WO2012063474A1 - プラズマ処理装置及びプラズマ処理方法 - Google Patents

プラズマ処理装置及びプラズマ処理方法 Download PDF

Info

Publication number
WO2012063474A1
WO2012063474A1 PCT/JP2011/006240 JP2011006240W WO2012063474A1 WO 2012063474 A1 WO2012063474 A1 WO 2012063474A1 JP 2011006240 W JP2011006240 W JP 2011006240W WO 2012063474 A1 WO2012063474 A1 WO 2012063474A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
gas
mixed gas
irradiation
unit
Prior art date
Application number
PCT/JP2011/006240
Other languages
English (en)
French (fr)
Inventor
正史 松森
中塚 茂樹
哲平 小塩
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/884,143 priority Critical patent/US20130233828A1/en
Priority to JP2012542812A priority patent/JP5271456B2/ja
Publication of WO2012063474A1 publication Critical patent/WO2012063474A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2443Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube
    • H05H1/2465Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube the plasma being activated by inductive coupling, e.g. using coiled electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/30Plasma torches using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • H05H1/4652Radiofrequency discharges using inductive coupling means, e.g. coils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/26Cleaning or polishing of the conductive pattern
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2240/00Testing
    • H05H2240/10Testing at atmospheric pressure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2245/00Applications of plasma devices
    • H05H2245/40Surface treatments
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/09Treatments involving charged particles
    • H05K2203/095Plasma, e.g. for treating a substrate to improve adhesion with a conductor or for cleaning holes

Definitions

  • the present invention relates to a plasma processing apparatus and a plasma processing method.
  • Copper is widely used as a material for electrodes and the like because of its low cost, high thermal conductivity, high electrical conductivity, high mechanical strength, and ease of processing and bonding.
  • copper is easily oxidized in the air, and forms copper (I) (Cu 2 0) even at a low temperature. Further, copper (II) (Cu 0) also forms at a high temperature during the manufacturing process. .
  • These oxide films cause problems such as insufficient solder wettability, cracks in the interconnection wires and insufficient bonding strength, peeling of the mold resin on the lead frame, and intrusion of moisture.
  • Patent Document 1 As a method of removing the copper oxide film, a method of physically scraping off with a reuter (polishing), and a method of oxidizing and reducing a wide range with vacuum plasma (for example, Patent Document 1) are known.
  • the physical polishing method takes time, and the quality is likely to vary, which may cause reoxidation.
  • vacuum plasma reduction is effective for a wide range of oxide film removal regions, but the scale of the apparatus increases, and partial reduction and removal of copper oxide films are efficiently performed (copper oxide films can be selectively processed at high speed). Not suitable for reduction).
  • Patent Documents 2 and 3 disclose partial oxidation-reduction by atmospheric pressure plasma. However, these documents do not teach a specific method for efficiently performing partial reduction and removal of the copper oxide film.
  • An object of the present invention is to efficiently perform partial reduction and removal of a copper oxide film.
  • the present invention is configured as follows.
  • a holding unit that holds an object for removing a copper oxide film
  • an inductively coupled plasma generating unit that blows out a primary plasma composed of an inductively coupled plasma of a first inert gas
  • a plasma expansion part that generates a secondary plasma composed of a mixed gas that has been made plasma by collision of the mixed gas region of the inert gas and the reactive gas with the primary plasma, and the secondary plasma is
  • An atmospheric pressure plasma irradiation unit that irradiates an object; and a moving unit that relatively moves the holding unit and the atmospheric pressure plasma irradiation unit so that an irradiation area of the secondary plasma to the object moves.
  • a plasma processing apparatus is provided.
  • the first and second inert gases are Ar gas, and the reactive gas is H 2 .
  • the primary plasma (Ar plasma) from the inductively coupled plasma generating unit is introduced into the mixed gas region of the second inert gas and the reactive gas (Ar gas and H 2 gas) in the plasma developing unit, and the first plasma in the mixed gas
  • the secondary plasma (Ar plasma) is expanded by exciting the inert gas (Ar gas).
  • This secondary plasma (Ar plasma) activates the element (hydrogen) constituting the reactive gas.
  • the activated hydrogen undergoes a chemical reaction on the surface of the object held in the holding part, and reduces and removes the copper oxide film.
  • the temperature of the object rises due to the reaction heat of the atmospheric pressure plasma and the copper oxidation reaction thereby (Re-oxidation) can be suppressed, and even when the area of the reduction target of the copper oxide film is large, the uniformity of the process can be ensured, and the partial reduction and removal of the copper oxide film can be efficiently performed. it can.
  • the moving unit relatively moves the holding unit and the atmospheric pressure plasma irradiation unit so that the irradiation area moves at a constant speed.
  • the moving unit relatively moves the holding unit and the atmospheric pressure plasma irradiation unit so that the irradiation area moves in a circular shape or an arc shape.
  • the moving unit relatively moves the holding unit and the atmospheric pressure plasma irradiation unit so that an overlap occurs between the moving irradiation areas.
  • the holding unit preferably includes a heating device that heats the object.
  • the temperature of the copper oxide film is increased by heating the object with a heating device, thereby promoting a chemical reaction by activated hydrogen and reducing and removing the copper oxide film more efficiently. To do.
  • the plasma developing unit includes a first mixed gas that is a mixed gas of Ar gas and H 2 gas, and a second mixed gas that is a mixed gas of Ar gas and O 2 gas as the mixed gas in the mixed gas region.
  • oxygen activated by the secondary plasma by the second mixed gas causes a chemical reaction with the organic substance on the copper oxide film on the surface of the object, and decomposes and removes the organic substance.
  • hydrogen activated by the secondary plasma by the first mixed gas (Ar / H 2 gas) on the surface of the copper oxide film undergoes a chemical reaction to reduce and remove the copper oxide film. Therefore, with this configuration, the copper oxide film can be reduced and removed more efficiently.
  • a mask that exposes only the portion of the surface of the object to be reduced and removed of the copper oxide film to the secondary plasma is disposed between the atmospheric pressure plasma irradiation unit and the object. Is preferred.
  • This configuration can prevent the unintentional portion of the surface of the object from being irradiated with secondary plasma to reduce and remove the copper oxide film, and reduce and remove the intended portion of the copper oxide film more efficiently.
  • a primary plasma composed of an inductively coupled plasma of a first inert gas is generated, and the generated primary plasma is collided with a mixed gas of a second inert gas and a reactive gas.
  • a plasma processing method is provided in which secondary plasma composed of a gas mixture is generated, and the copper oxide film on the surface of the object is irradiated while moving the secondary plasma relative to the irradiation area. To do.
  • the primary plasma which is the inductively coupled plasma of the first inert gas and the mixed gas of the second inert gas and the reactive gas are collided to form plasma.
  • Secondary plasma is generated and the irradiation area of the secondary plasma target is moved, so the temperature rise of the target due to the reaction heat of atmospheric pressure plasma and the resulting copper oxidation reaction (reoxidation) are suppressed.
  • the partial reduction and removal of the copper oxide film can be efficiently performed while ensuring the uniformity of processing.
  • FIG. 1 Schematic diagram showing a plasma processing apparatus according to an embodiment of the present invention.
  • Schematic enlarged view around the mixer The schematic diagram which shows the example of the locus
  • the plasma processing apparatus 1 irradiates a minute atmospheric pressure plasma at a high speed, so that the object in the copper wiring of the object 2 (for example, a substrate, an electronic component, etc.)
  • the copper oxide film is reduced and removed from the portion to be formed (for example, the electrode portion of the copper wiring of the substrate or the copper electrode (bump) of the electronic component). That is, the plasma processing apparatus 1 of this embodiment selectively reduces and removes the copper oxide film at high speed with the atmospheric pressure microplasma jet.
  • the plasma processing apparatus 1 includes a stage (holding unit) 3, an atmospheric pressure plasma irradiation apparatus 4, a moving apparatus 5, and a control apparatus 6.
  • Stage 3 holds the object 2 in a detachable manner.
  • the stage 3 includes a heating device 7 and can heat the held object 2 to a predetermined temperature exceeding room temperature.
  • the atmospheric pressure plasma irradiation apparatus 4 includes a cylindrical discharge tube (inductively coupled plasma generating unit) 13 made of a dielectric material that is accommodated in a movable plasma head 11 and forms a reaction space 12 having a circular cross section.
  • a flat-plate antenna 14 is provided outside the discharge tube 13 in a wavy shape.
  • a high frequency power supply 16 is connected to the antenna 14 via a matching circuit 15.
  • a first gas source 17 ⁇ / b> A that supplies Ar gas, which is an inert gas, to the discharge tube 13 is connected to the upper end side of the discharge tube 13.
  • a mixer (plasma developing section) 21 is attached to the lower end side of the plasma head 11.
  • the mixer 21 includes a mixing chamber 22 having an opening (plasma outlet 22a) formed at the lower end.
  • the lower end of the discharge tube 13 enters the mixing chamber 22 of the mixer 21.
  • one or a plurality of gas supply ports 23 are provided in the peripheral wall portion of the mixing chamber 22. These gas supply ports 23 are connected to the second gas source 17B and / or the third gas source 17C.
  • the mixed gas can be selectively supplied into the mixing chamber 22 from either the second gas source 17B or the third gas source 17C.
  • the second gas source 17B supplies a mixed gas (Ar / H 2 gas) of Ar gas as an inert gas and H 2 gas as a reactive gas.
  • the third gas source 17C supplies a mixed gas (Ar / O 2 gas) of Ar gas as an inert gas and O 2 gas as a reactive gas.
  • the plasma head 11 can be moved horizontally (moving in the XY directions in FIG. 1) and moved up and down (moving in the Z direction in FIG. 1) by the moving device 5.
  • the plasma jet port 22 a of the atmospheric pressure plasma irradiation device 4 can move in the horizontal direction and the vertical direction with respect to the object 2 by the horizontal movement and the vertical movement of the plasma head 11.
  • the control device 6 controls the operation of the entire plasma processing apparatus 1 including the movement of the plasma head 11 by the moving device 5 and the supply or switching of the second gas source 17B and the third gas source 17C.
  • the object 2 for reducing and removing the copper oxide film is held on the stage 3. Further, the object 2 on the stage 3 is heated by the heating device 7. For example, the stage 3 is heated to a temperature of 30 to 80 ° C. and maintained at that temperature. Further, the moving device 5 moves the plasma head 11 so that the plasma jet port 22a is positioned above the object 2 with a predetermined distance (gap ⁇ 2). As conceptually shown only in FIG. 2, the mask 24 in which an opening is formed only in the portion of the surface of the object 2 that is subject to reduction removal of the copper oxide film is the atmospheric pressure plasma irradiation apparatus 4 and the object. It arrange
  • the plasma treatment in this embodiment is divided into a pretreatment process and a main process.
  • a high-frequency voltage is applied to the antenna 14 from the high-frequency power supply 16 via the matching circuit, whereby a high-frequency electric field is applied to the discharge tube 13.
  • the first gas source 17A supplies Ar gas from the upper end of the discharge tube 13 to the reaction space 12.
  • Ar gas is plasma from the lower end of the discharge tube 13, the plasma density is high, and high temperature inductively coupled plasma (thermal plasma). ) Is blown into the mixing chamber 22 of the mixer 21.
  • Ar / O 2 gas is supplied from the third gas source 17 ⁇ / b > C to the mixing chamber 22 through the gas supply port 23.
  • the primary plasma 26 (Ar plasma) from the discharge tube 13 is introduced into the Ar / O 2 gas region in the mixing chamber 22, and the secondary gas 27 (Ar plasma) is generated by exciting the Ar gas in the mixed gas.
  • the secondary plasma 27 develops in the entire region of the mixing chamber 22, blows downward from the plasma jet port 22 a, and is irradiated on the object 2. Then, the secondary plasma 27 activates oxygen, and the activated oxygen causes a chemical reaction with the copper oxide-like organic substance on the surface of the object 2 to decompose and remove the organic substance.
  • This step is executed following the pretreatment step.
  • a mixed gas supplied to the mixing chamber 22 is switched from the Ar / O 2 gas in the third gas source 17C to Ar / H 2 gas in the second gas source 17B.
  • the primary plasma 26 blown out from the discharge tube 13 generates a secondary plasma 27 in which Ar gas in the mixed gas introduced into the Ar / H 2 gas region in the mixing chamber 22 is excited. Then, it expands to the entire region of the mixing chamber 22 and blows downward from the plasma jet port 22a to irradiate the object 2.
  • the secondary plasma 27 activates the H 2, with activated H 2 is the object 2 surface, the following (1) to reduce and remove the copper oxide film subjected to chemical reaction (2).
  • the thickness of the copper oxide film formed by heating copper is determined by the heating temperature and the heating time.
  • the reduction rate can also be measured in advance. From these relationships, the necessary plasma irradiation time in this step can be estimated.
  • the plasma head 11 (plasma jet port 22a) is moved in the horizontal direction by the moving device 5, so that the irradiation area A1 (indicated by the dotted line) of the secondary plasma 27 on the object 2 is shown in FIG. Moving.
  • the irradiation area A1 moves around a circular locus L (shown by a solid line) at a constant speed and circulates a plurality of times.
  • the area (processing area A2) from which the copper oxide film layer on the object 2 is reduced and removed has a circular shape with a larger area than the irradiation area A1.
  • the irradiation area A1 of the secondary plasma 27 in the object 2 moves, the temperature rise of the object 2 due to the reaction heat of the secondary plasma 27 and the resulting copper oxidation reaction (reoxidation) are suppressed, and Even when the area of the region to be reduced and removed of the copper oxide film is large, the uniformity of the process can be ensured, and the partial reduction and removal of the copper oxide film can be performed efficiently.
  • the copper oxide film can be reduced and removed more uniformly in the processing area A2 obtained by the movement of the irradiation area A1.
  • the trajectory L along which the irradiation area A1 moves is not limited to a circle as shown in FIG. 3, and various endless shapes including an ellipse and a polygon, an arc shape, a spiral shape, and a two shape, depending on the shape and area of the processing area A2. It is set in various shapes (arc shape) such as a next curve shape and a polygonal line shape. Although depending on the shape of the processing area A2, it is preferable to set the trajectory L along which the irradiation area A1 moves so that an overlap occurs between the moving irradiation areas A1. For example, as shown in FIG.
  • the circular radius of the locus L R2 needs to be set smaller than the radius R1.
  • the radius R2 of the locus L which is the restriction on the movement of the center of the irradiation area A1
  • the copper oxide film is formed near the center of the processing area A2, as shown in FIG. A circular area A3 that is not subject to reduction removal remains.
  • the object 2 is heated by the heating device 7 to raise the temperature of the copper oxide film, so that the hydrogen activated by the secondary plasma 27 The chemical reaction is promoted, and the copper oxide film can be reduced and removed more efficiently.
  • the reduction process of the copper oxide film by H 2 activated by the secondary plasma 27 is performed since this process is executed. Is done more efficiently.
  • a mask 24 (see FIG. 2) is disposed between the atmospheric pressure plasma irradiation apparatus 4 and the object 2, and only the portion of the surface of the object 2 that is subject to reduction removal of the copper oxide film is subjected to secondary plasma. 27 is exposed. Therefore, it is possible to prevent the unintentional portion of the surface of the object 2 from being irradiated with the secondary plasma 27 of the atmospheric pressure plasma to cause reduction and removal of the copper oxide film, so that the intended portion of the copper oxide film can be made more efficient. Can be reduced and removed.
  • the Ar gas is less plasmaized on the outer periphery of the secondary plasma 27 in the mixing chamber 22 than in the vicinity of the primary plasma 26 located on the center side of the mixing chamber 22.
  • a mixed gas area 28 of hydrogen gas is formed. This mixed gas area 28 of Ar gas and hydrogen gas can prevent oxygen in the air from entering the secondary plasma 27, and in this respect also, the copper reoxidation during the reduction and removal of the copper oxide film can be effectively performed. Can be prevented.
  • the irradiation area A1 of the secondary plasma 27 with respect to the object 2 may be moved along a locus such as a circle as in this treatment step.
  • the inert gas supplied from the first gas source 17A the inert gas in the mixed gas supplied from the second gas source 17B, and the inert gas in the mixed gas supplied from the third gas source 17C Any one of them may be an inert gas other than Ar gas (for example, Ne gas, Xe gas, He gas, N 2 gas).
  • Ar gas for example, Ne gas, Xe gas, He gas, N 2 gas.
  • the movement of the secondary plasma irradiation area may be realized by a mode other than the movement of the atmospheric pressure plasma irradiation apparatus 4.
  • the atmospheric pressure plasma irradiation apparatus 4 may be fixed and the stage 3 may be moved, or both the atmospheric pressure plasma irradiation apparatus 4 and the stage 3 may be moved. In short, it is only necessary to realize the movement of the secondary plasma irradiation area by the relative movement between the atmospheric pressure plasma irradiation apparatus 4 and the stage 3.
  • the pretreatment step for organic substance removal and the main step for reduction removal of the copper oxide film may be performed by different plasma heads, or these steps may be performed by another atmospheric pressure plasma irradiation apparatus. .
  • the plasma head 11 (plasma jet port 22a) does not move. Further, the pretreatment process is not executed.
  • the object 2 is a copper plate having a length and width of 20 mm and a thickness of 0.1 mm.
  • a ceramic discharge tube 13 having an outer diameter of 1.2 mm and an inner diameter of 0.8 mm is mounted on a flat antenna 14 having a wavy line shape having a total length of 9.8 mm. As shown in FIG.
  • Quantitative measurement of the copper oxide film thickness was performed using a scanning X-ray photoelectron spectrometer (ESCA). The results are shown in FIG. The horizontal axis is the heating time, and the vertical axis is the copper oxide film thickness.
  • the copper oxide film on the surface of the object 2 grows as the heating temperature of the stage 3 holding the object 2 becomes higher and the heating time becomes longer. For example, (b) a copper plate heated at 200 ° C. for 30 minutes has a copper oxide film of about 70 nm, but (c) a copper plate heated at 220 ° C. has a copper oxide film of about 70 nm in 10 minutes.
  • FIG. 6 shows the result of plasma treatment (this process) for 5 seconds at a power of 30 W at a high frequency power source and a stage temperature of 80 ° C. on the copper plate as the object 2 heated at 250 ° C. for 30 minutes.
  • the thickness of the copper oxide film is originally only 70 nm as shown in FIG. 5, so that it is oxidized even in the plasma treatment under the same conditions and in the vicinity (radius 5 mm).
  • solder is attached to the peripheral plasma irradiation surface.
  • FIG. 6 it can be seen from FIG. 6 that there is a considerable difference in the reduction rate between the irradiation surface at the central portion and the peripheral portion.
  • the reduction rate was evaluated in the solder wet area when the plasma irradiation time was changed. As shown in FIG. 5, the film thickness of the copper oxide film on the copper plate heated at 200 ° C. for 30 minutes is constant at 70 nm. There will be.
  • FIG. 8 is a plot of the treatment area diameter with the plasma irradiation time on the horizontal axis.
  • the processing conditions are as follows: (a) high frequency power supply 30 W, stage temperature 30 ° C., (b) high frequency power supply power 30 W, stage temperature 80 ° C., (c) high frequency power supply power 40 W, stage temperature 80 ° C., (d) high frequency power supply.
  • a power source with a power of 50 W and a stage temperature of 80 ° C. were compared.
  • the stage temperature is set to 80 ° C.
  • the reason for the heating of the stage 3 is that the higher the temperature, the faster the reduction process proceeds. However, when the temperature exceeds 100 ° C., the heat is more warped before and after the reduction process. This is because thermal oxidation proceeds.
  • the four graphs (a) to (c) of FIG. 8 show different behaviors in less than 10 seconds and in more than 10 seconds.
  • the processing area of the object 2 is limited by the activated reach range of H 2 regardless of the power of the high frequency power supply or the temperature of the stage 3.
  • this mixer about 12 mm is the reach of activated hydrogen radicals.
  • the stage temperature of 30 ° C. in (a) is compared with the stage temperature of 80 ° C. in (b), it can be seen that the processing area is increased by heating to the stage temperature of 80 ° C. even in the same processing time.
  • the higher the power of the high-frequency power source the higher the power of the high-frequency power source. It can be seen that the area becomes larger.
  • FIG. 9 is a graph in which the horizontal axis represents the processing area radius of the object 2 and the vertical axis represents the reduction rate.
  • the effect of heating the stage 3 can be seen from the graphs of FIGS. It can be seen that the reduction rate at 30 W / 80 ° C. in (b) is 20 nm / second or more within a radius of 4 mm of the treatment area. This result is in good agreement with the result of the graph of FIG. Further, by comparing (b), (c), and (d) in FIG. 9, the reduction rate increases as the power of the high-frequency power source is increased, and at 50 W in (d), the reduction rate is within a radius of 3 mm of the processing area. It can be seen that the copper oxide film can be removed at a high speed of 140 nm / second.
  • the area where solder is attached was measured.
  • the horizontal axis is the H 2 concentration
  • the vertical axis is the radius of the processing area of the object 2.
  • the treatment area was the largest when the H 2 concentration was 2.5%. This was the same even when the power of the high-frequency power source, the stage temperature, and the plasma irradiation time were changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fluid Mechanics (AREA)
  • Plasma Technology (AREA)
  • ing And Chemical Polishing (AREA)
  • Wire Bonding (AREA)

Abstract

大気圧プラズマ照射装置4は、不活性ガスの誘導結合型プラズマからなる一次プラズマ26を吹き出す放電管13と、第2の不活性ガスと反応性ガスの混合ガス領域と一次プラズマ26が衝突されることによりプラズマ化した混合ガスから成る二次プラズマ27を発生する混合器21を備える。放電管13と混合器21はプラズマヘッド11に備えられている。移動装置5はプラズマヘッド11を移動させ、それによって二次プラズマ27の対象物2への照射エリアA1を円形等の軌跡Lで移動させる。

Description

プラズマ処理装置及びプラズマ処理方法
 本発明は、プラズマ処理装置及びプラズマ処理方法に関する。
 銅は、低価格で、高い熱伝導率、高い電気伝導率、高い機械的強度、加工や接合の容易性といった特徴を有し、電極等の材料として広く使用されている。しかし、銅は空気中で容易に酸化され、低温においても酸化銅(I)(Cu20)を形成し、さらに、製造工程中の高温においては、酸化銅(II)(Cu0)も形成する。そして、それら酸化膜は、ハンダの濡れ性不足、インターコネクションワイヤでのクラックや結合強度の不足、またリードフレームでのモールド樹脂の剥離、湿気の侵入といった問題を引き起こす。
 銅酸化膜を除去する方法としては、物理的にリユータにより削り落とす(研磨)方法、真空プラズマにより広範囲に酸化還元する方法(例えば、特許文献1)が知られている。しかし、物理的に研磨する方法では時間がかかりまた品質もバラツキ易く再酸化の恐れがある。また、真空プラズマ還元は、広範囲の酸化膜除去領域に対して有効だが、装置の規模が大きくなり、銅酸化膜の部分的な還元除去を効率的に行う(銅酸化膜を高速に選択的に還元除去する)のには適さない。
 特許文献2,3には、大気圧プラズマによる部分的な酸化還元についての開示がある。しかし、これらの文献には、銅酸化膜の部分的な還元除去を効率的に行うための具体的な方法は教示されていない。
特開2001-262378号公報 特開2008-4722号公報 特許4409439号
 本発明は銅酸化膜の部分的な還元除去を効率的に行うことを課題とする。
 上記課題を解決するために、本発明は以下のように構成する。
 本発明の第1の態様は、銅酸化膜除去の対象物を保持する保持部と、第1の不活性ガスの誘導結合型プラズマからなる一次プラズマを吹き出す誘導結合型プラズマ発生部と、第2の不活性ガスと反応性ガスの混合ガス領域と前記一次プラズマとが衝突されることによりプラズマ化した混合ガスから成る二次プラズマを発生するプラズマ展開部とを有し、前記二次プラズマを前記対象物に照射する大気圧プラズマ照射部と、前記二次プラズマの前記対象物への照射エリアが移動するように、前記保持部と前記大気圧プラズマ照射部とを相対的に移動させる移動部とを備えるプラズマ処理装置を提供する。
 例えば、前記第1及び第2の不活性ガスはArガスであり、前記反応性ガスはHである。
 誘導結合プラズマ発生部からの一次プラズマ(Arプラズマ)がプラズマ展開部中の第2の不活性ガスと反応性ガス(ArガスとH2ガス)の混合ガス領域に導入され、混合ガス中の第2の不活性ガス(Arガス)を励起して拡大した二次プラズマ(Arプラズマ)とする。そして、この二次プラズマ(Arプラズマ)が反応性ガスを構成する元素(水素)を活性化する。活性化された水素は保持部に保持された対象物の表面で化学反応を行い、銅酸化膜を還元除去する。移動部による保持部と前記大気圧プラズマ照射部の相対移動により、対象物における二次プラズマの照射エリアが移動するので、大気圧プラズマの反応熱による対象物の温度上昇とそれによる銅の酸化反応(再酸化)を抑制し、かつ銅酸化膜の還元除去の対象となる領域の面積が広い場合でも処理の均一性を確保でき、銅酸化膜の部分的な還元除去を効率的に行うことができる。
 好ましくは、前記移動部は、前記照射エリアが一定速度で移動するように、前記保持部と前記大気圧プラズマ照射部とを相対的に移動させる。
 好ましくは、前記移動部は、前記照射エリアが円状又は円弧状に移動するように、前記保持部と前記大気圧プラズマ照射部とを相対的に移動させる。
 好ましくは、前記移動部は、移動する前記照射エリア間に重なりが生じるように、前記保持部と前記大気圧プラズマ照射部とを相対的に移動させる。
 前記保持部は前記対象物を加熱する加熱装置を備えることが好ましい。
 この構成によれば、加熱装置により対象物を加熱して銅酸化膜の温度を高くしておくことで、活性化された水素による化学反応が促進され、銅酸化膜をより効率的に還元除去する。
 前記プラズマ展開部は、前記混合ガス領域における前記混合ガスをArガスとH2ガスの混合ガスである第1の混合ガスと、ArガスとO2ガスの混合ガスである第2の混合ガスとに切換可能であり、前記誘導結合型プラズマ発生部からの前記一次プラズマにより前記第2の混合ガスをプラズマ化した前記二次プラズマを発生して前記対象物に照射した後、前記誘導結合型プラズマ発生部からの前記一次プラズマにより前記第1の混合ガスをプラズマ化した前記第二次プラズマを発生して前記対象物に照射することが好ましい。
 この構成によれば、第2の混合ガス(Ar/O2ガス)による二次プラズマで活性化された酸素が対象物表面の銅酸化膜上の有機物と化学反応を起こし、有機物を分解除去する。その後、銅酸化膜の表面において第1の混合ガス(Ar/H2ガス)による二次プラズマで活性化された水素が化学反応を行い、銅酸化膜を還元除去する。よって、この構成により、銅酸化膜をより効率的に還元除去できる。
 前記対象物の表面のうち銅酸化膜の還元除去の対象となる部分のみを前記二次プラズマに対して露出させるマスクが、前記大気圧プラズマ照射部と前記対象物の間に配置されていることが好ましい。
 この構成により、対象物の表面のうち意図しない部分に二次プラズマが照射されて銅酸化膜の還元除去が生じるのを防止でき、意図した部分の銅酸化膜をより効率的に還元除去できる。
 本発明の第2の態様は、第1の不活性ガスの誘導結合型プラズマからなる一次プラズマを発生させ、発生した一次プラズマを第2の不活性ガスと反応性ガスの混合ガスとが衝突されることによりプラズマ化した混合ガスから成る二次プラズマを発生させ、前記二次プラズマを照射エリアに対して相対的に移動させつつ対象物の表面の銅酸化膜に照射する、プラズマ処理方法を提供する。
 本発明のプラズマ処理装置及びプラズマ処理方法によれば、第1の不活性ガスの誘導結合型プラズマである一次プラズマと第2の不活性ガスと反応性ガスの混合ガスとを衝突させてプラズマ化される二次プラズマを発生させ、この二次プラズマの対象物への照射エリアを移動させるので、大気圧プラズマの反応熱による対象物の温度上昇とそれによる銅の酸化反応(再酸化)を抑制し、銅酸化膜の還元除去の対象となる領域の面積が広い場合でも、処理の均一性を確保しつつ、銅酸化膜の部分的な還元除去を効率的に行うことができる。
本発明の実施の形態に係るプラズマ処理装置を示す模式図 混合器周辺の模式的な拡大図 本実施の形態における大気圧プラズマの照射エリアの移動の軌跡の例を示す模式図 プラズマが照射されない領域が生じる処理エリアの移動の軌跡の例を示す模式図 加熱時間と銅酸化膜厚の関係を示すグラフ 大気圧プラズマの照射エリアの領域における(a)未処理部、(b)中央部、及び(c)周辺部での銅、酸素、及び炭素の原子濃度(at%)の対象物の深さ方向に対する分布を示すグラフ 大気圧プラズマの照射エリアの領域における対象物の、大気圧プラズマの照射エリアの領域における(a)未処理部、(b)中央部、及び(c)周辺部の概念を示す模式的な平面図 プラズマ照射時間と処理エリア直径の関係を示すグラフ 処理エリア半径と銅酸化膜の還元速度の関係を示すグラフ 水素濃度と処理エリア半径の関係を示すグラフ
 以下、本発明の実施の形態について、図面を参照しながら説明する。尚、この実施の形態によって本発明が限定されるものではない。
 (実施の形態)
 図1に示す本発明の実施の形態に係るプラズマ処理装置1は、微小な大気圧プラズマを高速で照射することにより、対象物2(例えば基板、電子部品等)の銅配線のうちの対象となる部分(例えば基板の銅配線のうちの電極の部分や、電子部品の銅電極(バンプ))から銅酸化膜を還元除去する。つまり、本実施の形態のプラズマ処理装置1は、銅酸化膜を大気圧マイクロプラズマジェットで高速に選択的に還元除去する。
 プラズマ処理装置1は、ステージ(保持部)3、大気圧プラズマ照射装置4、移動装置5、及び制御装置6を備える。
 ステージ3は、対象物2を着脱可能に保持する。また、ステージ3は加熱装置7を備え、保持した対象物2を室温を上回る所定の温度に加熱できる。
 大気圧プラズマ照射装置4は、可動のプラズマヘッド11に収容され、断面円形の反応空間12を形成する誘電体からなる円筒状の放電管(誘導結合型プラズマ発生部)13を備える。放電管13の外側には波線形状で平板型のアンテナ14が設けられている。アンテナ14には整合回路15を介して高周波電源16が接続されている。放電管13の上端側には、不活性ガスであるArガスを放電管13に供給する第1ガス源17Aが接続されている。
 プラズマヘッド11の下端側には混合器(プラズマ展開部)21が装着されている。混合器21は下端に開口(プラズマ噴出口22a)が形成された混合室22を備える。放電管13の下端は混合器21の混合室22内に進入している。また、混合室22の周壁部には、1個あるいは複数のガス供給口23が設けられている。これらのガス供給口23は、第2ガス源17B及び/又は第3ガス源17Cに接続される。後述するように、第2ガス源17Bと第3ガス源17Cのいずれかから選択的に、混合室22内へ混合ガスが供給することが可能である。第2ガス源17Bは、不活性ガスとしてのArガスと反応性ガスとしてH2ガスとの混合ガス(Ar/H2ガス)を供給する。第3ガス源17Cは、不活性ガスとしてのArガスと反応性ガスとしてO2ガスとの混合ガス(Ar/O2ガス)を供給する。
 プラズマヘッド11は移動装置5により水平移動(図1においてXY方向の移動)及び昇降移動(図1においてZ方向の移動)が可能である。プラズマヘッド11の水平移動及び昇降移動により、大気圧プラズマ照射装置4のプラズマ噴出口22aは対象物2に対して水平方向及び鉛直方向に移動できる。
 制御装置6は、移動装置5によるプラズマヘッド11の移動及び第2ガス源17B、第3ガス源17Cの供給あるいは切換を含む、プラズマ処理装置1全体の動作を制御する。
 以下、本実施の形態のプラズマ処理装置1によるプラズマ処理について説明する。
 まず、銅酸化膜の還元除去の対象物2がステージ3上に保持される。また、加熱装置7によりステージ3上の対象物2が加熱される。例えば、ステージ3は30~80℃の温度まで加熱され、その温度で維持される。また、プラズマ噴出口22aが対象物2の上方に予め定められた距離(ギャップδ2)を隔てて位置するように、移動装置5がプラズマヘッド11を移動させる。なお、図2にのみ概念的に示すように、対象物2の表面のうち銅酸化膜の還元除去の対象となる部分のみに開口が形成されたマスク24が、大気圧プラズマ照射装置4と対象物2との間に配置される。以上の状態から、プラズマ処理が開始される。
 本実施の形態のプラズマ処理は、前処理工程と本工程とに分かれている。前処理工程と本工程のいずれにおいても、アンテナ14に対して整合回路を介して高周波電源16から高周波電圧を印加され、それによって放電管13に高周波電界が印加される。放電管13の上端から反応空間12へ第1ガス源17AがArガスを供給する。点火装置(図示せず)で高電圧を印加して点火することで、放電管13の下端から、Arガスがプラズマされたものであり、プラズマ密度が高く、高温の誘導結合型プラズマ(熱プラズマ)である一次プラズマ26が混合器21の混合室22へ吹き出される。
 前処理工程では、第3ガス源17CからAr/O2ガスがガス供給口23を介して混合室22に供給される。放電管13からの一次プラズマ26(Arプラズマ)が混合室22中のAr/O2ガス領域に導入され、混合ガス中のArガスを励起して二次プラズマ27(Arプラズマ)を発生させる。二次プラズマ27は、混合室22の全領域に展開し、プラズマ噴出口22aから下方に吹き出して対象物2に照射される。そして、二次プラズマ27が酸素を活性し、活性化された酸素は対象物2の表面の銅酸化状の有機物と化学反応を起こし、有機物を分解除去する。
 前処理工程に続いて本工程が実行される。本工程では、混合室22に供給する混合ガスが第3ガス源17CのAr/O2ガスから第2ガス源17BのAr/H2ガスに切り換えられる。放電管13から吹き出される一次プラズマ26により、混合室22中のAr/H2ガス領域に導入された混合ガス中のArガスが励起された二次プラズマ27が発生し、二次プラズマ27は、混合室22の全領域に展開し、プラズマ噴出口22aから下方に吹き出して対象物2に照射される。この二次プラズマ27がH2を活性化し、活性化されたH2は対象物2の表面で、以下(1),(2)の化学反応を行い銅酸化膜を還元除去する。
Figure JPOXMLDOC01-appb-M000001
 図5を参照して後述するように、銅が加熱され形成される銅酸化膜の膜厚は、加熱温度と加熱時間で求められる。一方、図8及び図9を参照して後述するように、還元速度も予め測定できる。これらの関係から、本工程における、必要なプラズマ照射時間を見積ることができる。
 以下、本工程についてより詳細に説明する。本工程中、プラズマヘッド11(プラズマ噴出口22a)が移動装置5により水平方向に移動することで、図3に示すように対象物2に対する二次プラズマ27の照射エリアA1(点線で示す)が移動する。具体的には、図3に示すように、照射エリアA1は、円形の軌跡L(実線で示す)を一定速度で移動して複数回周回する。その結果、図3において二点鎖線で示すように、対象物2上の銅酸化膜層が還元除去されたエリア(処理エリアA2)は照射エリアA1よりも面積の広い円形となる。このように、対象物2における二次プラズマ27の照射エリアA1が移動すると、二次プラズマ27の反応熱による対象物2の温度上昇とそれによる銅の酸化反応(再酸化)を抑制し、かつ銅酸化膜の還元除去の対象となる領域の面積が広い場合でも処理の均一性を確保でき、銅酸化膜の部分的な還元除去を効率的に行うことができる。
 特に、本実施の形態では、二次プラズマ27の照射エリアA1を一定速度で移動させているので、照射エリアA1の移動により得られる処理エリアA2内でより均一に銅酸化膜の還元除去できる。
 照射エリアA1が移動する軌跡Lは図3に示すように円形に限定されず、処理エリアA2の形状及び面積に応じ、楕円形、多角形を含む種々の無端形状、円弧状、螺旋状、二次曲線状、折れ線状等の種々の形状(円弧状)に設定される。処理エリアA2の形状にもよるが、照射エリアA1が移動する軌跡Lは移動する照射エリアA1間に重なりが生じるように設定することが好ましい。例えば、図3のように照射エリアA1が半径R1の円形であり、かつ必要とされる処理エリアA2が二点鎖線で示される円で囲まれた領域全体である場合、軌跡Lの円形の半径R2は半径R1よりも小さく設定する必要がある。この場合、仮に照射エリアA1の中心の移動の規制である軌跡Lの半径R2が照射エリアA1の半径R1よりも大きいと、図4に示すように、処理エリアA2の中心付近に銅酸化膜の還元除去の対象とならない円形領域A3が残る。
 二次プラズマ27の照射エリアA1を移動させていることに加え、加熱装置7により対象物2を加熱して銅酸化膜の温度を高くしているので、二次プラズマ27で活性化された水素による化学反応が促進され、銅酸化膜をより効率的に還元除去できる。
 また、前処理工程で対象物2の銅酸化膜上の有機物を予め分解除去した後に、本工程を実行しているので、二次プラズマ27で活性化されたH2による銅酸化膜の還元除去がより効率的に行われる。
 さらに、大気圧プラズマ照射装置4と対象物2との間にマスク24(図2参照)を配置し、対象物2の表面のうち銅酸化膜の還元除去の対象となる部分のみを二次プラズマ27に対して露出させている。そのため、対象物2の表面のうち意図しない部分に大気圧プラズマの二次プラズマ27が照射されて銅酸化膜の還元除去が生じるのを防止でき、意図した部分の銅酸化膜をより効率的に還元除去できる。
 図2おいて概念的に示すように、混合室22の二次プラズマ27の外周には混合室22の中心側に位置する一次プラズマ26の近傍に比べてプラズマ化されている度合いが小さいArガスと水素ガスとの混合ガスエリア28が形成されている。このArガスと水素ガスとの混合ガスエリア28により二次プラズマ27内へ空気中の酸素が進入するのを防止でき、この点でも銅酸化膜の還元除去中の銅の再酸化を効果的に防止できる。
 前述の前処理工程中も本処理工程と同様に対象物2に対する二次プラズマ27の照射エリアA1を円形等の軌跡で移動させてもよい。
 本発明は上述の実施の形態に限定されず、例えば以下に列挙するように種々の変形が可能である。
 第1ガス源17Aから供給される不活性ガス、第2ガス源17Bから供給される混合ガス中の不活性ガス、及び第3ガス源17Cから供給される混合ガス中の不活性ガスのうちのいずれかをArガス以外の不活性ガス(例えばNeガス、Xeガス、Heガス、N2ガス)としてもよい。
 二次プラズマの照射エリアの移動は大気圧プラズマ照射装置4の移動以外の態様で実現してもよい。例えば、大気圧プラズマ照射装置4を固定してステージ3を移動させてもよいし、大気圧プラズマ照射装置4とステージ3の両方を移動させてもよい。要するに、大気圧プラズマ照射装置4とステージ3との間での相対移動により、二次プラズマの照射エリアの移動を実現できればよい。
 有機物除去のため前処理工程と銅酸化膜の還元除去のための本工程とを別のプラズマヘッドで実行してもよいし、これらの工程を別の大気圧プラズマ照射装置で実行してもよい。
 次に、本発明者が本発明を想到するに到った種々の実験及び検討について説明する。なお、実施の形態と異なる点及び具体的な数値等は、以下の通りである。プラズマヘッド11(プラズマ噴出口22a)は移動しない。また、前処理工程は実行しない。対象物2は縦横20mmで厚さが0.1mmの銅板である。全長9.8mmの波線形状で平板型のアンテナ14の上に外径1.2mm、内径0.8mmのセラミック製の放電管13が装備されている。図1に示す、プラズマ噴出口22aの内径R3、放電管13の引込量δ1(混合器21の下面から放電管13の下端までの距離)、及びギャップδ2(混合器21の下面から対象物2までの距離)を含む種々の条件は以下の表に示す通りである。
Figure JPOXMLDOC01-appb-T000001
 走査型X線光電子分光分析装置(ESCA)を用いて銅酸化膜の定量的な膜厚の測定を行った。結果を図5に示す。横軸が加熱時間、縦軸が銅酸化膜厚である。対象物2を保持したステージ3の加熱温度が高くなるほど、また、加熱時間が長くなるほど対象物2の表面の銅酸化膜が成長する。例えば(b)200℃で30分加熱した銅板では、70nm程度の銅酸化膜があることがわかるが、(c)220℃で加熱した銅板では10分で70nm程度の銅酸化膜となる。
 プラズマ照射面での変化を見るため、走査型X線光電子分光分析装置(ESCA)で同伴の表面の原子濃度を測定した。図6で縦軸は、Cu2pが銅の、O1sが酸素の、C1sが炭素の原子濃度を示している。横軸はスパッタ深さであり、分析装置がArで対象物2をスパッタしながら、その表面の原子濃度を測定した。図6は、250℃で30分加熱した対象物2である銅板に対して高周波電源の電力30W、ステージ温度80℃で5秒間プラズマ処理(本工程)したものである。図7を併せて参照すると、(a)の未処理部100(照射エリアA1外領域)では、対象物2である銅板の深さ400nm近くまで銅酸化膜が成長していることがわかる。(b)の照射エリアA1の中央部101(半径0mm)では、プラズマ還元により、銅板の表面より100nm程度まで、銅酸化膜が銅に戻っていることがわかる。その下は、再び銅酸化膜の層となり、深さ400nmで酸化されなかった下地の銅となる。(c)の周辺部102(半径5mm)では、同様に対象物2である銅板の表面より50nm程度が還元されている。200℃で30分加熱した対象物2の銅板では、元々銅酸化膜の厚さが図5により70nmしかないため、同じ条件でプラズマ処理しても周辺部(半径5mm)近くでも、酸化されていない銅表面が露出し、プラズマ処理した対象物2の銅板を例えばハンダディップ槽に入れた場合、周辺部のプラズマ照射面にハンダが付いている。また、図6により、中央部と周辺部での照射面では、かなり還元速度に差があることがわかる。
 プラズマ照射時間を変化させた場合のハンダ濡れエリアで還元速度を評価した。図5により200℃で30分加熱した銅板上の銅酸化膜の膜厚は70nmで一定であるので、半田が付く下地まで還元されたことは、その照射時間で境界部でも70nmの処理能力があることになる。
 図8は、プラズマ照射時間を横軸に、処理エリア直径をプロットしたものである。処理条件として、(a)高周波電源の電力30W、ステージ温度30℃、(b)高周波電源の電力30W、ステージ温度80℃、(c)高周波電源の電力40W、ステージ温度80℃、(d)高周波電源の電力50W、ステージ温度80℃のものを比較した。ステージ温度を80℃に設定しているのは、ステージ3の加熱としては、温度は高いほうが還元処理そのものは早く進むが、100℃を超えるとその熱のために、還元処理前後で反ってより熱酸化が進んでしまうためである。
 図8の(a)~(c)の4つのグラフは、10秒未満と10秒以上で異なる挙動を示している。10秒以上では、高周波電源の電力やステージ3の温度に関係なく対象物2の処理エリアは、活性化されたH2の到達範囲で制限されている。この混合器では、12mm程度が活性化された水素ラジカルの到達範囲である。一方、10秒未満の領域では、高周波電源の電力やステージ3のステージ温度によって変化が見られる。(a)のステージ温度30℃と(b)のステージ温度80℃を比較すると、ステージ温度80℃に加熱することで、同じ処理時間でも処理エリアが大きくなっていることがわかる。(b)の高周波電源の電力30W、(c)の高周波電源の電力40W、及び(d)の高周波電源の電力50Wを比較すると、高周波電源の電力が高いほど、同じ時間で対象物2の処理エリアが大きくなることがわかる。
 図9は、図8のグラフを横軸に対象物2の処理エリア半径、縦軸に還元速度で表し直したものである。図9の(a)と(b)のグラフによりステージ3の加熱の効果がわかる。(b)の30W/80℃で還元速度は、処理エリアの半径4mm以内で20nm/秒以上あることがわかる。この結果は、前述した図6のグラフの結果ともよく一致している。また、図9の(b)、(c)、(d)を比較することで、高周波電源の電力を上げるにつれて還元速度が上がり、(d)の50Wでは処理エリアの半径3mmの範囲で還元速度が140nm/秒という高速で銅酸化膜の除去ができていることがわかる。
 対象物2の銅板の表面ではArプラズマによって活性化されたH2による反応(前掲の式(1),(2))が起こり、対象物2の表面の銅酸化膜が還元され銅に戻る。H2の混合量が少ないと、化学反応を起す原子の数が少なくなり、H2の添加量が多いと、Arプラズマの強度が落ちるため、 Ar/H2中の水素濃度には最適値があるはずである。200℃で酸化させた対象物2の銅板に、高周波電源の電力30W、ステージ温度80℃でH2濃度を0~4%変化させて、20秒間プラズマ照射した後、ハンダディップ槽に5秒つけて、ハンダがつく領域を測定した。図10において、横軸はH2濃度、縦軸は対象物2の処理エリアの半径である。H2濃度2.5%のときが、最も処理エリアが大きかった。これは、高周波電源の電力やステージ温度、プラズマ照射時間を変えても同じであった。
 なお、上記様々な実施の形態のうちの任意の実施の形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。
 本発明は、添付図面を参照しながら好ましい実施の形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。
 2010年11月10日に出願された日本国特許出願No.2010-251959号の明細書、図面、及び特許請求の範囲の開示内容は、全体として参照されて本明細書の中に取り入れられるものである。

Claims (9)

  1.  銅酸化膜除去の対象物を保持する保持部と、
     第1の不活性ガスの誘導結合型プラズマからなる一次プラズマを吹き出す誘導結合型プラズマ発生部と、第2の不活性ガスと反応性ガスの混合ガス領域と前記一次プラズマとが衝突されることによりプラズマ化した混合ガスから成る二次プラズマを発生するプラズマ展開部とを有し、前記二次プラズマを前記対象物に照射する大気圧プラズマ照射部と、
     前記二次プラズマの前記対象物への照射エリアが移動するように、前記保持部と前記大気圧プラズマ照射部とを相対的に移動させる移動部と
     を備えるプラズマ処理装置。
  2.  前記第1及び第2の不活性ガスはArガスであり、前記反応性ガスはHである、請求項1に記載のプラズマ処理装置。
  3.  前記移動部は、前記照射エリアが一定速度で移動するように、前記保持部と前記大気圧プラズマ照射部とを相対的に移動させる、請求項1又は請求項2に記載のプラズマ処理装置。
  4.  前記移動部は、前記照射エリアが円状又は円弧状に移動するように、前記保持部と前記大気圧プラズマ照射部とを相対的に移動させる、請求項1から請求項3のいずれか1項に記載のプラズマ処理装置。
  5.  前記移動部は、移動する前記照射エリア間に重なりが生じるように、前記保持部と前記大気圧プラズマ照射部とを相対的に移動させる、請求項1から請求項4のいずれか1項に記載のプラズマ処理装置。
  6.  前記保持部は前記対象物を加熱する加熱装置を備える、請求項1から請求項5のいずれか1項に記載のプラズマ処理装置。
  7.  前記プラズマ展開部は、前記混合ガス領域における前記混合ガスをArガスとH2ガスの混合ガスである第1の混合ガスと、ArガスとO2ガスの混合ガスである第2の混合ガスとに切換可能であり、前記誘導結合型プラズマ発生部からの前記一次プラズマにより前記第2の混合ガスをプラズマ化した前記二次プラズマを発生して前記対象物に照射した後、前記誘導結合型プラズマ発生部からの前記一次プラズマにより前記第1の混合ガスをプラズマ化した前記第二次プラズマを発生して前記対象物に照射する、請求項1に記載のプラズマ処理装置。
  8.  前記対象物の表面のうち銅酸化膜の還元除去の対象となる部分のみを前記二次プラズマに対して露出させるマスクが、前記大気圧プラズマ照射部と前記対象物の間に配置されている、請求項1から請求項7のいずれか1項に記載のプラズマ処理装置。
  9.  第1の不活性ガスの誘導結合型プラズマからなる一次プラズマを発生させ、発生した一次プラズマを第2の不活性ガスと反応性ガスの混合ガスとが衝突されることによりプラズマ化した混合ガスから成る二次プラズマを発生させ、
     前記二次プラズマを照射エリアに対して相対的に移動させつつ対象物の表面の銅酸化膜に照射する、プラズマ処理方法。
PCT/JP2011/006240 2010-11-10 2011-11-08 プラズマ処理装置及びプラズマ処理方法 WO2012063474A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/884,143 US20130233828A1 (en) 2010-11-10 2011-11-08 Plasma processing apparatus and plasma processing method
JP2012542812A JP5271456B2 (ja) 2010-11-10 2011-11-08 プラズマ処理装置及びプラズマ処理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010251959 2010-11-10
JP2010-251959 2010-11-10

Publications (1)

Publication Number Publication Date
WO2012063474A1 true WO2012063474A1 (ja) 2012-05-18

Family

ID=46050639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006240 WO2012063474A1 (ja) 2010-11-10 2011-11-08 プラズマ処理装置及びプラズマ処理方法

Country Status (3)

Country Link
US (1) US20130233828A1 (ja)
JP (1) JP5271456B2 (ja)
WO (1) WO2012063474A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107278A (ja) * 2012-11-22 2014-06-09 Shi Exaination & Inspection Ltd 半導体装置の製造方法、基板処理システム、及び基板処理装置
KR20220159439A (ko) 2020-05-29 2022-12-02 우시오덴키 가부시키가이샤 환원 처리 방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM609279U (zh) * 2019-06-24 2021-03-21 永進生物科技股份有限公司 包括二進氣口之電漿裝置
EP4189225A1 (en) * 2021-02-24 2023-06-07 Acutronic Turbines, Inc. Plasma ignition and combustion assist system for gas turbine engines

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002170815A (ja) * 2000-12-01 2002-06-14 Matsushita Electric Works Ltd 表面処理装置及び表面処理方法
JP2008068263A (ja) * 2006-09-12 2008-03-27 Matsushita Electric Ind Co Ltd ウエハ加工方法及び装置
WO2009047981A1 (ja) * 2007-10-09 2009-04-16 Konica Minolta Holdings, Inc. 薄膜トランジスタの製造方法
JP2009131850A (ja) * 2009-03-13 2009-06-18 Panasonic Electric Works Co Ltd 接点材料の表面洗浄装置及び接点材料の表面洗浄方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110613A (ja) * 2000-09-26 2002-04-12 Matsushita Electric Works Ltd プラズマ洗浄装置及びプラズマ洗浄方法
EP1630849B1 (en) * 2004-08-27 2011-11-02 Fei Company Localized plasma processing
JP5327147B2 (ja) * 2009-12-25 2013-10-30 東京エレクトロン株式会社 プラズマ処理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002170815A (ja) * 2000-12-01 2002-06-14 Matsushita Electric Works Ltd 表面処理装置及び表面処理方法
JP2008068263A (ja) * 2006-09-12 2008-03-27 Matsushita Electric Ind Co Ltd ウエハ加工方法及び装置
WO2009047981A1 (ja) * 2007-10-09 2009-04-16 Konica Minolta Holdings, Inc. 薄膜トランジスタの製造方法
JP2009131850A (ja) * 2009-03-13 2009-06-18 Panasonic Electric Works Co Ltd 接点材料の表面洗浄装置及び接点材料の表面洗浄方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107278A (ja) * 2012-11-22 2014-06-09 Shi Exaination & Inspection Ltd 半導体装置の製造方法、基板処理システム、及び基板処理装置
KR20220159439A (ko) 2020-05-29 2022-12-02 우시오덴키 가부시키가이샤 환원 처리 방법

Also Published As

Publication number Publication date
JP5271456B2 (ja) 2013-08-21
JPWO2012063474A1 (ja) 2014-05-12
US20130233828A1 (en) 2013-09-12

Similar Documents

Publication Publication Date Title
TWI418262B (zh) 產生中空陰極電漿之方法及使用中空陰極電漿處理大面積基板之方法
US7811409B2 (en) Bare aluminum baffles for resist stripping chambers
US5735451A (en) Method and apparatus for bonding using brazing material
US20170356084A1 (en) Processing method of silicon nitride film and forming method of silicon nitride film
JP2010247126A (ja) 反応種生成方法、および反応種生成装置、並びに反応種による処理方法、および反応種による処理装置
KR20220100826A (ko) 반도체 프로세싱을 위한 대기압 플라즈마 장치
JP5271456B2 (ja) プラズマ処理装置及びプラズマ処理方法
TW201029523A (en) Plasma source for chamber cleaning and process
WO2007148470A1 (ja) 処理装置、処理方法及びプラズマ源
KR102355875B1 (ko) 표면 처리 방법 및 장치
KR20150038637A (ko) 다층막을 에칭하는 방법 및 플라즈마 처리 장치
KR19990062781A (ko) 플라즈마 처리장치 및 처리방법
CN1809252A (zh) 配线电路基板的制造方法
US20170087602A1 (en) Method and apparatus for treating substrate
JP6086363B2 (ja) 液中プラズマ処理装置および液中プラズマ処理方法
JP2012256501A (ja) プラズマ生成用ガスおよびプラズマ生成方法並びにこれにより生成された大気圧プラズマ
JP4904650B2 (ja) 物質処理装置
JP5253779B2 (ja) 焼鈍方法及び焼鈍装置
JP7258638B2 (ja) プラズマ処理方法、金属膜の形成方法、有機膜の除去方法及びプラズマ処理装置
WO2015093216A1 (ja) アッシング装置およびアッシング方法
JP2008218254A (ja) プラズマ処理装置
JP2007258097A (ja) プラズマ処理装置
JP2004031511A (ja) 大気圧下での基板の連続処理装置及び方法
JP2010188473A (ja) 基板表面の加工方法、および基板表面加工装置
JP2004211161A (ja) プラズマ発生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11840094

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012542812

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13884143

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11840094

Country of ref document: EP

Kind code of ref document: A1