WO2012053533A1 - 車両、及びその制御方法 - Google Patents

車両、及びその制御方法 Download PDF

Info

Publication number
WO2012053533A1
WO2012053533A1 PCT/JP2011/074005 JP2011074005W WO2012053533A1 WO 2012053533 A1 WO2012053533 A1 WO 2012053533A1 JP 2011074005 W JP2011074005 W JP 2011074005W WO 2012053533 A1 WO2012053533 A1 WO 2012053533A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
prime mover
hydraulic actuator
idling
actuator
Prior art date
Application number
PCT/JP2011/074005
Other languages
English (en)
French (fr)
Inventor
二橋 謙介
小川 清光
恵 鶴田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP11834372.2A priority Critical patent/EP2631456B1/en
Priority to US13/879,749 priority patent/US9096212B2/en
Publication of WO2012053533A1 publication Critical patent/WO2012053533A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/04Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • F02N11/0833Vehicle conditions
    • F02N11/084State of vehicle accessories, e.g. air condition or power steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K25/00Auxiliary drives
    • B60K25/02Auxiliary drives directly from an engine shaft
    • B60K2025/026Auxiliary drives directly from an engine shaft by a hydraulic transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K26/00Arrangements or mounting of propulsion unit control devices in vehicles
    • B60K26/02Arrangements or mounting of propulsion unit control devices in vehicles of initiating means or elements
    • B60K2026/025Input devices for controlling electric drive motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/17Construction vehicles, e.g. graders, excavators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles
    • B60Y2200/15Fork lift trucks, Industrial trucks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a vehicle including a hydraulic actuator that operates by hydraulic pressure, a hydraulic source that applies hydraulic pressure to the hydraulic actuator, and a prime mover that drives the hydraulic source and provides travel driving force, and control thereof Regarding the method.
  • a hydraulic actuator that operates by hydraulic pressure
  • a hydraulic source that applies hydraulic pressure to the hydraulic actuator
  • a prime mover that drives the hydraulic source and provides travel driving force, and control thereof Regarding the method.
  • a hydraulic source provided for each of a plurality of hydraulic actuators is driven by an engine that provides a driving force.
  • Patent Documents 1 and 2 disclose vehicles that drive a hydraulic power source provided for each of a plurality of hydraulic actuators by an engine that provides a driving force.
  • a lock lever for selectively switching all of a plurality of hydraulic circuits including a hydraulic pump as a hydraulic source between an operable state and an inoperable state.
  • a plurality of hydraulic circuits cannot be operated by operating the lock lever, the engine is stopped.
  • the key is operated to start the engine, and the lock lever is operated to operate all hydraulic circuits. Then, the operation instruction of the target hydraulic actuator is given.
  • an object of the present invention is to provide a vehicle capable of operating a hydraulic actuator in a short time with a small amount of operation from a state in which the prime mover is idling stopped, and a control method thereof.
  • a vehicle A hydraulic actuator that operates by hydraulic pressure, an operation end for instructing the operation of the hydraulic actuator, a hydraulic source that applies hydraulic pressure to the hydraulic actuator, and a prime mover that drives the hydraulic source and provides driving force
  • a prime mover that drives the hydraulic source and provides driving force
  • the prime mover is started only by operating the operation end, and the hydraulic source starts to be driven as the prime mover is started. Further, the hydraulic pressure source is turned on and the hydraulic actuator is operated. Therefore, in the vehicle, the hydraulic actuator can be operated in a short time by only one operation even in the idling stop state.
  • the controller starts the prime mover when receiving an operation command for the hydraulic actuator while the prime mover is idling stopped, and the idle is determined in advance.
  • the hydraulic pressure source of the hydraulic actuator may be in an on-load state.
  • the hydraulic actuator can be operated before the number of revolutions of the prime mover increases.
  • the hydraulic actuator includes a plurality of the hydraulic sources that apply hydraulic pressure to the hydraulic actuator and the hydraulic actuators when the plurality of hydraulic sources are unloaded.
  • a hydraulic pressure maintainer that maintains the hydraulic pressure and a hydraulic pressure detector that detects the hydraulic pressure applied to the hydraulic actuator may be provided.
  • the controller starts the prime mover when receiving an operation command to the hydraulic actuator while the prime mover is idling stopped, and the hydraulic pressure applied to the hydraulic actuator maintained by the hydraulic maintainer May be obtained from the oil pressure detector, and the amount of the oil pressure source corresponding to the amount of the oil pressure may be set to the on-load state.
  • the quantity of hydraulic sources corresponding to the hydraulic pressure applied to the hydraulic actuator is on-load, so the prime mover is started.
  • the load on the prime mover at the time is reduced, and the prime mover can be started reliably.
  • the vehicle may include a plurality of hydraulic actuators, the operation ends for the plurality of hydraulic actuators, and the hydraulic sources for the plurality of hydraulic actuators.
  • the controller receives an operation command for two or more hydraulic actuators among the plurality of hydraulic actuators before the prime mover starts.
  • the prime mover is started based on the operation command.
  • a hydraulic actuator having the highest priority among the two or more hydraulic actuators is determined, and only the hydraulic source of the hydraulic actuator is set to the on-load state. May be.
  • the vehicle may include a plurality of hydraulic actuators, the operation ends for the plurality of hydraulic actuators, and the hydraulic sources for the plurality of hydraulic actuators.
  • the plurality of hydraulic actuators at least one hydraulic actuator maintains a hydraulic pressure applied to the one hydraulic actuator when the one hydraulic actuator shifts from the on-load state to the unload state.
  • a hydraulic pressure detector that detects the hydraulic pressure applied to the one hydraulic actuator.
  • the prime mover When received, the prime mover is started based on the previously received operation command, and the hydraulic pressure applied to the one hydraulic actuator maintained by the hydraulic pressure maintainer is acquired from the hydraulic pressure detector, and the magnitude of the hydraulic pressure is increased. Accordingly, only the hydraulic source of one of the two hydraulic actuators may be in the on-load state.
  • a hydraulic actuator that operates by hydraulic pressure, an operation end for instructing the operation of the hydraulic actuator, a hydraulic source that applies hydraulic pressure to the hydraulic actuator, and a prime mover that drives the hydraulic source and provides driving force
  • a vehicle control method comprising: When the prime mover is driven, it is determined whether or not a predetermined idle stop condition is satisfied, and if it is determined that the idle stop condition is satisfied, an idling stop step for idling stop of the prime mover, and the prime mover An idling stop canceling step of starting the prime mover and setting the hydraulic source of the hydraulic actuator to an on-load state upon receiving an operation command for the hydraulic actuator by operating the operation end while idling is stopped And execute.
  • the engine is started only by operating the operation end in the idling stop state, and the hydraulic source starts to be driven as the engine starts. Further, the hydraulic pressure source is turned on and the hydraulic actuator is operated. Therefore, in the control method, even in the idling stop state, the hydraulic actuator can be operated in a short time with only one operation.
  • the hydraulic pressure source of the hydraulic actuator may be brought into an on-load state.
  • the hydraulic actuator can be operated before the number of revolutions of the prime mover increases.
  • the hydraulic actuator can be operated in a short time only by operating the operation end.
  • the vehicle of the present embodiment is a forklift provided with a fork 11 that loads and moves the vehicle up and down as shown in FIG.
  • This forklift includes a fork 11, an engine 12 as a prime mover, an electric motor 13 for starting the engine 12, a travel drive mechanism including a clutch 14 and a transmission mechanism, a steering handle 15, and a steering handle 15
  • a steering mechanism 16 that steers the steered wheels in response to the operation
  • a cargo handling lever 17 that gives an instruction to move the fork 11 up and down
  • an accelerator pedal 18 an air cooling fan 19 that cools the engine 12, a fork 11,
  • a hydraulic circuit 30 for operating the steering mechanism 16 and the air cooling fan 19 and a controller (controller) 20 for controlling the engine 12, the electric motor 13, the hydraulic circuit 30, and the like are provided.
  • Various kinds of sensors such as a rotation speed sensor 21 and a temperature sensor 22 are attached to the engine 12.
  • the hydraulic circuit 30 includes an oil tank 31 filled with oil, a cargo handling oil pump 32, a steering oil pump 33, a fan oil pump 34, and a cargo handling oil pump 32 in an on-load state and an unload state.
  • the fan unloading valve 37 to be switched, the fork drive cylinder 41 operated by the oil from the cargo handling oil pump 32, and the cargo handling control valve 42 for controlling the flow rate of oil from the cargo handling oil pump 32 to the fork driving cylinder 41, etc.
  • a cylinder pressure sensor 43 (hydraulic detector) for detecting the hydraulic pressure
  • a steering drive cylinder 45 operated by oil from the steering oil pump 33
  • an oil flow rate from the steering oil pump 33 to the steering drive cylinder 45 and a steering control valve 46 for controlling the control and the like.
  • the oil pumps 32, 33, 34, the drive shaft of the engine 12 and the rotation shaft of the electric motor 13 are connected to each other via a transmission mechanism 29. For this reason, when the electric motor 13 is driven, the engine 12 and the oil pumps 32, 33, 34 are also driven. Further, when the engine 12 is driven, the oil pumps 32, 33, 34 are also driven by this driving force.
  • Each oil pump 32, 33, 34 is connected to a suction line 51 for sucking the oil filled in the oil tank 31, and the oil pressurized by each oil pump 32, 33, 34 flows through it.
  • Lines 52, 53, and 54 are connected.
  • the discharge lines 52, 53, and 54 for each of the oil pumps 32, 33, and 34 are branched in the middle, and one is directly connected to the cylinders 41, 45, and 19 as a discharge line, and the other is connected to the return lines 55, 56, and so on. 57 is connected to the oil tank 31.
  • All the corresponding unload valves 35, 36, 37 for each oil pump 32, 33, 34 are provided in the corresponding return line for each oil pump.
  • Each unloading valve 35, 36, 37 is brought into an on-load state in which hydraulic pressure is applied to the corresponding cylinders 41, 45, 19 and the like by the oil from the corresponding oil pumps 32, 33, 34 by being closed. Further, when the unload valves 35, 36, and 37 are opened, the oil from the corresponding oil pumps 32, 33, and 34 is returned to the oil tank 31, and no hydraulic pressure is applied to the corresponding cylinders 41, 45, 19, and the like. Set to unload state.
  • a cargo handling control valve (hydraulic maintainer) 42 is connected to the tip of the discharge line 52 of the cargo handling oil pump (hydraulic power source) 32.
  • a fork drive cylinder (hydraulic actuator) 41 is connected to the tip of the cargo handling control valve 42.
  • a steering control valve (hydraulic maintainer) 46 is connected to the tip of the discharge line 53 of the steering oil pump (hydraulic power source) 33.
  • a steering drive cylinder (hydraulic actuator) 45 is connected to the tip of the steering control valve 46.
  • An air cooling fan (hydraulic actuator) 19 is connected to the tip of the discharge line of the fan oil pump (hydraulic power source) 34.
  • the idling stop state is a state in which the engine 12 is stopped while the key switch is on because the key switch of the forklift is turned on and the engine 12 is once driven and satisfies a predetermined idling stop condition.
  • the idling stop condition indicates, for example, a condition in which none of the accelerator pedal 18, the handle 15, and the cargo handling lever 17 is operated for a predetermined time.
  • the controller 20 When the controller 20 is in the idling stop state, any one of the accelerator pedal (operation end) 18, the handle (operation end) 15, and the cargo handling lever (operation end) 17 is operated, and an operation command is received from any of these. (S1), the electric motor 13 is driven and the engine 12 is started (S2). At this time, the controller 20 also outputs a fuel supply command to the engine 12 to start fuel supply. Each oil pump 32, 33, 34 starts to be driven when the engine 12 is started.
  • the controller 20 determines whether or not the previous operation command is a command by operating the accelerator pedal 18 (S4). If the controller 20 determines that the command is based on the operation of the accelerator pedal 18, after a predetermined time has elapsed since the engine 12 was started, that is, after the number of revolutions of the engine 12 has increased sufficiently, the brake is not applied. A connection command is output to the clutch 14 to place the clutch 14 in a connected state (S5).
