetylene gas flowing through the outlet of the water sealer connected to the rear stage of the acetylene generator, the gas temperature detector and the gas flow rate detector. Is detected.
  • a process of supplying calcium carbide and water into an acetylene generator generating acetylene gas by reacting calcium carbide and water, and acetylene gas discharged from the acetylene generator.
  • the flow rate of water supplied to the acetylene generator is determined based on the step of detecting the generation amount, the step of detecting the temperature of the acetylene gas discharged from the acetylene generator, and the generation amount of the acetylene gas and the temperature of the acetylene gas. And controlling the acetylene generating facility.
  • a step of controlling the flow rate of water supplied to the acetylene generator based on the amount of acetylene gas generated and the temperature of the acetylene gas is detected.
  • the measured value of the detected amount of acetylene gas is corrected to the dry gas volume, and based on the corrected amount of acetylene gas generated, the flow rate of water supplied to the acetylene generator is increased or Including a reducing step.
  • the step of controlling the flow rate of water supplied to the acetylene generator uses the detected temperature of the acetylene gas to generate the detected acetylene gas.
  • a step to calculate the required supply flow rate of water to be supplied to the acetylene generator using the corrected amount of acetylene gas generated by correcting the measured value of the amount, and a step to compare the required supply flow rate with the reference value are necessary And increasing or decreasing the flow rate of water supplied to the acetylene generator when the supply flow rate does not satisfy the reference value.
  • the method further comprises a step of detecting the temperature of water supplied by the water supply unit, and controls the flow rate of water supplied to the acetylene generator.
  • the step includes a step of correcting the amount of water evaporation based on the detected water temperature, and increasing or decreasing the flow rate of water supplied to the acetylene generator based on the water evaporation amount correction result.
  • a process of supplying calcium carbide and water into an acetylene generator causing the calcium carbide and water to react to generate acetylene gas, and a temperature of water supplied into the acetylene generator.
  • a step of detecting, a step of detecting the amount of acetylene gas generated from the acetylene generator, a step of controlling the flow rate of water supplied to the acetylene generator based on the amount of acetylene gas generated and the temperature of the water, Is a method for controlling an acetylene generating facility.
  • the present invention is a method for producing acetylene gas using the method for controlling an acetylene generating facility.
  • an acetylene generating facility a method for controlling an acetylene generating facility, and a method for producing acetylene gas, which can perform water supply control to an acetylene generator with higher accuracy.
  • FIG. 1 is a schematic view of an acetylene generating facility according to a first embodiment of the present invention. It is a flowchart which shows an example of the water supply control method of the acetylene generation facility which concerns on the 1st Embodiment of this invention. The schematic of the acetylene generation facility which concerns on the 2nd Embodiment of this invention is shown. It is a flowchart which shows an example of the water supply control method of the acetylene generation facility which concerns on the 2nd Embodiment of this invention.
  • the acetylene generating facility As shown in FIG. 1, the acetylene generating facility according to the first embodiment of the present invention reacts carbide and water to generate acetylene gas, and supplies carbide to the acetylene generator 1.
  • a supply tank 2 a water supply unit 3 for supplying water to the acetylene generator 1, a gas flow rate detector 4 for detecting the amount of acetylene gas discharged from the acetylene generator 1, and an acetylene generator 1
  • a gas temperature detector 5 that detects the temperature of the acetylene gas
  • a control device 6 that controls the flow rate of water supplied to the acetylene generator 1 based on the amount of acetylene gas generated and the temperature of the acetylene gas.
  • the acetylene generator 1 is further connected to an acetylene purification unit 7 that purifies the acetylene gas generated by the acetylene generator 1 and a byproduct slaked lime discharge unit 8 that discharges the byproduct slaked lime generated by the acetylene generator 1.
  • the acetylene purification unit 7 includes a dust cooling tower 7a, a desulfurization tower 7b, and a water seal safety device 7c, and purifies the acetylene gas generated by the acetylene generator 1.
  • the by-product slaked lime discharging unit 8 includes an aging unit 8a, a seal tank 8b, and an inclined screw conveyor 8c, and further reacts unreacted carbide contained in the by-product slaked lime generated by the acetylene generator 1 to produce a by-product. Release raw slaked lime out of the system.
  • the acetylene generator 1 is a multistage stirring method, and is generally cylindrical.
  • the acetylene generator 1 completes most of the reaction in the upper stage, and is stirred and mixed in the lower stage to increase the conversion efficiency by reacting unreacted carbide.
  • the acetylene generator 1 shown in FIG. 1 has 10 stages, the first and second stages are reaction stages 12a and 12b, and the third to tenth stages are mixing stages 13.
  • Carbide inlets 11a and 11b are connected to the reaction stages 12a and 12b.
  • Screw means 21a and 21b are connected to the input ports 11a and 11b, and carbide is supplied from the supply tank 2 into the reaction stages 12a and 12b via the screw means 21a and 21b.
  • a plurality of water supply sprays 15a and 15b for supplying water are connected to the reaction stages 12a and 12b.
  • a total of 12 spray nozzles are used for each of the water supply sprays 15a and 15b.
  • two spray nozzles are arranged side by side along the circumferential direction from the inlets 11a and 11b.
  • Water is sprayed in a mist form from each spray nozzle, and water and carbide are in contact with each other.
  • the flow rate of water sprayed from the spray nozzle can be controlled independently for each water supply spray. Thereby, for example, the flow rate of the nozzles close to the raw material inlets 11a and 11b is increased, and the flow rate is decreased as the distance increases, or when the raw material is charged when the acetylene generator 1 is started up, Control to start watering after waiting for arrival is possible.
  • the water supply unit 3 for example, a pump or the like can be used.
  • the water supply unit 3 is connected to switching means (not shown) for supplying, for example, river water, well water, industrial water, or recovered water collected in acetylene equipment to the generator 1 as necessary. Also good.
  • the water supply unit 3 is electrically connected to the control device 6, and the control device 6 controls the flow rate of the water supply unit 3 (the flow rate of water supplied from the water supply sprays 15a and 15b).
  • the gas flow rate detector 4 and the gas temperature detector 5 are connected to the outlet side of the acetylene generator 1.
  • the gas flow rate detector 4 and the gas temperature detector 5 are connected to the outlet of the water seal 7c of the acetylene purification unit 7 to detect the flow rate of acetylene gas flowing through the outlet pipe of the water seal 7c. Yes.
  • the positions of the gas flow rate detector 4 and the gas temperature detector 5 are not particularly limited as long as they are after the dust removal cooling tower 7a.
  • the passage 18 connecting the acetylene generator 1 and the acetylene purification unit 7 may not be suitable for measurement due to an environment with a lot of dust and water vapor.
  • the gas flow rate detector 4 and the gas temperature detector 5 are electrically connected to the control device 6, and the flow rate and temperature detected by the gas flow rate detector 4 and the gas temperature detector 5 by the control device 6 are always or constant. Recorded every period.
  • the carbide Supplied in the supply tank 2 is carbide previously crushed by the crushing equipment.
  • the particle size of the carbide is too small, the temperature may increase excessively and a side reaction may easily occur. On the other hand, when the particle size is too large, the reaction may not sufficiently proceed.
  • the carbide is pulverized to an average particle size of 4 mm or less, preferably an average particle size of about 0.8 to 1.3 mm.
  • the supply tank 2 is full of raw materials and is sealed with an inert gas such as nitrogen gas.
  • the pressure in the supply tank 2 is preferably pressurized to about 0.3 to 0.5 kPa higher than that of the acetylene generator 1 by filling with an inert gas such as nitrogen gas. Thereby, the backflow to the supply tank 2 of the acetylene gas generated by the acetylene generator 1 is suppressed, and the safety of the acetylene generating facility is improved.
  • the control device 6 controls the acetylene generator 1, the supply tank 2, the water supply unit 3, the gas flow rate detector 4, and the gas temperature detector 5.
  • the control device 6 includes a condition storage unit 61, a correction unit 62, a calculation unit 63, a comparison unit 64, and an adjustment unit 65.
  • the condition storage unit 61 calculates conditions necessary for controlling the acetylene generating equipment, for example, operating conditions of each equipment, reference values, and water supply flow required for the acetylene generator 1 (hereinafter referred to as “required supply flow”). Information such as calculation formulas and relational data between various measurement parameters, and water supply magnification necessary for calculating the required supply flow rate are stored.
  • the correction unit 62 corrects the measured value of the acetylene gas generation amount (flow rate) detected by the gas flow rate detector 4 using the measured value of the acetylene gas temperature detected by the gas temperature detector 5. Specifically, for example, based on the equations (1) to (3), the correction unit 62 converts the measured value of the gas temperature detector 5 into the volume value of the dry gas of acetylene gas based on the detected temperature of the acetylene gas. It correct
  • Corrected gas amount [m 3 / h] Measured value [m 3 / h] ⁇ (P 0 + P DG ) ⁇ P 0 ⁇ (T 0 +15) ⁇ (T 0 + t) ⁇ V C2H2 (t) (t) 1)
  • V C2H2 (t) [ ⁇ ] ⁇ P 0 + P DG ⁇ E (t) ⁇ / (P 0 + P DG ) (2)
  • E (t) [kPa (abs)] 0.611 ⁇ 10 ⁇ ⁇ 7.5 t / (t + 237.3) ⁇ (3)
  • t [° C.] is detected by the gas temperature detector 5.
  • V C2H2 (t) is the acetylene volume fraction [ ⁇ ] at t [° C.]
  • P DG [kPa (G)] is the pressure in the water seal safety device 7 c
  • E (t) [kPa (abs )] Is an approximate expression (expression of Tetens (1930)) indicating the saturated water vapor pressure at t [° C.].
  • Table 1 shows an example of relational data of the acetylene gas temperature t, the saturated water vapor pressure E (t), and the acetylene volume fraction V C2H2 (t).
  • Table 1 shows an example in which the pressure P DG of the water sealer 7c is 2.0 kPa (G).
  • the correcting unit 62 determines the acetylene volume fraction V C2H2 from the measured value of the acetylene gas temperature (t [° C.]) and the relational data in Table 1, and based on the determined acetylene volume fraction V C2H2 (1).
  • the correction gas amount may be calculated by
  • the calculation unit 63 calculates the required supply flow rate of water supplied to the acetylene generator 1 using the corrected generation amount of acetylene gas calculated by the correction unit 62. For example, when 1 mol (64.1 g) of carbide is reacted with 2 mol (36 g) of water, as shown in the formula (4), 23.4 L (15 ° C., 101.325 kPa equivalent) of acetylene gas is generated. CaC 2 + 2H 2 O ⁇ C 2 H 2 + Ca (OH) 2 (4) From equation (4), 1.538 g (1.538 mL) of water is required to generate 1 L of acetylene gas, so the theoretical supply flow rate based on the generated amount of acetylene gas is equation (5).
  • Theoretical supply flow rate [m 3 /h] 1.538 ⁇ gas generation amount [m 3 / h] (5)
  • the reaction water evaporates due to the reaction heat, and water is also contained in the byproduct slaked lime generated as a result of the reaction.
  • the required supply flow rate is expressed by equation (6).
  • the “water supply magnification” in the equation (6) is a numerical value indicating how many times water is supplied with respect to the theoretical supply flow rate (theoretical reaction amount).
  • the calculation unit 63 calculates the required supply water amount by substituting the value of the corrected gas amount corrected by the correction unit 62 into the “gas generation amount” in the equation (6). Note that the water supply magnification varies somewhat depending on the quality of the carbide and the like, but in this embodiment, 3.00 ⁇ 0.20 [ ⁇ ] is used as a reference value.
  • the comparison unit 64 compares the required supply flow rate calculated by the calculation unit 63 with the reference value stored in the condition storage unit 61.
  • the “reference value” can be defined as the actual supply flow rate value during operation or within a certain range from the supply flow rate value (for example, within ⁇ 5% of the supply flow rate value).
  • the adjustment unit 65 increases or decreases the flow rate of water supplied to the acetylene generator 1 so that the supply flow rate of water to the acetylene generator 1 becomes the required supply flow rate when the required supply flow rate does not satisfy the reference value.
  • step S ⁇ b> 101 information necessary for operation such as the amount of gas to be generated, supply magnification, reference value, and the like is input to the condition recording unit 61.
  • the gas flow rate detector 4 and the gas temperature detector 5 detect the temperature and flow rate of the generated acetylene gas, and the detection result is stored in the condition storage unit 61.
  • the correction unit 62 of the control device 6 uses the measured value of the temperature of the acetylene gas detected by the gas temperature detector 5 to determine whether the gas flow rate detector 4 is based on the equations (1) to (3).
  • the detected measurement value of the generated amount (flow rate) of acetylene gas is corrected and stored in the condition storage unit 61.
  • the correction unit 62 determines the acetylene volume fraction V C2H2 from the measured value of the acetylene gas temperature and the relational data in Table 1, and uses (1) to calculate the correction gas amount based on the determined acetylene volume fraction V C2H2. It may be calculated.
  • step S104 the calculation unit 63 reads the correction gas amount corrected by the correction unit 62 and the value of the water supply magnification from the condition storage unit 61, and the necessity of water to be supplied to the acetylene generator 1 using equation (6).
  • the supply flow rate is calculated and stored in the condition storage unit 61.
  • step S105 the comparison unit 64 reads the reference value stored in the condition storage unit 61 and the required supply flow rate of water calculated by the calculation unit 63, and compares the required supply flow rate with the reference value. If the necessary supply flow rate satisfies the reference value, the process returns to step S101. If the required supply flow rate does not satisfy the reference value, in step S106, the adjustment unit 65 increases or decreases the flow rate of water so that the flow rate of water supplied to the acetylene generator 1 becomes the required supply flow rate. In step S106, after the flow rate is adjusted, the process returns to step S101, and the water supply amount is continuously controlled by repeating steps S101 to S106.
  • the gas flow rate detector 4 and the gas temperature detector 5 can detect the generation amount of acetylene gas and the temperature thereof in real time, and based on the detection result.
  • the control device 6 automatically controls the water supply flow rate of the water supply unit 3.
  • the water supply control to the acetylene generator 1 can be performed with higher accuracy than the conventional example in which the control is performed based on the quality of the raw material carbide, and a sudden change in the reaction when a carbide having a different quality is supplied. Even when this occurs, the inside of the generator 1 can be quickly adjusted to an appropriate condition, and acetylene gas can be generated more stably.
  • Raw material supply process Carbide pulverized in advance in the crushing equipment is conveyed from the bottom of the raw material hopper (not shown) to the supply tank 2 by, for example, a screw conveyor, a bucket conveyor, and a flow conveyor. During operation, the supply tank 2 is always supplied so as to be filled with carbide and sealed with an inert gas such as nitrogen gas. Carbide is supplied from the bottom of the supply tank 2 to the acetylene generator 1 by screw means 21a, 21b.
  • Acetylene generation step Carbide is added to the first and second shelves of the acetylene generator 1 through the inlets 11a and 11b, and a plurality of agitators are attached to a rotating arm (not shown) that rotates about the rotating shaft 17. It is diffused and transferred toward the center by vanes (not shown). The carbide is mixed with the reaction water sprayed in the form of spray and falls on the third shelf from the periphery of the rotation shaft 17 at the center while generating acetylene gas. Contrary to the first stage, the third stage is transferred while reacting from the central part toward the outer peripheral part.
  • the reaction in the acetylene generator 1 ends at the lowermost stage.
  • the inside of the generator 1 is preferably controlled to 140 ° C. or less, more preferably about 90 to 130 ° C., in order to suppress decomposition and explosion of acetylene.
  • the acetylene gas is sent to the dust removal cooling tower 7 a of the acetylene purification unit 7, while the byproduct slaked lime is sent to the byproduct slaked lime discharge unit 8.
  • the flow rate of water supplied to the acetylene generator 1 is automatically controlled to an appropriate flow rate by the control device 6 described above.
  • Dust removal process The acetylene gas generated in the generator 1 is sent to the dust removal cooling tower 7a. At this time, in order to prevent the by-product slaked lime with a large particle size from entering the dust removal cooling tower 7a, the ribbon screw is moved up and down in the front stage of the dust removal cooling tower 7a so that it can be pushed back to the generator 1 while securing the gas passage. Two stages are preferable.
  • the acetylene gas flowing into the dust removal cooling tower 7a has a temperature of about 80 to 95 ° C. and is accompanied by dust slaked lime that cannot be removed by a ribbon screw.
