US20120285584A1 - Manufacture Process Of Non-Oriented Silicon Steel With High Magnetic Induction - Google Patents

Manufacture Process Of Non-Oriented Silicon Steel With High Magnetic Induction Download PDF

Info

Publication number
US20120285584A1
US20120285584A1 US13/492,984 US201213492984A US2012285584A1 US 20120285584 A1 US20120285584 A1 US 20120285584A1 US 201213492984 A US201213492984 A US 201213492984A US 2012285584 A1 US2012285584 A1 US 2012285584A1
Authority
US
United States
Prior art keywords
temperature
cold
steel
rolled
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/492,984
Other languages
English (en)
Inventor
Zitao Wang
Bo Wang
Shishu Xie
Bingzhong Jin
Aihua Ma
Liang Zou
Yuhua Zhu
Zhanyuan Hu
Xiao Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baoshan Iron and Steel Co Ltd
Original Assignee
Baoshan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baoshan Iron and Steel Co Ltd filed Critical Baoshan Iron and Steel Co Ltd
Assigned to BAOSHAN IRON & STEEL CO., LTD. reassignment BAOSHAN IRON & STEEL CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHEN, XIAO, HU, ZHANYUAN, JIN, BINGZHONG, MA, AIHUA, WANG, BO, WANG, ZITAO, XIE, SHISHU, ZHU, YUHUA, ZOU, Liang
Publication of US20120285584A1 publication Critical patent/US20120285584A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets

Definitions

  • This invention relates generally to a manufacture process of non-oriented silicon Steel, and particularly, to a manufacture process of non-oriented silicon Steel with high magnetic induction.
  • Non-oriented silicon Steel is an important magnetic material and widely used in manufacture of various electric machines, compressors and so on. In general, it contains silicon of less than 6.5%, aluminum of less than 3%, carbon of less than 0.1%, and other trace elements. Manufacture process of silicon Steel includes the procedures of hot-rolling, normalization, cold-rolling, finish-annealing and coating with insulation film.
  • non-oriented silicon Steel main property indexes of include iron loss, magnetic induction and magnetic anisotropy.
  • the magnetic properties of non-oriented silicon Steel are very prone to be affected by various factors such as material compositions, thickness, heat treatment procedure, and so on.
  • anneal procedure is also a critical factor to affect on magnetic induction of silicon Steel.
  • a common practice is to employ an appropriate soakage temperature and an appropriate soakage period. If soakage temperature is too high and soakage period is too long, the crystal grains of annealed silicon Steel will be rather coarse, the surface texture ⁇ 111 ⁇ will be intensified, and magnetic induction of the sheet will be weakened; contrarily, if diameters of the grains are on the small side, the hysteresis loss of material will be on the large side, which will increase electric loss in end use.
  • heating at a higher temperature rise rate will bring about quite intensive Gauss texture.
  • heating at a lower temperature rise rate will result in that the texture of the finished silicon Steel product is composed of more component ⁇ 111 ⁇ [112] and less components ⁇ 110 ⁇ [114], ⁇ 001 ⁇ [120] and ⁇ 111 ⁇ [110].
  • Jong-Tae PARK, Jerzy A.SZPUNAR Sang-Yun CHA Effect of heating Rate on the development of Annealing Texture in Non-oriented Electrical steels ISIJ International, Vol. 43(2003), No. 10, pp. 1611-1614 Therefore, in anneal procedure, heating at a higher temperature rise rate can depress recovery and give a surface texture with ⁇ 110 ⁇ and ⁇ 100 ⁇ in core, and so that effectively improve magnetic induction of the finished silicon Steel product.
  • the objective of the invention is to provide a manufacture process of non-oriented silicon Steel with high magnetic induction, the manufacture process is characteristic of including the measures: to roll the hot-rolled plate lightly and to heat the cold-rolled sheet quickly to an anneal temperature so as to get non-oriented silicon Steel with high magnetic induction under the precondition of not increasing iron loss of the sheet.
  • the invention's manufacture process of non-oriented silicon Steel with high magnetic induction comprises the following procedures:
  • the steel billet is heated to a temperature between 1150 ⁇ 1200° C., and soaked at the temperature for a certain time, and then hot-rolled into a steel plate at finish-rolling temperature of 830 ⁇ 900° C.; when being cooled to a temperature ⁇ 570° C., the hot-rolled plate is coiled;
  • the hot-rolled plate is cold-rolled at rolling compression ratio of 2 ⁇ 5%;
  • the hot-rolled plate After being cold-rolled, the hot-rolled plate is continuously normalized at one time at a temperature not below 950° C., and maintained at the temperature for 30 ⁇ 180s;
  • the normalized plate is pickled, and then is successively cold-rolled several times at a progressive or total rolling compression ratio of 70 ⁇ 80% finally into a cold-rolled silicon steel sheet with the thickness of its finished product;
  • the cold-rolled sheet is quickly heated to a temperature between 800 ⁇ 1000° C. at a temperature rise rate of not below 10° C./s, and maintained at the temperature for 5 ⁇ 60s, thereafter, cooled slowly to 600 ⁇ 750° C. at a cooling rate of 3 ⁇ 15° C./s.
  • the atmosphere of the Annealing is H 2 of 30% ⁇ 70%+N 2 of 70% ⁇ 30%, the dew point ⁇ 25° C.
  • the main factors to have effect on magnetic induction intensity B 25 and B 50 of non-oriented silicon Steel are chemical compositions and crystal grain texture. Higher contents of silicon, aluminum and manganese will result in a higher current resistivity and lower magnetic properties B 25 and B 50 .
  • the ideal crystal texture is surface texture (100) [uvw] because it is isotropic and the hard-magnetized direction is not on the rolled surface. In practice, it is impossible to get a single surface texture of this kind.
  • texture component (100) [011], (111) [112], (110) [001], (112) [011] and so on, of them texture component (100) only amounts to 20% or so and largely belongs in non-oriented disordered texture, i. e. magnetic anisotropic one.
  • to change chemical compositions of material and to improve manufacture process so as to intensify component (100) and to weaken component (111) is an important approach to raise magnetic induction intensity B 25 and B 50 .
  • composition design of the invention the following points are primarily taken into account:
  • Si it is soluble in ferrite to form substitution solid solution so as to increase material resistivity and reduce iron loss, and thus, is the most important alloying element of electric steel, but it is adverse to magnetic induction.
  • the invention is aimed at non-oriented silicon Steel with high magnetic induction, therefore, Si content is determined as low as 0.1 ⁇ 1%.
  • Al it is also an element to increase resistivity, and is soluble in ferrite to increase material resistivity and to make crystal grains coarse and to reduce iron loss, but it will also reduce magnetic induction. Al content of more than 1.5% will cause smelting, casting and machining to be difficult and will reduce magnetic induction.
  • Mn like Si and Al, it will increase steel's resistivity and reduce magnetic induction, but it is advantageous to reduce iron loss, and it will react with composition S to generate stable MnS so as to eliminate the adverse influence of S on magnetic property. Therefore, it is necessary to have Mn content of over 0.1% in the silicon Steel. In the invention, Mn content is controlled within 0.10 ⁇ 1.50%.
  • P to add P of a certain content in steel's compositions can improve manufacturability of silicon Steel, but P content shall be below 0.2%.
  • C, N, Nb, V and Ti they are all elements adverse to magnetic property.
  • it is controlled that C ⁇ 0.004%, S ⁇ 0.005%, N ⁇ 0.002, Nb+V+Ti ⁇ 0.006% so as to minimize their adverse effect on magnetic property.
  • Temperature of heated billet or slab shall be below the solid solution temperature of inclusions MnS and AlN in the steel.
  • heating temperature is set at 1150 ⁇ 1200° C.
  • finish rolling temperature is set at 830 ⁇ 900° C.
  • coiling temperature is set not below 570° C., these temperatures can impede solid solution of the inclusions and make the hot-rolled plate have coarse grains.
  • the invention to flatten the hot-rolled plate appropriately is a key factor to attain superhigh-magnetic-induction non-oriented silicon Steel.
  • the invention aims at a manufacture process of superhigh-magnetic-induction non-oriented silicon Steel, therefore, the contents of silicon and aluminum in chemical compositions of the steel are controlled to be rather low.
  • too small contents of silicon and aluminum will give rise to such a case that crystal grains can not normally grow up in the procedure of normalization of the hot-rolled plate.
  • non-oriented silicon steel plate with a lower silicon content trends to generate re-crystallization in the course of being hot-rolled, which will lead to such a case that there are more fine equiaxed re-crystallized grains and less rolled fiber texture in the metallographic texture of the hot-rolled plate.
  • To flatten the hot-rolled plate at a rolling compression ratio of 2 ⁇ 5% before it is normalized can increase deformation stored energy so as to make the re-crystallized texture of the normalized plate be much coarser.
  • a too high rolling compression ratio in flattening procedure will cause the hot-rolled plate to have more internal defects so as to affect grain growth.
  • the intension to have the hot-rolled plate normalized and pre-annealed is to improve grain structure and texture.
  • a research on non-oriented silicon Steel indicates that to make grain structure become coarse prior to cold-rolling can weaken texture component ⁇ 111 ⁇ of the cold-rolled sheet and can intensify texture component ⁇ ok1 ⁇ of the cold-rolled sheet after it is finish-annealed, texture component ⁇ ok1 ⁇ is advantageous to magnetic property.
  • the incidental phenomenon of separated substance becoming coarser can make grains grow up even easier so as to improve magnetic induction and reduce iron loss.
  • normalization temperature of high-magnetic-induction non-oriented silicon steel plate is not below 950° C., soakage period is 30 ⁇ 180s.
  • the grains of ⁇ 110 ⁇ Gauss texture which are advantageous to magnetic property are usually to nucleate and grow up in the shear-deformed zone of the cold-rolled material. If temperature rise rate is too low, in the phase of temperature being lower, a recovery process in material will occur, which will reduce lattice distortion, thus, the probability of Gauss texture to nucleate will greatly fall down.
  • To use a high temperature rise rate in annealing procedure can rapidly go through the temperature range adverse to evolution of Gauss texture and can make the surface texture ⁇ ok1 ⁇ advantageous to magnetic property evolute even better, and thereby, can optimize magnetic induction and iron loss. To cool the annealed sheet slowly can improve its magnetic property.
  • the cold-rolled sheet is finish-annealed by quickly heating to a temperature between 800 ⁇ 1000° C. at a temperature rise rate of ⁇ 100° C./s and a soakage period of 5 ⁇ 60s, thereafter, is slowly cooled to 600 ⁇ 750° C. at cooling rate of 3 ⁇ 15° C./s.
  • the manufacture process of the invention can raise magnetic induction of non-oriented silicon Steel by at least 200 Gauss under the precondition to maintain the same iron loss.
  • FIG. 1 shows an interrelation between the compression ratio at which the hot-rolled plate is cold-rolled and the magnetic property of the finish-annealed Steel.
  • Hot-rolled non-oriented silicon steel plate with 2.6 mm thickness, its compositions and their contents are: Si 0.799%, Al 0.4282%, C 0.0016%, Mn 0.26%, P ⁇ 0.022%, S ⁇ 0.0033%, N ⁇ 0.0007%, Nb 0.0004%, V 0.0016%, Ti 0.0009%, the rest is Fe and unavoidable inclusions.
  • the hot-rolled plate is cold-rolled at a compression ratio of 1 ⁇ 10%.
  • the cold-rolled plate is normalized at normalization soakage temperature of 970° C. and maintained at the temperature for 60s, thereafter the normalized plate is pickled, and then, cold-rolled into a Steel of 0.5 mm thickness.
  • the cold-rolled sheet is annealed at a high heating rate in an electric annealing furnace in a laboratory, with temperature rise rate of 250° C./s, soakage temperature of 850° C. and soakage time of 13s.
  • the texture component ⁇ 111 ⁇ of the cold-rolled sheet after being finish-annealed is weakened, while the texture component ⁇ 110 ⁇ which is advantageous to magnetic property is intensified, thereby, the magnetic induction B50 of the finish-annealed sheet is optimized.
  • Hot-rolled non-oriented silicon steel plate with 2.6 mm thickness, its compositions and their contents are: Si 1%, Al 0.2989%, C 0.0015%, Mn 0.297%, P 0.0572%, S 0.0027%, N 0.0009%, Nb 0.0005%, V 0.0015%, Ti 0.0011%, the rest is Fe and unavoidable inclusions.
  • the hot-rolled plate is cold-rolled at rolling compression ratio of 4%.
  • the cold-rolled plate is normalized at normalization soakage temperature of 950° C. and maintained at the temperature for 60s, thereafter, the normalized plate is pickled, and then cold-rolled into a Steel of 0.5mm thickness.
  • the cold-rolled sheet is annealed at a high heating rate in an electric annealing furnace in a laboratory, with different temperature rise rates of 20° C. Is, 150° C./s and 250° C. Is, respectively, soakage temperature of 960° C. and soakage time of 13s.
  • the magnetic property of the finish-annealed sheet is shown in Table 3.
  • the iron loss and magnetic induction of the finish-annealed sheet is affected by temperature rise rate. As temperature rise rate is raised, iron loss is reduced and magnetic induction is increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
US13/492,984 2010-10-25 2012-06-11 Manufacture Process Of Non-Oriented Silicon Steel With High Magnetic Induction Abandoned US20120285584A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201010517872.7 2010-10-25
CN2010105178727A CN102453837B (zh) 2010-10-25 2010-10-25 一种高磁感无取向硅钢的制造方法
PCT/CN2011/072775 WO2012055215A1 (zh) 2010-10-25 2011-04-14 一种高磁感无取向硅钢的制造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072775 Continuation WO2012055215A1 (zh) 2010-10-25 2011-04-14 一种高磁感无取向硅钢的制造方法

