WO2012053566A1 - 光触媒塗工液及びそれから得られる光触媒薄膜 - Google Patents

光触媒塗工液及びそれから得られる光触媒薄膜 Download PDF

Info

Publication number
WO2012053566A1
WO2012053566A1 PCT/JP2011/074074 JP2011074074W WO2012053566A1 WO 2012053566 A1 WO2012053566 A1 WO 2012053566A1 JP 2011074074 W JP2011074074 W JP 2011074074W WO 2012053566 A1 WO2012053566 A1 WO 2012053566A1
Authority
WO
WIPO (PCT)
Prior art keywords
photocatalyst
component
water
coating liquid
compound
Prior art date
Application number
PCT/JP2011/074074
Other languages
English (en)
French (fr)
Inventor
友博 井上
学 古舘
栄口 吉次
天野 正
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011203698A external-priority patent/JP5874267B2/ja
Priority claimed from JP2011203689A external-priority patent/JP5874266B2/ja
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2012053566A1 publication Critical patent/WO2012053566A1/ja

Links

Classifications

    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1656Antifouling paints; Underwater paints characterised by the film-forming substance
    • C09D5/1662Synthetic film-forming substance
    • C09D5/1675Polyorganosiloxane-containing compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum

Definitions

  • the present invention relates to a photocatalyst coating liquid and a photocatalyst thin film obtained therefrom.
  • the photocatalyst coating thin films formed on various substrate surfaces have the ability to clean the substrate surface because the photocatalytic metal compound such as titanium oxide contained therein exhibits the decomposing power and hydrophilicity of organic matter by light irradiation. It is used for applications such as chemical conversion, deodorization, and antibacterial.
  • photocatalytic coatings are mainly applied to exterior tiles, glass, exterior wall coating, filters inside air cleaners, inorganic base materials (ceramics, metals, etc.), but organics such as plastic materials.
  • Patent Document 1 Japanese Patent Laid-Open No. 2006-272757
  • Patent Document 2 Japanese Patent Laid-Open No. 2006-272757
  • photocatalysts are in the form of a powder or a sol in which photocatalyst particles having a large particle diameter of 100 nm to several ⁇ m are dispersed, so that the obtained thin film is transparent. Poor sex.
  • the resulting thin film is significantly inferior in oxidative decomposition characteristics and hydrophilicity as compared to powdered photocatalytic particles, and in many cases, hydrophilic characteristics can be obtained only under conditions exposed to light irradiation and rainfall over a long period of time. Stop.
  • the hydrolyzed silane solution is prepared using an organic solvent instead of an aqueous solvent as a solvent in consideration of the stability of the solution, but the pot life is still not sufficient.
  • the problems related to short life and work safety are still unresolved.
  • baking at several hundred degrees C. is required for fixing the thin film on the base material, and in this case, it is difficult to perform on-site construction in which an appropriate heat source cannot be prepared.
  • a significantly long curing time is required for fixing the thin film to the substrate.
  • the present invention has been made in view of the above problems.
  • the pot life and coatability are good, and it can be dried and cured even at a relatively low temperature, and has high transparency and sustained catalytic activity. It aims at providing the photocatalyst coating liquid which can form a hydrophilic thin film with a long period of time, and this hydrophilic thin film.
  • the photocatalyst particles are dispersed in a solvent, particularly preferably an aqueous mixed solvent containing water or alcohol, and the hydrolyzable silicon compound.
  • a solvent particularly preferably an aqueous mixed solvent containing water or alcohol
  • the hydrolyzable silicon compound is dispersed in a solvent, particularly preferably an aqueous mixed solvent containing water or alcohol.
  • a thin film formed by applying a photocatalyst coating liquid containing a specific amount of a hydrolysis-condensation product obtained by hydrolysis in the presence of a basic compound as a binder in a liquid containing water and a polar organic solvent is transparent. ⁇ Excellent hardness, the surface is always hydrophilic, maintains sufficient oxidative degradation ability, and does not depend on the superhydrophilicity of the photocatalyst, and the film itself exhibits water wettability, so it is hydrophilic even in the dark. As a result, the inventors have found that the self-cleaning property does not deteriorate and the present
  • the present invention provides the following inventions.
  • the present invention first, (A) a photocatalyst particle, and (B) a photocatalyst coating liquid containing a binder component,
  • the binder component (B) is a hydrolysis condensate obtained by hydrolyzing (b-1) a hydrolyzable silicon compound in the presence of a basic compound in a mixed solvent of water and a polar organic solvent.
  • the (A) component photocatalyst particles are dispersed in the coating solution,
  • the ratio of the component (A) to the sum of the components (A) and (B) is 0.05 to 99.5% by mass,
  • the pH of the coating solution is in the range of 5-8.
  • the photocatalyst coating liquid characterized by the above is provided.
  • the photocatalyst coating liquid further contains (C) a water-soluble Lewis acid compound, and the binder component of component (B) of the water-soluble Lewis acid compound of component (C) The ratio is 0.01 to 50% by mass.
  • component (C) a metal borofluoride, a metal triflate compound, or a combination thereof is particularly preferable.
  • the photocatalyst coating liquid whose said hydrolysable silicon compound is alkoxysilane, halogenated silane, or those combination.
  • the basic compound is of the formula (2a): R 1 y —NH 3-y (2a) (In the formula, R 1 is a monovalent organic group, and y is an integer of 1 to 3.) Or R 1 4 -N + (2b) (In the formula, R 1 is a monovalent organic group.)
  • the photocatalyst coating liquid which is a compound represented by these, or a nitrogen-containing heterocyclic compound.
  • the binder component of the component (B) is further added to the formula (3) (b-2): R 2 —Si (OR 3 ) 3 (3)
  • R 2 represents a substituted or unsubstituted monovalent hydrocarbon group
  • R 3 represents an alkyl group.
  • the photocatalyst coating liquid wherein the binder component of the component (B) further contains (b-4) a water-soluble zirconium compound.
  • the water-soluble zirconium compound of the component (b-4) has the following structural formula: (NH 4 ) 2 ZrO (CO 3 ) 2
  • the said photocatalyst coating liquid which is ammonium zirconium carbonate represented by these.
  • the photocatalyst fine particles of the component (A) are metal oxide crystal fine particles having n-type semiconductivity. Then, the metal oxide crystal fine particles having n-type semiconductivity, vanadium, manganese, iron, cobalt, nickel, copper, zinc, niobium, molybdenum, ruthenium, rhodium, palladium, silver, tin, tungsten, platinum, And a photocatalyst coating solution on which a metal selected from the group consisting of gold and a compound of the metal is supported.
  • the present invention provides a method for producing a hydrophilic photocatalyst thin film in which the photocatalyst coating liquid of the present invention is applied onto a substrate, dried and cured.
  • the present invention provides a hydrophilic photocatalytic thin film obtained by the production method.
  • the present invention provides an article having a hydrophilic surface having a base material and the photocatalytic thin film formed on the base material.
  • the photocatalyst coating solution of the present invention is a coating solution that can use an aqueous solvent as a medium and is safe and free from substrate damage.
  • the coating solution can be cured at a low temperature of about 50 ° C. to 200 ° C., and can be cured at room temperature when the photocatalyst coating solution contains the component (C).
  • the thin film obtained by curing is excellent in transparency, hardness, and oxidative decomposition ability against adhered dirt, and the surface maintains hydrophilicity even after one month.
  • the photocatalytic thin film of the present invention formed using the coating liquid is mainly composed of an inorganic material, the thin film is not deteriorated by the photocatalyst.
  • the thin film is excellent in transparency and hardness, the surface always maintains hydrophilicity, and sufficient oxidative decomposition ability and self-cleaning property due to hydrophilicity are unlikely to deteriorate with time.
  • the hydrophilicity of the thin film does not depend on the superhydrophilicity by the photocatalyst, but depends on the water wettability of the film itself. Therefore, the hydrophilicity continues even in a dark place, and the self-cleaning property hardly deteriorates with time.
  • the photocatalyst coating liquid of the present invention is excellent in maintaining performance, handleability and design. Furthermore, when the coating liquid of the present invention contains a hydrolysis condensate of a specific trifunctional siloxane compound, a water-soluble titanium compound, a water-soluble zirconium compound, or a combination of two or more of these, the chemical resistance In particular, strong alkali resistance is improved. In particular, when the hydrolysis condensate (component (b-2)) of the trifunctional siloxane compound is contained, in addition to chemical resistance, adhesion to an organic substrate is also improved.
  • component (b-2) component of the trifunctional siloxane compound
  • the photocatalyst coating liquid of the present invention contains (A) photocatalyst particles and (B) a binder component.
  • A photocatalyst particles
  • B a binder component
  • Photocatalyst particles Any conventionally known photocatalyst can be used.
  • the photocatalyst particles may be used alone or in combination of two or more.
  • metal oxide crystal fine particles which are n-type semiconductors such as titanium oxide, tungsten oxide, zinc oxide and niobium oxide can be used.
  • metal oxide crystal fine particles which are n-type semiconductors such as titanium oxide, tungsten oxide, zinc oxide and niobium oxide
  • those having high visible light activity those doped with nitrogen, sulfur, phosphorus, carbon, etc. in the crystal of these metal oxides, or copper, iron, nickel, gold, silver, platinum, palladium, rhodium, ruthenium on the surface Those carrying carbon or the like can be suitably used. More specifically, rutile-type titanium oxide carrying platinum, rutile-type titanium oxide carrying iron, rutile-type titanium oxide carrying copper, rutile-type titanium oxide carrying copper hydroxide, anatase-type titanium oxide carrying gold And tungsten trioxide carrying platinum. Furthermore, in addition to increasing the transparency of the thin film and good appearance, those having a fine primary particle diameter are preferably used.
  • the primary particle size is preferably in the range of 1 to 100 nm, more preferably in the range of 1 to 50 nm.
  • the “average particle size” means a volume-based average particle size corresponding to 50% of the cumulative distribution obtained by a particle size distribution measuring apparatus using a dynamic light scattering method.
  • photocatalyst particles for example, in the state of an aqueous photocatalyst dispersion excellent in transparency and activity, Sagancoat TO-85 (trade name, peroxo modified anatase sol, average dispersed particle size of about 20 nm, manufactured by Sakai Corporation
  • the photocatalyst fine particles having high visible light activity include MPT-623 (trade name, visible light responsive photocatalyst, powder, rutile titanium dioxide carrying platinum; manufactured by Ishihara Sangyo Co., Ltd.). .
  • the binder component is a hydrolysis condensate obtained by hydrolyzing a hydrolyzable silicon compound in a mixed solvent of water and a polar organic solvent in the presence of a basic compound.
  • a hydrolysable silicon compound the silicon alkoxide shown in following Structural formula (1), its condensate, or a mixture thereof is mentioned.
  • Si (OR) x (OH) 4-x (1) In the formula, R is a monovalent hydrocarbon group or hydrocarbyloxysilyl group, x is an integer of 0 to 4, and when x is 2 or more, a plurality of R may be the same or different.
  • the group represented by R is usually a monovalent hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 4 carbon atoms, such as a methyl group, an ethyl group, a propyl group, an isopropyl group, or a butyl group.
  • a hydrocarbyloxysilyl group such as an alkoxysilyl group such as a triethoxysilyl group;
  • tetramethoxysilane, tetraethoxysilane and partial hydrolysates and condensates thereof can be suitably used.
  • a nitrogen-containing compound or a nitrogen-containing heterocyclic compound represented by the following general formula (2a) or general formula (2b) is preferable, and these compounds are salts. It may be in the state.
  • R 1 is independently a monovalent organic group.
  • R 1 may be the same as or different from each other.
  • Specific examples of R 1 include alkyl groups having 1 to 4 carbon atoms such as a methyl group, ethyl group, propyl group, isopropyl group, and butyl group, and those having 1 to 3 carbon atoms such as a methylol group and an ethylol group.
  • a hydroxyalkyl group is mentioned.
  • the nitrogen-containing compound takes the form of quaternary ammonium
  • the following formula (3) R 1 4 N + ⁇ X ⁇ (3) (Where X ⁇ represents a counter anion) It may be in a salt state represented by Specifically, examples of X include a hydroxyl anion, a halide anion (F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ ) and the like.
  • X include a hydroxyl anion, a halide anion (F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ ) and the like.
  • tetramethylammonium hydroxide can be preferably used.
  • nitrogen-containing heterocyclic compound examples include pyridine, pyrazine, pyrrole, imidazole, pyrazole, isoxazole, oxazole, thiazole and the like. Preferred are pyridine and imidazole.
  • the above reaction is performed in a mixed solvent of water and a polar organic solvent.
  • polar organic solvents alcohols (for example, methanol, ethanol, isopropanol), glycols (for example, ethylene glycol, propylene glycol), glycerin, butyl cellosolve, methyl cellosolve, ethyl cellosolve, propyl cellosolve, and acetates thereof, ketones (For example, acetone, diacetone alcohol, acetylacetone, methyl ethyl ketone).
  • the polar organic solvents can be used singly or in combination of two or more.
  • methyl acetate, ethyl acetate, methyl lactate, ethyl lactate, triacetin, and acetone can be suitably used.
  • the proportion in the mixed solvent is preferably 5 to 60% by mass of water, more preferably 20 to 50% by mass.
  • the above hydrolysis reaction can proceed by mixing and stirring a hydrolyzable silicon compound, a basic compound, a polar organic solvent, and water.
  • the concentration of the hydrolyzable silicon compound in the resulting solution is preferably 1 to 20% by mass, and more preferably 5 to 15% by mass.
  • the basic compound is preferably charged in an amount of 0.1 to 10 mol times, more preferably 0.5 to 5 mol times the amount of the hydrolyzable silicon compound.
  • the reaction temperature is preferably about 10 to about 70 ° C., more preferably about 20 to 30 ° C. If the temperature is too high, the formation of a gel product is promoted.
  • a reaction solution containing the hydrolyzed condensate thus produced (component (b-1)) is obtained. By removing the solvent from the solution, dissolving the product in water or alcohol, and adjusting the pH to 5 to 8 by acid addition or ion exchange, it can be suitably used as a binder liquid containing the component (b-1).
  • the binder component which is the component (B) of the present invention, can contain another binder component described below, if necessary, in addition to the component (b-1).
  • the binder component is represented by the formula (3): R 2 —Si (OR 3 ) 3 (3) (In the formula, R 2 represents a substituted or unsubstituted monovalent hydrocarbon group, and R 3 represents an alkyl group.) It is a hydrolysis-condensation product of the trifunctional silane compound represented by these.
  • the hydrolysis of the trifunctional silane compound may be performed together with the hydrolysis for obtaining the component (b-1), or may be performed separately.
  • the ratio of the component (b-1) / (b-2) is preferably in the range of 90/10 to 10/90 in terms of mass ratio.
  • the binder component is a water-soluble titanic acid compound.
  • the water-soluble titanic acid compound peroxotitanic acid is preferable.
  • Peroxotitanic acid is a kind of titanium oxide compound, and is a compound in which a part of Ti—O—Ti bond is converted to Ti—OO—Ti bond as shown in the following structural formula.
  • coating liquid containing peroxotitanic acid examples include Sagan Coat PTA sol (peroxotitanic acid aqueous solution, peroxotitanium solid content concentration 1.70% by mass; manufactured by Sakai Corporation), Tio Sky Coat TAK-B (peroxotitanic acid). Aqueous solution, peroxotitanium solid content concentration of 1.70% by mass; manufactured by Tio-Techno Co., Ltd.).
  • the ratio of the component (b-1) / (b-3) is preferably in the range of 90/10 to 10/90 in terms of mass ratio.
  • the binder component is a water-soluble zirconium compound.
  • the water-soluble zirconium compound includes a zirconium oxide compound.
  • a water-soluble zirconium compound may be used individually by 1 type, or may use 2 or more types together.
  • Examples of the water-soluble zirconium compound include zirconium oxide, zirconium hydroxide, zirconium oxychloride (zirconium oxychloride), zirconium sulfate, zirconium nitrate, zirconium hydrochloride, zirconium acetate, zirconium formate, zirconium carbonate, basic zirconium carbonate, zirconium carbonate.
  • the ratio of the component (b-1) / (b-4) is preferably in the range of 90/10 to 10/90 in terms of mass ratio.
  • Examples of the water-soluble Lewis acid compound of component (C) include metal borofluoride and metal triflate.
  • the metal borofluoride include tin borofluoride, zinc borofluoride, copper borofluoride, and magnesium borofluoride.
  • Specific examples of the metal triflate include tin triflate, copper triflate, zinc triflate, magnesium triflate, scandium triflate, cerium triflate, and lanthanum triflate.
  • the triflate means a salt compound having a trifluoromethanesulfonate anion represented by the structural formula CF 3 SO 3 — .
  • tin borofluoride, copper borofluoride, tin triflate, and zinc triflate can be suitably used.
  • the medium of the coating liquid of the present invention functions as a solvent and / or a dispersion medium for the component (A) and the component (B), and the component (C) optionally blended.
  • Water is used as the medium.
  • alcohols such as methanol, ethanol, n-propanol and isopropanol
  • cellosolves such as methyl cellosolve, ethyl cellosolve, propyl cellosolve and butyl cellosolve can be added, and ethanol, isopropanol and butyl cellosolve are preferred.
  • the proportion of water in the mixed solvent is preferably 80% by mass or more, and more preferably 90% by mass or more.
  • the photocatalyst coating liquid of the present invention was prepared by previously dispersing photocatalyst particles in a solvent to prepare a photocatalyst dispersion, and the photocatalyst dispersion was dissolved in the hydrolyzable condensate (hydrolyzed silicate) of the hydrolyzable silicon compound. It can be prepared by mixing with a solution and stirring. When adding a water-soluble Lewis acid compound, after mixing and stirring in this way, it can be prepared by adding and stirring the water-soluble Lewis acid compound to the resulting mixture.
  • water is basically used, and a mixed solvent in which the above-described alcohol or cellosolve is blended as necessary can be used. It can also be added as necessary after preparation.
  • the amount of the water-soluble Lewis acid added is 0.01 to 50% by mass, preferably 0.01 to 10% by mass, more preferably 0.05 to 5% by mass with respect to the binder component of component (B). preferable. If it is less than 0.01% by mass, heating is required at the time of curing, and if it exceeds 50% by mass, curing is excessively promoted, and there is a possibility that the coating liquid is gelled or clouded.
  • the photocatalyst particles (component (A)) are dispersed, and the hydrolysis condensate (component (b-1)) is dissolved or dispersed.
  • the concentration of the photocatalyst in the photocatalyst coating solution of the present invention is usually 0.01 to 10% by mass, preferably 0.1 to 5% by mass, in view of the obtained antifouling activity and transparency. If the photocatalyst concentration is too low, the antifouling activity of the thin film may be reduced, and if the concentration is too high, the transparency of the thin film may be reduced and the appearance may be impaired.
  • the ratio of the (A) photocatalyst and the (B) binder component in the coating liquid is such that the ratio of the (A) component to the total of the (A) component and the (B) component is 0.05 to 99.5. % By mass, preferably 5 to 95% by mass.
  • the proportion of the component (A) is less than 5% by mass, it is difficult to obtain sufficient hydrophilicity and / or antifouling activity due to oxidative decomposition for the obtained thin film, and when it exceeds 95% by mass, the strength of the obtained thin film is reduced. However, peeling or cracking may occur.
  • the photocatalytic thin film of the present invention is a hydrophilic photocatalytic thin film obtained by applying the above photocatalyst coating liquid on a substrate and drying it.
  • the base material to which the photocatalyst coating solution of the present invention is applied is not particularly limited as long as the target thin film can be formed.
  • Examples of the base material include organic materials and inorganic materials, and inorganic materials include, for example, non-metallic inorganic materials and metallic inorganic materials. These can have various shapes according to their purposes and applications.
  • organic materials include vinyl chloride resin, polyethylene, polypropylene, polycarbonate, acrylic resin polyacetal, fluororesin, silicone resin, ethylene-vinyl acetate copolymer (EVA), acrylonitrile-butadiene rubber (NBR), polyethylene terephthalate (PET).
  • vinyl chloride resin polyethylene, polypropylene, polycarbonate, acrylic resin polyacetal, fluororesin, silicone resin, ethylene-vinyl acetate copolymer (EVA), acrylonitrile-butadiene rubber (NBR), polyethylene terephthalate (PET).
  • EVA ethylene-vinyl acetate copolymer
  • NBR acrylonitrile-butadiene rubber
  • PET polyethylene terephthalate
  • PEN Polyethylene naphthalate
  • PVB polyvinyl butyral
  • EVOH ethylene-vinyl alcohol copolymer
  • PPS polyphenylene sulfide
  • PEI polyether imide
  • PEEI polyether ether imide
  • ABS acrylonitrile-butadiene-styrene
  • non-metallic inorganic materials include glass and ceramic materials. These can be commercialized in various forms such as tiles, glass, mirrors and the like.
  • metal inorganic material examples include cast iron, steel material, iron, iron alloy, aluminum, aluminum alloy, nickel, nickel alloy, zinc die cast, etc., and these may be plated or coated with organic paint. It may be. Moreover, the metal plating film provided on the surface of nonmetallic inorganic material or organic material may be sufficient.
  • any conventionally known method can be used to apply the photocatalyst coating liquid to the substrate.
  • the film thickness of the formed thin film is usually in the range of 1 to 500 nm, and preferably in the range of 50 to 300 nm. If the film thickness is too thin, the strength of the thin film may be low, and if it is too thick, the thin film may be cracked.
  • the coating solution contains the water-soluble Lewis acid compound (C)
  • it can be cured at a temperature in the range of room temperature to 200 ° C.
  • the coating film can be cured by drying at room temperature. It is a great advantage of this embodiment that it can be cured at room temperature.
  • “normal temperature” means a temperature in the range of 5 to 30 ° C. In the case of curing at room temperature, it may be left at room temperature for about 5 hours.
  • drying and curing can be promoted by heating as necessary.
  • the treatment is preferably carried out at a temperature range of 0 ° C. for 5 to 60 minutes.
  • the thin film of the present invention has high hydrophilicity, and the water contact angle (at 25 ° C., hereinafter the same) on the thin film is preferably 20 degrees or less. When the water contact angle exceeds 20 degrees, the antifouling property may be lowered.
  • the thin film maintains high hydrophilicity not only immediately after formation but also over time. Accordingly, the water contact angle on the thin film is preferably not more than 20 degrees as well as immediately after formation, and more preferably, for example, it is preferably not more than 20 degrees even after being left in the dark after formation for at least one month. It is.
  • the total light transmittance of the thin film of the present invention is preferably 85% or more and the haze ratio is preferably 3.5% or less.
  • the total light transmittance of the thin film is less than 85%, the transparency may deteriorate and the appearance may be impaired.
  • the haze ratio exceeds 3.5%, the transparency may decrease and the appearance may be impaired.
  • the present invention also provides an article in which the thin film is formed on a substrate.
  • Such an article may be any article as long as the organic catalyst is expected to decompose organic contaminants, clean the surface, deodorize, antibacterial, hydrophilic, etc. by the photocatalytic thin film of the present invention.
  • tiles white tiles, color tiles, glowing tiles that generate colors by interference colors
  • filters air conditioners, air purifiers, water treatment
  • insulators dishes and other daily necessities
  • sanitary wares such as bathtubs and toilets
  • Ceramic products such as window glass plates, window glass, mirrors (large to hand mirror size), panels using glass plates (touch panels, display panels, solar cell cover panels), glass products such as lighting fixtures with glass parts; concrete Stone walls such as natural stones such as system walls, mortar, plaster, bricks, marble, etc .; metal products such as steel plates, painted steel plates, galvalume steel plates; window protection films or sheets, heat insulation films or sheets, heat shield films or sheets, panels (touch panels) , Display panels, solar cell cover panels), used in lighting fixtures
  • Transparent synthetic resin products made of krill resin, polycarbonate, polyethylene terephthalate, etc .; made of vinyl chloride resin, melamine resin, polyethylene resin, polypropylene resin, etc. used for wallpaper, cloth, fibers, tents, interior boards, blinds, and
  • Preparation Example 1 (Preparation of titanium oxide photocatalyst dispersion)
  • a photocatalyst material commercially available MPT-623 (platinum-supported titanium dioxide crystal fine particles / rutile type, primary particle size of about 20 nm; manufactured by Ishihara Sangyo Co., Ltd.) is dispersed in pure water, and the average particle size is 50 nm.
  • An aqueous dispersion was prepared and used as a visible light responsive photocatalyst dispersion having a photocatalyst concentration of 1% by mass.
  • Preparation Example 2 (Preparation of binder component and binder liquid) 14.3 g of water, 8.16 g of tetramethylammonium hydroxide (25% by mass aqueous solution, manufactured by Toyo Gosei), 4.67 g of tetraethylorthosilicate (trade name: orthoethyl silicate, manufactured by Tama Chemical Co., Ltd.), acetone (Wako Pure) 20.0 g (manufactured by Yakuhin Kogyo Co., Ltd.) was mixed (tetramethylammonium hydroxide: tetraethylorthosilicate in a molar ratio of 4: 1) and stirred at room temperature for 5 hours.
  • tetramethylammonium hydroxide tetraethylorthosilicate in a molar ratio of 4: 1
  • binder liquid 1 After removing the solvent from the resulting reaction solution to separate the product hydrolysis condensate (binder component), the product was dissolved again in water, and the aqueous solution was converted to an ion exchange resin (trade name: Dowex). 50W-X8, manufactured by Dow Corning) was adjusted to pH 7.0 through a column packed, and water was further added to adjust the final solid content concentration to 1.0 mass%.
  • binder liquid 1 The resulting aqueous binder solution is hereinafter referred to as “binder liquid 1”.
  • Example 1 After adding and dissolving the binder liquid 1 prepared in Preparation Example 2 to the photocatalyst dispersion liquid prepared in Preparation Example 1, water is added in each Example so that each component has a mass concentration shown in Table 1 and applied. A liquid was prepared.
  • Example 1 instead of the binder liquid 1, coating was performed in the same manner as in Example 1 except that a commercially available Snowtex S (colloidal silica having a particle diameter of 8 to 11 nm; manufactured by Nissan Chemical Industries, Ltd.), which is a solid silica sol binder, was used. A working solution was prepared. The concentration of each component was as shown in Table 1.
  • Snowtex S colloidal silica having a particle diameter of 8 to 11 nm; manufactured by Nissan Chemical Industries, Ltd.
  • Example 2 A coating solution was prepared in the same manner as in Example 1, except that a commercially available Sagan Coat PTA sol (aqueous solution of peroxotitanic acid; manufactured by Sakai Corporation) was used instead of the binder solution 1. did. The concentration of each component was as shown in Table 1.
  • Example 3 Coating was performed in the same manner as in Example 1 except that a commercially available SS-C1 (water-alcohol solution of hydrolyzed siloxane: manufactured by Colcoat Co., Ltd.), which is a water-alcohol binder, was used in place of the binder liquid 1. A liquid was prepared. The concentration of each component was as shown in Table 1.
  • Preparation Example 3 (Preparation of binder component and binder solution) 14.3 g of water, 8.16 g of tetramethylammonium hydroxide (25% by weight aqueous solution, manufactured by Toyo Gosei), 4.67 g of tetraethylorthosilicate (manufactured by Tama Chemical), ⁇ -methacryloxypropyltrimethoxysilane (product name KBM-503) (Made by Shin-Etsu Chemical Co., Ltd.) 5.20 g, acetone (made by Wako Pure Chemical Industries, special grade) 20.0 g (At this time, the molar ratio of tetramethylammonium hydroxide: tetraethylorthosilicate: ⁇ -methacryloxypropyltrimethoxysilane was 4: 1: 1) was mixed and stirred at room temperature for 5 hours.
  • a solvent is removed from the obtained reaction solution to obtain a hydrolysis condensation product (binder component) as a product, and an aqueous solution obtained by dissolving this product in water again is used as an ion exchange resin (Dowex 50W-X8, The pH was adjusted to 7.0 by passing through a column packed with Dow Corning), and water was added to adjust the final solid content concentration to 1.0 mass%.
  • binder liquid 2 The binder liquid thus obtained is referred to as “binder liquid 2”.
  • Preparation Example 4 (Preparation of binder component and binder solution) Instead of ⁇ -methacryloxypropyltrimethoxysilane, 5.0 g of glycidoxypropyltrimethoxysilane (product name KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.) is used, and tetramethylammonium hydroxide: tetraethylorthosilicate: gly
  • a binder component was obtained under the same conditions as in Preparation Example 3, except that the mixture was mixed so that the molar ratio of cidoxypropyltrimethoxysilane was 4: 1: 1. This binder liquid is referred to as “binder liquid 3”.
  • Example 4 After adding and dissolving the binder liquid 2 prepared in Preparation Example 3 to the photocatalyst dispersion liquid prepared in Preparation Example 1, water was added to prepare a coating solution so that each component had a mass concentration shown in Table 2. .
  • Example 5 After adding and dissolving the binder liquid 3 prepared in Preparation Example 4 to the photocatalyst dispersion liquid prepared in Preparation Example 1, water was added to prepare a coating solution so that each component had a mass concentration shown in Table 2. .
  • Example 4 A coating liquid was prepared in the same manner as in Example 4 except that a commercially available FJ-294 (manufactured by Grandex Co., Ltd.), which is a water glass binder, was used instead of the binder liquid 2. The concentration of each component was as shown in Table 2.
  • Preparation Example 5 (Preparation of binder solution)
  • the binder liquid 1 prepared in Preparation Example 2 and a commercially available aqueous solution of peroxotitanic acid (product name: Sagancoat PTA-85; manufactured by Sakai Corporation) have a peroxotitanic acid concentration of 0.05 mass in the resulting mixture. It mixed so that it might become%.
  • the resulting mixed liquid is referred to as “binder liquid 4”.
  • Preparation Example 6 (Preparation of binder solution)
  • the binder liquid 1 prepared in Preparation Example 2 and a commercially available aqueous solution of peroxotitanic acid (product name: Sagancoat PTA-85; manufactured by Sakai Corporation) have a peroxotitanic acid concentration of 0.15 mass. It mixed so that it might become%. The resulting mixed liquid is referred to as “binder liquid 5”.
  • Example 6 After mixing the binder solution 4 prepared in Preparation Example 5 with the photocatalyst dispersion prepared in Preparation Example 1, water was added to prepare a coating solution so that each component had a mass concentration shown in Table 3.
  • Example 7 After mixing the binder solution 5 prepared in Preparation Example 6 with the photocatalyst dispersion prepared in Preparation Example 1, water was added to prepare a coating solution so that each component had a mass concentration shown in Table 3.
  • Preparation Example 7 (Preparation of binder solution)
  • concentration of ammonium zirconium carbonate in the resulting mixed solution of the binder liquid 1 prepared in Preparation Example 2 and a commercially available aqueous solution of ammonium zirconium carbonate (product name: AC-7; manufactured by Daiichi Rare Element Chemical) is 0.05 mass. It mixed so that it might become%.
  • the obtained mixed liquid is referred to as “binder liquid 6”.
  • Preparation Example 8 (Preparation of binder solution)
  • the binder liquid 1 prepared in Preparation Example 2 and a commercially available aqueous solution of zirconium ammonium carbonate (product name: AC-7; manufactured by Daiichi Rare Element Chemical Co., Ltd.) have a concentration of 0.15 mass of zirconium ammonium carbonate in the resulting mixture. It mixed so that it might become%.
  • the obtained binder liquid is referred to as “binder liquid 7”.
  • Example 8 After mixing the binder solution 6 prepared in Preparation Example 7 with the photocatalyst dispersion prepared in Preparation Example 1, water was added to prepare a coating solution so that each component had a mass concentration shown in Table 4.
  • Example 9 After mixing the binder liquid 7 prepared in Preparation Example 8 with the photocatalyst dispersion liquid prepared in Preparation Example 1, water was added to prepare a coating solution so that each component had a mass concentration shown in Table 4.
  • Example 10 to 12 After adding and mixing the binder liquid 1 prepared in Preparation Example 2 to the photocatalyst dispersion liquid prepared in Preparation Example 1, tin borofluoride (manufactured by Stella Chemifa) or zinc triflate (Tokyo Chemical Industry Co., Ltd.) is used as the binder component amount. On the other hand, an amount of 5% by mass was added, stirred and mixed, and water was added in each example to prepare a coating solution so that each component had a mass concentration shown in Table 5.
  • tin borofluoride manufactured by Stella Chemifa
  • zinc triflate Tokyo Chemical Industry Co., Ltd.
  • Comparative Example 5 instead of the binder liquid 1, a commercially available Snowtex S (colloidal silica having a particle diameter of 8 to 11 nm; manufactured by Nissan Chemical Industries, Ltd.), which is a solid silica sol type binder, is used, and tin borofluoride and zinc triflate are added. A coating solution was prepared in the same manner as in Example 10 except that the coating solution was not present. The concentration of each component was as shown in Table 5.
  • Comparative Example 7 instead of binder liquid 1, a commercially available SS-C1 (water-alcohol solution of hydrolyzed siloxane: manufactured by Colcoat Co., Ltd.), which is a water-alcohol binder, was used, and tin borofluoride and zinc triflate were added. A coating solution was prepared in the same manner as in Example 10 except that the coating solution was not present. The concentration of each component was as shown in Table 5.
  • Example 13 After adding and mixing the binder liquid 2 prepared in Preparation Example 3 to the photocatalyst dispersion liquid prepared in Preparation Example 1, tin borofluoride (manufactured by Stella Chemifa) is 5 mass% with respect to the binder component amount in the binder liquid 2 A coating solution was prepared so that each component had a mass concentration shown in Table 6 by adding an amount, stirring and mixing, and then adding water.
  • tin borofluoride manufactured by Stella Chemifa
  • Example 14 After adding and mixing the binder liquid 3 prepared in Preparation Example 4 to the photocatalyst dispersion liquid prepared in Preparation Example 1, tin borofluoride (manufactured by Stella Chemifa) is 5% by mass with respect to the binder component amount in the binder liquid 3. A coating solution was prepared so that each component had a mass concentration shown in Table 6 by adding an amount, stirring and mixing, and then adding water.
  • Example 8 Painted in the same manner as in Example 13 except that a commercially available FJ-294 (Grandex Co., Ltd.), which is a water glass binder, was used in place of the binder liquid 2 and tin borofluoride was not added. A working solution was prepared. The concentration of each component was as shown in Table 6.
  • Example 15 After the binder solution 4 prepared in Preparation Example 5 is mixed with the photocatalyst dispersion prepared in Preparation Example 1, tin borofluoride (manufactured by Stella Chemifa) is added in an amount of 5% by mass with respect to the binder component in the binder solution 4. The mixture was stirred and mixed, and then water was added to prepare a coating solution so that each component had a mass concentration shown in Table 7.
  • Example 16 After the binder solution 5 prepared in Preparation Example 6 is mixed with the photocatalyst dispersion prepared in Preparation Example 1, tin borofluoride (manufactured by Stella Chemifa) is added in an amount of 5% by mass with respect to the binder component in the binder solution 5. The mixture was stirred and mixed, and then water was added to prepare a coating solution so that each component had a mass concentration shown in Table 7.
  • Example 17 After mixing the binder liquid 6 prepared in Preparation Example 7 with the photocatalyst dispersion liquid prepared in Preparation Example 1, tin borofluoride (manufactured by Stella Chemifa) is added in an amount of 5 mass% with respect to the binder component amount in the binder liquid 6. The mixture was stirred and mixed, and then water was added to prepare a coating solution so that each component had a mass concentration shown in Table 8.
  • Example 18 After the binder liquid 7 prepared in Preparation Example 8 is mixed with the photocatalyst dispersion liquid prepared in Preparation Example 1, tin borofluoride (manufactured by Stella Chemifa) is added in an amount of 5 mass% with respect to the binder component amount in the binder liquid 7. The mixture was stirred and mixed, and then water was added to prepare a coating solution so that each component had a mass concentration shown in Table 8.
  • tin borofluoride manufactured by Stella Chemifa
  • Example preparation After using a PET (polyethylene terephthalate) film (thickness 50 ⁇ m) cut to A4 size as the base material, the corona discharge treatment was applied to the surface, and then the dispersion of the example or comparative example was applied, heated and dried. The photocatalytic thin film was formed so that the thickness was about 200 nm. At this time, the coating liquids of Example 1-9 and Comparative Example 1-4 were heated and dried at 70 ° C. for 30 minutes. In the case of the coating liquids of Example 10-18 and Comparative Example 5-8, heating and drying were performed at 25 ° C. for 5 hours.
  • Pencil Hardness The hardness of the thin film of the sample was measured using a scratch hardness (pencil method) tester (manufactured by Cortec Co., Ltd.) in accordance with JIS K5600-5-4. When all of the JIS regulations failed, the thin film was rubbed with a finger, and the presence or absence of scratches observed with the naked eye was observed on the film. When scratches were observed due to this finger rubbing, the hardness was evaluated as poor and indicated as “x”.
  • finger rubbing refers to performing an operation of rubbing by reciprocating up and down about 10 cm while applying light pressure on the thin film surface with the abdomen of the index finger.
  • Photocatalytic activity The sample film was placed in a 5 L closed chamber with three black lights inside.
  • the chamber was filled with 50% humidity air (the ratio of nitrogen and oxygen was 4: 1), and acetaldehyde gas was sealed in the chamber so that the concentration became 20 ppm.
  • the black light was turned on, and the decreasing behavior of acetaldehyde gas was traced under the condition that the amount of light on the sample surface was 1.0 mW / cm 2 .
  • a photoacoustic multigas monitor manufactured by INNOVA; Model 1412
  • the time until the concentration reached 0.01 ppm was determined as photocatalytic activity.
  • a 1 mol / L aqueous solution of sodium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) was prepared, and a thin film of the sample was immersed in this, and after 24 hours, it was wiped off with Kimwipe to check for scratches. Those with scratches were evaluated as bad and indicated with “x”, and those without scratches were evaluated as good and indicated with “ ⁇ ”.
  • Comparative Examples 2 and 3 are shown again in Table 2, and the results of adhesion to an organic substrate and alkali resistance are also shown.
  • Table 3 shows Comparative Examples 1 and 3 again for the same purpose.
  • Table 4 shows Comparative Examples 2 to 4 again.
  • the thin films obtained from the coating solutions of Examples 1 to 3 had the best thin film characteristics.
  • the thin film of Example 1 is excellent in film properties such as appearance and hardness, and its oxidative decomposition activity is also kept very high.
  • Comparative Example 1 the film formed only from colloidal silica is not cured due to insufficient temperature, the thin film formed only from peroxotitanic acid is colored, and the film formed from SS-C1 is excellent in strength.
  • the oxidative decomposition ability which is a characteristic of the photocatalyst, was significantly reduced.
  • the thin films obtained from the coating solutions of Examples 4 and 5 had the best thin film characteristics.
  • the photocatalyst: binder component ratio is the same, when comparing Examples 4 and 5 with Comparative Example 2-4, the thin film of Example 4 has excellent film properties such as appearance / hardness, adhesion, and alkali resistance, Moreover, the oxidative degradation activity is also kept very high.
  • the film formed only with FJ-294 was slightly cloudy in the neutral region, and was inferior in alkali resistance, organic substance adhesion, and photocatalytic properties.
  • the thin film formed with only peroxotitanic acid is colored, and the film formed with SS-C1 has excellent film-forming properties, but it does not adhere to organic matter and the oxidative decomposition ability, which is a feature of the photocatalyst, is significantly reduced. It was.
  • the thin films obtained from the coating solutions of Examples 6 and 7 had the best thin film characteristics.
  • the photocatalyst: binder component ratio is the same, when comparing the Example with Comparative Examples 1, 3, and 4, the thin films of Examples 6 and 7 have excellent film physical properties such as appearance, hardness, adhesion, and alkali resistance. Moreover, the oxidative degradation activity is also kept very high. From Comparative Example 4, the film formed only with FJ-294 was slightly cloudy in the neutral region, and was inferior in alkali resistance and photocatalytic properties.
  • the thin film formed only with Snowtex was insufficiently cured under these conditions, and the film formed with SS-C1 was excellent in film forming property, but the oxidative decomposition ability, which is a characteristic of the photocatalyst, was remarkably lowered.
  • the thin films obtained from the coating solutions of Examples 8 and 9 had the best thin film characteristics.
  • the photocatalyst: binder component ratio is the same, comparing the examples and comparative examples 2 to 4, the thin films of examples 8 and 9 have excellent film properties such as appearance / hardness and alkali resistance, and oxidative degradation activity Also kept very high.
  • the film formed only with FJ-294 was slightly cloudy in the neutral region, and was inferior in alkali resistance and photocatalytic properties.
  • the thin film formed only with PTA was colored, and the film formed with SS-C1 was excellent in film forming property, but the oxidative decomposition ability, which is a characteristic of the photocatalyst, was remarkably reduced.
  • the thin films obtained from the coating solutions of Examples 10 to 12 had the best thin film characteristics. Comparing Example 10 and Comparative Examples 5 to 7 where the photocatalyst: binder component is the same ratio, the thin film of Example 10 is excellent in film properties such as appearance and hardness, and its oxidative decomposition activity is also kept very high. . None of the coating liquids of Comparative Examples 5-7 cured at room temperature for 5 hours, and easily dropped off by rubbing with fingers, and sufficient characteristics as a photocatalyst could not be obtained.
  • the thin films obtained from the coating liquids of Examples 13 and 14 had the best thin film characteristics. None of the coating liquids of comparative examples using a general binder could obtain sufficient characteristics at room temperature curing.
  • the ratio of the photocatalyst: binder component is the same, but comparing Examples 13 and 14 with Comparative Example 6-8, the thin film of Example 13 is excellent in film physical properties such as appearance, hardness, adhesion, and alkali resistance. Moreover, the oxidative degradation activity is also kept very high. From Comparative Example 8, the film formed only with FJ-294 was slightly cloudy in the neutral region, and was inferior in alkali resistance, organic adhesion, and photocatalytic activity.
  • the thin film formed only of peroxotitanic acid of Comparative Example 6 is colored, and the film formed of SS-C1 of Comparative Example 7 was excellent in film-forming properties, but did not adhere to organic substances and was characterized by the photocatalyst. Some oxidative degradation ability was significantly reduced.
  • the thin films obtained from the coating solutions of Examples 15 and 16 had the best thin film characteristics.
  • the ratio of the photocatalyst: binder component is the same, but when the examples and comparative examples 5, 7, and 8 are compared, the thin films of examples 15 and 16 have film properties such as appearance, hardness, adhesion, and alkali resistance. Excellent and oxidative degradation activity is also kept very high.
  • the film formed only with FJ-294 in Comparative Example 8 was slightly cloudy in the neutral region, and was inferior in alkali resistance and photocatalytic activity.
  • the thin films obtained from the coating solutions of Examples 17 and 18 had the best thin film characteristics.
  • the ratio of the photocatalyst: binder component is the same, comparing the examples and comparative examples 6 to 8, the thin films of examples 17 and 18 have excellent film properties such as appearance, hardness, and alkali resistance, and oxidative decomposition. The activity is also kept very high.
  • the film formed only with FJ-294 was slightly cloudy in the neutral region, and was inferior in alkali resistance and photocatalytic activity.
  • the thin film formed only with PTA in Comparative Example 6 is colored, and the film formed with SS-C1 in Comparative Example 7 is excellent in film forming property, but the oxidative decomposition ability, which is a characteristic of the photocatalyst, is significantly reduced. It was. None of the coating liquids of Comparative Examples 6 to 8 was cured at room temperature for 5 hours, easily dropped off by finger rubbing, and sufficient characteristics as a photocatalyst could not be obtained.
  • the photocatalytic thin film of the present invention exhibits the decomposing power and hydrophilicity of organic substances by irradiation with light, it is utilized for applications such as cleaning of the substrate surface, deodorization, antibacterial, etc., for example, exterior tile, glass, exterior wall coating It is used for filters inside air purifiers, inorganic base materials such as ceramics and metals, and organic materials such as plastic materials.
  • the photocatalyst coating liquid of the present invention is useful for forming the photocatalyst thin film.

Abstract

光触媒塗工液及びそれから得られる光触媒薄膜を開示する。該塗工液は、(A)光触媒粒子、及び(B)バインダ成分、さらに場合により(C)水溶性ルイス酸化合物を含有する。(B)成分のバインダ成分は加水分解性ケイ素化合物を、水及び極性有機溶媒の混合溶媒中において塩基性化合物の存在下で加水分解して得られた加水分解縮合物を含む。(A)成分の光触媒粒子は該塗工液中に分散し、該塗工液のpHは5~8の範囲内にある。該塗工液はポットライフ及び塗工性が良好で、比較的低温でも乾燥、硬化させることができるとともに、透明性が高く、触媒活性の持続期間が長い親水性薄膜を形成することができる

Description

光触媒塗工液及びそれから得られる光触媒薄膜
 本発明は光触媒塗工液及びそれから得られる光触媒薄膜に関する。
 種々の基材表面に形成された光触媒コーティング薄膜は、その中に含まれる酸化チタン等の光触媒性金属化合物が光の照射により有機物の分解力及び親水性を発揮することから、基材表面の清浄化、脱臭、抗菌等の用途に活用されている。現在、このような光触媒コーティングは、外装用タイル、ガラス、外壁塗装、空気清浄機内部のフィルター、無機系の基材(セラミック、金属等)への応用が主体であるものの、プラスティック材料等の有機材料、意匠性材料への応用も近年盛んに検討されている[特開2006-116461号公報(特許文献1)、特開2006-272757号公報(特許文献2)]。
 このような現状にあって、広く利用される光触媒の大部分は粉体であるか、又は粒子径が100nm~数μmと大きい光触媒粒子が分散したゾルの形態を取るため、得られる薄膜は透明性に乏しい。
 また、光触媒粒子塗工液を基材に塗布し硬化させて定着させるために、“バインダ”成分として加水分解シラン又はシリコーン樹脂を使用する手段も一般的に使用されている[特許第2756474号(特許文献3)、特許第2865065号(特許文献4)]。しかし、この場合、実際に施工する際には、得られる薄膜の透明度を確保するため、塗工液中の光触媒固形分を著しく低下させる必要がある。その結果、得られる薄膜は粉体状態の光触媒粒子に比較して酸化分解特性や親水性が著しく劣り、多くの場合、長期にわたって光照射および降雨に晒される条件に限って親水特性が得られるに止まる。
 また、この加水分解シランの液は、多くの場合液の安定性を考慮して溶媒として水系溶媒ではなく有機溶剤を用いて調製されることが多いが、それでもポットライフは十分といえず、ポットライフの短さ、作業安全性に関する問題は未解決である。
 さらに、薄膜を基材に定着のために数百℃での焼付けを必要とする場合も多く、この場合適切な熱源を用意できない現場施工は困難である。あるいは、薄膜を基材に定着のために著しく長い養生時間を必要とする。
特開2006-116461号公報 特開2006-272757号公報 特許第2756474号 特許第2865065号
 本発明は、上記問題点に鑑みなされたもので、特に、ポットライフ及び塗工性が良好で、かつ、比較的低温でも乾燥、硬化させることができるとともに、透明性が高く、触媒活性の持続期間が長い親水性薄膜を形成することができる光触媒塗工液並びにかかる親水性薄膜を提供することを目的とする。
 本発明者らは、上記の問題点を解決すべく鋭意検討を行った結果、溶媒、特に好ましくは水、又はアルコール等を含む水系混合溶媒に光触媒粒子が分散され、かつ加水分解性ケイ素化合物を水、極性有機溶媒を含む液中、塩基性化合物の存在下で加水分解して得られる加水分解縮合生成物をバインダとして特定量含有してなる光触媒塗工液を塗布してなる薄膜が、透明度・硬度に優れ、表面は常に親水性となり、十分な酸化分解能力を維持できており、また、光触媒による超親水性に依存せず、膜自体が水濡れ性を示すため、暗所においても親水性が継続し、セルフクリーニング性が低下しないことを見出し、本発明を完成するに至った。
 即ち、本発明は、次の発明を提供するものである。
 本発明は、第一に、
(A)光触媒粒子、及び
(B)バインダ成分
を含有する光触媒塗工液であって、
 (B)成分のバインダ成分が、(b-1)加水分解性ケイ素化合物を、水及び極性有機溶媒の混合溶媒中において塩基性化合物の存在下で加水分解して得られた加水分解縮合物を含み、
 (A)成分の光触媒粒子は該塗工液中に分散しており、
 (A)成分と(B)成分の合計に対する(A)成分の割合は0.05~99.5質量%であり、
 該塗工液のpHは5~8の範囲内にある、
ことを特徴とする光触媒塗工液を提供する。
 上記光触媒塗工液の実施形態として、特に、次のものが挙げられる。
・好適な一実施形態においては、上記の光触媒塗工液は、さらに、(C)水溶性ルイス酸化合物を含有し、該(C)成分の水溶性ルイス酸化合物の(B)成分のバインダ成分に対する割合が0.01~50質量%である。該(C)成分としては、特に、金属ホウフッ化物、金属トリフラート化合物又はこれらの組み合わせが好ましい。
・前記加水分解性ケイ素化合物がアルコキシシラン、ハロゲン化シラン、又はそれらの組み合わせである光触媒塗工液。
・前記塩基性化合物が、式(2a):
-NH3-y                (2a)
(式中、Rは1価の有機基であり、yは1~3の整数である。)
又は、
-N                  (2b)
(式中、Rは1価の有機基である。)
で表される化合物又は含窒素複素環式化合物である光触媒塗工液。
・(B)成分のバインダ成分が、さらに、(b-2)式(3):
 R-Si(OR     (3)
(式中、Rは置換もしくは非置換の一価炭化水素基を表し、Rはアルキル基を示す。)
で表される3官能性シラン化合物の加水分解縮合物を含有する光触媒塗工液。
・前記(B)成分のバインダ成分が、さらに、(b-3)水溶性チタン酸系化合物を含有する光触媒塗工液。さらに、該(b-3)成分の水溶性チタン酸系化合物がペルオキソチタン酸である上記光触媒塗工液。
・前記(B)成分のバインダ成分が、さらに、(b-4)水溶性ジルコニウム系化合物を含有する上記光触媒塗工液。そして、該(b-4)成分の水溶性ジルコニウム系化合物が、下記構造式:
(NH4)2ZrO(CO3)2
で表される炭酸アンモニウムジルコニウムである、上記光触媒塗工液。
・前記(A)成分の光触媒微粒子がn型半導体性を有する、金属酸化物の結晶微粒子である上記光触媒塗工液。そして、該n型半導体性を有する、金属酸化物の結晶微粒子に、バナジウム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、銀、スズ、タングステン、白金、及び金からなる群から選ばれる金属または該金属の化合物が担持されている、該光触媒塗工液。
 本発明は、第二に、上記発明の光触媒塗工液を基材上に塗布し乾燥、硬化させる親水性光触媒薄膜の製造方法を提供する。
 本発明は、第三に、該製造方法によって得られる、親水性光触媒薄膜を提供する。
 本発明は、第四に、基材と、該基材上に形成された上記光触媒薄膜とを有する、親水性表面を備える物品を提供する。
 本発明の光触媒塗工液は、媒体として水系の溶媒を用いることができ、安全かつ基材ダメージの無い塗工液である。該塗工液は50℃~200℃程度の低温で硬化が可能であり、光触媒塗工液が前記(C)成分を含有する場合には常温でも硬化可能である。硬化により得られる薄膜は透明度、硬度、付着汚れに対する酸化分解力に優れ、表面は1ヶ月後でも親水性を維持する。
 該塗工液を用いて形成される、本発明の光触媒薄膜は主に無機物で構成されているため、光触媒による薄膜劣化が起こらない。また、該薄膜は、透明度、硬度に優れ、表面は常に親水性を保ち、十分な酸化分解能力や親水性によるセルフクリーニング性が経時で低下し難い。該薄膜の親水性は光触媒による超親水性に依存せずに、膜自体の水濡れ性によるので暗所においても親水性が継続し、セルフクリーニング性が経時で低下し難い。
 従って、本発明の光触媒塗工液は、性能、取扱い性、意匠性の維持に優れている。
 さらに、本発明の塗工液が特定の3官能性シロキサン化合物の加水分解縮合物、水溶性チタン系化合物、水溶性ジルコニウム系化合物又はこれらの二種以上を組み合わせて含む場合には、耐薬剤性、特に耐強アルカリ性、が向上する。特に、前記3官能性シロキサン化合物の加水分解縮合物((b-2)成分)を含有する場合には、耐薬品性に加えて、有機基材への密着性も向上する。
 以下、本発明について詳細に説明する。
-光触媒塗工液-
 本発明の光触媒塗工液は(A)光触媒粒子、及び、(B)バインダ成分を含有しているものである。以下、両成分について詳しく説明する。
<(A)光触媒粒子>
 光触媒としては、従来知られているいずれのものも使用することができる。光触媒粒子は1種単独で使用しても2種類以上を併用しても良い。光触媒粒子としては、例えば酸化チタン系、酸化タングステン系、酸化亜鉛系、酸化ニオブ系等の、n型半導体である金属酸化物結晶微粒子が使用できる。例えば、結晶状態の、アナターゼ型の二酸化チタン(TiO2)、ルチル型の二酸化チタン(TiO2)、三酸化タングステン(WO3)、酸化亜鉛(ZnO)、Gaドープ酸化亜鉛(GZO)、酸化ニオブ(Nb25)等が使用し得る。
 中でも、可視光活性の高いものとしてこれら金属酸化物の結晶内に窒素、硫黄、リン、炭素等をドーピングしたもの、又は表面に銅、鉄、ニッケル、金、銀、白金、パラジウム、ロジウム、ルテニウム、炭素等を担持したものが好適に使用し得る。更に詳しくは、白金を担持したルチル型酸化チタン、鉄を担持したルチル型酸化チタン、銅を担持したルチル型酸化チタン、水酸化銅を担持したルチル型酸化チタン、金を担持したアナターゼ型酸化チタン、白金を担持した三酸化タングステン等である。更に、薄膜の透明度を高め、外観が良好である上で、該微粒子の一次粒子径が微細なものが好適に使用される。即ち一次粒径が1~100nmの範囲が好ましく、より好ましくは1~50nmの範囲にあるものである。なお、本明細書において、「平均粒子径」とは、動的光散乱法を用いた粒度分布測定装置によって求めた累積分布の50%に相当する体積基準の平均粒子径をいう。
 このような光触媒粒子の市販品としては、例えば、透明度と活性に優れる水系光触媒分散液の状態ではサガンコートTO-85(商品名、ペルオキソ改質アナターゼゾル、平均分散粒径約20nm、鯤コーポレーション製)が挙げられ、また可視光活性が高い光触媒微粒子としてはMPT-623(商品名、可視光応答光触媒、粉体状、白金を担持したルチル型二酸化チタン;石原産業(株)製)が挙げられる。
<(B)バインダ成分>
 [(b-1)加水分解性ケイ素化合物の加水分解縮合物]
 該バインダ成分は、加水分解性ケイ素化合物を、水及び極性有機溶媒の混合溶媒中において塩基性化合物の存在下で加水分解して得られた加水分解縮合物である。加水分解性ケイ素化合物としては、下記構造式(1)に示す珪素アルコキシド、その縮合物又はこれらの混合物が挙げられる。
Si(OR)(OH)4-x               (1)
(式中、Rは1価の炭化水素基又はヒドロカルビルオキシシリル基であり、xは0~4の整数であり、xが2以上であるとき複数のRは同一でも異なってもよい。)
 上記式中。Rで表される基は、通常炭素原子数1~10、好ましくは1~4の1価炭化水素基、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基等の炭素原子数1~4のアルキル基;トリエトキシシリル基等のアルコキシシリル基などのヒドロカルビルオキシシリル基が挙げられる。
 これらのうち、テトラメトキシシラン、テトラエトキシシラン及びこれらの部分加水分解物及び縮合物が好適に使用できる。
 上記の反応において加水分解に使用される塩基性化合物としては、下記一般式(2a)又は一般式(2b)で表される含窒素化合物又は含窒素複素環式化合物が好ましく、これらの化合物は塩の状態であってもよい。
-NH3-y                (2a)
(式中、Rは1価の有機基であり、yは1~3の整数である。)
-N                  (2b)
(式中、Rは1価の有機基である。)
 上記式(2a)及び(2b)中、Rは独立に1価の有機基である。Rは互いに同一であっても異なっていても良い。Rとして具体的には、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基等の炭素原子数1~4のアルキル基、メチロール基、エチロール基等の炭素原子数1~3のヒドロキシアルキル基が挙げられる。
 なお、該含窒素化合物が第4アンモニウムの形態を取る場合、下記式(3):
・X                (3)
(ここで、Xは対アニオンを示す)
で表される塩の状態になっていてもよい。具体的には、Xとしてヒドロキシルアニオン、、ハロゲン化物アニオン(F-、Cl-、Br-、I-)等が挙げられる。第四アンモニウム塩の中では、テトラメチルアンモニウムヒドロキシドが好適に使用できる。
 また、含窒素複素環式化合物としては、例えば、ピリジン、ピラジン、ピロール、イミダゾール、ピラゾール、イソキサゾール、オキサゾール、チアゾールなどが挙げられる。好ましくは、ピリジン、イミダゾールである。
 上記の反応は水及び極性有機溶媒の混合溶媒中で行われる。極性有機溶媒として、アルコール類(例えば、メタノール、エタノール、イソプロパノール)、グリコール類(例えば、エチレングリコール、プロピレングリコール)、グリセリン、ブチルセロソルブ、メチルセロソルブ、エチルセロソルブ、プロピルセロソルブ、及びこれらの酢酸エステル類、ケトン類(例えば、アセトン、ダイアセトンアルコール、アセチルアセトン、メチルエチルケトン)が挙げられる。上記極性有機溶媒は、1種単独でも又は2種以上の併用でも使用することができる。これらのうち、酢酸メチル、酢酸エチル、乳酸メチル、乳酸エチル、トリアセチン、アセトンが好適に使用できる。混合溶媒中の割合は、水が5~60質量%が好ましく、20~50質量%がより好ましい。
 上記の加水分解反応は、具体的には、加水分解性ケイ素化合物、塩基性化合物、極性有機溶媒、及び水を混合・攪拌することにより進行させることができる。
 このとき、加水分解性ケイ素化合物の得られる溶液中の濃度が1~20質量%が好ましく、5~15質量%がより好ましい。塩基性化合物の仕込み量は、加水分解性ケイ素化合物に対して0.1~10モル倍量が好ましく、0.5~5モル倍量がより好ましい。反応温度は約10~約70℃が好ましく、20~30℃程度の温度がより好ましい。温度が高すぎるとゲル状生成物の生成が促進される。
 こうして生成した加水分解縮合物((b-1)成分)を含む反応溶液が得られる。該溶液から溶媒を除去し、生成物を水に又はアルコールに溶解し、酸添加又はイオン交換によってpH5~8に調整することにより(b-1)成分を含むバインダ液として好適に使用できる。
 本発明の(B)成分であるバインダ成分は、上記(b-1)成分以外に、必要に応じて以下に説明する別のバインダ成分を含むことができる。
 [(b-2)3官能性シラン化合物の加水分解縮合物]
 該バインダ成分は、式(3):
 R-Si(OR     (3)
(式中、Rは置換もしくは非置換の一価炭化水素基を表し、Rはアルキル基を示す。)
で表される3官能性シラン化合物の加水分解縮合物である。
 該3官能性シラン化合物の加水分解は、(b-1)成分を得る際の加水分解とともに行ってもよいし、別途加水分解してもよい。
 本発明の塗工液において、(b-1)成分/(b-2)成分の割合は、質量比で、90/10~10/90の範囲が好ましい。
 [(b-3)水溶性チタン酸系化合物]
 該バインダ成分は、水溶性チタン酸系化合物である。水溶性チタン酸系化合物としては、ペルオキソチタン酸が好ましい。ペルオキソチタン酸とは、酸化チタン系化合物の一種であり、下記構造式に示すような、Ti-O-Ti結合の一部がTi-O-O-Ti結合に転化した化合物である。
Figure JPOXMLDOC01-appb-C000001
 ペルオキソチタン酸を含有する塗工液としては、市販品を使用し得る。このような市販の塗工液としては、サガンコートPTAゾル(ペルオキソチタン酸水溶液、ペルオキソチタン固形分濃度1.70質量%;(株)鯤コーポレーション製)、ティオスカイコートTAK-B(ペルオキソチタン酸水溶液、ペルオキソチタン固形分濃度1.70質量%;(株)ティオテクノ製)などが挙げられる。
 本発明の塗工液において、(b-1)成分/(b-3)成分の割合は、質量比で、90/10~10/90の範囲が好ましい。
 [(b-4)水溶性ジルコニウム系化合物]
 該バインダ成分は、水溶性ジルコニウム化合物である。ここで、水溶性ジルコニウム化合物には、酸化ジルコニウム系化合物が包含される。水溶性ジルコニウム化合物は1種単独で用いても2種以上を併用してもよい。水溶性ジルコニウム化合物としては、例えば、酸化ジルコニウム、水酸化ジルコニウム、酸塩化ジルコニウム(オキシ塩化ジルコニウム)、硫酸ジルコニウム、硝酸ジルコニウム、塩酸ジルコニウム、酢酸ジルコニウム、ギ酸ジルコニウム、炭酸ジルコニウム、塩基性炭酸ジルコニウム、炭酸ジルコニウムアンモニウム、炭酸ジルコニウムカリウム、オクチル酸ジルコニウム、ジルコニウムテトラノルマルプロポキシド、ジルコニウムテトラアセチルアセトネート、ジルコニウムトリブトキシモノアセチルアセトネート、ジルコニウムモノブトキシアセチルアセトネートビス(エチルアセトアセテート)、ジルコニウムテトラアセチルアセトネート、ジルコニウムトリブトキシモノステアレート等、これらの加水分解物または部分加水分解物が挙げられる。水溶性ジルコニウム化合物としては、市販品を使用しうる。
 本発明の塗工液において、(b-1)成分/(b-4)成分の割合は、質量比で、90/10~10/90の範囲が好ましい。
<(C)水溶性ルイス酸化合物>
 (C)成分の水溶性ルイス酸化合物としては、例えば金属ホウフッ化物及び金属トリフラートが挙げられる。金属ホウフッ化物としては、具体例として、ホウフッ化スズ、ホウフッ化亜鉛、ホウフッ化銅、ホウフッ化マグネシウムが挙げられる。金属トリフラートとしては、具体例として、スズトリフラート、銅トリフラート、亜鉛トリフラート、マグネシウムトリフラート、スカンジウムトリフラート、セリウムトリフラート、ランタントリフラートが挙げられる。なお、トリフラートとは、構造式CF3SO3 - で示される、トリフルオロメタンスルホン酸アニオンを有する塩化合物を意味する。これらの中でも、ホウフッ化スズ、ホウフッ化銅、スズトリフラート、亜鉛トリフラートが好適に使用し得る。
<塗工液の媒体>
 本発明の塗工液の媒体は(A)成分及び(B)成分、および任意で配合される(C)成分の溶媒及び/又は分散媒として機能する。該媒体としては水が用いられる。水の他に必要に応じてメタノール、エタノール、n-プロパノール、イソプロパノール等のアルコール、メチルセロソルブ、エチルセロソルブ、プロピルセロソルブ、ブチルセロソルブ等のセロソルブを添加でき、エタノール、イソプロパノール及びブチルセロソルブが好ましい。水にこのような有機溶媒を添加して水系混合溶媒とする場合、水の混合溶媒中の割合は80質量%以上が好ましく、90質量%以上がより好ましい。
<光触媒塗工液の調製>
 本発明の光触媒塗工液は、あらかじめ溶媒に光触媒粒子を分散させて光触媒分散液を調製し、該光触媒分散液を上記の加水分解性ケイ素化合物の加水分解縮合物(加水分解シリケート)を溶解した溶液と混合、撹拌することで調製することができる。水溶性ルイス酸化合物を添加する場合には、こうして混合、撹拌したのちに、得られた混合物に水溶性ルイス酸化合物を添加、攪拌することで調製することができる。
 上記において、光触媒粒子を分散させる溶媒、及び加水分解縮合物を溶解する溶媒としては、基本的に水が使用され、上述したアルコールやセロソルブを必要に応じて配合した混合溶媒を用いることができるし、調製後に必要に応じて加えることもできる。
 該水溶性ルイス酸の添加量は、(B)成分のバインダ成分に対して0.01~50質量%となる量であり、0.01~10質量%が好ましく、0.05~5質量%がより好ましい。0.01質量%未満では硬化の際に加熱が必要となり、50質量%を超えると硬化が過剰に促進され、塗工液のゲル化や白濁が生じる恐れがある。
 本発明の光触媒塗工液には上記の光触媒粒子((A)成分)が分散し、かつ上記の加水分解縮合物((b-1)成分)が溶解又は分散している。
 本発明の光触媒塗工液中の光触媒濃度は、得られる防汚活性と透明性の兼ね合いから、通常0.01~10質量%であり、好ましくは0.1~5質量%である。光触媒濃度が低すぎると薄膜の防汚活性が低下することがあり、該濃度が高すぎると薄膜の透明性が低下し外観を損ねることがある。
 また、塗工液中の(A)成分の光触媒と(B)バインダ成分との割合は、(A)成分と(B)成分の合計に対する(A)成分の割合が0.05~99.5質量%であり、好ましくは5~95質量%である。(A)成分の割合が5質量%未満であると、得られる薄膜に十分な親水性及び/又は酸化分解による防汚活性が得難く、また95質量%を超えると得られる薄膜の強度が低下し、剥離、割れが生じることがある。
-光触媒薄膜-
 本発明の光触媒薄膜は、上記の光触媒塗工液を基材上に塗布し乾燥することによって得られる、親水性光触媒薄膜である。
・基材:
 本発明の光触媒塗工液が塗布される基材は、目的とする薄膜を形成することができる限り、特に制限されない。基材の材料としては、例えば有機材料、無機材料が挙げられ、無機材料には例えば、非金属無機材料、金属無機材料が包含される。これらはそれぞれの目的、用途に応じた様々な形状を有することができる。
 有機材料としては、例えば塩化ビニル樹脂、ポリエチレン、ポリプロピレン、ポリカーボネート、アクリル樹脂ポリアセタール、フッ素樹脂、シリコーン樹脂、エチレン-酢酸ビニル共重合体(EVA)、アクリロニトリル-ブタジエンゴム(NBR)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリビニルブチラール(PVB)、エチレン-ビニルアルコール共重合体(EVOH)、ポリイミド、ポリフェニレンサルファイド(PPS)、ポリエーテルイミド(PEI)、ポリエーテルエーテルイミド(PEEI)、ポリエーテルエーテルケトン(PEEK)、メラミン樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂等の合成樹脂材料;天然、合成若しくは半合成の繊維材料及び繊維製品が挙げられる。これらは、フィルム、シート、その他の成型品、積層体などの所要の形状、構成に製品化されていてよい。
 非金属無機材料としては、例えばガラス、セラミック材料が挙げられる。これらはタイル、硝子、ミラー等の様々な形に製品化され得る。
 金属無機材料としては、例えば鋳鉄、鋼材、鉄、鉄合金、アルミニウム、アルミニウム合金、ニッケル、ニッケル合金、亜鉛ダイキャスト等が挙げられ、これらはメッキが施されてもよいし、有機塗料が塗布されていてもよい。また、非金属無機材料又は有機材料の表面に施された金属メッキ皮膜であってもよい。
 上記光触媒塗工液を基材に塗布するには、従来公知のいずれの方法も用いることができる。具体的には、ディップコーティング法、スピンコーティング法、スプレーコーティング法、印毛塗り法、含浸法、ロール法、ワイヤーバー法、ダイコーティング法、グラビア印刷法、インクジェット法等を利用して塗膜を基材上に形成させることができる。
 形成される薄膜の膜厚は、通常1~500nmの範囲であり、50~300nmの範囲にあることが好ましい。膜厚が薄すぎると薄膜の強度が低いことがあり、また厚すぎると薄膜に割れが生じることがある。
 光触媒塗工液を塗布して塗膜を乾燥、硬化させるためには、50~200℃の温度範囲で1~120分間処理することが好ましく、特には、60~90℃の温度範囲で5~60分間処理することが好ましい。しかし、塗工液が(C)成分の水溶性ルイス酸化合物を含む場合には、常温~200℃の範囲の温度で硬化させることができる。塗膜を常温で乾燥させることで硬化させることができる。常温でも硬化させることができることが本実施形態の大きな利点である。ここで、「常温」とは5~30℃の範囲の温度を意味している。常温で硬化の場合、常温に約5時間前後放置すればよい。それでも、必要に応じて加熱により乾燥、硬化を促進することができ、その場合、上記のように、50℃~200℃の温度範囲で1~120分間加熱処理することが好ましく、特に60~90℃の温度範囲で5~60分間処理することが好ましい。
 本発明の薄膜は親水性が高く、該薄膜上の水接触角(25℃において。以下、同じ)は、20度以下であることが好ましい。水接触角が20度を超えると、防汚性が低下することがある。該薄膜は形成直後ばかりでなく、経時的にも高い親水性を維持する。したがって、該薄膜上の水接触角は、形成直後ばかりでなく20度以下であることが好ましく、さらに、例えば形成後暗所に少なくとも一ヶ月放置後でも20度以下であることが好ましく、かつ可能である。
 また、本発明の薄膜の全光線透過率は85%以上であり、かつヘイズ率が3.5%以下であることが好ましい。該薄膜の全光線透過率が85%未満の場合は、透明性が低下し外観を損ねることがあり、またヘイズ率が3.5%を超えると透明性が低下し外観を損ねることがある。
 本発明は基材上に上記薄膜を形成した物品をも提供する。このような物品としては、本発明の光触媒薄膜により有機汚染物の分解、表面の清浄化、脱臭、抗菌、親水性等の硬化が期待される物品であればいずれの物品でもよい。例えば、タイル類(白色タイル、カラータイル、干渉色により発色する光彩タイル)、フィルター(エアコン、空気清浄機、水処理)、ガイシ、皿などの日用品、浴槽、トイレ等の衛生陶器、外装用タイル等のセラミック製品;窓ガラス板、窓ガラス、鏡(大型~手鏡サイズ)、ガラス板を用いたパネル(タッチパネル、デイスプレイパネル、太陽電池カバーパネル)、ガラス部分を有する照明器具等のガラス製品;コンクリート系壁、モルタル、しっくい、レンガ、大理石等の天然石等の石材;鋼板、塗装鋼板、ガルバリウム鋼板等の金属製品類;窓保護フィルム若しくはシート、断熱フィルム若しくはシート、遮熱フィルム若しくはシート、パネル(タッチパネル、デイスプレイパネル、太陽電池カバーパネル)、照明器具に用いられるアクリル樹脂、ポリカーボネート、ポリエチレンテレフタレートなどからなる透明合成樹脂製品;壁紙、クロス、繊維、テント地、内装ボード、ブラインド、他加工品に用いられる塩化ビニル樹脂、メラミン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂などからなる不透明合成樹脂製品等が挙げられる。
 以下、実施例及び比較例により本発明を具体的に説明する。ただし、本発明はこれらの例により制限されるものではない。
 [調製例1](酸化チタン系光触媒分散液の調製)
 光触媒材料として、市販のMPT-623(白金担持二酸化チタン結晶微粒子/ルチル型、一次粒径約20nm;石原産業(株)製)を純水に分散して、平均粒子径が50nmであるような水系分散液を作製し、光触媒濃度1質量%の可視光応答性光触媒分散液として使用した。
 [調製例2](バインダ成分及びバインダ液の調製)
 水14.3、テトラメチルアンモニウムヒドロキシド(25質量%水溶液、東洋合成製)8.16g、テトラエチルオルトシリケート(商品名:正珪酸エチル、多摩化学(株)製)4.67g、アセトン(和光純薬工業製、特級)20.0gを、(テトラメチルアンモニウムヒドロキシド:テトラエチルオルトシリケートがモル比で4:1となる割合である)混合し、常温にて5時間攪拌した。得られた反応液から溶媒を除去して生成物である加水分解縮合物(バインダ成分)を分離した後、該生成物を水に再度溶解させ、該水溶液をイオン交換樹脂(商品名:ダウエックス50W-X8、ダウコーニング製)を充填したカラムを通してpH7.0に調整し、さらに水を加えて最終的な固形分濃度を1.0質量%に調整した。得られたバインダ水溶液を以下「バインダ液1」という。
 [実施例1~3]
 調製例1で調製した光触媒分散液に調製例2で調製したバインダ液1を加えて溶解した後、各実施例において水を加えて各成分が表1記載の質量濃度になるように、塗工液を調製した。
 [比較例1]
 バインダ液1に代えて、固体シリカゾル系バインダである市販のスノーテックスS(粒径8~11nmのコロイダルシリカ;日産化学工業(株)製)を使用した以外は、実施例1と同様にして塗工液を調製した。各成分の濃度は表1に記載の通りとした。
 [比較例2]
 バインダ液1に代えて、水溶性バインダである市販のサガンコートPTAゾル(ペルオキソチタン酸の水溶液;(株)鯤コーポレーション製)を使用した以外は、実施例1と同様にして塗工液を調製した。各成分の濃度は表1に記載の通りとした。
 [比較例3]
 バインダ液1に代えて、水-アルコール系バインダである市販のSS-C1(加水分解シロキサンの水-アルコール溶液:コルコート(株)製)を使用した以外は、実施例1と同様にして塗工液を調製した。各成分の濃度は表1に記載の通りとした。
 [調製例3](バインダ成分及びバインダ液の調製)
 水14.3g、テトラメチルアンモニウムヒドロキシド(25質量%水溶液、東洋合成製)8.16g、テトラエチルオルトシリケート(多摩化学製)4.67g、γ-メタクリロキシプロピルトリメトキシシラン(製品名KBM-503信越化学工業製)5.20g、アセトン(和光純薬工業製、特級)20.0g(このとき、テトラメチルアンモニウムヒドロキシド:テトラエチルオルトシリケート:γ-メタクリロキシプロピルトリメトキシシランのモル比は4:1:1)を混合し、常温にて5時間攪拌した。得られた反応溶液から溶媒を除去して生成物である加水分解縮合物(バインダ成分)を得、この生成物を水に再度溶解させて得た水溶液をイオン交換樹脂(ダウエックス50W-X8, ダウコーニング製)を充填したカラムに通してpH=7.0に調整し、水を加えて最終的な固形分濃度が1.0質量%となるように調整した。こうして得られたバインダ液を「バインダ液2」という。
 [調製例4](バインダ成分及びバインダ液の調製)
 γ-メタクリロキシプロピルトリメトキシシランの代わりにグリシドキシプロピルトリメトキシシラン(製品名KBM-403,信越化学工業製)5.0gを使用し、かつ、テトラメチルアンモニウムヒドロキシド:テトラエチルオルトシリケート:グリシドキシプロピルトリメトキシシランのモル比が4:1:1となるように混合した以外は、調製例3と同様の条件にてバインダ成分を得、バインダ液を調製した。該バインダ液を「バインダ液3」という。
 [実施例4]
 調製例1で調製した光触媒分散液に調製例3で調製したバインダ液2を加えて溶解した後、水を加えて各成分が表2記載の質量濃度になるように、塗工液を調製した。
 [実施例5]
 調製例1で調製した光触媒分散液に調製例4で調製したバインダ液3を加えて溶解した後、水を加えて各成分が表2記載の質量濃度になるように、塗工液を調製した。
 [比較例4]
 バインダ液2に代えて、水ガラス系バインダである市販のFJ-294(グランデックス(株)製)を使用した以外は、実施例4と同様にして塗工液を調製した。各成分の濃度は表2に記載の通りとした。
[調製例5](バインダ液の調製)
 調製例2で調製したバインダ液1と、市販のペルオキソチタン酸(製品名:サガンコートPTA-85;鯤コーポレーション製)水溶液とを、得られる混合液中のペルオキソチタン酸の濃度が0.05質量%となるように混合した。得られた混合液を「バインダ液4」という。
[調製例6](バインダ液の調製)
 調製例2で調製したバインダ液1と、市販のペルオキソチタン酸(製品名:サガンコートPTA-85;鯤コーポレーション製)水溶液とを、得られる混合液中のペルオキソチタン酸の濃度が0.15質量%となるように混合した。得られた混合液を「バインダ液5」という。
 [実施例6]
 調製例1で調製した光触媒分散液に調製例5で調製したバインダ液4を混合した後、水を加えて各成分が表3記載の質量濃度になるように、塗工液を調製した。
 [実施例7]
 調製例1で調製した光触媒分散液に調製例6で調製したバインダ液5を混合した後、水を加えて各成分が表3記載の質量濃度になるように、塗工液を調製した。
 [調製例7](バインダ液の調製)
 調製例2で調製したバインダ液1と、市販の炭酸ジルコニウムアンモニウム(製品名:AC-7;第一稀元素化学製)水溶液を、得られる混合液中の炭酸ジルコニウムアンモニウムの濃度が0.05質量%となるように混合した。得られた混合液を「バインダ液6」という。
 [調製例8](バインダ液の調製)
 調製例2で調製したバインダ液1と、市販の炭酸ジルコニウムアンモニウム(製品名:AC-7;第一稀元素化学製)水溶液を、得られる混合液中の炭酸ジルコニウムアンモニウムの濃度が0.15質量%となるように混合した。得られたバインダ液を「バインダ液7」という。
 [実施例8]
 調製例1で調製した光触媒分散液に調製例7で調製したバインダ液6を混合した後、水を加えて各成分が表4記載の質量濃度になるように、塗工液を調製した。
 [実施例9]
 調製例1で調製した光触媒分散液に調製例8で調製したバインダ液7を混合した後、水を加えて各成分が表4記載の質量濃度になるように、塗工液を調製した。
 [実施例10~12]
 調製例1で調製した光触媒分散液に調製例2で調製したバインダ液1を加えて混合した後、ホウフッ化スズ(ステラケミファ製)または亜鉛トリフラート(東京化成工業(株))をバインダ成分量に対して5質量%の量添加し、攪拌混合し、各実施例において水を加えて各成分が表5記載の質量濃度になるように、塗工液を調製した。
 [比較例5]
 バインダ液1に代えて固体シリカゾル系バインダである市販のスノーテックスS(粒径8~11nmのコロイダルシリカ;日産化学工業(株)製)を使用し、かつ、ホウフッ化スズも亜鉛トリフラートも添加しなかった以外は、実施例10と同様にして塗工液を調製した。各成分の濃度は表5に記載の通りとした。
 [比較例6]
 バインダ液1に代えて、水溶性バインダである市販のサガンコートPTAゾル(ペルオキソチタン酸の水溶液;(株)鯤コーポレーション製)を使用し、かつ、ホウフッ化スズも亜鉛トリフラートも添加しなかった以外は、実施例10と同様にして塗工液を調製した。各成分の濃度は表5に記載の通りとした。
 [比較例7]
 バインダ液1に代えて、水-アルコール系バインダである市販のSS-C1(加水分解シロキサンの水-アルコール溶液:コルコート(株)製)を使用し、かつ、ホウフッ化スズも亜鉛トリフラートも添加しなかった以外は、実施例10と同様にして塗工液を調製した。各成分の濃度は表5に記載の通りとした。
 [実施例13]
 調製例1で調製した光触媒分散液に調製例3で調製したバインダ液2を加えて混合した後、ホウフッ化スズ(ステラケミファ製)をバインダ液2中のバインダ成分量に対して5質量%の量添加し、攪拌混合し、その後水を加えて各成分が表6記載の質量濃度になるように、塗工液を調製した。
 [実施例14]
 調製例1で調製した光触媒分散液に調製例4で調製したバインダ液3を加えて混合した後、ホウフッ化スズ(ステラケミファ製)をバインダ液3中のバインダ成分量に対して5質量%の量添加し、攪拌混合し、その後水を加えて各成分が表6記載の質量濃度になるように、塗工液を調製した。
 [比較例8]
 バインダ液2に代えて水ガラス系バインダである市販のFJ-294(グランデックス(株)製)を使用し、かつ、ホウフッ化スズを添加しなかった以外は、実施例13と同様にして塗工液を調製した。各成分の濃度は表6に記載の通りとした。
 [実施例15]
 調製例1で調製した光触媒分散液に調製例5で調製したバインダ液4を混合した後、ホウフッ化スズ(ステラケミファ製)をバインダ液4中のバインダ成分量に対して5質量%の量添加し、攪拌混合し、その後水を加えて各成分が表7記載の質量濃度になるように、塗工液を調製した。
 [実施例16]
 調製例1で調製した光触媒分散液に調製例6で調製したバインダ液5を混合した後、ホウフッ化スズ(ステラケミファ製)をバインダ液5中のバインダ成分量に対して5質量%の量添加し、攪拌混合し、その後水を加えて各成分が表7記載の質量濃度になるように、塗工液を調製した。
 [実施例17]
 調製例1で調製した光触媒分散液に調製例7で調製したバインダ液6を混合した後、ホウフッ化スズ(ステラケミファ製)をバインダ液6中のバインダ成分量に対して5質量%の量添加し、攪拌混合し、その後水を加えて各成分が表8記載の質量濃度になるように、塗工液を調製した。
 [実施例18]
 調製例1で調製した光触媒分散液に調製例8で調製したバインダ液7を混合した後、ホウフッ化スズ(ステラケミファ製)をバインダ液7中のバインダ成分量に対して5質量%の量添加し、攪拌混合し、その後水を加えて各成分が表8記載の質量濃度になるように、塗工液を調製した。
-試料の作製-
 基材として、A4サイズにカットしたPET(ポリエチレンテレフタレート)フィルム(厚さ50μm)を用い、その表面にコロナ放電処理を行ったのち、実施例又は比較例の分散液を塗布し、加熱、乾燥して厚さが約200nmとなるように光触媒薄膜を形成した。この際に、実施例1-9及び比較例1-4の塗工液の場合は70℃で30分間の加熱、乾燥を行った。実施例10-18及び比較例5-8の塗工液の場合は25℃で5時間の加熱、乾燥を行った。
-光触媒薄膜の物性評価-
 試料の光触媒薄膜について各種物性を以下のようにして測定し評価した。
・表面張力(静的/動的)
 ・・水接触角:
  接触角計CA-A(協和界面科学(株)製)を用いて測定した。
 ・・暗所1ヶ月放置後の接触角:
 試料フィルムに365nmのUVを1mw/cmで24時間照射した後、該フィルムを気密容器に入れて遮光し、1ヵ月後に取り出して接触角計CA-Aで測定した。
 ・・表面の動的濡れ張力:
  ぬれ張力試験用混合液No.22.6~No.73.0(和光純薬工業(株)製)を綿棒で試料の薄膜表面に塗布し、塗布した液膜が10秒間弾かれずに保持されているときの、濡れ張力試験用混合液の濡れ張力の値を濡れ張力(mN/m)とした。
・鉛筆硬度
 試料の薄膜の硬度を、JIS K5600-5-4に準拠して、引っかき硬度(鉛筆法)試験器(コーテック(株)製)を用いて測定した。該JISの規定では全て不合格となった場合には、該薄膜に指擦りを行って、膜に肉眼で認められる傷の発生の有無を観察した。この指擦りで傷の発生が認められた場合には硬度不良と評価し、「×」と示した。ここで、「指擦り」とは薄膜表面に人指し指の腹部分を当てて軽く圧しながら上下に10cm程度往復させて擦る操作を行うことをいう。
・外観(濁り、着色の有無)
 前記の試料作製の際に、基材フィルムの表面に部分的に光触媒分散液を塗布することによって、光触媒薄膜を形成した部分と形成しない部分と作った。薄膜形成部を薄膜非形成部と目視により観察し、薄膜に明らかな濁りや着色が認められるか否か調べた。
・薄膜の膜厚測定
 薄膜測定装置F-20(FILMETRICS社製)、及び走査型電子顕微鏡S-3400NX((株)日立ハイテクノロジーズ製)を用いて測定した。
・塗工液内の光触媒微粒子の平均粒子径
 マイクロトラックUPA-EX(日機装(株)製)を用いて測定した。
・光触媒活性
 上記試料フィルムを、内部にブラックライトを3本備えた容積5Lの密閉型チャンバーに入れた。該チャンバー内は、50%湿度の空気(窒素と酸素の比が4:1)で満たされており、この中に濃度20ppmとなるようにアセトアルデヒドガスを封入した。
この状態で1時間程度静置した後、ブラックライトを点灯し、試料表面での光量が1.0mW/cm2となる条件下で、アセトアルデヒドガスの減少挙動を追跡した。アセトアルデヒドガス濃度の測定には、光音響マルチガスモニタ(INNOVA製;1412型)を用い、濃度が0.01ppmとなるまでの時間を測定し、光触媒活性とした。
・耐アルカリ性
 水酸化ナトリウム(和光純薬工業製)の1モル/L水溶液を調製し、この中に試料の薄膜を浸漬し、24時間後にキムワイプにてふき取りし、傷の有無を見た。傷が生じたものを不良と評価して「×」で示し、生じないものを良好と評価して「○」で示した。
・有機基材への密着性
 薄膜にJIS K5400に準じてクロスカット碁盤目テープ剥離試験を実施した。クロスカットによって作製した100マス中、剥離しないで残存しているマス目の個数を示す。
・総合評価
 硬度3H以上であり、外観の変化がなく、かつ光触媒活性試験で12時間以内に光触媒活性のあるものを良好と評価し「○」で示した。
 上記の測定及び評価の結果を表1~4に示す。なお、形成された薄膜の膜厚はいずれも200nmであった。
 なお、比較し易いように、表2には比較例2及び3を再掲し、有機基材への密着性、耐アルカリ性の結果も示した。
 表3には同様の趣旨で比較例1及び3を再掲した。また、表4には比較例2~4を再掲した。
Figure JPOXMLDOC01-appb-T000002
 表1の結果から、実施例1~3の塗工液から得られた薄膜が最も薄膜特性が良かった。光触媒:バインダ成分が同一比率である実施例1と比較例1~3で比較すると、実施例1の薄膜が外観・硬度等の膜物性に優れ、また酸化分解活性も非常に高く維持されている。比較例1より、コロイダルシリカのみで形成した膜は、温度不十分のため硬化しておらず、ペルオキソチタン酸のみで形成した薄膜は着色があり、SS-C1で形成した膜は強度には優れるものの、光触媒の特徴である酸化分解能力が著しく低下していた。
Figure JPOXMLDOC01-appb-T000003
 表2の結果から、実施例4,5の塗工液から得られた薄膜が最も薄膜特性が良かった。光触媒:バインダ成分比はいずれも同一であるが、実施例4,5と比較例2-4を比較すると、実施例4の薄膜が外観・硬度、密着性、アルカリ耐性等の膜物性に優れ、また酸化分解活性も非常に高く維持されている。比較例4より、FJ-294のみで形成した膜は、中性域にてやや白濁し、また耐アルカリ性、有機物密着性、光触媒特性には劣っていた。ペルオキソチタン酸のみで形成した薄膜は着色があり、SS-C1で形成した膜は製膜性には優れていたものの、有機物へは密着せず、光触媒の特徴である酸化分解能力が著しく低下していた。
Figure JPOXMLDOC01-appb-T000004
 表3の結果から、実施例6,7の塗工液から得られた薄膜が最も薄膜特性が良かった。光触媒:バインダ成分比はいずれも同一であるが、実施例と比較例1、3,4を比較すると、実施例6,7の薄膜が外観・硬度、密着性、アルカリ耐性等の膜物性に優れ、また酸化分解活性も非常に高く維持されている。比較例4より、FJ-294のみで形成した膜は、中性域にてやや白濁し、また耐アルカリ性、光触媒特性には劣っていた。スノーテックスのみで形成した薄膜は本条件では硬化不十分であり、SS-C1で形成した膜は製膜性には優れていたものの、光触媒の特徴である酸化分解能力が著しく低下していた。
Figure JPOXMLDOC01-appb-T000005
 表4の結果から、実施例8、9の塗工液から得られた薄膜が最も薄膜特性が良かった。光触媒:バインダ成分比はいずれも同一であるが、実施例と比較例2~4を比較すると、実施例8、9の薄膜が外観・硬度、アルカリ耐性等の膜物性に優れ、また酸化分解活性も非常に高く維持されている。比較例4より、FJ-294のみで形成した膜は、中性域にてやや白濁し、また耐アルカリ性、光触媒特性には劣っていた。PTAのみで形成した薄膜は着色があり、SS-C1で形成した膜は製膜性には優れていたものの、光触媒の特徴である酸化分解能力が著しく低下していた。
Figure JPOXMLDOC01-appb-T000006
 表5の結果から、実施例10~12の塗工液から得られた薄膜が最も薄膜特性が良かった。光触媒:バインダ成分が同一比率である実施例10と比較例5~7で比較すると、実施例10の薄膜が外観・硬度等の膜物性に優れ、また酸化分解活性も非常に高く維持されている。比較例5-7の塗工液はいずれも常温5時間では硬化せず、指擦りにより容易に脱落し、また光触媒として十分な特性も得られなかった。
Figure JPOXMLDOC01-appb-T000007
 表6の結果から、実施例13,14の塗工液から得られた薄膜が最も薄膜特性が良かった。一般的なバインダを用いた比較例の塗工液はいずれも、常温硬化では十分な特性が得られなかった。光触媒:バインダ成分の比はいずれも同一であるが、実施例13,14と比較例6-8を比較すると、実施例13の薄膜が外観・硬度、密着性、アルカリ耐性等の膜物性に優れ、また酸化分解活性も非常に高く維持されている。比較例8より、FJ-294のみで形成した膜は、中性域にてやや白濁し、また耐アルカリ性、有機物密着性、光触媒活性には劣っていた。比較例6のペルオキソチタン酸のみで形成した薄膜は着色があり、比較例7のSS-C1で形成した膜は製膜性には優れていたものの、有機物へは密着せず、光触媒の特徴である酸化分解能力が著しく低下していた。
Figure JPOXMLDOC01-appb-T000008
 表7の結果から、実施例15、16の塗工液から得られた薄膜が最も薄膜特性が良かった。光触媒:バインダ成分の比はいずれも同一であるが、実施例と比較例5、7,8を比較すると、実施例15、16の薄膜が外観・硬度、密着性、アルカリ耐性等の膜物性に優れ、また酸化分解活性も非常に高く維持されている。比較例8でFJ-294のみで形成した膜は、中性域にてやや白濁し、また耐アルカリ性、光触媒活性には劣っていた。スノーテックスのみで形成した薄膜は本条件では硬化不十分であり、SS-C1で形成した膜は製膜性には優れていたものの、光触媒の特徴である酸化分解能力が著しく低下していた。比較例5、7、8では、いずれも常温5時間では十分に硬化せず、指擦りによって容易に脱落し、また光触媒として十分な特性を示さなかった。
Figure JPOXMLDOC01-appb-T000009
 表8の結果から、実施例17、18の塗工液から得られた薄膜が最も薄膜特性が良かった。光触媒:バインダ成分の比はいずれも同一であるが、実施例と比較例6~8を比較すると、実施例17、18の薄膜が外観・硬度、アルカリ耐性等の膜物性に優れ、また酸化分解活性も非常に高く維持されている。比較例においてFJ-294のみで形成した膜は、中性域にてやや白濁し、また耐アルカリ性、光触媒活性には劣っていた。比較例6でPTAのみで形成した薄膜は着色があり、比較例7でSS-C1で形成した膜は製膜性には優れていたものの、光触媒の特徴である酸化分解能力が著しく低下していた。比較例6~8の塗工液はいずれも常温5時間では硬化せず、指擦りにより容易に脱落し、また光触媒として十分な特性も得られなかった。
 本発明の光触媒薄膜は、光の照射により有機物の分解力及び親水性を発揮することから、基材表面の清浄化、脱臭、抗菌等の用途に活用され、例えば外装用タイル、ガラス、外壁塗装、空気清浄機内部のフィルター、セラミック、金属等の無機系の基材、プラスティック材料等の有機材料に利用されている。本発明の光触媒塗工液は該光触媒薄膜の形成に有用である。

Claims (20)

  1. (A)光触媒粒子、及び
    (B)バインダ成分
    を含有する光触媒塗工液であって、
     (B)成分のバインダ成分が、(b-1)加水分解性ケイ素化合物を、水及び極性有機溶媒の混合溶媒中において塩基性化合物の存在下で加水分解して得られた加水分解縮合物を含み、
     (A)成分の光触媒粒子は該塗工液中に分散しており、
     (A)成分と(B)成分の合計に対する(A)成分の割合は0.05~99.5質量%であり、
     該塗工液のpHは5~8の範囲内にある、
    光触媒塗工液。
  2.  さらに、
    (C)水溶性ルイス酸化合物
    を含有し、該(C)成分の水溶性ルイス酸化合物の(B)成分のバインダ成分に対する割合が0.01~50質量%である、請求項1に係る光触媒塗工液。
  3.  (b-1)成分の前記加水分解性ケイ素化合物がアルコキシシラン、ハロゲン化シラン、又はそれらの組み合わせである請求項1に係る光触媒塗工液。
  4.  前記塩基性化合物が、式(2a):
    -NH3-y                (2a)
    (式中、Rは1価の有機基であり、yは1~3の整数である。)
    又は、
    -N                  (2b)
    (式中、Rは1価の有機基である。)
    で表される化合物又は含窒素複素環式化合物である請求項1に記載の光触媒塗工液。
  5.  (B)成分のバインダ成分が、さらに、(b-2)式(3):
     R-Si(OR     (3)
    (式中、Rは置換もしくは非置換の一価炭化水素基を表し、Rはアルキル基を示す。)
    で表される3官能性シラン化合物の加水分解縮合物を含有する請求項1に係る光触媒塗工液。
  6.  (B)成分のバインダ成分が、さらに、(b-3)水溶性チタン酸系化合物を含有する請求項1に係る光触媒塗工液。
  7.  (b-3)成分の水溶性チタン酸系化合物がペルオキソチタン酸である、請求項6に係る光触媒塗工液。
  8.  (B)成分のバインダ成分が、さらに、(b-4)水溶性ジルコニウム系化合物を含有する請求項1に係る光触媒塗工液。
  9.  (b-4)成分の水溶性ジルコニウム系化合物が、下記構造式:
    (NH4)2ZrO(CO3)2
    で表される炭酸アンモニウムジルコニウムである、請求項8に係る光触媒塗工液。
  10.  (C)成分の水溶性ルイス酸化合物が、金属ホウフッ化物、金属トリフラート化合物又はこれらの組み合わせである、請求項1に係る光触媒塗工液。
  11.  (A)成分の光触媒微粒子がn型半導体性を有する金属酸化物の結晶微粒子である請求項1に係る光触媒塗工液。
  12.  前記のn型半導体性を有する金属酸化物の結晶微粒子に、バナジウム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、銀、スズ、タングステン、白金、及び金からなる群から選ばれる金属および/または該金属の化合物が担持されている、請求項11に係る光触媒塗工液。
  13.  媒体として、水を含有する請求項1に係る光触媒塗工液。
  14.  請求項1に記載の光触媒塗工液を基材上に塗布し、得られた塗膜を硬化させる親水性光触媒薄膜の製造方法。
  15.  得られた前記の塗膜を50~200℃の温度で硬化させる請求項14に係る製造方法。
  16.  前記の光触媒塗工液がさらに(C)水溶性ルイス酸化合物を含有し、得られた前記の塗膜を常温~200℃の温度で硬化させる請求項14に係る製造方法。
  17.  得られた前記の塗膜を常温で硬化させる請求項16に係る製造方法。
  18.  請求項14に係る製造方法によって得られる、親水性光触媒薄膜。
  19.  形成直後の水の初期接触角が20度以下であり、清浄な暗所に少なくとも1ヶ月静置後も接触角が20度以下である請求項18に係る親水性光触媒薄膜。
  20.  基材と、該基材上に形成された請求項18に係る光触媒薄膜とを有する、親水性表面を備える物品。
PCT/JP2011/074074 2010-10-20 2011-10-19 光触媒塗工液及びそれから得られる光触媒薄膜 WO2012053566A1 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2010-235663 2010-10-20
JP2010235663 2010-10-20
JP2010239859 2010-10-26
JP2010-239859 2010-10-26
JP2011-203698 2011-09-16
JP2011-203689 2011-09-16
JP2011203698A JP5874267B2 (ja) 2010-10-26 2011-09-16 常温硬化性高活性光触媒塗工液及びそれから得られる光触媒薄膜
JP2011203689A JP5874266B2 (ja) 2010-10-20 2011-09-16 光触媒塗工液及びそれから得られる光触媒薄膜

Publications (1)

Publication Number Publication Date
WO2012053566A1 true WO2012053566A1 (ja) 2012-04-26

Family

ID=45975277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074074 WO2012053566A1 (ja) 2010-10-20 2011-10-19 光触媒塗工液及びそれから得られる光触媒薄膜

Country Status (1)

Country Link
WO (1) WO2012053566A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105860832A (zh) * 2016-05-06 2016-08-17 江苏建筑职业技术学院 一种消除光污染的建筑用玻璃墙表面涂料

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10502458A (ja) * 1994-06-27 1998-03-03 エシロール アテルナジオナール − カンパニー ジェネラーレ デ オプティック 耐衝撃性中間層を有する有機ガラス製眼科用レンズ及びその製造方法
JP2001149855A (ja) * 1999-09-14 2001-06-05 Toto Ltd 光触媒性被覆着色物品及びその製造方法
JP2002146283A (ja) * 2000-11-07 2002-05-22 Taki Chem Co Ltd 酸化チタン含有光触媒塗布液およびその製造方法ならびに酸化チタン光触媒構造体
JP2004209343A (ja) * 2002-12-27 2004-07-29 Asahi Kasei Chemicals Corp 光触媒組成物、それから形成される光触媒体
JP2005139314A (ja) * 2003-11-07 2005-06-02 Kansai Paint Co Ltd 塗布剤及びこれを用いた多孔質膜の形成方法
WO2007097284A1 (ja) * 2006-02-20 2007-08-30 Tama Chemicals Co., Ltd. 均一分散性光触媒コーティング液及びその製造方法並びにこれを用いて得られる光触媒活性複合材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10502458A (ja) * 1994-06-27 1998-03-03 エシロール アテルナジオナール − カンパニー ジェネラーレ デ オプティック 耐衝撃性中間層を有する有機ガラス製眼科用レンズ及びその製造方法
JP2001149855A (ja) * 1999-09-14 2001-06-05 Toto Ltd 光触媒性被覆着色物品及びその製造方法
JP2002146283A (ja) * 2000-11-07 2002-05-22 Taki Chem Co Ltd 酸化チタン含有光触媒塗布液およびその製造方法ならびに酸化チタン光触媒構造体
JP2004209343A (ja) * 2002-12-27 2004-07-29 Asahi Kasei Chemicals Corp 光触媒組成物、それから形成される光触媒体
JP2005139314A (ja) * 2003-11-07 2005-06-02 Kansai Paint Co Ltd 塗布剤及びこれを用いた多孔質膜の形成方法
WO2007097284A1 (ja) * 2006-02-20 2007-08-30 Tama Chemicals Co., Ltd. 均一分散性光触媒コーティング液及びその製造方法並びにこれを用いて得られる光触媒活性複合材

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105860832A (zh) * 2016-05-06 2016-08-17 江苏建筑职业技术学院 一种消除光污染的建筑用玻璃墙表面涂料

Similar Documents

Publication Publication Date Title
JP5874266B2 (ja) 光触媒塗工液及びそれから得られる光触媒薄膜
US8932397B2 (en) Near-infrared shielding coating agent curable at ordinary temperatures, near infrared shielding film using same, and manufacturing method therefor
JP4995428B2 (ja) 酸化チタン塗膜形成方法
US7449245B2 (en) Substrates comprising a photocatalytic TiO2 layer
JP5761346B2 (ja) 無機親水性コート液、それから得られる親水性被膜及びこれを用いた部材
JP3796403B2 (ja) 光触媒性酸化物含有組成物、薄膜および複合体
JP5915717B2 (ja) 常温硬化性高活性光触媒塗工液及びそれから得られる光触媒薄膜
JP4663065B2 (ja) 光触媒コーティング剤及び光触媒担持構造体
JP4738736B2 (ja) 光触媒複合体、光触媒層形成用塗布液及び光触媒担持構造体
JP2009039687A (ja) 光触媒層形成用組成物
JPH1192689A (ja) 無機コーティング剤
JP4693949B2 (ja) 光触媒層形成用塗布液、光触媒複合体および光触媒構造体
JP5434778B2 (ja) 親水性膜形成用カゴ型シルセスキオキサン−ペルオキソチタン複合体光触媒水性塗工液及び塗膜
JP2009119462A (ja) 光触媒塗装体およびそのための光触媒コーティング液
WO2012053566A1 (ja) 光触媒塗工液及びそれから得られる光触媒薄膜
JP5434776B2 (ja) 光触媒塗工液及び塗膜
JP2009263651A (ja) 光触媒コーティング組成物
JP2002079109A (ja) 光半導体金属−有機物質混合体、光半導体金属含有組成物、光触媒性被膜の製造法及び光触媒性部材
JP2003073585A (ja) チタニア膜形成用液体、チタニア膜の形成法、チタニア膜及び光触媒性部材
JP5429043B2 (ja) 親水性被膜形成用光触媒塗工液およびそれを用いた親水性光触媒被膜
Subasri et al. Applications of sol–gel coatings: past, present, and future
WO2009133591A1 (ja) 光触媒コーティング組成物および被膜付基体
JP2005246296A (ja) 有機物直接塗装用光触媒性金属酸化物−有機物質混合液、金属酸化物含有組成物、光触媒性被膜の製造法、得られた光触媒性被膜及び光触媒性部材
JP2011078917A (ja) 建築用外装材および建築外装用コーティング液
JP2011078918A (ja) 外構および外構用コーティング液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11834405

Country of ref document: EP

Kind code of ref document: A1