WO2012053526A1 - 酸化物ナノ粒子反応生成物及びシリコーン組成物 - Google Patents

酸化物ナノ粒子反応生成物及びシリコーン組成物 Download PDF

Info

Publication number
WO2012053526A1
WO2012053526A1 PCT/JP2011/073972 JP2011073972W WO2012053526A1 WO 2012053526 A1 WO2012053526 A1 WO 2012053526A1 JP 2011073972 W JP2011073972 W JP 2011073972W WO 2012053526 A1 WO2012053526 A1 WO 2012053526A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
group
reaction product
organopolysiloxane
Prior art date
Application number
PCT/JP2011/073972
Other languages
English (en)
French (fr)
Inventor
敏之 大竹
丸山 睦弘
浩行 ▲辻▼本
Original Assignee
旭化成イーマテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成イーマテリアルズ株式会社 filed Critical 旭化成イーマテリアルズ株式会社
Publication of WO2012053526A1 publication Critical patent/WO2012053526A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Definitions

  • the present invention is not only immediately after curing, but also has excellent transparency even when exposed to high temperatures for a long period of time, and has a high crack resistance, high hardness, high elasticity and high thermal conductivity at high temperatures.
  • the present invention relates to a particle reaction product and a silicone composition using the same.
  • the present invention also relates to a reflector, a sealing resin, a lens, an underfill material, and a die bond material that are useful for optical semiconductor element applications using a cured product of the silicone composition.
  • a cured product of a composition mainly based on an epoxy resin or the like has been widely used for a semiconductor peripheral insulating member of an optical semiconductor device typified by an LED.
  • the composition has a low viscosity
  • the LED emits heat during use
  • the semiconductor peripheral member undergoes a cooling cycle.
  • the cured product has high crack resistance
  • the hardened product has a high hardness in order to obtain a smooth cut surface during dicing
  • the cured product has a high hardness in order to improve the light extraction efficiency. This is because it is required to be transparent.
  • the epoxy resin has a problem in that the resin itself is yellowed due to an increase in the amount of heat generated with the recent increase in brightness of the LED and shortening of the excitation wavelength and emission wavelength of the phosphor. .
  • silicone compositions containing organopolysiloxane as a main component and cured products thereof have been used.
  • a solvent volatilizes at the time of manufacture and it causes a void and a crack, it is desired that a composition does not contain a solvent substantially.
  • the semiconductor peripheral member is required to be highly elastic at high temperatures. Further, in order to release heat generated in the LED chip, the semiconductor peripheral member is required to have high thermal conductivity.
  • the silicone resin normally used for a die attach layer is apply
  • the heat generation of the LED chip has increased, and the die attach layer that bonds the chip and the substrate is required to have high thermal conductivity.
  • Patent Document 1 and Patent Document 2 describe silicone resin compositions formed by covalent bonding with silicone or silica nanoparticles. Further, in the following Patent Document 3 and Patent Document 4, silicone compositions containing oxide nanoparticles coated with organopolysiloxane, silica nanoparticles surface-coated with trimethylsiloxane groups and vinyldimethylsiloxy groups, respectively. Are listed. Moreover, the following patent document 5, patent document 6, and patent document 7 describe a silicone resin composition containing a polyorganosiloxane having a resin structure.
  • the silicone resin composition described in Patent Document 1 has a problem that the transparency of the cured resin is lowered because the particle size of the silicone particles is on the order of micrometers and is easy to aggregate. Moreover, since not only the silicone particle core part but also the peripheral alkoxysilane part has a large amount of flexible siloxane structure, there is a problem that its hardness is lowered. Further, in Patent Document 2, although silica particles are excellent in transparency because they are on the order of nanometers, they pass through a thermosetting mechanism in which silanols condense, and therefore, at a film thickness of several tens of micrometers, curing shrinkage and solvent volatilization occur. There is a problem that cracks are likely to occur.
  • the oxide nanoparticles obtained in Patent Document 3 have a problem of containing a large amount of silanol groups. Therefore, although it is suitable as a laminated glass adhesive that requires flame retardancy, in applications such as LEDs that are exposed to high temperatures for a long time, there is a problem that cracks are likely to occur in the cured product due to a condensation reaction of silanol groups. is there.
  • the organosiloxane for coating oxide nanoparticles contains a large amount of aromatics, there is a problem that the transmittance decreases after being left at a high temperature for a long time.
  • Patent Document 4 discloses a composition containing colloidal silica surface-coated with trimethylsiloxane groups and vinyldimethylsiloxane groups.
  • colloidal silica In order to coat colloidal silica with a strong acid, secondary particles of colloidal silica are disclosed. There exists a subject that a diameter increases and transparency of hardened
  • the composition disclosed by patent document 4 contains a bivalent hydrocarbon group as a crosslinking compound, there exists a subject that it yellows by heat processing. Therefore, the composition of patent document 4 has the subject that it is unsuitable for uses, such as LED as which high transparency is requested
  • Patent Document 5 Patent Document 6, and Patent Document 7 disclose a silicone resin composition containing an organopolysiloxane having a resin structure.
  • the main structure does not contain a filler, There is a problem that hardness, elastic modulus at high temperature and thermal conductivity are low.
  • a silicone composition for obtaining a cured product having high transparency, excellent crack resistance, high hardness, high thermal conductivity, and high elastic modulus at high temperature is desired.
  • Problems to be solved by the present invention are not only immediately after curing but also highly transparent even when exposed to high temperature for a long time, excellent crack resistance, high hardness, high thermal conductivity, and high elastic modulus at high temperature It is providing the silicone composition for obtaining a thing, and the material manufactured using this composition.
  • An oxide nanoparticle reaction product in which an organopolysiloxane (A) having a unit structure represented by formula (A) and an oxide nanoparticle (B) are bonded by a covalent bond, and the oxide nanoparticle reaction
  • the product has the following formula (5): X n R 2 3-n SiO 1/2 ⁇ Wherein X is an alkenyl group or a hydrogen atom, R 2 is a saturated unsubstituted or substituted monovalent hydrocarbon group, and n is an integer of 1 or 2.
  • X is an alkenyl group or a hydrogen atom
  • R 2 is a saturated unsubstituted or substituted monovalent hydrocarbon group
  • n is an integer of 1 or 2.
  • the oxide nanoparticle reaction which has the covalent bond formed by reaction with the organopolysiloxane (A) which has a unit structure represented by these, an oxide nanoparticle (B), and a silanol group sealing agent (C)
  • the product, the silanol group sealing agent (C) is represented by the following formula (2): X n R 2 3-n SiY ⁇ Wherein X is an alkenyl group or a hydrogen atom, R 2 is a saturated unsubstituted or substituted monovalent hydrocarbon group, Y is a halogen atom, and n is 1 or 2 is there.
  • the oxide nanoparticle reaction product according to the above [1].
  • the oxide nanoparticle reaction product has the following formula (7): R 6 3 SiO 1/2 ⁇ In the formula, R 6 represents an unsubstituted or substituted monovalent hydrocarbon group or a hydrogen atom.
  • the oxide nanoparticle reaction product includes an M unit represented by the formula (7) and a T unit represented by the formula (8).
  • oxide nanoparticle reaction product according to any one of [1] to [10], wherein the oxide nanoparticles (B) are silica nanoparticles.
  • the oxide nanoparticle reaction product 80 mol% or more of the total substituents bonded to silicon atoms contained in the oxide nanoparticle reaction product is an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an alkoxy group, a hydroxyl group, or a hydrogen atom.
  • the oxide nanoparticle reaction product according to any one of [1] to [14] above.
  • the method for producing an oxide nanoparticle reaction product according to any one of the above [1] to [6] and [8] to [15].
  • the silanol group of the oxide nanoparticle reaction product precursor obtained in step 1 is represented by the following formula (2): X n R 2 3-n SiY ⁇ Wherein X is an alkenyl group or a hydrogen atom, R 2 is a saturated unsubstituted or substituted monovalent hydrocarbon group, Y is a halogen atom, and n is 0-3. It is an integer.
  • a silanol group sealing agent (C) represented by: The method for producing an oxide nanoparticle reaction product according to any one of the above [1] to [6] and [8] to [15].
  • the oxide nanoparticle reaction product obtained in step (II) has the following formula (9) having a reactive substituent selected from the group consisting of a silanol group, an alkoxy group, and a halogen atom at both ends: R 8 2 SiO 2/2 ⁇ Wherein R 8 represents an unsubstituted or substituted monovalent hydrocarbon group or a hydrogen atom.
  • the silanol group of the reaction product with D) is represented by the following formula (2): X n R 2 3-n SiY ⁇ Wherein X is an alkenyl group or a hydrogen atom, R 2 is a saturated unsubstituted or substituted monovalent hydrocarbon group, Y is a halogen atom, and n is 1 or 2 is there.
  • a silanol group sealing agent (C) represented by:
  • a silicone composition comprising the oxide nanoparticle reaction product (a) according to any one of [1] to [15].
  • the silicone composition was heated from room temperature to 100 ° C. at 10 ° C./min, then held for 1 hour, then heated to 150 ° C. at 10 ° C./min, and then 1 hour
  • the silicone composition according to any one of [19] to [21] above, which contains a volatile component having a volatile component amount of less than 1% by mass as measured by a thermal analyzer during weight reduction.
  • the oxide nanoparticle reaction product (a) the oxide nanoparticle reaction product having an alkenyl group according to any one of [1] to [15], and directly bonded to a silicon atom
  • the free organopolysiloxane (A ′) is: X n R 2 3-n SiO 1/2 ⁇ Wherein X is an alkenyl group or a hydrogen atom, R 2 is a saturated unsubstituted or substituted monovalent hydrocarbon group, and n is an integer of 1 or 2. ⁇
  • the free organopolysiloxane (A ′) is: R 1 m SiO (4-m) / 2 ⁇ Wherein R 1 is an unsubstituted or substituted monovalent hydrocarbon group, alkoxy group, hydroxyl group or hydrogen atom, and m is an integer of 0 to 3.
  • Has a covalent bond formed by the reaction of an organopolysiloxane (A) having a unit structure represented by a silanol group blocking agent (C), and the silanol group blocking agent (C) is: Formula (2): X n R 2 3-n SiY ⁇ Wherein X is an alkenyl group or a hydrogen atom, R 2 is a saturated unsubstituted or substituted monovalent hydrocarbon group, Y is a halogen atom, and n is 1 or 2 is there. ⁇ The silicone composition according to the above [27] or [28].
  • the free organopolysiloxane (A ′) is represented by the following formula (7 ′): R 6 ' 3 SiO 1/2 ⁇ In the formula, R 6 ' represents an unsubstituted or substituted monovalent hydrocarbon group or a hydrogen atom.
  • Unit structure (M unit ′) represented by the following formula (8 ′): R 4 ' SiO 3/2 ⁇ Wherein R 4 ′ represents an unsubstituted or substituted monovalent hydrocarbon group or a hydrogen atom.
  • the sum of the components of the M unit represented by the formula (7 ′) and the T unit represented by the formula (8 ′) is more than 50% by weight.
  • a sealing resin which is a cured silicone obtained by curing the silicone composition according to any one of [19] to [35].
  • a die bonding material which is a cured silicone obtained by curing the silicone composition according to any one of [19] to [35].
  • the optical semiconductor package having a particle size of 1 to 30 nm and an average secondary particle size of 5 to 100 nm.
  • the cured silicone product is an oxide nanoparticle reaction product in which a polyorganosiloxane having an alkenyl group directly bonded to a silicon atom and / or a hydrogen atom directly bonded to a silicon atom and an oxide nanoparticle are covalently bonded.
  • An optical semiconductor package including a silicone cured product containing an organopolysiloxane (A) and oxide nanoparticles (B), wherein an image obtained by cross-sectional TEM analysis of the silicone cured product is subjected to image analysis 2
  • the said optical semiconductor package whose ratio of the area of the said oxide nanoparticle (B) part at the time of valuation is 10% or more.
  • An optical semiconductor package including a silicone cured product containing organopolysiloxane (A) and oxide nanoparticles (B), wherein an image obtained by cross-sectional TEM analysis of the silicone cured product is subjected to image analysis 2
  • the dispersion degree of the distance connecting the closest particles is less than 0.4.
  • An optical semiconductor package comprising a silicone cured product containing organopolysiloxane (A) and oxide nanoparticles (B), wherein an image obtained by cross-sectional TEM analysis of the silicone cured product is subjected to image analysis 2
  • the average distance connecting the nearest particles is less than 100 nm.
  • the oxide nanoparticle reaction product according to the present invention and the cured product of the silicone composition have high transparency even when exposed to a high temperature for a long time as well as immediately after curing, and further have excellent crack resistance, High hardness and high elastic modulus at high temperature can be achieved.
  • the oxide nanoparticle reaction product of the present invention has a feature that there are few volatile components at the time of curing, and it is difficult to contaminate the surrounding area such as electrodes.
  • FIG. 2 is a cross-sectional TEM photograph of the cured silicone prepared in Example 1.
  • FIG. 2 is a cross-sectional TEM photograph of a cured silicone product prepared in Example 25.
  • FIG. 6 is a cross-sectional TEM photograph of a cured silicone product prepared in Comparative Example 5.
  • the oxide nanoparticle reaction product of the present invention has the following formula (0): R 1 a SiO (4-a) / 2 ⁇ Wherein R 1 represents an unsubstituted or substituted monovalent hydrocarbon group, alkoxy group, hydroxyl group or hydrogen atom, and a represents an integer of 0 to 3.
  • An oxide nanoparticle reaction product in which an organopolysiloxane having a unit structure represented by the following formula and an oxide nanoparticle are covalently bonded, and the oxide nanoparticle reaction product has the following formula: (5): X n R 2 3-n SiO 1/2 ⁇ Wherein X is an alkenyl group or a hydrogen atom, R 2 is a saturated unsubstituted or substituted monovalent hydrocarbon group, and n is an integer of 1 or 2. ⁇ It has the unit structure represented by this.
  • the oxide nanoparticle reaction product of the present invention is preferably Following formula (1): R 1 m SiO (4-m) / 2 ⁇ Wherein R 1 is an unsubstituted or substituted monovalent hydrocarbon group, alkoxy group, hydroxyl group or hydrogen atom, and m is an integer of 0 to 3.
  • An oxide nanoparticle reaction product having a covalent bond formed by the reaction of an organopolysiloxane (A) having a unit structure represented by The particle reaction product is represented by the following formula (5): X n R 2 3-n SiO 1/2 ⁇ Wherein X is an alkenyl group or a hydrogen atom, R 2 is a saturated unsubstituted or substituted monovalent hydrocarbon group, and n is an integer of 1 or 2. ⁇ It has the unit structure represented by this.
  • the oxide nanoparticle reaction product of the present invention is more preferably the following formula (1): R 1 m SiO (4-m) / 2 ⁇ Wherein R 1 is an unsubstituted or substituted monovalent hydrocarbon group, alkoxy group, hydroxyl group or hydrogen atom, and m is an integer of 0 to 3.