Publications (1)

Publication Number Publication Date
US20120285584A1 true US20120285584A1 (en) 2012-11-15

Family

ID=45993116

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/492,984 Abandoned US20120285584A1 (en) 2010-10-25 2012-06-11 Manufacture Process Of Non-Oriented Silicon Steel With High Magnetic Induction

Country Status (8)

Country Link
US (1) US20120285584A1 (ru)
EP (1) EP2508629A4 (ru)
JP (1) JP2013513724A (ru)
KR (1) KR101404101B1 (ru)
CN (1) CN102453837B (ru)
MX (1) MX2012006680A (ru)
RU (1) RU2527827C2 (ru)
WO (1) WO2012055215A1 (ru)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103753116A (zh) * 2013-10-31 2014-04-30 宜兴市鑫源辊业有限公司 森吉米尔轧机工作辊的制造方法
US10760563B2 (en) 2015-09-07 2020-09-01 Panasonic Intellectual Property Management Co., Ltd. Refrigerant compressor and refrigeration device including refrigerant compressor
CN113403455A (zh) * 2021-06-17 2021-09-17 张家港扬子江冷轧板有限公司 无取向硅钢的生产方法
US11239012B2 (en) 2014-10-15 2022-02-01 Sms Group Gmbh Process for producing grain-oriented electrical steel strip
EP4001451A4 (en) * 2019-08-26 2022-07-27 Baoshan Iron & Steel Co., Ltd. CU-CONTAINING NON-ORIENTED ELECTRIC STEEL SHEET AND METHOD OF MANUFACTURE THEREOF
CN115418550A (zh) * 2022-09-26 2022-12-02 江苏沙钢集团有限公司 一种含磷无铝高强度无取向硅钢生产方法
US11566296B2 (en) 2014-10-20 2023-01-31 Arcelormittal Method of production of tin containing non grain-oriented silicon steel sheet, steel sheet obtained and use thereof

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103361544B (zh) * 2012-03-26 2015-09-23 宝山钢铁股份有限公司 无取向硅钢及其制造方法
CN103834858B (zh) * 2012-11-23 2016-10-05 宝山钢铁股份有限公司 一种低铁损无取向硅钢的制造方法
CN103882288B (zh) * 2012-12-21 2016-03-02 鞍钢股份有限公司 一种高强度专用冷轧无取向电工钢及其生产方法
CN103882299B (zh) * 2012-12-21 2016-05-11 鞍钢股份有限公司 一种高铝薄规格电工钢及其生产方法
RU2540243C2 (ru) * 2013-05-07 2015-02-10 Открытое акционерное общество "Новолипецкий металлургический комбинат" Способ производства высокопроницаемой электротехнической изотропной стали
CN103388106A (zh) * 2013-06-27 2013-11-13 宝山钢铁股份有限公司 一种高磁感低铁损无取向电工钢板及其制造方法
CN103586430B (zh) * 2013-11-06 2016-08-24 北京首钢股份有限公司 无取向电工钢的生产方法
CN104178617A (zh) * 2014-08-25 2014-12-03 东北大学 控制双辊薄带连铸无取向硅钢磁性能的快速热处理方法
BR112017007273B1 (pt) * 2014-10-09 2021-03-09 Thyssenkrupp Steel Europe Ag produto de aço plano laminado a frio e recozido, recristalizado, e método para a fabricação de um produto de aço plano formado
EP3214195B1 (en) * 2014-10-30 2019-07-24 JFE Steel Corporation Method for manufacturing non-oriented electrical steel sheet
CN104480383B (zh) * 2014-11-24 2016-11-02 武汉钢铁(集团)公司 0.35mm厚高效电机用高磁感无取向硅钢的生产方法
CN105779877B (zh) * 2014-12-23 2017-10-27 鞍钢股份有限公司 一种半工艺无取向电工钢的高效生产方法
CN104789862A (zh) * 2015-03-20 2015-07-22 宝山钢铁股份有限公司 表面状态良好的高磁感低铁损无取向电工钢板及其制造方法
KR101959158B1 (ko) 2015-04-02 2019-03-15 신닛테츠스미킨 카부시키카이샤 일 방향성 전자 강판의 제조 방법
JP6406522B2 (ja) * 2015-12-09 2018-10-17 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JP2017053341A (ja) * 2016-04-15 2017-03-16 パナソニックIpマネジメント株式会社 冷媒圧縮機およびそれを用いた冷凍装置
CN105925884B (zh) * 2016-05-30 2018-03-09 宝山钢铁股份有限公司 一种高磁感、低铁损无取向硅钢片及其制造方法
TWI588265B (zh) * 2016-06-07 2017-06-21 中國鋼鐵股份有限公司 電磁鋼片製造方法
KR101877198B1 (ko) * 2018-01-16 2018-07-10 포항공과대학교 산학협력단 무방향성 전기강판 및 그 제조방법
CN108277433A (zh) * 2018-03-15 2018-07-13 马钢(集团)控股有限公司 一种新型冷轧高牌号无取向电工钢及其生产方法
RU2692146C1 (ru) * 2018-05-25 2019-06-21 Олег Михайлович Губанов Способ получения изотропной электротехнической стали
CN109082596B (zh) * 2018-09-04 2019-12-13 马鞍山钢铁股份有限公司 一种低铁损高磁极化强度的无取向硅钢及其制备方法
CN109023116B (zh) * 2018-09-30 2021-09-07 日照钢铁控股集团有限公司 一种采用薄板坯无头轧制生产无取向电工钢的方法
KR102561512B1 (ko) * 2019-03-20 2023-08-01 닛폰세이테츠 가부시키가이샤 무방향성 전자 강판 및 그 제조 방법
CN110438317A (zh) * 2019-07-29 2019-11-12 江苏理工学院 一种初始组织热轧法制备{100}织构柱状晶无取向电工钢的方法
CN112430776B (zh) * 2019-08-26 2022-06-28 宝山钢铁股份有限公司 一种磁各向异性小的无取向电工钢板及其制造方法
CN112430775A (zh) * 2019-08-26 2021-03-02 宝山钢铁股份有限公司 一种磁性能优良的高强度无取向电工钢板及其制造方法
CN110468352A (zh) * 2019-09-25 2019-11-19 江苏沙钢集团有限公司 一种无取向硅钢及其生产方法
CN113981307A (zh) * 2020-07-27 2022-01-28 宝山钢铁股份有限公司 一种高磁感、低铁损的无取向电工钢板及其制造方法
CN114000045B (zh) * 2020-07-28 2022-09-16 宝山钢铁股份有限公司 一种磁性能优良的高强度无取向电工钢板及其制造方法
CN113106224B (zh) * 2021-03-18 2022-11-01 武汉钢铁有限公司 一种提高无取向硅钢铁损均匀性的方法
CN113789467B (zh) * 2021-08-19 2023-01-17 鞍钢股份有限公司 一种含磷无铝高效无取向硅钢生产方法
CN116445806A (zh) * 2022-01-07 2023-07-18 宝山钢铁股份有限公司 一种磁性能优良的无取向电工钢板及其制造方法