  • the controller 20 determines that it is not a command by operating the accelerator pedal 18, that is, a command by operating the cargo handling lever 17 or the handle 15, before the engine 12 reaches a predetermined idling speed range, Only the unload valves 35 and 36 are closed, and only the corresponding oil pumps 32 and 33 are brought into an on-load state (S8). As a result, the oil from the corresponding oil pumps 32 and 33 is sent to the corresponding cylinders 41 and 45 via the corresponding control valves 42 and 46, and the corresponding cylinders 41 and 45 operate.
  • the controller 20 closes the unloading valve 35 for cargo handling, for example, when the operation command by operation of the cargo handling lever 17 is received.
  • the oil from the cargo handling oil pump 32 is sent to the fork drive cylinder 41 via the cargo handling control valve 42 to operate the fork drive cylinder 41.
  • the fork 11 moves up and down.
  • the controller 20 receives an operation command by operating the handle 15, the controller 20 closes the steering unload valve 36.
  • the oil from the steering oil pump 33 is sent to the steering drive cylinder 45 via the steering control valve 46 to operate the steering drive cylinder 45.
  • the steering mechanism 16 is driven.
  • the controller 20 starts the control in the engine driving mode (S10) when the processing of step 5 or step 8 is completed.
  • the engine driving mode (S10) the conventional control of the hydraulic circuit 30 and the like is executed.
  • the controller 20 When the controller 20 receives the operation command by the operation of the cargo handling lever 17 or the handle 15 in the control of the hydraulic circuit 30 in the engine driving mode, the controller 20 closes the corresponding unload valves 35 and 36 and the corresponding oil pumps 32 and 33. To the on-load state. Further, when the operation command by the operation of the cargo handling lever 17 or the handle 15 is not input, the corresponding unload valves 35 and 36 are opened, and the corresponding oil pumps 32 and 33 are brought into the unloaded state. Further, the controller 20 closes the fan unload valve 37 when the output value from the temperature sensor 22 attached to the engine 12 exceeds a predetermined value, that is, when the engine 12 becomes hot.
  • the fan oil pump 34 is turned on, the air cooling fan 19 is operated, and when the temperature of the engine 12 is lowered, the fan unload valve 37 is opened and the fan oil pump 34 is put in the unload state. Then, the air cooling fan 19 is stopped.
  • the controller 20 opens any of the unload valves based on the priority order to reduce the engine load.
  • a fuel supply signal is output to the engine 12 to increase the amount of fuel and increase the engine speed to cope with an increase in engine load.
  • the controller 20 further determines whether or not the aforementioned idling stop condition is satisfied (S11), idling stop processing (S12) when the idle stop condition is satisfied, Execute.
  • the controller 20 determines in this determination process (S11) that the idling stop condition is not satisfied, the controller 20 maintains the engine driving mode (S10). If the controller 20 determines in this determination process (S11) that the idling stop condition is satisfied, the controller 20 executes the above-described idling stop process (S12). In this idling stop process (S12), the controller 20 outputs a fuel supply stop command or the like to the engine 12 to stop the engine 12. When the idling stop process (S12) ends, the controller 20 proceeds to the determination process in step 1.
  • the engine 12 can be started and the corresponding cylinders 41 and 45 can be operated simply by operating the cargo handling lever 17 or the handle 15 in the idling stop state.
  • the cylinders 41 and 45 operate before the engine 12 reaches the idling rotation region, it is possible to shorten the time from the idling stop state until the cylinders 41 and 45 start to operate.
  • the vehicle of the present embodiment is a forklift having the same configuration as that shown in FIG.
  • the operation of the forklift controller 20 is different from that in the first embodiment. Therefore, the operation of the controller 20 will be described below according to the flowcharts shown in FIGS.
  • the controller 20 may receive another operation command during the idling stop state after receiving one operation command and before starting the engine 12.
  • the present embodiment considers acceptance of other operation commands. In the first embodiment, other operation commands are ignored.
  • the controller 20 drives the electric motor 13 and starts the engine 12 based on the earliest operation command regardless of whether one operation command is received or a plurality of operation commands are received in the idling stop state. (S2).
  • the controller 20 determines whether a plurality of operation commands have been received (S3). If it is determined that the controller 20 has not received a plurality of operation commands, that is, only one operation command has been received, the controller 20 determines whether or not this command is a command by operating the accelerator pedal 18 (S4). If the controller 20 determines that the command is due to the operation of the accelerator pedal 18, the controller 20 executes the clutch engagement process (S5), similar to the process in step 5 of the first embodiment, and the engine driving mode (S10).
  • the engine 12 is set to a predetermined idling rotational speed as in Step 8 in the first embodiment. Before reaching the region, only the corresponding unload valves 35 and 36 are closed and only the corresponding oil pumps 32 and 33 are turned on (S8a), and then the mode is shifted to the engine driving mode (S10).
  • step 3 determines whether a command by operating the cargo handling lever 17 and a command by operating the handle 15 have been received.
  • the controller 20 does not accept the command by the operation of the cargo handling lever 17 and the command by the operation of the handle 15, that is, the command by the operation of the accelerator pedal 18 and the command by the operation of the cargo handling lever 17, or the command by the operation of the accelerator pedal 18.
  • the clutch connection process is not executed, only the corresponding unload valves 35 and 36 are closed, and only the corresponding oil pumps 32 and 33 are turned on ( In S8a), the above-described engine driving mode (S10) is entered.
  • the controller 20 determines in step 6 that it has received a command by operating the cargo handling lever 17 and a command by operating the handle 15, it acquires the output from the cylinder pressure sensor 43 of the fork drive cylinder 41, and the cylinder pressure is determined in advance. It is determined whether or not the lift pressure is greater than or equal to (S7).
  • the cylinder pressure when the load is actually lifted, the cylinder pressure according to the weight of the load is applied to the fork drive cylinder 41. Even when the fork 11 is not loaded, when the fork 11 is raised, a cylinder pressure is applied to raise or fork the fork 11. On the other hand, when the fork 11 is located at the lowest position, the cylinder pressure is not substantially applied regardless of whether or not a load is placed on the fork 11.
  • the unloading valve 35 When the unloading valve 35 is opened so that the hydraulic pressure is released from the fork drive cylinder 41 and the fork 11 does not descend even if the unloading valve 35 is opened, the unloading valve 35 is opened. The hydraulic pressure is prevented from escaping from the drive cylinder 41, and the cylinder pressure immediately before opening is maintained. Therefore, by determining whether the output from the cylinder pressure sensor 43 is equal to or higher than the above-described lift pressure, even if the unloading valve 35 for cargo handling is open, It can be determined whether 11 is in the lowest position.
  • step 7 If the controller 20 determines in step 7 that the cylinder pressure is equal to or higher than the lift pressure, that is, the fork 11 is in a raised state, the controller 20 closes the steering unload valve 36 and turns on only the steering oil pump 33. After the load state is set (S8b), the above-described engine driving mode (S10) is entered.
  • step 7 If the controller 20 determines in step 7 that the cylinder pressure is not equal to or higher than the lift pressure, that is, the fork 11 is in the lowest position, the unloading valve 35 for cargo handling is closed and the cargo handling After only the oil pump 32 is turned on (S8c), the process shifts to the engine driving mode (S10).
  • the fork 11 when the fork 11 is located at the lowest position, only the cargo oil pump 32 is turned on and the steering oil pump 33 is kept unloaded. This is because when the steering mechanism 16 is driven to move the fork 11 when it is located at the lowest position, the fork 11 may be damaged.
  • an appropriate cylinder can be operated according to the situation of the fork drive cylinder 41. That is, in this embodiment, when executing one of the plurality of operation commands, the situation of the hydraulic actuator corresponding to each operation command is grasped, and an appropriate one operation command is determined according to this situation. Is running.
  • the situation of the fork drive cylinder 41 is referred to.
  • the priority order of the fork drive cylinder 41 is set higher than the priority order of the steering drive cylinder 45.
  • the vehicle of the present embodiment is a forklift basically having the same configuration as that shown in FIG. 1, as shown in FIG.
  • the hydraulic circuit 30a of this embodiment includes two units, a first cargo handling oil pump 32a and a second cargo handling oil pump 32b, as cargo handling oil pumps, and each of the oil pumps 32a and 32b has a cargo handling unloading. Valves 35a and 35b are provided.
  • Discharge lines 52a and 52b are connected to the oil pumps 32a and 32b for cargo handling, respectively, and one discharge line 52 is formed on the downstream side.
  • Return lines 55a and 55b branch from the discharge lines 52a and 52b, and the unloading valves 35a and 35b for cargo handling described above are provided on the return lines 55a and 55b.
  • the hydraulic circuit 30a of the present embodiment is slightly different from the hydraulic circuit 30 of the first embodiment, and therefore the operation of the controller 20 of the present embodiment is the same as the operation of the controller 20 of the first embodiment. Is different. Therefore, the operation of the controller 20 will be described below according to the flowchart shown in FIG.
  • the controller 20 determines whether or not the operation command is a command (S4a).
  • the controller 20 determines that the command is based on the operation of the accelerator pedal 18, the controller 20 executes the clutch engagement process (S5) and then shifts to the engine drive mode (S10), as in the first embodiment.
  • step 4a If the controller 20 determines in step 4a that the operation command is due to the operation of the handle 15, the steering unload valve 36 is closed and the steering oil pump 33 is turned on (S8b), and then the engine is driven. Transition to hour mode (S10).
  • the controller 20 determines in step 4a that the operation command is due to the operation of the cargo handling lever 17, the controller 20 acquires the output from the cylinder pressure sensor 43 of the fork drive cylinder 41 and determines whether there is a cylinder pressure. (S7).
  • the controller 20 determines that there is cylinder pressure, in order to bring only one cargo handling oil pump 32a or 32b into an on-load state, the first cargo handling unloading valve 35a and the second cargo handling unloading valve 35b Is closed (S8d), and then the mode is shifted to the engine drive mode (S10).
  • S10 engine drive mode
  • step 7 If the controller 20 determines in step 7 that there is no cylinder pressure, the first loading / unloading valve 35a and the second loading / unloading valve 35a are turned on in order to bring both of the two loading oil pumps 32a and 32b into an on-load state. After the unload valve 35b is closed (S8e), the mode is shifted to the engine drive mode (S10).
  • the cylinder pressure applied to the cylinder is referred to.
  • the loads on the engine 12 and the electric motor 13 at the time of starting can be suppressed, and the engine 12 can be started reliably.
  • the number of oil pumps to be on-loaded is determined so that the higher the cylinder pressure is, the smaller the number of oil pumps to be on-loaded is.
  • embodiment of this invention is not limited to a forklift, while driving a hydraulic cylinder, its oil pump, this oil pump, such as a shovel car
  • the present invention may be applied to any vehicle as long as the vehicle includes a prime mover that provides traveling driving force.
  • the idle stop condition is that none of the accelerator pedal 18, the handle 15, and the cargo handling lever 17 is operated for a predetermined time.
  • the brake is applied. Or may be added to the condition that the temperature of the engine 12 is lower than a predetermined temperature.
  • the present invention can be applied to industrial vehicles such as forklifts and excavators, and is particularly suitable for a case where the hydraulic actuator is operated in a short time with a small amount of operation from a state where the prime mover is idling stopped.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

この車両及びその制御方法は、コントローラ(20)は、エンジン(12)が駆動している際に、アイドルストップ条件を満たしたか否かを判断し、アイドルストップ条件を満たしたと判断すると、エンジン(12)をアイドリングストップさせる。また、コントローラ(20)は、エンジン(12)がアイドリングストップしている際に、荷役用レバー(17)の操作によるフォーク駆動シリンダ(41)に対する動作指令を受け付けると、エンジン(12)を始動させると共に、エンジン回転数がアイドリング回転数域に至る前に、フォーク駆動シリンダ(41)の荷役用オイルポンプ(32)をオンロード状態にする。

Description

車両、及びその制御方法
 本発明は、油圧で動作する油圧動作器と、この油圧動作器に油圧を加える油圧源と、この油圧源を駆動すると共に走行駆動力を提供する原動機と、を備えている車両、及びその制御方法に関する。
本願は、2010年10月19日に、日本に出願された特願2010-234555号に基づき優先権を主張し、その内容をここに援用する。
 フォークリフトやショベルカー等の産業用車両では、走行駆動力を提供するエンジンにより、複数の油圧動作器毎に設けられている油圧源を駆動している。
 このように、走行駆動力を提供するエンジンにより、複数の油圧動作器毎に設けられている油圧源を駆動する車両に関しては、例えば、以下の特許文献1,2に開示されている。
 特許文献1に記載の技術では、油圧源である油圧ポンプを含む複数の油圧回路の全てを作動可能な状態と作動不可能な状態とに選択的に切り替えるためのロックレバーを設けている。このロックレバーの操作により複数の油圧回路が作動不可能な状態になると、エンジンを停止させている。この技術で、エンジンが停止している状態から、油圧動作器を動作させるためには、キー操作を行ってエンジンを始動し、さらに、ロックレバーを操作して全ての油圧回路を作動可能な状態にしてから、目的の油圧動作器の動作指示を与えている。
 また、特許文献2に記載の技術では、特許文献1に記載の技術と同様、油圧源である油圧ポンプを含む複数の油圧回路の全てを作動可能な状態と作動不可能な状態とに選択的に切り替えるためのロックレバーを設けている。このロックレバーの操作により複数の油圧回路が作動不可能な状態になると、エンジンを停止させている。また、この技術では、キースイッチがオン状態でエンジンが停止している状態、つまりアイドリングストップ状態から、油圧動作器を動作させる場合には、ロックレバーを操作することで、キー操作を行わずとも、エンジンが始動すると共に、全ての油圧回路が作動可能な状態になる。その後、油圧動作器の動作指示を与えることで、目的の油圧負荷を駆動させている。
特開平05-044517号公報 日本国特許第3797805号公報
 しかしながら、いずれの特許文献1,2に記載の技術でも、エンジンが停止している状態から油圧動作器を動作させるためには、複数の操作が必要である上に、油圧動作器が動作し始めるまでに時間がかかってしまう。
 そこで、本発明は、原動機がアイドリングストップしている状態から、少ない操作で且つ短時間で油圧動作器を動作させることができる車両、及びその制御方法を提供することを目的とする。
 本発明の第一の態様によれば車両は、
 油圧で動作する油圧動作器と、該油圧動作器の動作を指示するための操作端と、該油圧動作器に油圧を加える油圧源と、該油圧源を駆動すると共に走行駆動力を提供する原動機と、
 前記原動機が駆動している際に、予め定められたアイドルストップ条件を満たしたか否かを判断し、該アイドルストップ条件を満たしたと判断すると、前記原動機をアイドリングストップさせ、該原動機がアイドリングストップしている際に、前記操作端の操作による前記油圧動作器に対する動作指令を受け付けると、該原動機を始動させると共に、該油圧動作器の前記油圧源をオンロード状態にする制御器と、を有する。
 当該車両では、アイドリングストップ状態の際に、操作端を操作するだけで、原動機が始動し、この原動機の始動に伴い油圧源が駆動し始める。さらに、この油圧源がオンロード状態になり、油圧動作器が動作する。よって、当該車両では、アイドリングストップ状態であっても、一の操作のみで短時間のうちに油圧動作器を動作させることができる。
 ここで、前記車両において、前記制御器は、前記原動機がアイドリングストップしている際に、前記油圧動作器に対する動作指令を受け付けると、該原動機を始動させると共に、該原動機が予め定められているアイドリング回転数域に達する前に、該油圧動作器の前記油圧源をオンロード状態にしてもよい。
 当該車両では、原動機の回転数が高くなる前に、油圧動作器を動作させることができる。
 また、前記車両において、前記油圧動作器には、該油圧動作器に油圧を加える複数の前記油圧源と、複数の該油圧源のいずれもがアンロード状態になる際に、該油圧動作器にかかる油圧を維持する油圧維持器と、該油圧動作器にかかる油圧を検知する油圧検知器と、が設けられてもよい。前記制御器は、前記原動機がアイドリングストップしている際に、前記油圧動作器に対する動作指令を受け付けると、該原動機を始動させると共に、前記油圧維持器により維持されている前記油圧動作器にかかる油圧を前記油圧検知器より取得し、該油圧の大きさに応じた数量分の前記油圧源を前記オンロード状態にしてもよい。
 当該車両では、油圧動作器に対して複数の油圧源が設けられている場合、この油圧動作器にかかる油圧の大きさに応じた数量分の油圧源がオンロード状態になるため、原動機の始動時における原動機の負荷が軽減され、確実に原動機を始動させることができる。
 また、前記車両において、複数の前記油圧動作器と、複数の該油圧動作器毎の前記操作端と、複数の該油圧動作器毎の前記油圧源と、を備えてもよい。前記制御器は、前記原動機がアイドリングストップしている際に、複数の前記油圧動作器のうち、二以上の油圧動作器に対する動作指令を、前記原動機が始動するまでに受けると、先に受けた動作指令に基づいて該原動機を始動させる。これと共に、予め定められた優先順位を参照して、該二以上の油圧動作器のうちで優先順位が最も高い油圧動作器を定め、該油圧動作器の前記油圧源のみを前記オンロード状態にしてもよい。
 当該車両では、アイドリングストップしている際に、複数の動作指令を受け付けても、優先順位の高い一の油圧動作器の油圧源のみがオンロード状態になるので、原動機の始動時における原動機の負荷が軽減され、確実に原動機を始動させることができる。
 また、前記車両において、複数の前記油圧動作器と、複数の該油圧動作器毎の前記操作端と、複数の該油圧動作器毎の前記油圧源と、を備えてもよい。複数の前記油圧動作器のうち、少なくとも一の油圧動作器には、該一の油圧動作器が前記オンロード状態からアンロード状態に移行する際に、該一の油圧動作器にかかる油圧を維持する油圧維持器と、該一の油圧動作器にかかる油圧を検知する油圧検知器とが設けられてもよい。前記制御器は、前記原動機がアイドリングストップしている際に、複数の前記油圧動作器のうち、前記一の油圧動作器を含む二つの油圧動作器に対する動作指令を、前記原動機が始動するまでに受けると、先に受けた動作指令に基づいて該原動機を始動させると共に、前記油圧維持器により維持されている前記一の油圧動作器にかかる油圧を前記油圧検知器より取得し、該油圧の大きさに応じて、該二つの油圧動作器のうち、いずれか一方の油圧動作器の前記油圧源のみを前記オンロード状態にしてもよい。
 当該車両では、アイドリングストップしている際に、複数の動作指令を受け付けても、一の油圧動作器の油圧源のみがオンロード状態になるので、原動機の始動時における原動機の負荷が軽減され、確実に原動機を始動させることができる。
 本発明の第2の態様によれば、
 油圧で動作する油圧動作器と、該油圧動作器の動作を指示するための操作端と、該油圧動作器に油圧を加える油圧源と、該油圧源を駆動すると共に走行駆動力を提供する原動機と、を備えている車両の制御方法において、
 前記原動機が駆動している際に、予め定められたアイドルストップ条件を満たしたか否かを判断し、該アイドルストップ条件を満たしたと判断すると、前記原動機をアイドリングストップさせるアイドリングストップ工程と、前記原動機がアイドリングストップしている際に、前記操作端の操作による前記油圧動作器に対する動作指令を受け付けると、該原動機を始動させると共に、該油圧動作器の前記油圧源をオンロード状態にするアイドリングストップ解除工程と、を実行する。
 当該制御方法では、アイドリングストップ状態の際に、操作端を操作するだけで、原動機が始動し、この原動機の始動に伴い油圧源が駆動し始める。さらに、この油圧源がオンロード状態になり、油圧動作器が動作する。よって、当該制御方法では、アイドリングストップ状態であっても、一の操作のみで短時間のうちに油圧動作器を動作させることができる。
 ここで、前記車両の制御方法において、前記アイドリングストップ解除工程では、前記原動機がアイドリングストップしている際に、前記油圧動作器に対する動作指令を受け付けると、該原動機を始動させると共に、該原動機が予め定められているアイドリング回転数域に達する前に、該油圧動作器の前記油圧源をオンロード状態にしてもよい。
 当該制御方法では、原動機の回転数が高くなる前に、油圧動作器を動作させることができる。
 本発明によれば、アイドリングストップ中であっても、操作端の操作のみで、短時間のうちに油圧動作器を動作させることができる。
本発明の第一実施形態に係る車両の構成を示す説明図である。 本発明の第一実施形態に係るコントローラの動作を示すフローチャートである。 本発明の第二実施形態に係るコントローラの動作を示すフローチャート(その1)である。 本発明の第二実施形態に係るコントローラの動作を示すフローチャート(その2)である。 本発明の第三実施形態に係る車両の構成を示す説明図である。 本発明の第三実施形態に係るコントローラの動作を示すフローチャートである。
 以下、本発明に係る車両の各種実施形態について、図面を用いて説明する。
 「第一実施形態」
 まず、本発明の第一実施形態に係る車両について、図1及び図2を用いて説明する。
 本実施形態の車両は、図1に示すように、荷を載せて、これを上下動させるフォーク11を備えているフォークリフトである。
 このフォークリフトは、フォーク11と、原動機としてのエンジン12と、このエンジン12を始動等させるための電動モータ13と、クラッチ14や変速機構等を含む走行駆動機構と、ステアリングハンドル15と、ステアリングハンドル15の操作に応じて操舵輪を操舵するステアリング機構16と、フォーク11の上下動等の指示を与える荷役レバー17と、アクセルペダル18と、エンジン12を冷却するための空冷ファン19と、フォーク11、ステアリング機構16及び空冷ファン19を動作させるための油圧回路30と、エンジン12、電動モータ13及び油圧回路30等を制御するコントローラ(制御器)20と、を備えている。
 エンジン12には、回転数センサ21や温度センサ22等の各種センサが取り付けられている。
 油圧回路30は、オイルが満たされているオイルタンク31と、荷役用オイルポンプ32と、ステアリング用オイルポンプ33と、ファン用オイルポンプ34と、荷役用オイルポンプ32をオンロード状態とアンロード状態とに切り替える荷役用アンロードバルブ35と、ステアリング用オイルポンプ33をオンロード状態とアンロード状態とに切り替えるステアリング用アンロードバルブ36と、ファン用オイルポンプ34をオンロード状態とアンロード状態とに切り替えるファン用アンロードバルブ37と、荷役用オイルポンプ32からのオイルにより動作するフォーク駆動シリンダ41と、荷役用オイルポンプ32からフォーク駆動シリンダ41へのオイルの流量等を制御する荷役用コントロールバルブ42と、フォーク駆動シリンダ41にかかる油圧を検知するシリンダ圧センサ43(油圧検知器)と、ステアリング用オイルポンプ33からのオイルにより動作するステアリング駆動シリンダ45と、ステアリング用オイルポンプ33からステアリング駆動シリンダ45へのオイルの流量等を制御するステアリング用コントロールバルブ46と、を備えている。
 各オイルポンプ32,33,34とエンジン12の駆動軸と電動モータ13の回転軸とは、互いに、伝達機構29を介してつながっている。このため、電動モータ13が駆動すると、エンジン12及び各オイルポンプ32,33,34も駆動する。また、エンジン12が駆動しているときには、この駆動力により各オイルポンプ32,33,34も駆動している。
 各オイルポンプ32,33,34には、オイルタンク31に満たされているオイルを吸い込むための吸込みライン51が接続されていると共に、各オイルポンプ32,33,34が加圧したオイルが流れる吐出ライン52,53,54が接続されている。オイルポンプ32,33,34毎の吐出ライン52,53,54は、途中で分岐しており、一方がそのまま吐出ラインとしてシリンダ41,45,19等に接続され、他方が戻りライン55,56,57としてオイルタンク31に接続されている。
 オイルポンプ32,33,34毎の対応アンロードバルブ35,36,37は、いずれも、各オイルポンプ毎の対応戻りライン中に設けられている。各アンロードバルブ35,36,37は、閉状態になることで、対応オイルポンプ32,33,34からのオイルにより対応シリンダ41,45,19等に油圧がかかるオンロード状態にする。また、各アンロードバルブ35,36,37は、開状態になることで、対応オイルポンプ32,33,34からのオイルをオイルタンク31に戻し、対応シリンダ41,45,19等に油圧がかからないアンロード状態にする。
 荷役用オイルポンプ(油圧源)32の吐出ライン52の先には、荷役用コントロールバルブ(油圧維持器)42が接続されている。荷役用コントロールバルブ42の先には、フォーク駆動シリンダ(油圧動作器)41が接続されている。また、ステアリング用オイルポンプ(油圧源)33の吐出ライン53の先には、ステアリング用コントロールバルブ(油圧維持器)46が接続されている。ステアリング用コントロールバルブ46の先には、ステアリング駆動シリンダ(油圧動作器)45が接続されている。また、ファン用オイルポンプ(油圧源)34の吐出ラインの先には、空冷ファン(油圧動作器)19が接続されている。
 次に、図2に示すフローチャートに従って、コントローラの動作について説明する。
 ここで、エンジン12は、アイドリングストップ状態で、各アンロードバルブ35,36,37は開状態、つまり各オイルポンプ32,33,34はアンロード状態であるとする。なお、アイドリングストップ状態とは、フォークリフトのキースイッチがオンにされ、エンジン12が一旦駆動した後、予め定められたアイドリングストップ条件を満たしたため、キースイッチがオンのままエンジン12が停止している状態を示す。また、アイドリングストップ条件とは、例えば、ここでは、アクセルペダル18、ハンドル15、荷役レバー17のいずれもが予め定められた時間操作されていない条件を示す。
 コントローラ20は、アイドリングストップ状態のときに、アクセルペダル(操作端)18、ハンドル(操作端)15、荷役レバー(操作端)17のいずれかが操作され、これらのいずれかから動作指令を受け付けると(S1)、電動モータ13を駆動させ、エンジン12を始動させる(S2)。なお、この際、コントローラ20は、エンジン12に対して、燃料供給指令も出力して、燃料供給も開始させる。また、各オイルポンプ32,33,34は、このエンジン12の始動により駆動し始める。
 次に、コントローラ20は、先の動作指令がアクセルペダル18の操作による指令であるか否かを判断する(S4)。コントローラ20は、アクセルペダル18の操作による指令であると判断すると、エンジン12を始動させてから所定時間経過後、つまりエンジン12の回転数が十分に上がった後、ブレーキがかけられていなければ、クラッチ14に接続指令を出力し、クラッチ14を接続状態にする(S5)。
 一方、コントローラ20は、アクセルペダル18の操作による指令ではない、つまり荷役レバー17又はハンドル15の操作による指令であると判断すると、エンジン12が予め定められたアイドリング回転数域に達する前に、該当アンロードバルブ35,36のみを閉にして、該当オイルポンプ32,33のみをオンロード状態にする(S8)。この結果、該当オイルポンプ32,33からのオイルが該当コントロールバルブ42,46を介して該当シリンダ41,45に送られ、該当シリンダ41,45が動作する。
 具体的に、コントローラ20は、例えば、荷役レバー17の操作による動作指令を受け付けると、荷役用アンロードバルブ35を閉にする。この場合、荷役用オイルポンプ32からのオイルは、荷役用コントロールバルブ42を介して、フォーク駆動シリンダ41に送られ、このフォーク駆動シリンダ41を動作させる。この結果、フォーク11が上下動する。また、コントローラ20は、ハンドル15の操作による動作指令を受け付けると、ステアリング用アンロードバルブ36を閉にする。この場合、ステアリング用オイルポンプ33からのオイルは、ステアリング用コントロールバルブ46を介して、ステアリング駆動シリンダ45に送られ、このステアリング駆動シリンダ45を動作させる。この結果、ステアリング機構16が駆動する。
 コントローラ20は、ステップ5又はステップ8の処理が終了すると、エンジン駆動時モード(S10)での制御を開始する。このエンジン駆動時モード(S10)では、従来から行われている油圧回路30等の制御が実行される。
 コントローラ20は、このエンジン駆動時モードにおける油圧回路30の制御で、荷役レバー17又はハンドル15の操作による動作指令を受け付けると、該当アンロードバルブ35,36を閉にして、該当オイルポンプ32,33をオンロード状態にする。また、荷役レバー17又はハンドル15の操作による動作指令が入力しなくなると、該当アンロードバルブ35,36を開にして、該当オイルポンプ32,33をアンロード状態にする。さらに、コントローラ20は、エンジン12に取り付けられている温度センサ22からの出力値が予め定められている値を超えると、つまり、エンジン12が高温になると、ファン用アンロードバルブ37を閉にして、ファン用オイルポンプ34をオンロード状態にして、空冷ファン19を動作させ、エンジン12の温度が下がると、ファン用アンロードバルブ37を開にして、ファン用オイルポンプ34をアンロード状態にして、空冷ファン19を停止させる。
 さらに、コントローラ20は、エンジン回転数があまり高くないときに、いずれかのシリンダ圧が高まると、優先順位等に基づいて、いずれかのアンロードバルブを開にして、エンジン負荷を低減させる。また、場合によっては、エンジン12に燃料供給信号を出力して、燃料量を増加させて、エンジン回転数を上げて、エンジン負荷の増大に対応する。
 コントローラ20は、このエンジン駆動時モード(S10)で、さらに、前述のアイドリングストップ条件を満たしたか否かの判断処理(S11)と、アイドルストップ条件を満たした場合のアイドリングストップ処理(S12)と、を実行する。
 コントローラ20は、この判断処理(S11)で、アイドリングストップ条件を満たしていないと判断すると、エンジン駆動時モード(S10)を維持する。また、コントローラ20は、この判断処理(S11)で、アイドリングストップ条件を満たしたと判断すると、前述のアイドリングストップ処理(S12)を実行する。コントローラ20は、このアイドリングストップ処理(S12)で、エンジン12に対して燃料供給停止指令等を出力して、エンジン12を停止させる。コントローラ20は、このアイドリングストップ処理(S12)が終了すると、ステップ1の判断処理に移行する。
 以上、本実施形態では、アイドリングストップ状態で、荷役レバー17又はハンドル15を操作するだけで、エンジン12が始動し、該当シリンダ41,45を動作させることができる。しかも、エンジン12がアイドリング回転域に至るまえに、シリンダ41,45が動作するので、アイドリングストップ状態から、該当シリンダ41,45を動作し始めるまでの時間を短縮することができる。
 「第二実施形態」
 次に、本発明の第二実施形態に係る車両について、図3及び図4を用いて説明する。
 本実施形態の車両は、図1に示すものと同一構成のフォークリフトである。但し、本実施形態では、このフォークリフトのコントローラ20の動作が第一実施形態と異なっている。そこで、以下では、図3及び図4に示すフローチャートに従って、このコントローラ20の動作について説明する。
 コントローラ20は、第一実施形態と同様、アイドリングストップ状態のときに、アクセルペダル18、ハンドル15、荷役レバー17のいずれかが操作され、これらのいずれかから動作指令を受け付けると(S1)、電動モータ13を駆動させ、エンジン12を始動させる(S2)。
 ここで、コントローラ20は、アイドリングストップ状態のときに、一の動作指令を受けた後、エンジン12が始動するまでの間に他の動作指令を受ける場合がある。本実施形態は、この他の動作指令の受け付けを考慮するものである。なお、第一実施形態では、この他の動作指令を無視している。
 コントローラ20は、アイドリングストップ状態のときに、一の動作指令を受け付けたか、複数の動作指令を受け付けたかに関わらず、最先の動作指令に基づいて、電動モータ13を駆動させ、エンジン12を始動させる(S2)。
 次に、コントローラ20は、複数の動作指令を受け付けたか否かを判断する(S3)。
コントローラ20は、複数の動作指令を受け付けていない、つまり、一の動作指令のみを受け付けたと判断すると、この指令がアクセルペダル18の操作による指令であるか否かを判断する(S4)。コントローラ20は、アクセルペダル18の操作による指令であると判断すると、第一実施形態のステップ5での処理と同様に、クラッチ接続処理(S5)を実行し、前述のエンジン駆動時モード(S10)に移行する。また、アクセルペダル18の操作による指令ではない、つまり荷役レバー17又はハンドル15の操作による指令であると判断すると、第一実施形態でのステップ8と同様、エンジン12が予め定められたアイドリング回転数域に達する前に、該当アンロードバルブ35,36のみを閉にして、該当オイルポンプ32,33のみをオンロード状態にしてから(S8a)、前述のエンジン駆動時モード(S10)に移行する。
 また、コントローラ20は、ステップ3で、複数の動作指令を受け付けたと判断すると、荷役レバー17の操作による指令とハンドル15の操作による指令を受け付けたか否かを判断する(S6)。
 コントローラ20は、荷役レバー17の操作による指令とハンドル15の操作による指令を受け付けていない、つまり、アクセルペダル18の操作による指令と荷役レバー17の操作による指令、又は、アクセルペダル18の操作による指令とハンドル15の操作による指令を受け付けたと判断すると、クラッチ接続処理を実行せずに、該当アンロードバルブ35,36のみを閉にして、該当オイルポンプ32,33のみをオンロード状態にしてから(S8a)、前述のエンジン駆動時モード(S10)に移行する。
 コントローラ20は、ステップ6で、荷役レバー17の操作による指令とハンドル15の操作による指令を受け付けたと判断すると、フォーク駆動シリンダ41のシリンダ圧センサ43からの出力を取得し、シリンダ圧が予め定められたリフト圧以上であるか否かを判断する(S7)。
 ここで、フォーク駆動シリンダ41には、実際に荷を持ち上げている際にはこの荷の重量に応じたシリンダ圧がかかる。また、フォーク11に荷が載っていない場合でも、フォーク11が上がっている場合には、フォーク11を上げるため、又は上げておくためのシリンダ圧がかかる。一方、フォーク11が最下位置に位置している際には、フォーク11上に荷が載っているか否かに関わらず、実質的にシリンダ圧はかからない。
 荷役用コントロールバルブ42は、荷役用アンロードバルブ35が開になっても、フォーク駆動シリンダ41から油圧が抜けて、フォーク11が下降しないよう、荷役用アンロードバルブ35が開になるとき、フォーク駆動シリンダ41から油圧が抜けるのを防いで、開になる直前のシリンダ圧を維持する。このため、シリンダ圧センサ43からの出力が前述のリフト圧以上であるか否かを判断することで、荷役用アンロードバルブ35が開である場合でも、フォーク11が上がっている状態か、フォーク11が最下位置に位置している状態であるかを判断することができる。
 コントローラ20は、ステップ7で、シリンダ圧がリフト圧以上である、つまりフォーク11が上がっている状態であると判断すると、ステアリング用アンロードバルブ36を閉にして、ステアリング用オイルポンプ33のみをオンロード状態にしてから(S8b)、前述のエンジン駆動時モード(S10)に移行する。
 また、コントローラ20は、ステップ7で、シリンダ圧がリフト圧以上でない、つまりフォーク11が最下位置に位置している状態であると判断すると、荷役用アンロードバルブ35を閉にして、荷役用オイルポンプ32のみをオンロード状態にしてから(S8c)、前述のエンジン駆動時モード(S10)に移行する。
 ここで、フォーク11が最下位置に位置しているとき、荷役用オイルポンプ32のみをオンロード状態にして、ステアリング用オイルポンプ33をアンロード状態のまま維持しておくのは、フォーク11が最下位置に位置しているとき、ステアリング機構16が駆動して、フォーク11が移動すると、フォーク11が傷付くおそれがあるためである。
 以上、本実施形態では、アイドリングストップ状態の際に複数の動作指令を受け付けても、一の動作指令しか実行しないので、エンジン始動時におけるエンジン12及び電動モータ13の負荷を抑えることでき、確実にエンジン12を始動させることができる。
 さらに、本実施形態では、荷役レバー17の操作による指令とハンドル15の操作による指令を受け付けた場合には、フォーク駆動シリンダ41の状況に応じて、適切なシリンダを動作させることができる。すなわち、本実施形態では、複数の動作指令のうち、一の動作指令を実行するにあたり、各動作指令に対応する油圧動作器の状況を把握し、この状況に応じて、適切な一の動作指令を実行している。
 なお、以上では、荷役レバー17の操作による指令とハンドル15の操作による指令を受け付けた場合には、フォーク駆動シリンダ41の状況を参照しているが、各シリンダに関して動作優先順位を予め定めておき、この優先順位を参照して、優先順位の高いシリンダのオイルポンプのみをオンロード状態にするようにしてもよい。この場合、フォーク駆動シリンダ41の優先順位をステアリング駆動シリンダ45の優先順位よりも高くする。
 「第三実施形態」
 次に、本発明第三実施形態に係る車両について、図5及び図6を用いて説明する。
 本実施形態の車両は、図5に示すように、図1に示すものと基本的に同一構成のフォークリフトである。但し、本実施形態の油圧回路30aは、荷役用オイルポンプとして、第一荷役用オイルポンプ32aと第二荷役用オイルポンプ32bの二台を備え、オイルポンプ32a,32b毎に、荷役用アンロードバルブ35a,35bが設けられている。
 各荷役用オイルポンプ32a,32bには、それぞれ、吐出ライン52a,52bが接続され、その下流側で一つの吐出ライン52になっている。各吐出ライン52a,52bからは、戻りライン55a,55bが分岐しており、この戻りライン55a,55bに前述の荷役用アンロードバルブ35a,35bが設けられている。
 以上のように、本実施形態の油圧回路30aは、第一実施形態の油圧回路30と若干異なっているためで、本実施形態のコントローラ20の動作は、第一実施形態のコントローラ20の動作と異なっている。そこで、以下では、図6に示すフローチャートに従って、このコントローラ20の動作について説明する。
 コントローラ20は、第一実施形態と同様、アイドリングストップ状態のときに、アクセルペダル18、ハンドル15、荷役レバー17のいずれかが操作され、これらのいずれかから動作指令を受け付けると(S1)、電動モータ13を駆動させ、エンジン12を始動させる(S2)。
 次に、コントローラ20は、動作指令がいずれの操作による指令であるか否かを判断する(S4a)。コントローラ20は、アクセルペダル18の操作による指令であると判断すると、第一実施形態と同様に、クラッチ接続処理(S5)を実行した後、エンジン駆動時モード(S10)に移行する。
 コントローラ20は、ステップ4aで、ハンドル15の操作による動作指令であると判断すると、ステアリング用アンロードバルブ36を閉にして、ステアリング用オイルポンプ33をオンロード状態にしてから(S8b)、エンジン駆動時モード(S10)に移行する。
 また、コントローラ20は、ステップ4aで、荷役レバー17の操作による動作指令であると判断すると、フォーク駆動シリンダ41のシリンダ圧センサ43からの出力を取得し、シリンダ圧があるか否かを判断する(S7)。コントローラ20は、シリンダ圧があると判断すると、1台の荷役用オイルポンプ32a又は32bのみをオンロード状態にするために、第一荷役用アンロードバルブ35aと第二荷役用アンロードバルブ35bとのうち対応する一方のみを閉にしてから(S8d)、エンジン駆動時モード(S10)に移行する。この結果、2台の荷役用オイルポンプ32a,32bのうち、1台の荷役用オイルポンプ32a又は32bからのオイルのみが、荷役用コントロールバルブ42を介してフォーク駆動シリンダ41に送られ、このフォーク駆動シリンダ41が駆動する。
 ところで、第一荷役用アンロードバルブ35aと第二荷役用アンロードバルブ35bとのうち一方のアンロードバルブ35aが閉であっても、他方のアンロードバルブ35bが開であると、一方のアンロードバルブ35aに対応する荷役用オイルポンプ32aからのオイルが、他方のアンロードバルブ35bを介してオイルタンク31に流れ込み、この荷役用オイルポンプ32aがオンロード状態にならない。そこで、本実施形態では、図5に示すように、各荷役用オイルポンプ32a,32bの吐出ライン52a,52bが合流する手前に、各吐出ライン52a,52bに逆止弁59a,59bを設け、一方のアンロードバルブ35aに対応する荷役用オイルポンプ32aからのオイルが、他方のアンロードバルブ35bを介してオイルタンク31に流れ込むのを防いでいる。
 コントローラ20は、ステップ7で、シリンダ圧がないと判断すると、2台の荷役用オイルポンプ32a,32bのいずれもオンロード状態にするために、第一荷役用アンロードバルブ35a及び第二荷役用アンロードバルブ35bを閉にしてから(S8e)、エンジン駆動時モード(S10)に移行する。
 以上、本実施形態では、あるシリンダに対するオイルポンプが複数ある場合、このシリンダにかかるシリンダ圧を参照し、シリンダ圧がある場合には、少ない数量のオイルポンプをオンロード状態にしているので、エンジン始動時におけるエンジン12及び電動モータ13の負荷を抑えることでき、確実にエンジン12を始動させることができる。
 なお、ここでは、あるシリンダに対するオイルポンプが2台ある場合を例示したが、3台以上あってもよい。この場合、シリンダ圧が高いほどオンロード状態にするオイルポンプの数量が少なくなるように、オンロード状態にするオイルポンプの数量を定め、この数量分のオイルポンプをオンロード状態にする。
 以上、フォークリフトに関する複数の実施形態を説明したが、本発明の実施の形態は、フォークリフトに限定されるものではなく、ショベルカー等、油圧シリンダと、そのオイルポンプと、このオイルポンプを駆動すると共に走行駆動力を提供する原動機とを備えている車両であれば、如何なる車両に本発明を適用してもよい。
 また、以上の実施形態では、アクセルペダル18、ハンドル15、荷役レバー17のいずれもが予め定められた時間操作されていないことをアイドルストップ条件にしているが、さらに、ブレーキが掛けられていることを条件に加えてもよいし、さらに、エンジン12の温度が予め定められた温度よりも低いことを条件に加えてもよい。
本発明は、フォークリフトやショベルカー等の産業用車両に適用可能であり、特に、原動機がアイドリングストップしている状態から、少ない操作で且つ短時間で油圧動作器を動作させる場合に適している。
11  フォーク
12  エンジン(原動機)
13  電動モータ
15  ステアリングハンドル(操作端)
16  ステアリング機構
17  荷役レバー(操作端)
18  アクセルペダル(操作端)
20  コントローラ(制御器)
30  油圧回路
30a  油圧回路
31  オイルタンク
32  荷役用オイルポンプ(油圧源)
32a  第一荷役用オイルポンプ(油圧源)
32b  第二荷役用オイルポンプ(油圧源)
33  ステアリング用オイルポンプ(油圧源)
34  ファン用オイルポンプ(油圧源)
35  荷役用アンロードバルブ
35a  第一荷役用アンロードバルブ
35b  第二荷役用アンロードバルブ
36  ステアリング用アンロードバルブ
37  ファン用アンロードバルブ
41  フォーク駆動シリンダ(油圧動作器)
42  荷役用コントロールバルブ(油圧維持器)
43  シリンダ圧センサ
45  ステアリング駆動シリンダ(油圧動作端)

Claims (7)

  1.  油圧で動作する油圧動作器と、該油圧動作器の動作を指示するための操作端と、
    該油圧動作器に油圧を加える油圧源と、
    該油圧源を駆動すると共に走行駆動力を提供する原動機と、
     前記原動機が駆動している際に、予め定められたアイドルストップ条件を満たしたか否かを判断し、該アイドルストップ条件を満たしたと判断すると、前記原動機をアイドリングストップさせ、該原動機がアイドリングストップしている際に、前記操作端の操作による前記油圧動作器に対する動作指令を受け付けると、該原動機を始動させると共に、該油圧動作器の前記油圧源をオンロード状態にする制御器と、を有する車両。
  2.  請求項1に記載の車両において、
     前記制御器は、前記原動機がアイドリングストップしている際に、前記油圧動作器に対する動作指令を受け付けると、該原動機を始動させると共に、該原動機が予め定められているアイドリング回転数域に達する前に、該油圧動作器の前記油圧源をオンロード状態にする、
     車両。
  3.  請求項1又は2に記載の車両において、
     前記油圧動作器には、該油圧動作器に油圧を加える複数の前記油圧源と、複数の該油圧源のいずれもがアンロード状態になる際に、該油圧動作器にかかる油圧を維持する油圧維持器と、該油圧動作器にかかる油圧を検知する油圧検知器と、が設けられ、
     前記制御器は、前記原動機がアイドリングストップしている際に、前記油圧動作器に対する動作指令を受け付けると、該原動機を始動させると共に、前記油圧維持器により維持されている前記油圧動作器にかかる油圧を前記油圧検知器より取得し、該油圧の大きさに応じた数量分の前記油圧源を前記オンロード状態にする、
     車両。
  4.  請求項1から3のいずれか一項に記載の車両において、
     複数の前記油圧動作器と、複数の該油圧動作器毎の前記操作端と、複数の該油圧動作器毎の前記油圧源と、を備え、
     前記制御器は、前記原動機がアイドリングストップしている際に、複数の前記油圧動作器のうち、二以上の油圧動作器に対する動作指令を、前記原動機が始動するまでに受けると、先に受けた動作指令に基づいて該原動機を始動させると共に、予め定められた優先順位を参照して、該二以上の油圧動作器のうちで優先順位が最も高い油圧動作器を定め、該油圧動作器の前記油圧源のみを前記オンロード状態にする、
     車両。
  5.  請求項1から3のいずれか一項に記載の車両において、
     複数の前記油圧動作器と、複数の該油圧動作器毎の前記操作端と、複数の該油圧動作器毎の前記油圧源と、を備え、
     複数の前記油圧動作器のうち、少なくとも一の油圧動作器には、該一の油圧動作器が前記オンロード状態からアンロード状態に移行する際に、該一の油圧動作器にかかる油圧を維持する油圧維持器と、該一の油圧動作器にかかる油圧を検知する油圧検知器とが設けられ、
     前記制御器は、前記原動機がアイドリングストップしている際に、複数の前記油圧動作器のうち、前記一の油圧動作器を含む二つの油圧動作器に対する動作指令を、前記原動機が始動するまでに受けると、先に受けた動作指令に基づいて該原動機を始動させると共に、前記油圧維持器により維持されている前記一の油圧動作器にかかる油圧を前記油圧検知器より取得し、該油圧の大きさに応じて、該二つの油圧動作器のうち、いずれか一方の油圧動作器の前記油圧源のみを前記オンロード状態にする、
     車両。
  6.  油圧で動作する油圧動作器と、該油圧動作器の動作を指示するための操作端と、該油圧動作器に油圧を加える油圧源と、該油圧源を駆動すると共に走行駆動力を提供する原動機と、を備えている車両の制御方法において、
     前記原動機が駆動している際に、予め定められたアイドルストップ条件を満たしたか否かを判断し、該アイドルストップ条件を満たしたと判断すると、前記原動機をアイドリングストップさせるアイドリングストップ工程と、
     前記原動機がアイドリングストップしている際に、前記操作端の操作による前記油圧動作器に対する動作指令を受け付けると、該原動機を始動させると共に、該油圧動作器の前記油圧源をオンロード状態にするアイドリングストップ解除工程と、
     を実行する車両の制御方法。
  7.  請求項6に記載の車両の制御方法において、
     前記アイドリングストップ解除工程では、前記原動機がアイドリングストップしている際に、前記油圧動作器に対する動作指令を受け付けると、該原動機を始動させると共に、該原動機が予め定められているアイドリング回転数域に達する前に、該油圧動作器の前記油圧源をオンロード状態にする、
     車両の制御方法。
PCT/JP2011/074005 2010-10-19 2011-10-19 車両、及びその制御方法 WO2012053533A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11834372.2A EP2631456B1 (en) 2010-10-19 2011-10-19 Vehicle and method for controlling same
US13/879,749 US9096212B2 (en) 2010-10-19 2011-10-19 Vehicle and method for controlling same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010234555A JP5718611B2 (ja) 2010-10-19 2010-10-19 車両、及びその制御方法
JP2010-234555 2010-10-19

Publications (1)

Publication Number Publication Date
WO2012053533A1 true WO2012053533A1 (ja) 2012-04-26

Family

ID=45975244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074005 WO2012053533A1 (ja) 2010-10-19 2011-10-19 車両、及びその制御方法

Country Status (4)

Country Link
US (1) US9096212B2 (ja)
EP (1) EP2631456B1 (ja)
JP (1) JP5718611B2 (ja)
WO (1) WO2012053533A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2845954A4 (en) * 2012-05-01 2016-04-06 Hitachi Construction Machinery HYBRID CONSTRUCTION EQUIPMENT

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8944449B2 (en) * 2010-04-06 2015-02-03 Polaris Industries Inc. Side-by-side vehicle
CN113482897B (zh) * 2021-06-02 2022-12-16 中国长江电力股份有限公司 巨型水轮发电机组调速器液压系统油泵控制装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003269211A (ja) * 2002-03-12 2003-09-25 Nissan Motor Co Ltd エンジン自動停止・自動再始動装置
JP2005351202A (ja) * 2004-06-11 2005-12-22 Nissan Motor Co Ltd エンジン停止始動制御装置
WO2009118924A1 (ja) * 2008-03-27 2009-10-01 三菱重工業株式会社 ハイブリッド型産業車両

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2251962B (en) * 1990-11-13 1995-05-24 Samsung Heavy Ind System for automatically controlling an operation of a heavy construction
JPH0544517A (ja) 1991-08-08 1993-02-23 Hitachi Constr Mach Co Ltd 作業機停止装置
JP3797805B2 (ja) 1998-09-22 2006-07-19 日立建機株式会社 建設機械のエンジン制御装置
JP3898879B2 (ja) * 2000-08-25 2007-03-28 ジヤトコ株式会社 自動変速機の制御装置
JP4137431B2 (ja) * 2001-11-09 2008-08-20 ナブテスコ株式会社 油圧回路
JP4010255B2 (ja) * 2003-02-07 2007-11-21 コベルコ建機株式会社 建設機械の制御装置
GB2424964B (en) * 2003-12-02 2007-05-16 Komatsu Mfg Co Ltd Construction machine
US7757486B2 (en) * 2004-09-27 2010-07-20 Hitachi Construction Machinery Co., Ltd. Engine control device for work vehicle
CN101646826B (zh) * 2007-03-29 2012-06-27 株式会社小松制作所 工作机械
JP2010078135A (ja) * 2008-07-17 2010-04-08 Kawasaki Heavy Ind Ltd 油圧装置及びそれを備える除雪車両
JP5248377B2 (ja) * 2009-03-16 2013-07-31 日立建機株式会社 作業機械の油圧駆動装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003269211A (ja) * 2002-03-12 2003-09-25 Nissan Motor Co Ltd エンジン自動停止・自動再始動装置
JP2005351202A (ja) * 2004-06-11 2005-12-22 Nissan Motor Co Ltd エンジン停止始動制御装置
WO2009118924A1 (ja) * 2008-03-27 2009-10-01 三菱重工業株式会社 ハイブリッド型産業車両

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2845954A4 (en) * 2012-05-01 2016-04-06 Hitachi Construction Machinery HYBRID CONSTRUCTION EQUIPMENT

Also Published As

Publication number Publication date
US20130204500A1 (en) 2013-08-08
EP2631456A4 (en) 2018-04-18
EP2631456A1 (en) 2013-08-28
US9096212B2 (en) 2015-08-04
JP5718611B2 (ja) 2015-05-13
EP2631456B1 (en) 2020-03-04
JP2012087669A (ja) 2012-05-10

Similar Documents

Publication Publication Date Title
US8573339B2 (en) Hybrid industrial vehicle
JP4727653B2 (ja) バッテリ式産業車両の荷役回生方法及び荷役回生システム
US20120100959A1 (en) Working Vehicle Control Apparatus
US9631613B2 (en) Hydraulic drive device for cargo handling vehicle
JP6156221B2 (ja) 産業車両
EP2803619B1 (en) Industrial vehicle and method for controlling industrial vehicle
WO2012053533A1 (ja) 車両、及びその制御方法
CN104944324B (zh) 工业车辆
JP6022616B2 (ja) 車両、及びその制御方法
EP2862834B1 (en) Industrial vehicle
JP7231014B2 (ja) 電気式産業車両における油圧回路
JP6343268B2 (ja) 建設機械
US9316167B2 (en) Vehicle equipped with a hydraulically-operated device
JP5159531B2 (ja) 産業車両におけるエンジン回転数の制御方法および制御装置
JP5543127B2 (ja) フォークリフト用油圧回路制御システム
EP3178778B1 (en) Hydraulic system for energy regeneration and industrial truck with said hydraulic system
JP6007858B2 (ja) 産業車両
JP2006144820A (ja) 産業車両の油圧制御装置及び産業車両
JP4681412B2 (ja) 車両
KR101982889B1 (ko) 기계식 엑셀 페달을 사용하는 지게차의 작동제어시스템 및 그 제어방법
JP2009067516A (ja) 車両搭載用クレーンの圧油供給量制御装置
JP5074740B2 (ja) 貨物自動車のウインチ装置
JPH10310395A (ja) フォークリフトの荷役装置
JP2004270749A (ja) クラッチ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834372

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13879749

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011834372

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE