WO2013134895A1 - 一种无取向电工钢板及其制造方法 - Google Patents

一种无取向电工钢板及其制造方法 Download PDF

Info

Publication number
WO2013134895A1
WO2013134895A1 PCT/CN2012/000382 CN2012000382W WO2013134895A1 WO 2013134895 A1 WO2013134895 A1 WO 2013134895A1 CN 2012000382 W CN2012000382 W CN 2012000382W WO 2013134895 A1 WO2013134895 A1 WO 2013134895A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
rolling
electrical steel
hot
iron loss
Prior art date
Application number
PCT/CN2012/000382
Other languages
English (en)
French (fr)
Inventor
马爱华
王波
刘献东
邹亮
谢世殊
黑红旭
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49131460&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013134895(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to US14/372,709 priority Critical patent/US9659694B2/en
Priority to KR1020147025224A priority patent/KR101617288B1/ko
Priority to IN1794MUN2014 priority patent/IN2014MN01794A/en
Priority to EP12871249.4A priority patent/EP2826882B2/en
Priority to RU2014132736/02A priority patent/RU2586169C2/ru
Priority to JP2014561246A priority patent/JP2015516503A/ja
Priority to MX2014010515A priority patent/MX360645B/es
Publication of WO2013134895A1 publication Critical patent/WO2013134895A1/zh
Priority to US15/488,585 priority patent/US10096415B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust

Definitions

  • Non-oriented electrical steel sheet and manufacturing method thereof are non-oriented electrical steel sheet and manufacturing method thereof.
  • the invention belongs to the field of metallurgy.
  • the present invention relates to an amm-oriented electrical steel sheet and a method of manufacturing the same, and more particularly to a non-industrial electric motor having low production cost, low iron loss and high magnetic permeability.
  • Oriented electrical steel sheet and its method of manufacture Background technique
  • Motor losses are broadly classified into the following categories: stator and rotor copper losses, basic iron losses, mechanical losses, and stray losses. Among them, copper loss accounts for about 40% of the total loss, and iron loss accounts for 20% of the total loss. They are all related to the magnetic induction and magnetic permeability of the electrical steel sheet of the motor. Increasing the magnetic induction and magnetic permeability of electrical steel sheets can reduce copper loss and iron loss, so non-oriented electrical steel sheets with low iron loss and high magnetic permeability are the materials of choice for manufacturing high-efficiency motors.
  • Japanese Patent JP-A-55-73819 discloses that by adding an appropriate amount of A1 and adjusting the annealing atmosphere, the inner oxide layer on the surface of the steel sheet can be reduced, thereby obtaining excellent magnetic properties.
  • Japanese Patent No. JP-A-54-68716 and JP-A-61-87823 disclose that the magnetic properties can be improved by adding Al, adding REM, or optimizing the cooling rate of annealing.
  • U.S. Patent 4,545,827 discloses a method for producing a low iron loss, high magnetic permeability non-oriented electrical steel sheet, which controls product carbide precipitation by adjusting the C content (wt%) while obtaining a 3.5-5.0 ASTM iron by a leveling technique.
  • the elementary grains and the easily magnetized texture components, but the composition system of this patent is low Si and high. .
  • the high C content is prone to magnetic aging, which causes an increase in iron loss.
  • U.S. Patent No. 6,428,632 discloses a non-oriented electrical steel having a small anisotropy and good processing properties and which can be applied in a high frequency region.
  • the patent requires that the properties of the steel sheet satisfy the formula B 5 o (L+C) ⁇ 0.03W 15/50 (L+C) + 1.63 and W 10 / 40 o (D) / W 1 ( 4 (K ) (L + C) 1.2 conditions, can produce high efficiency motors with efficiency higher than 92 %.
  • the patent does not Oriented electrical steel is mainly used in high-frequency rotating electrical machines, and its production cost is high, so it is not suitable for general industrial motors.
  • non-oriented electrical steel sheet having a low production cost and a low iron loss and high magnetic permeability suitable for industrial motors has a broad market prospect.
  • the inventors designed a research scheme based on the following ideas: By controlling the air cooling time and the finish rolling temperature of the hot rolling process, the inclusions in the steel are coarsened, and the recrystallization ratio and grain growth of the hot rolled sheet are promoted.
  • a non-oriented electrical sheet with low iron loss and high magnetic permeability which produces non-oriented electrical steel sheets that meet the needs of improving the efficiency of ordinary industrial motors, high-efficiency and ultra-efficient industrial motors.
  • a non-oriented silicon steel suitable for manufacturing an industrial motor having a working magnetic density of 1.0 to 1.6 T is provided, and the efficiency of the motor manufactured using the steel sheet can be improved by 1%.
  • Si 0.1 to 2.0 wt%
  • Al 0.1 to 1.0 wt%
  • Mn 0.10 to 1.0 wt%
  • C 0.005 wt%
  • P 0.2 wt%
  • S ⁇ 0.005 wt%
  • N ⁇ 0.005 wt%
  • the balance is Fe and inevitable impurities
  • ⁇ 10 , ⁇ 13 , and 4 15 are the relative magnetic permeability at the magnetic induction intensity of 1.01 ⁇ 1.3 ⁇ and 1.5 ⁇ at 5013 ⁇ 4, respectively; and 15/5 0 is the iron loss at 50 ft.
  • the actual unit of P 15/5D is not considered to be watts/kg (W/kg), which is used as a dimensionless value.
  • the magnetic permeability of the steel sheet satisfies the following relation (3):
  • one or two kinds of Sn or Sb may be selectively added as the case may be, and the total content of one or both of added Sn and Sb is controlled to 0.3 wt%.
  • the present invention can provide a non-oriented electrical steel sheet having a slab containing components in weight percent -
  • Si 0.1-2.0 wt%, Ah 0.1-1.0 wt%, Mn: 0.10-1.0 wt%, C: 0.005 wt%, P.-0.2 wt%, S: 0.005 wt%, N: 0.005 wt%, Sn and One or two of Sb: ⁇ 0.3 wt%, the balance is Fe and inevitable impurities,
  • Another object of the present invention is to provide a method for producing the above non-oriented electrical steel sheet, which comprises, in order, a steelmaking, hot rolling, pickling, cold rolling, and annealing process.
  • the normalization treatment process of the hot rolled sheet can be omitted in the production method of the present invention.
  • the finishing temperature (FDT) in the hot rolling process in the production method of the present invention satisfies the relationship (4):
  • the rough rolling of the intermediate billet to the time interval before the finish rolling in the F1 frame is controlled to be more than 20 seconds, after the finishing of the intermediate billet
  • the time interval t 2 before the laminar cooling thereof is controlled to 5 seconds or more.
  • the steel sheet of the present invention can be used to manufacture industrial electric machines, especially high efficiency, ultra high efficiency industrial electric machines.
  • the non-oriented electrical steel sheet of the present invention has the following advantages: low production cost, low iron loss, and high magnetic permeability, and is a material having a high cost performance as a material for manufacturing an industrial motor.
  • the production method of the present invention by improving the process conditions of other processes, the normalization treatment process of the hot rolled sheet can be omitted, the processing flow can be shortened, and the production cost of the non-oriented electrical steel sheet can be reduced accordingly, and A product with low iron loss and excellent magnetic properties is obtained.
  • the efficiency of motors made with the products of the present invention can be increased by at least 1% compared to conventional non-oriented silicon steel products, which can greatly save electrical energy.
  • Fig. 1 is a graph showing the relationship between ⁇ ⁇ ) + ⁇ 13 + ⁇ 15 , P 15 / 5Q and motor efficiency of a non-oriented electrical steel sheet.
  • 2 is a graph of iron loss P 15 / 5 ( ) versus magnetic induction B 5Q of a class A electrical steel sheet and a class B electrical steel sheet.
  • Figure 3 is a photomicrograph of the microstructure of the hot rolled sheet.
  • Figure 4 is a graph showing the relationship between the grain size of the hot rolled sheet and the magnetic permeability of the final product steel strip, ⁇ 10 + ⁇ , 3 + ⁇ 15 .
  • the billet after the rough rolling and before the finish rolling.
  • a typical finishing mill consists of seven rolling mills, referred to as Fl-F7.
  • the efficiency of the motor is closely related to the iron loss P and the magnetic induction B of the non-oriented electrical steel of the manufactured material, but the iron loss P and the magnetic induction B are a pair of contradictory parameters.
  • the inventors used various grades of electrical steel sheets to make different types of industrial motors. The research found that for ordinary industrial motors, the working magnetic induction is usually between 1.0 T and 1.6 T, which means that the working range of the motor usually does not reach the magnetic sensation corresponding to the material B 5C) . The efficiency cannot be simply from B 5 .
  • the inventors have found that when the magnetic permeability ( ⁇ 1 () + ⁇ 13 + ⁇ , 5 ) and the iron loss P I5 / 5D of the non-oriented silicon steel satisfy the following formulas (1) and (2), the motor Significantly improved efficiency - ⁇ 10+ ⁇ 13 + ⁇ 1 ⁇ 13982 - 586.5 ⁇ 5/5 ⁇ ( );'
  • the invention deeply studies the influence of the hot rolling process on the magnetic permeability of the final product steel strip. It is found that the grain structure of the hot rolled sheet and the magnetic permeability of the electrical steel sheet are very strong. Correlation.
  • hot-rolling non-oriented silicon steel on the one hand, there is a large friction between the steel plate and the roll, so that the surface of the steel plate is subject to many constraints, the stress and strain state is complicated, and the accumulated energy storage is high; on the other hand, the surface temperature of the steel plate is low. At the central temperature, the surface energy storage rate is accelerated, the dynamic recovery speed is slow, and the energy is slow.
  • the consumption speed is low, so that the dynamic recrystallization crystal structure is formed to form a fine dynamic recrystallized grain structure; the core is slow in dynamic recovery, the accumulated energy storage is low, and the recrystallization power is small, which is insufficient to occur.
  • Dynamic recrystallization the microstructure after final rolling is mainly deformed grains, as shown in Figure 3.
  • the static recovery velocity is related to the deformation energy storage, stacking fault energy and temperature. 'The deformation energy storage is high, the stacking fault energy is high and the temperature is high, the static recovery speed is fast.
  • the static recrystallization rate is related to the degree of static recovery, the difficulty of grain boundary migration and temperature. The more static recovery, the more difficult the grain boundary migration, and the lower the temperature, the slower the static recrystallization rate or even the recrystallization.
  • the grain structure of the hot-rolled sheet of silicon steel is mainly determined by the processes of dynamic recovery and dynamic recrystallization and static recovery, static recrystallization and grain growth.
  • the soil (cross section) from the surface to the center of the steel sheet thickness direction The distribution is: the surface layer is mainly the static regenerative structure of the dynamic recrystallized grains, the center is mainly the static static recovery or the static recrystallization structure of the dynamic recovery deformation grain, and the surface layer to the central transition zone is mainly the partial dynamic recovery deformation grain and Further static recovery or static recrystallization of partially dynamic recrystallized grains.
  • the inventors explored many of the process conditions in the hot rolling process directly related to recrystallization and grain size, and improved and limited some conditions, such as finishing temperature (FDT), intermediate The residence time of the billet between rough rolling and F1 frame, dwell time before laminar cooling, and so on. Thereby, the recrystallization ratio of the steel sheet and the coarsening of the crystal grains are ensured to obtain excellent magnetic properties.
  • FDT finishing temperature
  • the inventors defined the grain size of the hot rolled sheet such as shown in Fig. 3, and proposed the "nominal grain size of the hot rolled sheet". concept.
  • the recrystallization ratio is proportional to the nominal grain size. It has been found that the larger the nominal grain size of the hot rolled sheet, the higher the magnetic permeability of the electrical steel sheet.
  • the hot rolled intermediate blanks can be entered between the rough rolling and the F1 frame and the end of the F7 frame during hot rolling of the steel sheet.
  • the residence time before the laminar cooling and the finish rolling temperature are optimized to ensure the recrystallization ratio and grain coarsening of the steel sheet.
  • the nominal grain size of the hot rolled sheet of the present invention is not less than 30 ⁇ m.
  • the hot rolled plate has a nominal grain size of not more than 200 ⁇ m.
  • the components of the non-oriented electrical steel sheet of the present invention have different effects on the iron loss and magnetic properties of the electrical steel, wherein the steel slab includes the following components in weight percent:
  • Si It is soluble in ferrite to form a replacement solid solution, which increases the resistivity of the matrix and reduces the iron loss. It is the most important for electrical steel.
  • the alloying element, but Si deteriorates the magnetic induction. When the Si content reaches a certain level, the content thereof continues to increase, and the iron loss effect is reduced.
  • the Si content of the present invention is 0.1 to 2.0%. If it is greater than 2.0%, the magnetic permeability is difficult to meet the requirements of high efficiency motors.
  • A1 It is soluble in ferrite to increase the resistivity of the matrix, coarsen the grains, reduce the iron loss, and also deoxidize and fix nitrogen, but it is easy to cause oxidation in the surface layer of the finished steel sheet. A1 content exceeding 1.5% will make smelting casting difficult, magnetic induction is lowered, and processing is difficult.
  • Mn Compared with Si and A1, it can increase the electrical resistivity of steel, reduce iron loss, form stable MnS with unavoidable impurity S, eliminate the magnetic damage of S, and prevent hot brittleness. It is also soluble in ferrite. The formation of a replacement solid solution has the effect of reducing iron loss. Therefore, it is necessary to add a content of 0.1% or more.
  • the Mn of the invention is 0.10% ⁇ 1.50%, the Mn content is less than 0.1%, the beneficial effect is not obvious, the temperature is higher than 1.50%, the ACl temperature is lowered, the recrystallization temperature is lowered, the ⁇ - ⁇ phase transformation occurs during the heat treatment, and the deterioration is favorable for texture. '
  • 0.2% or less. Adding a certain amount of phosphorus to the steel improves the workability of the steel sheet. However, when it exceeds 0.2%, the cold rolling workability of the steel sheet is deteriorated.
  • S It is harmful to both processing and magnetic properties. It forms fine MnS particles with Mn, hinders the grain growth of the finished annealing, seriously deteriorates the magnetic properties, and forms low-melting FeS and FeS2 or eutectic with Fe, which is easy to cause hot work brittleness.
  • S is 0.005% or less, and when it exceeds 0.003%, the amount of precipitation of the S compound such as MnS is greatly increased, and grain growth is strongly inhibited, and iron loss is deteriorated.
  • the optimal control range of the invention is S ⁇ 0.003%.
  • S is 0.005% or less, and when it exceeds 0.003%, the amount of precipitation of the S compound such as MnS is greatly increased, and grain growth is strongly inhibited, and iron loss is deteriorated.
  • the optimal control range of the invention is S ⁇ 0.003%.
  • N It is easy to form fine dispersion nitride such as A1N, which strongly inhibits grain growth and deteriorates iron loss. Below 0.000% of the present invention, more than 0.002% will greatly increase the precipitation of N1 such as A1N, and strongly hinder the grain length. Large, iron loss is degraded.
  • Sn and Sb Activated elements, when segregated at the surface or surface grain boundaries, can reduce the oxidation in the surface layer, prevent the active oxygen from penetrating into the steel matrix along the grain boundary, improve the texture, and increase the ⁇ 100 ⁇ and ⁇ 110 ⁇ components. , ⁇ 111 ⁇
  • the composition is reduced, and the effect of increasing the magnetic permeability is very significant.
  • it is preferred to contain one or both of Sn and Sb, and the effect of improving the magnetic properties is most remarkable when the content is in the range of 0.04 to 0.1%.
  • Inevitable impurities Substances that cannot be completely removed under the prior art conditions, or that are difficult to remove from an economic point of view and that are allowed to exist at a certain level. Magnetic properties can be improved by coarsening inclusions in electrical steel or by participating in grain formation. Electrical steel production process
  • the non-oriented electrical steel material of the present invention which is low in production cost, low in iron loss and high in magnetic permeability is obtained by the definition of the composition and the improvement of the processing technique.
  • the manufacturing process of a typical non-oriented electrical steel product basically comprises the following steps:
  • the thickness of continuous casting is generally 200-300 nim.
  • the composition, impurities and microstructure of the product can be strictly controlled.
  • the unavoidable impurities and residual elements in the steel are controlled to a low level, and the inclusion content in the steel is reduced and the inclusions are coarsened. According to the requirements of different types of products, the highest possible equiaxed crystal ratio can be obtained at a reasonable cost.
  • Slab (slab).
  • Hot rolling process including heating, rough rolling, finish rolling, laminar cooling and coiling of different steel slabs from step 1) at different temperatures below 1200 °C, which can meet the excellent performance quality of the final product.
  • the intermediate blank passes through a process including transfer, shelving (or standing), which also involves recrystallization, grain growth, and/or grain formation.
  • transfer shelving (or standing)
  • the process of deformation also affects the crystal distribution and variation of the steel sheet.
  • the time interval may also be referred to as "the transfer time of the intermediate blank between the rough rolling and the F1 frame” or "the residence time of the intermediate blank between the rough rolling and the F1 frame", abbreviated as ⁇ .
  • the intermediate blank after the finish rolling is completed and before the laminar cooling, the intermediate blank also undergoes a process including transfer, shelving (or standing), which also involves recrystallization, grain growth, and/or The process of grain deformation.
  • the length of the time interval of this process also affects the crystal distribution and variation of the steel sheet.
  • the time interval may also be referred to as "delay flow before laminar cooling” or “dwell time before laminar cooling”, abbreviated as t 2 .
  • Normalized pickling process including high-temperature heat treatment process for continuous annealing of hot-rolled sheet from step 2), nitrogen treatment and strict process control are adopted in the normalization process, and blasting and pickling processes are included, and the thickness can be formed. It is a normalized roll of 1.5 ⁇ 3.0 mm; through the above process, better microstructure, texture and better surface quality can be obtained.
  • Step 4) Cold rolling process: including reversible rolling or continuous rolling of the normalizing plate from step 3) or the hot rolled sheet from step 2), rolling cold with a thickness of, for example, 0.2 to 0.65 mm according to user requirements Rolling products.
  • a thickness for example, 0.2 to 0.65 mm according to user requirements Rolling products.
  • the intermediate annealing and secondary cold rolling processes described in the following step 5) can also be adopted.
  • Intermediate annealing and secondary cold rolling process including intermediate annealing of a primary rolling and cold rolling product having a thickness of generally 0.35 to 0.5 mm, and performing a subsequent secondary rolling to a target thickness cold rolling process.
  • the reduction ratio of one cold rolling is 20% or more.
  • Final annealing process including continuous annealing of the cold rolled product from step 4) or from step 5) (ie, intermediate annealing with or without secondary cold rolling process).
  • Add in different atmospheres (nitrogen-hydrogen mixed gas) Thermal, soaking, and cooling heat treatment processes to form ideal coarse grains, optimized texture components, resulting in excellent finished magnetic properties, mechanical properties, and surface insulation.
  • the finished product is a strip, and the thickness is generally 0.15 ⁇ 0.65 mm.
  • the final rolling temperature (FDT) in the hot rolling process has a direct influence on the nominal grain size of the hot rolled sheet, and the temperature, the nominal grain size of the hot rolled sheet and the composition of the billet, especially the Si and A1 content. There is an intrinsic relationship. A large number of experiments have shown that the final rolling temperature (FDT, unit C) in the hot rolling process satisfies the following relationship (4):
  • control is not less than 20 seconds, and the t 2 control is not less than 5 seconds, and the obtained hot rolled plate has a nominal grain size of 30 ⁇ or more.
  • the molten steel is subjected to a converter, RH refining treatment, and cast into a slab. After hot rolling, pickling, cold rolling, annealing, and coating, a non-oriented electrical steel product is obtained.
  • the process conditions of conventional preparation methods are well known to those skilled in the art.
  • the invention is different from the conventional preparation method in that: 1. eliminating the normalization process; 2.
  • the slab heating temperature in the hot rolling process is controlled to be 1100 ⁇ 120 (TC, hot rolled into a 2.6 mm strip, and then 2.6 mm hot rolled strip is subjected to The cold rolling process is rolled into a 0.5 mm strip and subjected to final annealing and coating to obtain a product strip.
  • the data of Examples 1 to 5 show that the non-oriented electrical steel sheet of the present invention has a low iron loss and a high magnetic permeability, and is sufficiently suitable for the manufacture of a high-efficiency general industrial motor.
  • the components of the molten steel through the converter, RH refining treatment, casting into Fe and inevitable impurities are 1.0 wt% Si, 0.32 wt% Al 0.65 wt% Mn, 0.035 wt% P, ⁇ 0.0030 wt% C, ⁇ 0.0020 Billet of wt% N.
  • the heating temperature of the hot rolled slab was controlled at 1160 Torr, the residence time of the intermediate blank between the rough rolling and the F1 frame (i.e., the intermediate roller residence time), and the residence time t 2 and FDT before laminar cooling were as shown in Table 2.
  • Table 2 the residence time t 2 and FDT before laminar cooling
  • Example 6 890 24 6 77 12236 3.56 92.1
  • Example 7 900 26 7 90 12315 3.43 92.4
  • Comparative Example 2 820 10 7 25 10473 4.03 90.4
  • Comparative Example 3 890 5 3 20 10312 4.17 89.7
  • Table 2 the nominal grain size of the hot-rolled sheets of Comparative Example 2 and Comparative Example 3 was too small, and the efficiency of the produced motor was lower than that of the motor of the present invention.
  • the hot rolling process parameters of Examples 6 to 8 are all within the limits defined by the present invention, and the resulting motor is highly efficient.
  • the data of Examples 6 to 8 show that the non-oriented electrical steel sheet of the present invention has low iron loss and high magnetic permeability, and is sufficiently suitable for manufacturing a high-efficiency general industrial motor.
  • the technical solutions of the present invention have been described above with only a limited number of embodiments. These examples only illustrate the magnetic permeability of the electrical steel sheet and the verification results of the three parameters t, t 2 and FDT in the hot milk process, but The invention can be undoubtedly extended to more process conditions, as will be apparent to those skilled in the art. Therefore, various changes and modifications may be made thereto by those skilled in the art without departing from the scope of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