  • the dust removal cooling tower 7a is divided into a lower spray chamber and an upper filling chamber filled with a filler.
  • the dust slaked lime is washed away and cooled by the spray water sprayed in a mist form.
  • the acetylene gas further rises while meandering in a filling chamber filled with a packing in the shape of a ring, pellet or honeycomb. Cooling water is sprayed from above the filling chamber, and dust slaked lime that has not been washed away in the spray chamber is removed while the acetylene gas passes through the filling chamber.
  • the gas cooling further proceeds and is cooled to room temperature. In order to prevent the acetylene gas from dissolving and being lost in the water while the acetylene gas passes through the dust removal cooling tower 7a, it is desirable to maintain the drainage temperature at 70 to 80 ° C.
  • the desulfurization tower 7b is filled with a filler, and a small amount of hydrogen sulfide contained in the acetylene gas is sprayed from above the desulfurization tower 7b while rising while meandering in the desulfurization tower 7b. Reacts with aqueous solution to form sodium sulfide and is washed away.
  • the NaOH aqueous solution after use can be received in a desulfurization water tank, and the amount of use can be reduced by circulating it as long as the desulfurization effect continues.
  • Water Seal Safety Device The acetylene gas that has undergone the desulfurization process is guided to a water seal safety device 7c for preventing backflow.
  • a gas flow rate detector 4 and a gas temperature detector 5 are connected to the outlet side passage of the water sealer 7c, and the temperature and flow rate of the generated acetylene gas are measured. After passing through the water seal safety device 7c, it is sent to a gas holder for storage.
  • By-product slaked lime discharge step On the other hand, slaked lime by-produced in the acetylene generation step is introduced into a by-product slaked lime discharge unit 8 including an aging unit 8a, a seal tank 8b, and an inclined screw conveyor 8c. The unreacted carbide contained in the byproduct slaked lime produced is further reacted to discharge the byproduct slaked lime out of the system.
  • the acetylene generation facility includes a water temperature detector 9 that detects the temperature of water supplied by the water supply unit 3, and the control device 6 includes a gas flow rate detector. Based on the three measurement parameters of the amount of acetylene gas generated detected by 4, the temperature of acetylene gas detected by the gas temperature detector 5, and the temperature of water detected by the water temperature detector 9, the acetylene gas is supplied to the acetylene generator 1. The point which controls the flow volume of water differs from the acetylene generation facility shown in FIG.
  • the water temperature detector 9 is not particularly limited as long as it can detect the temperature of the supplied water.
  • the water temperature detector 9 is electrically connected to the control device 6, and the temperature detected by the water temperature detector 9 is recorded by the control device 6 at all times or at regular intervals.
  • the required supply flow rate is obtained by multiplying the theoretical supply flow rate by the water supply magnification.
  • the water supply magnification is generally set to about 3.00, and is set in consideration of the moisture in the byproduct slaked lime obtained by the reaction of carbide and water, the load state of the stirrer in the generator 1, and the like.
  • the temperature of the water supplied by the water supply unit 3 changes greatly, it affects the water evaporation of the generator 1 and the water content of the byproduct slaked lime changes greatly even with the same water supply magnification.
  • the correction unit 62 further detects the water temperature (water supply temperature) detected by the water temperature detector 9. To correct the water supply magnification to a more appropriate value.
  • the correction unit 62 corrects the water evaporation amount based on the detected water temperature based on, for example, the equation (7), and corrects the water supply magnification to a more appropriate value based on the water evaporation amount correction result.
  • the difference in the heat capacity (specific heat x temperature) of the water to be replenished is calculated from the difference between the average water supply temperature during normal times and the measured value of the water supply temperature. Ask.
  • Corrected water supply magnification [ ⁇ ] Water supply magnification (before correction) ⁇ ⁇ 1+ (t ⁇ t0) ⁇ 4.186 / 2254 ⁇ (7)
  • t [° C.] is the measured value of the feed water temperature
  • t 0 [° C.] is the average feed water temperature at normal time
  • 4.186 [kJ / kg ⁇ ° C.] is the specific heat of water
  • 2254 [kJ / kg] Represents the latent heat of evaporation of water.
  • the calculation unit 63 calculates the necessary supply flow rate by substituting the correction result of the correction unit 62 into the equation (6). As described above, the required supply flow rate is calculated based on the three measurement parameters of the generation amount of acetylene gas, the temperature of acetylene gas, and the temperature of water, thereby enabling more accurate water supply control to the acetylene generator 1. It becomes.
  • step S ⁇ b> 201 information necessary for operation such as the amount of gas to be generated, the supply magnification, the reference value, and the like is input to the condition recording unit 61.
  • the condition recording unit 61 When there is no change in value, the previous input value is retained.
  • step S202 the gas flow rate detector 4 and the gas temperature detector 5 detect the temperature and flow rate of the generated acetylene gas, and the water temperature detector 9 detects the temperature of the water supplied by the water supply unit 3. Then, the detection result is stored in the condition storage unit 61.
  • step S203 the correction unit 62 uses the measured value of the acetylene gas temperature detected by the gas temperature detector 5 to generate the amount of acetylene gas detected by the gas flow rate detector 4 based on the formula (1) ( The measured value of the flow rate is corrected, and the correction result (corrected gas amount) is stored in the condition storage unit 61.
  • the correction unit 62 may determine the acetylene volume fraction V C2H2 from the measured value of the acetylene gas temperature and the relationship data in Table 1, and obtain the correction gas amount based on the determined acetylene volume fraction V C2H2 .
  • step S204 the correction unit 62 further reads out the temperature of the water detected by the water temperature detector 9 from the condition storage unit 61, and corrects the evaporation amount of the water based on the detected water temperature based on the equation (7).
  • the corrected water supply magnification is calculated, and the correction result is stored in the condition storage unit 61.
  • amendment part 62 is the case where the temperature of water changes more than fixed based on the relationship data of the water supply temperature and water supply magnification as shown in Table 2 memorize
  • step S205 the calculation unit 63 reads the correction gas amount and the water supply magnification corrected by the correction unit 62 from the condition storage unit 61, and uses the equation (6), the required supply flow rate of water supplied to the acetylene generator 1 Is calculated and stored in the condition storage unit 61.
  • step S206 the comparison unit 64 reads the reference value stored in the condition storage unit 61 and the required supply flow rate of water calculated by the calculation unit 63, and compares the required supply flow rate with the reference value. If the necessary supply flow rate satisfies the reference value, the process returns to step S201.
  • step S207 the adjustment unit 65 increases or decreases the flow rate of water supplied to the acetylene generator 1 so as to be the required supply flow rate. After the flow rate is adjusted in step S207, the process returns to step S201, and the water supply amount is continuously controlled by repeating steps S201 to S207.
  • the gas temperature detector 4, the gas flow rate detector 5, and the water temperature detector 9 allow the temperature of the supplied water and the generation amount and temperature of the acetylene gas to be It is detected in real time, and the control device 6 controls the water supply flow rate of the water supply unit 3 based on the detection result.
  • the water supply control to the acetylene generator 1 can be performed with higher accuracy than in the prior art, and even in the case where a sudden temperature change of the supplied water or a sudden change in the raw material state occurs, Can be adjusted to an appropriate condition, and acetylene gas can be stably generated.
  • step S204 in the second embodiment may be omitted. That is, the calculation unit 63 detects the amount of acetylene gas detected by the gas flow rate detector 4 and the water temperature detector 9 without correcting the amount of acetylene gas detected by the gas flow rate detector 4.
  • a mode in which the required supply flow rate of the water supplied to the acetylene generator 1 is calculated based on the two parameters of the water temperature may be used.
  • the present invention naturally includes various embodiments and the like not described herein, and can be modified without departing from the gist thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

 アセチレン発生機への給水制御をより高精度に行うことが可能なアセチレン発生設備、アセチレン発生設備の制御方法及びアセチレンガスの製造方法を提供する。カルシウムカーバイドと水とを反応させてアセチレンガスを発生させるアセチレン発生機1と、アセチレン発生機1にカルシウムカーバイドを供給する供給タンク2と、アセチレン発生機1に水を供給する水供給部3と、アセチレン発生機1から排出されるアセチレンガスの発生量を検出するガス流量検出器4と、アセチレン発生機1から排出されるアセチレンガスの温度を検出するガス温度検出器5と、アセチレンガスの発生量とアセチレンガスの温度とに基づいて、アセチレン発生機1に供給する水の流量を制御する制御装置6とを備える。

Description

アセチレン発生設備、アセチレン発生設備の制御方法及びアセチレンガスの製造方法
 本発明は、アセチレン発生設備、アセチレン発生設備の制御方法及びアセチレンガスの製造方法に関する。
 工業的にアセチレンを発生する方法としては、カルシウムカーバイド(CaC2、以下「カーバイド」という。)と水を反応させる方法が古くから行われており、湿式法と乾式法が知られている。湿式法はカーバイドに対して10当量以上の水を反応させる必要があり、副生成する消石灰と水の混合物の処理が煩雑になるため、今日では乾式法が主流となっている。
 従来の乾式アセチレン発生設備としては、例えば特公昭31-7838号公報に記載のアセチレン設備が知られている。この設備では、アセチレン発生機において、カーバイドと反応理論量の1.9~3倍量の水とを混合し、混合物を撹拌しながら、アセチレン発生機内部に設けられた棚板上に順次降下させている。発生機内で発生したアセチレンガスは、発生機上部に設けられた取出管から取り出される。特公昭31-7838号公報には、運転時にアセチレン発生機へ供給する水の給水量は、原料カーバイドの品位の測定値に対して制御を行い、カーバイド供給量は発生アセチレンの流量とカーバイド品位の測定値とから制御を行うことが記載されており、これら二要素に比例的関係を持たせて両者を互いに制御する自動制御としてもよいことも記載されている。
特公昭31-7838号公報
 しかしながら、特許文献1に記載された発明のように、原料カーバイドの品位の測定値に基づいて給水量を制御する方法では、制御の安定性が不十分である。つまり、供給する水の急激な温度変化や、品位の異なる原料が供給された場合の反応の急変等には、対応しきれない場合がある。
 そこで、本発明は、アセチレン発生機への給水制御をより高精度に行うことが可能なアセチレン発生設備、アセチレン発生設備の制御方法及びアセチレンガスの製造方法を提供する。
 上記課題を解決するために、本発明は一側面において、カーバイドと水とを反応させてアセチレンガスを発生させるアセチレン発生機と、アセチレン発生機にカーバイドを供給する供給タンクと、アセチレン発生機に水を供給する水供給部と、アセチレン発生機から排出されるアセチレンガスの発生量を検出するガス流量検出器と、アセチレン発生機から排出されるアセチレンガスの温度を検出するガス温度検出器と、アセチレンガスの発生量とアセチレンガスの温度とに基づいて、アセチレン発生機に供給する水の流量を制御する制御装置とを備えるアセチレン発生設備である。
 本発明に係るアセチレン発生設備の別の一実施形態においては、水供給部から供給される水の温度を検出する水温度検出器を更に備え、制御装置が、アセチレンガスの発生量、アセチレンガスの温度及び水の温度に基づいて、アセチレン発生機に供給する水の流量を制御する。
 本発明に係るアセチレン発生設備の更に別の一実施形態においては、制御装置が、ガス温度検出器が検出したアセチレンガスの温度を用いてガス流量検出器が検出したアセチレンガスの発生量の測定値を補正する補正部と、補正後のアセチレンガスの発生量を用いてアセチレン発生機に供給する水の必要供給流量を算出する算出部と、必要供給流量と基準値とを比較する比較部と、必要供給流量が基準値を満たさない場合に、アセチレン発生機に供給する水の流量を増加又は減少させる調整部とを備える。
 本発明は別の一側面において、カルシウムカーバイドと水とを反応させてアセチレンガスを発生させるアセチレン発生機と、アセチレン発生機にカルシウムカーバイドを供給する供給タンクと、アセチレン発生機に水を供給する水供給部と、水供給部が供給する水の温度を検出する水温度検出器と、アセチレン発生機から排出されるアセチレンガスの発生量を検出するガス流量検出器と、アセチレンガスの発生量と水の温度に基づいて、アセチレン発生機に供給する水の流量を制御する制御装置とを備えるアセチレン発生設備である。
 本発明に係るアセチレン発生設備の一実施形態においては、制御装置が、水温度検出器が検出した水の温度に基づいて、アセチレン発生機に供給する水の供給倍率を補正する補正部と、補正後の水の供給倍率とアセチレンガスの発生量とに基づいてアセチレン発生機に供給する水の必要供給流量を算出する算出部と、必要供給流量と基準値とを比較する比較部と、必要供給流量が基準値を満たさない場合に、アセチレン発生機に供給する水の流量を増加又は減少させる調整部とを備える。
 本発明に係るアセチレン発生設備の別の一実施形態においては、アセチレン発生機が、アセチレン発生機の上部に設けられたカルシウムカーバイドの投入口と、アセチレン発生機の内部に設けられ、投入口に接続された反応段と、反応段に連結され、反応段に水を供給する複数のスプレーノズルと、反応段の下段に設けられ、カルシウムカーバイドと水とを反応させて得られる副生消石灰を混合する混合段とを備え、制御装置が、複数のスプレーノズルから供給する水の流量比を制御する。
 本発明に係るアセチレン発生設備の更に別の一実施形態においては、供給タンク内が、不活性ガスによりアセチレン発生機内よりも高い圧力に加圧されている。
 本発明に係るアセチレン発生設備の更に別の一実施形態においては、ガス温度検出器及びガス流量検出器が、アセチレン発生機の後段に接続された水封器の出口を流れるアセチレンガスの温度及び流量を検出する。
 本発明は更に別の一側面において、アセチレン発生機内にカルシウムカーバイドと水とを供給し、カルシウムカーバイドと水とを反応させてアセチレンガスを発生させる工程と、アセチレン発生機から排出されるアセチレンガスの発生量を検出する工程と、アセチレン発生機から排出されるアセチレンガスの温度を検出する工程と、アセチレンガスの発生量とアセチレンガスの温度とに基づいて、アセチレン発生機に供給する水の流量を制御する工程とを含むアセチレン発生設備の制御方法である。
 本発明に係るアセチレン発生設備の制御方法の一実施形態においては、アセチレンガスの発生量とアセチレンガスの温度とに基づいて、アセチレン発生機に供給する水の流量を制御する工程が、検出されたアセチレンガスの温度により、検出されたアセチレンガスの発生量の測定値を乾きガスの体積に補正し、補正後のアセチレンガスの発生量に基づいて、アセチレン発生機に供給する水の流量を増加又は減少させる工程を含む。
 本発明に係るアセチレン発生設備の制御方法の別の一実施形態においては、アセチレン発生機に供給する水の流量を制御する工程が、検出したアセチレンガスの温度を用いて、検出したアセチレンガスの発生量の測定値を補正し、補正後のアセチレンガスの発生量を用いてアセチレン発生機に供給する水の必要供給流量を算出する工程と、必要供給流量と基準値とを比較する工程と、必要供給流量が基準値を満たさない場合に、アセチレン発生機に供給する水の流量を増加又は減少させる工程とを含む。
 本発明に係るアセチレン発生設備の制御方法の更に別の一実施形態においては、水供給部が供給する水の温度を検出する工程を更に備え、上記アセチレン発生機に供給する水の流量を制御する工程が、検出された水の温度により水の蒸発量補正を行い、水の蒸発量補正結果に基づいてアセチレン発生機に供給する水の流量を増加又は減少させる工程を含む。
 本発明は更に別の一側面において、アセチレン発生機内にカルシウムカーバイドと水とを供給し、カルシウムカーバイドと水とを反応させてアセチレンガスを発生させる工程と、アセチレン発生機内に供給する水の温度を検出する工程と、アセチレン発生機から排出されるアセチレンガスの発生量を検出する工程と、アセチレンガスの発生量と水の温度に基づいて、アセチレン発生機に供給する水の流量を制御する工程とを含むアセチレン発生設備の制御方法である。
 本発明は更に別の一側面において、上記アセチレン発生設備の制御方法を用いたアセチレンガスの製造方法である。
 本発明によれば、アセチレン発生機への給水制御をより高精度に行うことが可能なアセチレン発生設備、アセチレン発生設備の制御方法及びアセチレンガスの製造方法が提供できる。
本発明の第1の実施の形態に係るアセチレン発生設備の概略図を示す。 本発明の第1の実施の形態に係るアセチレン発生設備の給水制御方法の一例を示すフローチャートである。 本発明の第2の実施の形態に係るアセチレン発生設備の概略図を示す。 本発明の第2の実施の形態に係るアセチレン発生設備の給水制御方法の一例を示すフローチャートである。
 次に図面を参照して本発明の実施の形態を説明する。以下の図面は模式的なものであり、厚みと平均寸法の関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は構成部品の材質、形状、構造、配置等を下記のものに特定するものではない。
(第1の実施の形態)
<アセチレン発生設備>
 本発明の第1の実施の形態に係るアセチレン発生設備は、図1に示すように、カーバイドと水を反応させてアセチレンガスを発生させるアセチレン発生機1と、アセチレン発生機1にカーバイドを供給する供給タンク2と、アセチレン発生機1に水を供給する水供給部3と、アセチレン発生機1から排出されるアセチレンガスの発生量を検出するガス流量検出器4と、アセチレン発生機1から排出されるアセチレンガスの温度を検出するガス温度検出器5と、アセチレンガスの発生量とアセチレンガスの温度とに基づいて、アセチレン発生機1に供給する水の流量を制御する制御装置6とを備える。
 アセチレン発生機1は更に、アセチレン発生機1で発生したアセチレンガスを精製するアセチレン精製部7と、アセチレン発生機1で発生した副生消石灰を排出する副生消石灰排出部8とが接続されている。アセチレン精製部7は、除塵冷却塔7aと脱硫塔7bと水封安全器7cとを備え、アセチレン発生機1で発生したアセチレンガスを精製する。副生消石灰排出部8は、熟成器8aと、シールタンク8bと、傾斜形スクリューコンベア8cとを備え、アセチレン発生機1で生成される副生消石灰に含まれる未反応カーバイドを更に反応させて副生消石灰を系外へ排出させる。
 図1に示すように、アセチレン発生機1は多段攪拌方式になっており、一般には円筒状である。アセチレン発生機1は、上段で大部分の反応を完了し、下段で攪拌混合し、未反応カーバイドを反応させることで変換効率を上げている。例えば図1に示すアセチレン発生機1は10段で構成されており、第1段及び第2段が反応段12a、12b、第3~第10段が、混合段13となっている。
 反応段12a、12bには、カーバイドの投入口11a、11bが連結されている。投入口11a、11bには、スクリュー手段21a、21bが接続されており、カーバイドが、供給タンク2からスクリュー手段21a、21bを介して反応段12a、12b内に供給される。反応段12a、12bには、水を供給するための複数の給水スプレー15a、15bが連結されている。給水スプレー15a、15bには、スプレーノズルが6本ずつ、計12本使用されている。図1に示す円筒状のアセチレン発生機1では、投入口11a、11bからスプレーノズルが2本ずつ円周方向に沿って並んで配置されている。各スプレーノズルから水が霧状に散布され、水とカーバイドとが接触する構成になっている。スプレーノズルから噴霧される水の流量は、給水スプレー毎に独立制御することが可能である。これにより、例えば、原料の投入口11a、11bに近いノズルの流量を上げ、遠ざかるに従い流量を下げる制御や、アセチレン発生機1の立ち上げ時における原料投入時に、給水スプレー15a、15b下部への原料到達を待ってから散水開始する制御が可能である。
 水供給部3としては、例えばポンプ等が利用可能である。水供給部3は、例えば川水、井戸水、工業用水又はアセチレン設備内で回収された回収水等を必要に応じて発生機1へ供給するための切替手段(図示せず)が接続されていてもよい。水供給部3は制御装置6に電気的に接続されており、制御装置6により、水供給部3の流量(給水スプレー15a、15bから供給する水の流量)が制御される。
 ガス流量検出器4及びガス温度検出器5は、アセチレン発生機1の出口側に接続されている。図1では、ガス流量検出器4及びガス温度検出器5が、アセチレン精製部7の水封器7cの出口に接続され、水封器7cの出口の配管を流れるアセチレンガスの流量を検出している。ガス流量検出器4及びガス温度検出器5の位置は、除塵冷却塔7a以降であれば特に限定されない。アセチレン発生機1とアセチレン精製部7とを接続する通路18では、粉塵や水蒸気が多い環境のため、測定には適さない場合がある。ガス流量検出器4及びガス温度検出器5は制御装置6に電気的に接続されており、制御装置6により、ガス流量検出器4及びガス温度検出器5が検出した流量及び温度が常時或いは一定の期間毎に記録される。
 供給タンク2には、破砕設備にて予め粉砕したカーバイドが貯蔵されている。カーバイドは、粒度が小さすぎると温度が上昇しすぎて副反応が生じやすくなる場合がある一方で、粒度が大きすぎると反応が十分に進行しない場合がある。このため、カーバイドは、平均粒径4mm以下、好ましくは平均粒径0.8~1.3mm程度の粒度に粉砕されていることが好ましい。供給タンク2は原料で満杯になっており、窒素ガス等の不活性ガスでシールされている。供給タンク2内の圧力は、窒素ガス等の不活性ガスを充填することによってアセチレン発生機1よりも0.3~0.5kPa程度高い圧力に加圧されるのが好ましい。これにより、アセチレン発生機1で発生するアセチレンガスの供給タンク2へ逆流が抑制され、アセチレン発生設備の安全性が向上する。
 制御装置6は、アセチレン発生機1、供給タンク2、水供給部3、ガス流量検出器4及びガス温度検出器5を制御する。制御装置6は、条件記憶部61、補正部62、算出部63、比較部64及び調整部65を備える。条件記憶部61は、アセチレン発生設備の制御に必要な条件、例えば、各設備の運転条件、基準値、アセチレン発生機1に必要な水の供給流量(以下「必要供給流量」という)を計算するための計算式及び各種測定パラメータ間の関係データ、必要供給流量の計算に必要な給水倍率等の情報を記憶する。
 補正部62は、ガス温度検出器5が検出したアセチレンガスの温度の測定値を用いて、ガス流量検出器4が検出したアセチレンガスの発生量(流量)の測定値を補正する。具体的には、補正部62は、例えば(1)~(3)式に基づいて、検出されたアセチレンガスの温度により、ガス温度検出器5の測定値をアセチレンガスの乾きガスの体積値である補正ガス量(15℃、101.325kPa、乾きガス換算)に補正する。
 
補正ガス量[m3/h]=測定値[m3/h]×(P0+PDG)÷P0×(T0+15)÷(T0+t)×VC2H2(t) ・・・(1)
 
C2H2(t)[-]={P0+PDG-E(t)}/ (P0+PDG ) ・・・(2)
 
E(t)[kPa(abs)]=0.611×10^{7.5t/(t+237.3)}  ・・・(3)
 
ここで、P0[kPa(abs)]は標準圧力(=101.325kPa)、T0 [K]は標準温度(=273.15℃)、t[℃]はガス温度検出器5が検出したアセチレンガスの温度、VC2H2(t)はt[℃]におけるアセチレン体積分率[-]、PDG[kPa(G)]は水封安全器7c内の圧力、E(t)[kPa(abs)]はt[℃]における飽和水蒸気圧を示す近似式(Tetens(1930)の式)である。
 アセチレンガス温度tと、飽和水蒸気圧E(t)及びアセチレン体積分率VC2H2(t)の関係データの一例を表1に示す。なお、表1は、水封器7cの圧力PDGを2.0kPa(G)とした場合の例を示している。補正部62は、アセチレンガスの温度の測定値(t[℃])と表1の関係データから、アセチレン体積分率VC2H2を決定し、決定したアセチレン体積分率VC2H2に基づいて(1)により補正ガス量を算出しても良い。
Figure JPOXMLDOC01-appb-T000001
 算出部63は、補正部62が算出した補正後のアセチレンガスの発生量を用いて、アセチレン発生機1に供給する水の必要供給流量を算出する。
 例えば、カーバイド1モル(64.1g)を水2モル(36g)と反応させると、式(4)に示すように、アセチレンガスが23.4L(15℃、101.325kPa換算)発生する。
 
CaC2+2H2O→C22+Ca(OH)2    ・・・(4)
 
(4)式より、アセチレンガスを1L発生させるためには、水は1.538g(1.538mL)必要となるため、アセチレンガスの発生量に基づく理論供給流量は(5)式となる。
 
理論供給流量[m3/h]=1.538×ガス発生量[m3/h]  ・・・(5)
 
しかしながら、実際には反応熱により反応水が蒸発するとともに、反応の結果生じる副生消石灰中にも水分が含まれる。反応熱により蒸発する水分量と副生消石灰に含まれる水分量とを考慮すると、必要供給流量は(6)式で示される。(6)式の「給水倍率」とは、理論供給流量(反応理論量)に対し、何倍の水を供給するかを示す数値である。
 
必要供給流量[m3/h]=1.538×ガス発生量[m3/h]×給水倍率
・・・(6)
 
算出部63は、補正部62が補正した補正ガス量の値を(6)式の「ガス発生量」に代入することにより必要供給水量を計算する。なお、給水倍率は、カーバイドの品位等により多少変化するが、本実施形態では3.00±0.20[-]を基準値とする。
 比較部64は、算出部63が算出した必要供給流量と条件記憶部61に記憶された基準値とを比較する。「基準値」は、運転時の実際の供給流量の値、又は供給流量の値から一定の範囲以内(例えば、供給流量値±5%以内)と規定することができる。調整部65は、必要供給流量が基準値を満たさない場合に、アセチレン発生機1への水の供給流量が必要供給流量となるように、アセチレン発生機1に供給する水の流量を増加又は減少させる。
<給水制御方法>
 次に、実施の形態に係るアセチレン設備に供給する水の制御方法について、図2のフローチャートを用いて説明する。
 ステップS101において、発生させたいガス量、供給倍率、基準値等、運転に必要な情報が、条件記録部61に入力される。値の変更がない場合は、前入力値を保持する。引き続き、ステップS102において、ガス流量検出器4及びガス温度検出器5により、発生したアセチレンガスの温度及び流量が検出され、検出結果が条件記憶部61に記憶される。ステップS103において、制御装置6の補正部62が、ガス温度検出器5が検出したアセチレンガスの温度の測定値を用いて、(1)~(3)式に基づいて、ガス流量検出器4が検出したアセチレンガスの発生量(流量)の測定値を補正し、条件記憶部61に記憶する。補正部62は、アセチレンガスの温度の測定値と表1の関係データからアセチレン体積分率VC2H2を決定し、決定したアセチレン体積分率VC2H2に基づいて(1)を用いて補正ガス量を算出しても良い。
 ステップS104において、算出部63が、補正部62が補正した補正ガス量と給水倍率の値を条件記憶部61から読み出して、(6)式を用いて、アセチレン発生機1に供給する水の必要供給流量を算出し、条件記憶部61に記憶する。
 ステップS105において、比較部64が、条件記憶部61に記憶された基準値及び算出部63が算出した水の必要供給流量を読み出して、必要供給流量と基準値とを比較する。必要供給流量が基準値を満たす場合にはステップS101に戻る。必要供給流量が基準値を満たさない場合には、ステップS106において、調整部65が、アセチレン発生機1に供給する水の流量が必要供給流量となるように、水の流量を増加又は減少させる。ステップS106において、流量調整をした後は、ステップS101に戻り、ステップS101~S106を繰り返すことにより、給水量の制御を連続的に行う。
 第1の実施の形態に係るアセチレン設備の制御方法によれば、ガス流量検出器4及びガス温度検出器5により、アセチレンガスの発生量及びその温度がリアルタイムで検出でき、その検出結果に基づいて、制御装置6が水供給部3の水の供給流量を自動的に制御する。これにより、原料カーバイドの品位に基づいて制御を行う従来例に比べてアセチレン発生機1への給水制御をより高精度に行うことができ、品位の異なるカーバイドが供給された場合の反応の急変等が生じた場合においても、速やかに発生機1内を適正な条件に調節することができ、アセチレンガスをより安定的に発生させることができる。
<アセチレンガスの製造方法>
 次に、図1のアセチレンガス発生設備を用いたアセチレンガスの製造方法の一例を説明する。
1.原料供給工程
 破砕設備にて予め粉砕したカーバイドが、原料ホッパー(図示せず)の底部から例えば、スクリューコンベア、バケットコンベア、及びフローコンベア等によって、供給タンク2に搬送される。運転中、供給タンク2は常にカーバイドで満杯となるように供給され、窒素ガス等の不活性ガスによりシールされる。供給タンク2の底部から、スクリュー手段21a、21bによってアセチレン発生機1へカーバイドが供給される。
2.アセチレン発生工程
 カーバイドはアセチレン発生機1の第1段及び第2段棚上に投入口11a、11bから投入され、回転軸17を中心に回転する回転腕(図示せず)に複数取り付けられた撹拌羽根(図示せず)により中心部に向って拡散移送される。カーバイドは、噴霧状に散布された反応水と混和しアセチレンガスを発生しつつ中心部の回転軸17周辺より第3段棚上に落下する。第3段では第1段とは逆に中心部より外周部に向って反応しながら移送される。以降、未反応のカーバイド及び副生消石灰は同様のジグザグ移動を繰り返しながら順に下段に移動し、最下段でアセチレン発生機1での反応が終了する。発生機1内は、アセチレンの分解爆発を抑えるため、140℃以下、より好ましくは90~130℃程度に制御することが好ましい。その後、アセチレンガスはアセチレン精製部7の除塵冷却塔7aへと送られる一方で、副生消石灰は副生消石灰排出部8へと送られる。本実施形態では、アセチレン発生工程において、アセチレン発生機1に供給する水の流量は、上述した制御装置6により、適正な流量に自動制御される。
3.除塵工程
 発生機1で生じたアセチレンガスは除塵冷却塔7aに送られる。この際に、大粒径の副生消石灰が除塵冷却塔7aに入り込まないように、ガス道を確保しながら発生機1へ押し戻すことができるように、除塵冷却塔7aの前段にリボンスクリューを上下2段設置するのが好ましい。除塵冷却塔7aに流入するアセチレンガスは80~95℃程度の温度であり、リボンスクリューで除去できない粉塵消石灰を同伴している。除塵冷却塔7aは、下段のスプレー室と充填物を詰めた上段の充填室とに分かれている。除塵冷却塔7aの下段から流入するアセチレンガスは、スプレー室内を上方に流動していく間に、霧状に散布されるスプレー水によって粉塵消石灰が洗い流されると共に冷却される。次いで、アセチレンガスは、リング状、ペレット状又はハニカム状などの形状の充填物が詰まった充填室内を蛇行しながら更に上昇していく。充填室の上方からは冷却水が散布されており、アセチレンガスが充填室を通過する間にスプレー室では洗い流されなかった粉塵消石灰が除去される。ガスの冷却も更に進行し、常温まで冷却される。除塵冷却塔7aをアセチレンガスが通過する間にアセチレンガスが水中に溶解してロスするのを防止するため、排水温度は70~80℃に維持することが望ましい。
4.脱硫工程
 除塵冷却塔7aを通過したアセチレンは、次いで脱硫塔7bに流入する。一般に、原料カーバイドには不純物として硫化カルシウムが混入しているため、アセチレン発生機1では水との反応により硫化水素が発生している。そこで、脱硫塔7bにて水酸化ナトリウムの水溶液(以下「NaOH水溶液」と記載)を用いて硫化水素を除去する。脱硫塔7b内には充填物が詰められており、アセチレンガス中に含まれる少量の硫化水素は脱硫塔7b内を蛇行しながら上昇していく間に、脱硫塔7bの上方から散布されるNaOH水溶液と反応して硫化ナトリウムとなって洗い流される。使用後のNaOH水溶液は脱硫水槽に受け入れて脱硫効果が持続する限り循環使用することで使用量削減が可能である。
5.水封安全器
 脱硫工程を経たアセチレンガスは、逆流防止のための水封安全器7cへ導かれる。水封器7cの出口側通路には、ガス流量検出器4及びガス温度検出器5が接続されており、発生したアセチレンガスの温度及び流量が測定される。水封安全器7cを通過した後は、貯蔵用のガスホルダーに送られる。
6.副生消石灰排出工程
 一方、アセチレン発生工程で副生する消石灰は、熟成器8aと、シールタンク8bと、傾斜形スクリューコンベア8cとを備える副生消石灰排出部8へ導入され、アセチレン発生機1で生成される副生消石灰に含まれる未反応カーバイドを更に反応させて副生消石灰が系外へ排出される。
(第2の実施の形態)
<アセチレン発生設備>
 第2の実施の形態に係るアセチレン発生設備は、図3に示すように、水供給部3が供給する水の温度を検出する水温度検出器9を備え、制御装置6が、ガス流量検出器4が検出したアセチレンガスの発生量、ガス温度検出器5が検出したアセチレンガスの温度及び水温度検出器9が検出した水の温度の3つの測定パラメータに基づいて、アセチレン発生機1に供給する水の流量を制御する点が、図1に示すアセチレン発生設備と異なる。
 水温度検出器9としては、供給する水の温度を検出できる機器であれば特に限定されない。水温度検出器9は制御装置6に電気的に接続されており、水温度検出器9が検出した温度が制御装置6により、常時或いは一定の期間毎に記録される。
 (5)式及び(6)式に示したように、必要供給流量は、理論供給流量に対して給水倍率を乗じることにより求められる。給水倍率は、通常は約3.00を基準とし、カーバイドと水の反応により得られる副生消石灰中の水分と発生機1内の攪拌機の負荷状態等を考慮して設定される。しかしながら、水供給部3が供給する水の温度が大きく変化すると、発生機1の水分蒸発に影響し、同じ給水倍率でも、副生消石灰の水分が大きく変化する。その結果、アセチレン発生機1内において水分過多状態又は水分不足状態が発生し、攪拌機の過負荷、未反応のカルシウムカーバイドの増加、又は消石灰の流れ出し等が生じる場合がある。特に、運転中に給水の種類を変更する(再生水から工業用水への変更等)時には、給水温度の変化が、設備に大きな影響を及ぼす場合がある。
 第2の実施の形態に係るアセチレン発生設備においては、補正部62が、第1の実施の形態で示した機能に加えて、更に、水温度検出器9が検出した水の温度(給水温度)から給水倍率をより適正な値に補正する。例えば、補正部62は、例えば(7)式に基づいて、検出された水の温度により水の蒸発量補正を行い、水の蒸発量補正結果に基づいて、給水倍率をより適正な値に補正する。具体的には、通常時の給水温度平均と給水温度測定値との差より、補給する水の熱容量(比熱×温度)の差を算出し、これを蒸発潜熱に換算することで補正給水倍率を求める。
 
補正給水倍率[-]=給水倍率(補正前)×{1+(t-t0)×4.186÷2254} ・・・(7)
 
式(7)中、t[℃]は給水温度測定値、t0[℃]は通常時の給水温度平均、4.186[kJ/kg・℃]は水の比熱、2254[kJ/kg]は水の蒸発潜熱を表す。
 補正部は、条件記憶部61に記憶された表2に示すような給水温度と給水倍率の関係データに基づいて、水の温度が一定以上変化した場合(例えば5℃以上、10℃以上、20℃以上変化した場合)に、給水倍率をより適正な値に補正するようにしてもよい。表2に、給水温度と給水倍率の関係の一例を示す。
Figure JPOXMLDOC01-appb-T000002
 算出部63は、補正部62の補正結果を(6)式に代入して必要供給流量を計算する。このように、アセチレンガスの発生量、アセチレンガスの温度、水の温度の3つの測定パラメータに基づいて必要供給流量が算出されることにより、アセチレン発生機1へのより高精度な給水制御が可能となる。
<給水制御方法>
 次に、第2の実施の形態に係るアセチレン設備に供給する水の制御方法について、図4のフローチャートを用いて説明する。
 ステップS201において、発生させたいガス量、供給倍率、基準値等、運転に必要な情報が、条件記録部61に入力される。値の変更がない場合は、前入力値を保持する。引き続き、ステップS202において、ガス流量検出器4及びガス温度検出器5により、発生したアセチレンガスの温度及び流量が検出され、水温度検出器9により、水供給部3が供給する水の温度が検出され、検出結果が条件記憶部61に記憶される。ステップS203において、補正部62が、ガス温度検出器5が検出したアセチレンガスの温度の測定値を用いて、(1)式に基づいて、ガス流量検出器4が検出したアセチレンガスの発生量(流量)の測定値を補正し、補正結果(補正ガス量)を条件記憶部61に記憶する。補正部62は、アセチレンガスの温度の測定値と表1の関係データからアセチレン体積分率VC2H2を決定し、決定したアセチレン体積分率VC2H2に基づいて補正ガス量を求めても良い。
 ステップS204において、補正部62は更に、水温度検出器9が検出した水の温度を条件記憶部61から読み出して、(7)式に基づいて、検出された水の温度により水の蒸発量補正を行い、補正給水倍率を計算し、補正結果を条件記憶部61に記憶させる。なお、補正部62は条件記憶部61に記憶された表2に示すような給水温度と給水倍率の関係データに基づいて、水の温度が一定以上変化した場合(例えば5℃以上、10℃以上、20℃以上変化した場合)に、給水倍率をより適正な値に補正するようにしてもよい。
 ステップS205において、算出部63が、補正部62が補正した補正ガス量及び給水倍率を条件記憶部61から読み出して、(6)式を用いて、アセチレン発生機1に供給する水の必要供給流量を算出し、条件記憶部61に記憶する。ステップS206において、比較部64が、条件記憶部61に記憶された基準値及び算出部63が算出した水の必要供給流量を読み出して、必要供給流量と基準値とを比較する。必要供給流量が基準値を満たす場合にはステップS201に戻る。必要供給流量が基準値を満たさない場合には、ステップS207において、調整部65が、アセチレン発生機1に供給する水の流量が必要供給流量となるように、増加又は減少させる。ステップS207において流量調整をした後は、ステップS201に戻り、ステップS201~S207を繰り返すことにより、給水量の制御を連続的に行う。
 第2の実施の形態に係るアセチレン設備の制御方法によれば、ガス温度検出器4及びガス流量検出器5及び水温度検出器9により、供給する水の温度及びアセチレンガスの発生量及び温度がリアルタイムで検出され、その検出結果に基づいて、制御装置6が水供給部3の水の供給流量を制御する。これにより、従来に比べてアセチレン発生機1への給水制御をより高精度に行うことができ、供給する水の急激な温度変化又は原料状態の急変が生じた場合においても速やかに発生機1内を適正な条件に調整でき、アセチレンガスを安定的に発生させることができる。
(その他の実施の形態)
 上記のように本発明の実施の形態を記載したが、この開示の一部をなす論述及び図面は、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態及び運用技術が明らかとなろう。例えば、第2の実施の形態のステップS204は省略しても構わない。即ち、ガス流量検出器4が検出したアセチレンガスの発生量に対する補正を行わずに、算出部63が、ガス流量検出器4が検出したアセチレンガスの発生量と、水温度検出器9が検出した水の温度の2つのパラメータに基づいて、アセチレン発生機1に供給する水の必要供給流量を算出するような態様であっても構わない。このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論であり、その要旨を逸脱しない範囲において変形が可能である。
1…アセチレン発生機
2…供給タンク
3…水供給部
4…ガス流量検出器
5…ガス温度検出器
6…制御装置
7…アセチレン精製部
8…副生消石灰排出部
9…水温度検出器
11a、11b…投入口
12a、12b…反応段
13…混合段
15a、15b…給水スプレー
61…条件記憶部
62…補正部
63…算出部
64…比較部
65…調整部

Claims (14)

  1.  カルシウムカーバイドと水とを反応させてアセチレンガスを発生させるアセチレン発生機と、
     前記アセチレン発生機にカルシウムカーバイドを供給する供給タンクと、
     前記アセチレン発生機に水を供給する水供給部と、
     前記アセチレン発生機から排出されるアセチレンガスの発生量を検出するガス流量検出器と、
     前記アセチレン発生機から排出される前記アセチレンガスの温度を検出するガス温度検出器と、
     前記アセチレンガスの発生量と前記アセチレンガスの温度とに基づいて、前記アセチレン発生機に供給する水の流量を制御する制御装置と
     を備えるアセチレン発生設備。
  2.  前記水供給部から供給される水の温度を検出する水温度検出器を更に備え、
     前記制御装置が、前記アセチレンガスの発生量、前記アセチレンガスの温度及び前記水の温度に基づいて、前記アセチレン発生機に供給する水の流量を制御する請求項1に記載のアセチレン発生設備。
  3.  前記制御装置が、
     前記ガス温度検出器が検出した前記アセチレンガスの温度を用いて前記ガス流量検出器が検出した前記アセチレンガスの発生量の測定値を補正する補正部と、
     補正後の前記アセチレンガスの発生量を用いて前記アセチレン発生機に供給する前記水の必要供給流量を算出する算出部と、
     前記必要供給流量と基準値とを比較する比較部と、
     前記必要供給流量が前記基準値を満たさない場合に、前記アセチレン発生機に供給する水の流量を増加又は減少させる調整部と
     を備える請求項1に記載のアセチレン発生設備。
  4.  カルシウムカーバイドと水とを反応させてアセチレンガスを発生させるアセチレン発生機と、
     前記アセチレン発生機にカルシウムカーバイドを供給する供給タンクと、
     前記アセチレン発生機に水を供給する水供給部と、
     前記水供給部が供給する水の温度を検出する水温度検出器と、
     前記アセチレン発生機から排出されるアセチレンガスの発生量を検出するガス流量検出器と、
     前記アセチレンガスの発生量と前記水の温度に基づいて、前記アセチレン発生機に供給する水の流量を制御する制御装置と
     を備えるアセチレン発生設備。
  5.  前記制御装置が、
     前記水温度検出器が検出した前記水の温度に基づいて、前記アセチレン発生機に供給する水の供給倍率を補正する補正部と、
     補正後の前記水の供給倍率と前記アセチレンガスの発生量とに基づいて前記アセチレン発生機に供給する前記水の必要供給流量を算出する算出部と、
     前記必要供給流量と基準値とを比較する比較部と、
     前記必要供給流量が前記基準値を満たさない場合に、前記アセチレン発生機に供給する水の流量を増加又は減少させる調整部と
     を備える請求項4に記載のアセチレン発生設備。
  6.  前記アセチレン発生機が、
     前記アセチレン発生機の上部に設けられた前記カルシウムカーバイドの投入口と、
     前記アセチレン発生機の内部に設けられ、前記投入口に接続された反応段と、
     前記反応段に連結され、前記反応段に水を供給する複数のスプレーノズルと、
     前記反応段の下段に設けられ、前記カルシウムカーバイドと前記水とを反応させて得られる副生消石灰を混合する混合段と
     を備え、
     前記制御装置が、前記複数のスプレーノズルから供給する水の流量比を制御する請求項1~5のいずれか1項に記載のアセチレン発生設備。
  7.  前記供給タンク内が、不活性ガスにより前記アセチレン発生機内よりも高い圧力に加圧されている請求項1~6のいずれか1項に記載のアセチレン発生設備。
  8.  前記ガス温度検出器及び前記ガス流量検出器が、前記アセチレン発生機の後段に接続された水封器の出口を流れるアセチレンガスの温度及び流量を検出する請求項1~3のいずれか1項に記載のアセチレン発生設備。
  9.  アセチレン発生機内にカルシウムカーバイドと水とを供給し、前記カルシウムカーバイドと前記水とを反応させてアセチレンガスを発生させる工程と、
     前記アセチレン発生機から排出されるアセチレンガスの発生量を検出する工程と、
     前記アセチレン発生機から排出されるアセチレンガスの温度を検出する工程と、
     前記アセチレンガスの発生量と前記アセチレンガスの温度とに基づいて、前記アセチレン発生機に供給する水の流量を制御する工程と
     を含むアセチレン発生設備の制御方法。
  10.  前記アセチレンガスの発生量と前記アセチレンガスの温度とに基づいて、前記アセチレン発生機に供給する水の流量を制御する工程が、
     検出されたアセチレンガスの温度により、検出されたアセチレンガスの発生量の測定値を乾きガスの体積に補正し、補正後の前記アセチレンガスの発生量に基づいて、前記アセチレン発生機に供給する水の流量を増加又は減少させる工程を含む請求項9に記載のアセチレン発生設備の制御方法。
  11.  前記アセチレン発生機に供給する水の流量を制御する工程が、
     検出した前記アセチレンガスの温度を用いて、検出した前記アセチレンガスの発生量の測定値を補正し、補正後の前記アセチレンガスの発生量を用いて前記アセチレン発生機に供給する水の必要供給流量を算出する工程と、
     前記必要供給流量と基準値とを比較する工程と、
     前記必要供給流量が前記基準値を満たさない場合に、前記アセチレン発生機に供給する水の流量を増加又は減少させる工程と
     を含む請求項9に記載のアセチレン発生設備の制御方法。
  12.  前記水供給部が供給する水の温度を検出する工程を更に備え、
     前記アセチレン発生機に供給する水の流量を制御する工程が、検出された水の温度により水の蒸発量補正を行い、水の蒸発量補正結果に基づいて前記アセチレン発生機に供給する水の流量を増加又は減少させる工程を含む請求項9に記載のアセチレン発生設備の制御方法。
  13.  アセチレン発生機内にカルシウムカーバイドと水とを供給し、前記カルシウムカーバイドと前記水とを反応させてアセチレンガスを発生させる工程と、
     前記アセチレン発生機内に供給する水の温度を検出する工程と、
     前記アセチレン発生機から排出されるアセチレンガスの発生量を検出する工程と、
     前記アセチレンガスの発生量と前記水の温度に基づいて、前記アセチレン発生機に供給する水の流量を制御する工程と
     を含むアセチレン発生設備の制御方法。
  14.  請求項9~13に記載のアセチレン発生設備の制御方法を用いたアセチレンガスの製造方法。
PCT/JP2010/070293 2010-11-15 2010-11-15 アセチレン発生設備、アセチレン発生設備の制御方法及びアセチレンガスの製造方法 WO2012066611A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2010/070293 WO2012066611A1 (ja) 2010-11-15 2010-11-15 アセチレン発生設備、アセチレン発生設備の制御方法及びアセチレンガスの製造方法
CN201080048301.1A CN103189477B (zh) 2010-11-15 2010-11-15 乙炔发生设备、乙炔发生设备的控制方法以及乙炔气体的制造方法
JP2012506036A JP5101749B2 (ja) 2010-11-15 2010-11-15 アセチレン発生設備、アセチレン発生設備の制御方法及びアセチレンガスの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/070293 WO2012066611A1 (ja) 2010-11-15 2010-11-15 アセチレン発生設備、アセチレン発生設備の制御方法及びアセチレンガスの製造方法

Publications (1)

Publication Number Publication Date
WO2012066611A1 true WO2012066611A1 (ja) 2012-05-24

Family

ID=46083580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070293 WO2012066611A1 (ja) 2010-11-15 2010-11-15 アセチレン発生設備、アセチレン発生設備の制御方法及びアセチレンガスの製造方法

Country Status (3)

Country Link
JP (1) JP5101749B2 (ja)
CN (1) CN103189477B (ja)
WO (1) WO2012066611A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105254465A (zh) * 2015-10-09 2016-01-20 安徽华塑股份有限公司 一种干法乙炔发生系统水路闭环控制工艺
CN105969424A (zh) * 2016-07-07 2016-09-28 中盐吉兰泰盐化集团有限公司 一种利用回收电石灰尘生产乙炔气的系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103467235A (zh) * 2013-09-18 2013-12-25 江苏通用机械设备有限公司 新干法乙炔生产工艺流程

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840389A (ja) * 1981-08-11 1983-03-09 ウオルフガング・プリ−ゼム−ト アセチレンガス反応器
JP2002348580A (ja) * 2001-05-28 2002-12-04 Shin Etsu Chem Co Ltd アセチレンの製造装置及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1947120A (en) * 1928-02-14 1934-02-13 Fur Stickstoffdunger Ag Apparatus for preparing acetylene and simultaneously producing substantially dry calcium hydroxide
US1916592A (en) * 1928-02-14 1933-07-04 Fur Stickstoffdunger Ag Process of preparing acetylene
GB610546A (en) * 1944-12-30 1948-10-18 Shawinigan Chem Ltd Generation of acetylene or other gas
GB839302A (en) * 1957-12-13 1960-06-29 Shawinigan Chem Ltd Improvements in and relating to acetylene generation
JPS4921225Y1 (ja) * 1969-04-15 1974-06-07
CN100537723C (zh) * 2007-02-08 2009-09-09 寿光新龙电化集团聚氯乙烯有限公司 一种干法生产乙炔气的工艺

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840389A (ja) * 1981-08-11 1983-03-09 ウオルフガング・プリ−ゼム−ト アセチレンガス反応器
JP2002348580A (ja) * 2001-05-28 2002-12-04 Shin Etsu Chem Co Ltd アセチレンの製造装置及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TSUSANSHO: "Process Flow Sheet Kenkyukai", SEIZO KOTEIZU ZENSHU, 1ST PRINT, vol. 2, 20 December 1968 (1968-12-20), pages 4 - 5 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105254465A (zh) * 2015-10-09 2016-01-20 安徽华塑股份有限公司 一种干法乙炔发生系统水路闭环控制工艺
CN105969424A (zh) * 2016-07-07 2016-09-28 中盐吉兰泰盐化集团有限公司 一种利用回收电石灰尘生产乙炔气的系统

Also Published As

Publication number Publication date
CN103189477B (zh) 2016-06-15
CN103189477A (zh) 2013-07-03
JP5101749B2 (ja) 2012-12-19
JPWO2012066611A1 (ja) 2014-05-12

Similar Documents

Publication Publication Date Title
JP6697398B2 (ja) 硫化リチウム製造用装置及び硫化リチウムの製造方法
JP5101749B2 (ja) アセチレン発生設備、アセチレン発生設備の制御方法及びアセチレンガスの製造方法
JP4188590B2 (ja) 三フッ化窒素の製造方法及び装置
JP2002154803A (ja) 水素ガス生成装置
US9494326B2 (en) Apparatus for generating heat
CN101817505B (zh) 一种直接生成气态氯化氢的二甲基二氯硅烷水解方法
CN112774591B (zh) 一种偏氯乙烯的连续化制备系统及方法
JP2019143172A (ja) 金属硫化物の加圧酸化浸出方法
CN100453938C (zh) 低温蒸馏生产一氧化碳和/或氢和/或氢和一氧化碳混合物的方法和设备
CN102360179A (zh) 干法乙炔生产中进出物料的控制方法
CN107750236A (zh) 高纯度合成萤石、制备其的方法及设备
JP2016028003A (ja) フッ化水素の製造方法
WO2020189127A1 (ja) メタン製造システム
CN105985217B (zh) 一种氯甲烷生产中提高反应物利用率的反应系统及其应用
WO2012063366A1 (ja) 副生消石灰排出装置
CN109261085B (zh) 己二胺合成系统
WO2013018188A1 (ja) 副生消石灰排出装置
CN109575072A (zh) 一种二苯基氯化膦的新合成方法
JP6274838B2 (ja) アルカリ金属硫化物の製造方法
CN109696928A (zh) 一种反应炉热回收室液位控制系统及方法
CN217568756U (zh) 一种新型高效碳五树脂聚合反应器
JPS59102806A (ja) 高濃度次亜塩素酸ナトリウム水溶液の製造方法
CN208944099U (zh) 聚酯多元醇合成系统
JP7306142B2 (ja) 金属硫化物の加圧酸化浸出方法
CN202924737U (zh) 一种生产五氯化磷的新型装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012506036

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 837/MUMNP/2012

Country of ref document: IN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10859631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10859631

Country of ref document: EP

Kind code of ref document: A1