CN117305680B (zh) * 2023-11-30 2024-03-05 江苏省沙钢钢铁研究院有限公司 高Al无取向硅钢卷绕铁芯及其制备方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102507A (ja) * 1985-10-29 1987-05-13 Kawasaki Steel Corp 無方向性けい素鋼板の製造方法
JPS63317627A (ja) * 1987-06-18 1988-12-26 Kawasaki Steel Corp 鉄損が低くかつ透磁率が高いセミプロセス無方向性電磁鋼板およびその製造方法
JP2954735B2 (ja) * 1991-04-19 1999-09-27 川崎製鉄株式会社 打抜加工性の優れた無方向性電磁鋼板の製造方法
RU2048543C1 (ru) * 1992-12-21 1995-11-20 Верх-Исетский металлургический завод Способ производства электротехнической анизотропной стали
JPH06228645A (ja) * 1993-02-02 1994-08-16 Sumitomo Metal Ind Ltd 小型静止器用電磁鋼板の製造方法
JP3644039B2 (ja) * 1993-03-25 2005-04-27 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JP3531779B2 (ja) * 1996-11-14 2004-05-31 Jfeスチール株式会社 磁気異方性の小さな低級電磁鋼板の製造方法及び磁気異方性の小さな低級電磁鋼板
JP4258918B2 (ja) * 1999-11-01 2009-04-30 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
TW555863B (en) * 2001-06-28 2003-10-01 Kawasaki Steel Co Nonoriented electromagnetic steel sheet and method for producing the same
RU2199594C1 (ru) * 2002-06-25 2003-02-27 Открытое акционерное общество "Новолипецкий металлургический комбинат" Способ производства анизотропной электротехнической стали
KR100709056B1 (ko) * 2002-12-05 2007-04-18 제이에프이 스틸 가부시키가이샤 무방향성 전자강판 및 그 제조방법
CN1258608C (zh) * 2003-10-27 2006-06-07 宝山钢铁股份有限公司 冷轧无取向电工钢的制造方法
CN100546762C (zh) * 2006-03-22 2009-10-07 宝山钢铁股份有限公司 一种冷轧无取向电工钢板及其生产方法
RU2398894C1 (ru) * 2006-06-16 2010-09-10 Ниппон Стил Корпорейшн Лист высокопрочной электротехнической стали и способ его производства
JP4855222B2 (ja) * 2006-11-17 2012-01-18 新日本製鐵株式会社 分割コア用無方向性電磁鋼板
CN100567545C (zh) * 2007-06-25 2009-12-09 宝山钢铁股份有限公司 一种高牌号无取向硅钢及其制造方法
JP5167824B2 (ja) 2008-01-17 2013-03-21 Jfeスチール株式会社 エッチング加工用無方向性電磁鋼板とモータコアの製造方法
CN101343683B (zh) * 2008-09-05 2011-04-20 首钢总公司 一种低铁损高磁感无取向电工钢的制造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Machine translation of JP 06228645, 1994. *
Machine translation of JP 06279858, 1994. *
Machine translation of JP 10140242, 1998. *
Machine translation of JP 2009167480, 2009. *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103753116A (zh) * 2013-10-31 2014-04-30 宜兴市鑫源辊业有限公司 森吉米尔轧机工作辊的制造方法
US11239012B2 (en) 2014-10-15 2022-02-01 Sms Group Gmbh Process for producing grain-oriented electrical steel strip
US11566296B2 (en) 2014-10-20 2023-01-31 Arcelormittal Method of production of tin containing non grain-oriented silicon steel sheet, steel sheet obtained and use thereof
US10760563B2 (en) 2015-09-07 2020-09-01 Panasonic Intellectual Property Management Co., Ltd. Refrigerant compressor and refrigeration device including refrigerant compressor
EP4001451A4 (en) * 2019-08-26 2022-07-27 Baoshan Iron & Steel Co., Ltd. CU-CONTAINING NON-ORIENTED ELECTRIC STEEL SHEET AND METHOD OF MANUFACTURE THEREOF
CN113403455A (zh) * 2021-06-17 2021-09-17 张家港扬子江冷轧板有限公司 无取向硅钢的生产方法
CN115418550A (zh) * 2022-09-26 2022-12-02 江苏沙钢集团有限公司 一种含磷无铝高强度无取向硅钢生产方法

Also Published As

Publication number Publication date
CN102453837A (zh) 2012-05-16
EP2508629A1 (en) 2012-10-10
KR20120086343A (ko) 2012-08-02
RU2012124187A (ru) 2013-12-20
WO2012055215A1 (zh) 2012-05-03
MX2012006680A (es) 2012-10-15
RU2527827C2 (ru) 2014-09-10
JP2013513724A (ja) 2013-04-22
CN102453837B (zh) 2013-07-17
KR101404101B1 (ko) 2014-06-09
EP2508629A4 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
US20120285584A1 (en) Manufacture Process Of Non-Oriented Silicon Steel With High Magnetic Induction
US9816152B2 (en) Manufacture method of high-efficiency non-oriented silicon steel with excellent magnetic performance
JP4650006B2 (ja) 延性および伸びフランジ性に優れた高炭素熱延鋼板およびその製造方法
JP3292671B2 (ja) 深絞り性と耐時効性の良好な冷延鋼板用の熱延鋼帯
CN105648330B (zh) 一种热镀锌钢板及其生产方法
WO2017086036A1 (ja) 無方向性電磁鋼板の製造方法
CN115315536A (zh) 无取向性电磁钢板、铁芯、冷轧钢板、无取向性电磁钢板的制造方法及冷轧钢板的制造方法
CN104451378A (zh) 一种磁性能优良的取向硅钢及生产方法
JP2022545027A (ja) 600MPa級無方向性電磁鋼板及びその製造方法
WO2007000954A1 (ja) 高炭素冷延鋼板の製造方法
CN111748740A (zh) 一种无瓦楞状缺陷且磁性优良的无取向硅钢及其生产方法
CN100457385C (zh) 低矫顽力高磁导率电磁纯铁冷轧薄板材料制造方法
JP2024041844A (ja) 無方向性電磁鋼板の製造方法
JP6879341B2 (ja) 無方向性電磁鋼板の製造方法
CN115505847B (zh) 一种具有优异冲击性能的冷轧超高强钢板及其制备方法
JP7164071B1 (ja) 無方向性電磁鋼板
CN107326282B (zh) 600MPa级高屈强比热轧高强轻质钢及其制造方法
JP2007211337A (ja) 耐ひずみ時効性に優れ、面内異方性の小さい冷延鋼板およびその製造方法
JPS5980726A (ja) 深絞り性に優れた面内異方性の小さい高強度冷延鋼板の製造方法
JP4062833B2 (ja) 磁気特性に優れた無方向性電磁鋼板の製造方法
JP3194120B2 (ja) 連続焼鈍によるコイル内材質均一性に優れた非時効深絞り用冷延鋼板の製造方法
WO2024022109A1 (zh) 一种高磁感无取向电工钢板及其制造方法
CN109082596B (zh) 一种低铁损高磁极化强度的无取向硅钢及其制备方法
JP2023058067A (ja) 無方向性電磁鋼板
JP3531779B2 (ja) 磁気異方性の小さな低級電磁鋼板の製造方法及び磁気異方性の小さな低級電磁鋼板

Legal Events

Date Code Title Description
AS Assignment

Owner name: BAOSHAN IRON & STEEL CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WANG, ZITAO;WANG, BO;XIE, SHISHU;AND OTHERS;REEL/FRAME:028454/0735

Effective date: 20120615

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION