WO2012064097A2 - 극자외선 리소그라피용 포토레지스트 탑코트 조성물과 이를 이용하는 패턴 형성 방법 - Google Patents

극자외선 리소그라피용 포토레지스트 탑코트 조성물과 이를 이용하는 패턴 형성 방법 Download PDF

Info

Publication number
WO2012064097A2
WO2012064097A2 PCT/KR2011/008498 KR2011008498W WO2012064097A2 WO 2012064097 A2 WO2012064097 A2 WO 2012064097A2 KR 2011008498 W KR2011008498 W KR 2011008498W WO 2012064097 A2 WO2012064097 A2 WO 2012064097A2
Authority
WO
WIPO (PCT)
Prior art keywords
weight
formula
group
composition
photoresist
Prior art date
Application number
PCT/KR2011/008498
Other languages
English (en)
French (fr)
Other versions
WO2012064097A3 (ko
Inventor
이재우
오승근
이정열
김정식
김재현
Original Assignee
㈜동진쎄미켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ㈜동진쎄미켐 filed Critical ㈜동진쎄미켐
Publication of WO2012064097A2 publication Critical patent/WO2012064097A2/ko
Publication of WO2012064097A3 publication Critical patent/WO2012064097A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present invention relates to a method of manufacturing a semiconductor circuit. More specifically, the present invention relates to a circuit pattern forming method using extreme ultraviolet lithography and a photoresist topcoat composition therefor.
  • the lens aberration (NA) is made larger than 1 by using light having a short wavelength as the exposure source wavelength ( ⁇ ), which is a main parameter for determining the resolution, or filling a liquid having a refractive index higher than air between the photosensitive agent and the lens, or an additional process.
  • exposure source wavelength
  • the k 1 values of process parameters to apply techniques were introduced to reduce to less than 0.3.
  • KrF laser light with a wavelength of 248 nm is used for the manufacture of 200 to 90 nanometer devices, and pattern resolution of 60 nanometers or less at 90 nm or less
  • a technology using ArF laser of 193 nanometers has been developed and applied to semiconductor chip production.
  • immersion lithography is applied to produce devices.
  • an exposure process is performed by filling deionized water having a refractive index of 1.34 instead of air having a refractive index of 1 between the photosensitive film coated on the wafer and the projection lens. In this way, lens aberration is made larger than 1 to obtain a desired resolution.
  • a technique being developed for processing a device of 30 nanometers or less is an extreme ultraviolet lithography (EUVL) technique having a wavelength of 13.4 nanometers of a used exposure source.
  • the exposure source wavelength used in the prior art is 194 nanometers, but in extreme ultraviolet lithography, the exposure wavelength is reduced to less than 1/10 of that.
  • extreme ultraviolet lithography has the advantage of being able to simultaneously process 32 nanometer devices as well as multiple generations of microdevices of 22 nanometers and below.
  • the light from the extreme ultraviolet lithography source includes light in the out-of-band (OBB) wavelength band in addition to the desired 13.4 nanometer in-band (IB) wavelength band. It's a problem that happens.
  • OOB out-of-band
  • IB 13.4 nanometer in-band
  • LWR Line Width Roughness
  • Linewidth roughness corresponds to the surface roughness of the pattern and is an important parameter that determines the performance of the final circuit.
  • LWR is a pattern performance that must be closely controlled.
  • LWR, resolution, and sensitivity are inversely related to acid diffusion through shot noise. Therefore, in order to obtain a satisfactory level of LWR during semiconductor chip processing and to avoid adverse effects due to the inverse relationship, improvement of resist performance is required.
  • technology development is being added to add new processes. One of them is the introduction of an underlayer, which has been shown to have a significant improvement but is not yet satisfactory.
  • An object of the present invention is to provide a means for increasing the line width roughness, the resolution reduction, and the pattern formation defect, which are caused when the mask is exposed to ultraviolet rays having a wavelength in an out-of-band region in a pattern forming process using extreme ultraviolet lithography.
  • a top coat is formed between the photoresist layer and the exposure source to block deep ultraviolet (UV) and vacuum ultraviolet rays that impair resolution and pattern uniformity.
  • the composition for forming a photoresist topcoat includes a) 100 parts by weight of a water-soluble binder resin, b) 0.01-30 parts by weight of an out-of-band sunscreen and c) 1,000-10,000 parts by weight of a protic solvent.
  • the water-soluble binder resin has a side chain selected from a carboxyl group, a carboxamide group, a hydroxyl group, an N-substituted lactam group, an N-substituted imidazole group, and a 2-hexafluoroisopropanolylalkyl group.
  • homopolymers of vinyl monomers having a side chain copolymers of vinyl monomers having different side chains selected or copolymers of vinyl monomers having said selected side chains with vinyl monomers having no aforementioned side chains.
  • the weight average molecular weight of the water-soluble binder resin is 1,000 to 100,000.
  • those having a dispersity of 1.02 to 3.5 are suitable.
  • the out-of-band sunscreen may be selected from the group consisting of water-soluble sulfonic acid esters, salts of sulfonic acid esters, sulfonium compounds, iodonium compounds, and oxime compounds having a main absorption wavelength of 100 to 300 nm. Can be.
  • the present invention also discloses an extreme ultraviolet lithography pattern forming process using the photoresist topcoat described above. This process
  • the step of laminating the photoresist layer comprises (a) 0.5 to 10 parts by weight of a photoacid generator, based on 100 parts by weight of an acid sensitive base resin, (b) laminating a composition comprising 0.01 to 5 parts by weight of a basic quencher and (d) 1,000 to 10,000 parts by weight of an organic solvent on the photoresist underlayer and soft baking the laminated composition. It includes a step.
  • the acid sensitive base resin is a polymer which is insoluble in the alkaline developer but becomes soluble in the alkaline developer after reacting with the proton.
  • the acid sensitive base resin is a polymer having a weight average molecular weight of 2,000 to 20,000 and a dispersion degree of 1.0 to 2.0.
  • the photoresist topcoat of the present invention When the photoresist topcoat of the present invention is used for extreme ultraviolet lithography, it is possible to solve a pattern process defect caused by out-of-band ultraviolet exposure in the region of 100 to 300 nm, which is a problem in the extreme ultraviolet lithography process. Due to this, breakage of pattern uniformity can be prevented and a uniform fine pattern can be formed. Furthermore, there is a great effect in improving the linewidth roughness (LWR), which is the biggest problem in circuit pattern formation using extreme ultraviolet lithography.
  • LWR linewidth roughness
  • the composition for forming a photoresist topcoat of the present invention and the extreme ultraviolet lithography method using the same the LWR can be improved to an excellent level of 3.3 nm or less, beyond the current technology level of 5 nm 3 sigma ( ⁇ ). 1 nm in case It can also be implemented at levels below.
  • FIG. 1 shows a mask for extreme ultraviolet lithography according to an embodiment of the present invention.
  • the stacking order of the mask from the direction close to the light source toward the substrate SUB is a photoresist topcoat (OCB) -photoresist (PR) -lower layer (UL) -substrate (SUB).
  • OCB photoresist topcoat
  • PR photoresist
  • UL lower layer
  • SUB substrate
  • Figure 2 is a schematic diagram of an extreme ultraviolet lithography process showing the principle of operation of the photoresist topcoat in one embodiment of the present invention.
  • IB is ultraviolet (solid line) in the in-band wavelength region of extreme ultraviolet lithography and OOB refers to ultraviolet (dotted line) in the out-of-band wavelength region of extreme ultraviolet lithography.
  • FIG. 3 is a flowchart illustrating a pattern forming process of a mask for extreme ultraviolet lithography having only a lower layer according to the prior art.
  • FIG. 4 is a flowchart illustrating a pattern forming process of a mask for an extreme ultraviolet lithography having a photoresist topcoat and a lower layer together according to an embodiment of the present invention.
  • OBC stands for Out of Band Coat.
  • FIG. 5 is a CD-SEM photograph of a line in which a pattern is formed according to one embodiment of the present invention.
  • FIG. 6 is a graph showing the ultraviolet absorption spectrum of the photoresist topcoat prepared according to an embodiment of the present invention.
  • the present invention relates to a photoresist topcoat composition and a pattern forming method using the same, which can solve problems such as lowering of resolution due to extra-area ultraviolet rays generated in extreme ultraviolet lithography, pattern profile distortion, and surface roughening.
  • a photoresist topcoat composition for extreme ultraviolet lithography In one aspect of the invention there is provided a photoresist topcoat composition for extreme ultraviolet lithography.
  • the photoresist topcoat for extreme ultraviolet lithography of the present invention sits between an exposure source and a photoresist and absorbs out-of-band ultraviolet light.
  • adopted the top coat of this invention is shown in FIG.
  • a photoresist underlayer (UL), a photoresist (PR), and a photoresist topcoat (OCB) may be stacked on a substrate (SUB) layer, and then the mask may be exposed to extreme ultraviolet rays to form a pattern.
  • the top surface of the photoresist topcoat (OCB) is exposed to extreme ultraviolet light during exposure.
  • In-band ultraviolet IB, thick solid arrow in FIG. 2 penetrates the top coat and reaches the photoresist or lower layer by the out-of-band sunscreen of the photoresist topcoat to produce an exposure effect for forming a pattern in subsequent processes.
  • out-of-band ultraviolet light OOB
  • OOB out-of-band ultraviolet light
  • composition for forming a photoresist topcoat of the present invention includes a water-soluble binder resin, an out-of-band sunscreen and a protic solvent, and may further include an additive such as a surfactant.
  • the copolymer in the present invention refers to a polymer having two or more kinds of repeating units, and encompasses more than two kinds of repeating unit copolymers such as ternary copolymers and quaternary copolymers.
  • all types of copolymers including random copolymers, block copolymers, alternating copolymers, and graft copolymers, also encompass the concept.
  • the water-soluble binder resin of the composition for forming a photoresist topcoat includes a repeating unit having a fluorine substituted ester side chain represented by the following Chemical Formula 1.
  • the water-soluble binder resin may be one repeating unit homopolymer of Formula 1 or a copolymer of different repeating units or may further include other repeating units other than the repeating unit of Formula 1.
  • R 1 is a hydrogen atom (H), a fluorine atom (F), a methyl group (-CH 3 ), a fluorinated alkyl group of 1 to 20 carbon atoms or a hydroxyalkyl group of 1 to 5 carbon atoms
  • X is hexafluoro Isopropyl tert -butyl carbonate ( tert- butyl hexafluoroisopropyl carbonate) is a substituted alkyl group.
  • hexafluoroisopropyl substituent in this substituted alkyl group of X is the carbon on the opposite side to the R 2 bond, and is connected to the opposite carbon via carbon 2 of hexafluoroisopropyl.
  • hexafluoroisopropyl tert-butyl carbonate is substituted alkylene. That is, in this embodiment, the repeating unit of formula 1 (Where n is an integer of 0 to 5, * represents the remainder except X in the repeating unit of Formula 1, that is, -CH 2 CH (R 1 ) (COOR 2 )-moiety).
  • R 2 in the general formula (1) is a chain or branched alkylene group or alkylidene group having 1 to 10 carbon atoms, or a cyclic alkylene group or alkylidene group having 5 to 10 carbon atoms
  • m is 2
  • R 2 is a hydrocarbon having 1 to 10 carbon atoms as a trivalent functional group having three bonds, and is a linear, branched or cyclic hydrocarbine group.
  • the hydrocarbine group is composed of carbon and hydrogen, and refers to a hydrocarbon moiety having three bonds, methyl (-CH 3 ), methylene (-CH 2- ), and methine (-C (-) H-).
  • hydrocarbylene hydrocarbylene
  • hydrocarbine is an extension of the concept.
  • m 2
  • one of the number of bonds of the hydrocarbyl group R 2 of Formula 1 is connected to -COO, and the other two are connected to X.
  • the water-soluble binder resin according to the present invention may be composed of only one repeating unit according to Chemical Formula 1 or a copolymer therebetween, and may be a composite copolymer including other repeating units in addition to the repeating unit of Chemical Formula 1.
  • the proportion of the repeating unit of Formula 1 is 1 to 99% by weight, preferably 1 to 90% by weight, more preferably 5 to 90% by weight of the total weight of the total repeating unit in the case of the binary copolymer. And most preferably 5 to 50% by weight.
  • the repeating unit of formula 1 is 1 to 98% by weight, preferably 1 to 90% by weight, more preferably 5 to 90% by weight, most preferably 5 to 50% of the total weight of the total repeating units. Weight percent.
  • the remaining repeating units other than the repeating unit of Formula 1 may include repeating units used in a conventional resist protective film-forming polymer.
  • repeating unit represented by Formula 1 may include repeating units represented by the following Formulas 1a to 1o.
  • the repeating unit represented by the formula (1) used in the present invention is a monomer molecule
  • R 1 , R 2 , X and m are as defined in Formula 1 above.
  • the monomer molecules by reacting the compound with di-tert containing alcohol groups hexafluoro-butyl dicarbonate (di- tert -butyl dicarbonate), that is a hydroxy group (-OH) of the alcohol group hexafluorophosphate and di- It can be obtained by reacting tert-butyl dicarbonate.
  • water-soluble binder resin a homopolymer consisting of only the repeating unit represented by the formula (1), a copolymer having a repeating unit represented by the following formula (2), having a repeating unit represented by the following formula (3)
  • a copolymer having a copolymer or repeating units represented by the following Chemical Formula 4 may be exemplified.
  • the water-soluble binder resin according to the present invention includes a repeating unit containing R 3 , as shown in the following Formula 2, or as shown in the following Formula 3, comprising a repeating unit and a R 4 including R 3 It may include a repeating unit, and as shown in the following formula 4, it may include a repeating unit including a R 4 and a sulfonyl group (sulfonyl group).
  • R 1 , R 2 , X and m are the same as defined in Formula 1
  • R 3 is a hydrogen atom, or a carbon number containing one or more hydroxy group (-OH) or carboxyl group (-COOH) 1 to 25 alkyl groups, for example, a chain, branched alkyl group of 2 to 18, a cyclic alkyl group of 5 to 25 carbon atoms, for example, 6 to 18, and p is an integer of 0 to 3.
  • the proportion of the repeating unit indicated by a in formula (2) is 1 to 99% by weight, preferably 1 to 90% by weight, more preferably 5 to 90% by weight, particularly preferably 10 To 90% by weight, most preferably 5 to 50% by weight, and the proportion of repeating units pointed to by b is 1 to 99% by weight, preferably 1 to 90% by weight, more preferably of the total repeating unit weight. Preferably from 5 to 90% by weight, particularly preferably from 10 to 90% by weight and most preferably from 5 to 50% by weight.
  • the above two repeating units are not necessarily connected in the form of block copolymers or alternating copolymers connected in the order shown in the figure, and of course, they cover all copolymers of the two repeating units.
  • R 1 , R 2 , R 3 , X, p, and m are as defined in Chemical Formulas 1 and 2, and R 4 is an alkyl group having 1 to 25 carbon atoms unsubstituted or substituted with one or more fluorine atoms, eg For example, it is a 2-18 chain, branched alkyl group, or a C5-C25 cyclic alkyl group, for example, a 6-18 cyclic alkyl group.
  • the proportion of repeating units indicated by a in formula (3) is 1 to 98% by weight, preferably 1 to 90% by weight, more preferably 5 to 90% by weight, particularly preferably 10, of the total repeating units.
  • the proportion of repeating units pointed to by b is 1 to 98% by weight, preferably 1 to 90% by weight of the total repeating unit, more preferably Preferably from 5 to 90% by weight, particularly preferably from 10 to 90% by weight, most preferably from 5 to 50% by weight, with the proportion of repeating units indicated by c being 1 to 98% by weight of the total repeating unit.
  • % Preferably 1 to 90% by weight, more preferably 5 to 90% by weight, particularly preferably 10 to 90% by weight, most preferably 5 to 50% by weight.
  • the above three repeating units are not necessarily connected in the form of block copolymers or alternating copolymers connected in the order depicted in the figure, and of course, they encompass all copolymers of the three repeating units.
  • R 1 , R 2 , R 4 , X and m are as defined in Formulas 1 and 3, q is an integer of 0 to 3.
  • the proportion of the repeating unit indicated by a in the formula (4) is 1 to 98% by weight, preferably 1 to 90% by weight, more preferably 5 to 90% by weight, particularly preferably 10 To 90% by weight, most preferably 5 to 50% by weight, and the proportion of repeating units pointed to by c is 1 to 98% by weight, preferably 1 to 90% by weight, more preferably of the total repeating unit weight.
  • the proportion of repeating units indicated by d is from 1 to 98% of the total repeating unit weight.
  • the above three repeating units are not necessarily connected in the form of block copolymers or alternating copolymers connected in the order depicted in the figure, and of course, they cover all copolymers of the three repeating units.
  • the repeating unit including R 3 , the repeating unit including R 4 , and the repeating unit including a sulfonyl group are those capable of forming a polymer for forming a conventional resist protective film.
  • Examples of the repeating unit including the R 3 include the following Formulas 2a to 2m.
  • Examples of the repeating unit including the R 4 may include the following Chemical Formulas 3a to 3r.
  • the water-soluble binder polymer used in the present invention is a monomer of a repeating unit represented by Formula 1
  • R 1 , R 2 , X and m are as defined in Formula 1 above, and a monomer of a repeating unit comprising R 3
  • R 1 , R 3 and p are as defined in Formula 2 above, and a monomer of a repeating unit comprising R 4 .
  • R One And R 4 Is as defined in Formula 3), a monomer of a repeating unit containing the sulfonyl group,
  • R One And q is as defined in Chemical Formula 4), and the like.
  • solvents such as a polymerization initiator commonly known in the art, such as azobis (isobutyronitrile) (AIBN), and tetrahydrofuran (THF).
  • AIBN azobis (isobutyronitrile)
  • THF tetrahydrofuran
  • the water-soluble binder polymer used in the present invention the homopolymer, the compound represented by the general formula (2), 3 or 4, the conventional polymer for forming a resist protective film, for example, the compound represented by the following formula (5) It may be).
  • R 1 , R 3 , and p are as defined in Chemical Formulas 1 to 3, and the ratio of the repeating units indicated by e in Chemical Formula 5 is 1 to 99% by weight of the total repeating unit weight, Preferably, the ratio of 5 to 90% by weight, and the repeating unit indicated by f, is appropriately determined such that the repeating unit occupies 1 to 99% by weight, preferably 5 to 90% by weight of the total repeating unit weight.
  • the above two repeating units are not necessarily connected in the form of block copolymers or alternating copolymers connected in the order depicted in the figure, and of course, they cover all copolymers of the two repeating units.
  • the content of the homopolymer, the compound represented by the formula (2), 3 or 4 is 1 to 99% by weight, preferably Preferably it is 5 to 90% by weight, the content of the compound represented by the formula (5) is 1 to 99% by weight, preferably 5 to 90% by weight.
  • the weight average molecular weight of the water-soluble binder resin is 1,000 to 100,000, preferably 3,000 to 30,000. If the weight average molecular weight is less than 1,000, the protective film may not be formed. If the weight average molecular weight is more than 100,000, the solvent may not be dissolved in the solvent.
  • the water-soluble binder resin in the composition for forming a top coat is a carboxyl group, a carboxamide group, a hydroxy group, an N-substituted lactam group, an N-substituted imidazole group, a 2-hexafluoroisopropanolyl group, and 2-hexafluoro Homopolymers of vinyl monomers having a particular side chain selected from the leusopropanolylalkyl group or copolymers of such vinyl monomers with other vinyl monomers not having the specific side chains selected above may be used.
  • the water-soluble binder polymer includes at least one or more repeating units represented by Formula 6 below.
  • R is a hydrocarbon having less than 10 carbon atoms that may contain up to 5 hydrogen or heteroatoms.
  • m and n are independent of each other, and any one of 1 to 6 is a natural number.
  • R ' is hydrogen or an alkyl group of 1 to 10 carbon atoms and m represents that this R' substituent may be substituted m times in the lactam ring.
  • X is a single bond or an alkylene group having 1 to 10 carbon atoms.
  • the water-soluble binder resin exemplified in Chemical Formula 6 may be a repeating unit derived from a monomer group of vinyl alcohol, acrylamide, methacrylamide, N-vinyl caprolactam and N-vinylpyrrolidone. Homopolymer or copolymer comprising at least one.
  • a combination represented by Chemical Formula 7 may be used as a copolymer between the repeating units represented by Chemical Formula 6, as a copolymer between the repeating units represented by Chemical Formula 6, a combination represented by Chemical Formula 7 may be used as a copolymer between the repeating units represented by Chemical Formula 6, as a copolymer between the repeating units represented by Chemical Formula 6, a combination represented by Chemical Formula 7 may be used as a copolymer between the repeating units represented by Chemical Formula 6, a combination represented by Chemical Formula 7 may be used as a copolymer between the repeating units represented by Chemical Formula 6, a combination represented by Chemical Formula 7 may be used as a copolymer between the repeating units represented by Chemical Formula 6, a combination represented by Chemical Formula 7 may be used as a copolymer between the repeating units represented by Chemical Formula 6, a combination represented by Chemical Formula 7 may be used as a copolymer between the repeating units represented by Chemical Formula 6, a combination represented by Chemical Formula 7 may be used as a copolymer between the repeating units represented
  • a copolymer of a repeating unit having a specific side chain described above, for example, the repeating unit shown in Formula 6, and a vinyl monomer having no specific side chain can be used as the water-soluble binder resin.
  • the vinyl monomer having no specific functional group side chain is methyl acrylate, methyl methacrylate, ethyl acrylate or ethyl methacrylate.
  • the said water-soluble binder resin is a polymer of the specific side chain structure mentioned above, the weight average molecular weights are 1,000-100,000, and dispersion degree is 1.02-3.5.
  • the content of the water-soluble binder resin in the total composition is preferably 1 to 30% by weight. More preferably, it may be 1 to 20% by weight. If the content of the water-soluble binder resin is less than 1% of the total composition, there is a risk that the formation of the photoresist protective film is difficult, if it exceeds 30% by weight, the formation of the photoresist protective film is too thick to develop during the photoresist pattern development There is concern about quality.
  • the out-of-band sunscreen in the composition for forming a photoresist topcoat of the present invention refers to a material capable of absorbing out-of-band ultraviolet rays other than 13.4 nm, which is the wavelength of the light source for extreme ultraviolet photolithography.
  • the out-of-band sunscreen does not absorb ultraviolet light in the region around 13.4 nm, or the absorbance value is close to zero, and the main absorption wavelength band is in the deep ultraviolet and vacuum ultraviolet regions of 100 nm to 300 nm, or at least It means the substance which has the maximum extinction value in the ultraviolet range of this wavelength range.
  • the out-of-band sunscreen may be selected from sulfonic acid esters, salts of sulfonic acid esters, sulfonium compounds, iodonium compounds, and oxime compounds.
  • the "compound" of the sulfonium compound, the iodonium compound, and the oxime compound includes an ionic salt.
  • the out-of-band sunscreen is phthalimidotrifluoromethane sulfonate, phthalimidotosylate, phthalimidotosylate, dinitrobenzyl tosylate and naphthylimidotrifluoro.
  • One or more of naphthylimidotrifluoromethane sulfonate and triphenylsulfonium methanesulfonate (group 1) are selected.
  • diphenyl iodonium triflate diphenyl iodonium nonaplate, hexafluorophosphate diphenyl iodonium, hexafluorobisoric acid diphenyl iodonium, hexafluoro Roantimonic acid diphenyl iodonium, diphenyl paramethoxy phenylsulfonium triflate, diphenyl paratoluenyl sulfonium triflate, diphenyl para tert-butyl phenyl sulfonium triflate, diphenyl paraisobutyl phenyl sulfonium tri Plate, triphenylsulfonium triflate, trispara tert-butyl phenylsulfonium triflate, diphenyl paramethoxy phenylsulfonium nona plate, diphenyl para tolueny
  • the out-of-band sunscreen is a substance having a naphthalene skeleton represented by the formula (8).
  • B is It is a C1-C10 alkyl group or alicyclic substituent.
  • m is an integer of 0 to 8 and when there are several B in the naphthalene ring, each B may be the same or different.
  • A is a hydroxyl group or monovalent organic group, n is independently substituted with each other in the naphthalene skeleton of the formula (8).
  • n is an integer of 1 to 8 and m + n ⁇ 8 as is apparent from the skeleton of naphthalene.
  • each A can be the same or different.
  • the monovalent organic group constituting A is preferably at least one selected from a carboxyl group, an ether group and an ester group.
  • A is an ester group, it is preferable that the carbonyl group which comprises this is couple
  • bonds in a naphthalene skeleton is a 1st position or a 2nd position.
  • A is preferably a skeleton represented by [OZ] (wherein Z represents a hydrogen atom or a linear or alicyclic substituent having 1 to 10 carbon atoms).
  • Z represents a hydrogen atom or a linear or alicyclic substituent having 1 to 10 carbon atoms.
  • substituent having 1 to 10 carbon atoms for Z include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • A is preferably a methyl ester group, an ethyl ester group, an n -propyl ester group, an i -propyl ester group, an n -butyl ester group, a tertiary butyl ester group or the like.
  • the carbon atom of the carbonyl group which comprises an ester group couple
  • A may be a material having a skeleton of Formula 9 represented by the following structure.
  • J represents a single bond, a methylene group or a linear or branched alkyl group having 2 to 10 carbon atoms
  • Q represents an acid dissociable group which can be released by the action of an acid.
  • Suitable for Q are tertiary butyl, methylcyclopentyl, ethylcyclopentyl, methylcyclohexyl, ethylcyclohexyl, methyladamantyl, ethyl adamantyl, isopropyladamantyl, gamma butyrolactone, Norbornenebutyrolactone, oxonorbornenebutyrolactone, and the like, but are not limited thereto.
  • Preferred examples of the compound represented by the out-of-band sunscreen include 1-naphthol, 2-naphthol, 1,8-naphthalenediol, 1-naphthalenecarboxylic acid, 2-naphthalenecarboxylic acid, 1,8-naphthalenedicarboxylic acid, 1-methoxynaphthalene, 2-methoxynaphthalene, 1-ethoxynaphthalene, 2-ethoxynaphthalene, 1- n -propoxynaphthalene, 2- n -propoxynaphthalene, 1-i-propoxynaphthalene, 2- i -propoxy naphthalene, 1- n -butoxynaphthalene, 2- n -butoxynaphthalene, 1-methoxycarbonyl naphthalene, 1-3-butoxycarbonyl naphthalene, 1- (methoxycarbonyl methoxynaphthalene), 1- (tertiary part Methoxy
  • the out-of-band sunscreen may be included in a ratio of 0.01 to 30 parts by weight with respect to 100 parts by weight of the aforementioned water-soluble binder resin. Including an out-of-band sunscreen in this content range can provide economical effects while improving pattern resolution, reducing line width roughness (LWR), and improving pattern profile.
  • LWR line width roughness
  • the content of the out-of-band sunscreen is less than 0.01 parts by weight, the out-of-band sunscreen effect is not seen, and even if it exceeds 30 parts by weight, the sunscreen effect is hardly further enhanced, absorbs excessive ultraviolet rays in excess and generates acid by ultraviolet rays. Because of this excess, the cross section of the pattern worsens and economic efficiency is reduced.
  • the photoresist topcoat composition for extreme ultraviolet lithography of the present invention comprises a solvent. It is preferable to use a solvent that can prevent mixing (intermixing) with the photoresist layer, which is the lower layer of the top coat.
  • a solvent used for a composition for forming a general photoresist protective film can be used.
  • a protic solvent it is preferable to use a protic solvent.
  • other solvents which do not mix with the topcoat composition solvent may be selected as the solvent for the photoresist layer composition.
  • two or more kinds of mixed protic solvents may be used.
  • suitable protic solvents include methanol, isopropanol, ethanol, butanol, 1-propanol, 2-propanol, 2-butanol, 1,2-butanediol, 1,2-propanediol, 2-hexanol, 3-hexane Ol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 5-methyl-2-hexanol, water, isobutanol, 4-methyl-2-pentanol, cyclopentanol, normalpentanol , Glycerol and propanol. If necessary, a small amount of aprotic solvent may be mixed with the protic solvent within a range that does not affect the intermixing.
  • the solvent for forming a top coat may be used as an aprotic solvent.
  • aprotic solvents include alkyl ethers of polyhydric alcohols such as cyclic ethers such as dioxane, diisoheptyl ether, diisoamyl ether, ethylene glycol monoethyl ether, ethylene glycol monomethyl ether, and diethylene glycol diethyl ether.
  • the amount of the solvent is required in terms of the viscosity required for applying the composition such as spin coating on the photoresist layer, and the time, temperature, and cost of the drying or curing process for removing the solvent of the topcoat, such as a soft baking process. Considering this, the average technician in this field can adjust accordingly. Therefore, it is not necessary to specifically present the content of the solvent in this specification, but in general, it is appropriate to include the solvent in the range of 1,000 to 10,000 parts by weight based on 100 parts by weight of the aforementioned water-soluble binder resin.
  • the topcoat composition of the present invention may further comprise a surfactant as well.
  • Surfactants smooth the topcoat surface and improve the linewidth roughness (LWR) of the lithographic pattern by helping the topcoat composition to coat the photoresist layer with an even thickness.
  • LWR linewidth roughness
  • surfactant of the present invention there is no particular limitation on the surfactant of the present invention, and cationic surfactants, anionic surfactants, and nonionic surfactants may be used widely.
  • an alkylamine oxide or an alkyl ether sulfate ester may be used as the surfactant.
  • examples are n-octylamine oxide and n-dodecyl phenol ether sulfate.
  • the surfactant may be included in a ratio of 0.00001 to 0.1 parts by weight (ie, 10 ppm to 100,000 parts by weight of the composition) based on 100 parts by weight of the total weight of the composition excluding the surfactant.
  • topcoat composition of the present invention may further include additives commonly used in the art.
  • an extreme ultraviolet lithography microprocess that is, a method of forming a pattern of a substrate using the above-described topcoat composition.
  • an extreme ultraviolet lithography mask including a top coat formed of the photoresist topcoat composition is formed.
  • the mask comprises a triple structure of a photoresist topcoat-photoresist-undelayer.
  • the role of the underlayer serves to enhance the underlayer adhesion of the photoresist and to promote the generation of secondary electrons known to promote acid generation in the exposure process, thereby improving the roughness of the pattern profile line edges.
  • the lower layer film composition used in the present invention is composed of a base resin, a crosslinking agent, a thermal acid generator, and a surfactant.
  • the base resin may include at least one repeating unit represented by Formula 11 below
  • R is a hydrocarbon having less than 10 carbon atoms which may contain up to 5 hydrogen or heteroatoms.
  • B 1 , B 2 , B 3 and Q are each independently a hydrocarbon of less than 15 carbon atoms which may optionally contain up to 5 heteroatoms
  • the weight average molecular weight range of the lower layer base resin is 2,000 to 45,000, and the dispersion degree range is appropriately 1 to 3.5.
  • the crosslinking agent can apply the compound which has the amide which substituted the alkoxy methyl group as a basic structure.
  • Representative examples include compounds of the formula (12) below.
  • the thermal acid generator serves to generate an acid by pyrolysis in the range of 120 to 250 ° C., and an amine salt that reacts to heat, for example, a salt of Chemical Formula 13 below is applied.
  • D 1 to D 5 are each independently a hydrocarbon having less than 15 carbon atoms which may contain 5 or less heteroatoms.
  • a pattern formation method of a substrate including the following steps is disclosed.
  • a flowchart of a typical process according to this method is shown in FIG. 4.
  • the main part of the prior art pattern formation process consisting only of the photoresist-underlayer without topcoat according to the invention is shown in FIG. 3. 4 and 3, most of the processes except for the top coat are very similar.
  • the substrate to which the method of the present invention can be applied is not particularly limited, and for example, silicon, aluminum, polymer resin, silicon dioxide, doped silicon dioxide, silicon nitride, tantalum, copper, polysilicon, ceramic, aluminum / copper mixture Gallium arsenide and other Group III / V mixtures.
  • the method of laminating the photoresist underlayer, photoresist layer and photoresist topcoat on the substrate in step (1) is well known in the art and will not be described here.
  • the method of laminating the lower layer, the photoresist layer, and the top coat is not particularly limited, and a method commonly used in the photolithography field is sufficient.
  • these layers can be formed by applying the above-mentioned photoresist topcoat or the composition for forming a photoresist layer on an appropriate substrate or a layer set in the lower portion and processing the same through a drying or curing treatment such as soft baking.
  • the thickness of the photoresist, lower layer and topcoat may be appropriately selected by the average person skilled in the art depending on the aspect of the overall extreme ultraviolet lithography process, i.e., the type of developing solution, the thickness of the desired pattern and the degree of LWR.
  • Composition application methods that can be used in the present invention include, for example, dipping, spraying, whirling and spin coating.
  • the solid content of the photoresist-forming composition or other composition can be appropriately adjusted to form a layer having a desired thickness according to the type and rotation time of the spin coating apparatus.
  • soft baking and a hardening process can be performed.
  • a curing bake may be performed, and a soft bake may be applied to the photoresist and the top coat.
  • Conditions for proper drying, curing temperature and time, apparatus, etc. may vary depending on the composition of the composition and the desired final physical properties.
  • the curing treatment may use temperatures of around 200 ° C.
  • the treatment is around 100 ° C. and hotplates or convection ovens can be used.
  • these specific conditions are for illustrative purposes only, and can be appropriately modified by an average person skilled in the art without departing from the technical spirit of the present invention.
  • the step of stacking the photoresist layer in the step (1) may be made by laminating and soft baking the following composition.
  • the composition for the photoresist layer comprises 0.5 to 10 parts by weight of a photoacid generator, 0.01 to 5 parts by weight of a basic acid diffusion quencher and 100 to 1500 parts by weight of an organic solvent based on 100 parts by weight of an acid sensitive base resin.
  • the photoresist layer lamination method includes laminating such a photoresist layer composition on the photoresist underlayer and soft baking the laminated composition.
  • the acid sensitive base resin is a polymer which is insoluble in the alkaline developer but becomes soluble in the alkaline developer after reacting with a proton.
  • Such acid-sensitive base resins may be any one widely used in the art and are not particularly limited. An average person skilled in the art may properly select an acid sensitive base with reference to the technical common sense and the technical spirit of the present invention, and thus will not be described in detail herein.
  • the acid sensitive base resin one having a structure represented by Chemical Formula 14 may be used as the acid sensitive base resin.
  • P is a non-aromatic aliphatic ring hydrocarbon or a branched aliphatic hydrocarbon which is unsubstituted or substituted with an ether (-OR), an ester, a hydroxyl group or the like and may be further substituted with fluorine.
  • P is preferably a cyclic hydrocarbon such as adamantyl having a high steric volume.
  • L is a branched aliphatic hydrocarbon containing an ester group.
  • L is lactone, and a ring having a steric volume may be used.
  • H is an aliphatic cyclic hydrocarbon having a hydroxy group, wherein the aliphatic ring may have a fluorine-substituted alkyl substituent in addition to the hydroxy group.
  • the above-mentioned substance may be used as the acid sensitive base resin, and the weight average molecular weight is 2,000 to 20,000, and the dispersity is 1.0 to 2.0.
  • the photoacid generator may be a material widely used in this field as a material capable of generating an acid by light.
  • a sulfonium salt-based or iodonium-based compound may be used.
  • phthalimidotrifluoromethane sulfonate phthalimidotrifluoromethane sulfonate
  • dinitrobenzyl tosylate n-decyldisulfone
  • naphthylimidotrifluoro Any one or more of naphthylimidotrifluoromethane sulfonate may be used.
  • diphenyl iodonium triflate diphenyl iodonium nona plate, hexafluorophosphate diphenyl iodonium, hexafluorobisoric acid di Phenyl iodonium, hexafluoroantimonate diphenyl iodonium, diphenyl paramethoxy phenylsulfonium triflate, diphenyl paratoluenyl sulfonium triflate, diphenyl para tert-butyl phenyl sulfonium triflate, diphenyl Paraisobutylphenylsulfonium triflate, triphenylsulfonium triflate, trispara tert-butylphenylsulfonium triflate, diphenyl paramethoxyphenylsulfonium nona plate
  • the photoacid generator of the present invention is included in a ratio of 0.5 to 10 parts by weight based on 100 parts by weight of the acid sensitive base resin. Including the photoacid generator in this content range can improve the pattern resolution, reduce the line width roughness, and improve the pattern profile while economical. On the other hand, if the content of the photoacid generator is less than 0.05 parts by weight, the sensitivity to extreme ultraviolet rays becomes weak, and even if it exceeds 10 parts by weight, the pattern formation does not become better, but it absorbs excessive ultraviolet rays excessively and generates excessive acid by ultraviolet rays. As a result, acid diffusion occurs, the cross section of the pattern worsens, and the resolution deteriorates.
  • the composition for forming a photoresist layer of the present invention comprises a basic acid diffusion regulator (basic quencher).
  • a basic acid diffusion regulator (basic quencher)
  • an organic base such as triethylamine, trioctylamine, triisobutylamine, triisooctylamine, diethanolamine and triethanolamine can be used.
  • the basic acid diffusion regulator is a polymer having the composition represented by the following formula (15) or a mixture of the aforementioned organic base and the polymer.
  • L 1 , L 2 , L 3 , L 4 and L 5 are each independently hydrogen, C 1 ⁇ C 9 unsubstituted hydrocarbon or C 1 ⁇ C 9 containing up to 5 heteroatoms Substituted hydrocarbons,
  • E may use any of P, L, or H seen above,
  • the basic acid diffusion regulator of the present invention is included in a ratio of 0.01 to 5 parts by weight based on 100 parts by weight of the acid sensitive base resin. Including the basic acid diffusion regulator in this content range can improve the pattern resolution, reduce the line width roughness, and improve the pattern profile while achieving economical efficiency. On the other hand, if the content of the regulator is less than 0.01 parts by weight of the acid diffusion can not be prevented, the resolution is worse, even if it exceeds 5 parts by weight, the sensitivity of the photoresist is deteriorated and it is not preferable because it produces a steep slope (slope) in the profile of the pattern.
  • the composition for forming a photoresist of the present invention contains 1,000 to 10,000 parts by weight of a solvent based on 100 parts by weight of the acid sensitive base resin.
  • the solvent of the composition for forming a photoresist is not particularly limited.
  • suitable solvents include ethylene glycol monomethylethyl, ethylene glycol monoethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoacetate, diethylene glycol, diethylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, propylene glycol , Propylene glycol monoacetate, toluene, xylene, methyl ethyl ketone, methyl isoamyl ketone, cyclohexanone, dioxane, methyl lactate, ethyl lactate, methyl pyruvate, ethyl pyruvate, methyl methoxy propionate , Ethyl ethoxy propionate,
  • composition for forming a photoresist of the present invention may further include an additive such as a surfactant.
  • a surfactant such as fluorine-based surfactants, anionic, cationic, and nonionic, can be used without particular limitation.
  • Steps (2) to (4) in the pattern forming method of the substrate of the present invention may be made using a method well known in the art, and thus will not be described in detail here.
  • an exposure step of dissolving a mask according to the pattern by irradiating extreme ultraviolet rays to the laminate may be performed by irradiating a 13.4 nm light source.
  • the developing step of (3) and the etching step of (4) may also use methods well known in the art and are not particularly limited.
  • a magnetic stirring bar was placed in a 500 mL two neck flask, and MA-3,5-Bis (hexa fluoro-2-hydroxy-2-), which is a monomer containing the following hexafluoroalcohol group, propyl) cyclohexyl methacrylate) 100 g (0.2 mol), 94.06 g (0.422 mol) of di-tert-butyl dicarbonate, 4.79 g (0.038 mol) of 4-dimethylaminopyridine and 600 mL of tetrahydrofuran The reaction was carried out for 20 hours.
  • MA-3,5-Bis hexa fluoro-2-hydroxy-2-
  • the obtained polymer was dissolved in 300 g of methanol, and then 300 g of IPA was added dropwise thereto for 2 hours, followed by further mixing for 3 hours to obtain 72 g of a purified copolymer (yield 60%).
  • the weight average molecular weight and the multiple dispersion degree of the obtained copolymer were 6,200 and 1.70, respectively.
  • the obtained polymer was dissolved in 300 g of methanol, 300 g of isopropanol was added dropwise for 2 hours, and the obtained polymer precipitate was filtered for 3 hours to obtain 147 g of a purified copolymer (yield 50%).
  • the weight average molecular weight and the polydispersity of the obtained polymer were 7,300 and 1.85, respectively.
  • the crude polymer was dissolved in 300 g of methanol, 300 g of isopropanol was added dropwise for 2 hours, and the polymer precipitate obtained by mixing for 3 hours was filtered to filter the ternary copolymer represented by Formula 1 7 (repeating unit in the above formula).
  • the content indication of was obtained 53 g (yield: 47%, weight average molecular weight (Mw): 7600, PDI: 2.42) polymer for forming a resist protective film represented by mol%.
  • the crude polymer was dissolved in 300 g of methanol, 300 g of isopropanol was added dropwise for 2 hours, and the polymer precipitate obtained by mixing for 3 hours was filtered to filter the ternary copolymer represented by the formula (18). 92 g (yield: 75%, weight average molecular weight (Mw): 7514, PDI: 2.45) of the polymer for forming a resist protective film represented by the content indication were obtained in mol%.
  • top cord composition After mixing the components of the following top cord composition was stirred for 6 hours to completely dissolve, the top cord composition was prepared by passing a filter made of nylon and a PTE material having a pore size of 0.01 micrometer.
  • the composition is summarized in Table 1 below.
  • the reactant was slowly dropped into excess diethyl ether, precipitated, dissolved in THF, and reprecipitated in diethyl ether to obtain a terpolymer (yield 53%).
  • the weight average molecular weight and the multidispersity of the obtained terpolymer were 8,500 and 1.8, respectively.
  • the photoresist was prepared by mixing the components of the photoresist composition shown in Table 2 below, stirring for 6 hours to completely dissolve, and passing a filter made of nylon having a pore size of 0.01 micron and a filter made of PTE.
  • Surfactant FC4430 was obtained from 3M company.
  • the components of the lower layer composition were mixed and stirred for 6 hours to completely dissolve, and the lower layer composition was prepared by passing a filter made of nylon having a pore size of 0.01 micrometer and a filter made of PTE.
  • the composition is summarized in Table 3 below.
  • EUVL exposure was performed using an ASML ADT exposure machine (0.25 NA, 0.5 sigma).
  • the photoresist underlayer was 33 nm thick using the one prepared in Example 5, and the photoresist layer was used in Example 4.
  • a mask was formed such that the thickness was 60 nm and the top coat layer was 33 nm.
  • Curing bake temperature of the lower layer (220 °C) after the photoresist coating the soft bake process 110 seconds to 110 °C, after the top coat coating the soft bake process was performed to 105 °C 60 seconds.
  • the baking process was performed at 125 ° C. for 60 seconds and the developing process was performed for 30 seconds using a 2.38% TMAH aqueous solution.
  • the film thickness was measured using the KLA's Opti-2600 measurement equipment, and the CD-SEM was measured using the S9220 instrument from Hitachi, Japan, to measure the resolution, LWR, scum, profile, and CD uniformity. .
  • the experiment was performed by applying the lower layer and the photoresist layer without applying the top coating layer as a comparative example experiment.
  • Example 6-8 is a CD-SEM photograph of the pattern obtained by the lithography process of Example 6-8. It can be seen that the thickness of the line width is even and the outline of the line width is close to the straight line with almost no bend. The pattern of Example 6-8 was very good with LWR of 1.1 nm.
  • topcoat composition of the present invention and the pattern forming method using the same could satisfactorily satisfy incompatible conditions of high resolution of 30 nm or less, even LWR, and distinct pattern profile.
  • Photoresist topcoats containing the blocking agents and photoresists of Table 2 were prepared and subjected to extreme ultraviolet lithography (EUVL) processes to test their performance.
  • Topcoat compositions (Comparative Examples 2 and 3), which were not equipped with an out-of-band sunscreen as a comparative topcoat, were also prepared and subjected to an extreme ultraviolet lithography process and tested for performance.
  • composition of the photoresist topcoat composition is summarized in Table 5 below.
  • EUVL exposure was performed using an ASML ADT exposure machine (0.25 NA, 0.5 sigma).
  • the lower layer film was formed to have a thickness of 33 nm using Example 5, the photoresist layer to have a thickness of 60 nm using Example 3, and the top coat shown in Table 6 below to have a thickness of 30 nm.
  • the lower layer film curing temperature was 220 °C, after the photoresist coating bake process 110 °C / 60 seconds, the top coat coating baking process proceeded to 90 °C / 60 seconds respectively.
  • the baking process was performed at 125 ° C./60 seconds, and the developing process was performed for 30 seconds using a 2.38% TMAH aqueous solution.
  • the film thickness was measured using the KLA company's measuring equipment, Opti-2600, and CD-SEM was measured using the Hitachi S9220 instrument to measure the resolution, LWR, scum, profile, and CD uniformity.
  • the light absorption spectrum of each wavelength was investigated.
  • the performance test results are summarized in Table 6 below.
  • the performance evaluation method is the same as that of Example 6 mentioned above.
  • the mask using the top coat without the out-of-band sunscreen was excellent in terms of resolution, scum generation, profile, and CD uniformity, but the mask using the topcoat of the present invention using the out-of-band sunscreen was used. Compared to this, the line width roughness LWR was very poor.
  • FIG. 6 is an ultraviolet absorption spectrum of a mask using the photoresist topcoat of Examples 7-1 to 7-4. As shown in the graph of Figure 6 it can be seen that the mask formed using the top-coat composition for extreme ultraviolet lithography of the present invention has a high ultraviolet absorbance in the deep ultraviolet region of 100 ⁇ 300 nm.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

극자외선 리소그라피용 마스크에 쓰이는 포토레지스트 탑코트과 그 제조를 위한 조성물을 개시한다. 이 포토레지스트 탑코트 형성용 조성물은 ㄱ) 100 중량부의 수용성 바인더 수지, ㄴ) 0.01 내지 30 중량부의 극자외선 대역외 자외선 차단제와 ㄷ) 1,000 내지 10,000 중량부의 양성자성 용매를 포함한다. 이러한 포토레지스트 탑코트를 사용하면 극자외선 리소그라피의 대역외 영역 자외선에 의한 회로 패턴의 불량을 크게 줄이고, 거친 선폭도 개선할 수 있다.

Description

극자외선 리소그라피용 포토레지스트 탑코트 조성물과 이를 이용하는 패턴 형성 방법
본 발명은 반도체 회로의 제조 방법에 관한 것이다. 더 구체적으로 본 발명은 극자외선 리소그라피를 이용한 회로 패턴 형성 방법과 이를 위한 포토레지스트 탑코트 조성물에 관한 것이다.
반도체 웨이퍼나 디스플레이용 글라스를 원하는 반도체 칩이나 디스플레이 소자로 가공하기 위해서는 설계된 회로 구조를 광리소그라피 공정을 통하여 구현하여야 한다. 광리소그라피 공정 분야에서는 회로의 집적도가 높아짐에 따라서 고해상력의 패터닝이 가능하도록 기술 개발이 이루어져 왔다. 이러한 기술 개발은 크게 세 가지 방향에서 이루어졌다. 즉 해상력을 결정하는 주요 변수인 노광원 파장(λ)으로 단파장의 빛을 사용하거나, 감광제와 렌즈 사이에 공기보다 굴절률이 큰 액체를 채워서 렌즈 수차(NA)를 1보다 크게 하거나, 또는 추가 공정을 도입하여 공정 변수인 k1값을 0.3 이하로 작게 하는 기술을 적용하였다. 특히 고해상력을 요하는 반도체 웨이퍼 가공 공정에서 200 나노미터에서 90 나노미터급 디바이스 제조를 위해서는 노광원의 파장이 248 나노미터인 KrF 레이저광이, 90 나노미터급 이하에서 60 나노미터 급의 패턴 해상력을 얻기 위하여 193 나노미터인 ArF 레이저를 사용하는 기술이 개발되어 반도체 칩 생산에 적용되고 있다. 60 나노미터급 미만과 40 나노미터급 초미세 패턴 공정에서는 액침 리소그라피 공정(immersion lithography)을 적용하여 디바이스 생산을 진행하고 있다. 액침 리소그라피 공정에서는 웨이퍼에 코팅된 감광막과 프로젝션 렌즈 사이에 굴절률 1인 공기 대신에 굴절률 1.34인 탈이온수를 채워 노광 공정을 진행한다. 이렇게 함으로써 렌즈 수차를 1보다 크게 하여 원하는 해상력을 얻는다.
30 나노미터 급 이하의 디바이스를 가공하기 위하여 개발되고 있는 기술이, 사용 노광원의 파장이 13.4 나노미터인 극자외선 리소그라피(EUVL) 기술이다. 이전 기술에서 사용하는 노광원 파장이 194 나노미터인데 극자외선 리소그라피에서는 노광 파장이 그 1/10 이하로 작아진다. 따라서 극자외선 리소그라피는 32 나노미터 디바이스는 물론이고 22 나노미터와 그 이하에 해당하는 여러 세대의 미세 디바이스를 동시에 가공할 수 있는 장점을 가진 기술이다.
그러나 극자외성 리소그라피에도 몇 가지 기술적 문제가 있기 때문에 이를 해결하기 위한 노력이 필요하다. 이러한 문제들 중 한 가지가 극자외선 리소그라피의 광원에서 나오는 빛에 원하는 13.4 나노미터의 인밴드(in band, IB) 파장대의 빛 이외에 대역외(帶域外 out of band, OOB) 파장대의 빛도 포함되기 때문에 일어나는 문제이다. 즉 현 광원 기술에서는 EUVL 기술에서 사용하고자 하는 13.4 나노미터대의 빛 이외에 100 나노미터에서 300 나노미터 영역의 파장대를 갖는 빛도 동시에 스토카스틱 신호 잡음(stochastic noise)으로서 발생한다. 이 100 nm ~300 nm 영역의 자외선을 대역외 자외선이라고 한다. 포토레지스트 및 리소그라피용 마스크 물질은 이 대역외 파장 영역의 자외선에도 반응하기 때문에 이 파장대의 빛이 패턴 형성 공정에 미치는 악영향을 없애지 않으면 패턴 형성의 품질 저하를 피할 수 없다. 대역외 자외선은 극자외선 리소그라피 패턴 형성 공정에서 해상력 저하, 패턴 프로파일 왜곡, 및 표면 거칠기 심화를 일으킨다.
EUVL 기술에서 해결해야 하는 다른 중요한 문제점 중의 하나는 선폭 거칠기(Line Width Roughness, LWR)이다. 선폭 거칠기는 패턴의 표면 거칠기에 해당하는 것으로서 최종 회로의 성능을 결정하는 중요한 변수이다. 전자회로가 미세패턴으로 갈수록 LWR은 더욱 면밀히 조절하여야 하는 패턴 성능이다. LWR과 해상도, 감도는 샷노이즈(shot noise)를 매개로 하여 산 확산과 서로 반비례 관계에 있다. 이 때문에 반도체 칩 가공시 만족스러운 수준의 LWR을 얻으면서도 상기 반비례 관계에 의한 악영향을 피하기 위해서는 레지스트 성능의 개선이 필요하다. 아울러 새로운 공정을 추가하는 기술 개발도 이루어지고 있다. 그 중 하나가 하부막(underlayer)을 도입하는 것인데 개선 효과가 상당히 있는 것으로 나타나고 있지만 아직까지 만족할 만한 수준은 아니다.
본 발명의 기술적 과제는 극자외선 리소그라피를 이용한 패턴 형성 공정에서 마스크가 대역외 영역의 파장을 지니는 자외선에 노출되면서 일어나는 선폭 거칠기의 증대와 해상도 저하 및 패턴 형성 불량을 해소하는 수단을 제공하는 데 있다.
전술한 기술적 과제를 해결하기 위하여, 본 발명에서는 포토레지스트층과 노광원의 사이에 해상도와 패턴 균일도를 해치는 심자외선(深紫外線 DUV)과 진공 자외선을 차단할 수 있는 탑코트를 형성한다. 이러한 포토레지스트 탑코트 형성용 조성물은 ㄱ) 100 중량부의 수용성 바인더 수지에 대하여, ㄴ) 0.01 내지 30 중량부의 대역외 자외선 차단제와 ㄷ) 1,000 내지 10,000 중량부의 양성자성 용매를 포함한다.
본 발명의 조성물에서 상기 수용성 바인더 수지는 카르복시기, 카르복스아미드기, 히드록시기, N-치환 락탐기, N-치환 이미다졸기 및 2-헥사플루오로이소프로판올일알킬(2-hexafluoroisopropanolylalkyl)기 중에서 선택된 측쇄(side chain)를 가지는 비닐 모노머의 단독 중합체, 선택된 서로 다른 측쇄를 지니는 비닐 모노머들의 공중합체이거나 상기 선택된 측쇄를 지니는 비닐 모노머와 전술한 측쇄를 가지지 않는 비닐 모노머와의 공중합체이다. 본 발명의 한 구체적인 실시 형태에서, 상기 수용성 바인더 수지의 중량 평균 분자량은 1,000 내지 100,000이다. 본 발명의 다른 구체적인 실시 형태에서 상기 수용성 바인더 수지로는 분산도가 1.02~3.5인 것을 사용하면 적당하다.
본 발명의 조성물에서 상기 대역외 자외선 차단제로는 수용성의 술폰산 에스테르, 술폰산 에스테르의 염, 술포늄 화합물, 요오도늄 화합물 및 옥심 화합물로 이루어지는 군의 물질 중에서 주흡광 파장이 100~300 nm인 것을 선택할 수 있다.
본 발명에서는 아울러 전술한 포토레지스트 탑코트를 이용한 극자외선 리소그라피 패턴 형성 공정을 개시한다. 이 공정은
(1) 기재상에 포토레지스트 하부막, 원하는 회로 패턴의 포토레지스트층 및 전술한 포토레지스트 탑코트 형성용 조성물로부터 형성되는 포토레지스트 탑코트를 순차적으로 적층하여 광리소그라피용 마스크를 얻는 단계,
(2) 상기 적층체에 극자외선을 조사하여 마스크를 상기 패턴에 따라 용해하는 노광 단계,
(3)노광된 상기 마스크에서 용해된 부분을 선택적으로 제거하는 현상 단계와
(4)상기 현상된 마스크가 적층된 기재를 식각하여 기재에 패턴을 형성하는 단계를 포함한다.
본 발명의 패턴 형성 공정의 한 실시 형태에서 상기 상기 포토레지스트층을 적층하는 단계는 (a) 100 중량부의 산 민감성 베이스 수지에 대하여, (b) 0.5 내지 10 중량부의 광산 발생제(photoacid generator), (c) 0.01 내지 5 중량부의 염기성 산확산 조절제(basic quencher)와 (d) 1,000 내지 10,000 중량부의 유기 용매를 포함하는 조성물을 상기 포토레지스트 하부막 상에 적층하는 단계와 이 적층된 조성물을 소프트 베이크하는 단계를 포함한다.
여기서 상기 산 민감성 베이스 수지는 알칼리 현상액에 불용성이지만 양성자와 반응한 후 알칼리 현상액에 가용성이 되는 고분자이다. 본 발명의 한 구체적인 실시 형태에서 상기 산 민감성 베이스 수지는 중량 평균 분자량이 2,000 내지 20,000, 분산도 1.0~2.0인 고분자이다.
본 발명의 포토레지스트 탑코트를 극자외선 리소그라피에 이용하면 극자외선 리소그라피 공정에서 문제가 되는 100~300 nm 영역의 대역외(out-of-band) 자외선 노출에 의한 패턴 공정 불량을 해결할 수 있다. 이 덕택에 패턴 균일도 파괴를 막을 수 있어 균일한 미세 패턴을 형성할 수 있다. 나아가 극자외선 리소그라피를 이용한 회로 패턴 형성에서 가장 큰 문제였던 거친 선폭(linewidth roughness, LWR)의 개선에 큰 효과가 있다. 본 발명의 포토레지스트 탑코트 형성용 조성물과 이를 이용한 극자외선 리소그라피법을 이용하면 현재 기술 수준인 5 nm 3 시그마(σ)의 LWR에서 나아가 3.3 nm 이하의 우수한 수준으로 LWR을 개선할 수 있으며, 구체적인 경우에는 1 nm 이하 수준까지도 구현할 수 있다.
도 1은 본 발명의 한 실시 형태에 따른 극자외선 리소그라피용 마스크를 나타낸 것이다. 광원에 가까운 방향에서부터 기재(SUB) 쪽으로 마스크의 적층 순서는 포토레지스트 탑코트(OCB)-포토레지스트(PR)-하부층(UL)-기재(SUB)이다.
도 2는 본 발명의 한 실시 형태에서 포토레지스트 탑코트의 작용 원리를 나타낸 극자외선 리소그라피 공정의 모식도이다. IB는 극자외선 리소그라피의 in-band 파장 영역의 자외선(실선)이고 OOB는 극자외선 리소그라피의 out-of-band 파장 영역의 자외선(점선)을 가리킨다.
도 3은 종래 기술에 따라 하부층만을 갖추고 있는 극자외선 리소그라피용 마스크의 패턴 형성 공정을 나타낸 흐름도이다.
도 4는 본 발명의 한 실시 형태에 따라 포토레지스트 탑코트와 하부층을 함께 갖추고 있는 극자외선 리소그라피용 마스크의 패턴 형성 공정을 나타낸 흐름도이다. OBC는 대역외 코트의 약자이다.
도 5는 본 발명의 한 실시 형태에 따라 패턴을 형성한 선로의 CD-SEM 사진이다.
도 6은 본 발명의 한 실시예에 따라 제조한 포토레지스트 탑코트의 자외선 흡수 스펙트럼을 나타낸 그래프이다.
이하 본 발명을 상세하게 설명한다.
본 발명은 극자외선 리소그라피에서 발생하는 영역외 자외선에 의한 해상력 저하, 패턴 프로파일 왜곡, 표면 거칠기 심화 등의 문제를 해소할 수 있는 포토레지스트 탑코트 조성물과 이를 이용한 패턴 형성 방법에 관한 것이다.
본 발명의 한 측면에서는 극자외선 리소그라피용 포토레지스트 탑코트 조성물을 제공한다.
본 발명의 극자외선 리소그라피용 포토레지스트 탑코트는 노광원과 포토레지스트 사이에 자리 잡아 대역외 자외선을 흡수한다. 본 발명의 탑코트를 채택한 극자외선 리소그라피용 마스크의 모식도를 도 1에 나타내었다. 도 1에서 기재(SUB) 층 위에 포토레지스트 하부층(UL), 포토레지스트(PR), 포토레지스트 탑코트(OCB)를 적층한 다음 이 마스크를 극자외선에 노출시켜 패턴을 형성할 수 있다. 도 1에서 포토레지스트 탑코트(OCB)의 상면은 노광시 극자외선에 노출된다.
본 발명의 포토레지스트 탑코트의 작용 원리를 간략하게 도 2에 정리하였다. 포토레지스트 탑코트의 대역외 자외선 차단제에 의하여 대역내 자외선(IB, 도 2의 굵은 실선 화살표)은 탑코트를 관통하여 포토레지스트 또는 하부층에 도달하여 후속 공정에서 패턴을 형성하기 위한 노광 효과를 발생시킨다. 한편 도 2에서 점선 화살표로 나타낸 대역외 자외선(OOB)은 탑코트에서 흡수되므로 포토레지스트에까지 이르지 못한다. 이후 노광된 마스크를 현상하여 원하는 패턴으로 가공할 수 있다.
본 발명의 포토레지스트 탑코트 형성용 조성물은 수용성 바인더 수지, 대역외 자외선 차단제와 양성자성 용매를 포함하고, 선택적으로 계면 활성제 등의 첨가제를 더 포함할 수 있다.
이하 본 발명에서 공중합체라고 함은 반복 단위가 두 종류 이상인 중합체를 가리키며, 3원 공중합체, 4원 공중합체 등 2종을 넘는 다종 반복 단위 공중합체도 망라한다. 또한 랜덤 공중합체, 블록 공중합체, 교대 공중합체, 그라프트 공중합체 등 모든 형태의 공중합체 역시 망라하는 개념이다.
본 발명의 한 측면에서 포토레지스트 탑코트 형성용 조성물의 수용성 바인더 수지는 아래 화학식 1에 나타낸 불소 치환 에스테르 측쇄를 지니는 반복 단위를 포함한다. 이 수용성 바인더 수지는 화학식 1의 한 반복 단위 호모중합체 또는 서로 다른 반복 단위들의 공중합체이거나 상기 화학식 1의 반복 단위 외 다른 반복 단위를 더 포함할 수 있다.
화학식 1
Figure PCTKR2011008498-appb-C000001
상기 화학식 1에서, R1은 수소 원자(H), 불소 원자(F), 메틸기(-CH3), 탄소수 1 내지 20의 불소화 알킬기 또는 탄소수 1 내지 5의 히드록시알킬기이고, X는 헥사플루오로이소프로필3급부틸 카보네이트(tert-butyl hexafluoroisopropyl carbonate)가 치환된 알킬기이다. X의 이 치환 알킬기에서 상기 헥사플루오로이소프로필 치환기의 위치는 R2에 결합하는 쪽의 반대편에 있는 탄소이며, 이 반대편 탄소에 헥사플루오로이소프로필의 2번 탄소를 통하여 연결되어 있다. 한 실시 형태에서는, 헥사플루오로이소프로필3급부틸 카보네이트가 치환된 알킬렌인다. 즉 이 실시 형태에서, 화학식 1의 반복 단위는
Figure PCTKR2011008498-appb-I000001
(여서 n은 0 내지 5의 정수, *는 화학식 1의 반복 단위에서 X를 제외한 나머지 부분, 즉 -CH2CH(R1)(COOR2)- 부위를 나타냄)와 같다.
상기 화학식 1에서, m은 X의 개수로서, 1 또는 2이다. m이 1일 때 화학식 1에서 R2는 탄소수 1 내지 10의 사슬형 또는 분지형 알킬렌기 또는 알킬리덴(alkylidene)기, 또는 탄소수 5 내지 10의 고리형 알킬렌기 또는 알킬리덴기이고, m이 2일 때 화학식 1에서 R2는 탄소수 1 내지 10의 탄화수소로서 결합수(結合手)가 세 개인 3가 작용기로서, 직쇄형, 분지형 또는 고리형 하이드로카빈(hydrocarbine)기이다. 여기서 하이드로카빈기란 탄소와 수소로 이루어져 있으며, 결합수가 세 개인 탄화수소 부위(moiety)를 일컫는 용어로서, 메틸(-CH3), 메틸렌(-CH2-), 메틴(-C(-)H-)의 계열과 유사하게 하이드로카빌(hydrocarbyl), 하이드로카빌렌(hydrocarbylene), 하이드로카빈의 관계로 개념을 확장한 것이다. m이 2일 때 화학식 1의 하이드로카빈기 R2의 결합수 중 하나는 -COO에 연결되며, 나머지 2개는 X에 연결된다.
본 발명에 따른 수용성 바인더 수지는 상기 화학식 1에 따른 어느 한 반복 단위로만 이루어지거나, 이들 사이의 공중합체일 수 있으며, 상기 화학식 1의 반복 단위 외에 다른 반복 단위를 포함하는 복합 공중합체일 수 있다. 이러한 복합 공중합체에서 상기 화학식 1의 반복 단위의 비율은 2원 공중합체의 경우 전체 반복 단위 총 중량의 1 내지 99 중량%, 바람직하게는 1 내지 90 중량%, 더욱 바람직하게는 5 내지 90 중량%, 가장 바람직하게는 5 내지 50 중량%이다. 3원 공중합체의 경우 화학식 1의 반복 단위는 전체 반복 단위 총 중량의 1 내지 98 중량%, 바람직하게는 1 내지 90 중량%, 더욱 바람직하게는 5 내지 90 중량%, 가장 바람직하게는 5 내지 50 중량%이다. 이러한 복합 공중합체에서 위 화학식 1의 반복 단위가 아닌 나머지 반복 단위는 통상의 레지스트 보호막 형성용 중합체에 사용되는 반복 단위를 포함할 수 있다.
상기 화학식 1로 표시되는 반복 단위의 구체적인 예를 일부 들자면, 하기 화학식 1a 내지 1o로 표시되는 반복 단위를 예시할 수 있다.
[화학식 1a]
Figure PCTKR2011008498-appb-I000002
[화학식 1b]
Figure PCTKR2011008498-appb-I000003
[화학식 1c]
Figure PCTKR2011008498-appb-I000004
[화학식 1d]
Figure PCTKR2011008498-appb-I000005
[화학식 1e]
Figure PCTKR2011008498-appb-I000006
[화학식 1f]
Figure PCTKR2011008498-appb-I000007
[화학식 1g]
Figure PCTKR2011008498-appb-I000008
[화학식 1h]
Figure PCTKR2011008498-appb-I000009
[화학식 1i]
Figure PCTKR2011008498-appb-I000010
[화학식 1j]
Figure PCTKR2011008498-appb-I000011
[화학식 1k]
Figure PCTKR2011008498-appb-I000012
[화학식 1l]
Figure PCTKR2011008498-appb-I000013
[화학식 1m]
Figure PCTKR2011008498-appb-I000014
[화학식 1n]
Figure PCTKR2011008498-appb-I000015
[화학식 1o]
Figure PCTKR2011008498-appb-I000016
본 발명에 사용되는 화학식 1로 표시되는 반복 단위는 아래 모노머 분자
Figure PCTKR2011008498-appb-I000017
(여기서, R1, R2, X 및 m은 상기 화학식 1에서 정의한 바와 같다)로부터 얻을 수 있다. 다시 이 모노머 분자는 헥사플루오로알코올기 등을 포함하는 화합물과 디-3급부틸 디카보네이트(di-tert-butyl dicarbonate)을 반응시켜서, 즉 헥사플루오로알코올기의 히드록시기(-OH)와 디-3급부틸 디카보네이트를 반응시켜 얻을 수 있다. 예를 들어, 아래 반응식 1과 같이, 4-디메틸아미노피리딘(4-Dimethylaminopyridine: DMAP)을 촉매로 사용하고, 테트라하이드로퓨란(THF)을 용매로 사용하여, 디-3급부틸디카보네이트 및 하기 헥사플루오르알코올기 등을 포함하는 화합물 MA-3,5-bis(hexafluoro-2-hydroxy-2-propyl)cyclohexyl methacrylate을 반응시켜 상기 화학식 1a로 표시되는 반복 단위 제조에 필요한 모노머를 얻을 수 있다.
