WO2012056800A1 - 樹脂組成物、並びにこれを成形して得られるフィルム、プレート、及び射出成形品 - Google Patents
樹脂組成物、並びにこれを成形して得られるフィルム、プレート、及び射出成形品 Download PDFInfo
- Publication number
- WO2012056800A1 WO2012056800A1 PCT/JP2011/068963 JP2011068963W WO2012056800A1 WO 2012056800 A1 WO2012056800 A1 WO 2012056800A1 JP 2011068963 W JP2011068963 W JP 2011068963W WO 2012056800 A1 WO2012056800 A1 WO 2012056800A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin composition
- mass
- polycarbonate resin
- resin
- composition according
- Prior art date
Links
- QPWUHPQGXONTLQ-UHFFFAOYSA-N C[N]1(C2OCC(CC3=CC3)C2OC1)OC Chemical compound C[N]1(C2OCC(CC3=CC3)C2OC1)OC QPWUHPQGXONTLQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L69/00—Compositions of polycarbonates; Compositions of derivatives of polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/02—Aliphatic polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/32—Phosphorus-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3467—Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
- C08K5/3477—Six-membered rings
- C08K5/3492—Triazines
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3467—Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
- C08K5/3477—Six-membered rings
- C08K5/3492—Triazines
- C08K5/34928—Salts
Definitions
- the present invention relates to a resin composition having excellent flame retardancy, impact resistance and heat resistance, and a film, plate and molded product obtained by molding the resin composition.
- Aromatic polycarbonate resins are widely used as engineering plastics with excellent heat resistance, impact resistance and transparency in various applications such as automobiles and office automation equipment.
- aromatic polycarbonate resins are generally manufactured using raw materials derived from petroleum resources.
- raw materials derived from petroleum resources such as plants.
- biomass resources such as plants.
- plastic molded products using raw materials.
- plastic molded material parts from plastics, especially in the field of large molded products.
- Patent Document 1 proposes to use isosorbide as a plant-derived monomer and obtain a polycarbonate by transesterification with diphenyl carbonate.
- Patent Document 2 proposes a polycarbonate obtained by copolymerizing bisphenol A as a copolymerized polycarbonate of isosorbide and another dihydroxy compound.
- Patent Document 3 attempts to improve the rigidity of homopolycarbonate composed of isosorbide by copolymerizing isosorbide and aliphatic diol.
- Patent Document 4 and Patent Document 5 propose many polycarbonates obtained by polymerizing 1,4-cyclohexanedimethanol, which is an alicyclic dihydroxy compound.
- Patent Document 6 discloses a flame retardant having a thermal decomposition temperature of 340 ° C. or less with respect to 100 parts by mass of a polycarbonate resin polymerized using an ether diol such as isosorbide.
- a resin composition comprising 60 parts by mass (0.01% by mass to 37.5% by mass) is disclosed.
- Patent Document 7 20 to 200 parts by mass (16.7 to 66.7% by mass) of a metal hydroxide is added to 100 parts by mass of a polycarbonate resin polymerized using an ether diol such as isosorbide.
- a resin composition formed by mixing at a ratio is disclosed.
- Patent Document 8 discloses that 1 to 100 parts by mass (0.01 to 50% by mass) of a specific organophosphorus compound with respect to 100 parts by mass of a polycarbonate resin polymerized using an ether diol such as isosorbide. A resin composition formed by mixing at a ratio is disclosed.
- the resin composition disclosed in Patent Document 6 has a substantially high isosorbide ratio, the impact resistance is not sufficient, and the flame retardance is also required for applications that require a higher level. It was insufficient.
- the resin compositions disclosed in Patent Document 7 and Patent Document 8 have a flame retardancy of V-2 level in the UL94 vertical combustion test, and are required for use in general large molded articles. Flame retardancy in vertical combustion test does not meet V-0 level.
- an object of the present invention is to provide a resin composition excellent in all of flame retardancy, impact resistance, and heat resistance in view of the problems of the prior art.
- the inventors of the present invention contain a polycarbonate resin derived from a dihydroxy compound having a specific structure and a specific flame retardant, have a specific range of Izod impact strength, and have a specific thickness.
- a resin composition having a UL94 vertical combustion test of V-0 can solve all of the above problems, thereby completing the present invention.
- a test piece prepared from the resin composition according to JIS K7110 has an Izod impact strength of 5.0 kJ / m 2 or more, and a thickness obtained by molding the resin composition
- the phosphorus content in the flame retardant (B) is 20% by mass or more and 35% by mass or less, and the nitrogen content is 10% by mass or more and 25% by mass or less.
- the structural unit (b) is contained in an amount of 40 mol% to 80 mol% in the polycarbonate resin (A).
- An aromatic polycarbonate resin (C) is further contained, the glass transition temperature is single, and the glass transition temperature is equal to or higher than the glass transition temperature of the polycarbonate resin (A).
- the ratio of the aromatic polycarbonate resin (C) in the mixture of the polycarbonate resin (A), the flame retardant (B), and the aromatic polycarbonate resin (C) is 5% by mass or more and 50% by mass.
- main component is intended to allow other components to be included within a range that does not hinder the action and effect of the resin constituting the resin composition. Further, this term does not limit the specific content, but it is 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more, based on the total constituent components of the resin composition. It is a component occupying a range of mass% or less.
- Polycarbonate resin (A) As the polycarbonate resin (A) used in the present invention, a polycarbonate resin containing a structural unit (a) derived from a dihydroxy compound having a site represented by the following formula (1) in a part of the structure is used.
- the said dihydroxy compound says what contains at least the site
- the main component of the dihydroxy compound having a site represented by the formula (1) in a part of the structure is not particularly limited as long as it has a structure represented by the formula (1) in the molecule.
- a cyclic ether structure represented by a compound having an ether group bonded to an aromatic group in the main chain, a dihydroxy compound represented by the following formula (2) and a spiroglycol represented by the following formula (3) The dihydroxy compound which has is mentioned.
- a dihydroxy compound having a cyclic ether structure is preferable, and among the dihydroxy compounds having a cyclic ether structure, an anhydrous sugar alcohol represented by the formula (2) is particularly preferable.
- examples of the dihydroxy compound represented by the formula (2) include isosorbide, isomannide, and isoide which are in a stereoisomeric relationship.
- the dihydroxy compound represented by the following formula (3) includes 3,9-bis (1,1-dimethyl-2-hydroxyethyl) -2,4,8,10-tetraoxaspiro (5.5).
- Undecane (common name: spiroglycol), 3,9-bis (1,1-diethyl-2-hydroxyethyl) -2,4,8,10-tetraoxaspiro (5.5) undecane, 3,9-bis (1,1-dipropyl-2-hydroxyethyl) -2,4,8,10-tetraoxaspiro (5.5) undecane.
- Undecane common name: spiroglycol
- R 1 to R 4 are each independently an alkyl group having 1 to 3 carbon atoms.
- isosorbide which is industrially easily available and is derived from plant raw materials, and these may be used alone or in combination of two or more.
- the proportion of the structural unit (a) in the polycarbonate resin (A) used in the present invention is preferably 60 mol% or less, more preferably 55 mol% or less, and 50 mol% or less. Is particularly preferred. Further, the lower limit is preferably 20 mol% or more, more preferably 25 mol% or more, and particularly preferably 30 mol% or more.
- the proportion of the structural unit (a) is 60 mol% or less because impact resistance can be imparted to the resin composition of the present invention. Moreover, when it is 20 mol% or more, since heat resistance can be provided to the resin composition of this invention, especially when the said structural unit (a) is a structural unit derived from isosorbide, the ratio derived from a plant raw material Is preferable.
- the polycarbonate resin (A) used in the present invention may contain a structural unit other than the structural unit (a).
- the structural units derived from the aliphatic dihydroxy compound at least one selected from ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol. It is preferable that the structural unit derived from the above compound is included.
- the structural units derived from the alicyclic dihydroxy compound those containing a 5-membered ring structure or a 6-membered ring structure are preferable.
- the six-membered ring structure may be fixed in a chair shape or a boat shape by a covalent bond.
- the heat resistance of the resulting resin can be increased.
- the number of carbon atoms contained in the alicyclic dihydroxy compound is usually 70 or less, preferably 50 or less, more preferably 30 or less.
- Examples of the alicyclic dihydroxy compound containing the 5-membered ring structure or 6-membered ring structure include those described in the above-mentioned International Publication No. 2007/148604, such as cyclohexanedimethanol, tricyclodecanedimethanol, adamantane. Diols and pentacyclopentadecanedimethanol can be preferably exemplified, and these may be used alone or in combination of two or more.
- the polycarbonate resin (A) used in the present invention is cyclohexanedi, among structural units derived from the aliphatic dihydroxy compounds and structural units derived from the alicyclic dihydroxy compounds as structural units other than the structural unit (a). It is preferable to have a structural unit (b) derived from methanol. Of the cyclohexanedimethanol, 1,4-cyclohexanedimethanol, which is easily available industrially, is preferable.
- the proportion of the structural unit (b) in the polycarbonate resin (A) is preferably 40 mol% or more and 80 mol% or less, more preferably 45 mol% or more from the viewpoint of impact resistance and heat resistance. 75 mol% or less, more preferably 50 mol% or more and 70 mol% or less.
- the polycarbonate resin (A) not only has excellent heat resistance, but also has sufficient impact resistance when blended with a flame retardant (B) described later.
- the resin composition can be provided and can be used in a wide range of applications.
- the reduced viscosity which is an index of the molecular weight of the polycarbonate resin (A), is methylene chloride as a solvent, the polycarbonate concentration is precisely adjusted to 0.60 g / dl, and the Ubbelohde viscosity at a temperature of 20.0 ° C. ⁇ 0.1 ° C. It is measured using a tube, and is usually in the range of 0.20 dl / g to 1.0 dl / g, preferably 0.30 dl / g to 0.80 dl / g.