  • the oxide nanoparticle reaction which has the covalent bond formed by reaction with the organopolysiloxane (A) which has a unit structure represented by these, an oxide nanoparticle (B), and a silanol group sealing agent (C)
  • the product, the silanol group sealing agent (C) is represented by the following formula (2): X n R 2 3-n SiY ⁇ Wherein X is an alkenyl group or a hydrogen atom, R 2 is a saturated unsubstituted or substituted monovalent hydrocarbon group, Y is a halogen atom, and n is 0-3. It is an integer.
  • silica nanoparticle reaction product has the following formula (5): X n R 2 3-n SiO 1/2 ⁇
  • X is an alkenyl group or a hydrogen atom
  • R 2 is a saturated unsubstituted or substituted monovalent hydrocarbon group
  • n is an integer of 1 or 2.
  • the organopolysiloxane (A) used in the present invention has the following formula (1): R 1 m SiO (4-m) / 2 ⁇ Wherein R 1 is an unsubstituted or substituted monovalent hydrocarbon group, alkoxy group, hydroxyl group or hydrogen atom, and m is an integer of 0 to 3.
  • R 1 is, for example, an alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a tert-butyl group, or a cyclohexyl group; an aryl group such as a phenyl group; a vinyl group; An alkenyl group such as an allyl group; an alkoxy group such as a methoxy group, an ethoxy group, and an isopropoxy group; an epoxy group-substituted hydrocarbon group such as a ⁇ -glycidoxypropyl group and a ⁇ - (3,4-epoxycyclohexyl) ethyl group; Hydroxyl group; hydrogen atom and the like.
  • an alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a tert-but
  • methyl group, ethyl group, phenyl group, vinyl group, methoxy group, ethoxy group, isopropoxy group, hydroxyl group, hydrogen atom are A methyl group, a vinyl group, a methoxy group, an isopropoxy group, a hydroxyl group, and a hydrogen atom are more preferable.
  • the oxide nanoparticles (B) used in the present invention are not particularly limited, but silica nanoparticles, zirconium oxide, silicon oxide, tin oxide, zinc oxide, indium oxide, titanium oxide, tin-doped indium oxide, antimony-doped oxidation. Tin etc. can be illustrated.
  • Examples of the silica nanoparticles include fumed silica and wet silica. In view of the transparency of the silica nanoparticle reaction product, wet silica is preferred. Fumed silica can be obtained by reacting a compound containing a silicon atom with oxygen and hydrogen in the gas phase.
  • the silicon compound used as a raw material include silicon halide (for example, silicon chloride).
  • wet silica can be synthesized by a sol-gel method in which a raw material compound is hydrolyzed and condensed.
  • the raw material compound for wet silica include alkoxysilane (for example, tetraethoxysilane), halogenated silane compound (for example, diphenyldichlorosilane), and the like.
  • alkoxysilane for example, tetraethoxysilane
  • halogenated silane compound for example, diphenyldichlorosilane
  • wet silica obtained from alkoxysilane is more preferable in that it has few impurities such as metal ions and halogens and is excellent in transparency and insulation.
  • the average primary particle size of the oxide nanoparticles is preferably 1 nm to 50 nm, more preferably 1 nm to 30 nm, and still more preferably 2 nm to 20 nm.
  • the average primary particle system is 1 nm or more, the surface area of the particles is reduced, and thus the viscosity is preferable.
  • it is 50 nm or less, it is preferable in terms of transparency, crack resistance, and high elasticity at high temperatures.
  • the average primary particle size of the oxide nanoparticles is 50 nm or less, the surface area of the oxide nanoparticles increases, so that the elastic modulus of the oxide nanoparticle reaction product at high temperature is improved and the silicone composition has a low viscosity. It is preferable because the crack resistance of the cured product is improved.
  • the average secondary particle size of the oxide nanoparticles is preferably 2 nm or more and 250 nm or less, and more preferably 2 nm or more and 80 nm or less.
  • the average secondary particle diameter is 2 nm or more, the surface area of the particles is reduced, which is preferable in terms of a decrease in viscosity.
  • the average secondary particle diameter is 250 nm or less, the transparency of the cured product is improved.
  • the primary particle size is the diameter of the smallest particle (primary particle) constituting the powder, and the average primary particle size is a value determined from the specific surface area of BET.
  • the secondary particle size is the diameter of the aggregated primary particles (secondary particles), and the average secondary particle size is a value measured with a dynamic light scattering photometer.
  • the shape of the oxide nanoparticles (B) can be spherical, rod-like, plate-like, fiber-like, or a shape in which two or more of these are combined, but the oxide nanoparticle reaction product can be reduced in viscosity. Spherical shape is preferred.
  • the term “spherical” as used herein includes not only true spheres but also substantially spherical shapes such as spheroids and egg shapes.
  • the specific surface area of the oxide nanoparticles (B) is preferably 1,000 m 2 / g or less, and 800 m 2 / g or less in terms of the BET specific surface area. It is more preferable.
  • the oxide nanoparticles (B) are not particularly limited as long as they meet the above requirements, and commercially available products can also be used.
  • commercially available products include wet silica such as LEVASIL series (manufactured by HC Starck Co., Ltd.), methanol silica sol IPA-ST, MEK-ST, NBA-ST, XBA-ST, and DMAC-ST.
  • the silanol group-capping agent (C) used in the present invention is not limited as long as it does not inhibit the dispersibility of the oxide nanoparticles.
  • the oxide nanoparticle reaction product according to the present invention in which a covalent bond is formed by a reaction between the organopolysiloxane and the oxide nanoparticles is represented by the following formula (5): X n R 2 3-n SiO 1/2 ⁇ Wherein X is an alkenyl group or a hydrogen atom, R 2 is a saturated unsubstituted or substituted monovalent hydrocarbon group, and n is an integer of 1 or 2. ⁇ It has the unit structure represented by this.
  • the silanol group-capping agent (C) is further reacted to form a covalent bond and to adjust the amount of silanol groups. It is preferable not only from the viewpoint of improving the viscosity, but also from the viewpoint of low viscosity and long-term stability of the viscosity of the silica nanoparticle reaction product.
  • the reactivity of the curing reaction by hydrosilylation of the resin composition is improved, so that the molecular weight of the cured product is increased and a cured product with higher hardness can be obtained. .
  • the organopolysiloxane of the present invention is preferably obtained by prepolymerization. Prepolymerization is, for example, polymerizing alkoxysilane, which is a raw material of polyorganosiloxane (A), prior to reaction with oxide nanoparticles (B), thereby polymerizing polyorganosiloxane.
  • X n R 2 3-n SiO 1/2 ⁇ wherein X is an alkenyl group or a hydrogen atom, R 2 is a saturated unsubstituted or substituted monovalent hydrocarbon group, and n is an integer of 1 or 2.
  • the order of introduction of the unit structure represented by ⁇ is not particularly limited, and the unit structure represented by the above formula (5) is previously introduced into the organopolysiloxane (A) or the oxide nanoparticle (B), and then these are introduced. May be reacted.
  • the unit structure represented by the formula (5) is represented by the following formula (1) as described in the following ⁇ Step (I) for obtaining an organopolysiloxane (A)>: R 1 m SiO (4-m) / 2 ⁇ Wherein R 1 is an unsubstituted or substituted monovalent hydrocarbon group, alkoxy group, hydroxyl group or hydrogen atom, and m is an integer of 0 to 3. ⁇ May be derived from an organopolysiloxane (A) having a unit structure represented by:
  • the unit structure represented by the above formula (5) is generally called an M unit because a silicon atom and one oxygen atom are bonded.
  • the unit structure represented by the formula (5) is also simply referred to as “M unit”.
  • the oxide nanoparticle reaction product has a unit structure represented by the above formula (5) in that the reaction efficiency of the curing reaction is improved.
  • X is an alkenyl group or a hydrogen atom, and as the alkenyl group, vinyl group, allyl group, butenyl group, pentenyl group, hexenyl group, cyclohexenyl group, cyclohexenylethyl group, norbornenylethyl Group, heptenyl group, octenyl group, nonenyl group, decenyl group, styryl group and the like. From the viewpoints of transparency and reactivity, X is preferably an allyl group, a vinyl group or a hydrogen atom, and more preferably a vinyl group or a hydrogen atom.
  • R 2 is an unsubstituted or substituted monovalent hydrocarbon group having no unsaturated bond, that is, a saturated unsubstituted or substituted monovalent hydrocarbon group, for example, a methyl group Alkyl group such as ethyl group, propyl group, isopropyl group, butyl group, tert-butyl group, cyclohexyl group; epoxy group such as ⁇ -glycidoxypropyl group, ⁇ - (3,4-epoxycyclohexyl) ethyl group Examples thereof include a hydrocarbon group, and are a methyl group, an ethyl group, a ⁇ -glycidoxypropyl group, and a ⁇ - (3,4-epoxycyclohexyl) ethyl group in terms of transparency, crack resistance, and availability. It is preferably a methyl group.
  • n is an integer of 1 or 2, and n is preferably 1 in terms of reactivity and crack resistance.
  • R 7 3 SiO 1/2 ⁇ wherein R 7 is a saturated unsubstituted or substituted monovalent hydrocarbon group.
  • the molar ratio of the unit structure represented by the formula (5) to the unit structure represented by the formula (5), [X n R 2 3-n SiO 1/2 ] / [R 7 3 SiO 1/2 ] is 0. It is preferably 2 to 5.0, more preferably 0.4 to 3.0, and still more preferably 0.6 to 2.5. If it is 0.2 or more, it is preferable for increasing the hardness, and if it is 5.0 or less, it is preferable from the viewpoint of improving crack resistance, transmittance, and viscosity reduction.
  • the oxide nanoparticle reaction product according to the present invention has the following formula (7): R 6 3 SiO 1/2 ⁇ In the formula, R 6 represents an unsubstituted or substituted monovalent hydrocarbon group or a hydrogen atom.
  • R 6 represents an unsubstituted or substituted monovalent hydrocarbon group or a hydrogen atom.
  • the unit structure represented by the formula (7) R 6 3 SiO 1/2 is an M unit because a silicon atom and one oxygen atom are bonded.
  • R 6 3 SiO 1/2 which is the M unit can be derived from the organopolysiloxane (A), and as described above, the silanol group blocking agent (C ) Can also be derived from the formula (5) X n R 2 3-n SiO 1/2 introduced by the reaction with ( 1 ), and when it is contained in the oxide nanoparticles (B) Or, if added separately, can be derived from it.
  • the unit structure represented by the above formula (8) R 4 SiO 3/2 is also referred to as a T unit because a silicon atom and three oxygen atoms are bonded to each other.
  • it can be derived from the organopolysiloxane (A), when it is contained in the oxide nanoparticles (B), or it can be derived from it when added separately. it can.
  • R 4 in the above formula (8) is, for example, an alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a tert-butyl group, or a cyclohexyl group; an aryl group such as a phenyl group; a vinyl group Alkenyl groups such as allyl groups; epoxy-substituted hydrocarbon groups such as ⁇ -glycidoxypropyl groups and ⁇ - (3,4-epoxycyclohexyl) ethyl groups; hydrogen atoms and the like.
  • an alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a tert-butyl group, or a cyclohexyl group
  • an aryl group such as a phenyl group
  • a methyl group, an ethyl group, a phenyl group, a vinyl group, and a hydrogen atom are preferable, and a methyl group, a vinyl group, and a hydrogen atom are more preferable.
  • R 6 in the above formula (7) is, for example, an alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a tert-butyl group, or a cyclohexyl group; an aryl group such as a phenyl group; a vinyl group; Alkenyl groups such as allyl groups; epoxy group-substituted hydrocarbon groups such as ⁇ -glycidoxypropyl groups and ⁇ - (3,4-epoxycyclohexyl) ethyl groups; hydrogen atoms, etc.
  • an alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a tert-butyl group, or a cyclohexyl group
  • an aryl group such as a phenyl group
  • a methyl group, an ethyl group, a phenyl group, a vinyl group, and a hydrogen atom are preferable, and a methyl group, a vinyl group, and a hydrogen atom are more preferable.
  • the oxide nanoparticle reaction product according to the present invention is characterized in that the organopolysiloxane (A) and the oxide nanoparticles (B) are bonded by a covalent bond.
  • the covalent bond between the organopolysiloxane (A) and the oxide nanoparticles (B) include, for example, alkenyl in the organopolysiloxane (A) or in the oxide nanoparticles (B) (if present).
  • the oxide nanoparticle reaction product includes an M unit represented by the formula (7) and a T unit represented by the formula (8).
  • the sum is preferably more than 50% by weight, more preferably 80% by weight or more, and still more preferably 95% by weight or more.
  • the sum of the component of M unit and T unit in organopolysiloxane (A) is more than 50 weight%, it is preferable at the point which crack resistance improves and the volatile component at the time of thermosetting reduces.
  • the molar ratio of the unit structure represented by the formula (7) to the unit structure represented by the formula (8), [R 6 3 SiO 1/2 ] / [R 4 SiO 3/2 ] (M units / T
  • the unit is preferably from 0.05 to 1.00, more preferably from 0.2 to 0.7, and even more preferably from 0.3 to 0.6.
  • [R 6 3 SiO 1/2 ] / [R 4 1 SiO 3/2 ] is preferably 0.05 or more, because the composition has a low viscosity and the cured product has high crack resistance.
  • [R 6 3 SiO 1/2 ] / [R 4 1 SiO 3/2 ] is 1.00 or less, the cured product has a high hardness, which is preferable because volatile components during heat curing are reduced.
  • the unit represented by the formula (7) R 6 3 SiO 1/2 serving as a molecular end with respect to the unit structure (T unit) represented by the formula (8) R 6 1 SiO 3/2 that forms a three-dimensional bridge It is preferable to optimize the molecular weight and the crosslinking density by adjusting the structure (M unit) ratio [R 6 3 SiO 1/2 ] / [R 4 1 SiO 3/2 ] (M unit / T unit). .
  • the oxide nanoparticle reaction product when the oxide nanoparticle (B) is a silica nanoparticle, R 6 3 SiO excluding the unit structure (Q unit) represented by SiO 4/2 derived from the silica nanoparticle
  • the molar ratio of 1/2 (M unit) to R 4 SiO 3/2 (T unit) and SiO 4/2 (Q unit), [R 6 3 SiO 1/2 ] / ([R 4 1 SiO 3 / 2 ] + [SiO 4/2 ]) ⁇ M unit / (T unit + Q unit) ⁇ is preferably 0.05 to 1.00, more preferably 0.2 to 0.7. More preferably, it is 0.3 to 0.6.
  • the molar ratio is 0.05 or more, it is preferable for reducing the viscosity, and when it is 1.00 or less, the cured product is preferable for increasing the hardness.
  • the oxide nanoparticle reaction product according to the present invention has silanol groups at both ends,
  • R 8 represents an unsubstituted or substituted monovalent hydrocarbon group or a hydrogen atom.
  • a linear bond formed by further reacting a linear polysiloxane (D) having a continuous unit structure gives the cured product flexibility and relieves stress caused by thermal expansion. Therefore, it is preferable from the viewpoint of crack resistance.
