WO2012055215A1 - 一种高磁感无取向硅钢的制造方法 - Google Patents

一种高磁感无取向硅钢的制造方法 Download PDF

Info

Publication number
WO2012055215A1
WO2012055215A1 PCT/CN2011/072775 CN2011072775W WO2012055215A1 WO 2012055215 A1 WO2012055215 A1 WO 2012055215A1 CN 2011072775 W CN2011072775 W CN 2011072775W WO 2012055215 A1 WO2012055215 A1 WO 2012055215A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold
silicon steel
oriented silicon
temperature
rolled
Prior art date
Application number
PCT/CN2011/072775
Other languages
English (en)
French (fr)
Chinese (zh)
Inventor
王子涛
王波
谢世殊
金冰忠
马爱华
邹亮
朱雨华
胡瞻源
陈晓
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to JP2012542352A priority Critical patent/JP2013513724A/ja
Priority to MX2012006680A priority patent/MX2012006680A/es
Priority to KR1020127015086A priority patent/KR101404101B1/ko
Priority to EP11835489.3A priority patent/EP2508629A4/en
Priority to RU2012124187/02A priority patent/RU2527827C2/ru
Publication of WO2012055215A1 publication Critical patent/WO2012055215A1/zh
Priority to US13/492,984 priority patent/US20120285584A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets

Definitions

  • the present invention relates to a method for producing non-oriented silicon steel, and more particularly to a method for producing a high magnetic induction non-oriented silicon steel. Background technique
  • Non-oriented silicon steel is an important magnetic material and is widely used in various fields such as motors and compressors.
  • the silicon content is less than 6.5%
  • the aluminum content is less than 3%
  • C% is less than 0.1%
  • the performance indicators mainly include material iron loss, magnetic induction and magnetic anisotropy.
  • the magnetic properties of non-oriented silicon steel are affected by various factors such as material composition, thickness, and heat treatment process.
  • a lower silicon content is generally used to lower the material resistivity, and at the same time, a high hot-rolled sheet is used to normalize the temperature, and the normalizing temperature is even as high as 1000 °C.
  • the recrystallized structure of the non-oriented silicon steel normalized plate is fine. The fine normalized structure makes the texture of the Okl ⁇ surface in the final annealed sheet low and the corresponding magnetic induction is low.
  • the annealing process is also a key factor affecting the magnetic induction of the material.
  • Appropriate soaking temperatures and holding times are usually used to obtain annealed sheets of appropriate grain size. If the soaking temperature is high, the holding time is long, and the grain of the annealed sheet is coarse, the texture of the (111 ⁇ plane will be enhanced, resulting in a decrease in magnetic inductance; but if the grain diameter is small, the hysteresis loss of the material is too large. Increased motor losses in end use.
  • the rapid heating annealing method can suppress the recovery process, and at the same time obtain the (110 ⁇ and (100 ⁇ surface texture cores to effectively improve the magnetic induction of the material.
  • the object of the present invention is to provide a method for manufacturing high magnetic induction non-oriented silicon steel, which can produce high magnetic induction non-oriented electrical steel by using hot rolling plate light pressing measures and rapid heating annealing of cold rolled plate under the premise of ensuring iron loss. .
  • a method for manufacturing a high magnetic induction non-oriented silicon steel comprising the following steps:
  • Non-oriented silicon steel chemical composition weight percentage Si: 0.1 ⁇ 1%, A1: 0.005 ⁇ 1%, C ⁇ 0.004%, Mn: 0.10 ⁇ 1.50%, P ⁇ 0.2%, S ⁇ 0.005%, N ⁇ 0.002%,
  • the billet heating temperature is 1150 ° C ⁇ 1200 ° C, after hot soaking, hot rolling, hot rolling finishing temperature 830 ⁇ 900 ° C, under ⁇ 570 temperature conditions;
  • the normalized plate is pickled, and then subjected to cold rolling of a cumulative reduction of 70 to 80% in multiple passes, and rolled into a cold-rolled plate of a target thickness.
  • Annealing rapid heating annealing of cold-rolled cold-rolled sheet, heating rate ⁇ 100° ⁇ /8, heating to 800 ⁇ 1000°C, holding time 5 ⁇ 60s, then 3 ⁇ 15°C/s The cooling rate is slowly cooled to 600 ⁇ 750 °C ;
  • the annealing atmosphere is (volume ratio 30% ⁇ 70%) 3 ⁇ 4+ (volume ratio 70% ⁇ 30%)
  • the main factors affecting the magnetic induction strength B 25 and B 5Q of non-oriented silicon steel are chemical composition and crystal texture.
  • the amount of silicon, aluminum or manganese increases, the material resistivity increases, and B 25 and B 5Q decrease.
  • the ideal crystal texture is (100) [uvw] surface texture because it is isotropic and the hard magnetization direction [111] is not on the rolling surface. This single face texture is not actually available.
  • the texture is only about 20%, which is basically a non-oriented chaotic texture, that is, magnetic isotropic. Therefore, adjusting the composition and improving the manufacturing process to make the (100) component strengthening and the (111) component weakening are important ways to increase the magnetic induction B 25 and B 5Q .
  • composition design of the present invention mainly considers the following points:
  • Si soluble in ferrite to form a replacement solid solution, increase matrix resistivity, reduce iron loss, is the most important alloying element of electrical steel, but Si deteriorates magnetic induction.
  • the present invention focuses on an ultra-high magnetic non-oriented silicon steel. Therefore, the Si content is low, 0.1 to 1%.
  • A1 It is also a resistivity-increasing element. It is soluble in ferrite to increase the matrix resistivity, coarsen the grain, and reduce the iron loss, but it also reduces the magnetic inductance. A1 content exceeding 1.5% will make smelting casting difficult, magnetic induction is lowered, and processing is difficult.
  • Mn Compared with Si and A1, it can increase the electrical resistivity of steel and reduce the magnetic induction. However, Mn can reduce the iron loss and form a stable MnS with the inevitable inclusion S to eliminate the magnetic damage of S. Therefore, it is necessary to add a content of 0.1% or more.
  • the Mn of the present invention is from 0.10% to 1.50%.
  • adding a certain amount of phosphorus to the steel can improve the workability of the steel sheet.
  • C, N, Nb, V, Ti are all magnetic disadvantageous elements, and C ⁇ 0.004% is required in the present invention.
  • the slab heating temperature should be lower than the solid solution temperature of the steel inclusions MnS and A1N.
  • the heating temperature is set to 1150 ° C to 1200 ° C
  • the hot rolling finishing temperature is 830 to 900 ° C
  • the coiling temperature is ⁇ 570 ° C, which can ensure that the inclusions are not solid solution and obtain coarse hot rolled plate crystal. grain.
  • the proper leveling of the hot rolled sheet is a key factor for obtaining ultra high magnetic induction non-oriented silicon steel in the invention.
  • the present invention is directed to a method for producing a non-oriented silicon steel having an ultra-high magnetic sensation. Therefore, in the chemical component, the content of silicon and aluminum is low.
  • the lack of grain growth elements such as silicon and aluminum leads to the inability of the grains to grow normally during the normalization of the hot rolled sheet.
  • low-silicon non-oriented silicon steel is prone to recrystallization during hot rolling. Therefore, there are many fine equiaxed recrystallized grains in the hot-rolled sheet structure, and the rolled fiber structure is few.
  • the main purpose of hot-rolled sheet normalization and pre-annealing is to improve the grain structure and texture of the finished product.
  • the results of research on low-silicon non-oriented electrical steel show that the coarsening of grain structure before cold rolling will weaken the ⁇ 111 ⁇ texture component of the cold-rolled sheet after final annealing, and the ⁇ Okl ⁇ texture component favorable for magnetic properties. Enhanced while The coarsening of the precipitates makes the crystal grains easier to grow, so that the magnetic inductance and the iron loss are improved.
  • the high magnetic induction non-oriented silicon steel has a normalization temperature of not lower than 950 ° C and a holding time of 30 to 180 s.
  • the cold-rolled sheet is subjected to rapid heating annealing, and the annealing heating rate is ⁇ 100 °C/s. Warm up to 800 ⁇ 1000 °C, keep warm for 5 ⁇ 60s, then slowly cool to 600 ⁇ 750 °C at 3 ⁇ 15 °C/s.
  • the present invention can improve the magnetic induction of the non-oriented silicon steel by at least 200 gauss under the premise of ensuring iron loss.
  • Figure 1 shows the relationship between the amount of flattening of the hot rolled sheet and the magnetic properties of the final annealed sheet.
  • Non-oriented silicon steel hot-rolled sheet thickness 2.6mm, composition: Si 0.799%, A1 0.4282%, C 0.0016%, Mn O.26%, P ⁇ 0.022%, S ⁇ 0.0033%, N ⁇ 0.0007%, Nb 0.0004%, V 0.0016%, Ti 0.0009%; the balance is iron and unavoidable impurities.
  • Rapid thermal annealing using a laboratory electric heating annealing furnace The heating rate is 250 °C / s, the soaking temperature is 850 ° C, and the temperature is maintained for 13 s.
  • the hot-rolled sheet After the hot-rolled sheet is lightly pressed by 1 to 10%, the recrystallized structure of the normalized sheet is obviously enlarged, but the microstructure of the finished sheet is not much different. When the reduction is 4 ⁇ 6%, the magnetic properties of the finished board are optimal, and the magnetic induction B50 reaches 1.83T. The performance is shown in Table 1. The flattening reduction of the hot rolled sheet is related to the magnetic properties of the final annealed sheet. As shown in Figure 1.
  • the microstructures of the normalized and final annealed sheets after flattening at different reduction rates were examined. It was found that after the cold-rolled sheets were slightly cold-rolled, the grains of the normalized sheets were significantly enlarged, and the grain size of the final annealed sheets did not change significantly. .
  • the average grain size of the normalized and annealed sheets is shown in Table 2. The results have a good correspondence with the magnetic properties of the finished plate. As the grain of the normalized plate becomes larger, the ⁇ 111 ⁇ texture component is weakened after the final annealing of the cold rolled plate, and the ⁇ 110 ⁇ texture component favorable for magnetic properties is enhanced. , the final annealed sheet magnetic induction B50 optimized.
  • Non-oriented silicon steel hot-rolled sheet thickness 2.6mm, composition: Si 1%, A1 0.2989%, C 0.0015%, Mn 0.297%, P 0.0572%, S 0.0027%, N 0.0009%, Nb 0.0005%, V 0.0015%, Ti 0.0011%; the balance is iron and unavoidable impurities.
  • the hot rolled sheet is cold rolled at a reduction ratio of 4%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
PCT/CN2011/072775 2010-10-25 2011-04-14 一种高磁感无取向硅钢的制造方法 WO2012055215A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012542352A JP2013513724A (ja) 2010-10-25 2011-04-14 高磁気誘導の無方向性ケイ素鋼の製造プロセス
MX2012006680A MX2012006680A (es) 2010-10-25 2011-04-14 Un proceso de fabricacion de acero al silicio no orientado con alta induccion magnetica.
KR1020127015086A KR101404101B1 (ko) 2010-10-25 2011-04-14 고 자기유도를 가지는 무방향성 규소강의 제조 방법
EP11835489.3A EP2508629A4 (en) 2010-10-25 2011-04-14 PROCESS FOR MANUFACTURING NON-ORIENTED SILICON STEEL WITH HIGH MAGNETIC INDUCTION
RU2012124187/02A RU2527827C2 (ru) 2010-10-25 2011-04-14 Способ производства нетекстурированной электротехнической стали с высокой магнитной индукцией
US13/492,984 US20120285584A1 (en) 2010-10-25 2012-06-11 Manufacture Process Of Non-Oriented Silicon Steel With High Magnetic Induction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010517872.7 2010-10-25
CN2010105178727A CN102453837B (zh) 2010-10-25 2010-10-25 一种高磁感无取向硅钢的制造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/492,984 Continuation US20120285584A1 (en) 2010-10-25 2012-06-11 Manufacture Process Of Non-Oriented Silicon Steel With High Magnetic Induction