- the reduced viscosity of the polycarbonate resin (A) is 0.20 dl / g or more because the mechanical strength when the resin composition of the present invention is molded into various shapes becomes sufficient. Further, when the reduced viscosity of the polycarbonate resin (A) is 1.0 dl / g or less, not only the fluidity at the time of molding is good and the productivity is improved, but also appearance defects such as flow unevenness are hardly caused. Therefore, it is preferable.
- the glass transition temperature of the polycarbonate resin (A) is preferably 75 ° C. or higher, more preferably 78 ° C. or higher, and particularly preferably 80 ° C. or higher. Further, it is preferably 140 ° C. or lower, more preferably 130 ° C. or lower, and particularly preferably 120 ° C. or lower. A glass transition temperature of 75 ° C. or higher is preferable because heat resistance can be imparted to the resin composition of the present invention. A glass transition temperature of 140 ° C. or lower is preferable because the impact resistance of the resin composition of the present invention is not impaired.
- the polycarbonate resin (A) can be produced by a generally used polymerization method, and may be, for example, either a phosgene method or a transesterification method in which it is reacted with a carbonic acid diester.
- a polymerization catalyst in the presence of a polymerization catalyst, a dihydroxy compound having a site represented by the above formula (1) in a part of the structure, cyclohexanedimethanol, other dihydroxy compounds used as necessary, and a carbonic acid diester The transesterification method in which is reacted is preferred.
- a dihydroxy compound having a site represented by the formula (1) in a part of the structure, cyclohexanedimethanol, another dihydroxy compound used as necessary, and a carbonic acid diester are basic.
- a transesterification reaction is performed by adding a catalyst, and further an acidic substance that neutralizes the basic catalyst.
- carbonic acid diesters include diphenyl carbonate, ditolyl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate, dinaphthyl carbonate, bis (biphenyl) carbonate, diethyl carbonate, dimethyl carbonate, dibutyl carbonate, dicyclohexyl carbonate, etc. Is mentioned. Of these, diphenyl carbonate is particularly preferably used.
- the phosphorus content is preferably 20% by mass or more and 35% by mass or less, and the nitrogen content is preferably 10% by mass or more and 25% by mass or less.
- the more preferable range of the phosphorus content is 22% by mass or more and 33% by mass or less, the more preferable range is 25% by mass or more and 30% by mass or less, and the more preferable range of the nitrogen content is 12% by mass. % Or more and 23% by mass or less, and a more preferable range is 15% by mass or more and 20% by mass or less.
- the phosphorus content of the flame retardant (B) is 20% by mass or more and the nitrogen content is 10% by mass or more, excellent flame retardancy can be imparted to the resin composition of the present invention. Further, it is preferable that the phosphorus content is 35% by mass or less and the nitrogen content is 25% by mass or less because the heat resistance of the resin composition of the present invention is not impaired.
- the flame retardant (B) may be a single compound or a mixture of a plurality of compounds.
- the flame retardant (B) melamine phosphate, melamine polyphosphate, ammonium phosphate, ammonium polyphosphate, or a mixture of these with a triazine compound such as melamine or melamine cyanurate can be used. Especially, it is preferable that it is what has an ammonium polyphosphate as a main component from a viewpoint of a flame retardance, heat resistance, and impact resistance, and it is further more preferable that it is a mixture with the said triazine compound.
- the flame retardant (B) can be subjected to a surface treatment.
- silane coupling agents such as epoxy silane, vinyl silane, methacryl silane, amino silane, isocyanate silane, titanate coupling agents, higher fatty acids, or polymers such as melamine resins can be used. Dispersibility in the polycarbonate resin (A) can be improved by subjecting the flame retardant (B) to a surface treatment.
- the ratio of the flame retardant (B) in the mixture of the polycarbonate resin (A) and the flame retardant (B) is preferably 35% by mass or more and 60% by mass or less.
- a more preferable range of the amount of the flame retardant (B) is 38% by mass or more and 60% by mass or less, a further preferable range is 40% by mass or more and 55% by mass or less, and a particularly preferable range is 40% by mass or more. 50 mass% or less.
- the ratio of the blending amount of the flame retardant (B) is 35% by mass or more, it is preferable because excellent flame retardancy can be imparted to the resin composition of the present invention.
- the ratio of the flame retardant (B) is 60% by mass or less, the resin composition of the present invention can have practically sufficient impact resistance and heat resistance, which is preferable.
- an aromatic polycarbonate resin (C) can be blended.
- the aromatic polycarbonate resin (C) may be a homopolymer or a copolymer.
- the aromatic polycarbonate resin (C) may have a branched structure or a linear structure, or may be a mixture of a branched structure and a linear structure.
- the production method of the aromatic polycarbonate resin (C) used in the present invention may be any known method such as a phosgene method, a transesterification method, or a pyridine method.
- a method for producing an aromatic polycarbonate resin by a transesterification method will be described below.
- the transesterification method is a production method in which a divalent phenol and a carbonic acid diester are added with a basic catalyst, and further an acidic substance that neutralizes the basic catalyst is added to perform melt transesterification polycondensation.
- the dihydric phenol include bisphenols, and 2,2-bis (4-hydroxyphenyl) propane, that is, bisphenol A is particularly preferably used. Further, part or all of bisphenol A may be replaced with other dihydric phenols.
- dihydric phenols include hydroquinone, 4,4-dihydroxydiphenyl, bis (4-hydroxyphenyl) alkanes such as bis (4-hydroxyphenyl) methane and 1,1-bis (4-hydroxyphenyl) ethane, Bis (4-hydroxyphenyl) cycloalkane such as 1-bis (4-hydroxyphenyl) cyclohexane, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) sulfoxide, Compounds such as bis (4-hydroxyphenyl) ether, 2,2-bis (3-methyl-4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane Alkylated bisphenols, 2,2-bis ( , May be mentioned 5-dibromo-4-hydroxyphenyl) propane, 2,2-bis (3,5-dichloro-4-hydroxyphenyl) halogenated bisphenols such as propane.
- carbonic acid diesters include diphenyl carbonate, ditolyl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate, dinaphthyl carbonate, bis (biphenyl) carbonate, diethyl carbonate, dimethyl carbonate, dibutyl carbonate, dicyclohexyl carbonate, etc. Is mentioned. Of these, diphenyl carbonate is particularly preferably used.
- the weight average molecular weight of the aromatic polycarbonate resin (C) used in the present invention is usually 10,000 or more and 100,000 or less, preferably 20,000 or more and 50,000 or less, from the balance of mechanical properties and molding processability. Range.
- the aromatic polycarbonate resin (C) may be used alone or in combination of two or more.
- the resin composition of the present invention when it further contains the aromatic polycarbonate resin (C) (hereinafter also referred to as “the resin composition”). Is a resin composition having the characteristic of having a single glass transition temperature.
- the single glass transition temperature of the resin composition means that the resin composition has a strain distribution of 0.1%, a frequency of 10 Hz, a temperature increase rate of 3 ° C./min, and a dynamic viscoelastic temperature dispersion measurement (JIS K7198A). In the sense that there is one main dispersion peak of loss tangent (tan ⁇ ) measured by the method (dynamic viscoelasticity measurement in 1991), in other words, there is one local maximum of loss tangent (tan ⁇ ). is there.
- the resin composition has a single glass transition temperature, excellent transparency can be achieved in a molded article produced using the resin composition.
- a single glass transition temperature of the resin composition means that there is one main dispersion peak of loss elastic modulus (E ′′) measured in the dynamic viscoelasticity measurement for the resin composition. In other words, it can be said that there is one maximum value of the loss elastic modulus (E ′′).
- a single glass transition temperature can be confirmed by differential scanning calorimetry. Specifically, in accordance with JIS K7121 (1987), when the glass transition temperature is measured using a differential scanning calorimeter (DSC) at a heating rate of 10 ° C./min, the inflection point indicating the glass transition temperature is It can be said that only one appears.
- DSC differential scanning calorimeter
- a single glass transition temperature of a polymer blend composition means that the resin to be mixed is in a compatible state at the molecular level, and can be recognized as a compatible system.
- the glass transition temperature of the present resin composition is represented by a temperature indicating a peak value of the main dispersion of loss tangent (tan ⁇ ) measured by the above-described dynamic viscoelastic temperature dispersion measurement. That is, since this is single, it can be said that the said polycarbonate resin (A) and the said aromatic polycarbonate resin (C) are excellent in compatibility. Further, the glass transition temperature appears in a range of not less than the glass transition temperature of the polycarbonate resin (A) and not more than the glass transition temperature of the aromatic polycarbonate resin (C). Therefore, this resin composition is not only excellent in heat resistance and impact resistance, but also excellent in transparency.
- the ratio of the aromatic polycarbonate resin (C) in the mixture of the polycarbonate resin (A), the flame retardant (B), and the aromatic polycarbonate resin (C) is 5% by mass or more and 50% by mass or less. Is preferably 10% by mass or more and 40% by mass or less, and more preferably 15% by mass or more and 35% by mass or less.
- a heat stabilizer in the resin composition of the present invention, can be blended in order to prevent a decrease in molecular weight and a deterioration in hue during molding.
- the heat stabilizer include phosphorous acid, phosphoric acid, phosphonous acid, phosphonic acid, and esters thereof.
- triphenyl phosphite tris (nonylphenyl) phosphite, tris (2 , 4-Di-tert-butylphenyl) phosphite, tridecyl phosphite, trioctyl phosphite, trioctadecyl phosphite, didecyl monophenyl phosphite, dioctyl monophenyl phosphite, diisopropyl monophenyl phosphite, monobutyl diphenyl Phosphite, monodecyl diphenyl phosphite, monooctyl diphenyl phosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, 2,2-methylenebis (4,6-di-) tert Butylphenyl) o
- These heat stabilizers may be used alone or in combination of two or more.
- the amount of the heat stabilizer is preferably 0.0001% by mass or more and 1% by mass or less, based on 100% by mass of the resin composition of the present invention. It is more preferable to mix
- antioxidant conventionally known for the purpose of antioxidant can be mix
- antioxidants include pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (3-lauryl thiopropionate), glycerol-3-stearyl thiopropionate, triethylene glycol-bis [3 -(3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], Pentaerythritol-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate,
- the amount of the antioxidant to be blended is preferably 0.0001% by mass or more and 1% by mass or less, based on 100% by mass of the resin composition of the present invention. It is more preferable to mix
- a lubricant can be blended for the purpose of imparting surface lubricity to the resin composition of the present invention.
- the lubricant include higher fatty acid esters of mono- or polyhydric alcohols, higher fatty acids, paraffin wax, beeswax, olefin wax, olefin wax containing carboxy group and / or carboxylic anhydride group, silicone oil, organopoly Examples thereof include siloxane.
- the higher fatty acid ester is preferably a partial ester or a total ester of a monohydric or polyhydric alcohol having 1 to 20 carbon atoms and a saturated fatty acid having 10 to 30 carbon atoms.
- Such partial esters or total esters of monohydric or polyhydric alcohols and saturated fatty acids include stearic acid monoglyceride, stearic acid diglyceride, stearic acid triglyceride, stearic acid monosorbate, stearyl stearate, behenic acid monoglyceride, behenyl behenate, Pentaerythritol monostearate, pentaerythritol tetrastearate, pentaerythritol tetrapelargonate, propylene glycol monostearate, stearyl stearate, palmityl palmitate, butyl stearate, methyl laurate, isopropyl palmitate, biphenyl biphenate
- stearic acid monoglyceride stearic acid triglyceride, pentaerythritol tetrastearate and behenyl behenate are preferably used.
- a saturated fatty acid having 10 to 30 carbon atoms is preferable.
- Such fatty acids include myristic acid, lauric acid, palmitic acid, stearic acid, behenic acid and the like. These lubricants may be used alone or in combination of two or more.
- the blending amount of the lubricant is preferably 0.0001% by mass or more and 1% by mass or less, based on 100% by mass of the resin composition of the present invention, 0.0005% by mass or more, 0.5% It is more preferable to mix
- surface lubricity can be imparted to the resin composition without causing deterioration of mechanical properties of various molded articles made of the lubricant bleed and the resin composition.
- UV absorber, light stabilizer Moreover, a ultraviolet absorber and a light stabilizer can be mix
- ultraviolet absorbers and light stabilizers include 2- (2′-hydroxy-5′-tert-octylphenyl) benzotriazole, 2- (3-tert-butyl-5-methyl-2-hydroxyphenyl)- 5-chlorobenzotriazole, 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2H-benzotriazole, 2 2,2′-methylenebis (4-cumyl-6-benzotriazolephenyl), 2,2′-p-phenylenebis (1,3-benzoxazin-4-one), and the like.
- the melting point of the ultraviolet absorber is particularly preferably in the range of 120 to 250 ° C.
- an ultraviolet absorber having a melting point of 120 ° C. or higher is used, fogging due to gas on the surface of the molded article is reduced and improved.
- ultraviolet absorbers and light stabilizers may be used alone or in combination of two or more.
- the blending amounts of the ultraviolet absorber and the light stabilizer are preferably blended in a proportion of 0.0001% by mass or more and 1% by mass or less with respect to 100% by mass of the resin composition of the present invention, and 0.0005% by mass. % Or more and 0.5% by mass or less is more preferable, and 0.001% by mass or more and 0.2% by mass or less is more preferable.
- an epoxy compound can be blended.
- the epoxy compound include epoxidized soybean oil, epoxidized linseed oil, phenyl glycidyl ether, allyl glycidyl ether, t-butylphenyl glycidyl ether, 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexyl Carboxylate, 3,4-epoxy-6-methylcyclohexylmethyl-3 ′, 4′-epoxy-6′-methylcyclohexyl carboxylate, 2,3-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexyl carboxylate, 4- (3,4-epoxy-5-methylcyclohexyl) butyl-3 ′, 4′-epoxycyclohexylcarboxylate, 3,4-
- the amount of the epoxy compound is preferably 0.0001% by mass or more and 5% by mass or less with respect to 100% by mass of the resin composition of the present invention, 0.001% by mass or more, It is more preferable to mix
- resins, plasticizers, pigments, dyes, fillers, and the like are added to the resin composition of the present invention within the range that does not impair the characteristics such as flame retardancy, impact resistance, and heat resistance.
- An agent can be further blended.
- the resin composition of the present invention can be molded into a film, a plate, an injection molded product or the like. Specifically, raw materials such as the polycarbonate resin (A), the flame retardant (B), and the aromatic polycarbonate resin (C), other resins, and additives as necessary are directly mixed, and an extruder or Either put it into an injection molding machine and mold it, or melt and mix the raw materials using a twin screw extruder, extrude it into a strand shape to create a pellet, and then put this pellet into the extruder or injection molding machine Can be mentioned. In any method, it is necessary to consider a decrease in molecular weight due to hydrolysis of the polycarbonate resin (A), and the latter is preferably selected for uniform mixing. Therefore, the latter manufacturing method will be described below.
- the polycarbonate resin (A), the flame retardant (B), and if necessary, the aromatic polycarbonate resin (C) and other resins and additives are sufficiently dried to remove moisture, and then a twin screw extruder. Is melt-mixed using a glass and extruded into a strand shape to produce pellets. At this time, it is preferable to appropriately select the melt extrusion temperature in consideration of the viscosity changing depending on the composition ratio and blending ratio of each raw material. Specifically, the molding temperature is preferably 220 ° C. or higher and 260 ° C. or lower, more preferably 230 ° C. or higher and 250 ° C. or lower, and further preferably 230 ° C. or higher and 240 ° C. or lower.
- a film, a plate, or an injection molded product can be molded by the following method.
- a method for forming a film and a plate in addition to a roll stretching, a tenter stretching method, a tubular method, and an inflation method, a general T die casting method, a pressing method, or the like can be employed as a film or plate forming method.
- film is a thin flat product whose thickness is extremely small compared to the length and width and whose maximum thickness is arbitrarily limited, and is usually supplied in the form of a roll.
- JIS K6900 (1994) in general, a “sheet” is a thin product that is thin by definition as defined in JIS, and whose thickness is small instead of length and width.
- sheet is included and the term “sheet” is used. In some cases, “film” is included.
- the molding method of the injection molded body is not particularly limited, and for example, a general injection molding method for a thermoplastic resin, a gas assist molding method, an injection compression molding method or the like can be employed.
- a general injection molding method for a thermoplastic resin for example, a gas assist molding method, an injection compression molding method or the like can be employed.
- an in-mold molding method, a gas press molding method, a two-color molding method, a sandwich molding method, or the like can also be employed according to other purposes.
- the resin composition of the present invention is excellent in flame retardancy, and can achieve V-0 in the judgment standard of the combustion test performed based on the safety standard UL94 vertical combustion test procedure of Underwriters Laboratories.
- the UL94 vertical combustion test of a molded product having a thickness of 3.0 mm obtained by molding the resin composition of the present invention is V-0.
- the determination of the UL94 vertical combustion test of the molded body having a thickness of 2.0 mm is V-0
- the determination of the UL94 vertical combustion test of the molded body having a thickness of 1.0 mm is V-0. Is particularly preferred.
- the method of setting a ratio etc. in the range as described in this specification is mentioned, it is not limited to these methods.
- the resin composition of the present invention is excellent in impact resistance, and based on JIS K7110 (1999), No. 2A test piece (notched, length 64.0 mm ⁇ width 12.7 mm ⁇ thickness 4.0 mm)
- the Izod impact strength measured at 23 ° C. using JISL-D manufactured by Toyo Seiki Seisakusho is 5.0 kJ / m 2 or more.
- the Izod impact strength is more preferably 5.5 kJ / m 2 or more, and particularly preferably 6.0 kJ / m 2 or more.
- the proportion of the structural unit (a) and / or the proportion of the structural unit (b) in the polycarbonate resin (A), the polycarbonate resin ( A method of setting the glass transition temperature of A), the ratio of the flame retardant (B) in the mixture of the polycarbonate resin (A) and the flame retardant (B), etc. within the ranges described in the present specification. However, it is not limited to these methods.
- the resin composition of the present invention is excellent in heat resistance, and the deflection temperature under load measured in the edgewise direction based on JIS K7191 (2007) and the load applied to the test piece is 0.45 MPa, preferably 65 ° C. or more. More preferably, it can be set to 70 ° C. or higher, particularly preferably 75 ° C. or higher.
- the proportion of the structural unit (b) in the polycarbonate resin (A) and the mixture of the polycarbonate resin (A) and the flame retardant (B) Although the method of setting the ratio of a flame retardant (B) etc. in the range as described in this specification is mentioned, it is not limited to these methods.
- the use of the resin composition of the present invention is not particularly limited. There are no, for example, building materials, interior parts, films for resin-coated metal sheets, films for molding (vacuum / pressure-air molding, hot press molding, etc.), colored plates, shrink tubes, automobile interior materials, home appliance housings, various parts It can be used for injection molded products such as OA equipment parts.
- Reduced viscosity The reduced viscosity of the polycarbonate resin sample was measured at a temperature of 20.0 ° C. ⁇ 0.1 ° C. using an Ubbelohde viscometer with a DT-504 automatic viscometer manufactured by Chuo Rika Co., Ltd., using methylene chloride as a solvent. The concentration was measured after being precisely adjusted to 0.60 g / dl.
- Example 1-1 After dry blending (A) -1 and (B) -1 at a mixing mass ratio of 60:40, the mixture was compounded at 230 ° C. using a 40 mm ⁇ small-sized co-axial twin screw extruder manufactured by Mitsubishi Heavy Industries, Produced. The pellets obtained were evaluated for flame retardancy using a Toshiba Machine injection molding machine IS50E (screw diameter 25 mm) under conditions of a cylinder temperature of 230 ° C. and a mold temperature of about 70 ° C.
- Length 135 mm ⁇ width 13 mm X Test piece of thickness 1.0mm, for evaluation of Izod impact strength, length 64.0mm x width 12.7mm x test piece of thickness 4mm, length 120mm x width 11mm for evaluation of deflection temperature under load X
- a test piece having a thickness of 3 mm was injection-molded. Using the obtained test piece, flame retardancy, Izod impact strength, and deflection temperature under load were evaluated. The results are shown in Table 1.
- Example 1-2 The pellets obtained in Example 1-1 were used for evaluation of flame retardancy under the conditions of a cylinder temperature of 230 ° C. and a mold temperature of about 70 ° C. using an injection molding machine IS50E (screw diameter: 25 mm) manufactured by Toshiba Machine.
- the flame retardancy of a molded product obtained by injection molding a test piece having a thickness of 135 mm ⁇ width of 13 mm ⁇ thickness of 2.0 mm is estimated to be V-0.
- Example 1-3 The pellets obtained in Example 1-1 were used for evaluation of flame retardancy under the conditions of a cylinder temperature of 230 ° C. and a mold temperature of about 70 ° C. using an injection molding machine IS50E (screw diameter: 25 mm) manufactured by Toshiba Machine.
- the flame retardancy of a molded product obtained by injection molding a test piece having a thickness of 135 mm, a width of 13 mm, and a thickness of 3.0 mm is estimated to be V-0.
- Example 2-1 Pellets were produced in the same manner as in Example 1-1 except that the mixing mass ratio of (A) -1 and (B) -1 was 50:50. Next, test pieces were produced and evaluated in the same manner as in Example 1-1. The results are shown in Table 1.
- Example 2-2 The pellets obtained in Example 2-1 were used for evaluation of flame retardancy under the conditions of a cylinder temperature of 230 ° C. and a mold temperature of about 70 ° C. using a Toshiba Machine injection molding machine IS50E (screw diameter: 25 mm).
- the flame retardancy of a molded product obtained by injection molding a test piece having a thickness of 135 mm ⁇ width of 13 mm ⁇ thickness of 2.0 mm is estimated to be V-0.
- Example 2-3 The pellets obtained in Example 2-1 were used for evaluation of flame retardancy under the conditions of a cylinder temperature of 230 ° C. and a mold temperature of about 70 ° C. using a Toshiba Machine injection molding machine IS50E (screw diameter: 25 mm).
- the flame retardancy of a molded product obtained by injection molding a test piece having a thickness of 135 mm, a width of 13 mm, and a thickness of 3.0 mm is estimated to be V-0.
- Example 3-1 After dry blending (A) -2 and (B) -1 at a mixing mass ratio of 60:40, pellets were produced in the same manner as in Example 1-1. Next, test pieces were prepared and evaluated in the same manner as in Example 1-1, except that the mold temperature at the time of injection molding was about 90 ° C. The results are shown in Table 1.
- Example 3-2 The pellets obtained in Example 3-1 were used for evaluation of flame retardancy under the conditions of a cylinder temperature of 230 ° C. and a mold temperature of about 90 ° C. using a Toshiba Machine injection molding machine IS50E (screw diameter: 25 mm).
- the flame retardancy of a molded product obtained by injection molding a test piece having a thickness of 135 mm ⁇ width of 13 mm ⁇ thickness of 2.0 mm is estimated to be V-0.
- Example 3-3 The pellets obtained in Example 3-1 were used for evaluation of flame retardancy under the conditions of a cylinder temperature of 230 ° C. and a mold temperature of about 90 ° C. using a Toshiba Machine injection molding machine IS50E (screw diameter: 25 mm).
- the flame retardancy of a molded product obtained by injection molding a test piece having a thickness of 135 mm, a width of 13 mm, and a thickness of 3.0 mm is estimated to be V-0.
- Example 4-1 After dry blending (A) -1, (B) -1 and (C) -1 at a mixing mass ratio of 40:40:20, pellets were produced in the same manner as in Example 1-1. . Next, test pieces were prepared and evaluated in the same manner as in Example 1-1, except that the mold temperature during injection molding was about 80 ° C. The results are shown in Table 1.
- Example 4-2 The pellets obtained in Example 4-1 were used for evaluation of flame retardancy under the conditions of a cylinder temperature of 230 ° C. and a mold temperature of about 80 ° C. using a Toshiba Machine injection molding machine IS50E (screw diameter: 25 mm).
- the flame retardancy of a molded product obtained by injection molding a test piece having a thickness of 135 mm ⁇ width of 13 mm ⁇ thickness of 2.0 mm is estimated to be V-0.
- Example 4-3 The pellets obtained in Example 4-1 were used for evaluation of flame retardancy under the conditions of a cylinder temperature of 230 ° C. and a mold temperature of about 80 ° C. using a Toshiba Machine injection molding machine IS50E (screw diameter: 25 mm).
- the flame retardancy of a molded product obtained by injection molding a test piece having a thickness of 135 mm, a width of 13 mm, and a thickness of 3.0 mm is estimated to be V-0.
- Example 1-1 Pellets were produced in the same manner as in Example 1-1 except that the mixing mass ratio of (A) -1 and (B) -1 was 30:70. Next, a test piece was prepared and evaluated in the same manner as in Example 1-1. The results are shown in Table 1.
- Comparative Example 1-2 The pellet obtained in Comparative Example 1-1 was used for evaluation of flame retardancy under the conditions of a cylinder temperature of 230 ° C. and a mold temperature of about 70 ° C. using an injection molding machine IS50E (screw diameter: 25 mm) manufactured by Toshiba Machine.
- the flame retardancy of a molded product obtained by injection molding a test piece having a thickness of 135 mm ⁇ width of 13 mm ⁇ thickness of 2.0 mm is estimated to be V-0.
- Comparative Example 1-3 The pellet obtained in Comparative Example 1-1 was used for evaluation of flame retardancy under the conditions of a cylinder temperature of 230 ° C. and a mold temperature of about 70 ° C. using an injection molding machine IS50E (screw diameter: 25 mm) manufactured by Toshiba Machine.
- the flame retardancy of a molded product obtained by injection molding a test piece having a thickness of 135 mm, a width of 13 mm, and a thickness of 3.0 mm is estimated to be V-0.
- Example 2-1 Test pieces were prepared and evaluated in the same manner as in Example 3-1, except that the mixing mass ratio of (A) -2 and (B) -1 was set to 70:30. The results are shown in Table 1.
- Comparative Example 2-2 The pellets obtained in Comparative Example 2-1 were used for evaluation of flame retardancy under the conditions of a cylinder temperature of 230 ° C. and a mold temperature of about 90 ° C. using an injection molding machine IS50E (screw diameter 25 mm) manufactured by Toshiba Machine. A test piece having a length of 135 mm, a width of 13 mm, and a thickness of 2.0 mm was injection molded. The flame retardancy of the molded product was out of specification, that is, the test piece burned.
- IS50E screw diameter 25 mm
- Comparative Example 2-3 The pellets obtained in Comparative Example 2-1 were used for evaluation of flame retardancy under the conditions of a cylinder temperature of 230 ° C. and a mold temperature of about 90 ° C. using an injection molding machine IS50E (screw diameter 25 mm) manufactured by Toshiba Machine. A test piece having a length of 135 mm, a width of 13 mm, and a thickness of 3.0 mm was injection molded. The flame retardancy of the molded product was out of specification, that is, the test piece burned.
- IS50E screw diameter 25 mm
- Comparative Example 3-2 The pellets obtained in Comparative Example 3-1 were used for evaluation of flame retardancy under the conditions of a cylinder temperature of 230 ° C. and a mold temperature of about 110 ° C. using an injection molding machine IS50E (screw diameter: 25 mm) manufactured by Toshiba Machine.
- the flame retardancy of a molded product obtained by injection molding a test piece having a thickness of 135 mm ⁇ width of 13 mm ⁇ thickness of 2.0 mm is estimated to be V-0.
- Comparative Example 3-3 The pellets obtained in Comparative Example 1-1 were used for evaluation of flame retardancy under the conditions of a cylinder temperature of 230 ° C. and a mold temperature of about 110 ° C. using a Toshiba Machine injection molding machine IS50E (screw diameter: 25 mm).
- the flame retardancy of a molded product obtained by injection molding a test piece having a thickness of 135 mm, a width of 13 mm, and a thickness of 3.0 mm is estimated to be V-0.
- Example 4 (Comparative Example 4-1) Example 1 except that (B) -2 was used instead of (B) -1 as a flame retardant, and (A) -1 and (B) -2 were blended at a mixing mass ratio of 60:40. A test piece was prepared and evaluated in the same manner as in Example-1. The results are shown in Table 1.
- Comparative Example 4-2 The pellet obtained in Comparative Example 4-1 was used for evaluation of flame retardancy under the conditions of a cylinder temperature of 230 ° C. and a mold temperature of about 70 ° C. using an injection molding machine IS50E (screw diameter: 25 mm) manufactured by Toshiba Machine.
- the flame retardancy of a molded product obtained by injection molding a test piece having a thickness of 135 mm ⁇ width of 13 mm ⁇ thickness of 2.0 mm is estimated to be V-2.
- Comparative Example 4-3 The pellet obtained in Comparative Example 4-1 was used for evaluation of flame retardancy under the conditions of a cylinder temperature of 230 ° C. and a mold temperature of about 70 ° C. using an injection molding machine IS50E (screw diameter: 25 mm) manufactured by Toshiba Machine.
- the flame retardancy of a molded product obtained by injection molding a test piece having a thickness of 135 mm ⁇ width of 13 mm ⁇ thickness of 3.0 mm is estimated to be V-2.
- the resin compositions of the present invention produced in the examples are excellent in all of flame retardancy, impact resistance and heat resistance.
- the resin compositions in the comparative examples have insufficient flame retardancy and are not V-2 (Comparative Examples 2-1 to 2-3, 4-1 to 4-3), impact resistance If the properties are insufficient (Comparative Examples 1-1 to 1-3, 3-1 to 3-3), the performance is inferior to that of the resin composition of the present invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
Description
〔1〕 構造の一部に下記式(1)で表される部位を有するジヒドロキシ化合物に由来する構造単位(a)を含むポリカーボネート樹脂(A)と、リンと窒素を含む難燃剤(B)とを含有する樹脂組成物であって、JIS K7110に基づき該樹脂組成物から作製した試験片のアイゾット衝撃強度が5.0kJ/m2以上であり、該樹脂組成物を成形して得られる厚さ3.0mmの成形体のUL94垂直燃焼試験における判定がV-0である樹脂組成物。
〔2〕 前記樹脂組成物を成形して得られる厚さ2.0mmの成形体のUL94垂直燃焼試験における判定がV-0である、上記〔1〕に記載の樹脂組成物。
〔3〕 前記樹脂組成物を成形して得られる厚さ1.0mmの成形体のUL94垂直燃焼試験における判定がV-0である、上記〔1〕又は〔2〕に記載の樹脂組成物。
〔4〕 前記ジヒドロキシ化合物が、下記式(2)で表されるジヒドロキシ化合物である、上記〔1〕~〔3〕のいずれか1に記載の樹脂組成物。
〔6〕 前記ポリカーボネート樹脂(A)中に前記構造単位(a)を60モル%以下含有する、上記〔1〕~〔5〕のいずれか1に記載の樹脂組成物。
〔7〕 前記ポリカーボネート樹脂(A)と前記難燃剤(B)の混合物中に占める前記難燃剤(B)の割合が35質量%以上、60質量%以下である、上記〔1〕~〔6〕のいずれか1に記載の樹脂組成物。
〔8〕 前記難燃剤(B)中におけるリン含有量が20質量%以上、35質量%以下であり、かつ窒素含有量が10質量%以上、25質量%以下である、上記〔1〕~〔7〕のいずれか1に記載の樹脂組成物。
〔9〕 前記ポリカーボネート樹脂(A)がさらに、シクロヘキサンジメタノールに由来する構造単位(b)を含む、上記〔1〕~〔8〕のいずれか1に記載の樹脂組成物。
〔10〕 前記ポリカーボネート樹脂(A)中に前記構造単位(b)を40モル%以上、80モル%以下含有する、上記〔9〕に記載の樹脂組成物。
〔11〕 芳香族ポリカーボネート樹脂(C)をさらに含有し、ガラス転移温度が単一であり、かつ、該ガラス転移温度が前記ポリカーボネート樹脂(A)のガラス転移温度以上、前記芳香族ポリカーボネート樹脂(C)のガラス転移温度以下の範囲にある上記〔1〕~〔10〕のいずれか1に記載の樹脂組成物。
〔12〕 前記ポリカーボネート樹脂(A)と前記難燃剤(B)と前記芳香族ポリカーボネート樹脂(C)の混合物中に占める前記芳香族ポリカーボネート樹脂(C)の割合が、5質量%以上、50質量%以下である上記〔11〕に記載の樹脂組成物。
〔13〕 上記〔1〕から〔12〕のいずれか1に記載の樹脂組成物を成形して得られるフィルム。
〔14〕 上記〔1〕から〔12〕のいずれか1に記載の樹脂組成物を成形して得られるプレート。
〔15〕 上記〔1〕から〔12〕のいずれか1に記載の樹脂組成物を成形して得られる射出成形品。
また、“質量%”及び“質量部”は、“重量%”及び“重量部”と、それぞれ同義である。
本発明に用いるポリカーボネート樹脂(A)としては、構造の一部に下記式(1)で表される部位を有するジヒドロキシ化合物に由来する構造単位(a)を含むポリカーボネート樹脂が用いられる。
すなわち、前記ジヒドロキシ化合物は、二つのヒドロキシル基と、更に前記式(1)の部位を少なくとも含むものを言う。
これらは単独で用いても良く、2種以上を組み合わせて用いても良い。
ガラス転移温度が75℃以上であれば、本発明の樹脂組成物に耐熱性を付与出来るため好ましい。また、ガラス転移温度が140℃以下であれば、本発明の樹脂組成物の耐衝撃性を損なうことが無いため好ましい。
本発明に用いる難燃剤(B)としては、リンと窒素を含むことが重要である。リンと窒素を同時に含むことにより、本発明の樹脂組成物の難燃性を特に向上することが可能となる。
難燃剤(B)のリン含有量が20質量%以上であり、かつ窒素含有量が10質量%以上であることによって、本発明の樹脂組成物に優れた難燃性を付与することができる。また、リン含有量が35質量%以下であり、かつ窒素含有量が25質量%以下であることによって、本発明の樹脂組成物について、耐熱性を損なうことが無いため好適である。
なお、前記難燃剤(B)は単一の化合物、または、複数の化合物の混合物のどちらでも構わない。
商業的に入手可能な難燃剤(B)としては、太平化学産業社製「タイエン」シリーズ、鈴裕化学社製「ファイアカットP-770」、旭電化社製「アデカスタブFP-2100J」「アデカスタブ2200」等があげられる。
前記難燃剤(B)の配合量の割合が、35質量%以上であれば、本発明の樹脂組成物に優れた難燃性を付与できるため好ましい。また、前記難燃剤(B)の配合量の割合が60質量%以下であれば、本発明の樹脂組成物に実用上十分な耐衝撃性、耐熱性を保持することができるため好ましい。
本発明の樹脂組成物の耐熱性や機械特性をさらに向上するために、芳香族ポリカーボネート樹脂(C)を配合することができる。なお、前記芳香族ポリカーボネート樹脂(C)は、ホモポリマー及びコポリマーのいずれであってもよい。また、芳香族ポリカーボネート樹脂(C)は、分岐構造であっても、直鎖構造であってもよいし、さらに分岐構造と直鎖構造との混合物であってもよい。
前記ポリカーボネート樹脂(A)と、前記難燃剤(B)に加えて、さらに前記芳香族ポリカーボネート樹脂(C)を含有する場合の本発明の樹脂組成物(以下、「本樹脂組成物」ともいう)は、ガラス転移温度が単一となる特徴を有する樹脂組成物である。
また、上記動的粘弾性測定のほか、示差走査熱量測定などによってもガラス転移温度が単一であることを確認することができる。具体的には、JIS K7121(1987年)に準じて、加熱速度10℃/分で示差走査熱量計(DSC)を用いてガラス転移温度を測定した際に、ガラス転移温度を示す変曲点が1つだけ現れるものであるということもできる。
[熱安定剤]
本発明の樹脂組成物には、成形時における分子量の低下や色相の悪化を防止するために熱安定剤を配合することができる。かかる熱安定剤としては、亜リン酸、リン酸、亜ホスホン酸、ホスホン酸およびこれらのエステル等が挙げられ、具体的には、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ジステアリルペンタエリスリトールジホスファイト、トリブチルホスフェート、トリエチルホスフェート、トリメチルホスフェート、トリフェニルホスフェート、ジフェニルモノオルソキセニルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェート、4,4’-ビフェニレンジホスフィン酸テトラキス(2,4-ジ-tert-ブチルフェニル)、ベンゼンホスホン酸ジメチル、ベンゼンホスホン酸ジエチル、ベンゼンホスホン酸ジプロピル等が挙げられる。なかでも、トリスノニルフェニルホスファイト、トリメチルホスフェート、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、およびベンゼンホスホン酸ジメチルが好ましく使用される。
これらの熱安定剤は、1種を単独で用いても良く、2種以上を併用しても良い。
また、本発明の樹脂組成物には、酸化防止の目的で通常知られた酸化防止剤を配合することができる。かかる酸化防止剤としては、例えばペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-ラウリルチオプロピオネート)、グリセロール-3-ステアリルチオプロピオネート、トリエチレングリコール-ビス[3-(3-tert-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、ペンタエリスリトール-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、N,N-ヘキサメチレンビス(3,5-ジ-tert-ブチル-4-ヒドロキシ-ヒドロシンナマイド)、3,5-ジ-tert-ブチル-4-ヒドロキシ-ベンジルホスホネート-ジエチルエステル、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート、4,4’-ビフェニレンジホスフィン酸テトラキス(2,4-ジ-tert-ブチルフェニル)、3,9-ビス{1,1-ジメチル-2-[β-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]エチル}-2,4,8,10-テトラオキサスピロ(5,5)ウンデカン等の1種又は2種以上が挙げられる。前記酸化防止剤の配合量は、本発明の樹脂組成物100質量%に対して、0.0001質量%以上、1質量%以下の割合で配合することが好ましく、0.0005質量%以上、0.5質量%以下の割合で配合することがより好ましく、0.001質量%以上、0.2質量%以下の割合で配合することがさらに好ましい。かかる範囲で酸化防止剤を配合することにより、酸化防止剤のブリード、樹脂組成物からなる各種成形品の機械特性低下を生じることなく、樹脂の酸化劣化を防止することができる。
また、本発明の樹脂組成物に対して表面滑性の付与を目的として、滑剤を配合することができる。前記滑剤としては、一価または多価アルコールの高級脂肪酸エステル、高級脂肪酸、パラフィンワックス、蜜蝋、オレフィン系ワックス、カルボキシ基および/またはカルボン酸無水物基を含有するオレフィン系ワックス、シリコーンオイル、オルガノポリシロキサン等が挙げられる。
また、本発明の樹脂組成物の耐候性をさらに向上する目的で、紫外線吸収剤、光安定剤を配合することができる。かかる紫外線吸収剤、光安定剤としては、例えば2-(2’-ヒドロキシ-5’-tert-オクチルフェニル)ベンゾトリアゾール、2-(3-tert-ブチル-5-メチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2,2’-メチレンビス(4-クミル-6-ベンゾトリアゾールフェニル)、2,2’-p-フェニレンビス(1,3-ベンゾオキサジン-4-オン)等が挙げられる。紫外線吸収剤の融点としては、特に120~250℃の範囲にあるものが好ましい。融点が120℃以上の紫外線吸収剤を使用すると、成形品表面のガスによる曇りが減少し改善される。具体的には、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-tert-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-[2’-ヒドロキシ-3’-(3”,4”,5”,6”-テトラヒドロフタルイミドメチル)-5’-メチルフェニル]ベンゾトリアゾール、2,2-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール、2-(2-ヒドロキシ-3,5-ジクミルフェニル)ベンゾトリアゾールなどのベンゾトリアゾール系紫外線吸収剤が使用され、これらのうちでも、特に、2-(2-ヒドロキシ-3,5-ジクミルフェニル)ベンゾトリアゾール、2,2-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノールが好ましい。これらの紫外線吸収剤、光安定剤は、1種を単独で用いても良く、2種以上を併用しても良い。前記紫外線吸収剤、光安定剤の配合量は、本発明の樹脂組成物100質量%に対して、0.0001質量%以上、1質量%以下の割合で配合することが好ましく、0.0005質量%以上、0.5質量%以下の割合で配合することがより好ましく、0.001質量%以上、0.2質量%以下の割合で配合することがさらに好ましい。かかる範囲で紫外線吸収剤、光安定剤を配合することにより、紫外線吸収剤、光安定剤のブリード、樹脂組成物からなる各種成形品の機械特性低下を生じることなく、樹脂組成物の耐候性を向上することができる。
さらに、本発明の樹脂組成物の耐加水分解性をさらに向上するため、エポキシ系化合物を配合することができる。エポキシ系化合物の具体例としては、エポキシ化大豆油、エポキシ化アマニ油、フェニルグリシジルエーテル、アリルグリシジルエーテル、t-ブチルフェニルグリシジルエーテル、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキシルカルボキシレート、3,4-エポキシ-6-メチルシクロヘキシルメチル-3’,4’-エポキシ-6’-メチルシクロヘキシルカルボキシレート、2,3-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキシルカルボキシレート、4-(3,4-エポキシ-5-メチルシクロヘキシル)ブチル-3’,4’-エポキシシクロヘキシルカルボキシレート、3,4-エポキシシクロヘキシルエチレンオキシド、シクロヘキシルメチルー3,4-エポキシシクロヘキシルカルボキシレート、3,4-エポキシ-6-メチルシクロヘキシルメチル-6’-メチルシロヘキシルカルボキシレート、ビスフェノールAジグリシジルエーテル、テトラブロモビスフェノールAグリシジルエーテル、フタル酸のジグリシジルエステル、ヘキサヒドロフタル酸のジグリシジルエステル、ビス-エポキシジシクロペンタジエニルエーテル、ビス-エポキシエチレングリコール、ビス-エポキシシクロヘキシルアジペート、ブタジエンジエポキシド、テトラフェニルエチレンエポキシド、オクチルエポキシタレート、エポキシ化ポリブタジエン、3,4-ジメチル-1,2-エポキシシクロヘキサン、3,5-ジメチル-1,2-エポキシシクロヘキサン、3-メチル-5-t-ブチル-1,2-エポキシシクロヘキサン、オクタデシル-2,2-ジメチル-3,4-エポキシシクロヘキシルカルボキシレート、N-ブチル-2,2-ジメチル-3,4-エポキシシクロヘキシルカルボキシレート、シクロヘキシル-2-メチル-3,4-エポキシシクロヘキシルカルボキシレート、N-ブチル-2-イソプロピル-3,4-エポキシ-5-メチルシクロヘキシルカルボキシレート、オクタデシル-3,4-エポキシシクロヘキシルカルボキシレート、2-エチルヘキシル-3’,4’-エポキシシクロヘキシルカルボキシレート、4,6-ジメチル-2,3-エポキシシクロヘキシル-3’,4’-エポキシシクロヘキシルカルボキシレート、4,5-エポキシ無水テトラヒドロフタル酸、3-t-ブチル-4,5-エポキシ無水テトラヒドロフタル酸、ジエチル-4,5-エポキシ-シス-1,2-シクロヘキシルジカルボキシレート、ジ-N-ブチル-3-tブチル-4,5-エポキシ-シス-1,2-シクロヘキシルジカルボキシレートなどが挙げられる。ビスフェノールAジグリシジルエーテルが相溶性などの点から好ましい。前記エポキシ系化合物の配合量としては、本発明の樹脂組成物100質量%に対して、0.0001質量%以上、5質量%以下の割合で配合することが好ましく、0.001質量%以上、1質量%以下の割合で配合することがより好ましく、0.005質量%以上、0.5質量%以下の割合で配合することがさらに好ましい。かかる範囲でエポキシ系化合物を配合することにより、エポキシ系化合物のブリード、樹脂組成物からなる各種成形品の機械特性低下を生じることなく、樹脂組成物の耐加水分解性を向上することができる。
本発明の樹脂組成物は、フィルム、プレート、または、射出成形品等に成形することができる。具体的には、前記ポリカーボネート樹脂(A)、前記難燃剤(B)及び、必要に応じて前記芳香族ポリカーボネート樹脂(C)やその他の樹脂、添加剤等の原料を直接混合し、押出機或いは射出成型機に投入して成形するか、または、前記原料を二軸押出機を用いて溶融混合し、ストランド形状に押出してペレットを作成した後、このペレットを押出機或いは射出成型機に投入して成形する方法を挙げることができる。いずれの方法においても、前記ポリカーボネート樹脂(A)の加水分解による分子量の低下を考慮する必要があり、均一に混合させるためには後者を選択するのが好ましい。そこで、以下後者の製造方法について説明する。
具体的には、本発明の樹脂組成物を成形して得られる厚さ3.0mmの成形体のUL94垂直燃焼試験の判定がV-0である。また、厚さ2.0mmの成形体のUL94垂直燃焼試験の判定がV-0であることがさらに好ましく、厚さ1.0mmの成形体のUL94垂直燃焼試験の判定がV-0であることが特に好ましい。
荷重たわみ温度を65℃以上とするためには、前記ポリカーボネート樹脂(A)に占める前記構造単位(b)の割合や、前記ポリカーボネート樹脂(A)と前記難燃剤(B)の混合物中に占める前記難燃剤(B)の割合などを本明細書に記載の範囲内に設定する方法が挙げられるが、これらの方法に限定されるものではない。
なお、本明細書中に表示される原料及び試験片についての種々の測定値及び評価は次の様にして行った。ここで、フィルムの押出機からの流れ方向を縦方向、その直交方向を横方向と呼ぶ。
中央理化社製DT-504型自動粘度計にてウベローデ型粘度計を用い、溶媒として、塩化メチレンを用い、温度20.0℃±0.1℃でポリカーボネート樹脂試料の還元粘度を測定した。濃度は0.60g/dlになるように、精密に調整した後に測定した。
溶媒の通過時間t0、溶液の通過時間tから、下記式:
ηrel=t/t0
より相対粘度ηrelを求め、相対粘度ηrelから、下記式:
ηsp=(η-η0)/η0=ηrel-1
より比粘度ηspを求めた。
比粘度ηspを濃度c(g/dl)で割って、下記式:
ηred=ηsp/c
より還元粘度(換算粘度)ηredを求めた。この数値が高いほど分子量が大きい。
長さ135.0mm×幅13.0mm×厚さ(1.0mm・2.0mm・3.0mm)の試験片を用いて、Underwriters Laboratories社の安全標準UL94垂直燃焼試験の手順に基づき、n=5にて燃焼試験を実施した。UL94垂直燃焼試験(UL94V)の判定基準に基づき、V-0規格に準ずるものを合格とした。
JIS K7110(1999年)に基づいて2号A試験片(ノッチ付き、長さ64.0mm×幅12.7mm×厚さ4.0mm)を作製し、東洋精機製作所製JISL-Dを用いて23℃におけるアイゾット衝撃強度の測定を行った。アイゾット衝撃強度が5.0kJ/m2以上のものを合格とした。
JIS K7191(2007年)に基づいて長さ120.0mm×幅11.0mm×厚さ3.0mmの試験片を作成し、東洋精器社製S-3Mを用いて荷重たわみ温度の測定を行った。測定は、エッジワイズ方向、試験片に加える荷重0.45MPaの条件で行った。荷重たわみ温度が65℃以上を合格とした。
<(A)-1>
イソソルビドに由来する構造単位/1,4-シクロヘキサンジメタノールに由来する構造単位=30/70(モル%)の比率で溶融重合法により共重合されてなる、ポリカーボネート樹脂(ガラス転移温度=80℃、還元粘度=0.56dl/g)
<(A)-2>
イソソルビドに由来する構造単位/1,4-シクロヘキサンジメタノールに由来する構造単位=50/50(モル%)の比率で溶融重合法により共重合されてなる、ポリカーボネート樹脂(ガラス転移温度=101℃、還元粘度=0.57dl/g)
<(A)-3>
イソソルビドに由来する構造単位/1,4-シクロヘキサンジメタノールに由来する構造単位=70/30(モル%)の比率で溶融重合法により共重合されてなる、ポリカーボネート樹脂(ガラス転移温度=120℃、還元粘度=0.56dl/g)
<(B)-1>
鈴裕化学社製ファイアカットP-770(ポリリン酸アンモニウムとトリアジン系化合物の混合物、リン含有量=24質量%、窒素含有量=17質量%)
<(B)-2>
クラリアント社製エクソリットOP930(ジエチルホスフィン酸アルミニウム、リン含有量=23質量%、窒素含有量=0質量%)
<(C)-1>
三菱エンジニアリングプラスチックス社製、商品名「ユーピロンS3000」(ガラス転移温度=150℃、還元粘度=0.49dl/g)
(A)-1、及び、(B)-1を混合質量比60:40の割合でドライブレンドした後、三菱重工製40mmφ小型同方向二軸押出機を用いて230℃でコンパウンドし、ペレットを作製した。得られたペレットを東芝機械製射出成形機IS50E(スクリュー径25mm)を用い、シリンダー温度230℃、金型温度約70℃の条件にて、難燃性の評価用として、長さ135mm×幅13mm×厚さ1.0mmの試験片、アイゾット衝撃強度の評価用として、長さ64.0mm×幅12.7mm×厚さ4mmの試験片、荷重たわみ温度の評価用として、長さ120mm×幅11mm×厚さ3mmの試験片を射出成形した。得られた試験片を用いて、難燃性、アイゾット衝撃強度、及び、荷重たわみ温度の評価を行った。結果を表1に示す。
実施例1-1で得られるペレットを東芝機械製射出成形機IS50E(スクリュー径25mm)を用い、シリンダー温度230℃、金型温度約70℃の条件にて、難燃性の評価用として、長さ135mm×幅13mm×厚さ2.0mmの試験片を射出成形して得られる成形品の難燃性は、V-0であると推定される。
実施例1-1で得られるペレットを東芝機械製射出成形機IS50E(スクリュー径25mm)を用い、シリンダー温度230℃、金型温度約70℃の条件にて、難燃性の評価用として、長さ135mm×幅13mm×厚さ3.0mmの試験片を射出成形して得られる成形品の難燃性は、V-0であると推定される。
(A)-1、及び、(B)-1の混合質量比を50:50とした以外は実施例1-1と同様の方法でペレットを作製した。次いで、実施例1-1と同様の方法で試験片の作製、及び、評価を行った。結果を表1に示す。
実施例2-1で得られるペレットを東芝機械製射出成形機IS50E(スクリュー径25mm)を用い、シリンダー温度230℃、金型温度約70℃の条件にて、難燃性の評価用として、長さ135mm×幅13mm×厚さ2.0mmの試験片を射出成形して得られる成形品の難燃性は、V-0であると推定される。
実施例2-1で得られるペレットを東芝機械製射出成形機IS50E(スクリュー径25mm)を用い、シリンダー温度230℃、金型温度約70℃の条件にて、難燃性の評価用として、長さ135mm×幅13mm×厚さ3.0mmの試験片を射出成形して得られる成形品の難燃性は、V-0であると推定される。
(A)-2、及び、(B)-1を混合質量比60:40の割合でドライブレンドした後、実施例1-1と同様の方法でペレットを作製した。次いで、射出成形時の金型温度を約90℃とした以外は実施例1-1と同様の方法で試験片の作製、評価を行った。結果を表1に示す。
実施例3-1で得られるペレットを東芝機械製射出成形機IS50E(スクリュー径25mm)を用い、シリンダー温度230℃、金型温度約90℃の条件にて、難燃性の評価用として、長さ135mm×幅13mm×厚さ2.0mmの試験片を射出成形して得られる成形品の難燃性は、V-0であると推定される。
実施例3-1で得られるペレットを東芝機械製射出成形機IS50E(スクリュー径25mm)を用い、シリンダー温度230℃、金型温度約90℃の条件にて、難燃性の評価用として、長さ135mm×幅13mm×厚さ3.0mmの試験片を射出成形して得られる成形品の難燃性は、V-0であると推定される。
(A)-1、(B)-1、及び、(C)-1を混合質量比40:40:20の割合でドライブレンドした後、実施例1-1と同様の方法でペレットを作製した。次いで、射出成形時の金型温度を約80℃とした以外は実施例1-1と同様の方法で試験片の作製、評価を行った。結果を表1に示す。
実施例4-1で得られるペレットを東芝機械製射出成形機IS50E(スクリュー径25mm)を用い、シリンダー温度230℃、金型温度約80℃の条件にて、難燃性の評価用として、長さ135mm×幅13mm×厚さ2.0mmの試験片を射出成形して得られる成形品の難燃性は、V-0であると推定される。
実施例4-1で得られるペレットを東芝機械製射出成形機IS50E(スクリュー径25mm)を用い、シリンダー温度230℃、金型温度約80℃の条件にて、難燃性の評価用として、長さ135mm×幅13mm×厚さ3.0mmの試験片を射出成形して得られる成形品の難燃性は、V-0であると推定される。
(A)-1、及び、(B)-1の混合質量比を30:70とした以外は実施例1-1と同様の方法でペレットを作製した。次いで実施例1-1と同様の方法で試験片の作製、評価を行った。結果を表1に示す。
比較例1-1で得られるペレットを東芝機械製射出成形機IS50E(スクリュー径25mm)を用い、シリンダー温度230℃、金型温度約70℃の条件にて、難燃性の評価用として、長さ135mm×幅13mm×厚さ2.0mmの試験片を射出成形して得られる成形品の難燃性は、V-0であると推定される。
比較例1-1で得られるペレットを東芝機械製射出成形機IS50E(スクリュー径25mm)を用い、シリンダー温度230℃、金型温度約70℃の条件にて、難燃性の評価用として、長さ135mm×幅13mm×厚さ3.0mmの試験片を射出成形して得られる成形品の難燃性は、V-0であると推定される。
(A)-2、及び、(B)-1の混合質量比を70:30とした以外は実施例3-1と同様の方法で試験片の作製、評価を行った。結果を表1に示す。
比較例2-1で得られたペレットを東芝機械製射出成形機IS50E(スクリュー径25mm)を用い、シリンダー温度230℃、金型温度約90℃の条件にて、難燃性の評価用として、長さ135mm×幅13mm×厚さ2.0mmの試験片を射出成形した。前記成形品の難燃性は規格外、すなわち試験片は燃焼した。
比較例2-1で得られたペレットを東芝機械製射出成形機IS50E(スクリュー径25mm)を用い、シリンダー温度230℃、金型温度約90℃の条件にて、難燃性の評価用として、長さ135mm×幅13mm×厚さ3.0mmの試験片を射出成形した。前記成形品の難燃性は規格外、すなわち試験片は燃焼した。
(A)-3、及び、(B)-1を混合質量比60:40の割合でドライブレンドした後、実施例1-1と同様の方法でペレットを作製した。次いで、射出成形時の金型温度を約110℃とした以外は実施例1-1と同様の方法で試験片の作製、評価を行った。結果を表1に示す。
比較例3-1で得られるペレットを東芝機械製射出成形機IS50E(スクリュー径25mm)を用い、シリンダー温度230℃、金型温度約110℃の条件にて、難燃性の評価用として、長さ135mm×幅13mm×厚さ2.0mmの試験片を射出成形して得られる成形品の難燃性は、V-0であると推定される。
比較例1-1で得られるペレットを東芝機械製射出成形機IS50E(スクリュー径25mm)を用い、シリンダー温度230℃、金型温度約110℃の条件にて、難燃性の評価用として、長さ135mm×幅13mm×厚さ3.0mmの試験片を射出成形して得られる成形品の難燃性は、V-0であると推定される。
難燃剤として、(B)-1に替えて(B)-2を用い、(A)-1、及び、(B)-2を混合質量比60:40の割合でブレンドした以外は実施例1-1と同様の方法で試験片の作製、及び、評価を行った。結果を表1に示す。
比較例4-1で得られるペレットを東芝機械製射出成形機IS50E(スクリュー径25mm)を用い、シリンダー温度230℃、金型温度約70℃の条件にて、難燃性の評価用として、長さ135mm×幅13mm×厚さ2.0mmの試験片を射出成形して得られる成形品の難燃性は、V-2であると推定される。
比較例4-1で得られるペレットを東芝機械製射出成形機IS50E(スクリュー径25mm)を用い、シリンダー温度230℃、金型温度約70℃の条件にて、難燃性の評価用として、長さ135mm×幅13mm×厚さ3.0mmの試験片を射出成形して得られる成形品の難燃性は、V-2であると推定される。
Claims (15)
- 前記樹脂組成物を成形して得られる厚さ2.0mmの成形体のUL94垂直燃焼試験における判定がV-0である、請求項1に記載の樹脂組成物。
- 前記樹脂組成物を成形して得られる厚さ1.0mmの成形体のUL94垂直燃焼試験における判定がV-0である、請求項1又は2に記載の樹脂組成物。
- 前記ポリカーボネート樹脂(A)のガラス転移温度が75℃以上、140℃以下である、請求項1~4のいずれか1項に記載の樹脂組成物。
- 前記ポリカーボネート樹脂(A)中に前記構造単位(a)を60モル%以下含有する、請求項1~5のいずれか1項に記載の樹脂組成物。
- 前記ポリカーボネート樹脂(A)と前記難燃剤(B)の混合物中に占める前記難燃剤(B)の割合が35質量%以上、60質量%以下である、請求項1~6のいずれか1項に記載の樹脂組成物。
- 前記難燃剤(B)中におけるリン含有量が20質量%以上、35質量%以下であり、かつ窒素含有量が10質量%以上、25質量%以下である、請求項1~7のいずれか1項に記載の樹脂組成物。
- 前記ポリカーボネート樹脂(A)がさらに、シクロヘキサンジメタノールに由来する構造単位(b)を含む、請求項1~8のいずれか1項に記載の樹脂組成物。
- 前記ポリカーボネート樹脂(A)中に前記構造単位(b)を40モル%以上、80モル%以下含有する、請求項9に記載の樹脂組成物。
- 芳香族ポリカーボネート樹脂(C)をさらに含有し、ガラス転移温度が単一であり、かつ、該ガラス転移温度が前記ポリカーボネート樹脂(A)のガラス転移温度以上、前記芳香族ポリカーボネート樹脂(C)のガラス転移温度以下の範囲にある請求項1~10のいずれか1項に記載の樹脂組成物。
- 前記ポリカーボネート樹脂(A)と前記難燃剤(B)と前記芳香族ポリカーボネート樹脂(C)の混合物中に占める前記芳香族ポリカーボネート樹脂(C)の割合が、5質量%以上、50質量%以下である請求項11に記載の樹脂組成物。
- 請求項1から12のいずれか1項に記載の樹脂組成物を成形して得られるフィルム。
- 請求項1から12のいずれか1項に記載の樹脂組成物を成形して得られるプレート。
- 請求項1から12のいずれか1項に記載の樹脂組成物を成形して得られる射出成形品。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020137010387A KR20130124946A (ko) | 2010-10-29 | 2011-08-23 | 수지 조성물, 그리고 이것을 성형하여 얻어지는 필름, 플레이트, 및 사출 성형품 |
EP11835941.3A EP2634218A4 (en) | 2010-10-29 | 2011-08-23 | RESIN COMPOSITION AND FILM, PLATE AND INJECTION MOLDING OBTAINED BY MOLDING THE SAME |
CN201180051948.4A CN103189449B (zh) | 2010-10-29 | 2011-08-23 | 树脂组合物以及将其成型而得到的膜、板和注射成型品 |
US13/872,750 US20130237649A1 (en) | 2010-10-29 | 2013-04-29 | Resin composition, and film, plate and injection-molded article obtained by molding the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-244342 | 2010-10-29 | ||
JP2010244342 | 2010-10-29 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/872,750 Continuation US20130237649A1 (en) | 2010-10-29 | 2013-04-29 | Resin composition, and film, plate and injection-molded article obtained by molding the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012056800A1 true WO2012056800A1 (ja) | 2012-05-03 |
Family
ID=45993530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/068963 WO2012056800A1 (ja) | 2010-10-29 | 2011-08-23 | 樹脂組成物、並びにこれを成形して得られるフィルム、プレート、及び射出成形品 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20130237649A1 (ja) |
EP (1) | EP2634218A4 (ja) |
JP (1) | JP2012107200A (ja) |
KR (1) | KR20130124946A (ja) |
CN (1) | CN103189449B (ja) |
TW (1) | TW201219487A (ja) |
WO (1) | WO2012056800A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101968772B1 (ko) | 2011-02-17 | 2019-04-12 | 미쯔비시 케미컬 주식회사 | 폴리카보네이트 수지 조성물 |
EP2692498B1 (en) | 2011-03-31 | 2019-10-02 | Mitsubishi Chemical Corporation | Method for manufacturing polycarbonate resin |
JP2014088472A (ja) * | 2012-10-29 | 2014-05-15 | Mitsubishi Chemicals Corp | 樹脂組成物およびこれを成形して得られる成形品 |
KR20150038969A (ko) * | 2013-10-01 | 2015-04-09 | 제일모직주식회사 | 정밀 부재용 수납 용기 및 이의 제조방법 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003292603A (ja) * | 2002-03-29 | 2003-10-15 | Matsushita Electric Ind Co Ltd | 熱可塑性成形材料 |
WO2007148604A1 (ja) * | 2006-06-19 | 2007-12-27 | Mitsubishi Chemical Corporation | ポリカーボネート共重合体及びその製造方法 |
WO2008149872A1 (ja) * | 2007-06-01 | 2008-12-11 | Teijin Limited | 難燃性ポリカーボネート樹脂組成物 |
JP2009161746A (ja) * | 2007-12-12 | 2009-07-23 | Mitsubishi Chemicals Corp | ポリカーボネートの製造方法およびポリカーボネート成形物 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009057467A (ja) * | 2007-08-31 | 2009-03-19 | Teijin Ltd | 電気・電子部品 |
US7666972B2 (en) * | 2007-10-18 | 2010-02-23 | SABIC Innovative Plastics IP B., V. | Isosorbide-based polycarbonates, method of making, and articles formed therefrom |
JP5433945B2 (ja) * | 2007-12-12 | 2014-03-05 | 三菱化学株式会社 | ポリカーボネートからなる車両用ランプレンズ |
CN103351463B (zh) * | 2008-11-28 | 2016-01-06 | 三菱化学株式会社 | 聚碳酸酯树脂、聚碳酸酯树脂组合物、光学膜和聚碳酸酯树脂成型品 |
KR101814832B1 (ko) * | 2009-12-10 | 2018-01-30 | 미쯔비시 케미컬 주식회사 | 폴리카보네이트 수지 조성물 그리고 이것을 성형하여 얻어지는 성형체, 필름, 플레이트 및 사출 성형품 |
US8535454B2 (en) * | 2010-11-23 | 2013-09-17 | Promerus, Llc | Polymer composition for microelectronic assembly |
-
2011
- 2011-08-23 KR KR1020137010387A patent/KR20130124946A/ko not_active Application Discontinuation
- 2011-08-23 WO PCT/JP2011/068963 patent/WO2012056800A1/ja active Application Filing
- 2011-08-23 CN CN201180051948.4A patent/CN103189449B/zh active Active
- 2011-08-23 EP EP11835941.3A patent/EP2634218A4/en not_active Withdrawn
- 2011-08-24 JP JP2011182764A patent/JP2012107200A/ja active Pending
- 2011-08-24 TW TW100130235A patent/TW201219487A/zh unknown
-
2013
- 2013-04-29 US US13/872,750 patent/US20130237649A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003292603A (ja) * | 2002-03-29 | 2003-10-15 | Matsushita Electric Ind Co Ltd | 熱可塑性成形材料 |
WO2007148604A1 (ja) * | 2006-06-19 | 2007-12-27 | Mitsubishi Chemical Corporation | ポリカーボネート共重合体及びその製造方法 |
WO2008149872A1 (ja) * | 2007-06-01 | 2008-12-11 | Teijin Limited | 難燃性ポリカーボネート樹脂組成物 |
JP2009161746A (ja) * | 2007-12-12 | 2009-07-23 | Mitsubishi Chemicals Corp | ポリカーボネートの製造方法およびポリカーボネート成形物 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2634218A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN103189449B (zh) | 2014-10-29 |
US20130237649A1 (en) | 2013-09-12 |
EP2634218A4 (en) | 2016-11-02 |
KR20130124946A (ko) | 2013-11-15 |
EP2634218A1 (en) | 2013-09-04 |
JP2012107200A (ja) | 2012-06-07 |
CN103189449A (zh) | 2013-07-03 |
TW201219487A (en) | 2012-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101814832B1 (ko) | 폴리카보네이트 수지 조성물 그리고 이것을 성형하여 얻어지는 성형체, 필름, 플레이트 및 사출 성형품 | |
JP6172188B2 (ja) | ポリカーボネート樹脂組成物、及びこれを用いた成形品、フィルム、プレート、射出成形品 | |
JP5577942B2 (ja) | ポリカーボネートからなる車両用ランプレンズ | |
JP5506437B2 (ja) | 多層体 | |
KR20140105492A (ko) | Ee 및 it 분야를 위한 uv-안정화, 유리 섬유 강화, 난연성 폴리카르보네이트 | |
JP5716274B2 (ja) | 樹脂組成物並びにこれを成形してなるフィルム、プレート及び射出成形品 | |
KR20180022712A (ko) | 폴리카보네이트 수지 조성물, 그 제조 방법, 성형체 | |
WO2012056800A1 (ja) | 樹脂組成物、並びにこれを成形して得られるフィルム、プレート、及び射出成形品 | |
JP5369296B2 (ja) | 芳香族ポリカーボネート樹脂組成物、及び成形品 | |
JP2017095667A (ja) | 樹脂組成物、成形体、電子部品、電子機器、及び電子事務機器 | |
JP2012041467A (ja) | ポリカーボネート樹脂組成物及び成形品 | |
JP6352030B2 (ja) | ポリカーボネート樹脂組成物および成形品 | |
JP2013237765A (ja) | ポリカーボネート樹脂組成物 | |
KR101943690B1 (ko) | 폴리카보네이트 수지 조성물 및 이로부터 형성된 성형품 | |
JP2015199853A (ja) | ポリカーボネート樹脂組成物および成形品 | |
JP5664396B2 (ja) | ポリカーボネート樹脂組成物からなるシールド部材 | |
JP2011127037A (ja) | 低光弾性成形体 | |
KR102311477B1 (ko) | 열가소성 수지 조성물 및 이를 이용한 성형품 | |
US20230038482A1 (en) | Polycarbonate compositions containing fillers and triacylglycerol containing epoxy groups | |
JP6079843B2 (ja) | ポリカーボネート樹脂組成物及び成形品 | |
JP2016017156A (ja) | 芳香族ポリカーボネート樹脂組成物及びその成形品 | |
JP2015007248A (ja) | ポリカーボネート樹脂ペレット | |
JP5429953B2 (ja) | ポリカーボネート樹脂組成物およびそれからなる成形品 | |
JP2010126599A (ja) | ポリカーボネート樹脂組成物およびそれからなる成形品 | |
JP2012167269A (ja) | ポリカーボネート樹脂組成物及び成形品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11835941 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20137010387 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2011835941 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011835941 Country of ref document: EP |