一种具有低铁损和高磁导率的无取向电工钢板及其制造方法,该钢板的铸坯包含以下成分:Si:0.1~2.0wt%,Al:0.1~1.0wt%,Mn:0.10~1.0wt%,C:≤0.005wt%,P:≤0.2wt%,S:≤0.005wt%,N:≤0.005wt%,余量为Fe以及不可避免的杂质,并且该钢板的磁导率满足以下关系式:μ101315≥13982-586.5P15/50;μ101315≥10000,其中Ρ15/50是在1.5T磁感强度下50Hz时的铁损;μ10、μ13、μ15分别是50Hz时1.0T、1.3T、1.5T磁感强度下的相对磁导率,该钢板可以应用于制造高效和超高效电机。

Description

一种无取向电工钢板及其制造方法 技术领域
本发明属于冶金领域。 具体地说, 本发明涉及一种无取向电工钢板 (a mm-oriented electrical steel sheet) 及其制造方法, 尤其涉及一种生产成本低、 铁损低且磁导率高的适用 于工业电机的无取向电工钢板及其制造方法。 背景技术
随着世界各国对节能要求的不断提高, 对电机的效率和节能提出了更高的要求。 要提 高电机效率, 必须设法降低电机的损耗。 电机的损耗大体分为如下几类: 定转子铜损耗、 基本铁损耗、 机械损耗和杂散损耗。 其中铜损耗约占总损耗的 40 %, 铁损耗占总损耗的 20 %, 它们都与电机的制造材料电工钢板的磁感和磁导率有关。 提高电工钢板的磁感应强度 和磁导率可以降低铜铁损耗和铁损耗, 因此具有低铁损和高磁导率的无取向电工钢板是制 造高效电机的首选材料。
通常, 为了获得较低的铁损耗, 一般选择添加 Si、 Al等元素来提高材料的电阻率。 比 如, 日本专利 JP-A-55-73819公开到, 通过添加适量的 A1并调整退火气氛, 可减少钢板表面 的内氧化层, 从而获得优异的磁性能。 类似地, 日本专利 JP-A-54-68716和 JP-A-61-87823 公开到, 通过添加 Al、 添加 REM、 或者优化退火的冷却速度, 可提高磁性能。
然而, 单单通过添加 Si、 Al等合金元素, 或者同时配合相应的工艺优化来提高磁性能 是有局限性的, 因为众所周知, Si和 A1的添加会导致磁感下降, 导致电工钢板的磁导率降 低, 从而降低电机的使用效率。
美国专利 US 4545827公开了一种低铁损、 高磁导率的无取向电工钢板的制造方法, 通 过调整 C含量 (wt%)控制产品碳化物析出, 同时采取平整技术获得 3.5-5.0 ASTM的铁素体晶 粒及易磁化织构组分, 但是该专利的成分体系是低 Si、 高。。 而 C含量高易发生磁时效, 引 起铁损增加。
美国专利 US 6428632公开了一种各向异性小、 加工性能好、 可应用在高频区域的无 取向电工钢, 该专利要求钢板性能满足公式 B5o (L+C)^ 0.03W15/50 (L+C) + 1.63和 W10/40o ( D)/W1( 4(K)(L+C) 1.2的条件, 能够制造出效率高于 92 %的高效电机。 但该专利的无取 向电工钢主要用于高频旋转电机, 其生产成本较高, 因而不适用于普通工业电机。 因此, 开发出生产成本低、 适用于工业电机的铁损低且磁导率高的无取向电工钢板具 有广阔的市场前景。 为开发出这种钢板, 本发明人基于如下思路设计研究方案: 通过控制 热轧过程的空冷时间和终轧温度, 使钢中夹杂物粗大化, 促进热轧板再结晶比例和晶粒长 大, 获得低铁损高磁导率的无取向电工板, 生产出满足提高普通工业电机、 高效和超高效 工业电机效率所需的无取向电工钢板。具体而言,提供一种适用制造工作磁密为 1.0〜1.6T 区间工业电机的无取向硅钢, 利用该钢板制造的电机的效率可以提高 1%。 发明内容 为此, 本发明的一个目的在于提供一种无取向电工钢板, 其铸坯所包含的成分以重量 百分比计为:
Si: 0.1〜2.0wt%, Al: 0.1〜1.0wt%, Mn: 0.10〜1.0wt%, C: 0.005 wt%, P: 0.2 wt%, S: ^0.005 wt%, N: ^0.005 wt%, 余量为 Fe以及不可避免的杂质,
并且该钢板的磁导率满足以下关系式 (1) 和 (2):
μιο+U ΐ3+μ ι5^13982 - 586.5P15/5o ( 1 );
μΐθ+μ ΐ3+μ 15^ 10000 (2),
其中, μ10、 μ13、 415分别是501¾时1.01\ 1.3 Τ、 1.5 Τ磁感强度下的相对磁导率; 而 ?15/50是在1.5丁磁感强度下50 时的铁损, 计算关系式 (1) 时, 不考虑 P15/5D的实际单 位是瓦特 /千克 (W/kg), 将其作为无量纲的数值。
优选该钢板的磁导率满足以下关系式 (3):
μ10+μ13+μ 15^ 11000 (3
上述钢板中, 可视情况而选择性地添加 Sn或 Sb的一种或两种, 添加的 Sn和 Sb中的 一种或两种的总含量控制在 0.3 wt%。
换句话说, 本发明可提供一种无取向电工钢板, 其铸坯所包含的成分以重量百分比计 为-
Si: 0.1—2.0 wt%, Ah 0.1〜1.0wt%, Mn: 0.10〜1.0wt%, C: 0.005 wt%, P.- 0.2 wt%, S: 0.005 wt%, N: 0.005 wt%, Sn和 Sb中的一种或两种: ^0.3 wt%, 余量为 Fe 以及不可避免的杂质,
并且该钢板的磁导率满足以下关系式 (1) 和 (2):
μιο+μ ι315 13982 - 586.5Ρ (1);
μιο+ ΐ3+μ 15^ 10000 (2), 其中, μ κ)、 μ 13、 4 15分别是50 时 1.0丁、 1.3 Τ、 1.5 Τ磁感强度下的相对磁导率; 而 ?15/50是在 1.5丁磁感强度下50 时的铁损, 计算关系式 (1 ) 时, 不考虑 P15/5Q的实际单 位是瓦特 /千克 (W/kg), 将其作为无量纲的数值。
本发明的另一目的在于提供一种生产上述无取向电工钢板的方法, 依序包括炼钢、 热 轧、 酸洗、 冷轧、 退火工序。
优选地, 本发明的生产方法中可省去热轧板的常化处理工序。
优选地, 本发明的生产方法中热轧工序中的终轧温度 (FDT) 满足关系式 (4 ) :
830+42x(Si+Al) <FDT< 880+23 (Si+Al) ( 4),
其中 Si和 A1分别代表元素 Si和 A1的重量百分比, FDT的单位为摄氏度 (°C)。 优选地,本发明的生产方法中热轧板的名义晶粒尺寸(nominal grain size)D大于 30 μ πι, 其中 D =R x d, R为再结晶百分比例, d为热轧板再结晶晶粒尺寸(recrystal grain size )平 均值。
优选地, 本发明的生产方法中, 在热轧工序中, 在对中间坯粗轧后到对其在 F1 机架 精轧前的时间间隔 ^控制在 20秒以上, 在对中间坯精轧后到对其进行层流冷却前的时间 间隔 t2控制在 5秒以上。
优选地, 本发明的钢板可用于制造工业电机, 尤其是高效、 超高效工业电机。
本发明的无取向电工钢板有如下优点: 生产成本低、 铁损低、 且磁导率高, 就作为制 造工业电机的材料而言, 是一种性价比很高的材料。 另一方面, 本发明的生产方法中, 通 过改进其他工序的工艺条件, 可以省去热轧板的常化处理工序, 缩短了加工流程, 相应地 降低了无取向电工钢板的生产成本, 并能得到铁损低、 磁性能优良的产品。 实验表明, 与 常规的无取向硅钢产品相比, 利用本发明产品制造的电机的效率至少可以提高 1 %, 可大 大节约电能。 附图说明
图 1是显示无取向电工钢板的 μ κ)+μ 1315、 P15/5Q与电机效率之间关系的示意图。 图 2是 A类电工钢板和 B类电工钢板的铁损 P15/5()相对于磁感 B5Q的曲线图。
图 3是热轧板金相显微组织照片。
图 4是热轧板的晶粒大小与最终产品钢带的磁导率之和 μ 10+μ ,315的关系示意图。 具体实施方式
以下结合附图对本发明的技术方案作详细说明。 定义
中间坯
钢板热轧工序中, 在粗轧之后、 精轧之前的钢坯。 .
F1机架
精轧机列的第 1个轧机。 典型的精轧机列由 7架轧机组成, 简称 Fl-F7。
名义晶粒尺寸 (nominal grain size)
本发明中用于描述晶粒尺寸和再结晶百分比例的指标, 用 D表示, 并且 D = R x d, 其 中 R为再结晶百分比例, d为热轧板再结晶晶粒尺寸 (recrystal grain size) 平均值。
本发明的原理
电机的效率与制造材料无取向电工钢的铁损 P和磁感 B密切相关,但铁损 P和磁感 B 是一对相互矛盾的参量。 在电机效率与电工钢板磁性能的关系研究中, 发明人使用各种牌 号的电工钢板制成了不同类型的工业电机。 研究中发现, 对于普通工业电机而言, 因其工 作磁感通常位于 1.0 T 〜 1.6 T之间,也就是说电机的工作区间通常达不到材料 B5C)所对应 的磁感, 所以判断电机效率高低不能简单地从 B5。的高低来评价电工钢板磁性能的优劣。 举例来说, 在 P15/5o相同的情况下, A类电工钢的 B5Q = 1.75 Τ, B类电工钢的 B5。=1.70 T, 从表面上看, 使用 A类电工钢制造的电机似乎更节能、 效率更高。 但是实际可能会存在图 1所示的情况, 在电机设计相同的前提下, 使用 B类材料所制造的电机的效率反而会高于 使用 A类材料所制造的电机的效率。 图 2所示为无取向电工钢板的 μ ι。+μ 1315、 P15/5e与电机效率之间关系的示意图。 所 用电机为 30KW-2电机。 根据图 2, 本发明人发现, 当无取向硅钢的磁导率(μ 1()13+ μ ,5) 及铁损 PI5/5D满足以下公式 (1 ) 和 (2) 时, 电机效率明显提高- μ 10+ μ 13 + μ 1^13982 - 586.5Ρι5/5ο ( );'
μ 10+ μ 13+ μ 1^10000 (2)。
其中, 在计算关系式 (1 ) 时, 可以不考虑 Ρ15/5()的实际单位瓦特 /千克 (W kg), 而是 将其作为无单位量纲的数值来计算。
电工钢的磁性能与晶粒组织的关系 本发明深入研究了热轧工艺对最终产品钢带磁导率的影响, 发现热轧板的晶粒组织大 小与电工钢板的磁导率存在很强的相关性。 当对无取向硅钢进行热轧时, 一方面钢板与轧 辊间存在较大的摩擦力, 使得钢板表面受到的约束多、应力应变状态复杂, 积累的储能高; 另一方面, 钢板表层温度低于中心温度, 表层储能增殖速度加快, 动态回复速度慢、 能量 消耗速度低, 以致于达到发生动态再结晶的能量条件而形成细小的动态再结晶晶粒组织; 其心部则由于动态回复速度快、所积累的储能低, 再结晶动力小, 不足以发生动态再结晶, 终轧后的组织主要是形变晶粒, 如图 3所示。
由于钢板终轧后的温度较高, 随后空冷时要发生静态回复和再结晶及晶粒长大的过 程。 静态回复速度与形变储能、 层错能和温度相关, '形变储能高、 层错能高和温度高则静 态回复速度快。 静态再结晶速度与静态回复程度、 晶界迁移难度和温度相关, 静态回复越 充分、 晶界迁移越难、 温度越低则静态再结晶速度越慢甚至于不发生再结晶。
总体来讲, 硅钢热轧板晶粒组织主要由动态回复和动态再结晶及静态回复、 静态再结 晶和晶粒长大等过程决定, 在钢板厚度方向土 (横截面)从表面至中心的组织分布为: 表层 主要为动态再结晶晶粒的进一步静态回复组织, -中心主要为动态回复变形晶粒的进一步静 态回复或静态再结晶组织, 表层到中心过渡区主要为部分动态回复形变晶粒和部分动态再 结晶晶粒的进一步静态回复或静态再结晶组织。
基于再结晶的上述机理, 发明人对于直接与再结晶、 晶粒尺寸相关的热轧工序中的许 多工艺条件进行了探索, 对部分条件进行了改进和限定, 比如终轧温度(FDT)、 中间坯在 粗轧与 F1 机架间的停留时间、 层流冷却前停留时间等等。 从而确保钢板再结晶比例和晶 粒粗大化, 以取得优良的磁性能。
为了表征电工钢的磁性能与热轧板晶粒组织的关系, 本发明人对于诸如图 3所示的热 轧板晶粒尺寸进行了定义, 提出了 "热轧板名义晶粒尺寸"这一概念。 本发明中, 热轧板 名义晶粒尺寸 D=R x d, 其中 R是再结晶比例, d是热轧板再结晶晶粒尺寸平均值。
. 由上式可知, 再结晶比例与名义晶粒尺寸成正比例。 研究发现, 热轧板名义晶粒尺寸 越大, 电工钢板的磁导率也越高。
为了保持在普通工业电机工作磁感范围 1.0 T 〜 1.6 T内低铁损的优势, 在钢板热轧 时可对热轧中间坯在粗轧和 F1机架之间、 以及 F7机架结束后进入层流冷却前的停留时间 和终轧温度进行优化, 以确保钢板再结晶比例和晶粒粗大化。
为了获得高磁导率, 本发明热轧板名义晶粒尺寸不小于 30 μπι。 另一方面, 热轧板名 义晶粒尺寸不大于 200 μπι。
电工钢成分
本发明的无取向电工钢板各个成分对于电工钢的铁损和磁性能具有不同的影响, 其中 该钢板的铸坯以重量百分比计包含以下成分:
Si: 能溶于铁素体中形成置换固溶体, 提高基体电阻率, 降低铁损, 是电工钢最重要 的合金元素, 但是 Si恶化磁感, 当 Si含量达到一定水平时, 其含量继续增加, 降低铁损 作用减弱, 本发明 Si含量为 0.1〜2.0%。 如大于 2.0%, 导磁率难以达到高效电机的要求。
A1: 可溶于铁素体提高基体电阻率, 粗化晶粒, 降低铁损, 同时还可以脱氧固氮, 但 容易造成成品钢板表层内氧化。 A1含量超过 1.5%将使冶炼浇注困难, 磁感降低, 且加工 困难。
Mn: 与 Si、 A1—样可以增加钢的电阻率, 降低铁损, 可与不可避免杂质 S形成稳定 的 MnS, 消除 S对磁性的危害, 还可防止热脆, 其也溶于铁素体形成置换固溶体, 有降低 铁损的作用。 因此有必要添加 0.1%以上的含量。 本发明 Mn为 0.10%〜1.50%, Mn含量低 于 0.1%有利作用不明显, 高于 1.50%, Acl温度降低, 再结晶温度降低, 热处理时发生 α 一 Υ相变, 劣化有利织构。 '
Ρ: 0.2%以下, 在钢中添加一定的磷可以改善钢板的加工性, 但超过 0.2%时反而使钢 板冷轧加工性劣化。
S: 对加工及磁性均有害, 其与 Mn形成细小的 MnS质点, 阻碍成品退火晶粒长大, 严重恶化磁性, 与 Fe形成低熔点 FeS及 FeS2或共晶体, 易造成热加工脆性。 本发明 S 0.005%以下, 超过 0.003%将使 MnS等 S化物析出量大大增加, 强烈阻碍晶粒长大, 铁损 劣化。 本发明最佳控制范围 S^0.003%。
C: 对加工及磁性均有害, 其与 Mn形成细小的 MnS质点, 阻碍成品退火晶粒长大, 严重恶化磁性, 与 Fe形成低熔点 FeS及 FeS2或共晶体, 易造成热加工脆性。 本发明 S 0.005%以下, 超过 0.003%将使 MnS等 S化物析出量大大增加, 强烈阻碍晶粒长大, 铁损 劣化。 本发明最佳控制范围 S^0.003%。
N: 易形成 A1N等细小弥散氮化物, 强烈阻碍晶粒长大, 铁损劣化, 本发明 ^O.002% 以下, 超过 0.002%将使 A1N等 N化物析出量大大增加, 强烈阻碍晶粒长大, 铁损劣化。
Sn和 Sb: 活化元素, 在表层或表层晶界处偏聚时, 可以减少表层内氧化, 防止活性 氧沿晶界向钢基渗透, 改善织构, 促使 { 100 } 和 { 110} 组分增加, { 111 } 组分减少, 提 高磁导率效果十分显著。在本发明的无取向电工钢中,优选含有 Sn和 Sb中的一种或两种, 其含量在 0.04〜0.1%范围时改善磁性能的效果最显著。
Fe: 电工钢的主体成分。
不可避免的杂质: 现有技术条件下无法完全去除、 或者从经济学角度难以去除、 并且 允许其以一定含量存在的物质。通过使电工钢中的夹杂物实现粗大化、或者参与晶粒形成, 可改善磁性能。 电工钢的生产工艺
本发明的生产成本低、 低铁损且高磁导率的无取向电工钢材料是通过对成分的限定和 加工工艺的改进而制得的。
一般来讲, 典型的无取向电工钢产品的制造工艺基本上包含以下步骤:
1 ) 炼钢工艺: 包括转炉吹炼、 RH精炼和连铸工艺, 连铸坯厚一般为 200-300 nim。 通过以上工艺能够严格控制产品的成分、 杂质及微观组织。 通过该步骤将钢中不可避免的 杂质及残余元素控制在较低水平, 并减少钢中夹杂物含量并且使夹杂物粗大化, 根据不同 类别产品要求, 以合理的成本获得尽可能高等轴晶率的铸坯 (slab)。
2) 热轧工艺: 包括对来自步骤 1 ) 的不同钢种铸坯设计 1200 °C以下的不同温度进行 加热、 粗轧、 精轧、 层流冷却及卷取, 获得可满足最终产品优异性能质量要求的热卷, 其 中热卷产品厚一般为 1.5~3.0 mm。
其中, 在粗轧结束后至精轧前, 中间坯要经过一个包括传送、 搁置 (或称静置) 的过 程, 此过程中也会涉及到再结晶、 晶粒长大、 和 /或晶粒形变的过程。 这一过程的时间间 隔的长短也会影响到钢板的结晶分布和变化。 本申请中, 还可将该时间间隔称为 "中间坯 在粗轧与 F1机架间的传搁时间"或 "中间坯在粗轧与 F1机架间的停留时间", 简写为 ^。
另外, 在精轧结束后至层流冷却前, 中间坯也要经过一个包括传送、 搁置(或称静置) 的过程, 此过程中也会涉及到再结晶、 晶粒长大、 和 /或晶粒形变的过程。 这一过程的时 间间隔的长短也会影响到钢板的结晶分布和变化。 本申请中, 还可将该时间间隔称为 "层 流冷却前传搁时间"或 "层流冷却前停留时间", 简写为 t2
3 )常化酸洗工艺: 包括对来自步骤 2) 的热轧板进行连续退火的高温热处理工艺, 常 化处理过程采取氮气保护和严格的工艺控制, 并包含抛丸和酸洗工艺, 形成厚度可以为 1.5~3.0 mm的常化卷; 通过以上工艺可获得较优的微观组织、 织构和较好的表面质量。
4) 冷轧工艺: 包括对来自步骤 3 ) 的常化板或来自步骤 2) 的热轧板进行可逆式轧制 或连续轧制, 根据用户需求可轧制厚度例如为 0.2〜0.65 mm的冷轧产品。 针对 0.15〜0.35 mm厚度规格产品, 也可采取如下步骤 5 ) 所述的中间退火和二次冷轧工艺。
5 ) 中间退火及二次冷轧工艺: 包括对厚度一般为 0.35〜0.5 mm的一次轧制冷轧产品 进行中间退火, 并且进行后续二次轧制轧至目标厚度的冷轧工艺。 其中, 一次冷轧的压下 率大于等于 20 %。
6) 最终退火工艺: 包括对来自步骤 4)、 或者来自步骤 5 ) 的冷轧产品 (即, 包含或 者不含二次冷轧工艺的中间退火) 进行连续退火。 在不同气氛下 (氮氢混合气体) 进行加 热、 均热、 冷却热处理工艺, 以便形成理想的粗大晶粒、 优化的织构组分, 从而获得优异 的成品磁性能、 力学性能和表面绝缘性。 成品为钢带 (strip), 厚度一般为 0.15~0.65 mm。
本发明的工艺改进
研究发现, 热轧工序中终轧温度 (FDT) 对于热轧板名义晶粒尺寸有直接影响, 而且 该温度、热轧板名义晶粒尺寸与钢坯的组成成分、尤其是 Si和 A1含量之间有内在的关系。 大量的实验表明, 当热轧工序中终轧温度 (FDT, 单位为。 C) 满足如下关系式 (4):
830+42 X (Si + Al)< FDT < 880+23 X (Si+Al) (4),
且^控制在不低于 20秒, t2控制在不低于 5秒时, 得到的热轧板名义晶粒尺寸能够达 到 30 μπι以上。
举例来说, 对于基本成分为 1.0 wt% Si、 0.32 wt% Al、 0.65 wt% Mn、 0.035 wt% P、 <0.0030 wt% C、 <0.0020 wt% N的钢坯, 采用不同的停留时间和终轧温度, 经 720 °C高温 卷取获得了不同晶粒尺寸的热轧组织, 随后形同的工艺进行冷轧和连续退火, 所得热轧板 晶粒大小与磁导率的关系如下图 4 所示。 由图可知, 只有当热轧板的名义晶粒尺寸大于 30μιη时, 成品才具有较高的磁导率。
以下结合具体实施例, 对本发明作进一步说明。 应理解, 以下实施例仅用于说明本发 明而不用于限定本发明的范围。 实施例
1. 实施例一
将钢水经转炉、 RH 精炼处理、 浇注成铸坯。 经热轧、 酸洗、 冷轧、 退火、 涂层后, 得到无取向电工钢产品。 传统制备方法的工艺条件是本领域技术人员所熟知的。 本发明不 同于所述传统制备方法之处在于: 1. 免去常化工序; 2. 通过热轧过程的等待时间和终轧 温度的配合, 优化热轧板的结晶比例和名义晶粒尺寸大小, 来提高最终产品钢带的磁导率 其中, 热轧工序的板坯加热温度控制为 1100〜120(TC, 经热轧轧成 2.6 mm的带钢, 然后 将 2.6 mm的热轧带钢进行冷轧工艺, 轧成 0.5 mm的带钢, 再进行最终退火和涂层, 得到 产品钢带。
测量热轧板名义晶粒尺寸、 成品钢带的相对磁导率 μ 1()、 4 1315、 铁损 Ρ15/5ο以及 30 kw-2极电机效率。 结果见表 1。 表 1
Figure imgf000011_0001
其中, 符号 "tr" .代表痕量, 或残余
由表 1可见, 比较例 1成品的 μ κτ^μ +μ ^值低于 10000, 不满足公式要求, 且热轧板 名义晶粒尺寸过小, 因此用其制造的 30 kw-2电机的效率远低于使用本专利范围的电工钢 材料。
实施例 1至 5的数据表明, 本发明的无取向电工钢板铁损低且磁导率高, 足以适用于 制造高效率的普通工业.电机。
2. 实施例二
将钢水经转炉、 RH精炼处理、浇注成除 Fe和不可避免杂质之外的成分皆为 1.0 wt% Si、 0.32 wt% Al 0.65 wt% Mn、 0.035 wt% P、 <0.0030 wt% C、 〈0.0020 wt% N的钢坯。 热轧 板坯加热温度控制在 1160Ό , 中间坯在粗轧与 F1机架间的停留时间 (即, 中间辊道停留 时间) 、 层流冷却前停留时间 t2和 FDT变化如表 2所示。 经过 720°C高温卷取, 热轧轧 成 2.6 mm的带钢, 然后将 2.6 mm的热轧带钢进行冷轧工艺, 轧成 0.5 mm的带钢, 再进 行最终退火和涂层, 得到产品钢带。
测量热轧板名义晶粒尺寸、 成品钢带的磁导率、 铁损?15/50以及30 10^2极电机效率。 结果见表 2。 表 2
电机效率 热轧工艺参数 磁性
D ( % ) 编号
FDT ti t2 (u m) Ul0+U l3 + U l5 Pi 5/50
(。C) (s) (s) (w/kg)
实施例 6 890 24 6 77 12236 3.56 92.1 实施例 7 900 26 7 90 12315 3.43 92.4 实施例 8 910 28 5 87 12297 3.51 92.3 比较例 2 820 10 7 25 10473 4.03 90.4 比较例 3 890 5 3 20 10312 4.17 89.7 由表 2可见, 比较例 2和比较例 3热轧板的名义晶粒尺寸过小, 制得的电机的效率低 于取材本发明的电机效率。
实施例 6至 8的热轧工艺参数皆在本发明限定的范围之内, 所制得的电机的效率高。 实施例 6至 8的数据表明, 本发明的无取向电工钢板铁损低且磁导率高, 足以适用于制造 高效率的普通工业电机。 以上仅列出了有限的实施例对本发明的技术方案进行了阐述, 这些实施例仅示例了电 工钢板磁导率以及热乳工艺中 3个参数 t,、 t2和 FDT的验证结果, 但本发明毫无疑问可以 推广至更多工艺条件的改进, 这对于本领域的技术人员来说是显而易见的。 因此, 在不违 背本发明的思想下, 本领域技术人员可以在此基础上对本发明作出的各种改动或者修改, 同样应属于本发明的范围。

Claims

权 利 要 求 书
1. ,一种无取向电工钢板, 其特征在于, 以重量百分比计, 其铸坯包含以下成分: Si: 0.1—2.0 wt%, Ah 0.1— 1.0 wt%, Mn: 0.10〜 .0wt%, C: 0.005 wt%, P: 0.2 wt%, S: 0.005 wt%, N: ^0.005 wt%, 余量为 Fe以及不可避免的杂质, 并且
该钢板的磁导率满足以下关系式 (1) 和 (2):
μιο+μ 13 +μ ι5 13982 - 586.5P15/50 (1 );
μΐ0+μΐ3+μ 15^ 10000 (2),
其中, μιθ、 μη、 μ15分别是 50 Hz时 1.0 Τ、 1.3 Τ、 1.5 Τ磁感强度下的相对磁导率; ?15/5。是在 1..5丁磁感强度下501¾时的铁损, 关系式(1) 中的 Ρ15/5ο作为无单位数值计算。
2. 如权利要求 1所述的钢板, 其特征在于, 还含有总含量为 0.3Wt%的Sn和 Sb中的 一种或两种。
3. 如权利要求 1或 2所述的钢板, 其特征在于, 满足以下关系式 (3):
ΐθ+μΐ3+μι5^ H000 (3)。
4. 一种生产如权利要求 1至 3中任一项所述的钢板的方法, 依序包括炼钢、 热轧、 酸 洗、 冷轧、 退火工序。
5. 如权利要求 4所述的方法, 其特征在于, 不包含热轧板的常化处理工序。
6. 如权利要求 4所述的方法, 其特征在于, 所述热轧工序中终轧温度 FDT满足如下 关系式 (4):
830+42x(Si+Al) <FDT< 880+23 (Si+Al) (4),
其中 Si和 A1分别代表元素 Si和 A1的重量百分比, FDT的单位是。 C。
7. 如权利要求 4所述的方法, 其特征在于, 热轧板名义晶粒尺寸 D不小于 30 μπ 且 不大于 200 μπι,
其中 D=Rxd, R为再结晶百分比例, d为热轧板再结晶晶粒尺寸平均值。
8. 如权利要求 4所述的方法, 其特征在于, 在所述热轧工序中, 在对中间坯粗轧后到 对其在 F1机架精轧前的时间间隔 ^控制 fe20s, 并且在对中间坯精轧后到对其进行层流 冷却前的时间间隔 t2控制 fe5s。
PCT/CN2012/000382 2012-03-15 2012-03-27 一种无取向电工钢板及其制造方法 WO2013134895A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US14/372,709 US9659694B2 (en) 2012-03-15 2012-03-27 Non-oriented electrical steel plate and manufacturing process therefor
KR1020147025224A KR101617288B1 (ko) 2012-03-15 2012-03-27 무방향성 전기강판 및 그의 생산방법
IN1794MUN2014 IN2014MN01794A (zh) 2012-03-15 2012-03-27
EP12871249.4A EP2826882B2 (en) 2012-03-15 2012-03-27 Non-oriented electrical steel plate and manufacturing process therefor
RU2014132736/02A RU2586169C2 (ru) 2012-03-15 2012-03-27 Нетекстурированная электротехническая листовая сталь и способ ее изготовления
JP2014561246A JP2015516503A (ja) 2012-03-15 2012-03-27 無方向性電磁鋼板及びその製造方法
MX2014010515A MX360645B (es) 2012-03-15 2012-03-27 Hoja de acero eléctrico no orientado y proceso de fabricación de la misma.
US15/488,585 US10096415B2 (en) 2012-03-15 2017-04-17 Non-oriented electrical steel plate and manufacturing process therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210068984.8 2012-03-15
CN2012100689848A CN103305748A (zh) 2012-03-15 2012-03-15 一种无取向电工钢板及其制造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/372,709 A-371-Of-International US9659694B2 (en) 2012-03-15 2012-03-27 Non-oriented electrical steel plate and manufacturing process therefor
US15/488,585 Division US10096415B2 (en) 2012-03-15 2017-04-17 Non-oriented electrical steel plate and manufacturing process therefor

Publications (1)

Publication Number Publication Date
WO2013134895A1 true WO2013134895A1 (zh) 2013-09-19

Family

ID=49131460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000382 WO2013134895A1 (zh) 2012-03-15 2012-03-27 一种无取向电工钢板及其制造方法

Country Status (9)

Country Link
US (2) US9659694B2 (zh)
EP (1) EP2826882B2 (zh)
JP (1) JP2015516503A (zh)
KR (1) KR101617288B1 (zh)
CN (1) CN103305748A (zh)
IN (1) IN2014MN01794A (zh)
MX (1) MX360645B (zh)
RU (1) RU2586169C2 (zh)
WO (1) WO2013134895A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103305748A (zh) 2012-03-15 2013-09-18 宝山钢铁股份有限公司 一种无取向电工钢板及其制造方法
CN103667902B (zh) * 2013-11-28 2016-03-09 安徽银力铸造有限公司 一种高功能汽车电器部件用电工钢的制备方法
CN104789862A (zh) 2015-03-20 2015-07-22 宝山钢铁股份有限公司 表面状态良好的高磁感低铁损无取向电工钢板及其制造方法
CN105256227B (zh) * 2015-11-27 2017-12-08 武汉钢铁有限公司 一种盘绕式铁芯用无取向硅钢及生产方法
CN106337106B (zh) * 2016-10-10 2018-10-09 燕山大学 高硅钢中SiC夹杂物的消除方法
JP6665794B2 (ja) * 2017-01-17 2020-03-13 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
CN108449229B (zh) * 2018-03-06 2020-10-27 数据通信科学技术研究所 一种并发测试系统和方法
CN112080695B (zh) * 2020-08-31 2021-10-26 江苏省沙钢钢铁研究院有限公司 一种高硅无取向电工钢及其生产方法
CN112538592B (zh) * 2020-09-17 2022-02-01 武汉钢铁有限公司 一种用于频率≥10000Hz高速电机的无取向硅钢及生产方法
CN115704073B (zh) * 2021-08-09 2024-01-09 宝山钢铁股份有限公司 一种表面状态良好的无取向电工钢板及其制造方法
CN115094311B (zh) * 2022-06-17 2023-05-26 湖南华菱涟源钢铁有限公司 生产无取向电工钢的方法和无取向电工钢

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5468716A (en) 1977-11-11 1979-06-02 Kawasaki Steel Co Cold rolling unidirectional electromagnetic steel plate with high magnetic flux density
JPS5573819A (en) 1978-11-22 1980-06-03 Nippon Steel Corp Production of cold rolled non-directional electromagnetic steel plate of superior high magnetic field iron loss
US4545827A (en) 1981-07-02 1985-10-08 Inland Steel Company Low silicon steel electrical lamination strip
JPS6187823A (ja) 1984-10-04 1986-05-06 Nippon Steel Corp 鉄損の著しく低い無方向性電磁鋼板の製造法
WO1996000306A1 (fr) * 1994-06-24 1996-01-04 Nippon Steel Corporation Procede de fabrication de tole d'acier electromagnetiquement non orientee presentant une densite elevee de flux magnetique pour un niveau faible de perte dans le noyau
US6428632B1 (en) 1999-11-26 2002-08-06 Kawasaki Steel Corporation Non-oriented electromagnetic steel sheet having reduced magnetic anisotropy in high frequency region and excellent press workability
CN1590567A (zh) * 2003-08-27 2005-03-09 宝山钢铁股份有限公司 磁悬浮长定子用电工钢板的生产方法
CN1611616A (zh) * 2003-10-27 2005-05-04 宝山钢铁股份有限公司 冷轧无取向电工钢的制造方法
WO2009142401A1 (ko) * 2008-05-23 2009-11-26 주식회사 포스코 무방향성 전기강판
CN101906577A (zh) * 2010-07-16 2010-12-08 武汉钢铁(集团)公司 采用薄板连铸连轧生产的无取向电工钢及其方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623411B2 (ja) * 1984-06-16 1994-03-30 川崎製鉄株式会社 異方性の小さい電磁鋼板の製造方法
JPH01225726A (ja) * 1988-03-07 1989-09-08 Nkk Corp 無方向性電磁鋼板の製造方法
JPH0273919A (ja) * 1988-09-10 1990-03-13 Nippon Steel Corp 磁気特性の優れた無方向性電磁鋼板の製造法
IT1237481B (it) 1989-12-22 1993-06-07 Sviluppo Materiali Spa Procedimento per la prodizione di lamierino magnetico semifinito a grano non orientato.
RU2092605C1 (ru) * 1991-10-22 1997-10-10 Поханг Айрон энд Стил Ко., Лтд. Листы изотропной электротехнической стали и способы их изготовления
US6217673B1 (en) 1994-04-26 2001-04-17 Ltv Steel Company, Inc. Process of making electrical steels
JP3430830B2 (ja) * 1996-12-20 2003-07-28 Jfeスチール株式会社 磁気特性の優れた無方向性電磁鋼板の製造方法
JPH1161260A (ja) * 1997-08-18 1999-03-05 Nkk Corp 鉄損の低い無方向性電磁鋼板の製造方法
JP3852227B2 (ja) * 1998-10-23 2006-11-29 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
DE19918484C2 (de) 1999-04-23 2002-04-04 Ebg Elektromagnet Werkstoffe Verfahren zum Herstellen von nichtkornorientiertem Elektroblech
JP2001181806A (ja) * 1999-10-13 2001-07-03 Nippon Steel Corp 透磁率に優れた無方向性電磁鋼板とその熱延板およびその製造方法
JP3931842B2 (ja) * 2003-06-11 2007-06-20 住友金属工業株式会社 無方向性電磁鋼板の製造方法
US7846271B2 (en) * 2004-12-21 2010-12-07 Posco Co., Ltd. Non-oriented electrical steel sheets with excellent magnetic properties and method for manufacturing the same
KR100721818B1 (ko) * 2005-12-19 2007-05-28 주식회사 포스코 자기적 특성이 우수한 무방향성 전기강판 및 그 제조방법
CA2491665A1 (fr) 2004-12-24 2006-06-24 Louis Cartilier Formulation de comprime pour liberation soutenue de principe actif
CN100446919C (zh) * 2005-06-30 2008-12-31 宝山钢铁股份有限公司 低铁损高磁感冷轧无取向电工钢板的生产方法
CN101275198B (zh) * 2007-03-27 2010-09-29 宝山钢铁股份有限公司 一种表面状态良好的中牌号无取向电工钢的制造方法
JP4635112B2 (ja) * 2008-07-22 2011-02-16 新日本製鐵株式会社 無方向性電磁鋼板及びその製造方法
CN101654757B (zh) * 2008-08-20 2012-09-19 宝山钢铁股份有限公司 涂层半工艺无取向电工钢板及制造方法
CN101837376B (zh) 2009-03-20 2011-09-21 宝山钢铁股份有限公司 一种柱塞式上喷层流冷却装置
CN101887512A (zh) 2010-06-18 2010-11-17 深圳市华阳信通科技发展有限公司 二维码识读装置、其使用方法及pos机
CN103305748A (zh) 2012-03-15 2013-09-18 宝山钢铁股份有限公司 一种无取向电工钢板及其制造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5468716A (en) 1977-11-11 1979-06-02 Kawasaki Steel Co Cold rolling unidirectional electromagnetic steel plate with high magnetic flux density
JPS5573819A (en) 1978-11-22 1980-06-03 Nippon Steel Corp Production of cold rolled non-directional electromagnetic steel plate of superior high magnetic field iron loss
US4545827A (en) 1981-07-02 1985-10-08 Inland Steel Company Low silicon steel electrical lamination strip
JPS6187823A (ja) 1984-10-04 1986-05-06 Nippon Steel Corp 鉄損の著しく低い無方向性電磁鋼板の製造法
WO1996000306A1 (fr) * 1994-06-24 1996-01-04 Nippon Steel Corporation Procede de fabrication de tole d'acier electromagnetiquement non orientee presentant une densite elevee de flux magnetique pour un niveau faible de perte dans le noyau
US6428632B1 (en) 1999-11-26 2002-08-06 Kawasaki Steel Corporation Non-oriented electromagnetic steel sheet having reduced magnetic anisotropy in high frequency region and excellent press workability
CN1590567A (zh) * 2003-08-27 2005-03-09 宝山钢铁股份有限公司 磁悬浮长定子用电工钢板的生产方法
CN1611616A (zh) * 2003-10-27 2005-05-04 宝山钢铁股份有限公司 冷轧无取向电工钢的制造方法
WO2009142401A1 (ko) * 2008-05-23 2009-11-26 주식회사 포스코 무방향성 전기강판
CN101906577A (zh) * 2010-07-16 2010-12-08 武汉钢铁(集团)公司 采用薄板连铸连轧生产的无取向电工钢及其方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2826882A4

Also Published As

Publication number Publication date
CN103305748A (zh) 2013-09-18
IN2014MN01794A (zh) 2015-07-03
EP2826882B1 (en) 2017-03-01
MX360645B (es) 2018-11-12
MX2014010515A (es) 2014-10-14
EP2826882A4 (en) 2015-11-18
RU2586169C2 (ru) 2016-06-10
EP2826882A1 (en) 2015-01-21
US20140377124A1 (en) 2014-12-25
KR101617288B1 (ko) 2016-05-03
EP2826882B2 (en) 2024-05-01
RU2014132736A (ru) 2016-05-10
JP2015516503A (ja) 2015-06-11
US9659694B2 (en) 2017-05-23
US20180096767A1 (en) 2018-04-05
US10096415B2 (en) 2018-10-09
KR20140129142A (ko) 2014-11-06
EP2826882B9 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
WO2013134895A1 (zh) 一种无取向电工钢板及其制造方法
JP5675950B2 (ja) 優れた磁気特性を有する高効率無方向性珪素鋼の製造方法
US20150059929A1 (en) Method of producing non-oriented electrical steel sheet
JP5724824B2 (ja) 圧延方向の磁気特性が良好な無方向性電磁鋼板の製造方法
CN102925793B (zh) 一种磁感≥1.8t的无取向电工钢及其生产方法
WO2012055215A1 (zh) 一种高磁感无取向硅钢的制造方法
WO2014032216A1 (zh) 一种高磁感取向硅钢及其制造方法
WO2012041053A1 (zh) 无瓦楞状缺陷的无取向电工钢板及其制造方法
TWI499677B (zh) A non-oriented electrical steel sheet, a manufacturing method thereof, a laminate for a motor core, and a method of manufacturing the same
CN104451378B (zh) 一种磁性能优良的取向硅钢及生产方法
TW201408789A (zh) 無方向性電磁鋼板的製造方法
CN114990308B (zh) 一种无需常化的高牌号无取向硅钢的生产方法
WO2021037064A1 (zh) 一种含Cu无取向电工钢板及其制造方法
JP7253054B2 (ja) 磁性に優れる無方向性電磁鋼板およびその製造方法
JP2013044012A (ja) 無方向性電磁鋼板およびその製造方法
JP4599843B2 (ja) 無方向性電磁鋼板の製造方法
CN111719078A (zh) 一种消除瓦楞状缺陷的无取向硅钢生产方法
TWI832561B (zh) 無取向性電磁鋼板用熱軋鋼板的製造方法及無取向性電磁鋼板的製造方法
CN112921164B (zh) 一种低铁损高磁导率无取向电工钢及其生产方法
JP4356580B2 (ja) 無方向性電磁鋼板およびその製造方法
JP4228995B2 (ja) 電磁鋼板の製造方法
TW202336241A (zh) 無方向性電磁鋼板用熱軋鋼板的製造方法、無方向性電磁鋼板的製造方法以及無方向性電磁鋼板用熱軋鋼板
CN118291859A (zh) 一种高功率密度新能源汽车驱动电机用无取向硅钢及其生产方法
JP2006077305A (ja) 無方向性電磁鋼板および時効熱処理用無方向性電磁鋼板、ならびにそれらの製造方法
JP2002161313A (ja) 磁性焼鈍後の磁気特性に優れた無方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871249

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14372709

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/010515

Country of ref document: MX

REEP Request for entry into the european phase

Ref document number: 2012871249

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012871249

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147025224

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014561246

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014132736

Country of ref document: RU

Kind code of ref document: A