[반응식 1]
Figure PCTKR2011008498-appb-I000018
본 발명에 따른 수용성 바인더 수지의 예를 일부만 더 들자면, 상기 화학식 1로 표시되는 반복 단위로만 이루어진 호모중합체, 하기 화학식 2로 표시되는 반복 단위들을 지니는 공중합체, 하기 화학식 3으로 표시되는 반복 단위들을 지니는 공중합체 또는 하기 화학식 4로 표시되는 반복 단위들을 지니는 공중합체를 예시할 수 있다. 즉, 본 발명에 따른 수용성 바인더 수지는 하기 화학식 2에 나타낸 바와 같이, R3을 포함하는 반복 단위를 포함하거나, 하기 화학식 3에 나타낸 바와 같이, R3을 포함하는 반복 단위 및 R4를 포함하는 반복 단위를 포함할 수 있으며, 하기 화학식 4에 나타낸 바와 같이, R4를 포함하는 반복 단위 및 술폰일기(sulfonyl group)를 포함하는 반복 단위를 포함할 수 있다.
화학식 2
Figure PCTKR2011008498-appb-C000002
상기 화학식 2에서, R1, R2, X 및 m은 상기 화학식 1에서 정의한 바와 같고, R3은 수소 원자, 또는 하나 이상의 히드록시기(-OH) 또는 카르복실기(-COOH)를 포함하는 탄소 수 1 내지 25개의 알킬기, 예를 들어, 2 내지 18의 사슬형, 분지형 알킬기, 탄소수 5 내지 25, 예를 들어, 6 내지 18의 고리형 알킬기이고, p는 0 내지 3의 정수이다. 화학식 2에서 a가 가리키는 반복 단위의 비율은 해당 반복 단위가 전체 반복 단위 중량의 1 내지 99 중량%, 바람직하게는 1 내지 90 중량%, 더욱 바람직하게는 5 내지 90 중량%, 특히 바람직하게는 10 내지 90 중량%, 가장 바람직하게는 5 내지 50 중량%이고, b가 가리키는 반복 단위의 비율은 해당 반복 단위가 전체 반복 단위 중량의 1 내지 99 중량%, 바람직하게는 1 내지 90 중량%, 더욱 바람직하게는 5 내지 90 중량%, 특히 바람직하게는 10 내지 90 중량%, 가장 바람직하게는 5 내지 50 중량%를 차지하도록 정하면 적당하다. 화학식 2에서 위 두 반복 단위가 반드시 그림에 묘사한 순서로 연결된 블록 공중합체 또는 교대 공중합체 형태로 연결된다는 의미는 아니며 두 반복 단위의 모든 공중합체를 망라하는 것임은 물론이다.
화학식 3
Figure PCTKR2011008498-appb-C000003
상기 화학식 3에서, R1, R2, R3, X, p 및 m은 상기 화학식 1 및 2에서 정의한 바와 같고, R4는 하나 이상의 불소 원자로 치환 또는 비치환된 탄소수 1 내지 25의 알킬기, 예를 들어, 2 내지 18의 사슬형, 분지형 알킬기 또는 탄소수 5 내지 25의 고리형 알킬기, 예를 들어, 6 내지 18의 고리형 알킬기이다. 화학식 3에서 a가 가리키는 반복 단위의 비율은 해당 반복 단위가 전체 반복 단위 중량의 1 내지 98 중량%, 바람직하게는 1 내지 90 중량%, 더욱 바람직하게는 5 내지 90 중량%, 특히 바람직하게는 10 내지 90 중량%, 가장 바람직하게는 5 내지 50 중량%이고, b가 가리키는 반복 단위의 비율은 해당 반복 단위가 전체 반복 단위 중량의 1 내지 98 중량%, 바람직하게는 1 내지 90 중량%, 더욱 바람직하게는 5 내지 90 중량%, 특히 바람직하게는 10 내지 90 중량%, 가장 바람직하게는 5 내지 50 중량%이고, c가 가리키는 반복 단위의 비율은 해당 반복 단위가 전체 반복 단위 중량의 1 내지 98 중량%, 바람직하게는 1 내지 90 중량%, 더욱 바람직하게는 5 내지 90 중량%, 특히 바람직하게는 10 내지 90 중량%, 가장 바람직하게는 5 내지 50 중량%를 차지하도록 정하면 적당하다. 화학식 3에서 위 세 반복 단위가 반드시 그림에 묘사한 순서로 연결된 블록 공중합체 또는 교대 공중합체 형태로 연결된다는 의미는 아니며 세 반복 단위의 모든 공중합체를 망라하는 것임은 물론이다.
화학식 4
Figure PCTKR2011008498-appb-C000004
상기 화학식 4에서, R1, R2, R4, X 및 m은 상기 화학식 1 및 3에서 정의한 바와 같고, q는 0 내지 3의 정수이다. 화학식 4에서 a가 가리키는 반복 단위의 비율은 해당 반복 단위가 전체 반복 단위 중량의 1 내지 98 중량%, 바람직하게는 1 내지 90 중량%, 더욱 바람직하게는 5 내지 90 중량%, 특히 바람직하게는 10 내지 90 중량%, 가장 바람직하게는 5 내지 50 중량%이고, c가 가리키는 반복 단위의 비율은 해당 반복 단위가 전체 반복 단위 중량의 1 내지 98 중량%, 바람직하게는 1 내지 90 중량%, 더욱 바람직하게는 5 내지 90 중량%, 특히 바람직하게는 10 내지 90 중량%, 가장 바람직하게는 5 내지 50 중량%이고, d가 가리키는 반복 단위의 비율은 해당 반복 단위가 전체 반복 단위 중량의 1 내지 98 중량%, 바람직하게는 1 내지 90 중량%, 더욱 바람직하게는 5 내지 90 중량%, 특히 바람직하게는 10 내지 90 중량%, 가장 바람직하게는 5 내지 50 중량%를 차지하도록 정하면 적당하다. 화학식 4에서 위 세 반복 단위가 반드시 그림에 묘사한 순서로 연결된 블록 공중합체 또는 교대 공중합체 형태로 연결된다는 의미는 아니며 세 반복 단위의 모든 공중합체를 망라하는 것임은 물론이다.
상기 R3을 포함하는 반복 단위, R4를 포함하는 반복 단위 및 술폰일기(sulfonyl group)를 포함하는 반복 단위는 통상의 레지스트 보호막 형성용 중합체를 형성할 수 있는 것들이다. 상기 R3을 포함하는 반복 단위의 예시로는 다음의 화학식 2a 내지 화학식 2m 등을 들 수 있다.
Figure PCTKR2011008498-appb-I000019
상기 R4를 포함하는 반복 단위로는 다음의 화학식 3a 내지 화학식 3r 등을 예시할 수 있다.
Figure PCTKR2011008498-appb-I000020
본 발명에 사용되는 수용성 바인더 중합체는 상기 화학식 1로 표시되는 반복 단위의 모노머
Figure PCTKR2011008498-appb-I000021
(여기서, R1, R2, X 및 m은 상기 화학식 1에서 정의한 바와 같다)와 상기 R3을 포함하는 반복 단위의 모노머
Figure PCTKR2011008498-appb-I000022
(여기서, R1, R3 및 p는 상기 화학식 2에서 정의한 바와 같다), 상기 R4를 포함하는 반복 단위의 모노머
Figure PCTKR2011008498-appb-I000023
(여기서, R1 및 R4는 상기 화학식 3에서 정의한 바와 같다), 상기 술폰일기를 포함하는 반복 단위의 모노머,
Figure PCTKR2011008498-appb-I000024
(여기서, R1 및 q는 상기 화학식 4에서 정의한 바와 같다) 등을 통상의 방법으로 중합하여 제조할 수 있다. 예를 들어, 아조비스(이소부티로니트릴)(AIBN) 등 당업계에서 통상적으로 알려진 중합개시제 및 테트라하이드로퓨란(THF) 등의 용매를 사용하여 중합할 수도 있다.
또한, 본 발명에 사용되는 수용성 바인더 중합체는, 상기 호모중합체, 화학식 2, 3 또는 4로 표시되는 화합물에 통상의 레지스트 보호막 형성용 중합체, 예를 들어, 하기 화학식 5로 표시되는 화합물이 블렌드(blend)된 것일 수 있다.
화학식 5
Figure PCTKR2011008498-appb-C000005
상기 화학식 5에서, R1, R3, 및 p는 상기 화학식 1 내지 3에서 정의한 바와 같고, 화학식 5에서 e가 가리키는 반복 단위의 비율은 해당 반복 단위가 전체 반복 단위 중량의 1 내지 99 중량%, 바람직하게는 5 내지 90 중량%, f가 가리키는 반복 단위의 비율은 해당 반복 단위가 전체 반복 단위 중량의 1 내지 99 중량%, 바람직하게는 5 내지 90 중량%를 차지하도록 정하면 적당하다. 화학식 5에서 위 두 반복 단위가 반드시 그림에 묘사한 순서로 연결된 블록 공중합체 또는 교대 공중합체 형태로 연결된다는 의미는 아니며 두 반복 단위의 모든 공중합체를 망라하는 것임은 물론이다..
상기 호모중합체, 화학식 2, 3 또는 4로 표시되는 화합물과 상기 화학식 5로 표시되는 화합물의 블렌드에서, 상기 호모중합체, 화학식 2, 3 또는 4로 표시되는 화합물의 함량은 1 내지 99 중량%, 바람직하게는 5 내지 90 중량%이고, 상기 화학식 5로 표시되는 화합물의 함량은 1 내지 99 중량%, 바람직하게는 5 내지 90 중량%이다.
상기 수용성 바인더 수지의 중량 평균 분자량은 1,000 내지 100,000, 바람직하게는 3,000 내지 30,000이다. 중량 평균 분자량이 1,000 미만이면, 보호막이 형성되지 못할 우려가 있으며, 100,000을 초과하면, 용매에 용해되지 않을 우려가 있다.
본 발명의 다른 측면에서는 탑코트 형성용 조성물에서 수용성 바인더 수지로 카르복시기, 카르복스아미드기, 히드록시기, N-치환 락탐기, N-치환 이미다졸기, 2-헥사플루오로이소프로판올일기 및 2-헥사플루오로이소프로판올일알킬기 중에서 선택된 특정 측쇄를 가지는 비닐 모노머의 단독 중합체 또는 이러한 비닐 모노머와 상기 선택된 특정 측쇄를 가지지 않는 다른 비닐 모노머와의 공중합체를 사용할 수 있다.
본 발명의 다른 측면에서는 상기 수용성 바인더 고분자가 아래 화학식 6에 나타낸 반복 단위를 적어도 하나 이상 포함한다.
화학식 6
Figure PCTKR2011008498-appb-C000006
위 화학식 6에서 R은 수소 또는 헤테로원자를 5개 이하로 함유할 수 있는 탄소 수 10개 미만의 탄화수소이다. 상기 화학식 6 중 락탐 측쇄를 가진 반복 단위에서 m과 n은 서로 독립적이며, 1~6 중 어느 한 자연수이다. R'은 수소이거나 탄소 원자 수 1~10의 알킬기이며 m은 이러한 R' 치환기가 락탐 고리에 m번 치환될 수 있음을 나타낸다. n은 위 락탐 고리의 구성 탄소 수가 4원 고리에서 9원 고리까지 포함됨을 나타낸다. 예를 들어 n=2이면 상기 반복 단위의 락탐 고리는 5원 고리이다. 상기 화학식 6 중 2-헥사플루오로이소프로판올일 측쇄를 가지는 반복 단위에서 X는 단일 결합이거나, 탄소 원자 수 1 내지 10의 알킬렌기이다.
본 발명의 더욱 구체적인 실시 형태에서는 상기 화학식 6으로 예시한 수용성 바인더 수지가 비닐알코올, 아크릴아미드, 메타크릴아미드, N-비닐카프롤락탐과 N-비닐피롤리돈의 모노머 군에서 유래하는 반복 단위를 적어도 하나 포함하는 단독 중합체 또는 공중합체이다.
본 발명의 한 구체적인 실시 형태에서 상기 화학식 6에 나타낸 반복 단위들 사이의 공중합체로는 아래 화학식 7에 나타낸 조합을 사용할 수 있다.
화학식 7
Figure PCTKR2011008498-appb-C000007
본 발명의 다른 실시 형태에서는 상기 수용성 바인더 수지로 전술한 특정 측쇄를 가지는 반복 단위, 예를 들어 화학식 6에 나타낸 반복 단위와 이러한 특정 측쇄를 가지지 않는 비닐 모노머와의 공중합체를 사용할 수 있다. 본 발명의 한 구체적인 실시 형태에서는 이러한 특정 작용기 측쇄를 가지지 않는 비닐 모노머가 메틸아크릴레이트, 메틸메타크릴레이트, 에틸아크릴레이트 또는 에틸메타크릴레이트이다.
본 발명의 한 구체적 실시 형태에서 상기 수용성 바인더 수지는 전술한 특정 측쇄 구조의 고분자이며, 그 중량 평균 분자량이 1,000~100,000이며 분산도가 1.02~3.5이다.
본 발명의 포토레지스트 탑코트 형성용 조성물에서, 상기 수용성 바인더 수지가 전체 조성물에서 차지하는 함량은 1 내지 30 중량%로 하면 적당하다. 더욱 바람직하게는 1 내지 20 중량%이면 좋다. 상기 수용성 바인더 수지의 함량이 전체 조성물 중량의 1% 미만이면, 포토레지스트 보호막 형성이 어려워질 우려가 있으며, 30 중량%를 초과하면, 포토레지스트 보호막 형성이 너무 두껍게 되어 포토레지스트 패턴 현상 시 현상이 어려워질 우려가 있다.
본 발명의 포토레지스트 탑코트 형성용 조성물에서 대역외(帶域外 out-of-band) 자외선 차단제는 극자외선 광리소그라피용 광원의 파장인 13.4 nm가 아닌 대역외 자외선을 흡수할 수 있는 물질을 가리킨다. 대역외 자외선 차단제는 13.4 nm 부근 영역의 자외선을 흡수하지 않거나, 흡광도 값이 0에 가까운 물질로서, 주흡광 파장대가 100 nm ~ 300 nm의 심자외선(deep UV)과 진공 자외선 영역에 걸쳐 있거나, 적어도 이 파장대의 자외선 영역에서 흡광 극대값을 가지는 물질을 뜻한다.
본 발명의 한 실시 형태에서는 대역외 자외선 차단제를 술폰산 에스테르, 술폰산 에스테르의 염, 술포늄 화합물, 요오도늄(iodonium) 화합물 및 옥심(oxime) 화합물 중에서 선택할 수 있다. 본 발명에서 술포늄 화합물과 요오도늄 화합물, 옥심 화합물의 “화합물”에는 이온성 염이 포함된다.
본 발명의 한 구체적인 실시 형태에서는, 이 대역외 자외선 차단제를 프탈이미도트리플루오로메탄술폰산(phthalimidotrifluoromethane sulfonate), 프탈이미도토실레이트(phthalimidotosylate), 토실산디니트로벤질(dinitrobenzyl tosylate) 및 나프틸이미도트리플루오로메탄술폰산(naphthylimidotrifluoromethane sulfonate), 메탄술폰산 트리페닐술포늄(triphenylsulfonium methanesulfonate) 중(제1군)에서 하나 이상 선택한다.
본 발명의 다른 구체적인 실시 형태에서는 디페닐요오도늄 트리플레이트, 디페닐요오도늄 노나플레이트, 헥사플루오로인산디페닐요오도늄, 헥사플루오로비소산(砒素酸) 디페닐요오도늄, 헥사플루오로안티몬산 디페닐요오도늄, 디페닐파라메톡시페닐술포늄 트리플레이트, 디페닐파라톨루엔일술포늄 트리플레이트, 디페닐파라3급부틸페닐술포늄 트리플레이트, 디페닐파라이소부틸페닐술포늄 트리플레이트, 트리페닐술포늄 트리플레이트, 트리스파라3급부틸페닐술포늄 트리플레이트, 디페닐파라메톡시페닐술포늄 노나플레이트, 디페닐파라톨루엔일술포늄 노나플레이트, 디페닐파라3급부틸페닐술포늄 노나플레이트, 디페닐파라이소부틸페닐술포늄 노나플레이트, 트리페닐술포늄 노나플레이트, 트리스파라3급부틸페닐술포늄 노나플레이트, 헥사플루오로비소산 트리페닐술포늄, 트리페닐술포늄 트리플레이트 및 디부틸나프틸술포늄 트리플레이트로 이루어진 군(제2군)에서 선택하는 물질을 전술한 제1군의 대역외 자외선 차단제와 더불어 탑코트 형성용 조성물에 포함시킴으로써 대역외 자외선 차단 효과를 한층 더 효과적으로 할 수 있다. 상기 제2군의 대역외 자외선 차단제를 제1군의 차단제 없이 단독으로 쓸 수도 있음은 물론이다.
본 발명의 다른 실시 형태에서 대역외 자외선 차단제는 화학식 8로 나타낸 나프탈렌 골격을 가지는 물질이다.
화학식 8
Figure PCTKR2011008498-appb-C000008
상기 화학식 8에서 B는 탄소수 1 내지 10의 알킬기 또는 지환족 치환기이다. m은 0~8의 정수이고 상기 나프탈렌 고리에 여러 개의 B가 있는 경우 각 B끼리는 서로 같거나 다를 수 있다.
A는 히드록실기 또는 1가의 유기기로서 위 화학식 8의 나프탈렌 골격에 n개가 서로 독립적으로 치환된다. 화학식 8에서 n은 1~8의 정수이고 나프탈렌의 골격으로부터 자명하듯이 m+n≤8이다. 여러 개의 A가 있을 때 각 A는 서로 같거나 다를 수 있다.
A를 구성하는 1가의 유기기는 카르복실기, 에테르기 및 에스테르기부터 선택되는 적어도 일종이 바람직하다. 여기에서 A가 에스테르기인 경우에는 이를 구성하는 카르보닐기가 화학식 8의 나프탈렌 고리에 결합하고 있는 것이 바람직하다. 또 나프탈렌 골격에서 결합하는 위치는 제1위 또는 제2위인 것이 바람직하다.
A가 에테르기인 경우에는 A는 [O-Z] (단, Z는 수소 원자 또는 탄소수 1~10의 직쇄상 혹은 지환족 치환기를 나타낸다.)로 나타내는 골격인 것이 바람직하다. Z의 탄소 수 1~10의 치환기로서는 사이클로프로필기, 사이클로부틸기, 사이클로펜틸기, 사이클로헥실기, 사이클로헵틸기, 사이클로옥틸기 등을 들수 있다. 또 A가 에스테르기인 경우에는 A는 메틸 에스테르기, 에틸 에스테르기, n-프로필 에스테르기, i-프로필 에스테르기, n-부틸 에스테르기, 3급부틸 에스테르기 등이 바람직하다. 단, 에스테르기를 구성하는 카르보닐기의 탄소 원자가 화학식 8의 나프탈렌 고리에 결합하고 있는 것이 바람직하다.
또한 화학식 8의 대역외 자외선 차단제에서 A는 아래 구조로 표기되는 화학식 9의 골격을 갖추고 있는 물질이어도 바람직하다.
화학식 9
Figure PCTKR2011008498-appb-C000009
화학식 9에 있어서 J는 단일 결합, 메틸렌기 또는 탄소수 2~10의 직쇄상 또는 분기상의 알킬기를 나타내고 Q는 산의 작용에 의하여 이탈 가능한 산 해리성기를 나타낸다. Q에 적합한 것은 3급부틸기, 메틸사이클로펜틸기, 에틸사이클로펜틸기, 메틸사이클로헥실기, 에틸사이클로헥실기, 메틸아다만틸기, 에틸 아다만틸기, 아이소 프로필아다만틸기, 감마부티롤락톤, 노보넨부티롤락톤, 옥소노보넨부티롤락톤 등을 들 수 있으며, 이에 국한되는 것은 아니다.
대역외 자외선 차단제로 표시되는 화합물의 바람직한 예로서는 1-나프톨, 2-나프톨, 1,8-나프탈렌디올, 1-나프탈렌카르복시산, 2-나프탈렌카르복시산, 1,8-나프탈렌디카르복시산, 1-메톡시나프탈렌, 2-메톡시나프탈렌, 1-에톡시나프탈렌, 2-에톡시나프탈렌, 1-n-프로폭시나프탈렌, 2-n-프로폭시나프탈렌, 1-i-프로폭시나프탈렌, 2-i-프로폭시 나프탈렌, 1-n-부톡시나프탈렌, 2-n-부톡시나프탈렌, 1-메톡시카르보닐 나프탈렌, 1-3급부톡시카르보닐 나프탈렌, 1-(메톡시카르보닐 메톡시나프탈렌), 1-(3급부톡시카르보닐 메톡시나프탈렌)을 들 수 있다. 화학식 8로 표시되는 화합물의 특별히 바람직한 예로서는 아래 화학식 10으로 표시되는 것을 들 수 있으며, 이에 국한되는 것은 아니다.
화학식 10
Figure PCTKR2011008498-appb-C000010
본 발명의 극자외선 리소그라피용 포토레지스트 탑코트 조성물에서 대역외 자외선 차단제는 전술한 수용성 바인더 수지 100 중량부에 대하여 0.01 내지 30 중량부의 비율로 포함될 수 있다. 이 함량 범위로 대역외 자외선 차단제를 포함하면 경제성을 기하면서 패턴 해상도 향상, 선폭 거칠기(LWR) 완화, 패턴 프로파일 개선 효과를 볼 수 있다. 반면에 대역외 자외선 차단제의 함량이 0.01 중량부 미만이면 대역외 자외선 차단 효과를 볼 수 없으며, 30 중량부를 넘어도 자외선 차단 효과가 거의 더 증진되지 않고 원자외선을 과량으로 흡수하며 자외선에 의한 산 발생이 과다하여지기 때문에 패턴의 단면이 나빠지고 경제성이 떨어지게 된다.
본 발명의 극자외선 리소그라피용 포토레지스트 탑코트 조성물은 용매를 포함한다. 전술한 용매는 탑코트의 하부층인 포토레지스트층과의 혼합(인터믹싱)을 막을 수 있는 용매를 사용하는 것이 좋다. 본 발명의 탑코트 조성물에서 사용할 수 있는 용매로는 일반적인 포토레지스트 보호막 형성용 조성물에 사용되는 용매를 사용할 수 있다. 그 중에서 양성자성(protic) 용매를 사용하는 것이 바람직하다. 그리고 일반적으로 탑코트 조성물 용매와 서로 섞이지 않는 다른 것을 포토레지스트층 구성용 용매로 선택하면 좋다. 두 종류 이상의 혼합 양성자성 용매를 사용할 수 있음은 물론이다.
적절한 양성자성 용매의 예를 일부만 들자면 메탄올, 이소프로판올, 에탄올, 부탄올, 1-프로판올, 2-프로판올, 2-부탄올, 1,2-부탄디올, 1,2-프로판디올, 2-헥산올, 3-헥산올, 2-메틸-1-펜탄올, 2-메틸-2-펜탄올, 5-메틸-2-헥산올, 물, 이소부탄올, 4-메틸-2-펜탄올, 사이클로펜탄올, 노르말펜탄올, 글리세롤, 프로판올이 있다. 필요에 따라 인터믹싱에 영향을 주지 않는 범위 내에서 양성자성 용매에 소량의 비양성자성 용매를 혼합할 수도 있다. 그리고 포토레지스트 형성용 용매가 양성자성 용매인 경우에는 탑코트 형성용 용매를 비양성자성 용매로 할 수도 있다. 비양성자성 용매로는 디옥산 등의 고리형 에테르류, 디이소헵틸에테르, 디이소아밀에테르, 에틸렌글리콜모노에틸에테르, 에틸렌글리콜모노메틸에테르, 디에틸렌글리콜디에틸에테르 등의 다가 알코올의 알킬에테르류가 있다.
본 발명의 탑코트 조성물에서 상기 용매의 양은 스핀 코팅 등 조성물을 포토레지스트층 위에 도포할 때 필요한 점도, 소프트 베이크 공정 등 탑코트의 용매 제거를 위한 건조 혹은 경화 공정의 시간과 온도, 비용 등의 측면을 고려하여 이 분야의 평균적 기술자가 알맞게 조절할 수 있다. 따라서 용매의 함량을 본 명세서에서 구체적으로 제시할 필요는 없으나, 통상적인 경우 전술한 수용성 바인더 수지 100 중량부에 대하여 1,000 내지 10,000 중량부의 범위로 용매를 포함하면 적절하다.
본 발명의 탑코트 조성물은 아울러 계면 활성제를 더 포함할 수 있다. 계면 활성제는 탑코트 표면을 매끄럽게 하고, 탑코트 조성물이 포토레지스트층을 고른 두께로 피복할 수 있도록 도움으로써 리소그라피 패턴의 선폭 거칠기(linewidth roughness, LWR)를 개선하여 준다.
본 발명의 계면 활성제로는 특별한 제한이 없고, 양이온성 계면 활성제, 음이온성 계면 활성제 및 비이온성 계면 활성제로 이 분야에 널리 쓰이는 것을 사용하면 족하다.
본 발명의 한 구체적인 실시 형태에서는 계면 활성제로 알킬아민 옥사이드, 황산 알킬 에테르(alkyl ether sulfate) 에스테르를 사용할 수 있다. 예를 들어 n-옥틸아민 옥사이드와 황산 n-도데실 페놀 에테르가 있다.
본 발명의 탑코트 조성물에서 계면 활성제는 계면 활성제를 제외한 조성물 전체 중량 100 중량부에 대하여 0.00001 내지 0.1 중량부(즉 조성물 중량의 10 ppm~100,000 ppm) 비율로 포함될 수 있다.
이 밖에 본 발명의 탑코트 조성물은 이 기술 분야에서 통상적으로 쓰이는 첨가제를 더 포함할 수 있다.
본 발명의 다른 측면에서는 극자외선 리소그라피 미세 공정, 즉 전술한 탑코트 조성물을 이용한 기재의 패턴 형성 방법을 제공한다. 본 발명의 패턴 형성 방법에서는 상기 포토레지스트 탑코트 조성물로 형성된 탑코트를 포함하는 극자외선 리소그라피 마스크를 형성한다.
본 발명 패턴 형성 방법의 한 실시 형태에서는 상기 마스크가 포토레지스트 탑코트-포토레지스트-하부층(undelayer)의 3중 구조를 포함한다.
하부층의 역할은 포토레지스트의 하부막 접착력을 강화시키고, 노광 공정에서 산 발생을 촉진한다고 알려져 있는 이차전자의 생성을 촉진하여 패턴 프로파일 선 가장자리의 거칠기를 개선하는 역할을 한다. 본 발명에서 사용된 하부층 막 조성은 베이스 수지와 가교제, 그리고 열산 발생제, 계면활성제로 이루어져 있다. 이 베이스 수지는 아래 화학식 11에서 나타낸 반복 단위를 적어도 1종 포함할 수 있는데
화학식 11
Figure PCTKR2011008498-appb-C000011
이 때 R은 수소 또는 헤테로원자를 5개 이하로 함유할 수 있는 탄소 수 10개 미만의 탄화수소이다. B1, B2, B3, Q는 각각 독립적이며 헤테로원자를 5개 이하로 선택적으로 함유할 수 있는 탄소 수 15개 미만의 탄화수소이다
본 발명의 탑코트 형성용 조성물을 이용한 극자외선 리소그라피에서 하부층 베이스 수지의 중량 평균 분자량 범위는 2,000~45,000이고, 분산도 범위는 1~3.5이면 적절하다.
가교제는 알콕시메틸기가 치환된 아미드를 기본 구조로 갖는 화합물을 적용할 수 있다. 대표적인 예로 아래 화학식 12의 화합물을 들 수 있다.
화학식 12
열산 발생제는 섭씨 120~250℃ 범위에서 열분해되어 산을 발생하는 역할은 하는데 열에 민감하게 반응하는 아민염, 예를 들어 아래 화학식 13의 염을 적용한다.
화학식 13
Figure PCTKR2011008498-appb-C000013
화학식 13에서 D1 내지 D5는 각각 독립적이며 헤테로원자를 5개 이하로 함유할 수 있는 탄소 수 15개 미만의 탄화수소이다.
본 발명 패턴 형성 방법의 한 실시 형태에서는 다음의 단계들을 포함하는 기재의 패턴 형성 방법을 개시한다. 이 방법에 따른 전형적인 공정의 흐름도를 도 4에 나타내었다. 본 발명에 따른 탑코트를 포함하지 않은 포토레지스트-하부층만으로 이루어지는 종래 기술의 패턴 형성 공정의 주요부를 도 3에 나타내었다. 도 4와 도 3은 탑코트를 제외한 대부분의 공정이 대동 소이하다.
(1) 기재상에 포토레지스트 하부막, 원하는 회로 패턴의 포토레지스트층 및 전술한 탑코트 조성물로부터 형성되는 포토레지스트 탑코트를 순차적으로 적층하여 광리소그라피용 마스크를 얻는 단계,
(2) 상기 적층체에 극자외선을 조사하여 마스크를 상기 패턴에 따라 용해하는 노광 단계,
(3) 노광된 상기 마스크에서 용해된 부분을 선택적으로 제거하는 현상 단계,
(4)상기 현상된 마스크가 적층된 기재를 식각하여 기재에 패턴을 형성하는 단계.
본 발명의 방법을 적용할 수 있는 기재에는 특별히 제한이 없으며, 예를 들어 실리콘, 알루미늄, 고분자 수지, 이산화실리콘, 도핑된 이산화실리콘, 질화실리콘, 탄탈, 구리, 폴리실리콘, 세라믹, 알루미늄/구리 혼합물, 비소화갈륨과 기타 III족/V족 혼합물이 포함된다.
상기 (1) 단계에서 기재상에 포토레지스트 하부막, 포토레지스트층 및 포토레지스트 탑코트를 적층하기 방법은 이 분야에 널리 알려져 있으므로 여기서 상술하지 않는다. 상기 하부막, 포토레지스트층 및 탑코트를 적층하는 방법은 특별히 제한이 없으며 광리소그라피 분야에서 통상적으로 쓰이는 방법을 사용하면 족하다. 예를 들어 전술한 포토레지스트 탑코트나 포토레지스트층 형성용 조성물을 적절한 기재나 하부에 자리에 잡은 층 위에 도포하고 이를 소프트 베이크 등의 건조 또는 경화 처리를 통하여 가공함으로써 이들 층을 형성할 수 있다. 포토레지스트, 하부층, 탑코트의 두께는 전체적인 극자외선 리소그라피 공정의 측면 예를 들어 즉 현상 처리액의 종류나 원하는 패턴의 두께와 LWR 정도에 따라 이 분야의 평균적 기술자가 적절하게 선택할 수 있다.
본 발명에 쓰일 수 있는 조성물 도포 방법에는 예를 들어 침지(dipping), 스프레이(spraying), 훨링(whirling)과 스핀 코팅(spin coating)이 포함된다. 스핀 코팅으로 막 형성용 조성물을 도포하는 경우, 스핀 코팅 장치의 종류와 회전 시간에 따라 원하는 두께의 층을 형성하기 위하여 포토레지스트 형성용 조성물이나 다른 조성물의 고형분 함량을 적절하게 조절할 수 있다.
이와 같이 층 형성용 조성물을 도포한 다음에는 소프트 베이크나 경화 처리를 할 수 있다. 하부층(underlayer)의 경우 경화 처리(curing bake)를 할 수 있고, 포토레지스트와 탑코트에는 소프트 베이크를 적용할 수 있다. 적절한 건조, 경화 처리를 위한 온도와 시간, 장치 등의 조건은 해당 조성물의 조성과 원하는 최종 물성에 따라 달라질 수 있는데, 예를 들어 전형적인 경우에 경화 처리는 200℃ 안팎의 온도를 사용할 수 있고, 건조 처리는 100℃ 안팎이며, 핫플레이트나 대류 오븐을 사용할 수 있다. 하지만 이러한 구체적인 조건은 어디까지나 이해를 돕기 위한 예시이며, 본 발명의 기술적 사상을 벗어나지 않는 범위에서 이 분야의 평균적 기술자가 적절하게 변형할 수 있는 것이다.
상기 (1) 단계에서 상기 포토레지스트층을 적층하는 단계는 다음과 같은 조성물을 적층하고 소프트 베이크하여 이루어질 수 있다.
포토레지스트층용 조성물은 100 중량부의 산 민감성 베이스 수지에 대하여0.5 내지 10 중량부의 광산 발생제(photoacid generator), 0.01 내지 5 중량부의 염기성 산확산 조절제(quencher)와 100 내지 1500 중량부의 유기 용매를 포함한다. 그리고 포토레지스트층 적층 방법은 이와 같은 포토레지스트층용 조성물을 상기 포토레지스트 하부막 상에 적층하고 이 적층된 조성물을 소프트 베이크하는 단계를 포함한다.
상기 포토레지스트층용 조성물에서 상기 산 민감성 베이스 수지는 알칼리 현상액에 불용성이지만 양성자와 반응한 후 알칼리 현상액에 가용성이 되는 고분자이다. 이러한 산 민감성 베이스 수지로는 이 분야에서 널리 사용되는 것을 사용하면 무방하고 특별히 제한되지 않는다. 이 분야의 평균적 기술자라면 기술 상식과 본 발명의 기술적 사상을 참조하여 산 민감성 베이스를 적절하게 선택할 수 있으므로 여기서 그에 관하여 상술하지는 않는다. 예를 들어 상기 산 민감성 베이스 수지로는 아래 화학식 14의 구조를 가지는 것을 사용할 수 있다.
화학식 14
Figure PCTKR2011008498-appb-C000014
단 이 때, 상기 R은 수소, C1~C9의 무치환 탄화수소 또는 5개 이하의 헤테로원자를 포함하는 C1~C9의 치환 탄화수소이고, 상기 a, b, c는 a+b+c=1이며, 0.10≤a≤0.55, 0.15≤b≤0.80이면서 0.10≤c≤0.35 이고,
상기 P, L, H는 서로 각각 독립적이다.
상기 P는 에테르(-OR), 에스테르, 히드록실기 등으로 치환되거나 치환되지 않은 비방향족성 지방족 고리 탄화수소 또는 분지형 지방족 탄화수소이며 추가적으로 불소로 치환될 수 있다. 본 발명의 한 구체적인 실시 형태에서 P로는 입체 부피가 큰 아다만틸 등의 고리형 탄화수소인 것이 좋다.
상기 L은 에스테르기를 포함하는 분지형 지방족 탄화수소이다. 본 발명의 한 구체적인 실시 형태에서 L은 락톤이며, 입체 부피가 큰 고리를 사용할 수도 있다. 상기 H는 히드록시기를 갖추고 있는 지방족 고리형 탄화수소이고, 이 때 이 지방족 고리는 히드록시기 외에 불소 치환된 알킬 치환기를 가지고 있을 수 있다.
본 발명의 한 구체적인 실시 형태에서 상기 산 민감성 베이스 수지로는 전술한 물질을 사용할 수 있고, 그 중량 평균 분자량은 2,000 내지 20,000, 분산도는 1.0~2.0이다.
본 발명에서 광산 발생제는 빛에 의하여 산을 발생할 수 있는 물질로서 이 분야에서 널리 쓰이는 것을 사용할 수 있는데, 예를 들어 술포늄염 계열, 요오도늄 계열 화합물을 사용할 수 있다.
본 발명의 한 구체적인 실시 형태에서는 상기 광산 발생제로 프탈이미도트리플루오로메탄술폰산(phthalimidotrifluoromethane sulfonate), 토실산디니트로벤질(dinitrobenzyl tosylate), n-데실디술폰(n-decyl disulfone) 및 나프틸이미도트리플루오로메탄술폰산(naphthylimidotrifluoromethane sulfonate) 중 어느 하나 이상을 사용할 수 있다.
본 발명의 더욱 구체적인 실시 형태에서는 전술한 광산 발생제와 더불어 디페닐요오도늄 트리플레이트, 디페닐요오도늄 노나플레이트, 헥사플루오로인산디페닐요오도늄, 헥사플루오로비소산(砒素酸) 디페닐요오도늄, 헥사플루오로안티몬산 디페닐요오도늄, 디페닐파라메톡시페닐술포늄 트리플레이트, 디페닐파라톨루엔일술포늄 트리플레이트, 디페닐파라3급부틸페닐술포늄 트리플레이트, 디페닐파라이소부틸페닐술포늄 트리플레이트, 트리페닐술포늄 트리플레이트, 트리스파라3급부틸페닐술포늄 트리플레이트, 디페닐파라메톡시페닐술포늄 노나플레이트, 디페닐파라톨루엔일술포늄 노나플레이트, 디페닐파라3급부틸페닐술포늄 노나플레이트, 디페닐파라이소부틸페닐술포늄 노나플레이트, 트리페닐술포늄 노나플레이트, 트리스파라3급부틸페닐술포늄 노나플레이트, 헥사플루오로비소산 트리페닐술포늄, 트리페닐술포늄 트리플레이트 및 디부틸나프틸술포늄 트리플레이트를 함께 사용할 수 있다.
본 발명의 광산 발생제는 상기 산민감성 베이스 수지 100 중량부에 대하여 0.5 내지 10 중량부의 비율로 포함된다. 이 함량 범위로 광산 발생제를 포함하면 경제성을 기하면서 패턴 해상도 향상, 선폭 거칠기 완화, 패턴 프로파일 개선 효과를 볼 수 있다. 반면에 광산 발생제의 함량이 0.05 중량부 미만이면 극자외선에 대한 민감도가 취약해지고, 10 중량부를 넘어도 패턴 형성이 더 좋아지지 않고 오히려 원자외선을 과량으로 흡수하며 자외선에 의한 산 발생이 과다하여지기 때문에 산 확산이 일어나고 패턴의 단면이 나빠지고 해상도도 악화된다.
본 발명의 포토레지스트층 형성용 조성물은 염기성 산확산 조절제(basic quencher)를 포함한다. 본 발명의 한 실시 형태에서 염기성 산확산 조절제로는 유기 염기, 예를 들어 트리에틸아민, 트리옥틸아민, 트리이소부틸아민, 트리이소옥틸아민, 디에탄올아민 및 트리에탄올아민을 사용할 수 있다.
본 발명의 다른 실시 형태에서 상기 염기성 산확산 조절제는 아래 화학식 15로 나타낸 조성의 고분자 또는 전술한 유기 염기와 이 고분자의 혼합물이다.
화학식 15
Figure PCTKR2011008498-appb-C000015
단 이 때, L1, L2, L3, L4와 L5는 각각 서로 독립적으로 수소, C1~C9의 무치환 탄화수소 또는 5개 이하의 헤테로원자를 포함하는 C1~C9의 치환 탄화수소이고,
E는 앞서 본 P, L 또는 H 중의 어느 하나를 사용할 수 있고,
상기 α와 β는 α+β=1이며, 0.01≤α≤0.25이면서 0.75≤β≤0.99이다. 본 발명의 염기성 산확산 조절제는 상기 산민감성 베이스 수지 100 중량부에 대하여 0.01 내지 5 중량부의 비율로 포함된다. 이 함량 범위로 염기성 산확산 조절제를 포함하면 경제성을 기하면서 패턴 해상도 향상, 선폭 거칠기 완화, 패턴 프로파일 개선 효과를 볼 수 있다. 반면에 조절제의 함량이 0.01 중량부 미만이면 산 확산을 방지할 수 없어서 해상도가 나빠지고, 5 중량부를 넘어도 포토레지스트의 감도가 떨어지며 패턴의 프로파일에 급경사(slope)를 낳으므로 바람직하지 못하다.
본 발명의 포토레지스트 형성용 조성물은 상기 산 민감성 베이스 수지 100 중량부에 대하여 1,000~10,000 중량부의 용매를 포함한다. 포토레지스트 형성용 조성물의 용매는 특별히 제한되지 않는다. 적절한 용매의 예를 일부만 들자면 에틸렌글리콜모노메틸에틸, 에틸렌글리콜모노에틸에테르, 에틸렌글리콜모노메틸에테르, 에틸렌글리콜 모노아세테이트, 디에틸렌글리콜, 디에틸렌글리콜모노에틸에테르, 프로필렌글리콜 모노메틸에테르아세테이트, 프로필렌글리콜, 프로필렌글리콜모노아세테이트, 톨루엔, 자일렌, 메틸에틸케톤, 메틸이소아밀케톤, 시클로헥산온, 디옥산, 메틸락테이트, 에틸락테이트, 메틸피루베이트, 에틸피루베이트, 메틸메톡시프로피오네이트, 에틸에톡시 프로피오네이트, N,N-디메틸포름아마이드, N,N-디메틸아세트아마이드, N-메틸 2-피롤리돈, 3-에톡시에틸프로피오네이트, 2-헵탄온, 감마-부티롤락톤, 2-히드록시프로피온에틸, 2-히드록시-2-메틸프로피온산에틸, 에톡시초산에틸, 히드록시초산에틸, 2-히드록시 3-메틸부탄산메틸, 3-메톡시 2- 메칠프로피온산메틸, 3-에톡시프로피온산에틸, 3-메톡시 2-메틸프로피온산에틸, 4-메틸-2-펜탄올, 4-메틸-2-펜틸 아세테이트, 이소프로판올, 메틸알코올, 에틸알코올, 노말 부틸알코올, 사이클로펜탄올, 사이클로펜탄온, 아세트산에틸, 아세트산부틸 등을 단독으로 사용하거나 이들의 혼합물을 사용할 수 있다.
본 발명의 포토레지스트 형성용 조성물은 아울러 계면 활성제 등의 첨가제를 더 포함할 수 있다. 계면 활성제로는 불소계 계면 활성제, 음이온계, 양이온계, 비이온계 등 이 기술 분야에서 쓰이고 있는 계면 활성제를 특별한 제한 없이 사용할 수 있다.
본 발명의 기재의 패턴 형성 방법에서 상기 (2) 내지 (4) 단계는 이 분야에서 널리 알려진 방법을 사용하여 이루어질 수 있으므로 여기서 더 이상 상세하게 설명하지 않는다.
예를 들어 적층체에 극자외선을 조사하여 마스크를 상기 패턴에 따라 용해하는 노광 단계는 13.4 nm 광원을 조사하여 이루어질 수 있다.
상기 (3)의 현상 단계와 상기 (4)의 식각 단계 역시 이 분야에 널리 알려진 방법을 사용할 수 있으며 특별히 제한되지 않는다.
[실시예]
이하 제조예와 실험예를 들어 본 발명을 더욱 상세하게 설명한다. 아래 실시예는 본 발명을 예시로써 상세하게 설명하기 위한 것이며, 어떠한 경우라도 본 발명의 범위를 제한하기 위한 의도가 아니다.
[제조예 1]
화학식 1a로 나타낸 반복 단위 제조에 필요한 모노머 분자의 합성
하기 화학식 16에 나타낸 바와 같이, 500 mL 2구(neck) 플라스크에 자석 교반 막대를 넣고, 하기 헥사플루오로알코올기를 포함하는 모노머인 MA-3,5-Bis(hexa fluoro-2-hydroxy-2-propyl)cyclohexyl methacrylate) 100 g(0.2 mol), 디-3급-부틸 디카보네이트 94.06 g(0.422 mol), 4-디메틸아미노피리딘 4.79 g(0.038 mol)과 테트라하이드로퓨란 600 mL를 첨가한 후, 상온에서 20 시간 동안 반응을 수행하였다. 반응이 완결된 후, 감압 하에서 테트라하이드로퓨란을 제거하여 상기 화학식 1a로 표시되는 반복단위의 모노머 134.6 g을 얻었다{수율 96%, NMR: CH3(δ 1.93, 1.4 ppm), CH2(δ 1.64, 1.36 ppm), CH(δ 3.91, 2.01 ppm), H(δ 6.15, 5.58 ppm)}.
화학식 16
Figure PCTKR2011008498-appb-C000016
[제조예 2]
대역외 자외선 차단제 1-부톡시나프탈렌의 제조
교반기, 환류 냉각기를 장착한 1 L들이 가지형 둥근바닥 플라스크(branched round bottom flask)에 1-히드록시나프탈렌 17 g, 1-브로모부탄 15 g, 탄산칼륨 16 g, 아세톤 500 g을 더하고, 질소 치환하에 70℃로 12시간 가열하고 반응시켰다. 반응 종료 후 감압 증류하여 아세톤 제거후 에틸아세테이트 500 g으로 녹이고, 분별깔때기를 이용하여 물 500 g으로 3회 세척하였다. 얻어진 용액을 감압 농축하고 진공 건조하여 화학식 10에 나타낸 1-부톡시나프탈렌 21 g을 얻었다.
대역외 자외선 차단제 2-(나프탈렌-5일옥시)아세트산3급부틸의 제조
교반기, 환류 냉각기를 장착한 1 L의 가지형 둥근바닥 플라스크에 1-히드록시나프탈렌 15 g, 2-클로로아세트산3급부틸 15 g 탄산칼륨 15 g, 아세톤 500 g을 더하고, 질소 치환하에 70℃로 12시간 가열하고 반응시켰다. 반응 종류후 감압 증류하여 아세톤 제거 후 아세트산에틸 500 g으로 녹이고, 분별깔때기를 이용하여 물 500 g으로 3회 세척하였다. 얻어진 용액을 감압 농축하고 진공 건조하여 화학식 10에 나타낸 2-(나프탈렌-5일옥시)아세트산 3급부틸 25 g을 얻었다.
대역외 자외선 차단제 1-아세톡시나프탈렌의 제조
1 L의 가지형 둥근바닥 플라스크에 1-히드록시나프탈렌 15 g, 트리에틸아민 11 g, 염화메틸렌 100 g을 더하여 둥근 자석 막대를 이용하여 질소 치환하에 녹인 후, 클로로아세트산 8 g을 천천히 적가(滴加)하여 12시간 반응시켰다. 반응 종류후 분별깔때기를 이용하여 물 500 g으로 3회 세척하였다. 얻어진 용액을 감압 농축하고 진공 건조하여 화학식 10에 나타낸 1-아세톡시나프탈렌 18 g을 얻었다.
[실시예 1]
포토레지스트 탑코트용 수용성 바인더 수지 제조
1-1. 폴리아크릴아미드-코-폴리-N-비닐카프로락탐의 합성
아크릴아미드 49.7 g(0.7 mol), N-비닐카프롤락탐 41.8 g(0.3 mol) 및 4,4'-아조비스(4-시아노발레르산) 11.2 g을 질소로 탈기 처리한 이소프로필알콜(IPA) 500 g에 용해시키고, 이후 반응물을 70℃에서 16시간 동안 중합시켰다.  중합이 완결된 후, 형성된 침전물을 필터하여 공중합체(수율 90%)를 얻었다. 얻어진 고분자를 메탄올 300 g에 녹인 후 IPA 300 g을 2시간 동안 적가한 후, 다시 3시간 동안 믹싱하여 얻어진 고분자 침전을 필터하여 정제된 공중합체(수율 65%) 59.5g을 얻었다. 얻어진 공중합체의 중량 평균분자량과 다중분산도는 각각 6,500 및 1.80이었다.
1-2. 폴리-N-비닐피롤리돈-코-폴리-N-비닐카프로락탐의 합성
N-비닐피롤리돈 77.8 g(0.7 mol), N-비닐카프롤락탐 41.8 g(0.3 mol) 및 4,4'-아조비스(4-시아노발레르산) 11.2 g을 질소로 탈기 처리를 거친 이소프로필알콜(IPA) 500 g에 용해시키고, 이후 반응물을 70℃에서 16시간 동안 중합시켰다.  중합이 완결된 후, 형성된 침전물을 필터하여 공중합체(수율 82%)를 얻었다. 얻어진 고분자를 메탄올 300 g에 녹인 후 IPA 300 g을 2시간 동안 적가한 후, 다시 3시간 동안 혼합하여 얻은 고분자 침전을 필터하여 정제된 공중합체(수율 60%) 72 g을 얻었다. 얻어진 공중합체의 중량 평균분자량과 다중 분산도는 각각 6,200 및 1.70이었다.
1-3. 5-(hexafluoro-2-hydroxyisopropylmethyl)norbonane-2-acrylate의 중합
Figure PCTKR2011008498-appb-I000025
5-(hexafluoro-2-hydroxyisopropylmethyl)norbonane-2-acrylate 346 g(1 mol) 및 4,4'-아조비스(4-시아노발레르산) 11.2 g을 질소로 탈기 처리한 이소프로필알콜(IPA) 500 g에 용해시키고, 이후 반응물을 70℃에서 16시간 동안 중합시켰다.  중합이 완결된 후, 형성된 침전물을 여과하여 공중합체(수율 80% 이상)를 얻었다. 얻어진 고분자를 메탄올 300 g에 녹인 후 IPA 300 g을 2시간 동안 적가한 후, 다시 3시간 동안 믹싱하여 얻어진 고분자 침전을 여과하여 정제된 공중합체(수율 55%) 190 g을 얻었다. 얻어진 중합체의 중량 평균 분자량과 다중분산도는 각각 7,500 및 1.80이었다.
1-4. 1-(hexafluoro-2-hydroxy-iso-propyl)propan-2-methacrylate의 중합
Figure PCTKR2011008498-appb-I000026
1-(hexafluoro-2-hydroxy-iso-propyl)propan-2-methacrylate 294 g(1 mol) 및 4,4'-아조비스(4-시아노발레르산) 11.2 g을 질소로 탈기 처리한 이소프로필알콜(IPA) 500 g에 용해시키고, 이후 반응물을 70℃에서 16시간 동안 중합시켰다.  중합이 완결된 후, 형성된 침전물을 필터하여 공중합체(수율 80% 이상)를 얻었다. 얻어진 고분자를 메탄올 300 g에 녹인 후 이소프로판올 300 g을 2시간 동안 적가한 후, 다시 3시간 동안 믹싱하여 얻어진 고분자 침전을 필터하여 정제된 공중합체(수율 50%) 147g을 얻었다. 얻어진 중합체의 중량 평균분자량과 다중분산도는 각각 7,300 및 1.85이었다.
1-5. 3원 공중합체 바인더 수지의 제조
화학식 17
Figure PCTKR2011008498-appb-C000017
상기 제조예에서 합성한, 화학식 1a로 표시되는 반복단위에 해당하는 모노머 35.03 g(0.05 mol)과 상기 화학식 2a로 표시되는 반복 단위에 해당하는 모노머 15.22 g(0.2mol), 상기 화학식 3a로 표시되는 반복단위의 모노머 62.54 g(0.25mol) 및 아조비스(이소부티로니트릴)(AIBN) 개시제 17g을 질소로 탈기 처리한 이소프로필알콜(IPA) 500 g에 용해시키고, 이후 반응물을 70℃에서 16시간 동안 중합시켰다.  중합이 완결된 후, 형성된 침전물을 필터하여 미정제 중합체를 얻었다. 이 미정제 중합체를 메탄올 300 g에 녹인 후 이소프로판올 300 g을 2시간 동안 적가한 후, 다시 3시간 동안 믹싱하여 얻어진 고분자 침전을 필터하여 상기 화학식 1 7로 나타낸 3원 공중합체(위 화학식에서 반복 단위의 함량 표시는 몰%)로 표시되는 레지스트 보호막 형성용 중합체 53 g(수율: 47%, 중량 평균 분자량(Mw): 7600, PDI: 2.42)을 얻었다.
1-6. 2원 공중합체 바인더 수지의 제조
화학식 18
Figure PCTKR2011008498-appb-C000018
상기 화학식 1a로 표시되는 반복 단위에 해당하는 모노머 89.57 g(0.125 mol)과 상기 화학식 2a로 표시되는 반복 단위에 해당하는 모노머 32.28 g(0.375 mol) 및 아조비스(이소부티로니트릴)(AIBN) 개시제 18 g을 질소로 탈기 처리한 이소프로필알콜(IPA) 500 g에 용해시키고, 이후 반응물을 70℃에서 16시간 동안 중합시켰다.  중합이 완결된 후, 형성된 침전물을 필터하여 미정제 중합체를 얻었다. 이 미정제 중합체를 메탄올 300 g에 녹인 후 이소프로판올 300 g을 2시간 동안 적가한 후, 다시 3시간 동안 믹싱하여 얻어진 고분자 침전을 필터하여 상기 화학식 18로 나타낸 3원 공중합체(위 화학식에서 반복 단위의 함량 표시는 몰%)로 표시되는 레지스트 보호막 형성용 중합체 92 g(수율: 75%, 중량 평균 분자량(Mw): 7514, PDI: 2.45)을 얻었다.
[실시예 2]
탑코트 조성물의 제조
하기 탑코드 조성물의 성분들을 혼합한 후 6시간 동안 교반하여 완전히 용해되도록 하고, 구멍 크기가 0.01 마이크로미터인 나일론 재질의 필터와 PTE 재질의 필터를 통과시켜서 탑코드 조성물을 제조하였다. 조성은 아래 표 1에 정리하였다.
표 1
Figure PCTKR2011008498-appb-T000001
[실시예 3]
포토레지스트(PR)용 산 민감성 베이스 수지 합성
2-메틸-2-아다만틸 메타크릴레이트 117.2 g(0.5 mol), 3-히드록시아다만틸 메타크릴레이트 23.6 g(0.1 mol), 노보닐락톤 메타크릴레이트 88.9 g(0.4 mol) 및 아조비스(이소부티로니트릴)(AIBN) 6.6 g을 무수 테트라하이드로퓨란(THF) 125 g에 용해시키고, 동결방법으로 앰플(ampoule)을 사용하여 가스를 제거하였다.  이후, 반응물을 68℃에서 24시간 동안 중합시켰다.  중합이 완결된 후, 과량의 디에틸 에테르에 반응물을 천천히 떨어뜨려 침전시키고 다시 THF에 용해한 후 디에틸 에테르에서 재침전시켜 3원 공중합체(수율 53%)를 얻었다. 얻은 3원 공중합체의 중량 평균분자량과 다중 분산도는 각각 8,500 및 1.8이었다.
[실시예 4]
포토레지스트 제조용 조성물의 제조
아래 표 2에 나타낸 포토레지스트 조성물의 성분들을 혼합한 후 6시간 동안 교반하여 완전히 용해되도록 하고, 구멍 크기가 0.01 마이크론인 나일론 재질의 필터와 PTE 재질의 필터를 통과시켜서 포토레지스트를 제조하였다. 계면 활성제 FC4430은 3M사로부터 입수하였다.
표 2
Figure PCTKR2011008498-appb-T000002
[실시예 5]
하부층(UL)용 베이스 수지 합성
4-아세톡시스티렌 97.2 g(0.6 mol), 2-히드록시에틸 메타크릴레이트 52.0 g(0.4 mol) 및 아조비스(이소부티로니트릴)(AIBN) 6.6 g을 무수 테트라하이드로퓨란 125 g 속에 용해시키고, 동결 방법으로 앰플(ampoule)을 사용하여 탈기하였다.  이후, 반응물을 68℃에서 24시간 동안 중합시켰다.  중합이 완결된 후, 3 L의 과량의 물을 천천히 떨어뜨려 침전시키고 여과 건조하여 순수한 고분자 화합물을 얻었으며 얻어진 화합물에 암모니아와 메탄올을 첨가하여 가수분해 반응을 섭씨 60도에서 12시간 진행한 후, 반응이 종결된 후 다시 물 3L를 첨가하여 목적하는 (4-히드록시 스티렌)-(2-히드록시에틸 메타크릴에이트) 공중합체를 얻었다. (128g, 수율 85%). 얻은 공중합체의 중량 평균분자량과 다중 분산도는 각각 8,200 및 2.1이었다.
하부층 제조용 조성물의 제조
하기 하부층 조성물의 성분들을 혼합한 후 6시간 동안 교반하여 완전히 용해되도록 하고, 구멍 크기가 0.01 마이크로미터인 나일론 재질의 필터와 PTE 재질의 필터를 통과시켜서 하부층 조성물을 제조하였다. 조성은 아래 표 3에 정리하였다.
표 3
Figure PCTKR2011008498-appb-T000003
[실시예 6]
상기 제조한 실시예의 성능을 비교하기 위하여 극자외선 리소그라피(EUVL) 공정을 수행하여 결과를 비교하였다. 결과는 아래 표 3에 정리하였다.
EUVL 노광은 ASML ADT 노광기(0.25 NA, 0.5시그마)를 사용하여 진행하였으며, 공통적으로 포토레지스트 하부층(underlayer)은 실시예 5에서 제조한 것을 사용하여 두께가 33 nm, 포토레지스트층은 실시예 4에서 제조한 것을 사용하여 두께가 60 nm, 탑코트층은 33 nm가 되도록 마스크를 형성하였다. 하부층의 경화 처리(curing bake) 온도는 220℃, 포토레지스트 코팅 후 소프트 베이크 공정은 110℃로 60초, 탑코트 코팅 후 소프트베이크 공정은 105℃로 60초 동안 각각 진행하였다. 포토레지스트 노광 후 베이크 공정은 125℃에서 60초 동안 진행하였으며 현상 공정은 2.38% TMAH 수용액을 이용하여 30초 동안 현상공정을 진행하였다. 공정 진행 중 막 두께는 KLA사 제작 계측 장비인 Opti-2600을 사용하여 측정하였으며, CD-SEM은 일본 히타치사의 S9220 장비를 사용하여 해상도, LWR, 스컴(scum), 프로파일, CD 균일성을 측정하였다.
스컴은 S9220 장비에서 탑다운 프로파일을 측정하여 노광부의 포토레지스트 제거 정도를 측정함으로써 존재 여부를 판단하였고, 프로파일도 또한 CD SEM 장비의 탑다운 사진을 측정하여 판단하였다. CD 균일성은 CD 측정값의 3시그마 표준편차가 3.3나노미터 이하면 양호한 것으로 판정하였으며, 표준편차가 3.3 나노미터 이상이면 “불량”으로 판정하였다.
본 발명의 효과를 검증하기 위하여 비교예 실험으로 탑코팅 막을 적용하지 않고 하부막과 포토레지스트막을 적용한 실험을 실시하여 그 결과를 표 4 에 정리하였다.
극자외선 리소그라피(EUVL)로 패턴 형성한 시험 결과
표 4
Figure PCTKR2011008498-appb-T000004
도 5는 실시예 6-8의 리소그라피 공정으로 얻은 패턴의 CD-SEM 사진이다. 선폭의 두께가 고르고 선폭의 윤곽도 굴곡이 거의 없는 일직선에 가까운 것을 볼 수 있다. 실시예 6-8의 패턴은 LWR이 1.1 nm로서 매우 우수하였다.
위 데이터를 통하여 본 발명의 탑코트 조성물과 이를 이용한 패턴 형성 방법이 30 nm 이하 급의 높은 해상도와 고른 LWR, 뚜렷한 패턴 프로파일의 양립하기 어려운 조건들을 고루 만족할 수 있다는 점을 확인하였다.
[실시예 7]
계면 활성제를 사용하지 않은 탑코트의 성능을 살펴 보기 위하여 앞서 실시예 1-5에서 합성한 3원 공중합체 수지 또는 1-6에서 합성한 2원 공중합체 바인더 수지와 화학식 10의 나프탈렌계 대역외 자외선 차단제를 포함하는 포토레지스트 탑코트 및 위 표 2의 포토레지스트를 제조하고 극자외선 리소그라피(EUVL) 공정을 수행하여 성능을 시험하였다. 비교예 탑코트로서 대역외 자외선 차단제를 갖추고 있지 않은 탑코트 조성물(비교예 2와 3)도 제조하여 극자외선 리소그라피 공정을 수행하고 성능을 시험하였다.
포토레지스트 탑코트 조성물의 조성은 아래 표 5에 정리하였다.
표 5
Figure PCTKR2011008498-appb-T000005
EUVL 노광은 ASML ADT 노광기(0.25 NA, 0.5시그마)를 사용하여 진행하였다. 공통적으로 하층막은 실시예 5를 사용하여 두께가 33 nm, 포토레지스트층은 실시예 3을 사용하여 두께가 60 nm, 탑코트는 아래 표 6에 나타낸 것을 두께가 30 nm가 되도록 형성하였다. 하층막 경화 온도는 220℃, 포토레지스트 코팅후 베이크 공정은 110℃/60초, 탑코트 코팅후 베이크 공정은 90℃/60초로 각각 진행하였다. 포토레지스트 노광후 베이크 공정은 125℃/60초로 진행하였으며 현상 공정은 2.38% TMAH 수용액을 이용하여 30초 동안 진행하였다. 공정 진행 중 막 두께는 KLA사 제작 계측장비인 Opti-2600을 사용하여 측정하였으며, CD-SEM 은 Hitachi S9220 장비를 사용하여 해상력, LWR, 스컴, 프로파일, CD 균일성을 측정하였으며, 엘립소미터를 이용하여 각 파장별 빛 흡광 스펙트럼을 조사하였다.
성능 시험 결과는 아래 표 6에 정리하였다. 성능 평가 방식은 전술한 실시예 6과 동일하다.
표 6
탑코트 해상력 LWR 스컴 제어 프로파일 CD 균일성
비교예 2 <32 nm 5.4 nm 스컴 없음 직각성 양호
실시예 7-1 <32 nm 3.2 nm 스컴 없음 직각성 양호
실시예 7-2 <32 nm 2.9 nm 스컴 없음 직각성 양호
실시예 7-3 <32 nm 3.2 nm 스컴 없음 직각성 양호
실시예 7-4 <32 nm 3.1 nm 스컴 없음 직각성 양호
비교예 3 <32 nm 5.3 nm 스컴 없음 직각성 양호
실시예 7-5 <32 nm 2.8 nm 스컴 없음 직각성 양호
실시예 7-6 <32 nm 2.7 nm 스컴 없음 직각성 양호
실시예 7-7 <32 nm 2.7 nm 스컴 없음 직각성 양호
실시예 7-8 <32 nm 3.0 nm 스컴 없음 직각성 양호
표 6의 데이터를 보면 대역외 자외선 차단제를 포함하지 않는 탑코트를 사용한 마스크는 해상력과 스컴 발생, 프로파일, CD 균일성 면에서는 우수하였으나, 대역외 자외선 차단제를 사용하는 본 발명의 탑코트를 이용한 마스크에 비해서는 선폭 거칠기(LWR)가 매우 불량하였다.
따라서 본 발명의 포토레지스트 탑코트 형성용 조성물을 이용하여 극자외선 리소그라피를 할 경우 선폭 거칠기가 크게 향상된다는 점을 확인하였다.
도 6은 실시예 7-1 내지 실시예 7-4의 포토레지스트 탑코트를 사용한 마스크의 자외선 흡광 스펙트럼이다. 도 6의 그래프에 나타나 있듯이 본 발명의 극자외선 리소그라피용 탑코트 조성물을 사용하여 형성한 마스크는 100~300 nm의 심자외선 영역대에서 자외선 흡광률이 높은 것을 알 수 있다.
이상에서 설명된 본 발명의 최적 실시예들이 개시되었다. 여기서 특정한 용어들이 사용되었으나, 이는 단지 당업자에게 본 발명을 상세히 설명하기 위한 목적에서 사용된 것이지 의미 한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위해 사용된 것이 아니다.

Claims (13)

100 중량부의 수용성 바인더 수지;
0.01 내지 30 중량부의 극자외선 대역외(帶域外 out-of-band) 자외선 차단제; 및
1,000 내지 10,000 중량부의 양성자성 용매를 포함하는 포토레지스트 탑코트 형성용 조성물.
제1항에 있어서, 상기 수용성 바인더 수지는 카르복시기, 카르복스아미드기, 히드록시기, N-치환 락탐기, N-치환 이미다졸기, 2-헥사플루오로이소프로판올일기 및 2-헥사플루오로이소프로판올일알킬기 중에서 선택된 측쇄를 가지는 비닐 모노머의 단독 중합체, 선택된 서로 다른 측쇄를 지니는 비닐 모노머들 사이의 공중합체 또는 비닐 모노머로서 전술한 측쇄를 가지지 않는 것과 상기 선택된 측쇄를 가지는 비닐 모노머의 공중합체인 것을 특징으로 하는 포토레지스트 탑코트 조성물.
제2항에 있어서,
상기 비닐 모노머로서 전술한 측쇄를 가지지 않는 것은 메틸아크릴레이트, 메틸메타크릴레이트, 에틸아크릴레이트 및 에틸메타크릴레이트로 이루어지는 군에서 선택하는 어느 하나 이상인 것을 특징으로 하는 포토레지스트 탑코트 형성용 조성물.
제1항에 있어서 상기 수용성 바인더 수지는 아래 화학식 19에 나타낸 어느 한 반복 단위를 포함하는 호모중합체 또는 공중합체인 것을 특징으로 하는 포토레지스트 탑코트 형성용 조성물:
[화학식 19]
Figure PCTKR2011008498-appb-I000027
이 때 상기 화학식 19에서, R1은 수소 원자(H), 불소 원자(F), 메틸기(-CH3), 탄소 수 1 내지 20의 불소화 알킬기 또는 탄소수 1 내지 5의 히드록시알킬기이고,
X는 화학식 20으로 나타낸 치환기이며,
[화학식 20]
Figure PCTKR2011008498-appb-I000028
m은 X의 개수로서, 1 또는 2이고,
m이 1일 때 화학식 19에서 R2는 탄소 수 1 내지 10의 사슬형 또는 분지형 알킬렌기 또는 알킬리덴(alkylidene)기, 또는 탄소 수 5 내지 10의 고리형 알킬렌기 또는 알킬리덴(alkylidene)기이고,
m이 2일 때 화학식 19에서 R2는 탄소 수 1 내지 10의 탄화수소로서 결합수가 세 개인 직쇄형, 분지형 또는 고리형 하이드로카빈(hydrocarbine)기이다.
제1항에 있어서 상기 수용성 바인더 수지는 아래 화학식 21 내지 23에 나타낸 어느 한 공중합체 중에서 선택하는 것을 특징으로 하는 포토레지스트 탑코트 형성용 조성물.
[화학식 21]
Figure PCTKR2011008498-appb-I000029
[화학식 22]
Figure PCTKR2011008498-appb-I000030
[화학식 23]
Figure PCTKR2011008498-appb-I000031
이 때 상기 화학식 21 내지 23에서, R1, R2, X 및 m은 제4항에서 정의한 바와 같고,
상기 화학식 21과 22에서 p는 0 내지 3의 정수이며, R3은 수소 원자, 또는 하나 이상의 히드록시기(-OH) 또는 카르복실기(-COOH)를 포함하는 탄소 수 1 내지 25개의 알킬기이고,
상기 화학식 22와 23에서 R4는 하나 이상의 불소 원자로 치환 또는 비치환된 탄소수 1 내지 25의 알킬기이고,
상기 화학식 23에서 q는 0 내지 3의 정수이며,
상기 화학식 21에서 a의 값은 중량 분율로 1 내지 99 중량%, b의 값은 중량 분율로 1 내지 99 중량%이고 a+b=100 중량%이며
상기 화학식 22에서 a의 값은 중량 분율로 1 내지 98 중량%, b의 값은 중량 분율로 1 내지 98 중량%, c의 값은 중량 분율로 1 내지 98 중량%이고 a+b+c=100 중량%이고
상기 화학식 23에서 a의 값은 중량 분율로 1 내지 98 중량%, c의 값은 중량 분율로 1 내지 98 중량%, d의 값은 중량 분율로 1 내지 98 중량%이고 a+c+d=100 중량 %이다.
제1항에 있어서, 상기 극자외선 대역외 자외선 차단제는 주흡광 파장이 100 nm~300 nm인 것을 특징으로 하는 포토레지스트 탑코트 형성용 조성물.
제6항에 있어서, 상기 극자외선 대역외 자외선 차단제는 수용성의 술폰산 에스테르, 술폰산 에스테르의 염, 술포늄 화합물, 요오도늄 화합물 및 옥심 화합물로 이루어지는 군에서 선택하는 것을 특징으로 하는 포토레지스트 탑코트 형성용 조성물.
제7항에 있어서, 상기 극자외선 대역외 자외선 차단제는 프탈이미도트리플루오로메탄술폰산(phthalimidotrifluoromethane sulfonate), 프탈이미도토실레이트(phthalimidotosylate), 토실산디니트로벤질(dinitrobenzyl tosylate), 나프틸이미도트리플루오로메탄술폰산(naphthylimidotrifluoromethane sulfonate), 메탄술폰산 트리페닐술포늄(triphenylsulfonium methanesulfonate), 디페닐요오도늄 트리플레이트, 디페닐요오도늄 노나플레이트, 헥사플루오로인산디페닐요오도늄, 헥사플루오로비소산(砒素酸) 디페닐요오도늄, 헥사플루오로안티몬산 디페닐요오도늄, 디페닐파라메톡시페닐술포늄 트리플레이트, 디페닐파라톨루엔일술포늄 트리플레이트, 디페닐파라3급부틸페닐술포늄 트리플레이트, 디페닐파라이소부틸페닐술포늄 트리플레이트, 트리페닐술포늄 트리플레이트, 트리스파라3급부틸페닐술포늄 트리플레이트, 디페닐파라메톡시페닐술포늄 노나플레이트, 디페닐파라톨루엔일술포늄 노나플레이트, 디페닐파라3급부틸페닐술포늄 노나플레이트, 디페닐파라이소부틸페닐술포늄 노나플레이트, 트리페닐술포늄 노나플레이트, 트리스파라3급부틸페닐술포늄 노나플레이트, 헥사플루오로비소산 트리페닐술포늄, 트리페닐술포늄 트리플레이트, 디부틸나프틸술포늄 트리플레이트 및 이들의 혼합물로 이루어진 군에서 선택하는 특징으로 하는 포토레지스트 탑코트 형성용 조성물.
제6항에 있어서 상기 극자외선 대역외 자외선 차단제는 아래 화학식 24로 나타낸 물질인 것을 특징으로 하는 포토레지스트 탑코트 형성용 조성물.
[화학식 24]
Figure PCTKR2011008498-appb-I000032
화학식 24에서 B는 탄소 수 1 내지 10의 알킬기 또는 지환족 치환기이고,
m은 0~8의 정수이고 n은 1~8의 자연수이며, m+n≤8이며,
상기 나프탈렌 고리에 여러 개의 B가 있는 경우 각 B끼리는 서로 같거나 다를 수 있으며,
A는 히드록실기, 카르복실기(-COOH), 에테르기 또는 에스테르기(-COOR)이고,
화학식 24의 나프탈렌 고리에 여러 개의 A가 있는 경우 각 A 끼리는 서로 같거나 다를 수 있는 것을 특징으로 하는 포토레지스트 탑코트 형성용 조성물.
제1항에 있어서, 상기 양성자성 용매는 메탄올, 이소프로판올, 에탄올, 부탄올, 물, 이소부탄올, 4-메틸-2-펜탄올, 사이클로펜탄올, 노르말펜탄올, 글리세롤, 프로판올 및 이소아밀에테르로 이루어지는 군에서 선택하는 적어도 하나 이상인 것을 특징으로 하는 포토레지스트 탑코트 형성용 조성물.
제1항 내지 제10항 중 어느 한 항에 있어서, 상기 포토레지스트 탑코트 형성용 조성물은 계면 활성제를 더 포함하고, 상기 계면 활성제의 함량은 계면 활성제를 제외한 조성물 전체 중량 100 중량부에 대하여 0.00001 내지 0.1 중량부인 것을 특징으로 하는 포토레지스트 탑코트 형성용 조성물.
기재상에 포토레지스트 하부막, 원하는 회로 패턴의 포토레지스트층 및 제1항의 조성물로부터 형성되는 포토레지스트 탑코트를 순차적으로 적층하여 광리소그라피용 마스크를 얻는 단계;
상기 적층체에 극자외선을 조사하여 마스크를 상기 패턴에 따라 용해하는 노광 단계;
노광된 상기 마스크에서 용해된 부분을 선택적으로 제거하는 현상 단계; 및
상기 현상된 마스크가 적층된 기재를 식각하여 기재에 패턴을 형성하는 단계를 포함하는 기재의 패턴 형성 방법.
제12항에 있어서, 상기 포토레지스트층을 적층하는 단계는
100 중량부의 산 민감성 베이스 수지,
0.5 내지 10 중량부의 광산 발생제,
0.01 내지 5 중량부의 염기성 산확산 조절제(basic quencher),
1,000 내지 10,000 중량부의 유기 용매를 포함하는 조성물을 상기 포토레지스트 하부막 상에 적층하는 단계;와
이 적층된 조성물을 소프트 베이크하는 단계를 포함하며,
이 때 상기 산 민감성 베이스 수지는 알칼리 현상액에 불용성이지만 양성자와 반응한 후 알칼리 현상액에 가용성이 되는 고분자인 것을 특징으로 하는 기재의 패턴 형성 방법.
PCT/KR2011/008498 2010-11-09 2011-11-09 극자외선 리소그라피용 포토레지스트 탑코트 조성물과 이를 이용하는 패턴 형성 방법 WO2012064097A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100110999A KR101807198B1 (ko) 2010-11-09 2010-11-09 극자외선 리소그라피용 포토레지스트 탑코트 조성물과 이를 이용하는 패턴 형성 방법
KR10-2010-0110999 2010-11-09

Publications (2)

Publication Number Publication Date
WO2012064097A2 true WO2012064097A2 (ko) 2012-05-18
WO2012064097A3 WO2012064097A3 (ko) 2012-09-07

Family

ID=46051417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/008498 WO2012064097A2 (ko) 2010-11-09 2011-11-09 극자외선 리소그라피용 포토레지스트 탑코트 조성물과 이를 이용하는 패턴 형성 방법

Country Status (2)

Country Link
KR (1) KR101807198B1 (ko)
WO (1) WO2012064097A2 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150037719A (ko) * 2012-06-26 2015-04-08 노무라마이크로사이엔스가부시키가이샤 레지스트 박리제
US20160004159A1 (en) * 2013-03-11 2016-01-07 Dongjin Semichem Co., Ltd. Composition for forming resist protection film for lithography and method for forming pattern of semiconductor device using the same
KR20180090473A (ko) * 2017-02-03 2018-08-13 도오꾜오까고오교 가부시끼가이샤 레지스트 조성물 및 레지스트 패턴 형성 방법
KR20190121709A (ko) * 2018-04-18 2019-10-28 신에쓰 가가꾸 고교 가부시끼가이샤 광산 발생제, 화학 증폭 레지스트 재료 및 패턴 형성 방법
KR20190142329A (ko) * 2017-05-02 2019-12-26 닛산 가가쿠 가부시키가이샤 레지스트 하층막 형성 조성물
KR20200110344A (ko) * 2018-01-23 2020-09-23 제이에스알 가부시끼가이샤 레지스트 하층막 형성용 조성물, 레지스트 하층막 및 그의 형성 방법 그리고 패터닝된 기판의 제조 방법
KR102547094B1 (ko) * 2022-11-18 2023-06-23 와이씨켐 주식회사 극자외선 리소그래피용 린스액 조성물 및 이를 이용한 패턴 형성 방법

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102432661B1 (ko) 2015-07-07 2022-08-17 삼성전자주식회사 극자외선용 포토레지스트 조성물 및 이를 이용하는 포토레지스트 패턴의 형성 방법
CN106556972B (zh) * 2015-09-30 2021-07-27 罗门哈斯电子材料韩国有限公司 用于光刻的罩面层组合物和方法
KR102242548B1 (ko) 2017-11-14 2021-04-20 주식회사 엘지화학 포토레지스트 조성물
WO2019098493A1 (ko) * 2017-11-14 2019-05-23 주식회사 엘지화학 포토레지스트 조성물

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005316352A (ja) * 2004-03-31 2005-11-10 Central Glass Co Ltd トップコート組成物
KR100640643B1 (ko) * 2005-06-04 2006-10-31 삼성전자주식회사 포토레지스트용 탑 코팅 조성물과 이를 이용한포토레지스트 패턴 형성 방법
KR20100080475A (ko) * 2008-12-31 2010-07-08 롬 앤드 하스 일렉트로닉 머트어리얼즈, 엘.엘.씨. 포토리소그래피용 조성물 및 공정

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0583918B1 (en) * 1992-08-14 1999-03-10 Japan Synthetic Rubber Co., Ltd. Reflection preventing film and process for forming resist pattern using the same
US8592508B2 (en) 2008-12-15 2013-11-26 Central Glass Company, Limited Top coat composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005316352A (ja) * 2004-03-31 2005-11-10 Central Glass Co Ltd トップコート組成物
KR100640643B1 (ko) * 2005-06-04 2006-10-31 삼성전자주식회사 포토레지스트용 탑 코팅 조성물과 이를 이용한포토레지스트 패턴 형성 방법
KR20100080475A (ko) * 2008-12-31 2010-07-08 롬 앤드 하스 일렉트로닉 머트어리얼즈, 엘.엘.씨. 포토리소그래피용 조성물 및 공정

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150037719A (ko) * 2012-06-26 2015-04-08 노무라마이크로사이엔스가부시키가이샤 레지스트 박리제
KR102021158B1 (ko) 2012-06-26 2019-09-11 노무라마이크로사이엔스가부시키가이샤 레지스트 박리제
US20160004159A1 (en) * 2013-03-11 2016-01-07 Dongjin Semichem Co., Ltd. Composition for forming resist protection film for lithography and method for forming pattern of semiconductor device using the same
US9423692B2 (en) * 2013-03-11 2016-08-23 Dongjin Semichem Co., Ltd. Composition for forming resist protection film for lithography and method for forming pattern of semiconductor device using the same
KR20180090473A (ko) * 2017-02-03 2018-08-13 도오꾜오까고오교 가부시끼가이샤 레지스트 조성물 및 레지스트 패턴 형성 방법
KR102656746B1 (ko) 2017-02-03 2024-04-11 도오꾜오까고오교 가부시끼가이샤 레지스트 조성물 및 레지스트 패턴 형성 방법
KR20190142329A (ko) * 2017-05-02 2019-12-26 닛산 가가쿠 가부시키가이샤 레지스트 하층막 형성 조성물
KR102537120B1 (ko) 2017-05-02 2023-05-26 닛산 가가쿠 가부시키가이샤 레지스트 하층막 형성 조성물
KR20200110344A (ko) * 2018-01-23 2020-09-23 제이에스알 가부시끼가이샤 레지스트 하층막 형성용 조성물, 레지스트 하층막 및 그의 형성 방법 그리고 패터닝된 기판의 제조 방법
KR102697981B1 (ko) 2018-01-23 2024-08-23 제이에스알 가부시끼가이샤 레지스트 하층막 형성용 조성물, 레지스트 하층막 및 그의 형성 방법 그리고 패터닝된 기판의 제조 방법
KR102271594B1 (ko) 2018-04-18 2021-07-02 신에쓰 가가꾸 고교 가부시끼가이샤 광산 발생제, 화학 증폭 레지스트 재료 및 패턴 형성 방법
KR20190121709A (ko) * 2018-04-18 2019-10-28 신에쓰 가가꾸 고교 가부시끼가이샤 광산 발생제, 화학 증폭 레지스트 재료 및 패턴 형성 방법
KR102547094B1 (ko) * 2022-11-18 2023-06-23 와이씨켐 주식회사 극자외선 리소그래피용 린스액 조성물 및 이를 이용한 패턴 형성 방법

Also Published As

Publication number Publication date
WO2012064097A3 (ko) 2012-09-07
KR101807198B1 (ko) 2017-12-11
KR20120049640A (ko) 2012-05-17

Similar Documents

Publication Publication Date Title
WO2012064097A2 (ko) 극자외선 리소그라피용 포토레지스트 탑코트 조성물과 이를 이용하는 패턴 형성 방법
WO2012125009A2 (ko) 화학증폭형 포지티브 감광형 유기절연막 조성물 및 이를 이용한 유기절연막의 형성방법
WO2019022394A1 (ko) 신규한 레지스트 하층막 형성용 중합체, 이를 포함하는 레지스트 하층막 형성용 조성물 및 이를 이용한 반도체 소자의 제조방법
WO2015160229A1 (ko) 폴리실세스퀴옥산 공중합체 및 이를 포함하는 감광성 수지 조성물
WO2012067349A2 (ko) 고분자 화합물 및 이를 포함하는 액침 노광 프로세스용 레지스트 보호막 조성물
WO2011081285A2 (ko) 레지스트 하층막용 방향족 고리 함유 중합체 및 이를 포함하는 레지스트 하층막 조성물
WO2012064074A1 (en) Photosensitive resin composition, and dielectric insulating film and electronic device using the same
WO2023027360A1 (ko) 패턴 프로파일 및 해상도 개선용 화학증폭형 포지티브 포토레지스트 조성물
WO2020111522A1 (ko) 감광성 수지 조성물, 필름 및 전자장치
WO2012046917A1 (ko) (메타)아크릴레이트계 고분자 및 이를 포함하는 감광성 수지 조성물
WO2013100276A1 (en) Photosensitive resin composition for color filter and color filter using the same
WO2013129864A1 (ko) 내열성이 우수한 화학증폭형 포지티브 감광형 고감도 유기절연막 조성물 및 이를 이용한 유기절연막의 형성방법
WO2012005418A1 (ko) 레지스트 하층막용 방향족 고리 함유 화합물, 이를 포함하는 레지스트 하층막 조성물 및 이를 이용하는 소자의 패턴 형성 방법
WO2023195636A1 (ko) 고평탄화 성능을 지닌 스핀 온 카본 하드마스크 조성물 및 이를 이용한 패턴화 방법
WO2015064958A1 (ko) 신규한 옥심에스테르 비페닐 화합물, 이를 포함하는 광개시제 및 감광성 수지 조성물
WO2022245014A1 (ko) 증발감량이 적은 스핀 온 카본 하드마스크 조성물 및 이를 이용한 패턴화 방법
WO2022182157A1 (ko) 격벽 형성용 감광성 수지 조성물, 이를 이용하여 제조된 격벽 구조물 및 상기 격벽 구조물을 포함하는 표시 장치
WO2014065517A1 (ko) 경화성 수지 조성물 및 이를 사용하여 제조된 광학필름
WO2021080267A1 (ko) 폴리실록산 공중합체, 이의 제조방법 및 이를 포함하는 수지 조성물
WO2021132865A1 (ko) 고분자 수지 화합물, 이의 제조 방법 및 이를 포함하는 감광성 수지 조성물
WO2021167397A1 (ko) 레지스트 화합물, 이를 사용한 패턴 형성 방법, 및 이를 사용한 반도체 소자 제조 방법
WO2017090879A1 (en) Photosensitive resin composition and cured film prepared therefrom
WO2024122681A1 (ko) 감광성 수지 및 이를 포함하는 포토레지스트 조성물
WO2014142494A1 (ko) 리소그래피용 레지스트 보호막 형성용 조성물 및 이를 이용한 반도체 소자의 패턴 형성 방법
WO2019074262A1 (ko) 바인더 수지 및 이를 포함하는 감광성 수지 조성물 또는 코팅 용액

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11839113

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11839113

Country of ref document: EP

Kind code of ref document: A2