Publications (1)

Publication Number Publication Date
WO2012055215A1 true WO2012055215A1 (zh) 2012-05-03

Family

ID=45993116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072775 WO2012055215A1 (zh) 2010-10-25 2011-04-14 一种高磁感无取向硅钢的制造方法

Country Status (8)

Country Link
US (1) US20120285584A1 (ru)
EP (1) EP2508629A4 (ru)
JP (1) JP2013513724A (ru)
KR (1) KR101404101B1 (ru)
CN (1) CN102453837B (ru)
MX (1) MX2012006680A (ru)
RU (1) RU2527827C2 (ru)
WO (1) WO2012055215A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113574193A (zh) * 2019-03-20 2021-10-29 日本制铁株式会社 无方向性电磁钢板及其制造方法

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103361544B (zh) * 2012-03-26 2015-09-23 宝山钢铁股份有限公司 无取向硅钢及其制造方法
CN103834858B (zh) * 2012-11-23 2016-10-05 宝山钢铁股份有限公司 一种低铁损无取向硅钢的制造方法
CN103882288B (zh) * 2012-12-21 2016-03-02 鞍钢股份有限公司 一种高强度专用冷轧无取向电工钢及其生产方法
CN103882299B (zh) * 2012-12-21 2016-05-11 鞍钢股份有限公司 一种高铝薄规格电工钢及其生产方法
RU2540243C2 (ru) * 2013-05-07 2015-02-10 Открытое акционерное общество "Новолипецкий металлургический комбинат" Способ производства высокопроницаемой электротехнической изотропной стали
CN103388106A (zh) * 2013-06-27 2013-11-13 宝山钢铁股份有限公司 一种高磁感低铁损无取向电工钢板及其制造方法
CN103753116B (zh) * 2013-10-31 2016-05-25 宜兴市鑫源辊业有限公司 森吉米尔轧机工作辊的制造方法
CN103586430B (zh) * 2013-11-06 2016-08-24 北京首钢股份有限公司 无取向电工钢的生产方法
CN104178617A (zh) * 2014-08-25 2014-12-03 东北大学 控制双辊薄带连铸无取向硅钢磁性能的快速热处理方法
BR112017007273B1 (pt) * 2014-10-09 2021-03-09 Thyssenkrupp Steel Europe Ag produto de aço plano laminado a frio e recozido, recristalizado, e método para a fabricação de um produto de aço plano formado
US11239012B2 (en) * 2014-10-15 2022-02-01 Sms Group Gmbh Process for producing grain-oriented electrical steel strip
WO2016063098A1 (en) * 2014-10-20 2016-04-28 Arcelormittal Method of production of tin containing non grain-oriented silicon steel sheet, steel sheet obtained and use thereof
EP3214195B1 (en) * 2014-10-30 2019-07-24 JFE Steel Corporation Method for manufacturing non-oriented electrical steel sheet
CN104480383B (zh) * 2014-11-24 2016-11-02 武汉钢铁(集团)公司 0.35mm厚高效电机用高磁感无取向硅钢的生产方法
CN105779877B (zh) * 2014-12-23 2017-10-27 鞍钢股份有限公司 一种半工艺无取向电工钢的高效生产方法
CN104789862A (zh) * 2015-03-20 2015-07-22 宝山钢铁股份有限公司 表面状态良好的高磁感低铁损无取向电工钢板及其制造方法
KR101959158B1 (ko) 2015-04-02 2019-03-15 신닛테츠스미킨 카부시키카이샤 일 방향성 전자 강판의 제조 방법
CN108026914B (zh) 2015-09-07 2019-12-20 松下知识产权经营株式会社 冷媒压缩机和使用该冷媒压缩机的冷冻装置
JP6406522B2 (ja) * 2015-12-09 2018-10-17 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JP2017053341A (ja) * 2016-04-15 2017-03-16 パナソニックIpマネジメント株式会社 冷媒圧縮機およびそれを用いた冷凍装置
CN105925884B (zh) * 2016-05-30 2018-03-09 宝山钢铁股份有限公司 一种高磁感、低铁损无取向硅钢片及其制造方法
TWI588265B (zh) * 2016-06-07 2017-06-21 中國鋼鐵股份有限公司 電磁鋼片製造方法
KR101877198B1 (ko) * 2018-01-16 2018-07-10 포항공과대학교 산학협력단 무방향성 전기강판 및 그 제조방법
CN108277433A (zh) * 2018-03-15 2018-07-13 马钢(集团)控股有限公司 一种新型冷轧高牌号无取向电工钢及其生产方法
RU2692146C1 (ru) * 2018-05-25 2019-06-21 Олег Михайлович Губанов Способ получения изотропной электротехнической стали
CN109082596B (zh) * 2018-09-04 2019-12-13 马鞍山钢铁股份有限公司 一种低铁损高磁极化强度的无取向硅钢及其制备方法
CN109023116B (zh) * 2018-09-30 2021-09-07 日照钢铁控股集团有限公司 一种采用薄板坯无头轧制生产无取向电工钢的方法
CN110438317A (zh) * 2019-07-29 2019-11-12 江苏理工学院 一种初始组织热轧法制备{100}织构柱状晶无取向电工钢的方法
CN112430776B (zh) * 2019-08-26 2022-06-28 宝山钢铁股份有限公司 一种磁各向异性小的无取向电工钢板及其制造方法
CN112430775A (zh) * 2019-08-26 2021-03-02 宝山钢铁股份有限公司 一种磁性能优良的高强度无取向电工钢板及其制造方法
CN112430780B (zh) * 2019-08-26 2022-03-18 宝山钢铁股份有限公司 一种含Cu高洁净度无取向电工钢板及其制造方法
CN110468352A (zh) * 2019-09-25 2019-11-19 江苏沙钢集团有限公司 一种无取向硅钢及其生产方法
CN113981307A (zh) * 2020-07-27 2022-01-28 宝山钢铁股份有限公司 一种高磁感、低铁损的无取向电工钢板及其制造方法
CN114000045B (zh) * 2020-07-28 2022-09-16 宝山钢铁股份有限公司 一种磁性能优良的高强度无取向电工钢板及其制造方法
CN113106224B (zh) * 2021-03-18 2022-11-01 武汉钢铁有限公司 一种提高无取向硅钢铁损均匀性的方法
CN113403455B (zh) * 2021-06-17 2024-03-19 张家港扬子江冷轧板有限公司 无取向硅钢的生产方法
CN113789467B (zh) * 2021-08-19 2023-01-17 鞍钢股份有限公司 一种含磷无铝高效无取向硅钢生产方法
CN116445806A (zh) * 2022-01-07 2023-07-18 宝山钢铁股份有限公司 一种磁性能优良的无取向电工钢板及其制造方法
CN115418550A (zh) * 2022-09-26 2022-12-02 江苏沙钢集团有限公司 一种含磷无铝高强度无取向硅钢生产方法
CN117305680B (zh) * 2023-11-30 2024-03-05 江苏省沙钢钢铁研究院有限公司 高Al无取向硅钢卷绕铁芯及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4946519A (en) * 1987-06-18 1990-08-07 Kawasaki Steel Corporation Semi-processed non-oriented electromagnetic steel strip having low core loss and high magnetic permeability, and method of making
CN101041222A (zh) * 2006-03-22 2007-09-26 宝山钢铁股份有限公司 一种冷轧无取向电工钢板及其生产方法
CN101343683A (zh) * 2008-09-05 2009-01-14 首钢总公司 一种低铁损高磁感无取向电工钢的制造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102507A (ja) * 1985-10-29 1987-05-13 Kawasaki Steel Corp 無方向性けい素鋼板の製造方法
JP2954735B2 (ja) * 1991-04-19 1999-09-27 川崎製鉄株式会社 打抜加工性の優れた無方向性電磁鋼板の製造方法
RU2048543C1 (ru) * 1992-12-21 1995-11-20 Верх-Исетский металлургический завод Способ производства электротехнической анизотропной стали
JPH06228645A (ja) * 1993-02-02 1994-08-16 Sumitomo Metal Ind Ltd 小型静止器用電磁鋼板の製造方法
JP3644039B2 (ja) * 1993-03-25 2005-04-27 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JP3531779B2 (ja) * 1996-11-14 2004-05-31 Jfeスチール株式会社 磁気異方性の小さな低級電磁鋼板の製造方法及び磁気異方性の小さな低級電磁鋼板
JP4258918B2 (ja) * 1999-11-01 2009-04-30 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
TW555863B (en) * 2001-06-28 2003-10-01 Kawasaki Steel Co Nonoriented electromagnetic steel sheet and method for producing the same
RU2199594C1 (ru) * 2002-06-25 2003-02-27 Открытое акционерное общество "Новолипецкий металлургический комбинат" Способ производства анизотропной электротехнической стали
KR100709056B1 (ko) * 2002-12-05 2007-04-18 제이에프이 스틸 가부시키가이샤 무방향성 전자강판 및 그 제조방법
CN1258608C (zh) * 2003-10-27 2006-06-07 宝山钢铁股份有限公司 冷轧无取向电工钢的制造方法
RU2398894C1 (ru) * 2006-06-16 2010-09-10 Ниппон Стил Корпорейшн Лист высокопрочной электротехнической стали и способ его производства
JP4855222B2 (ja) * 2006-11-17 2012-01-18 新日本製鐵株式会社 分割コア用無方向性電磁鋼板
CN100567545C (zh) * 2007-06-25 2009-12-09 宝山钢铁股份有限公司 一种高牌号无取向硅钢及其制造方法
JP5167824B2 (ja) 2008-01-17 2013-03-21 Jfeスチール株式会社 エッチング加工用無方向性電磁鋼板とモータコアの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4946519A (en) * 1987-06-18 1990-08-07 Kawasaki Steel Corporation Semi-processed non-oriented electromagnetic steel strip having low core loss and high magnetic permeability, and method of making
CN101041222A (zh) * 2006-03-22 2007-09-26 宝山钢铁股份有限公司 一种冷轧无取向电工钢板及其生产方法
CN101343683A (zh) * 2008-09-05 2009-01-14 首钢总公司 一种低铁损高磁感无取向电工钢的制造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ISIJ INTERNATIONAL, vol. 3L.43, no. 10, 2003, pages 1611 - 1614
See also references of EP2508629A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113574193A (zh) * 2019-03-20 2021-10-29 日本制铁株式会社 无方向性电磁钢板及其制造方法

Also Published As

Publication number Publication date
CN102453837A (zh) 2012-05-16
EP2508629A1 (en) 2012-10-10
KR20120086343A (ko) 2012-08-02
RU2012124187A (ru) 2013-12-20
US20120285584A1 (en) 2012-11-15
MX2012006680A (es) 2012-10-15
RU2527827C2 (ru) 2014-09-10
JP2013513724A (ja) 2013-04-22
CN102453837B (zh) 2013-07-17
KR101404101B1 (ko) 2014-06-09
EP2508629A4 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
WO2012055215A1 (zh) 一种高磁感无取向硅钢的制造方法
JP5675950B2 (ja) 優れた磁気特性を有する高効率無方向性珪素鋼の製造方法
EP2821511B1 (en) Manufacturing process of non-oriented silicon steel
WO2012041053A1 (zh) 无瓦楞状缺陷的无取向电工钢板及其制造方法
JP2017501296A (ja) 配向性高ケイ素鋼の製造方法
WO2014047757A1 (zh) 一种高磁感普通取向硅钢的制造方法
WO2021037061A1 (zh) 一种600MPa级无取向电工钢板及其制造方法
WO2013134895A1 (zh) 一种无取向电工钢板及其制造方法
CN102747291A (zh) 一种高频低铁损磁性优良的无取向硅钢薄带及生产方法
WO2014078977A1 (zh) 取向硅钢及其制造方法
CN111748740A (zh) 一种无瓦楞状缺陷且磁性优良的无取向硅钢及其生产方法
JP4715496B2 (ja) 耐ひずみ時効性に優れ、面内異方性の小さい冷延鋼板の製造方法
WO2021037064A1 (zh) 一种含Cu无取向电工钢板及其制造方法
JPH07116510B2 (ja) 無方向性電磁鋼板の製造方法
CN110640104B (zh) 一种磁性能优良的无取向电工钢板及其制造方法
JP4599843B2 (ja) 無方向性電磁鋼板の製造方法
CN115198199A (zh) 高强度无取向硅钢生产方法、高强度无取向硅钢及应用
JP7378585B2 (ja) 無方向性電磁鋼板及びその製造方法
WO2024022109A1 (zh) 一种高磁感无取向电工钢板及其制造方法
WO2023131223A1 (zh) 一种磁性能优良的无取向电工钢板及其制造方法
CN115704073B (zh) 一种表面状态良好的无取向电工钢板及其制造方法
JPS5980726A (ja) 深絞り性に優れた面内異方性の小さい高強度冷延鋼板の製造方法
WO2021037062A1 (zh) 一种无取向电工钢板及其制造方法
WO2024017345A1 (zh) 一种无取向电工钢板及其制造方法
JPH07116513B2 (ja) 無方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1418/MUMNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012124187

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 20127015086

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012542352

Country of ref document: JP

Ref document number: MX/A/2012/006680

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2011835489

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11835489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE