WO2012060053A1 - 光半導体装置用接着剤、光半導体装置用接着剤シート、光半導体装置用接着剤シートの製造方法、及び光半導体装置の製造方法 - Google Patents

光半導体装置用接着剤、光半導体装置用接着剤シート、光半導体装置用接着剤シートの製造方法、及び光半導体装置の製造方法 Download PDF

Info

Publication number
WO2012060053A1
WO2012060053A1 PCT/JP2011/005650 JP2011005650W WO2012060053A1 WO 2012060053 A1 WO2012060053 A1 WO 2012060053A1 JP 2011005650 W JP2011005650 W JP 2011005650W WO 2012060053 A1 WO2012060053 A1 WO 2012060053A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical semiconductor
adhesive
semiconductor device
semiconductor devices
sheet
Prior art date
Application number
PCT/JP2011/005650
Other languages
English (en)
French (fr)
Inventor
嘉幸 塩野
市六 信広
岩田 充弘
利之 小材
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to KR1020137010908A priority Critical patent/KR20130124498A/ko
Priority to CN2011800528888A priority patent/CN103201860A/zh
Publication of WO2012060053A1 publication Critical patent/WO2012060053A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • H01L21/4875Connection or disconnection of other leads to or from bases or plates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/40Adhesives in the form of films or foils characterised by release liners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0236Fixing laser chips on mounts using an adhesive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2467/00Presence of polyester
    • C09J2467/006Presence of polyester in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2483/00Presence of polysiloxane

Definitions

  • the present invention relates to an adhesive for a semiconductor device, and more particularly to an adhesive for an optical semiconductor device and a method for manufacturing an optical semiconductor device using the same.
  • a liquid, paste-like curable adhesive (also referred to as a die bond agent) for bonding an optical semiconductor element to an element mounting portion, and a curable adhesive for sealing the optical semiconductor element from above.
  • Agents have been used.
  • an optical semiconductor device having a blue LED (light emission diode) element or an LED element that emits white light by performing wavelength conversion by light emission from an LED element having an emission wavelength equal to or less than a blue wavelength an optical semiconductor element is used.
  • Liquid and paste-like silicone adhesives have been used as curable adhesives for sealing from above.
  • Patent Document 1 liquid and pasty silicone materials are also used as the die bond agent, and the silicone die bond agent generally has low internal stress, excellent adhesiveness, and excellent light transmittance
  • Patent Document 2 a light emitting semiconductor device is produced by potting an epoxy / silicone hybrid resin composition and curing at 180 ° C. for 1 hour.
  • Patent Document 2 an epoxy / silicone hybrid resin composition is prepared. The object is bonded and sealed by injecting it into a cup, cavity, package recess or the like in which a light emitting element is arranged at the bottom by a dispenser or other method and curing it by heating or the like.
  • an optical semiconductor element 13 ′ such as an LED element is cut out in large quantities from one wafer 12 ′ by a dicer 11 ′ (Step 1 ′) and collected, but the optical semiconductor element 13 ′ has a large variation in emission wavelength. Each of the emission wavelengths is measured, and an operation called sorting is performed (step 2 ′). Next, the optical semiconductor elements 13 ′ sorted into the respective layers are bonded together on one adhesive tape 21 for each layer (Step 3 ′).
  • step 4-1 ′ an operation of picking up the optical semiconductor elements 13 ′ one by one from the adhesive tape 21 to which the optical semiconductor elements 13 ′ having the selected emission wavelength layer are attached is performed (step 4-1 ′) and arranged separately.
  • a liquid, paste-like die bonding agent 22 is applied to the element mounting portion 15 ′ in the optical semiconductor device 14 ′ thus prepared by stamping (step 4-2 ′), and the picked-up optical semiconductor element 13 ′ is applied to the element mounting portion 15 ′.
  • the die bonding agent 22 is cured by heating or the like, and the optical semiconductor element 13 ′ and the element mounting portion 15 ′ in the optical semiconductor device 14 ′ are cured and bonded (step 5 ′).
  • the above method for manufacturing an optical semiconductor device has a problem that it takes time because it is necessary to stamp a die bond agent on each of the element mounting portions of the optical semiconductor device.
  • This problem has been a problem that cannot be avoided as long as a liquid or paste die bond agent is applied and used. Therefore, from the viewpoint of high efficiency productivity and production cost reduction, there has been a demand for an optical semiconductor device adhesive that replaces the liquid and paste die bond agent and a method of manufacturing an optical semiconductor device using the same.
  • the present invention has been made to solve the above problems, and can efficiently manufacture an optical semiconductor device.
  • an optical semiconductor element including a light emission diode (hereinafter referred to as LED) and a laser diode (hereinafter referred to as LD).
  • An adhesive for an optical semiconductor device capable of efficiently performing the work until the element mounting portion (also referred to as a die, die or chip) is fixed to the element mounting portion of the optical semiconductor device, and improving the productivity of manufacturing the optical semiconductor device
  • An object of the present invention is to provide an adhesive sheet for an optical semiconductor device, a method for manufacturing the same, and a method for manufacturing an optical semiconductor device.
  • an optical semiconductor element cut out and sorted from a wafer is picked up from a base sheet, and the optical semiconductor element is mounted on an element mounting portion in an optical semiconductor device, and then the optical semiconductor element is mounted.
  • An adhesive for an optical semiconductor device used for curing and adhering a semiconductor element to the element mounting portion which is formed in a film shape, disposed on the base sheet, and can be peeled off from the base sheet.
  • the adhesive agent for optical semiconductor devices since it is shape
  • Adhesive can be pasted and further peeled off from the base sheet, so that the optical semiconductor element and the adhesive for the optical semiconductor device are both peeled off and picked up at the time of picking up and mounted directly on the element mounting portion. It can be cured and bonded via an adhesive for the device. Therefore, it is not necessary to stamp the die bonding agent on the element mounting portion, and the optical semiconductor device can be efficiently manufactured. In particular, the optical semiconductor device can be efficiently operated until it is fixed to the element mounting portion of the optical semiconductor device. It becomes an adhesive.
  • the adhesive for an optical semiconductor device has an area of 51% or more and 225% or less of an adhesion surface of the optical semiconductor element to the element mounting portion.
  • the adhesive for an optical semiconductor device has an area of 51% or more and 225% or less of the adhesion surface of the optical semiconductor element to the element mounting portion, sufficient adhesive strength can be obtained after curing. Since it can avoid covering an element attaching part unnecessarily, it is preferable.
  • an adhesive for optical semiconductor devices having an adhesive strength to an adherend of 20 kN / m 2 or more and 300 kN / m 2 or less.
  • the adhesive for an optical semiconductor device has an adhesive force of 20 kN / m 2 or more and 300 kN / m 2 or less when the optical semiconductor element is picked up from the base sheet, Since the adhesive for optical semiconductor devices is difficult to peel off, it is easy to pick up together, and the adhesive for optical semiconductor devices is easily peeled off from the base sheet during pickup, so that the optical semiconductor element and optical semiconductor device It is preferable because both the adhesive and the adhesive are easily picked up.
  • an adhesive for optical semiconductor devices containing 51% by mass or more of the silicone composition.
  • the optical semiconductor device manufactured using this adhesive for optical semiconductor devices is an optical semiconductor element. This is preferable because it provides an optical semiconductor device with good light extraction efficiency.
  • the semi-cured adhesive for an optical semiconductor device allows the optical semiconductor element to be pressure-bonded and pasted well, and the optical semiconductor element and the film-like adhesive for an optical semiconductor device are integrated together. This is preferable because it is easy to pick up.
  • the present invention provides an adhesive sheet for optical semiconductor devices, wherein a plurality of the adhesives for optical semiconductor devices are arranged on the base material sheet.
  • the adhesive sheet for optical semiconductor devices is one in which a plurality of adhesives for optical semiconductor devices are arranged on the base sheet, the adhesive sheet for optical semiconductor devices is placed on one sheet of adhesive sheet for optical semiconductor devices.
  • a plurality of optical semiconductor elements can be attached.
  • the optical semiconductor element and the optical semiconductor device adhesive are both peeled off and picked up at the time of pickup, and can be directly mounted on the element mounting portion and cured and bonded via the optical semiconductor device adhesive. It becomes. Therefore, it is not necessary to stamp the die bonding agent on the element mounting portion, and the optical semiconductor device can be efficiently manufactured.
  • the optical semiconductor device can be efficiently operated until it is fixed to the element mounting portion of the optical semiconductor device. It becomes an adhesive sheet.
  • the present invention provides a method for producing an adhesive sheet for optical semiconductor devices, wherein the plurality of adhesives for optical semiconductor devices are arranged on the base material sheet by screen printing.
  • the manufacturing method of the adhesive sheet for optical semiconductor devices enables high throughput of the manufacturing of the adhesive sheet for optical semiconductor devices, and the optical semiconductor element that is cured and bonded to the element mounting portion.
  • a screen plate having an appropriate pattern according to the bonding area By using a screen plate having an appropriate pattern according to the bonding area, a film-like adhesive for an optical semiconductor device having a uniform shape, area and thickness can be formed and arranged.
  • a method of manufacturing an optical semiconductor device by curing and bonding an optical semiconductor element cut and sorted from a wafer to an element mounting portion in the optical semiconductor device, the optical semiconductor device being cut and sorted from the wafer
  • a die-bonding step of curing the adhesive for curing and bonding the optical semiconductor element to the optical semiconductor device It provides a method of manufacturing an optical semiconductor device.
  • the film-form adhesive agent for optical semiconductor devices can be affixed on the surface adhere
  • the optical semiconductor element and the adhesive for the optical semiconductor device can be integrally peeled off and picked up, and the optical semiconductor element picked up in the die-bonding process is mounted on the element mounting portion as it is for the optical semiconductor device. It can be cured and bonded via an adhesive. Therefore, a die bonding agent stamping step on the element mounting portion is not required, and the optical semiconductor device can be efficiently manufactured.
  • the optical semiconductor capable of efficiently performing the work until it is fixed to the element mounting portion of the optical semiconductor device. It becomes the manufacturing method of an apparatus.
  • an optical semiconductor device can be efficiently manufactured, and in particular, an operation until the optical semiconductor element is fixed to the element mounting portion of the optical semiconductor device can be efficiently performed. It is possible to provide an adhesive for an optical semiconductor device, an adhesive sheet for an optical semiconductor device, a method for manufacturing the same, and a method for manufacturing an optical semiconductor device that can reduce the time for stamping the element mounting portion.
  • the optical semiconductor device adhesive the optical semiconductor device adhesive sheet, the optical semiconductor device adhesive sheet manufacturing method, and the optical semiconductor device manufacturing method according to the present invention will be described in detail. It is not limited. As described above, there has been a demand for an adhesive for an optical semiconductor device in place of a liquid or paste-like die bond agent and a method for manufacturing an optical semiconductor device using the same, from the viewpoint of high-efficiency productivity and production cost reduction.
  • an optical semiconductor device adhesive that is used to cure and bond the optical semiconductor element to the element mounting part after being mounted on a part, which is formed into a film and disposed on the base sheet If it is an adhesive for an optical semiconductor device characterized in that it can be peeled from the base sheet, it can efficiently produce an optical semiconductor device having an optical semiconductor element including an LED device, In particular, the work until the optical semiconductor element is fixed to the element mounting portion of the optical semiconductor device can be efficiently performed, and the time for stamping the die bonding agent to the element mounting portion is reduced. It found that the optical semiconductor device adhesive that can Rukoto, and completed the present invention.
  • the present inventors also provide a method of manufacturing an optical semiconductor device by curing and bonding an optical semiconductor element cut and sorted from a wafer to an element mounting portion in the optical semiconductor device, wherein the optical semiconductor device is cut and sorted from the wafer.
  • Affixing the optical semiconductor element to a film-like adhesive for an optical semiconductor device disposed on a base sheet, the optical semiconductor element attached together with the adhesive for a film-like optical semiconductor device A pick-up process for separating and picking up from the substrate sheet, and mounting the picked-up optical semiconductor element so that the film-like adhesive for an optical semiconductor device adheres to the element mounting portion.
  • an optical semiconductor device having an optical semiconductor element such as an LED device can be efficiently manufactured, and in particular, the optical semiconductor element is attached to the element of the optical semiconductor device.
  • the present invention has been completed by discovering that the method of manufacturing an optical semiconductor device can be efficiently performed up to the fixing to the part, and the time for stamping the die bond agent to the element mounting part can be reduced.
  • an optical semiconductor element cut out from a wafer and sorted is picked up from a base sheet, and the optical semiconductor element is mounted on an element mounting portion in an optical semiconductor device.
  • An adhesive for an optical semiconductor device used for curing and bonding to an optical semiconductor device, wherein the adhesive is formed into a film, is disposed on the base sheet, and can be peeled off from the base sheet.
  • An adhesive for an optical semiconductor device is provided.
  • the optical semiconductor element according to the present invention is an optical semiconductor element cut out from a wafer and sorted, and is not particularly limited as long as it is generally handled as an optical semiconductor element. it can.
  • Such optical semiconductor elements generally have large variations in light quantity, emission wavelength, etc., as a particular problem. For this reason, a sorting operation is performed in which the layers are classified for each emission wavelength and the like before being fixed to the optical semiconductor device. Since the sorting is performed by measuring the emission wavelength of each optical semiconductor element, the optical semiconductor element after sorting usually needs to be attached to an adhesive sheet or the like for each layer.
  • the optical semiconductor device according to the present invention is an optical semiconductor device in which the adhesive for an optical semiconductor device of the present invention is attached to the surface to be bonded to the device mounting portion after being cut out from the wafer and sorted. After being mounted on the inner element mounting portion, it is cured and bonded to the element mounting portion by the optical semiconductor device adhesive of the present invention. Accordingly, in the step of pasting the sorted optical semiconductor element to the adhesive for optical semiconductor devices on the base sheet, the sorted optical semiconductor element is stuck to each layer, and the adhesive for optical semiconductor devices It is possible to simultaneously press and paste the.
  • the substrate sheet according to the present invention is particularly suitable if the adhesive for optical semiconductor devices according to the present invention is disposed thereon and the adhesive for optical semiconductor devices according to the present invention can be peeled from the adhesive.
  • a base sheet for example, a PET separator in which a release agent is coated on a PET film can be used.
  • the optical semiconductor element cut out from the wafer and sorted is attached to an adhesive for an optical semiconductor device arranged on the base sheet, picked up from the base sheet, and an element mounting portion in the optical semiconductor device Mounted on.
  • the base material sheet is one from which the adhesive for optical semiconductor devices of the present invention can be peeled off, the adhesive for optical semiconductor devices is integrated with the picked-up optical semiconductor element from above the base material sheet. Peel off and pick up.
  • the element mounting portion in the optical semiconductor device of the present invention is a portion on which the optical semiconductor element is mounted.
  • the adhesive for an optical semiconductor device of the present invention is an adhesive for an optical semiconductor device used for curing and bonding the optical semiconductor element to an element mounting portion in the optical semiconductor device, and is formed into a film shape. It is arrange
  • the optical semiconductor element is mounted on the element mounting portion and cured and bonded via the adhesive for optical semiconductor devices of the present invention (die bonding). Process).
  • the adhesive for optical semiconductor devices of the present invention the optical semiconductor element can be cured and bonded without stamping the die bonding agent to the element mounting portion, and the work until fixing to the element mounting portion of the optical semiconductor device Can be performed efficiently, and the productivity of manufacturing the optical semiconductor device can be increased.
  • the adhesive for optical semiconductor devices of the present invention is formed into a film shape. Therefore, it is easy to form on a base material sheet and to peel easily.
  • the optical semiconductor element can be attached with a film of an adhesive for an optical semiconductor device having a uniform shape, area and thickness, the quality of the optical semiconductor device after curing and bonding is kept constant. It is.
  • the adhesive for an optical semiconductor device of the present invention is formed into a film shape, and the area thereof is preferably an area of 51% or more and 225% or less of an adhesive surface of the optical semiconductor element to the element mounting portion.
  • the area is preferably 71% or more and 200% or less.
  • a film area of 51% or more is preferable because sufficient adhesive strength can be obtained after curing, and a film area of 225% or less is preferable because unnecessary covering of the element mounting portion can be avoided.
  • the adhesive for optical semiconductor devices of the present invention is formed into a film shape, and the thickness thereof is preferably in the range of 1 ⁇ m to 150 ⁇ m, particularly preferably 3 ⁇ m to 100 ⁇ m. If the thickness is 1 ⁇ m or more, it is preferable because sufficient adhesive strength can be obtained after curing. If the thickness is 150 ⁇ m or less, the optical semiconductor device to which the optical semiconductor element is cured and bonded can be prevented from becoming too thick. preferable.
  • the adhesive for optical semiconductor devices arrange
  • the adhesive agent for optical semiconductor devices of this invention is arrange
  • the adhesive for optical semiconductor devices which can be peeled from the said base material sheet The adhesive for optical semiconductor devices of this invention can be peeled from the said base material sheet. Therefore, the adhesive for optical semiconductor devices is peeled off from the substrate sheet and picked up together with the picked optical semiconductor element. Thereafter, in the die bonding step, the optical semiconductor element is mounted on the element mounting portion via the optical semiconductor device adhesive of the present invention and cured and bonded.
  • the optical semiconductor element can be cured and bonded without stamping a die bond agent to the element mounting portion, and the operation until fixing to the element mounting portion of the optical semiconductor device is performed. Can be performed efficiently, and the productivity of manufacturing the optical semiconductor device can be increased.
  • the adhesive for optical semiconductor devices of the present invention can be peeled from the substrate sheet, and preferably has an adhesive strength to an adherend of 20 kN / m 2 or more and 300 kN / m 2 or less, and 30 kN / m 2 or more. More preferably, it is 200 kN / m 2 or less.
  • This adhesive strength is the adhesive strength in the adhesive test of JIS Z 3284 “Solder paste”. If it is 20 kN / m 2 or more, it is preferable that the optical semiconductor element and the film-like adhesive for an optical semiconductor device are easily picked up together when picking up from the base sheet, and 300 kN / m is preferable. If it is 2 or less, the adhesive for optical semiconductor devices is easy to peel off from the base sheet during pickup, which is preferable.
  • the adhesive for optical semiconductor devices of the present invention preferably contains 51% by mass to 100% by mass of the silicone composition.
  • the optical semiconductor device in which the optical semiconductor element is cured and bonded using the adhesive for optical semiconductor devices becomes an optical semiconductor device with good light extraction efficiency.
  • an appropriate amount of an adhesion assistant, a control agent, a curing catalyst, and a filler can be blended.
  • the light absorption coefficient of the adhesive for optical semiconductor devices of the present invention is preferably 1.0 ⁇ 10 4 / m or less.
  • the adhesive for optical semiconductor devices of the present invention is preferably in a semi-cured state.
  • This semi-cured state is a B-stage as defined in JIS K 6800 “Adhesive / Adhesion Terminology” (a cured intermediate of a thermosetting resin. The resin in this state softens when heated, It swells when it comes into contact with the solvent, but does not melt or dissolve completely).
  • the film-like adhesive for an optical semiconductor device is in a semi-cured state, the optical semiconductor element can be satisfactorily attached (crimped), and the optical semiconductor element and the film-like adhesive for an optical semiconductor device are integrated together. This is preferable because it is easy to pick up.
  • this invention provides the adhesive sheet for optical semiconductor devices characterized by arrange
  • FIG. 1 illustrates a top view of the adhesive sheet for an optical semiconductor device of the present invention
  • FIG. 2 illustrates a side view.
  • the adhesive sheet 3 for optical semiconductor devices of this invention arrange
  • the optical semiconductor elements cut out from the wafer and sorted are individually attached to a plurality of adhesives for optical semiconductor devices of the adhesive sheet for optical semiconductor devices (attaching step). Therefore, a plurality of optical semiconductor elements are bonded on one adhesive sheet for an optical semiconductor device. Further, at the time of picking up the optical semiconductor element, the adhesive for the optical semiconductor device is peeled off from the base sheet together with the optical semiconductor element and picked up (pickup process). Thereafter, in the process of mounting the optical semiconductor element on the element mounting portion and curing and bonding, the optical semiconductor element is mounted on the element mounting portion and cured and bonded via the adhesive for optical semiconductor devices of the present invention (die bonding). Process).
  • the optical semiconductor element can be cured and bonded without stamping a die bond agent to the element mounting portion, and fixed to the element mounting portion of the optical semiconductor device.
  • the work can be performed efficiently, and the productivity of manufacturing the optical semiconductor device can be increased.
  • the optical semiconductor element having a specific layer is the same adhesive for an optical semiconductor device. It can also be set as the usage form which affixes on a sheet
  • an adhesive sheet for an optical semiconductor device in which an optical semiconductor element for each layer is attached can be obtained.
  • the optical semiconductor device adhesive sheet to which the specific layer of the optical semiconductor element is bonded can be placed on the die bonder as it is, and the optical semiconductor elements having the specific layer can be collectively bonded to the element mounting portion.
  • Such usage is preferable from the viewpoint of productivity.
  • this invention provides the manufacturing method of the said adhesive sheet for optical semiconductor devices characterized by arrange
  • a film-like adhesive for an optical semiconductor device having a shape, an area, and a thickness can be formed.
  • the present invention also relates to a method of manufacturing an optical semiconductor device by curing and bonding an optical semiconductor element cut and sorted from a wafer to an element mounting portion in the optical semiconductor device, the optical semiconductor device being cut and sorted from the wafer
  • a die-bonding step of curing and bonding the optical semiconductor element to the optical semiconductor device.
  • FIG. 3B shows a flowchart of a conventional method for manufacturing an optical semiconductor device.
  • an optical semiconductor element 13 ' such as an LED element is cut out from the wafer 12' by the dicer 11 '(step 1'). Since the cut out optical semiconductor element 13 ′ has a large variation in light quantity, emission wavelength, etc., the emission wavelength is measured, sorted (by layer) (step 2 ′), and the optical semiconductor element 13 ′ sorted in each layer is An affixing process (process 3 ′) to be affixed on the adhesive sheet 21 for each layer is performed.
  • a pick-up step (step 4-1 ′) for picking up the attached optical semiconductor element 13 ′ from the adhesive sheet 21 of the selected light emission wavelength layer is performed, and at the same time, an optical semiconductor device 14 ′ arranged separately.
  • the die bonding agent 22 is applied to the inner element mounting portion 15 ′ by stamping (step 4-2 ′), and the picked-up optical semiconductor element 13 ′ is mounted on the element mounting portion 15 ′ via the die bonding agent 22.
  • a die-bonding step (step 5 ′) is performed in which is cured and bonded.
  • the above optical semiconductor device manufacturing method has a problem that it takes time to stamp the die bond agent (step 4-2 ′). This problem is caused by using a liquid, paste-like die bond agent. It was a problem that could not be avoided. Therefore, there has been a demand for an optical semiconductor device adhesive that replaces a liquid, paste-like die bond agent and a method of manufacturing an optical semiconductor device using the same.
  • FIG. 3A shows a flowchart of the method for manufacturing an optical semiconductor device of the present invention.
  • an optical semiconductor element 13 such as an LED element is cut out from the wafer 12 by the dicer 11 (step 1). Since the cut out optical semiconductor element 13 has a large variation in light quantity, emission wavelength, and the like, the emission wavelength is measured and sorted (step 2).
  • sorting by layer
  • an optical semiconductor element having a specific layer is attached to the same adhesive sheet for an optical semiconductor device, and an optical semiconductor element having a layer different from the specific layer is different from the optical semiconductor device. It can also be affixed to an adhesive sheet.
  • the adhesive sheet for optical semiconductor device to which the optical semiconductor element of the specific layer is bonded is directly installed on the die bonder, and the optical semiconductor elements having the specific layer are collectively bonded to the element mounting portion. This is preferable.
  • the optical semiconductor element 13 sorted in each layer is subjected to an attaching step (Step 3) to be attached to the film-like adhesive 1 for an optical semiconductor device disposed on the base sheet 2 for each layer.
  • an attaching step it is possible to simultaneously attach the sorted optical semiconductor element and to apply the adhesive for optical semiconductor device of the present invention on the optical semiconductor element.
  • the film-like adhesive for an optical semiconductor device can be made into a semi-cured state before this attaching step.
  • the method to make a semi-hardened state is not specifically limited, Performing using a hot-air circulation type oven is illustrated. Although it does not specifically limit as temperature dried using a hot-air circulation type oven, 40 to 150 degreeC is preferable and 40 to 140 degreeC is more preferable. If the temperature is 40 ° C. or higher, it is possible to suppress an increase in the time required for curing, and if the temperature is less than 150 ° C., it is preferable because the curing speed is too high to completely cure.
  • time to dry using a hot-air circulation type oven 10 second or more and less than 2 hours are preferable, and 10 second or more and 1 hour and a half or less are more preferable. If the time is 10 seconds or more, the optical semiconductor element can be satisfactorily attached (crimped), and the optical semiconductor element and the film-like adhesive for an optical semiconductor device can be easily picked up together. Moreover, since it can suppress that it hardens
  • the pasted optical semiconductor element 13 is peeled from the base sheet 2 together with the adhesive 1 for an optical semiconductor device. Then, a pick-up step (step 4) for picking up is performed, whereby the optical semiconductor element 13 to which the film-like adhesive 1 for optical semiconductor devices is adhered is picked up.
  • a die bonding step (step 5) is performed in which the optical semiconductor element 13 is cured and bonded to the optical semiconductor device 14 by curing. Thereby, the work up to fixing the optical semiconductor element to the element mounting portion of the optical semiconductor device can be efficiently performed without stamping the die bond agent, and the light that can increase the productivity of manufacturing the optical semiconductor device.
  • a method for manufacturing a semiconductor device is provided.
  • Example 1 and Example 2 of the adhesive sheet for optical semiconductor devices of the present invention will be described.
  • Example 1 KER-3000-M4 (manufactured by Shin-Etsu Chemical Co., Ltd.), which is a curable silicone composition, as an adhesive for optical semiconductor devices, PET separator as a base sheet, PET # 38x-41-3035, 38 ⁇ m (Takaline Corporation, Ltd.) Manufactured), 10 screens with 10 1mm x 1mm square openings arranged as a screen plate, a screen plate with a total of 100 openings regularly arranged at intervals of 0.5mm, manufactured by Mino Group as a screen printing machine A screen printer was used.
  • the adhesive sheet for an optical semiconductor device manufactured as in Example 1 is obtained by arranging a plurality of adhesives for an optical semiconductor device. Moreover, the adhesive for optical semiconductor devices on a base material sheet is shape
  • the adhesive strength of the optical semiconductor element was evaluated using the film-shaped adhesive for an optical semiconductor device of the adhesive sheet for an optical semiconductor device obtained in Example 1.
  • a blue LED element having an adhesive area of 1 mm ⁇ 1 mm is pressure-bonded to this film-like adhesive for an optical semiconductor device, and then lifted while grasping the element with tweezers.
  • the adhesive for an optical semiconductor device is easily peeled off from the PET separator. I was able to.
  • the film-like adhesive for an optical semiconductor device was picked up together with the optical semiconductor element while being adhered cleanly to one surface of the element (surface to be bonded to the element mounting portion).
  • this film-like optical semiconductor element with an adhesive for optical semiconductor devices was pressure-bonded so as to adhere to a silver-plated copper plate (corresponding to the element mounting portion) via the adhesive for film-like optical semiconductor devices. Thereafter, it was heated and cured in a hot air circulating oven at 150 ° C. for 2 hours to be cured and adhered.
  • the shear bond strength after cured bonding was 4 MPa. The shear bond strength was measured using a strength tester (manufactured by Daisy).
  • Example 2 Further, an optical semiconductor device in which a semi-cured film-like adhesive for an optical semiconductor device having a thickness of 10 ⁇ m is arranged in the same manner as in Example 1 except that the square opening of the screen plate to be used is 100 mm ⁇ 100 mm. An adhesive sheet was obtained. Subsequently, evaluation of adhesive strength and optical transparency of the adhesive for optical semiconductor devices on the base sheet was performed by the following methods.
  • T the light transmittance
  • R the reflectance at the boundary surface
  • t the thickness of the adhesive for optical semiconductor devices
  • the light absorption coefficient
  • Subscripts 1 and 2 of thicknesses t 1 and t 2 and light transmittances T 1 and T 2 indicate adhesive sample numbers for optical semiconductor devices having different thicknesses.
  • the subscript t 1 was 10 ⁇ m
  • t 2 was 20 ⁇ m obtained by overlapping two t 1
  • the respective light transmittances T 1 and T 2 were measured.
  • the light absorption coefficient of the adhesive for optical semiconductor devices was 3.5 ⁇ 10 3 / m.
  • Example 1 In the same manner as in Example 1, only the size of the square opening of the screen plate (area ratio with respect to the optical semiconductor element) was changed, and the optical semiconductor in which the film-like adhesive for optical semiconductor devices was arranged Examples 3 to 8 of the method for producing an optical semiconductor device using the adhesive sheet for the device and using the same will be described.
  • the size (adhesive area) of the square opening of the screen plate in each example, the area ratio with the element (adhesion area to the element mounting portion of the optical semiconductor device), the adhesive strength, and the shear bond strength after curing adhesion Table 1 shows a summary of the manufacturing efficiency and optical absorption coefficient of the optical semiconductor device.
  • the adhesive strength, the shear bond strength after curing and the light absorption coefficient were determined in the same manner as in the above evaluation.
  • Example 3 An adhesive sheet for an optical semiconductor device was obtained in the same manner as in Example 1 except that the square opening of the screen plate used was 0.7 mm ⁇ 0.7 mm (49% area ratio with respect to the optical semiconductor element). Thereafter, 100 blue LED elements of 1 mm ⁇ 1 mm cut out from the wafer and sorted are attached to an adhesive for a film-like optical semiconductor device disposed on a base sheet, and the attached blue LED elements are formed into a film.
  • the optical semiconductor device adhesive was cured and the blue LED element was cured and bonded to the optical semiconductor device to produce an optical semiconductor device having a blue LED element.
  • the shear bond strength after cured bonding was 3.5 MPa.
  • the adhesive force of the film-form adhesive for optical semiconductor devices was 30 kN / m ⁇ 2 >, and the light absorption coefficient was 3.5 * 10 ⁇ 3 > / m.
  • the production efficiency was 1/5 when the time required for the following Comparative Example 1 was taken as the production efficiency 1.
  • Example 4 The adhesive sheet for optical semiconductor devices was obtained in the same manner as in Example 1 except that the square opening of the screen plate used was 1.5 mm ⁇ 1.5 mm (area ratio with optical semiconductor element 225%). Further, an optical semiconductor device having a blue LED element was manufactured in the same manner as in Example 3. The shear bond strength after cured bonding was 4.5 MPa. Moreover, the adhesive force of the film-form adhesive for optical semiconductor devices was 30 kN / m ⁇ 2 >, and the light absorption coefficient was 3.5 * 10 ⁇ 3 > / m. The production efficiency was 1/5.
  • Example 5 An adhesive sheet for optical semiconductor devices was obtained in the same manner as in Example 1 except that the square opening of the screen plate used was 0.6 mm ⁇ 0.6 mm (area ratio with optical semiconductor element 36%). Further, an optical semiconductor device having a blue LED element was manufactured in the same manner as in Example 3. The shear bond strength after cured bonding was 1.5 MPa. Moreover, the adhesive force of the film-form adhesive for optical semiconductor devices was 30 kN / m ⁇ 2 >, and the light absorption coefficient was 3.5 * 10 ⁇ 3 > / m. The production efficiency was 1/5.
  • Example 6 An adhesive sheet for an optical semiconductor device was obtained in the same manner as in Example 1 except that the square opening of the screen plate to be used was 1.6 mm ⁇ 1.6 mm (area ratio with the optical semiconductor element was 256%). Further, an optical semiconductor device having a blue LED element was manufactured in the same manner as in Example 3. At this time, when a blue LED element of 1 mm ⁇ 1 mm was pressure-bonded and lifted while grasping the element with tweezers, the outer peripheral portion was bent when peeling the adhesive for optical semiconductor devices from the PET separator, and 10% could not be peeled cleanly there were. The shear bond strength after curing and bonding was 4.7 MPa. Moreover, the adhesive force of the film-form adhesive for optical semiconductor devices was 30 kN / m ⁇ 2 >, and the light absorption coefficient was 3.5 * 10 ⁇ 3 > / m. The production efficiency was 1/5.
  • Example 7 Example 1 (square opening 1 mm ⁇ 1 mm, area ratio with optical semiconductor element 100%), except that the adhesive for an optical semiconductor device printed with a PET separator in a hot air circulation oven at 120 ° C. was dried for 90 seconds In the same manner as above, an adhesive sheet for optical semiconductor devices was obtained. Further, an optical semiconductor device having a blue LED element was manufactured in the same manner as in Example 3. The shear bond strength after cured bonding was 3.5 MPa. Moreover, the adhesive force of the film-form adhesive for optical semiconductor devices was 35 kN / m ⁇ 2 >, and the light absorption coefficient was 3.5 * 10 ⁇ 3 > / m. The production efficiency was 1/5.
  • Example 8 Example 1 (square opening 1 mm ⁇ 1 mm, area ratio with optical semiconductor element 100%) except that the adhesive for an optical semiconductor device printed with the PET separator in an 80 ° C. hot air circulation oven was dried for 20 minutes.
  • an adhesive sheet for optical semiconductor devices was obtained.
  • an optical semiconductor device having a blue LED element was manufactured in the same manner as in Example 3.
  • the shear bond strength after cured bonding was 5 MPa.
  • the adhesive force of the film-form adhesive agent for optical semiconductor devices was 50 kN / m ⁇ 2 >, and the light absorption coefficient was 3.5 * 10 ⁇ 3 > / m.
  • the production efficiency was 1/5.
  • Example 9 Example 1 (square opening 1 mm ⁇ 1 mm, area ratio with optical semiconductor element 100%), except that the adhesive for an optical semiconductor device printed together with the PET separator in an 80 ° C. hot air circulation oven was dried for 15 minutes In the same manner as above, an adhesive sheet for optical semiconductor devices was obtained. Further, an optical semiconductor device having a blue LED element was manufactured in the same manner as in Example 3. The shear bond strength after curing and bonding was 4.2 MPa. Moreover, the adhesive force of the film-form adhesive for optical semiconductor devices was 300 kN / m ⁇ 2 >, and the light absorption coefficient was 3.5 * 10 ⁇ 3 > / m. The production efficiency was 1/5.
  • Example 2 The 10 ⁇ m-thick semi-cured adhesive for optical semiconductor devices produced in Example 1 was completely cured at 150 ° C. for 2 hours to obtain a cured product.
  • a blue LED element of 1 mm ⁇ 1 mm is attached to a 1 mm ⁇ 1 mm (100% area ratio with respect to the element) blue LED element (crimping) and then lifted while grasping the element with tweezers, for an optical semiconductor device
  • the adhesive did not stick to one surface of the blue LED element at all, and could not be peeled off from the base sheet. For this reason, the production efficiency could not be calculated.
  • the shear bond strength after curing and adhesion was not measured, and the adhesive strength was 1 kN / m 2 . Since it could not be peeled from the base material sheet, the light absorption coefficient could not be measured.
  • the comparative example 1 which manufactured the optical semiconductor device by the conventional method without using the adhesive agent for optical semiconductor devices of this invention requires the stamping of die-bonding agents, and used the adhesive agent for optical semiconductor devices of this invention.
  • the manufacturing time (manufacturing efficiency 1) was five times longer than the manufacturing time of the optical semiconductor device.
  • Example 2 in which the adhesive was completely cured before the optical semiconductor element was attached to obtain a cured product, the optical semiconductor device could not be manufactured.
  • stamping of the die bond agent can be omitted, and 1/5 compared with Comparative Example 1. It became clear that an optical semiconductor device can be manufactured in the manufacturing time (production efficiency 1/5).
  • the optical semiconductor element is fixed to the element mounting portion of the optical semiconductor device efficiently by the optical semiconductor device adhesive, the optical semiconductor device adhesive sheet, and the optical semiconductor device manufacturing method of the present invention. It has become clear that the productivity of manufacturing an optical semiconductor device can be increased.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and exhibits the same function and effect. Are included in the technical scope.

Abstract

 本発明は、ウエーハから切り出されソーティングされた光半導体素子を基材シート上からピックアップし、前記光半導体素子を光半導体装置内の素子取付部に搭載した後、前記光半導体素子を前記素子取付部に硬化接着するために用いる光半導体装置用接着剤であって、フィルム状に成形されており、前記基材シート上に配置されており、前記基材シートから剥離できるものであることを特徴とする光半導体装置用接着剤である。これにより、光半導体装置を効率よく製造でき、特にLED、LDをはじめとした光半導体素子を光半導体装置の素子取付部に固定するまでの作業を効率よく行うことができ、光半導体装置の製造の生産性を高めることができる光半導体装置用接着剤、光半導体装置用接着剤シート、その製造方法及び光半導体装置の製造方法が提供される。

Description

光半導体装置用接着剤、光半導体装置用接着剤シート、光半導体装置用接着剤シートの製造方法、及び光半導体装置の製造方法
 本発明は、半導体装置用接着剤に関し、特に光半導体装置用接着剤及びそれを用いた光半導体装置の製造方法に関するものである。
 
 光半導体装置の製造においては、光半導体素子を素子取付部に接着するための液状、ペースト状の硬化性接着剤(ダイボンド剤ともいう)と、光半導体素子を上から封止等する硬化性接着剤とが用いられてきた。青色LED(ライトエミッションダイオード)素子や、青色波長以下の発光波長を有するLED素子からの発光により波長変換を行うことで白色光を発するLED素子を有する光半導体装置の製造においては、光半導体素子を上から封止等する硬化性接着剤として液状、ペースト状のシリコーン系接着剤が用いられてきた。
 また、ダイボンド剤にも液状、ペースト状のシリコーン系のものが用いられており、シリコーン系ダイボンド剤は一般に内部応力が小さく、接着性に優れ、しかも光透過性に優れている(特許文献1、特許文献2)。具体的には、特許文献1ではエポキシ・シリコーン混成樹脂組成物をポッティングし、180℃で1時間硬化することで発光半導体装置を作製しており、また、特許文献2ではエポキシ・シリコーン混成樹脂組成物を底部に発光素子を配置させたカップ、キャビティ、パッケージ凹部等にディスペンサーその他の方法にて注入して加熱等により硬化させることで接着、封止している。
 このような、液状、ペースト状のシリコーン系ダイボンド剤の塗布方法としては、一般的にはスタンピングにより塗布する方法が用いられている。以下、ダイボンド剤をスタンピングすることにより光半導体装置を製造する方法について図3(B)を用いて説明する。まず、LED素子等の光半導体素子13’は1枚のウエーハ12’からダイサー11’により大量に切り出され(工程1’)、採取されるが、発光波長のばらつきが大きいため光半導体素子13’の1つ1つの発光波長を測定し、発光波長ごとに層別するソーティングという作業が行われる(工程2’)。次に、各層にソーティングされた光半導体素子13’は層ごとに1枚の粘着テープ21にまとめて貼り付けられる(工程3’)。その後、選択した発光波長層を有する光半導体素子13’が貼り付けられた粘着テープ21から光半導体素子13’を1個ずつ取り出すピックアップという作業を行う(工程4-1’)と同時に、別に配置された光半導体装置14’内の素子取付部15’に液状、ペースト状のダイボンド剤22をスタンピングにより塗布し(工程4-2’)、ピックアップした光半導体素子13’を素子取付部15’に置くという作業が行われ、加熱などによりダイボンド剤22が硬化され、光半導体素子13’と光半導体装置14’内の素子取付部15’が硬化接着させられる(工程5’)。
 しかし、上記光半導体装置の製造方法では、光半導体装置の素子取付部の一つ一つにダイボンド剤をスタンピングする必要があるため、時間がかかるという問題があった。この問題は液状、ペースト状のダイボンド剤を塗布等して使用する以上回避できない問題となっていた。その為、高効率生産性、生産コストダウンの観点から液状、ペースト状のダイボンド剤に代わる光半導体装置用接着剤及びそれを用いた光半導体装置の製造方法が望まれていた。
 
特許第4479883号公報 特開平2004-266134号公報
 本発明は、上記問題を解決するためになされたものであり、光半導体装置を効率よく製造でき、特にライトエミッションダイオード(以下LEDという)、レーザーダイオード(以下LDという)をはじめとした光半導体素子(ダイ、ダイスまたはチップともいう)を光半導体装置の素子取付部に固定するまでの作業を効率よく行うことができ、光半導体装置の製造の生産性を高めることができる光半導体装置用接着剤、光半導体装置用接着剤シート、その製造方法及び光半導体装置の製造方法を提供することを目的とする。
 上記課題を解決するため、本発明では、ウエーハから切り出されソーティングされた光半導体素子を基材シート上からピックアップし、前記光半導体素子を光半導体装置内の素子取付部に搭載した後、前記光半導体素子を前記素子取付部に硬化接着するために用いる光半導体装置用接着剤であって、フィルム状に成形されており、前記基材シート上に配置されており、前記基材シートから剥離できるものであることを特徴とする光半導体装置用接着剤を提供する。
 このように、上記光半導体装置用接着剤であれば、フィルム状に成形されているものであり、基材シート上に配置されているものであるためソーティングされた光半導体素子に光半導体装置用接着剤を貼り付けることができ、さらに基材シートから剥離できるためピックアップ時に光半導体素子と光半導体装置用接着剤は共に一体となって剥離しピックアップされ、そのまま素子取付部に搭載され、光半導体装置用接着剤を介して硬化接着することができる。そのため、前記素子取付部へのダイボンド剤のスタンピングが不要となり、光半導体装置を効率よく製造でき、特に、光半導体装置の素子取付部に固定するまでの作業を効率よく行うことができる光半導体装置用接着剤となる。
 また、前記光半導体素子の前記素子取付部に対する接着面の51%以上225%以下の面積を有する光半導体装置用接着剤であることが好ましい。
 このように、前記光半導体素子の前記素子取付部に対する接着面の51%以上225%以下の面積を有する光半導体装置用接着剤であれば、硬化後に充分な接着強度を得ることができ、また素子取付部を不必要に覆うことを回避できるため好ましい。
 さらに、被接着物に対する粘着力が20kN/m以上300kN/m以下の光半導体装置用接着剤であることが好ましい。
 このように、被接着物に対する粘着力が20kN/m以上300kN/m以下の光半導体装置用接着剤であれば、光半導体素子を基材シート上からピックアップする際に、光半導体素子と光半導体装置用接着剤とが剥がれにくいため共に一体となってピックアップしやすく、また、ピックアップの際に光半導体装置用接着剤が基材シートから剥離しやすいため、光半導体素子と光半導体装置用接着剤とが共に一体となってピックアップされやすいため好ましい。
 また、シリコーン組成物を51質量%以上含有する光半導体装置用接着剤であることが好ましい。
 このように、光透過性に優れるシリコーン組成物を51質量%以上含有する光半導体装置用接着剤であれば、該光半導体装置用接着剤を用いて製造された光半導体装置が、光半導体素子からの光の取り出し効率の良好な光半導体装置となるため好ましい。
 さらに、半硬化状態の光半導体装置用接着剤であることが好ましい。
 このように、半硬化状態の光半導体装置用接着剤であれば、光半導体素子が良好に圧着、貼り付けでき、また光半導体素子とフィルム状の光半導体装置用接着剤とが共に一体となってピックアップしやすくなるため好ましい。
 また、本発明では、前記基材シート上に、複数個の前記光半導体装置用接着剤を配置したものであることを特徴とする光半導体装置用接着剤シートを提供する。
 このように、上記光半導体装置用接着剤シートであれば、基材シート上に複数個の光半導体装置用接着剤が配置したものであるため、一枚の光半導体装置用接着剤シート上に複数の光半導体素子が貼り付けられることができる。さらに、ピックアップ時に光半導体素子と光半導体装置用接着剤は共に一体となって剥離しピックアップされ、そのまま素子取付部に搭載され、光半導体装置用接着剤を介して硬化接着されることができるものとなる。そのため、前記素子取付部へのダイボンド剤のスタンピングが不要となり、光半導体装置を効率よく製造でき、特に、光半導体装置の素子取付部に固定するまでの作業を効率よく行うことができる光半導体装置用接着剤シートとなる。
 さらに、本発明では、前記基材シート上に、スクリーン印刷により前記複数個の光半導体装置用接着剤を配置することを特徴とする光半導体装置用接着剤シートの製造方法を提供する。
 このように、上記光半導体装置用接着剤シートの製造方法であれば、該光半導体装置用接着剤シートの製造のハイスループット化が可能となり、また素子取付部に硬化接着される光半導体素子の接着面積に合わせて適当なパターンのスクリーン版を用いることで均一な形状、面積及び厚さを有するフィルム状の光半導体装置用接着剤を成形、配置することができる。
 また、本発明では、ウエーハから切り出されソーティングされた光半導体素子を光半導体装置内の素子取付部に硬化接着させて光半導体装置を製造する方法であって、前記ウエーハから切り出されソーティングされた光半導体素子を基材シート上に配置されたフィルム状の光半導体装置用接着剤に貼り付ける貼り付け工程、前記貼り付けられた光半導体素子を前記フィルム状の光半導体装置用接着剤と共に前記基材シート上から剥離してピックアップするピックアップ工程、及び前記ピックアップされた光半導体素子を前記フィルム状の光半導体装置用接着剤が前記素子取付部と接着するように搭載し、該フィルム状の光半導体装置用接着剤を硬化させ該光半導体素子を前記光半導体装置に硬化接着するダイボンド工程を有することを特徴とする光半導体装置の製造方法を提供する。
 このように、上記光半導体装置の製造方法であれば、貼り付け工程において光半導体素子の素子取付部に接着される面にフィルム状の光半導体装置用接着剤が貼り付けられることができ、ピックアップ工程において光半導体素子と光半導体装置用接着剤は共に一体となって剥離してピックアップされることができ、ダイボンド工程においてピックアップされた光半導体素子がそのまま素子取付部に搭載され、光半導体装置用接着剤を介して硬化接着することができる。そのため、前記素子取付部へのダイボンド剤のスタンピング工程が不要となり、光半導体装置を効率よく製造でき、特に、光半導体装置の素子取付部に固定するまでの作業を効率よく行うことができる光半導体装置の製造方法となる。
 以上説明したように、本発明によれば、光半導体装置を効率よく製造でき、特に光半導体素子を光半導体装置の素子取付部に固定するまでの作業を効率よく行うことができ、ダイボンド剤を素子取付部にスタンピングする時間を削減することができる光半導体装置用接着剤、光半導体装置用接着剤シート、その製造方法及び光半導体装置の製造方法を提供することができる。
 
本発明の光半導体装置用接着剤シートの上面図である。 本発明の光半導体装置用接着剤シートの側面図である。 (A)本発明の光半導体装置用接着剤を用いた光半導体装置の製造フローと、(B)従来の光半導体装置の製造フローを並べて示した図である。
 以下、本発明の光半導体装置用接着剤、光半導体装置用接着剤シート、光半導体装置用接着剤シートの製造方法、及び光半導体装置の製造方法について詳細に説明するが、本発明はこれらに限定されるものではない。
 前述のように、高効率生産性、生産コストダウンの観点から液状、ペースト状のダイボンド剤に代わる光半導体装置用接着剤及びそれを用いた光半導体装置の製造方法が望まれていた。
 本発明者らは、上記課題を達成するため鋭意検討を重ねた結果、ウエーハから切り出されソーティングされた光半導体素子を基材シート上からピックアップし、前記光半導体素子を光半導体装置内の素子取付部に搭載した後、前記光半導体素子を前記素子取付部に硬化接着するために用いる光半導体装置用接着剤であって、フィルム状に成形されており、前記基材シート上に配置されており、前記基材シートから剥離できるものであることを特徴とする光半導体装置用接着剤であれば、LED装置をはじめとした光半導体素子を有する光半導体装置の製造を効率よく行うことができ、特に光半導体素子を光半導体装置の素子取付部に固定するまでの作業を効率よく行うことができ、ダイボンド剤を素子取付部にスタンピングする時間を削減することができる光半導体装置用接着剤となることを見出し、本発明を完成させた。
 また、本発明者らは、ウエーハから切り出されソーティングされた光半導体素子を光半導体装置内の素子取付部に硬化接着させて光半導体装置を製造する方法であって、前記ウエーハから切り出されソーティングされた光半導体素子を基材シート上に配置されたフィルム状の光半導体装置用接着剤に貼り付ける貼り付け工程、前記貼り付けられた光半導体素子を前記フィルム状の光半導体装置用接着剤と共に一体として前記基材シート上から剥離してピックアップするピックアップ工程、及び前記ピックアップされた光半導体素子を前記フィルム状の光半導体装置用接着剤が前記素子取付部と接着するように搭載し、該フィルム状の光半導体装置用接着剤を硬化させ該光半導体素子を前記光半導体装置に硬化接着するダイボンド工程を有することを特徴とする光半導体装置の製造方法であれば、LED装置をはじめとした光半導体素子を有する光半導体装置の製造を効率よく行うことができ、特に光半導体素子を光半導体装置の素子取付部に固定するまでの作業を効率よく行うことができ、ダイボンド剤を素子取付部にスタンピングする時間を削減することができる光半導体装置の製造方法となることを見出し、本発明を完成させた。
 本発明は、ウエーハから切り出されソーティングされた光半導体素子を基材シート上からピックアップし、前記光半導体素子を光半導体装置内の素子取付部に搭載した後、前記光半導体素子を前記素子取付部に硬化接着するために用いる光半導体装置用接着剤であって、フィルム状に成形されており、前記基材シート上に配置されており、前記基材シートから剥離できるものであることを特徴とする光半導体装置用接着剤を提供する。
[光半導体素子]
 本発明に係る光半導体素子は、ウエーハから切り出されソーティングされた光半導体素子であり、一般的に光半導体素子として扱われているものであれば特に制限されず、LED、LDを例示することができる。このような光半導体素子は、特有の問題として、一般に光量や発光波長等のばらつきが大きい。そのため、光半導体装置に固着される前に発光波長等ごとに層別するソーティング作業が行われる。ソーティングは一つ一つの光半導体素子の発光波長を測定して行うため、ソーティングされた後の光半導体素子は、通常、粘着シートなどに層ごとに貼り付けておく必要がある。その点、本発明にかかる光半導体素子は、ウエーハから切り出されソーティングされた後、素子取付部に接着される面に本発明の光半導体装置用接着剤が貼り付けられるものであり、光半導体装置内の素子取付部に搭載された後、本発明の光半導体装置用接着剤により前記素子取付部に硬化接着されるものである。従って、ソーティングされた光半導体素子が基材シート上の光半導体装置用接着剤に貼り付けられる工程において、ソーティングされた光半導体素子を層ごとに貼り付けておくことと、光半導体装置用接着剤を圧着し貼り付けることが同時に達せられることとなる。
[基材シート]
 本発明に係る基材シートは、その上に本発明の光半導体装置用接着剤が配置されるものであり、かつ本発明の光半導体装置用接着剤がその上から剥離できるものであれば特に制限はされない。このような基材シートとしては、例えばPETフィルム上に離型剤がコートされたPETセパレーターを使用することができる。前記ウエーハから切り出されソーティングされた光半導体素子は、前記基材シート上に配置された光半導体装置用接着剤に貼り付けられ、前記基材シート上からピックアップされ、光半導体装置内の素子取付部に搭載される。この際に、前記基材シートは、本発明の光半導体装置用接着剤が剥離できるものであるため、光半導体装置用接着剤はピックアップされた光半導体素子と共に一体となって基材シート上から剥離してピックアップされる。
[光半導体装置内の素子取付部]
 本発明の光半導体装置内の素子取付部は、前記光半導体素子が搭載される部分である。
[光半導体装置用接着剤]
 本発明の光半導体装置用接着剤は、前記光半導体素子を前記光半導体装置内の素子取付部に硬化接着するために用いる光半導体装置用接着剤であって、フィルム状に成形されており、前記基材シート上に配置されており、前記基材シートから剥離できるものである。そのため、まず、前記ウエーハから切り出されソーティングされた光半導体素子は、前記基材シート上に配置されフィルム状に成形された光半導体装置用接着剤に貼り付けられる(貼り付け工程)。さらに、光半導体装置用接着剤はピックアップされた光半導体素子と共に一体となって基材シート上から剥離してピックアップされる(ピックアップ工程)。その後、光半導体素子が素子取付部に搭載され、硬化接着される工程において、本発明の光半導体装置用接着剤を介して前記光半導体素子が素子取付部に搭載され、硬化接着される(ダイボンド工程)。これにより、本発明の光半導体装置用接着剤によれば、前記素子取付部にダイボンド剤をスタンピングせずに前記光半導体素子を硬化接着でき、光半導体装置の素子取付部に固定するまでの作業を効率よく行うことができ、光半導体装置の製造の生産性を高めることができる。
・フィルム状の光半導体装置用接着剤
 本発明の光半導体装置用接着剤は、フィルム状に成形されているものである。そのため、基材シート上に成形しやすく、また剥離しやすい。その上、前記光半導体素子には均一な形状、面積及び厚みの光半導体装置用接着剤のフィルムが貼り付けられることができるため、硬化接着後の光半導体装置の品質は一定のものに保たれる。
 本発明の光半導体装置用接着剤は、フィルム状に成形されており、その面積は前記光半導体素子の前記素子取付部に対する接着面の51%以上225%以下の面積であることが好ましく、より好ましくは71%以上200%以下の面積である。フィルム面積が51%以上であれば、硬化後に充分な接着強度を得ることができるため好ましく、225%以下であれば、素子取付部を不必要に覆うことを回避できるため好ましい。
 また、本発明の光半導体装置用接着剤は、フィルム状に成形されており、その厚さは1μm以上150μm以下の範囲が好ましく、特に3μm以上100μm以下であることが好ましい。厚さが1μm以上であれば、硬化後に充分な接着強度を得ることができるため好ましく、150μm以下であれば、光半導体素子が硬化接着された光半導体装置が厚くなりすぎること等を回避できるため好ましい。
・前記基材シート上に配置された光半導体装置用接着剤
 本発明の光半導体装置用接着剤は、前記基材シート上に配置されているものである。そのため、ウエーハから切り出された後、光量や発光波長等に応じてソーティングされた光半導体素子は、層ごとに基材シート上に配置された光半導体装置用接着剤に個々貼り付けられることができる。
・前記基材シートから剥離できる光半導体装置用接着剤
 本発明の光半導体装置用接着剤は、前記基材シートから剥離できるものである。そのため、光半導体装置用接着剤はピックアップされた光半導体素子と共に一体となって基材シート上から剥離してピックアップされる。その後、ダイボンド工程において、本発明の光半導体装置用接着剤を介して前記光半導体素子が素子取付部に搭載され、硬化接着される。以上により、本発明の光半導体装置用接着剤によれば、前記素子取付部にダイボンド剤をスタンピングせずに前記光半導体素子を硬化接着でき、光半導体装置の素子取付部に固定するまでの作業を効率よく行うことができ、光半導体装置の製造の生産性を高めることができる。
 本発明の光半導体装置用接着剤は、前記基材シートから剥離できるものであり、被接着物に対する粘着力が20kN/m以上300kN/m以下であることが好ましく、30kN/m以上200kN/m以下であることがより好ましい。この粘着力はJIS Z 3284「ソルダーペースト」の粘着性試験における粘着力である。20kN/m以上であれば、基材シート上からのピックアップの際に光半導体素子とフィルム状の光半導体装置用接着剤とが共に一体となってピックアップされやすいため好ましく、また、300kN/m以下であれば、ピックアップの際に光半導体装置用接着剤が基材シートから剥離しやすいため好ましい。
 その他、本発明の光半導体装置用接着剤はシリコーン組成物を51質量%以上100質量%以下含有するものであることが好ましい。シリコーン組成物を51質量%以上含有することで、光半導体装置用接着剤を用いて光半導体素子が硬化接着された光半導体装置は、光の取り出し効率の良好な光半導体装置となる。また、本発明の光半導体装置用接着剤に含有されるその他成分としては接着助剤、制御剤、硬化触媒、フィラーを適当量配合することができる。
 また、本発明の光半導体装置用接着剤の光吸収係数は1.0×10/m以下であることが好ましい。
 さらに、本発明の光半導体装置用接着剤は半硬化状態のものであることが好ましい。この半硬化状態とは、JIS K 6800「接着剤・接着用語」に定義されているようなB-ステージ(熱硬化性樹脂の硬化中間体、この状態での樹脂は加熱すると軟化し、ある種の溶剤に触れると膨潤するが、完全に溶融、溶解することはない)状態をいうものである。フィルム状の光半導体装置用接着剤が半硬化状態であれば、光半導体素子が良好に貼り付け(圧着)でき、また光半導体素子とフィルム状の光半導体装置用接着剤とが共に一体となってピックアップしやすくなるため好ましい。
[光半導体装置用接着剤シート]
 また、本発明は前記基材シート上に、複数個の前記光半導体装置用接着剤を配置したものであることを特徴とする光半導体装置用接着剤シートを提供する。図1に、本発明の光半導体装置用接着剤シートの上面図を例示し、図2に側面図を例示する。このように、本発明の光半導体装置用接着剤シート3は基材シート2上に、複数個のフィルム状の前記光半導体装置用接着剤1を配置したものである。
 ウエーハから切り出されソーティングされた前記光半導体素子は、光半導体装置用接着剤シートの複数個の光半導体装置用接着剤に個々貼り付けられる(貼り付け工程)。よって、一枚の光半導体装置用接着剤シート上に複数の光半導体素子が貼り付けられることとなる。さらに、光半導体素子のピックアップ時において、光半導体装置用接着剤は光半導体素子と共に一体となって基材シート上から剥離してピックアップされる(ピックアップ工程)。その後、光半導体素子が素子取付部に搭載され、硬化接着される工程において、本発明の光半導体装置用接着剤を介して前記光半導体素子が素子取付部に搭載され、硬化接着される(ダイボンド工程)。これにより、本発明の光半導体装置用接着剤シートによれば、前記素子取付部にダイボンド剤をスタンピングせずに前記光半導体素子を硬化接着でき、光半導体装置の素子取付部に固定するまでの作業を効率よく行うことができ、光半導体装置の製造の生産性を高めることができる。
 また、この際、ウエーハから切り出された後、光半導体素子を光量や発光波長等に応じてソーティング(層別)したときに、特定の層を有する光半導体素子を同一の光半導体装置用接着剤シートに貼り付け、特定の層と異なる層を有する光半導体素子を異なる光半導体装置用接着剤シートに貼り付ける使用形態とすることもできる。結果、層ごとの光半導体素子が貼り付けられた光半導体装置用接着剤シートができる。これにより、特定の層の光半導体素子が接着された光半導体装置用接着剤シートをそのままダイボンダーに設置して、特定の層を有する光半導体素子をまとめて素子取付部にダイボンドすることができる。このような使用形態であれば、生産性の観点から好ましい。
[光半導体装置用接着剤シートの製造方法]
 さらに、本発明は前記基材シート上に、スクリーン印刷により前記複数個の光半導体装置用接着剤を配置することを特徴とする前記光半導体装置用接着剤シートの製造方法を提供する。これにより、光半導体装置用接着剤シートの製造のハイスループット化が可能となり、また素子取付部に硬化接着される光半導体素子の接着面積に合わせて適当なパターンのスクリーン版を用いることで均一な形状、面積及び厚さを有するフィルム状の光半導体装置用接着剤を成形することができる。
[光半導体装置の製造方法]
 また、本発明は、ウエーハから切り出されソーティングされた光半導体素子を光半導体装置内の素子取付部に硬化接着させて光半導体装置を製造する方法であって、前記ウエーハから切り出されソーティングされた光半導体素子を基材シート上に配置されたフィルム状の光半導体装置用接着剤に貼り付ける貼り付け工程、前記貼り付けられた光半導体素子を前記フィルム状の光半導体装置用接着剤と共に前記基材シート上から剥離してピックアップするピックアップ工程、及び前記ピックアップされた光半導体素子を前記フィルム状の光半導体装置用接着剤が前記素子取付部と接着するように搭載し、該フィルム状の光半導体装置用接着剤を硬化させ該光半導体素子を前記光半導体装置に硬化接着するダイボンド工程を有することを特徴とする光半導体装置の製造方法を提供する。
 はじめに、液状、ペースト状のダイボンド剤を使用する従来の光半導体装置の製造方法について、図3(B)を用いて説明する。図3(B)には従来の光半導体装置の製造方法のフロー図が示してある。まず、LED素子等の光半導体素子13’がダイサー11’によりウエーハ12’から切り出される(工程1’)。切り出された光半導体素子13’は光量や発光波長等のばらつきが大きいため発光波長などを測定し、ソーティング(層別)され(工程2’)、各層にソーティングされた光半導体素子13’は、層ごとに粘着シート21上に貼り付けられる貼り付け工程(工程3’)がされる。続いて、選択した発光波長層の粘着シート21上から、前記貼り付けられた光半導体素子13’をピックアップするピックアップ工程(工程4-1’)をすると同時に、別に配置された光半導体装置14’内の素子取付部15’にダイボンド剤22をスタンピングにより塗布し(工程4-2’)、ピックアップした光半導体素子13’をダイボンド剤22を介して素子取付部15’に搭載し、ダイボンド剤22を硬化させて接着するダイボンド工程(工程5’)を行う。しかし、前述のように、上記光半導体装置の製造方法ではダイボンド剤のスタンピング(工程4-2’)に時間がかかるという問題を有しており、この問題は液状、ペースト状のダイボンド剤を使用する以上回避できない問題となっていた。その為、液状、ペースト状のダイボンド剤に代わる光半導体装置用接着剤及びそれを用いた光半導体装置の製造方法が望まれていた。
 次に、上記本発明の光半導体装置の製造方法の一実施態様について、図3(A)を用いて説明する。図3(A)には、本発明の光半導体装置の製造方法のフロー図が示してある。まず、LED素子等の光半導体素子13がダイサー11によりウエーハ12から切り出される(工程1)。切り出された光半導体素子13は光量や発光波長等のばらつきが大きいため発光波長などを測定し、ソーティングされる(工程2)。この際、ソーティング(層別)したときに、特定の層を有する光半導体素子を同一の光半導体装置用接着剤シートに貼り付け、特定の層と異なる層を有する光半導体素子を異なる光半導体装置用接着剤シートに貼り付けることもできる。その場合は続く工程において、特定の層の光半導体素子が接着された光半導体装置用接着剤シートをそのままダイボンダーに設置して、特定の層を有する光半導体素子をまとめて素子取付部にダイボンドすることができるため好ましい。
(貼り付け工程)
 各層にソーティングされた光半導体素子13は、層ごとに基材シート2上に配置されたフィルム状の光半導体装置用接着剤1に貼り付けられる貼り付け工程(工程3)がされる。この貼り付け工程により、ソーティングされた光半導体素子を一時貼り付けておくことと、光半導体素子に本発明の光半導体装置用接着剤を圧着し貼り付けることが同時に達せられることとなる。
 この貼り付け工程の前に、フィルム状の光半導体装置用接着剤を半硬化状態にすることもできる。半硬化状態にする方法は特に限定されないが、熱風循環式オーブンを用いて行うことが例示される。熱風循環式オーブンを用いて乾燥させる温度としては特に限定されないが40℃以上150℃未満が好ましく40℃以上140℃以下がより好ましい。温度が40℃以上であれば、硬化に要する時間が長くなることを抑制でき、また温度が150度未満であれば硬化速度が速すぎて完全に硬化してしまうことを抑制できるため好ましい。また、熱風循環式オーブンを用いて乾燥させる時間としては、10秒以上2時間未満が好ましく、10秒以上1時間半以下がより好ましい。時間が10秒以上であれば、光半導体素子が良好に貼り付け(圧着)でき、また光半導体素子とフィルム状の光半導体装置用接着剤とが共に一体となってピックアップしやすくなるため好ましく、また時間が2時間未満であれば完全に硬化してしまうことを抑制できるため好ましい。
(ピックアップ工程)
 続いて、選択した発光波長層の光半導体装置用接着剤シート3において、前記貼り付けられた光半導体素子13を前記フィルム状の光半導体装置用接着剤1と共に前記基材シート2上から剥離してピックアップするピックアップ工程(工程4)をし、これによりフィルム状の光半導体装置用接着剤1が接着した光半導体素子13がピックアップされる。
(ダイボンド工程)
 前記ピックアップされた光半導体素子13を前記フィルム状の光半導体装置用接着剤1が光半導体装置14の素子取付部15と接着するように搭載し、該フィルム状の光半導体装置用接着剤1を硬化させ該光半導体素子13を前記光半導体装置14に硬化接着するダイボンド工程(工程5)を行う。これにより、ダイボンド剤をスタンピングすることなく、光半導体素子を光半導体装置の素子取付部に固定するまでの作業を効率よく行うことができ、光半導体装置の製造の生産性を高めることができる光半導体装置の製造方法となる。
 
 以下、本発明の光半導体装置用接着剤、光半導体装置用接着剤シート及び光半導体装置の製造方法の実施例及び比較例を示して本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。はじめに本発明の光半導体装置用接着剤シートの実施例1及び実施例2について説明する。
 
[光半導体装置用接着剤、光半導体装置用接着剤シート及びその製造方法]
(実施例1)
 光半導体装置用接着剤として硬化性シリコーン組成物であるKER-3000-M4(信越化学工業株式会社製)、基材シートとしてPETセパレーター、PET#38x-41-3035、38μm(株式会社タカラインコーポレーション製)、スクリーン版として1mm×1mmの四角開口部が10個並んだ行を10行、合計100個の開口部を間隔0.5mmで規則的に配列したスクリーン版、スクリーン印刷機としてミノグループ製のスクリーン印刷機を用いた。
 これらを用い、スキージ角度70°、スキージ速度300mm/sec、クリアランス量1mmにて、基材シート上にスクリーン印刷により100個の光半導体装置用接着剤を配置した。その後、120℃の熱風循環式オーブン中でPETセパレーターごと印刷された光半導体装置用接着剤を120秒間乾燥することにより、PETセパレーター上に半硬化状態のフィルム状の光半導体装置用接着剤が配置された光半導体装置用接着剤シートを得た。この光半導体装置用接着剤は1mm×1mm(実施例において接着される光半導体素子との面積割合100%)の四角形状で厚さ10μmであった。
 上記実施例1のようにして製造された光半導体装置用接着剤シートは、複数個の光半導体装置用接着剤を配置したものとなる。また、基材シート上の光半導体装置用接着剤は、フィルム状に成形されており、前記基材シート上に配置されており、前記基材シートから剥離できるものとなる。以下、詳細に説明していく。
[接着強度の評価]
 実施例1で得られた光半導体装置用接着剤シートのフィルム状の光半導体装置用接着剤を用いて、光半導体素子の接着強度を評価した。このフィルム状の光半導体装置用接着剤に1mm×1mmの接着面積を有する青色LED素子を圧着した後、ピンセットで素子をつかみながら持ち上げたところ、PETセパレーターから光半導体装置用接着剤を容易に剥すことができた。このときにはフィルム状の光半導体装置用接着剤は素子の一面(素子取付部に接着される面)にきれいに貼り付いたまま光半導体素子と共に一体となってピックアップされた。その後、このフィルム状の光半導体装置用接着剤付き光半導体素子を、銀メッキを施した銅板(素子取付部に相当)にフィルム状の光半導体装置用接着剤を介して接着するように圧着した後、150℃の熱風循環式オーブン中で2時間加熱して硬化接着させた。硬化接着後のせん断接着強度は4MPaであった。せん断接着強度は強度テスター(デイジ社製)を用いて測定した。
 
(実施例2)
 また、使用するスクリーン版の四角開口部を100mm×100mmとした以外は実施例1と同様にして、厚さ10μmの半硬化状態のフィルム状の光半導体装置用接着剤が配置された光半導体装置用接着剤シートを得た。続いて、以下の方法で基材シート上の光半導体装置用接着剤の粘着力の評価、光透過性の評価を行った。
[粘着力の評価]
 実施例2で得られた光半導体装置用接着剤シートのフィルム状の光半導体装置用接着剤を用いて、粘着力タッキネステスター(株式会社マルコム製)にて評価した。評価方法は定圧浸入方式(JIS規格準拠)にて行った。結果、粘着力は30kN/mであった。
[光透過性(光吸収係数)の評価]
 実施例2で得られた光半導体装置用接着剤シートのフィルム状の光半導体装置用接着剤を用いて、光透過性(光吸収係数)を、分光光度計(株式会社日立ハイテクノロジーズ製)にて評価した。厚さ1mmの石英ガラスに実施例2の光半導体装置用接着剤シートの光半導体装置用接着剤を貼り付けて測定サンプルとした。空気のみ(測定サンプルなし)の時を光透過率1とし、波長400nmから800nmでの測定平均値を光透過率とした。光吸収係数は次の式(1)により定義し、式(2)により算出した。
T∝exp(-β・t)    (1)
 ここでTは光透過率、Rは境界面での反射率、tは光半導体装置用接着剤の厚さ、そしてβが光吸収係数である。式(1)から光吸収係数βは厚さの異なる測定サンプルの光透過率Tを測定し、この光透過率の対数ln(T)と厚さtのグラフの傾きから求めることができる。すなわち
β=ln(T/T)/(t-t)    (2)
 厚さt、tと光透過率T、Tの添字の1、2は異なる厚さの光半導体装置用接着剤サンプル番号を示す。本光透過性の評価では、添字のtを10μmとし、tをtを2枚重ね合わせた20μmとし、それぞれの光透過率T、Tを測定した。その結果、光半導体装置用接着剤の光吸収係数は3.5×10/mであった。
 以下、前記実施例1と同様にして、スクリーン版の四角開口部の大きさ(光半導体素子との面積割合)だけを変化させて、フィルム状の光半導体装置用接着剤が配置された光半導体装置用接着剤シートを得、それを用いた光半導体装置の製造方法の実施例3~8について説明する。なお、各実施例中のスクリーン版の四角開口部の大きさ(接着剤面積)、素子との面積割合(光半導体装置の素子取付部に対する接着面積)、粘着力、硬化接着後のせん断接着強度、光半導体装置の製造効率、光吸収係数についてまとめた結果を表1に示す。なお、粘着力、硬化接着後のせん断接着強度、光吸収係数は上記の評価と同様にして求めた。
 
(実施例3)
 使用するスクリーン版の四角開口部を0.7mm×0.7mm(光半導体素子との面積割合49%)とした以外は実施例1と同様に行い光半導体装置用接着剤シートを得た。その後、ウエーハから切り出されソーティングされた1mm×1mmの青色LED素子100個を基材シート上に配置されたフィルム状の光半導体装置用接着剤に貼り付けて、貼り付けられた青色LED素子をフィルム状の光半導体装置用接着剤と共に基材シート上から剥離してピックアップし、ピックアップされた青色LED素子をフィルム状の光半導体装置用接着剤が素子取付部と接着するように搭載し、フィルム状の光半導体装置用接着剤を硬化させ青色LED素子を光半導体装置に硬化接着して、青色LED素子を有する光半導体装置を製造した。硬化接着後のせん断接着強度は3.5MPaであった。また、フィルム状の光半導体装置用接着剤の粘着力は30kN/mであり、光吸収係数は3.5×10/mであった。製造効率は下記の比較例1に要した時間を製造効率1としたとき、1/5であった。
 
(実施例4)
 使用するスクリーン版の四角開口部を1.5mm×1.5mm(光半導体素子との面積割合225%)とした以外は実施例1と同様に行い光半導体装置用接着剤シートを得た。また、実施例3と同様にして青色LED素子を有する光半導体装置を製造した。硬化接着後のせん断接着強度は4.5MPaであった。また、フィルム状の光半導体装置用接着剤の粘着力は30kN/mであり、光吸収係数は3.5×10/mであった。製造効率は1/5であった。
 
(実施例5)
 使用するスクリーン版の四角開口部を0.6mm×0.6mm(光半導体素子との面積割合36%)とした以外は実施例1と同様に行い光半導体装置用接着剤シートを得た。また、実施例3と同様にして青色LED素子を有する光半導体装置を製造した。硬化接着後のせん断接着強度は1.5MPaであった。また、フィルム状の光半導体装置用接着剤の粘着力は30kN/mであり、光吸収係数は3.5×10/mであった。製造効率は1/5であった。
 
(実施例6)
 使用するスクリーン版の四角開口部を1.6mm×1.6mm(光半導体素子との面積割合256%)とした以外は実施例1と同様に行い光半導体装置用接着剤シートを得た。また、実施例3と同様にして青色LED素子を有する光半導体装置を製造した。この際に、1mm×1mmの青色LED素子を圧着した後にピンセットで素子をつかみながら持ち上げたところ、PETセパレーターから光半導体装置用接着剤を剥す際に外周部分が折れ曲がり、きれいに剥離できないものが10%あった。硬化接着後のせん断接着強度は4.7MPaであった。また、フィルム状の光半導体装置用接着剤の粘着力は30kN/mであり、光吸収係数は3.5×10/mであった。製造効率は1/5であった。
 
(実施例7)
 120℃の熱風循環式オーブン中でPETセパレーターごと印刷された光半導体装置用接着剤を90秒間乾燥とした以外は実施例1(四角開口部1mm×1mm、光半導体素子との面積割合100%)と同様に行い光半導体装置用接着剤シートを得た。また、実施例3と同様にして青色LED素子を有する光半導体装置を製造した。硬化接着後のせん断接着強度は3.5MPaであった。また、フィルム状の光半導体装置用接着剤の粘着力は35kN/mであり、光吸収係数は3.5×10/mであった。製造効率は1/5であった。
 
(実施例8)
 80℃の熱風循環式オーブン中でPETセパレーターごと印刷された光半導体装置用接着剤を20分間乾燥とした以外は実施例1(四角開口部1mm×1mm、光半導体素子との面積割合100%)と同様に行い光半導体装置用接着剤シートを得た。また、実施例3と同様にして青色LED素子を有する光半導体装置を製造した。硬化接着後のせん断接着強度は5MPaであった。また、フィルム状の光半導体装置用接着剤の粘着力は50kN/mであり、光吸収係数は3.5×10/mであった。製造効率は1/5であった。
 
(実施例9)
 80℃の熱風循環式オーブン中でPETセパレーターごと印刷された光半導体装置用接着剤を15分間乾燥したこと以外は実施例1(四角開口部1mm×1mm、光半導体素子との面積割合100%)と同様に行い光半導体装置用接着剤シートを得た。また、実施例3と同様にして青色LED素子を有する光半導体装置を製造した。硬化接着後のせん断接着強度は4.2MPaであった。また、フィルム状の光半導体装置用接着剤の粘着力は300kN/mであり、光吸収係数は3.5×10/mであった。製造効率は1/5であった。
 
(比較例1)
 ペースト状のダイボンド剤を用いた従来の光半導体装置の製造方法の製造効率を実施例と同じダイボンダー(エーエスエム・アッセンブリー・テクノロジー株式会社製)にて評価した。1mm×1mmの青色LED素子100個を粘着フィルムELP V-8S(日東電工株式会社製)の上に圧着固定してダイボンダーに設置してダイボンドを行った。ダイボンド剤のスタンピングに時間がかかり、光半導体装置用接着剤シートを使用する時間よりも5倍の製造時間(製造効率1)がかかった。硬化接着後のせん断接着強度は4.0MPaであった。光吸収係数は3.5×10/mであった。
 
(比較例2)
 実施例1で作製した厚さ10μmの半硬化状態の光半導体装置用接着剤を150℃、2時間で完全硬化させ硬化物とした。1mm×1mm(素子との面積割合100%)の四角形状の完全硬化フィルムに、1mm×1mmの青色LED素子を貼り付けた(圧着)後にピンセットで素子をつかみながら持ち上げたところ、光半導体装置用接着剤は青色LED素子の一面にまったく貼り付かず、基材シートから剥離できなかった。そのため、製造効率は算出できなかった。なお、比較例2では、硬化接着後のせん断接着強度は測れず、粘着力は1kN/mであった。基材シートから剥離できなかったため、光吸収係数は測定できなかった。
Figure JPOXMLDOC01-appb-T000001
 以上、本発明の光半導体装置用接着剤を用いず、従来法により光半導体装置を製造した比較例1は、ダイボンド剤のスタンピングが必要であり、本発明の光半導体装置用接着剤を使用した光半導体装置の製造時間よりも5倍の製造時間(製造効率1)がかかった。また、光半導体素子の貼り付け前に接着剤を完全硬化して硬化物とした実施例2では、光半導体装置を製造することができなかった。一方で、本発明の光半導体装置用接着剤を用いて光半導体装置を製造した実施例3~8によれば、ダイボンド剤のスタンピングを省略することができ、比較例1に比べて1/5の製造時間(製造効率1/5)で光半導体装置を製造できることが明らかとなった。これにより、本発明の光半導体装置用接着剤、光半導体装置用接着剤シート及び光半導体装置の製造方法により、光半導体素子を光半導体装置の素子取付部に固定するまでの作業を効率よく行うことができ、光半導体装置の製造の生産性を高めることができることが明らかとなった。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (8)

  1.  ウエーハから切り出されソーティングされた光半導体素子を基材シート上からピックアップし、前記光半導体素子を光半導体装置内の素子取付部に搭載した後、前記光半導体素子を前記素子取付部に硬化接着するために用いる光半導体装置用接着剤であって、
     フィルム状に成形されており、前記基材シート上に配置されており、前記基材シートから剥離できるものであることを特徴とする光半導体装置用接着剤。
     
  2.  前記光半導体素子の前記素子取付部に対する接着面の51%以上225%以下の面積を有するものであることを特徴とする請求項1に記載の光半導体装置用接着剤。
     
  3.  被接着物に対する粘着力が20kN/m以上300kN/m以下のものであることを特徴とする請求項1又は請求項2に記載の光半導体装置用接着剤。
     
  4.  シリコーン組成物を51質量%以上含有するものであることを特徴とする請求項1乃至請求項3のいずれか1項に記載の光半導体装置用接着剤。
     
  5.  半硬化状態のものであることを特徴とする請求項1乃至請求項4のいずれか1項に記載の光半導体装置用接着剤。
     
  6.  前記基材シート上に、複数個の請求項1乃至請求項5のいずれか1項に記載の前記光半導体装置用接着剤を配置したものであることを特徴とする光半導体装置用接着剤シート。
     
  7.  前記基材シート上に、スクリーン印刷により前記複数個の光半導体装置用接着剤を配置することを特徴とする請求項6に記載の光半導体装置用接着剤シートの製造方法。
     
  8.  ウエーハから切り出されソーティングされた光半導体素子を光半導体装置内の素子取付部に硬化接着させて光半導体装置を製造する方法であって、
     前記ウエーハから切り出されソーティングされた光半導体素子を基材シート上に配置されたフィルム状の光半導体装置用接着剤に貼り付ける貼り付け工程、
     前記貼り付けられた光半導体素子を前記フィルム状の光半導体装置用接着剤と共に前記基材シート上から剥離してピックアップするピックアップ工程、及び
     前記ピックアップされた光半導体素子を前記フィルム状の光半導体装置用接着剤が前記素子取付部と接着するように搭載し、該フィルム状の光半導体装置用接着剤を硬化させ該光半導体素子を前記光半導体装置に硬化接着するダイボンド工程を有することを特徴とする光半導体装置の製造方法。
     
     
PCT/JP2011/005650 2010-11-02 2011-10-07 光半導体装置用接着剤、光半導体装置用接着剤シート、光半導体装置用接着剤シートの製造方法、及び光半導体装置の製造方法 WO2012060053A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020137010908A KR20130124498A (ko) 2010-11-02 2011-10-07 광반도체 장치용 접착제, 광반도체 장치용 접착제 시트, 광반도체 장치용 접착제 시트의 제조 방법, 및 광반도체 장치의 제조 방법
CN2011800528888A CN103201860A (zh) 2010-11-02 2011-10-07 光半导体装置用粘着剂、光半导体装置用粘着剂薄片、光半导体装置用粘着剂薄片的制造方法及光半导体装置的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010246631A JP5485112B2 (ja) 2010-11-02 2010-11-02 光半導体装置の製造方法
JP2010-246631 2010-11-02

Publications (1)

Publication Number Publication Date
WO2012060053A1 true WO2012060053A1 (ja) 2012-05-10

Family

ID=46024181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005650 WO2012060053A1 (ja) 2010-11-02 2011-10-07 光半導体装置用接着剤、光半導体装置用接着剤シート、光半導体装置用接着剤シートの製造方法、及び光半導体装置の製造方法

Country Status (5)

Country Link
JP (1) JP5485112B2 (ja)
KR (1) KR20130124498A (ja)
CN (1) CN103201860A (ja)
TW (1) TW201224106A (ja)
WO (1) WO2012060053A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2610058A4 (en) * 2011-06-07 2014-08-13 Toray Industries RESIN SHEET LAMINATE BODY, METHOD FOR PRODUCING SAME, AND METHOD FOR PRODUCING LED CHIP COMPRISING PHOSPHORUS-CONTAINING RESIN SHEET USING THE SAME
JP6072663B2 (ja) * 2013-10-15 2017-02-01 信越化学工業株式会社 加熱硬化型導電性シリコーン組成物、該組成物からなる導電性接着剤、該組成物からなる導電性ダイボンド材、該ダイボンド材の硬化物を有する光半導体装置。
EP3834225A4 (en) 2018-11-16 2021-08-11 Samsung Electronics Co., Ltd. LED TRANSMISSION DEVICE WITH MASK AND MICRO-LED TRANSMISSION METHOD WITH IT
CN113299577A (zh) * 2020-02-21 2021-08-24 均华精密工业股份有限公司 粘晶机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173652A (ja) * 2000-12-06 2002-06-21 Hitachi Chem Co Ltd 接着フィルム、それを用いた半導体装置及び半導体装置の製造方法
JP2004026953A (ja) * 2002-06-24 2004-01-29 Three M Innovative Properties Co フィルム接着剤、半導体装置及びその製造方法
JP2008091855A (ja) * 2006-09-06 2008-04-17 Toshiba Lighting & Technology Corp 照明装置
JP2008098215A (ja) * 2006-10-06 2008-04-24 Nippon Steel Chem Co Ltd 接着剤付半導体素子の製造方法、及びその製造方法に用いる接着剤付フィルム
JP2010219562A (ja) * 2006-08-29 2010-09-30 Toshiba Lighting & Technology Corp 照明装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07131076A (ja) * 1993-11-08 1995-05-19 Victor Co Of Japan Ltd Ledアレイ装置
EP1516031B1 (en) * 2002-06-24 2007-08-15 3M Innovative Properties Company Heat curable adhesive composition, article, semiconductor apparatus and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173652A (ja) * 2000-12-06 2002-06-21 Hitachi Chem Co Ltd 接着フィルム、それを用いた半導体装置及び半導体装置の製造方法
JP2004026953A (ja) * 2002-06-24 2004-01-29 Three M Innovative Properties Co フィルム接着剤、半導体装置及びその製造方法
JP2010219562A (ja) * 2006-08-29 2010-09-30 Toshiba Lighting & Technology Corp 照明装置
JP2008091855A (ja) * 2006-09-06 2008-04-17 Toshiba Lighting & Technology Corp 照明装置
JP2008098215A (ja) * 2006-10-06 2008-04-24 Nippon Steel Chem Co Ltd 接着剤付半導体素子の製造方法、及びその製造方法に用いる接着剤付フィルム

Also Published As

Publication number Publication date
CN103201860A (zh) 2013-07-10
KR20130124498A (ko) 2013-11-14
JP2012099664A (ja) 2012-05-24
TW201224106A (en) 2012-06-16
JP5485112B2 (ja) 2014-05-07

Similar Documents

Publication Publication Date Title
JP5287935B2 (ja) 蛍光体含有シート、それを用いたled発光装置およびその製造方法
JP6354159B2 (ja) 半導体発光素子の製造方法
JP5862066B2 (ja) 蛍光体含有シート、それを用いたled発光装置およびその製造方法
WO2013137356A1 (ja) 半導体発光装置及びその製造方法
WO2012169289A1 (ja) 樹脂シート積層体、その製造方法およびそれを用いた蛍光体含有樹脂シート付きledチップの製造方法
CN103715109B (zh) 在裸片垫上具有印刷电介质粘合剂的封装ic
JP5860289B2 (ja) Led装置の製造方法
WO2017057454A1 (ja) 発光装置の製造方法および表示装置の製造方法
JP2014022704A (ja) 蛍光体含有樹脂シートと発光装置及びその製造方法
TW201127930A (en) Adhesive film with dicing sheet and fabricating method thereof
JP5485112B2 (ja) 光半導体装置の製造方法
CN1630050A (zh) 半导体装置的制造方法
TW582078B (en) Packaging process for improving effective die-bonding area
CN105895540A (zh) 晶圆背面印胶的封装方法
JP5953797B2 (ja) 半導体発光装置の製造方法
WO2014119161A1 (ja) 光半導体用シートおよび光半導体装置
JP3994498B2 (ja) 半導体装置の製造方法
CN102110747A (zh) 倒装芯片式发光二极管模块的制造方法
TWI415198B (zh) 半導體裝置之製造方法
JP2002275435A (ja) 半導体装置組立用マスクシートおよび半導体装置の組み立て方法
CN110854258B (zh) 一种三色led灯珠的制造方法
US7498202B2 (en) Method for die attaching
WO2002075809A1 (fr) Masque pour l'assemblage d'un dispositif a semiconducteur et procede d'assemblage dudit dispositif
JP2013089750A (ja) 光半導体装置用粘着フィルム、光半導体装置用粘着フィルムシート、及び光半導体装置の製造方法
WO2012120756A1 (ja) 光半導体装置用接着剤シートの製造方法及び光半導体装置用接着剤シート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837707

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137010908

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11837707

Country of ref document: EP

Kind code of ref document: A1