  • the unit structure represented by the formula (9) R 8 2 SiO 2/2 is also referred to as a D unit because a silicon atom and two oxygen atoms are bonded.
  • the unit represented by the formula (9) with respect to the remaining unit structure obtained by subtracting the unit structure represented by SiO 2 derived from the oxide nanoparticles (B) from the entire unit structure of the oxide nanoparticle reaction product The molar percentage of the structure (D unit) is preferably 5 to 40 mol%, more preferably 5 to 20 mol%. When it is 5 mol% or more, the flexibility of the cured product is improved, which is preferable from the viewpoint of crack resistance, and when it is 40 mol% or less, it is preferable from the viewpoint of increasing the hardness of the cured product.
  • the unit structure represented by the formula (9) preferably has a linear unit structure in which at least 5 units are continuous, more preferably a linear unit structure in which 10 to 200 units are continuous.
  • the unit is 5 units or more, the flexibility of the cured product is improved and it is preferable from the viewpoint of crack resistance.
  • the unit is 200 units or less, the nanoparticle condensate and the linear segment are easily compatible with each other. Therefore, it is preferable.
  • the weight average molecular weight of the linear polysiloxane (D) is preferably 500 to 20,000, more preferably 500 to 10,000, and still more preferably 1,000 to 8,000. If it is 500 or more, the flexibility of the cured product is improved, and it is preferable from the viewpoint of crack resistance. Therefore, it is preferable.
  • the silanol group concentration in the silica nanoparticle reaction product is preferably 0 to 1.5 mmol / g, more preferably 0 to 1.0 mmol / g, and 0.25 to 0.8. More preferably. It is preferably 1.5 mmol / g or less in terms of suppression of water generation due to dehydration condensation reaction between silanol groups, crack resistance, low viscosity of the silicone composition and storage stability, and improvement of crack resistance Is preferably 0.25 mmol / g or more.
  • the silanol group means a hydroxyl group (OH group) directly bonded to a silicon atom.
  • the silanol group concentration is determined by 29 Si NMR.
  • the oxide nanoparticle reaction product contains at least two alkenyl groups and / or hydrogen atoms directly bonded to silicon atoms in one molecule.
  • the content of the oxide nanoparticles is not limited, but the oxide nanoparticles (B) occupy 1 to 60 parts by weight. It is preferably 5 to 40 parts by weight.
  • the oxide nanoparticles (B) are 1 part by weight or more, the cured product is preferable from the viewpoint of increasing hardness and high elasticity at high temperatures, and when it is 60 parts by weight or less, it is preferable from the viewpoint of decreasing viscosity.
  • the elastic modulus at high temperature of the oxide nanoparticle reaction product is improved.
  • the concentration of hydrogen atoms directly bonded to alkenyl groups and / or silicon atoms in the oxide nanoparticle reaction product of the present invention is preferably 0.5 to 7.0 mmol / g, and preferably 1.0 to More preferably, it is 3.0 mmol / g.
  • An alkenyl group and / or a hydrogen atom directly bonded to a silicon atom can be used as a bridging group, and when the concentration thereof is 0.5 mmol / g or more, it is preferable in terms of increasing the hardness of the cured product. 0.0 mmol / g or less is preferable in terms of cracking properties of the cured product.
  • the concentration of the alkenyl group and / or the hydrogen atom directly bonded to the silicon atom can be measured by, for example, 1 HNMR analysis.
  • the oxide nanoparticle reaction product is an alkoxy group: OR 3 ⁇ wherein R 3 is an alkyl group having 1 to 6 carbon atoms. ⁇ It is preferable that it has an organic group represented by.
  • the organopolysiloxane (A) used in the present invention has the following formula (10): R 1 m Si (OR 3 ) 4-m ⁇ Wherein R 1 is an unsubstituted or substituted monovalent hydrocarbon group, an alkoxy group, a hydroxyl group or a hydrogen atom, R 3 is an alkyl group having 1 to 6 carbon atoms, and m is It is an integer from 0 to 3.
  • OR 3 is the formula (10) in the: those derived from OR 3 or alcoholic solvent.
  • this OR 3 is reduced to alcohol in the course of hydrolysis and condensation reaction, but it is preferable in terms of adhesiveness to remain in the oxide nanoparticle reaction product.
  • R 3 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and a tert-butyl group.
  • R 3 is a methyl group, an ethyl group or the like from the viewpoint of transparency and availability. , An isopropyl group, a butyl group and a tert-butyl group are preferable, and a methyl group is more preferable.
  • 80 mol% or more of the total substituents bonded to the silicon atom contained in the oxide nanoparticle reaction product is an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an alkoxy group, a hydroxyl group, or a hydrogen atom.
  • 90 mol% or more is more preferably an aliphatic hydrocarbon group, alicyclic hydrocarbon group, alkoxy group, hydroxyl group or hydrogen atom, and 95 mol% or more is aliphatic carbonization. It is more preferably a hydrogen group, an alicyclic hydrocarbon group, an alkoxy group, a hydroxyl group or a hydrogen atom.
  • all the substituents bonded to the silicon atom contained in the oxide nanoparticle reaction product are an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an alkoxy group, a hydroxyl group or a hydrogen atom, excluding a phenyl group. It is preferable that Particularly preferred is a case where 95 mol% or more is a linear aliphatic hydrocarbon group, alkoxy group, hydroxyl group or hydrogen atom, and particularly preferred is a methyl group, alkoxy group, hydroxyl group or hydrogen atom.
  • the weight average molecular weight in terms of standard PMMA by gel permeation chromatography (GPC) of the oxide nanoparticle reaction product in the present invention is preferably 500 to 30,000, more preferably 1000 to 25,000. preferable.
  • a weight average molecular weight of 500 or more is preferable from the viewpoint of suppressing volatile components at high temperatures, and a weight average molecular weight of 30,000 or less is preferable from the viewpoint of reducing the viscosity.
  • the viscosity of the oxide nanoparticle reaction product according to the present invention is not limited and may be appropriately adjusted according to the purpose, but is preferably 0.01 to 400 P ⁇ s at 23 ° C., preferably 0.1 to 250 Pa. ⁇ S is more preferable, and 0.5 to 150 Pa ⁇ s is more preferable in terms of ease of operability.
  • the process comprises the step of reacting the organopolysiloxane (A) obtained in step (I) with the oxide nanoparticles (B) to obtain an oxide nanoparticle reaction product.
  • the silanol group of the oxide nanoparticle reaction product is represented by the following formula (2): X n R 2 3-n SiY ⁇ Wherein X is an alkenyl group or a hydrogen atom, R 2 is a saturated unsubstituted or substituted monovalent hydrocarbon group, Y is a halogen atom, and n is 1 or 2 is there.
  • the oxide nanoparticle reaction product obtained in step (II) has the following formula (9) having a reactive substituent selected from the group consisting of a silanol group, an alkoxy group, and a halogen atom at both ends: R 8 2 SiO 2/2 ⁇ Wherein R 8 represents an unsubstituted or substituted monovalent hydrocarbon group or a hydrogen atom.
  • the silanol group of the reaction product with D) is represented by the following formula (2): X n R 2 3-n SiY ⁇ Wherein X is an alkenyl group or a hydrogen atom, R 2 is a saturated unsubstituted or substituted monovalent hydrocarbon group, Y is a halogen atom, and n is 1 or 2 is there. ⁇ And a step of obtaining an oxide nanoparticle reaction product by sealing with a silanol group sealing agent (C).
  • Step (I) for obtaining organopolysiloxane (A)> Following formula (1): R 1 m SiO (4-m) / 2 ⁇ Wherein R 1 is an unsubstituted or substituted monovalent hydrocarbon group, alkoxy group, hydroxyl group or hydrogen atom, and m is an integer of 0 to 3.
  • the organopolysiloxane (A) having a unit structure represented by the following formula (10): R 1 m Si (OR 3 ) 4-m ⁇
  • R 1 is an unsubstituted or substituted monovalent hydrocarbon group, an alkoxy group, a hydroxyl group or a hydrogen atom
  • R 3 is an alkyl group having 1 to 6 carbon atoms
  • m is It is an integer from 0 to 3.
  • the amount of water added is preferably 0.1 to 10 times, preferably 0.4 to 8 times in molar ratio to the substituent represented by OR 3 in formula (10). More preferably, it is 0.8 to 5 times. When the amount of water added is 0.1 times or more, the molecular weight of the organopolysiloxane (A) is increased, and it is preferably 10 times or less from the viewpoint of cost.
  • the organopolysiloxane (A) is produced by hydrolysis and condensation in the presence of a catalyst because the reaction rate of hydrolysis and condensation can be adjusted.
  • the catalyst include an acid catalyst and a base catalyst.
  • the acid catalyst include inorganic acids and organic acids.
  • the inorganic acid include hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, phosphoric acid, boric acid and the like.
  • Examples of the organic acid include acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, oxalic acid, maleic acid, methylmalonic acid, benzoic acid, and p-aminobenzoic acid.
  • Examples include acids, p-toluenesulfonic acid, benzenesulfonic acid, trifluoroacetic acid, formic acid, malonic acid, sulfonic acid, phthalic acid, fumaric acid, citric acid, tartaric acid, citraconic acid, malic acid, glutaric acid and the like.
  • Examples of the base catalyst include inorganic bases and organic bases.
  • Examples of the inorganic base include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, and cesium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide, lithium carbonate, potassium carbonate, and carbonate. Examples thereof include alkali or alkaline earth metal carbonates such as sodium, metal hydrogen carbonates such as potassium hydrogen carbonate and sodium hydrogen carbonate.
  • organic base examples include trialkylamines such as triethylamine and ethyldiisopropylamine; N, N-dialkylaniline derivatives having 1 to 4 carbon atoms such as N, N-dimethylaniline and N, N-diethylaniline; pyridine, 2,6 -Pyridine derivatives which may have an alkyl substituent having 1 to 4 carbon atoms such as lutidine.
  • trialkylamines such as triethylamine and ethyldiisopropylamine
  • N N-dialkylaniline derivatives having 1 to 4 carbon atoms such as N, N-dimethylaniline and N, N-diethylaniline
  • pyridine 2,6 -Pyridine derivatives which may have an alkyl substituent having 1 to 4 carbon atoms such as lutidine.
  • These catalysts can be used alone or in combination of two or more.
  • the organopolysiloxane (A) it is preferable to add an amount of catalyst that makes the pH of the reaction system in the range of 0.01 to 6.0 during the production of the organopolysiloxane (A).
  • Hydrolysis and condensation for producing the organopolysiloxane (A) can be carried out in an organic solvent.
  • the organic solvent that can be used for the condensation reaction include alcohols, esters, ketones, ethers, aliphatic hydrocarbon compounds, aromatic hydrocarbon compounds, amide compounds, and the like.
  • alcohols examples include monohydric alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, and butyl alcohol, polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, glycerin, trimethylolpropane, and hexanetriol, and ethylene.
  • monohydric alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, and butyl alcohol
  • polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, glycerin, trimethylolpropane, and hexanetriol, and ethylene.
  • Glycol monomethyl ether ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether Propylene glycol monopropyl ether, mono-ethers of polyhydric alcohols such as propylene glycol monobutyl ether.
  • the esters include methyl acetate, ethyl acetate, butyl acetate, and ⁇ -butyrolactone.
  • ketones include acetone, methyl ethyl ketone, and methyl isoamyl ketone.
  • ethers in addition to the monoethers of the above polyhydric alcohols, for example, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, ethylene glycol dibutyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether,
  • examples include polyhydric alcohol ethers obtained by alkyl etherifying all hydroxyl groups of polyhydric alcohols such as propylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether, and diethylene glycol diethyl ether, tetrahydrofuran, 1,4-dioxane, anisole, and the like.
  • Examples of the aliphatic hydrocarbon compound include hexane, heptane, octane, nonane, decane, and the like.
  • Examples of the aromatic hydrocarbon compound include benzene, toluene, xylene and the like.
  • Examples of the amide compound include dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like.
  • alcohol solvents such as methanol, ethanol, isopropanol, butanol
  • ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, ethylene glycol monomethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl Ether solvents such as ether, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like are preferable because they are easily mixed with water.
  • These solvents may be used alone or in combination of a plurality of solvents. Moreover, you may react in a bulk, without using the said solvent.
  • the reaction temperature for producing the organopolysiloxane (A) is not particularly limited, but is preferably ⁇ 50 to 200 ° C., more preferably 0 to 150 ° C. A reaction temperature of ⁇ 50 ° C. or higher is preferable from the viewpoint of increasing the reaction rate of hydrolysis and condensation reactions, and a reaction temperature of 200 ° C. or lower suppresses gelation of organopolysiloxane (A). Is preferable.
  • the reaction time for producing the organopolysiloxane (A) is not particularly limited, but is preferably 30 minutes to 24 hours, and more preferably 1 to 6 hours. A reaction time of 30 minutes or longer is preferable for sufficient hydrolysis of the alkoxy group, and a reaction temperature of 24 hours or shorter suppresses gelation of the organopolysiloxane (A). preferable.
  • the oxide nanoparticle reaction product in the present invention is characterized in that the organopolysiloxane (A) and the oxide nanoparticles (B) are bound by a covalent bond.
  • Examples of the step of covalently bonding the organopolysiloxane (A) and the oxide nanoparticles (B) include, for example, the organopolysiloxane (A) or the alkenyl group in the oxide nanoparticles (B) (if any) Addition reaction of hydrogen atoms directly bonded to silicon atoms in the other, silanol groups in organopolysiloxane (A) or oxide nanoparticles (B), and alkoxy groups directly bonded to silicon atoms in the other (When present in the oxide nanoparticles (B)) and a dealcoholization condensation reaction, silanol groups in the organopolysiloxane (A) or oxide nanoparticles (B), and silanol groups in the other And the like.
  • silanol groups in the organopolysiloxane (A) or oxide nanoparticles (B) and alkoxy groups directly bonded to silicon atoms in the other (oxide nanoparticles (B) A step of subjecting to a dealcoholization condensation reaction with a silanol group in the organopolysiloxane (A) or the oxide nanoparticle (B) and a silanol group in the other is preferable, A step of subjecting the silanol group in the organopolysiloxane (A) or the oxide nanoparticles (B) and the silanol group in the other to a dehydration condensation reaction is more preferable.
  • a solvent can be used in the step of causing a dehydration condensation reaction between the silanol group in the organopolysiloxane (A) or the oxide nanoparticle (B) and the silanol group in the other.
  • the solvent the solvent used in the production of the organopolysiloxane (A) may be used as it is, other solvents may be used, and the solvent used in the production of the organopolysiloxane (A) and other solvents are mixed. May be used.
  • a solvent that can be used for example, water, an organic solvent, or a mixed solvent thereof can be used.
  • organic solvent for example, methanol, ethanol, n-propanol, 2-propanol, n-butanol, methoxyethanol, ethoxyethanol, methoxyethane, acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl acetate, ethyl acetate, propyl acetate, ethyl formate Propyl formate, ⁇ -butyrolactone, and the like.
  • the condensation reaction between the oxide nanoparticles (B) and the organopolysiloxane (A) is preferably performed in the presence of a catalyst.
  • the catalyst include the same catalysts used for the production of the organopolysiloxane (A).
  • a base catalyst may be added for further condensation.
  • the base catalyst include inorganic bases and organic bases.
  • the inorganic base include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, and cesium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide, lithium carbonate, potassium carbonate, and carbonate. Examples thereof include alkali or alkaline earth metal carbonates such as sodium, metal hydrogen carbonates such as potassium hydrogen carbonate and sodium hydrogen carbonate.
  • organic base examples include trialkylamines such as triethylamine and ethyldiisopropylamine; N, N-dialkylaniline derivatives having 1 to 4 carbon atoms such as N, N-dimethylaniline and N, N-diethylaniline; pyridine, 2,6 -Pyridine derivatives which may have an alkyl substituent having 1 to 4 carbon atoms such as lutidine.
  • the reaction temperature in the step of subjecting the silanol group in the organopolysiloxane (A) or oxide nanoparticle (B) to the dehydration condensation reaction with the other silanol group is preferably ⁇ 50 to 200 ° C., preferably 0 to 150 ° C. More preferred.
  • a reaction temperature of ⁇ 50 ° C. or higher is preferable from the viewpoint of increasing the reaction rate of hydrolysis and condensation reaction, and a reaction temperature of 200 ° C. or lower suppresses gelation of organopolysiloxane (A). Is preferable.
  • the oxide nanoparticle reaction product obtained in the step (II) has a reactive substituent selected from the group consisting of a silanol group, an alkoxy group, and a halogen atom at both ends, the following formula (9): R 8 2 SiO 2/2 ⁇ Wherein R 8 represents an unsubstituted or substituted monovalent hydrocarbon group or a hydrogen atom.
  • the linear polysiloxane (D) having a continuous R 8 2 SiO 2/2 unit structure is further reacted with a linear polysiloxane (D) having a continuous unit structure represented by It can be introduced (step (II ′)).
  • the order in which the organopolysiloxane (A), the oxide nanoparticles (B), and the linear polysiloxane (D) are reacted is not particularly limited, and among (A), (B), and (D) Examples include a method in which any two types are reacted first and then the remaining one type is reacted, or a method in which all of (A), (B), and (D) are reacted at the same time.
  • the reactive substituent of the linear polysiloxane (D) in which the unit structure represented by R 8 2 SiO 2/2 is continuous forms a siloxane bond by a condensation reaction with silanol or alkoxysilane
  • Specific examples include a silanol group, an alkoxy group, and a halogen atom. From the viewpoint of availability and handling, a silanol group, an alkoxy group, and a chloro group are more preferable, and a silanol group is more preferable.
  • the linear polysiloxane (D) having a continuous unit structure represented by R 8 2 SiO 2/2 may be diluted with a solvent or added in bulk.
  • the reaction temperature in the step of subjecting the linear polysiloxane (D) to the dehydration condensation reaction is preferably ⁇ 50 ° C. to 200 ° C., more preferably 0 ° C. to 150 ° C.
  • a reaction temperature of ⁇ 50 ° C. or higher is preferable from the viewpoint of increasing the reaction rate of hydrolysis and condensation reactions, and a reaction temperature of 200 ° C. or lower suppresses gelation of organopolysiloxane (A). Is preferable.
  • the reaction time of the step of subjecting the linear polysiloxane (D) to the dehydration condensation reaction with the condensate of the oxide nanoparticles (B) and the polysiloxane compound (A) is preferably 30 minutes to 12 hours.
  • reaction time of 30 minutes or more is preferred in terms of high crack resistance because hydrolysis and condensation reactions proceed and the molecular weight increases, and a reaction time of 12 hours or less is preferred for organopolysiloxane (A ) In terms of suppressing gelation.
  • silanol groups can be sealed by subjecting the silanol groups to an organosilylation treatment.
  • the silanol group of the silica nanoparticle reaction product obtained in the step (II) or the silanol group of the reaction product of the silica nanoparticle reaction product obtained in the step (II ′) and the linear polysiloxane (D) is as follows: Formula (2): X n R 2 3-n SiY ⁇ Wherein X is an alkenyl group or a hydrogen atom, R 2 is a saturated unsubstituted or substituted monovalent hydrocarbon group, Y is a halogen atom, and n is 1 or 2 is there. ⁇ , The oxide nanoparticle reaction product can be obtained. Of the above silanol sealants, the case where n is an integer of 1 to 3 is particularly preferable.
  • the amount of the silanol group blocking agent (C) used is changed to change the silanol in the oxide nanoparticle reaction product.
  • the base concentration can be adjusted.
  • the amount of the compound represented by the above formula (2) is not particularly limited as long as the amount of the silanol group is adjusted as appropriate, but for example, the amount of addition in the case of using chlorosilane is relative to the silanol group.
  • the molar ratio is about 0.2 to 1.1.
  • an alkenyl group such as trimethylchlorosilane or a silanol group sealing material having no hydrogen atom can be used in combination.
  • a solvent may be used when the silanol group is sealed by organosilylation treatment of the silanol group.
  • the solvent include esters, ethers, aliphatic hydrocarbon compounds, directional group hydrocarbon compounds, and the like.
  • the esters include methyl acetate, ethyl acetate, butyl acetate and the like.
  • ketones include acetone, methyl ethyl ketone, and methyl isoamyl ketone.
  • ethers in addition to the monoethers of the above polyhydric alcohols, for example, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, ethylene glycol dibutyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, Polyhydric alcohol ethers obtained by alkyl etherifying all hydroxyl groups of polyhydric alcohols such as propylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol diethyl ether, and tetrahydrofuran, 1,4-dioxane, anisole, etc. Can be mentioned.
  • the aliphatic hydrocarbon compound include hexane, heptane, octane, nonane, decane, and the like.
  • chlorosilanes are preferably used from the viewpoint of high reactivity.
  • chlorosilanes include monochlorinated (monochloro) silanes such as trimethylchlorosilane, dimethylvinylchlorosilane, and dimethylchlorosilane.
  • the silanol group when the silanol group is sealed by organosilylation treatment of the silanol group using chlorosilanes, it is preferable to neutralize the generated acid with a Lewis base.
  • the Lewis base include pyridine, piperidine, triethylamine and the like.
  • the reaction temperature is preferably 20 to 150 ° C., more preferably 20 to 50 ° C. A reaction temperature of 20 ° C. or higher is preferable in terms of reaction rate, and a reaction temperature of 150 ° C. or lower is preferable in terms of cost.
  • the most preferable from the viewpoint of the reactivity of the alkenyl group or hydrogen group of the resulting product is the step (I) in which the alkenyl group or It is preferable to introduce an alkenyl group or a hydrogen group in step (III) without containing a hydrogen group.
  • a silicone composition can be obtained using the oxide nanoparticle reaction product according to the present invention.
  • the oxide nanoparticle reaction product contains both of two types (the following i and ii) of oxide nanoparticle reaction products.
  • i an oxide nanoparticle reactant containing an alkenyl group (corresponding to X being an alkenyl group in the above formula (2))
  • ii an oxidation containing a hydrogen atom directly bonded to a silicon atom
  • a product nanoparticle reactant (corresponding to X in the above formula (2) is a hydrogen atom) is included.
  • the oxide nanoparticles are uniformly dispersed in the silicone composition, which is preferable in terms of crack resistance and hardness. Since a cross-linking group which is thermally photo-stable can be formed after the particle reactants undergo a curing reaction, it is preferable in terms of excellent transparency.
  • the silicone composition containing the oxide nanoparticle reaction product (a) of the present invention preferably contains a hydrosilylation catalyst (b).
  • the hydrosilylation catalyst (b) is a catalyst for promoting the addition reaction between the unsaturated hydrocarbon in the unsaturated hydrocarbon group and the hydrogen atom directly bonded to the silicon atom in the SiH group, and is a well-known hydrosilylation catalyst. Can be used.
  • hydrosilylation catalysts include platinum group metals such as platinum (including platinum black), rhodium and palladium; H 2 PtCl 4 ⁇ nH 2 O, H 2 PtCl 6 ⁇ nH 2 O, NaHPtCl 6 ⁇ nH 2 O, KHPtCl 6 ⁇ nH 2 O, Na 2 PtCl 6 ⁇ nH 2 O, K 2 PtCl 4 ⁇ nH 2 O, PtCl 4 ⁇ nH 2 O, PtCl 2 , Na 2 HPtCl 4 ⁇ nH 2 O ⁇ where n is 0 It is an integer of ⁇ 6, preferably 0 or 6.
  • Such as platinum chloride, chloroplatinic acid and chloroplatinate; alcohol-modified chloroplatinic acid; complex of chloroplatinic acid and olefins; platinum group metals such as platinum black and palladium supported on a support such as alumina, silica and carbon Rhodium-olefin complex; Chlorotris (triphenylphosphine) rhodium (Wilkinson catalyst); Platinum chloride, chloroplatinic acid or chloroplatinate and vinyl group-containing siloxane, divinyltetramethyldisiloxane platinum complex, vinyl group And a complex with a cyclic siloxane.
  • hydrosilylation catalysts may be used alone or in combination of two or more hydrosilylation catalysts.
  • the hydrosilylation catalyst (b) is preferably contained in the silicone composition in an amount of 0.01 to 1000 ppm, more preferably 0.2 to 100 ppm in terms of the weight of the platinum group metal. 0.01 ppm or more is preferable in terms of reaction efficiency, and 1000 ppm or less is preferable in terms of transparency of the cured product.
  • the silicone composition containing the oxide nanoparticle reaction product (a) of the present invention preferably contains an adhesion-imparting agent (c) from the viewpoint of adhesion with various materials.
  • the adhesion-imparting agent (c) include an epoxy functional group-containing compound and alkoxysilane.
  • Preferred adhesion assistants are epoxy group and / or alkoxy group-containing organohydrogenpolysiloxane compounds, and particularly preferred adhesion assistants are epoxy group-containing organohydrogenpolysiloxane compounds.
  • the addition amount of the adhesiveness imparting agent (c) is preferably 0.01 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the silicone composition. Addition of 0.01 parts by mass or more is preferable from the viewpoint of adhesiveness, and 20 parts by mass or less is preferable from the viewpoint of transparency and crack resistance.
  • the silicone composition of the present invention may contain an inorganic filler.
  • the inorganic filler preferably has an average primary particle size equal to or less than the wavelength used in the intended application, and the average primary particle size is more preferably 100 nm or less.
  • the inorganic filler in the resin, for example, mechanical properties may be improved and thermal conductivity may be improved.
  • the lower limit of the average primary particle size of the inorganic filler is not particularly limited, but is preferably 0.1 nm or more because the resin composition has a low viscosity and good moldability.
  • the average primary particle diameter is a value obtained by calculation from the specific surface area of BET.
  • the addition amount of the inorganic filler can be selected according to the purpose, but it is, for example, 1 to 60 parts by mass, more preferably 5 to 60 parts by mass, and further preferably 5 to 40 parts by mass with respect to 100 parts by mass of the resin composition.
  • the silicone composition of the present invention may contain a phosphor or a phosphor for the purpose of converting the color of the emission wavelength. These materials are preferably mixed with the resin composition and any other components using a known method such as centrifugation. The obtained mixture may be defoamed by vacuum defoaming or the like.
  • the average secondary particle size of the oxide nanoparticle reaction product in the varnish is preferably 5 to 100 nm.
  • the maximum value of the secondary particle size of the oxide nanoparticles is preferably 200 nm or less.
  • the average secondary particle size of the oxide nanoparticle reaction product in the varnish is the average secondary particle size of the oxide nanoparticle reaction product before curing, and is measured by a particle size distribution measuring device using a laser light source. It is possible.
  • the average secondary particle size of the oxide nanoparticle reaction product in the varnish is in the above range, both high transparency of the cured product and high elastic modulus at high temperature can be achieved.
  • the average secondary particle size is particularly preferably 25 to 75 nm from the viewpoint of achieving both elastic modulus and transparency.
  • the cross-linking groups of the oxide nanoparticle reaction product are preferably spatially spread. Therefore, while maintaining the transparency of the silicone cured product, It is estimated that a high elastic modulus can be obtained.
  • the amount of volatile components in the varnish (that is, the amount of volatile components when the mass of the varnish is 100% by mass) is preferably less than 1% by mass.
  • the amount of volatile components of the varnish means that the varnish is heated from room temperature to 100 ° C. at 10 ° C./minute, then held for 1 hour, and then heated to 150 ° C. at 10 ° C./minute, Next, it means the value when the weight loss during the holding for 1 hour is measured by the thermal analyzer.
  • the amount of the volatile component obtained by the above measurement is a value that assumes the amount of the volatile component that volatilizes during the curing process from the varnish to the silicone cured product.
  • the volatile component in the varnish include a solvent and a low molecular silicon compound.
  • the amount of the volatile component in the varnish is less than 1% by mass, in addition to satisfying both transparency and a high elastic modulus at high temperature, when used as a die attach layer of the light emitting chip, This is preferable in that the concern of contaminating the light emitting chip can be reduced.
  • the amount of volatile components in the varnish is more preferably 0.8% by mass or less, and still more preferably 0.6% by mass or less.
  • the silicone composition of the present invention can be cured using a known method. Specifically, a method of curing by heating and a method of curing by irradiating ultraviolet rays (UV) can be mentioned.
  • the temperature for curing by heating is preferably in the range of 20 to 200 ° C.
  • the curing reaction can be carried out under an atmosphere of inert gas such as nitrogen, helium, neon, argon, krypton, xenon, carbon dioxide, lower saturated hydrocarbon gas or air, under reduced pressure or under pressure.
  • inert gas such as nitrogen, helium, neon, argon, krypton, xenon, carbon dioxide, lower saturated hydrocarbon gas or air, under reduced pressure or under pressure.
  • gases can be used as 1 type, or 2 or more types of mixed gas.
  • the silicone cured product according to the present invention is a silicone cured product containing the aforementioned polyorganosiloxane and oxide nanoparticles, and the polyorganosiloxane has a hydrocarbon group and the hydrocarbon group and silicon atom.
  • the oxide nanoparticles have an average primary particle size of 1 to 30 nm and an average secondary particle size of 5 to 100 nm.
  • the oxide can be dispersed while minimizing light scattering.
  • the nanoorganism functions as a crosslinking point capable of forming a crosslinked structure by covalent bond with the polyorganosiloxane, so that the polyorganosiloxane is three-dimensionally crosslinked through the oxide nanoparticles.
  • the high elastic modulus at high temperature indicates that the elastic modulus at 150 ° C., which is the upper limit of the LED operating temperature, exceeds 70 MPa.
  • the average primary particle size is preferably 5 to 25 nm, and the average secondary particle size is particularly preferably 20 to 65 nm. .
  • the primary particle size is the diameter of the smallest particle (primary particle) constituting the powder
  • the secondary particle size is the diameter of the aggregated primary particles (secondary particles).
  • These particle diameters can be estimated by observing a cross-sectional TEM (transmission electron microscope) photograph of the cured silicone.
  • the density of the oxide nanoparticles is usually larger than the density of the polyorganosiloxane, and the oxide nanoparticles are observed as black particles in the TEM photograph.
  • the average primary particle size and average secondary particle size of the oxide nanoparticles in the cured product are measured by measuring the primary and secondary particle sizes of the oxide nanoparticles from a high magnification (for example, 50,000 times) TEM photograph. Each is an average.
  • the silicone cured product of the present invention is characterized in that the polyorganosiloxane has a crosslinked structure due to the bond between a hydrocarbon group and a silicon atom.
  • the term “polyorganosiloxane has a cross-linked structure formed by a bond between a hydrocarbon group and a silicon atom” means that a structure in which silicon atoms are connected by a hydrocarbon group exists in the polyorganosiloxane.
  • Examples of the structure of the hydrocarbon group include a cyclic structure, a straight chain structure, and a branched structure. From the viewpoint of heat resistance of the silicone cured product, a preferred hydrocarbon group structure is a linear structure represented by — (CH 2 ) n — and the like.
  • the crosslinked structure is Si— (CH 2 ) n —Si expressed.
  • n is an integer of 1 or more, preferably n is 10 or less, more preferably 2 or less.
  • the presence of the crosslinked structure in the cured silicone can be confirmed by a method such as NMR analysis.
  • the Si— (CH 2 ) 2 —Si structure is particularly preferable from the viewpoint of the heat resistance of the silicone cured product. This structure can be obtained, for example, by subjecting an ethenyl group directly bonded to a silicon atom and a hydrogen atom directly bonded to a silicon atom to a hydrosilylation reaction using, for example, a platinum catalyst.
  • the preferred composition ratio of the polyorganosiloxane and the oxide nanoparticles is 95: 5 to 50:50, particularly preferably 90:10 to 60:40, based on mass.
  • the said structural ratio is a ratio of the polyorganosiloxane and oxide nanoparticle which exist in a silicone hardened
  • the mass of the polyorganosiloxane can be estimated by subtracting the amount reduced by condensation or the like from the total mass of monomers constituting the polyorganosiloxane.
  • the composition ratio of the oxide nanoparticles to the total of the polyorganosiloxane and the oxide nanoparticles is preferably 5% by mass or more. In order to achieve high transparency and easy handling viscosity, the composition ratio of the oxide nanoparticles to the total of the polyorganosiloxane and the oxide nanoparticles is preferably 50% by mass or less.
  • the maximum secondary particle size of the oxide nanoparticles is preferably 200 nm or less. This is because by controlling the secondary particle size within this range, both the transparency of the cured silicone and the high elastic modulus at high temperature can be achieved.
  • the “maximum value of the secondary particle size” referred to here is not the average value but the maximum value of the secondary particle size observed on the TEM photograph. Moreover, the maximum value of the secondary particle diameter is preferably 5 nm or more.
  • the silicone cured product of the present invention can be a film having a thickness of preferably 1 ⁇ m to 5 mm, more preferably 11 ⁇ m to 3 mm, and particularly preferably 3 ⁇ m to 2 mm.
  • the thickness is 5 mm or less, it is preferable because cracks are hardly generated in the silicone cured product.
  • the thickness is 1 ⁇ m or more, good adhesion tends to be secured when adhesion to the adherend is required. Therefore, it is preferable.
  • the silicone cured product according to the present invention is suitably used for an optical semiconductor package.
  • the optical semiconductor package of the present invention will be described below.
  • the optical semiconductor package of the present invention is an optical semiconductor package comprising a silicone cured product containing the organopolysiloxane (A) and the oxide nanoparticles (B), and the oxide nanoparticles in the silicone cured product Is the optical semiconductor package having an average primary particle size of 1 to 30 nm and an average secondary particle size of 5 to 100 nm.
  • the average primary particle size and average secondary particle size of the oxide nanoparticles in the silicone cured product can be adjusted to the above ranges.
  • high transparency of the optical semiconductor package, high elastic modulus at high temperature, and high thermal conductivity Can be achieved.
  • the reason why high transparency, high elastic modulus at high temperature, and high thermal conductivity are compatible is not clear, but by controlling the particle size of oxide nanoparticles, light scattering is minimized.
  • the oxide nanoparticles are uniformly dispersed in the polyorganosiloxane network, resulting in a nanocomposite structure, minimizing the decrease in the elastic modulus of the cured silicone at high temperatures, and reducing the distance between the particles. Therefore, it is estimated that heat conduction can be improved.
  • the high elastic modulus at high temperature indicates that the elastic modulus at 150 ° C., which is the upper limit of the operation temperature of the LED, exceeds 70 MPa.
  • high thermal conductivity refers to that having a thermal conductivity of 0.25 W / (m ⁇ K) or more.
  • the average primary particle size is preferably 5 to 25 nm, and the average secondary particle size is 20 to 65 nm. It is preferable that In the optical semiconductor package of the present invention, the maximum secondary particle size of the oxide nanoparticles (B) is preferably 200 nm or less. This is because by controlling the secondary particle size within this range, the transparency of the silicone cured product, the high elastic modulus at high temperature, and the high thermal conductivity can be achieved at the same time.
  • the “maximum value of the secondary particle size” is not the average value but the maximum value of the secondary particle size observed on the TEM photograph.
  • the maximum value of the secondary particle diameter is preferably 5 nm or more.
  • the primary particle size is the diameter of the smallest particle (primary particle) constituting the powder
  • the secondary particle size is the diameter of the aggregated primary particles (secondary particles).
  • These particle sizes can be measured by observing a cross-sectional TEM (transmission electron microscope) photograph of the cured silicone.
  • the density of the oxide nanoparticles (B) is usually larger than the density of the organopolysiloxane (A), and the oxide nanoparticles are observed as black particles in the TEM photograph.
  • the average primary particle size and average secondary particle size of the oxide nanoparticles in the cured product are measured by measuring the primary and secondary particle sizes of the oxide nanoparticles from a high magnification (for example, 50,000 times) TEM photograph. Is the average of the values obtained.
  • the content of the oxide nanoparticles (B) in the silicone cured product is preferably 5% by mass or more, and on the other hand, from the viewpoint of maintaining the toughness of the silicone cured product, 80% by mass. % Or less is preferable.
  • the organopolysiloxane (A) has a hydrocarbon group and has a crosslinked structure formed by a bond between the hydrocarbon group and a silicon atom.
  • the organopolysiloxane has a cross-linked structure formed by a bond between a hydrocarbon group and a silicon atom means that a structure in which silicon atoms are connected by a hydrocarbon group exists in the organopolysiloxane.
  • Examples of the structure of the hydrocarbon group include a cyclic structure, a straight chain structure, and a branched structure.
  • a preferred hydrocarbon group structure is a linear structure represented by — (CH 2 ) n — etc., and in this case, the crosslinked structure is Si— (CH 2 ) n —Si. It is expressed.
  • n is an integer of 1 or more, preferably 10 or less, more preferably 2 or less.
  • the presence of the crosslinked structure in the cured silicone can be confirmed by a method such as NMR analysis.
  • the method for forming a crosslinked structure with a hydrocarbon group there is no particular limitation on the method for forming a crosslinked structure with a hydrocarbon group, and examples of the formation method include condensation reaction and addition reaction.
  • the Si— (CH 2 ) 2 —Si structure is preferable from the viewpoint of the heat resistance of the silicone cured product. This structure can be obtained, for example, by subjecting an ethenyl group directly bonded to a silicon atom and a hydrogen atom directly bonded to a silicon atom to a hydrosilylation reaction using, for example, a platinum catalyst.
  • the cured silicone used in the optical semiconductor package of the present invention is an oxide in which an organopolysiloxane having an alkenyl group directly bonded to a silicon atom and / or a hydrogen atom directly bonded to a silicon atom and oxide nanoparticles are covalently bonded. It is preferably obtained by curing a varnish containing a nanoparticle reaction product.
  • the thickness of the cured silicone used in the optical semiconductor package of the present invention is preferably 1 ⁇ m to 5 mm, more preferably 1 ⁇ m to 3 mm, and even more preferably 1 ⁇ m to 2 mm.
  • the thickness is 5 mm or less, it is difficult for cracks to occur in the cured silicone product.
  • the thickness is 1 ⁇ m or more, good adhesion tends to be ensured when adhesion to the adherend is required.
  • the ratio of the area of the particle portion when the image obtained by the cross-sectional TEM analysis of the cured silicone used in the optical semiconductor package of the present invention is binarized and is preferably more than 10%.
  • the ratio is more preferably 20% or more, and still more preferably 50% or more, from the viewpoint of achieving high elastic modulus and high thermal conductivity.
  • the dispersity of the distance connecting the nearest particles is less than 0.4. It is preferable.
  • the average distance between nearest particles is preferably less than 100 nm.
  • the distance is more preferably less than 50 nm, and from the viewpoint of achieving high transparency, it is preferably 30 nm or more.
  • the cured silicone of the present invention can be applied particularly suitably for use as a die attach layer for bonding a light emitting chip on a support substrate or as a die bonding material.
  • the silicone cured product of the present invention has a high elastic modulus at high temperature, and long-term reliability due to low stress generated on the bonding surface between the chip and the support substrate during long-term use of the light-emitting chip that repeats operation from room temperature to high temperature. There is a feature that is good.
  • limiting in particular in the structure as a die attach layer For example, the structure by which the copper material which carried out the silver plating process is arrange
  • the forming method include a method in which a varnish that is a precursor of a silicone cured product is applied on a silver-plated copper material with a dispenser or the like, and then a light emitting chip is mounted and the varnish is cured.
  • the cured silicone product of the present invention can be suitably used also in a method in which a light emitting chip is bonded and disposed on an electrode by a flip chip method. That is, the cured silicone of the present invention can be suitably applied for use as an underfill layer when a light emitting chip is disposed on a support substrate.
  • a varnish that is a precursor of a silicone cured product is poured into the underfill layer and cured. The method of forming can be illustrated.
  • the present invention also relates to the following silicone compositions.
  • the silicone composition of the present invention can be a silicone composition containing the aforementioned oxide nanoparticle reaction product and free organopolysiloxane (A ′).
  • a ′ free organopolysiloxane
  • the organopolysiloxane (A ′) is preferably the following formula (7 ′): R 6 ' 3 SiO 1/2 ⁇ Wherein R 6 ' represents an unsubstituted or substituted monovalent hydrocarbon group or a hydrogen atom.
  • Unit structure (M unit ′) represented by the following formula (8 ′): R 4'SiO 3/2 ⁇ Wherein, R 4'is a hydrocarbon group or a hydrogen atom of an unsubstituted or substituted monovalent. ⁇ , And the sum of these components in the organopolysiloxane is preferably more than 50% by weight,
  • the molar ratio of the unit structure, [R 6'3 SiO 1/2] / [R 4'SiO 3/2] (M units '/ T unit') is preferably a 0.05-1.00 .
  • the molecular weight of the organopolysiloxane (A ′) is reduced by including the M form in the organopolysiloxane (A ′) that is not bonded to the oxide nanoparticles, thereby achieving a low viscosity of the silicone composition.
  • the cross-linking group involved in the hydrosilylation reaction is bonded to the M-form silicon, the hydrosilylation proceeds with high efficiency, and the hardness of the cured product can be increased.
  • the siloxane bond density of organopolysiloxane (A ′) is optimized, and a cured product It is possible to achieve higher hardness and lower viscosity of the silicone composition.
  • R 6 ′ in the above formula (7 ′) is, for example, an alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a tert-butyl group, or a cyclohexyl group; an aryl group such as a phenyl group; Groups, alkenyl groups such as allyl groups; epoxy group-substituted hydrocarbon groups such as ⁇ -glycidoxypropyl groups and ⁇ - (3,4-epoxycyclohexyl) ethyl groups; From the viewpoint of ease, a methyl group, an ethyl group, a phenyl group, a vinyl group, and a hydrogen atom are preferable, and a methyl group, a vinyl group, and a hydrogen atom are more preferable.
  • an alkyl group such as a methyl group, an ethyl group, a prop
  • the oxide nanoparticle reaction product contains an M unit ′ represented by the formula (7 ′) and a T unit ′ represented by the formula (8 ′), and is contained in the organopolysiloxane (A ′).
  • the sum of these components is preferably more than 50% by weight, more preferably 80% by weight or more, and still more preferably 95% by weight or more.
  • the sum of the component of M unit 'and T unit' in organopolysiloxane (A ') is more than 50 weight%, it is preferable at the point which crack resistance improves and the volatile component at the time of thermosetting reduces.
  • the molar ratio of the unit structure of Formula (7 ') for the unit structure of Formula (8'), [R 6'3 SiO 1/2] / [R 4'SiO 3/2] ( The M unit ′ / T unit ′) is 0.05 to 1.00.
  • the organopolysiloxane (A ′) has the following formula (5 ′): X'n R 2'3-n SiO 1/2 ⁇ Wherein, X'is an alkenyl group or a hydrogen atom, R 2'is a saturated substituted or unsubstituted monovalent hydrocarbon group, and n is an integer of 1-3. ⁇ It is preferable to have a unit structure represented by By including the unit structure represented by the formula (5 ′), the reactivity of the curing reaction by hydrosilylation of the silicone composition is improved, so that the molecular weight of the cured product is increased, and a hardened product with higher hardness is obtained. It is done.
  • X ′ is an alkenyl group or a hydrogen atom
  • alkenyl group a vinyl group, allyl group, butenyl group, pentenyl group, hexenyl group, cyclohexenyl group, cyclohexenylethyl group, norbornene
  • examples include a nylethyl group, a heptenyl group, an octenyl group, a nonenyl group, a decenyl group, and a styryl group.
  • X ′ is preferably an allyl group, a vinyl group, or a hydrogen atom, and more preferably a vinyl group or a hydrogen atom.
  • R 2' is unsubstituted or substituted monovalent hydrocarbon group having no unsaturated bond, i.e., a saturated substituted or unsubstituted monovalent hydrocarbon group, for example, Alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, tert-butyl group and cyclohexyl group; epoxy such as ⁇ -glycidoxypropyl group and ⁇ - (3,4-epoxycyclohexyl) ethyl group Group-containing hydrocarbon group and the like, and in terms of transparency, crack resistance and availability, methyl group, ethyl group, ⁇ -glycidoxypropyl group, ⁇ - (3,4-epoxycyclohehexyl) ethyl group Group-
  • the organopolysiloxane (A ′) preferably includes a unit structure represented by the following formula (6 ′). : R 7 ' 3 SiO 1/2 ⁇ Wherein R 7 ' is a saturated unsubstituted or substituted monovalent hydrocarbon group. ⁇
  • the molar ratio of the unit structure represented by the formula for the formula (6 ') is the unit structure (5') is, [X'n R 2'3- n SiO 1/2] / [R 7' 3 SiO 1/2 ] is preferably 0.2 to 5.0, more preferably 0.4 to 3.0, and still more preferably 0.6 to 2.5.
  • the organopolysiloxane (A ′) preferably contains at least two alkenyl groups and / or hydrogen atoms directly bonded to silicon atoms in one molecule from the viewpoint of curability, and from the viewpoint of increasing hardness, More preferably, it has only one of an alkenyl group and a hydrogen atom directly bonded to a silicon atom.
  • 80 mol% or more of the total substituents bonded to the silicon atom contained in the organopolysiloxane (A ′) is an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an alkoxy group, a hydroxyl group, or a hydrogen atom.
  • 90 mol% or more is more preferably an aliphatic hydrocarbon group, alicyclic hydrocarbon group, alkoxy group, hydroxyl group or hydrogen atom, and 95 mol% or more is aliphatic carbonization. It is more preferably a hydrogen group, an alicyclic hydrocarbon group, an alkoxy group, a hydroxyl group or a hydrogen atom.
  • all the substituents bonded to the silicon atom contained in the silica nanoparticle reaction product are an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an alkoxy group, a hydroxyl group or a hydrogen atom excluding a phenyl group. It is preferable.
  • the weight average molecular weight in terms of standard PMMA by gel permeation chromatography (GPC) of the organopolysiloxane (A ′) in the present invention is preferably 500 to 30,000, more preferably 500 to 25,000. preferable.
  • a weight average molecular weight of 500 or more is preferable from the viewpoint of suppressing volatile components at high temperatures, and a weight average molecular weight of 30,000 or less is preferable from the viewpoint of reducing the viscosity.
  • Weight ratio of oxide nanoparticle reaction product according to the present invention to the free organopolysiloxane (A ′), [weight of oxide nanoparticle reaction product] / [free organopolysiloxane (A ′) ] (Hereinafter also simply referred to as “(A + B) / A ′”) is preferably 0.05 to 2.3, more preferably 0.05 to 1.1.
  • weight of oxide nanoparticle reaction product] / [free organopolysiloxane (A ′)] is 0.05 or more, it is preferable in terms of high hardness and high crack resistance, and [oxide nanoparticle
  • the weight of the reaction product] / [free organopolysiloxane (A ′)] is preferably 2.3 or less from the viewpoint of lowering the viscosity.
  • the said weight ratio is calculated
  • the weight ratio is measured, for example, by liquid phase chromatography (LC-VP) manufactured by SHIMAZU, column (Imktak, Prest FT-C18 [4.6 mm ID ⁇ 30 mm]), detection unit (ESLD Evap 120 ° C., Neb 50 C., Gas 1.20), flow rate (0.5 mL / min), moving bed (gradient shown in Table 1 below) was used, and 10 ⁇ L of a solution obtained by diluting 10 mg of sample with 1 mL of THF was injected. When the sample amount is small, a sufficient sample amount can be obtained by repeating this operation.
  • LC-VP liquid phase chromatography
  • a silicone composition can be obtained using the chemical conjugate of organopolysiloxane (A) and oxide nanoparticles (B) and / or organopolysiloxane (A ′) according to the present invention.
  • the chemical conjugate of the organopolysiloxane (A) and the oxide nanoparticles (B) and / or the organopolysiloxane (A ′) two types (the following i and the following ii) organopolysiloxane (A) It is preferable to contain a chemical conjugate of olefin and oxide nanoparticles (B) and / or organopolysiloxane (A ′).
  • X is Ii: a chemical conjugate of organopolysiloxane (A) containing a hydrogen atom directly bonded to a silicon atom and oxide nanoparticles (B) and / or organopolysiloxane (A corresponding to an alkenyl group) ') (Corresponding to X being a hydrogen atom in the above formula (5)) is preferable.
  • Silica nanoparticles are uniformly dispersed in the silicone composition by containing a chemical conjugate of these two types of organopolysiloxane (A) and oxide nanoparticles (B) and / or organopolysiloxane (A ′). Therefore, it is preferable in terms of crack resistance and hardness, and the chemical combination of each organopolysiloxane (A) and oxide nanoparticle (B) and / or organopolysiloxane (A ′) is cured. In view of excellent transparency, it is possible to form a thermo-photostable cross-linking group.
  • the free organopolysiloxane (A ′) is preferably produced simultaneously with the production of the oxide nanoparticle reaction product. Dispersibility of the nanoparticle reactant is improved because the reaction product of the organopolysiloxane (A) and the oxide nanoparticles (B) and the organopolysiloxane (A ′) are produced at the same time. The transparency is improved, and the deterioration of crack resistance due to the local aggregation of the nanoparticle reaction product can also be suppressed. Although the reason is not clear, the amount of volatile components during thermosetting should be reduced. Can do.
  • the silica nanoparticle reaction product and / or organopolysiloxane (A ′) synthesized in the following Synthesis Examples 1 to 44 were measured according to the following (1), (2) and (3).
  • PGMEA propylene glycol-1-monomethyl ether-2-acetate
  • a particle reaction product and an organopolysiloxane (A ′) (polymer 4) were obtained.
  • 101 parts by weight of chlorodimethylvinylsilane was added dropwise and reacted at room temperature for 1 hour.
  • PGMEA propylene glycol-1-monomethyl ether-2-acetate
  • a particle reaction product and organopolysiloxane (A ′) (polymer 18) were obtained.
  • PGMEA and 102 parts by weight of pyridine were added and mixed, and then 101 parts by weight of chlorodimethylvinylsilane was added dropwise and reacted at room temperature for 1 hour.
  • the polymer was dried to obtain a silica nanoparticle reaction product and organopolysiloxane (A ′) (Vi-polymer 29).
  • a ′ organopolysiloxane
  • 186 parts by weight of methyltrimethoxysilane, 41.4 parts by weight of trimethoxysilane, 40.3 parts by weight of ethoxytrimethylsilane, and 188 parts by weight of 2-propanol were charged and mixed.
  • 188 parts by weight of distilled water and 0.075 part by weight of 3.7% concentrated hydrochloric acid were placed in a container, mixed, and dropped over 10 minutes. After completion of the dropping, a reflux condenser was provided and refluxed at 110 ° C.
  • the polymer was dried to obtain a silica nanoparticle reaction product and organopolysiloxane (A ′) (Vi-polymer 32).
  • a ′ organopolysiloxane
  • 234 parts by weight of methyltrimethoxysilane, 11.8 parts by weight of trimethoxysilane, 44.5 parts by weight of ethoxytrimethylsilane, and 188 parts by weight of 2-propanol were charged and mixed.
  • 207 parts by weight of distilled water and 0.075 part by weight of 3.7% concentrated hydrochloric acid were placed in a container, mixed, and then dropped over 10 minutes. After completion of the dropping, a reflux condenser was provided and refluxed at 110 ° C.
  • Example 39 122 parts by mass of methyltrimethoxysilane, 22.2 parts by mass of ethoxytrimethylsilane, and 100 parts by mass of 2-propanol were charged and mixed. Separately, 104 parts by mass of distilled water and 0.0040 part by mass of 37% concentrated hydrochloric acid were placed in a container, mixed, and then added dropwise over 10 minutes. After completion of dropping, the mixture was refluxed at 100 ° C. for 1.5 hours under a nitrogen stream using a reflux condenser and an oil bath to obtain a silica nanoparticle reaction product and organopolysiloxane (A ′).
  • reaction solution is cooled to room temperature, 100 parts by mass of PGMEA is added, the solvent is removed using an evaporator, and a silica nanoparticle reaction product containing a large amount of silanol groups and organopolysiloxane (A ′) (polymer 39) are obtained.
  • a ′ organopolysiloxane
  • 160 parts by mass of PGMEA and 45.1 parts by mass of pyridine were added to and mixed with this polymer 39, and then 57.0 parts by mass of chlorodimethylvinylsilane was added dropwise and reacted at room temperature for 1 hour.
  • PGMEA propylene glycol-1-monomethyl ether-2-acetate
  • the solvent is removed using an evaporator, and silica nanoparticles containing a large amount of silanol groups are contained.
  • a particle reaction product and organopolysiloxane (A ′) (Vi-polymer 41) were obtained. Further, 192 parts by weight of methyltrimethoxysilane, 48.2 parts by weight of trimethoxysilane, 46.2 parts by weight of ethoxytrimethylsilane, and 188 parts by weight of 2-propanol were charged and mixed.
  • PGMEA 324 parts by weight
  • a ′ organopolysiloxane
  • a solution prepared by previously mixing 212 parts by weight of chlorodimethylvinylsilane and 81.7 parts by weight of chlorotrimethylsilane was added dropwise and reacted at room temperature for 1 hour.
  • the reaction was carried out for 1 hour.
  • the operation of adding 400 parts by weight of cyclohexane to the obtained reaction solution and removing pyridine hydrochloride formed with ion-exchanged water was repeated three times, the solvent was removed at 70 ° C. under reduced pressure, and further 140 ° C. under reduced pressure for 1 hour.
  • the polymer was dried to obtain organopolysiloxane (A ′) (SiH-polymer 42).
  • the adhesion-imparting agent (Compound A) used in Examples 1 to 39 and Comparative Examples 1 to 4 was synthesized by the following procedure.
  • [Synthesis of adhesion promoter] In a 100 mL eggplant flask, 100 parts by weight of 2,4,6,8,10-pentamethylcyclopentasiloxane, 38.6 parts by weight of allyl glycidyl ether, and 138.6 parts by weight of cyclohexane were added and mixed. Next, 0.040 parts by weight of divinyltetramethyldisiloxane platinum complex (manufactured by Gelest, 2.1 wt% xylene solution with Pt complex) was uniformly mixed and reacted at 80 ° C. for 2 hours. The solvent was removed at 80 ° C. under reduced pressure, and dried under reduced pressure for 1 hour to obtain Compound A. It was confirmed by 1 HNMR that allyl glycidyl ether had reacted quantitatively.
  • compositions (4) to (10) below were evaluated for the compositions using the resins obtained in Examples 1 to 40 and Comparative Examples 1 to 4, and the cured products. The results are shown in Table 1 below.
  • (4) Hardness measurement The prepared composition was filled in a 10 mm ⁇ 10 mm ⁇ 5 mm mold, and was cured by heating at 80 ° C. ⁇ 30 minutes, 100 ° C. ⁇ 30 minutes, 150 ° C. ⁇ 1 hour using an oven. The cured product was cooled to room temperature and taken out of the mold, and then the hardness was measured using GS-702N TYPE D (Tecrock Durometer) manufactured by Teclock Corporation. Samples with a measured value of ShoreD 63 or higher were evaluated as ⁇ , samples 55-63 as ⁇ , samples 40-55 as ⁇ , and samples less than 40 as ⁇ .
  • Viscosity measurement Using a RE80 viscometer manufactured by Toki Sangyo Co., Ltd., the viscosity of the prepared composition was measured. The composition of 30 Pa ⁇ s or less was evaluated as ⁇ , the composition of 30 to 100 Pa ⁇ s as ⁇ , the composition of 100 to 200 Pa ⁇ s as ⁇ , and the composition having a viscosity higher than 200 Pa ⁇ s as ⁇ .
  • Thermal conductivity The cured product cured by heating at 80 ° C. for 30 minutes, 100 ° C. for 30 minutes, 150 ° C. for 1 hour using an oven has a thermal diffusivity by the laser flash method and a specific heat by the DSC method. The density was determined from the size and weight of the sample, and the thermal conductivity was calculated.
  • thermal diffusivity measurement a sample having a thickness of 1 mm was used and measured with a constant measuring device TC-9000 manufactured by ULVAC-RIKO.
  • DSC measurement a differential scanning calorimeter DSC-7 manufactured by PerkinElmer was used.
  • Elastic modulus at high temperature (10) Elastic modulus at high temperature (thermal modulus)
  • the elastic modulus of the cured product at 150 ° C. was evaluated according to the tensile storage elastic modulus calculation method of JIS K7244-4.
  • the elastic modulus at 150 ° C. is> 100 MPa or more, ⁇ is 70 MPa or more and less than 100 MPa, and ⁇ is less than 70 MPa.
  • composition [Example 1] Vi-polymer 1 is 53 parts by mass, SiH-polymer 1 is 44 parts by mass, 4-ethyl-1-octyne-3-ol (reaction inhibitor 1) is 0.14 parts by weight, and compound A is used as an adhesion-imparting agent. 2 parts by weight was mixed, and 0.01 part by weight of divinyltetramethyldisiloxane platinum complex (manufactured by Gelest, 2.1 wt% xylene solution with Pt complex) (platinum catalyst) was uniformly mixed. After mixing, vacuum degassing was performed to prepare a composition. This composition was heat-cured in an oven at 80 ° C. ⁇ 30 minutes, 100 ° C. ⁇ 30 minutes, 150 ° C. ⁇ 1 hour.
  • reaction inhibitor 1 is 0.14 parts by weight
  • compound A is used as an adhesion-imparting agent. 2 parts by weight was mixed, and 0.01 part by weight of divinyltetramethyldisiloxane
  • Examples 2 to 40, Comparative Examples 1 to 4 Vi-polymers 1 to 44, SiH polymers 1 to 42, 44, and divinyltetramethyldisiloxane platinum complex were blended in the ratios shown in Table 1 below. Further, for compound A as an adhesion promoter, Examples 2 to 36, Example 40 and Comparative Examples 1 to 4 were used in an amount of 2 parts by weight, in Examples 37 and 39, 4 parts by weight, and in Example 38, 3.6 parts by weight. Is 0.14 parts by weight in Examples 2 to 36, Example 40 and Comparative Examples 1 to 4, 23 parts by weight in Examples 37 and 39, and 21 parts by weight in Example 38. For the platinum catalyst, a composition was prepared in the same manner as in Example 1 except that 0.01 parts by weight of the platinum catalyst was used in Examples 2 to 40 and Comparative Examples 1 to 4. Obtained.
  • Comparative Example 5 A commercially available silicone resin containing 4 wt% of silica particles was purchased and cured under the conditions of 100 ° C. ⁇ 1 h + 150 ° C. ⁇ 2 h. The result of having analyzed the cross-sectional TEM photograph of hardened
  • the silica nanoparticle reaction product and the silicone composition of the present invention are useful as materials for light-emitting diode elements and other optical devices or optical components. Specifically, light obtained from a protective film or element on a light-emitting element is used. It can be suitably used for an optical lens for changing / preparing the wavelength of this, a die bonding material fixed to a lead terminal or a package, an underfill, a phosphor binder material, a substrate material, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)

Abstract

 耐クラック性に優れ、高硬度、かつ高温時に高弾性な硬化物を得るための酸化物ナノ粒子反応生成物、及びこれを含有するシリコーン組成物の提供。下記式(1): R1 mSiO(4-m)/2 {式中、R1は、非置換若しくは置換の一価の炭化水素基、アルコキシ基、水酸基又は水素原子であり、そしてmは、0~3の整数である。}で表される単位構造を有するオルガノポリシロキサン(A)と酸化物ナノ粒子(B)とが共有結合で結合された酸化物ナノ粒子反応生成物であって、かつ、該酸化物ナノ粒子反応生成物は、下記式(5): Xn2 3-nSiO1/2 {式中、Xは、アルケニル基又は水素原子であり、R2は、飽和非置換又は置換の一価の炭化水素基であり、そしてnは、1又は2である。}で表される単位構造を有していることを特徴とする前記酸化物ナノ粒子反応生成物。

Description

酸化物ナノ粒子反応生成物及びシリコーン組成物
 本発明は、硬化直後のみならず、高温に長時間さらされても透明性に優れ、高耐クラック性、高硬度かつ高温時に高弾性かつ高熱伝導性を有する硬化物を得るための酸化物ナノ粒子反応生成物、並びにそれを用いたシリコーン組成物に関する。本発明は、該シリコーン組成物の硬化物を用いた光半導体素子用途に有用なリフレクター、封止樹脂、レンズ、アンダーフィル材、及びダイボンド材にも関する。
 従来、LEDに代表される光半導体装置の半導体周辺絶縁部材には、主にエポキシ樹脂などをベースとした組成物の硬化物が汎用されている。これは、硬化前の組成物を塗工する際の作業性の観点から、組成物が低粘度であること、また、LEDが使用時に熱を放出し、半導体周辺部材が冷熱サイクルを受けることから、硬化物が高耐クラック性を有すること、また、ダイシングの際平滑な切断面を得るために、硬化物が高硬度であること、また、光取り出し効率を向上するために、硬化物が高透明であることが求められているからである。
 しかしながら、エポキシ樹脂では、近年のLEDの高輝度化に伴う発熱量の増大並びに蛍光体の励起波長及び発光波長の短波長化により、樹脂自体に黄変が生じたりすることが問題となっている。近年、かかる問題を解決するために、オルガノポリシロキサンを主成分とするシリコーン組成物及びその硬化物が使用されている。また、製造時に溶剤が揮発し、ボイドやクラックの原因となることから、組成物は溶剤を実質的に含まないことが望まれている。さらに、高温での使用時に、外力によって樹脂に傷がつくのを防ぐため、半導体周辺部材は、高温時に高弾性であることが求められている。また、LEDチップで発生する熱を逃がすため、半導体周辺部材は、高熱伝導率であることが求められている。
 また、LEDチップをダイアタッチ層により支持基板上に接着させるために、エポキシ樹脂をベースとするダイアタッチ材が用いられているが、エポキシ樹脂は、LEDチップから発せられる熱と光によって黄変を生じることから、長期的な使用においてLEDの発光輝度が低下するという課題があった。近年、エポキシ樹脂の該課題を解決するために、シリコーン樹脂が使用されている(以下、特許文献7参照)。シリコーン樹脂には、耐熱・耐光性が優れるという長所があるが、一方で高温時の弾性率が大きく低下するという課題がある。この為、室温から高温までの動作を繰り返すLEDチップの長期使用時において、チップと支持基板との間の接合面に大きなストレスが蓄積することとなり、長期的な接合信頼性に懸念がある。また、通常ダイアタッチ層に用いるシリコーン樹脂は、ディスペンサー等の手段によって、支持基板上に塗布される。よって、適度な粘度に増粘調整すること等を目的にシリコーン樹脂にヒュームドシリカ等の充填材を添加することが行われる。この場合、シリコーン樹脂が本来有する透明性が損なわれ、光の取り出し性が悪化するという課題もある。また、近年、ハイパワー化に伴いLEDチップの発熱が増大し、チップと基板とを接着するダイアタッチ層には、高い熱伝導性が求められる。
 以下の特許文献1と特許文献2には、シリコーンやシリカナノ粒子と共有結合してなるシリコーン樹脂組成物が記載されている。
 また、以下の特許文献3と特許文献4には、それぞれ、オルガノポリシロキサンでコーティングされた酸化物ナノ粒子、トリメチルシロキサン基及びビニルジメチルシロキシ基で表面コーティングがなされたシリカナノ粒子を含むシリコーン組成物が記載されている。
 また、以下の特許文献5、特許文献6、及び特許文献7には、レジン構造のポリオルガノシロキサンを含有するシリコーン樹脂組成物が記載されている。
特開2009-173694号公報 特開2006-131734号公報 国際公開第2010-059710号公報 特許第4601962号公報 特開2008-127517号公報 特許第4325645号公報 特開2006-342200号公報
 しかしながら、特許文献1に記載されたシリコーン樹脂組成物では、シリコーン粒子の粒子径がマイクロメートルオーダーであり、また凝集しやすいため、硬化樹脂の透明性が低下するという課題がある。またシリコーン粒子コア部のみならず周縁のアルコキシシラン部にも柔軟なシロキサン構造を多量に有するため、その硬度は低くなるという問題がある。
 また、特許文献2では、シリカ粒子がナノメートルオーダーであるため透明性には優れるものの、シラノール同士が縮合する熱硬化機構を経るために、数十マイクロメートルの膜厚では硬化収縮や溶剤の揮発によるクラックが発生し易くなるという問題がある。
 また、特許文献3で得られる酸化物ナノ粒子には、多量のシラノール基を含有するという課題がある。そのために、難燃性が求められる積層ガラス接着剤としては好適であるものの、長時間高温にさらされるLEDなどの用途においては、シラノール基の縮合反応などにより硬化物にクラックが生じやすいという課題がある。また、特許文献3において酸化物ナノ粒子をコーティング処理するオルガノシロキサンには多くの芳香族を含有しているため、長時間の高温放置後に透過率が低下するという課題がある。
 さらに、特許文献4においては、トリメチルシロキサン基およびビニルジメチルシロキサン基で表面コーティングされたコロイダルシリカを含む組成物が開示されているが、コロイダルシリカを強酸でコーティング処理するためにコロイダルシリカの2次粒径が増大し、硬化物の透明性が悪化するという課題がある。また、特許文献4に開示された組成物は、2価の炭化水素基を架橋化合物として含むため、加熱処理により黄変するという課題がある。そのために特許文献4の組成物は、高い透明性が要求されるLEDなどの用途には不向きであるという課題がある。
 また、特許文献5、特許文献6、及び特許文献7には、レジン構造を有するオルガノポリシロキサンを含むシリコーン樹脂組成物の開示があるが、主たる構造物としてフィラーを含んでいないので、硬化物の硬度や高温時の弾性率や熱伝導性が低いという問題がある。また、チクソ性制御剤などとしてフィラーを入れる組成物についても開示があるが、樹脂とフィラーとの間に共有結合がないため、フィラー同士が凝集することなどにより透明性が低下するという課題がある。そのため、フィラーの添加量が制限され、充分な硬度、耐クラック性、高温時の高弾性、高い熱伝導率を発現できないといった問題がある。
 かかる状況下、透明性が高く、耐クラック性に優れ、高硬度、高熱伝導率、かつ高温時の弾性率の大きい硬化物を得るためのシリコーン組成物が切望されている。
 本発明が解決しようとする課題は、硬化直後のみならず高温に長時間晒されても透明性が高く、耐クラック性に優れ、高硬度、高熱伝導率、かつ高温時の弾性率の大きい硬化物を得るためのシリコーン組成物及び該組成物を用いて製造される材料を提供することである。
 本願発明者らは、上記課題を解決すべく鋭意検討し実験を重ねた結果、以下の解決手段により上記課題を解決しうることを予想外に発見し、本願発明を完成するに至った。
 すなわち、本発明は以下のとおりものである。
 [1]下記式(1):
1 mSiO(4-m)/2
{式中、R1は、非置換若しくは置換の一価の炭化水素基、アルコキシ基、水酸基又は水素原子であり、そしてmは、0~3の整数である。}で表される単位構造を有するオルガノポリシロキサン(A)と酸化物ナノ粒子(B)とが共有結合で結合された酸化物ナノ粒子反応生成物であって、かつ、該酸化物ナノ粒子反応生成物は、下記式(5):
n2 3-nSiO1/2
{式中、Xは、アルケニル基又は水素原子であり、R2は、飽和非置換又は置換の一価の炭化水素基であり、そしてnは、1又は2の整数である。}で表される単位構造を有していることを特徴とする前記酸化物ナノ粒子反応生成物。
 [2]下記式(1):
1 mSiO(4-m)/2
{式中、R1は、非置換若しくは置換の一価の炭化水素基、アルコキシ基、水酸基又は水素原子であり、そしてmは、0~3の整数である。}で表される単位構造を有するオルガノポリシロキサン(A)と、酸化物ナノ粒子(B)と、シラノール基封止剤(C)との反応により形成された共有結合を有する酸化物ナノ粒子反応生成物であって、該シラノール基封止剤(C)は、下記式(2):
n2 3-nSiY
{式中、Xは、アルケニル基又は水素原子であり、R2は、飽和非置換又は置換の一価の炭化水素基であり、Yは、ハロゲン原子であり、そしてnは、1又は2である。}で表される、前記[1]に記載の酸化物ナノ粒子反応生成物。
 [3]前記オルガノポリシロキサン(A)は、予備重合して得られたものである、前記[1]又は[2]に記載の酸化物ナノ粒子反応生成物。
 [4]前記酸化物ナノ粒子反応生成物は、下記式(7):
6 3SiO1/2
{式中、R6は、非置換若しくは置換の一価の炭化水素基又は水素原子である。}で表される単位構造(M単位)、及び下記式(8):
4SiO3/2
{式中、R4は、非置換若しくは置換の一価の炭化水素基又は水素原子である。}で表される単位構造(T単位)を含む、前記[1]~[3]のいずれかに記載の酸化物ナノ粒子反応生成物。
 [5]前記酸化物ナノ粒子反応生成物は、前記式(7)で表されるM単位、及び、前記式(8)で表されるT単位を含み、オルガノポリシロキサン中においてそれらの成分の和が50重量%超であることを特徴とする、前記[4]に記載の酸化物ナノ粒子反応生成物。
 [6]前記式(8)で表される単位構造に対する前記式(7)で表される単位構造のモル比、[R6 3SiO1/2]/[R4SiO3/2](M単位/T単位)が、0.05~1.00である、前記[4]又は[5]に記載の酸化物ナノ粒子反応生成物。
 [7]前記オルガノポリシロキサン(A)と、酸化物ナノ粒子(B)と、シラノール基封止剤(C)との反応に加え、両末端にシラノール基、アルコキシ基、及びハロゲン原子からなる群から選ばれる反応性置換基をもつ下記式(9):
8 2SiO2/2
{式中、R8は、非置換若しくは置換の一価の炭化水素基又は水素原子である。}で表される単位構造が連続した直鎖状ポリシロキサン(D)をさらに反応させることにより共有結合が形成されている、前記[2]~[6]のいずれかに記載の酸化物ナノ粒子反応生成物。
 [8]前記酸化物ナノ粒子反応生成物におけるシラノール基濃度が0~1.5mmol/gである、前記[1]~[7]のいずれかに記載の酸化物ナノ粒子反応生成物。
 [9]前記シラノール基濃度が、0~1.0mmol/gである、前記[8]に記載の酸化物ナノ粒子反応生成物。
 [10]前記シラノール基濃度が、0.25~0.8mmol/gである、前記[9]に記載の酸化物ナノ粒子反応生成物。
 [11]前記酸化物ナノ粒子(B)は、シリカナノ粒子である、前記[1]~[10]のいずれかに記載の酸化物ナノ粒子反応生成物。
 [12]前記シリカナノ粒子は、湿式シリカである、前記[11]に記載の酸化物ナノ粒子反応生成物。
 [13]前記酸化物ナノ粒子(B)の平均一次粒径が、1~50nmである、前記[1]~[12]のいずれかに記載の酸化物ナノ粒子反応生成物。
 [14]前記酸化物ナノ粒子反応生成物中の-OR3{式中、R3は、炭素原子数1~6のアルキル基である。}で表される置換基の濃度が、0.01~1.0mmol/gである、前記[1]~[13]のいずれかに記載の酸化物ナノ粒子反応生成物。
 [15]前記酸化物ナノ粒子反応生成物に含まれるケイ素原子に結合した置換基全体の80mol%以上が、脂肪族炭化水素基、脂環式炭化水素基、アルコキシ基、水酸基又は水素原子のいずれかである、前記[1]~[14]のいずれかに記載の酸化物ナノ粒子反応生成物。
 [16]以下の工程:
 (I)下記式(10):
1 mSi(OR34-m
{式中、R1は、非置換若しくは置換の一価の炭化水素基、アルコキシ基、水酸基又は水素原子であり、R3は、炭素原子数1~6のアルキル基であり、そしてmは、0~3の整数である。}で表される化合物を加水分解及び縮合して、下記式(1):
1 mSiO(4-m)/2
{式中、R1は、非置換若しくは置換の一価の炭化水素基、アルコキシ基、水酸基又は水素原子であり、そしてmは、0~3の整数である。}で表される単位構造を有するオルガノポリシロキサン(A)を得る工程;
 (II)工程(I)で得たオルガノポリシロキサン(A)を酸化物ナノ粒子(B)と反応させて、酸化物ナノ粒子反応生成物を得る工程;
を含む、前記[1]~[6]、及び[8]~[15]のいずれかに記載の酸化物ナノ粒子反応生成物の製造方法。
 [17]以下の工程:
 (I)下記式(10):
1 mSi(OR34-m
{式中、R1は、非置換若しくは置換の一価の炭化水素基、アルコキシ基、水酸基又は水素原子であり、R3は、炭素原子数1~6のアルキル基であり、そしてmは、0~3の整数である。}で表される化合物を加水分解及び縮合して、下記式(1):
1 mSiO(4-m)/2
{式中、R1は、非置換若しくは置換の一価の炭化水素基、アルコキシ基、水酸基又は水素原子であり、そしてmは、0~3の整数である。}で表される単位構造を有するオルガノポリシロキサン(A)を得る工程;
 (II)工程(I)で得たオルガノポリシロキサン(A)を酸化物ナノ粒子(B)と反応させて、酸化物ナノ粒子反応生成物前駆体を得る工程;及び
 (III)工程(II)で得た酸化物ナノ粒子反応生成物前駆体のシラノール基を、下記式(2):
n2 3-nSiY
{式中、Xは、アルケニル基又は水素原子であり、R2は、飽和非置換又は置換の一価の炭化水素基であり、Yは、ハロゲン原子であり、そしてnは、0~3の整数である。}で表されるシラノール基封止剤(C)により封止して、酸化物ナノ粒子反応生成物を得る工程;
を含む、前記[1]~[6]、及び[8]~[15]のいずれかに記載の酸化物ナノ粒子反応生成物の製造方法。
 [18]以下の工程:
 (I)下記式(10):
1 mSi(OR34-m
{式中、R1は、非置換若しくは置換の一価の炭化水素基、アルコキシ基、水酸基又は水素原子であり、R3は、炭素原子数1~6のアルキル基であり、そしてmは、0~3の整数である。}で表される化合物を加水分解及び縮合して、下記式(1):
1 mSiO(4-m)/2
{式中、R1は、非置換若しくは置換の一価の炭化水素基、アルコキシ基、水酸基又は水素原子であり、そしてmは、0~3の整数である。}で表される単位構造を有するオルガノポリシロキサン(A)を得る工程;
 (II)工程(I)で得たオルガノポリシロキサン(A)を酸化物ナノ粒子(B)と反応させて、酸化物ナノ粒子反応生成物を得る工程;
 (II’)工程(II)で得た酸化物ナノ粒子反応生成物を、両末端にシラノール基、アルコキシ基、及びハロゲン原子からなる群から選ばれる反応性置換基をもつ下記式(9):
8 2SiO2/2
{式中、R8は、非置換若しくは置換の一価の炭化水素基又は水素原子である。}で表される単位構造が連続した直鎖状ポリシロキサン(D)と、反応させる工程;及び
 (III)工程(II’)で得た酸化物ナノ粒子反応生成物と直鎖状ポリシロキサン(D)との反応生成物のシラノール基を、下記式(2):
n2 3-nSiY
{式中、Xは、アルケニル基又は水素原子であり、R2は、飽和非置換又は置換の一価の炭化水素基であり、Yは、ハロゲン原子であり、そしてnは、1又は2である。}で表されるシラノール基封止剤(C)により封止して、酸化物ナノ粒子反応生成物を得る工程;
を含む、前記得[7]に記載の酸化物ナノ粒子反応生成物の製造方法。
 [19]前記[1]~[15]のいずれか1項に記載の酸化物ナノ粒子反応生成物(a)を含むシリコーン組成物。
 [20]前記酸化物ナノ粒子反応生成物の平均二次粒径が、5~100nmである、前記[19]に記載のシリコーン組成物。
 [21]前記酸化物ナノ粒子反応生成物の二次粒径の最大値が200nm以下である、前記[19]又は[20]に記載のシリコーン組成物。
 [22]前記シリコーン組成物は、該シリコーン組成物を室温から100℃まで10℃/分で昇温し、次いで1時間ホールドし、次いで150℃まで10℃/分で昇温し、次いで1時間ホールドする間の重量減少量を熱分析装置によって測定したときの揮発性成分量1質量%未満の揮発性成分を含有する、前記[19]~[21]のいずれかに記載のシリコーン組成物。
 [23]前記酸化物ナノ粒子反応生成物(a)として、前記[1]~[15]のいずれかに記載の、アルケニル基を有する酸化物ナノ粒子反応生成物、及びケイ素原子に直接結合した水素原子を有する酸化物ナノ粒子反応生成物の両者を含む、前記[19]~[22]のいずれかに記載のシリコーン組成物。
 [24]ヒドロシリル化触媒(b)をさらに含む、前記[19]~[23]のいずれかに記載のシリコーン組成物。
 [25]接着性付与剤(c)をさらに含む、前記[19]~[24]のいずれか1項に記載のシリコーン組成物。
 [26]前記接着性付与剤(c)が、エポキシ基及び/又はアルコキシ基含有オルガノハイドロジェンポリシロキサン化合物である、前記[25]に記載のシリコーン組成物。
 [27]前記[1]~[15]のいずれかに記載の酸化物ナノ粒子反応生成物、及び遊離のオルガノポリシロキサン(A’)を含有するシリコーン組成物。
 [28]前記遊離のオルガノポリシロキサン(A’)は、
n2 3-nSiO1/2
{式中、Xは、アルケニル基又は水素原子であり、R2は、飽和非置換又は置換の一価の炭化水素基であり、そしてnは、1または2の整数である。}で表される単位構造を有する、前記[27]に記載のシリコーン組成物。
 [29]前記遊離のオルガノポリシロキサン(A’)は、
1 mSiO(4-m)/2
{式中、R1は、非置換若しくは置換の一価の炭化水素基、アルコキシ基、水酸基又は水素原子であり、そしてmは、0~3の整数である。}で表される単位構造を有するオルガノポリシロキサン(A)と、シラノール基封止剤(C)との反応により形成された共有結合を有し、該シラノール基封止剤(C)は、下記式(2):
n2 3-nSiY
{式中、Xは、アルケニル基又は水素原子であり、R2は、飽和非置換又は置換の一価の炭化水素基であり、Yは、ハロゲン原子であり、そしてnは、1又は2である。}で表される、前記[27]又は[28]に記載のシリコーン組成物。
 [30]前記遊離のオルガノポリシロキサン(A´)は、下記式(7´):
6’ 3SiO1/2
{式中、R6’は、非置換若しくは置換の一価の炭化水素基又は水素原子である。}で表される単位構造(M単位 ´)、及び下記式(8´):
4’SiO3/2
{式中、R4’は、非置換若しくは置換の一価の炭化水素基又は水素原子である。}で表される単位構造(T単位 ´)を含む、前記[27]~[29]のいずれかに記載のシリコーン組成物。
 [31]オルガノポリシロキサン中において前記式(7´)で表されるM単位、及び、前記式(8´)で表されるT単位の成分の和が50重量%超である、前記[27]~[29]のいずれかに記載の酸化物ナノ粒子反応生成物。
 [32]前記式(8´)で表される単位構造に対する前記式(7´)で表される単位構造のモル比、[R6’ 3SiO1/2]/[R4’SiO3/2](M単位 ´/T単位 ´)が、0.05~1.00である、前記[27]~[29]のいずれかに記載のシリコーン組成物。
 [33]前記[酸化物ナノ粒子反応生成物の重量]/[遊離のオルガノポリシロキサン(A’)が0.05~2.3である、前記[27]~[30]のいずれかに記載のシリコーン組成物。
 [34]前記遊離のオルガノポリシロキサン(A’)は、前記酸化物ナノ粒子反応生成物の製造と同時に製造されたものである、前記[27]~[31]のいずれかに記載のシリコーン組成物。
 [35]前記オルガノポリシロキサンA’に含まれるケイ素原子に結合した置換基全体の80mol%以上が、脂肪族炭化水素基、脂環式炭化水素基、アルコキシ基、水酸基又は水素原子のいずれかである、前記[27]~[31]のいずれかに記載のシリコーン組成物。
 [36]前記[19]~[35]のいずれかに記載のシリコーン組成物を硬化して得たシリコーン硬化物である封止樹脂。
 [37]前記[19]~[35]のいずれかに記載のシリコーン組成物を硬化して得たシリコーン硬化物であるダイボンディング材。
 [38]硬化物中におけるオルガノポリシロキサン(A)と酸化物ナノ粒子(B)の構成比が質量基準で95:5~50:50である、前記[36]又は[37]に記載のシリコーン硬化物。
 [39]オルガノポリシロキサン(A)と酸化物ナノ粒子(B)とを含有するシリコーン硬化物を含む光半導体パッケージであって、該シリコーン硬化物中における酸化物ナノ粒子(B)が、平均一次粒径1~30nmを有し、かつ、平均二次粒径5~100nmを有する、前記光半導体パッケージ。
 [40]前記酸化物ナノ粒子(B)の二次粒径の最大値が200nm以下である、前記[39]に記載の光半導体パッケージ
 [41]前記酸化物ナノ粒子(B)の含有量は、該硬化物全体の質量基準で、5質量%以上である、前記[39]又は[40]に記載の光半導体パッケージ。
 [42]前記硬化物中におけるオルガノポリシロキサン(A)が、炭化水素基を有し、かつ、該炭化水素基とケイ素原子との結合による架橋構造を形成している、前記[39]~[41]のいずれかに記載の光半導体パッケージ。
 [43]前記シリコーン硬化物は、ケイ素原子に直接結合したアルケニル基及び/又はケイ素原子に直接結合した水素原子を有するポリオルガノシロキサンと酸化物ナノ粒子とが共有結合した酸化物ナノ粒子反応生成物を含有するワニスを硬化させて得られたものである、前記[39]~[42]のいずれかに記載の光半導体パッケージ。
 [44]オルガノポリシロキサン(A)と酸化物ナノ粒子(B)とを含有するシリコーン硬化物を含む光半導体パッケージであって、シリコーン硬化物の断面TEM解析によって得られる像を画像解析して2値化した際の、前記酸化物ナノ粒子(B)部分の面積の割合は、10%以上である、前記光半導体パッケージ。
 [45]オルガノポリシロキサン(A)と酸化物ナノ粒子(B)とを含有するシリコーン硬化物を含む光半導体パッケージであって、シリコーン硬化物の断面TEM解析によって得られる像を画像解析して2値化した粒子において、最近接粒子間を結ぶ距離の分散度は、0.4未満である、前記光半導体パッケージ。
 [46]オルガノポリシロキサン(A)と酸化物ナノ粒子(B)とを含有するシリコーン硬化物を含む光半導体パッケージであって、シリコーン硬化物の断面TEM解析によって得られる像を画像解析して2値化した粒子において、最近接粒子間を結ぶ平均距離は、100nm未満である、前記光半導体パッケージ。
 本発明に係る酸化物ナノ粒子反応生成物及びそのシリコーン組成物の硬化物は、硬化直後のみならず長時間高温に晒されたとしても高い透明性を有し、さらに、優れた耐クラック性、高硬度、かつ高温時の高弾性率を達成することができる。また、本発明の酸化物ナノ粒子反応生成物は硬化時の揮発成分が少なく、電極など周辺部か環境を汚しにくいという特徴を有する。
実施例1で調製したシリコーン硬化物の断面TEM写真である。 実施例25で調製したシリコーン硬化物の断面TEM写真である。 比較例5で調製したシリコーン硬化物の断面TEM写真である。
 以下、本発明を詳細に説明する。
<酸化物ナノ粒子反応生成物>
 本発明の酸化物ナノ粒子反応生成物は、下記式(0):
1 aSiO(4-a)/2
{式中、R1は、非置換若しくは置換の一価の炭化水素基、アルコキシ基、水酸基又は水素原子であり、そしてaは、0~3の整数である。}で表される単位構造を有するオルガノポリシロキサンと酸化物ナノ粒子とが共有結合で結ばれた酸化物ナノ粒子反応生成物であって、かつ、該酸化物ナノ粒子反応生成物は、下記式(5):
n2 3-nSiO1/2
{式中、Xは、アルケニル基又は水素原子であり、R2は、飽和非置換又は置換の一価の炭化水素基であり、そしてnは、1又は2の整数である。}で表される単位構造を有していることを特徴とする。
 本発明の酸化物ナノ粒子反応生成物は、好ましくは、
下記式(1):
1 mSiO(4-m)/2
{式中、R1は、非置換若しくは置換の一価の炭化水素基、アルコキシ基、水酸基又は水素原子であり、そしてmは、0~3の整数である。}で表される単位構造を有するオルガノポリシロキサン(A)と、酸化物ナノ粒子(B)との反応により形成された共有結合を有する酸化物ナノ粒子反応生成物であって、該酸化物ナノ粒子反応生成物は、下記式(5):
n2 3-nSiO1/2
{式中、Xは、アルケニル基又は水素原子であり、R2は、飽和非置換又は置換の一価の炭化水素基であり、そしてnは、1又は2の整数である。}で表される単位構造を有していることを特徴とする。
 本発明の酸化物ナノ粒子反応生成物は、さらに好ましくは、下記式(1):
1 mSiO(4-m)/2
{式中、R1は、非置換若しくは置換の一価の炭化水素基、アルコキシ基、水酸基又は水素原子であり、そしてmは、0~3の整数である。}で表される単位構造を有するオルガノポリシロキサン(A)と、酸化物ナノ粒子(B)と、シラノール基封止剤(C)との反応により形成された共有結合を有する酸化物ナノ粒子反応生成物であって、該シラノール基封止剤(C)は、下記式(2):
n2 3-nSiY
{式中、Xは、アルケニル基又は水素原子であり、R2は、飽和非置換又は置換の一価の炭化水素基であり、Yは、ハロゲン原子であり、そしてnは、0~3の整数である。}からなり、かつ、該シリカナノ粒子反応生成物は、下記式(5):
n2 3-nSiO1/2
{式中、Xは、アルケニル基又は水素原子であり、R2は、飽和非置換又は置換の一価の炭化水素基であり、そしてnは、1又は2の整数である。}で表される単位構造を有していることを特徴とする。
 以下、本発明の酸化物ナノ粒子反応生成物について詳しく説明する。
<オルガノポリシロキサン(A)>
 本発明において使用されるオルガノポリシロキサン(A)は、下記式(1):
1 mSiO(4-m)/2
{式中、R1は、非置換若しくは置換の一価の炭化水素基、アルコキシ基、水酸基又は水素原子であり、そしてmは、0~3の整数である。}で表される単位構造を有する。
 上記式(1)中、R1として、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、tert-ブチル基、シクロヘキシル基などのアルキル基;フェニル基などのアリール基;ビニル基、アリル基などのアルケニル基;メトキシ基、エトキシ基、イソプロポキシ基などのアルコキシ基;γ‐グリシドキシプロピル基、β‐(3,4-エポキシシクロヘキシル)エチル基などのエポキシ基置換炭化水素基;水酸基;水素原子などが挙げられ、透明性、合成容易性、入手容易性の点から、メチル基、エチル基、フェニル基、ビニル基、メトキシ基、エトキシ基、イソプロポキシ基、水酸基、水素原子が好ましく、メチル基、ビニル基、メトキシ基、イソプロポキシ基、水酸基、水素原子がより好ましい。
<酸化物ナノ粒子(B)>
 本発明において使用される酸化物ナノ粒子(B)としては、特に限定されないが、シリカナノ粒子、酸化ジルコニウム、酸化ケイ素、酸化スズ、酸化亜鉛、酸化インジウム、酸化チタン、スズ添加酸化インジウム、アンチモン添加酸化スズ等が例示できる。シリカナノ粒子としては、例えば、ヒュームドシリカ、湿式シリカなどが挙げられる。シリカナノ粒子反応生成物の透明性の点で、湿式シリカが好ましい。
 ヒュームドシリカは、珪素原子を含む化合物を気相中で酸素及び水素と反応させることによって得ることができる。原料となるケイ素化合物としては、例えば、ハロゲン化ケイ素(例えば、塩化ケイ素等)等が挙げられる。
 湿式シリカは、原料化合物を加水分解・縮合するゾルゲル法により合成することができる。湿式シリカの原料化合物としては、例えば、アルコキシシラン(例えば、テトラエトキシシラン等)、ハロゲン化シラン化合物(例えば、ジフェニルジクロロシラン等)等が挙げられる。中でも、金属イオンやハロゲン等の不純物が少なく透明性、絶縁性に優れるという点で、アルコキシシランから得られた湿式シリカがより好ましい。
 酸化物ナノ粒子の平均一次粒径は、1nm以上50nm以下であることが好ましく、1nm以上30nm以下であることがより好ましく、2nm以上20nm以下であることがさらに好ましい。上記平均一次粒系が1nm以上である場合、粒子の表面積が減少するため粘度が低下する点で好ましい。50nm以下である場合、透明性、耐クラック性、高温時の高弾性の点で好ましい。酸化物ナノ粒子の平均一次粒径が50nm以下である場合、酸化物ナノ粒子の表面積が増大するため、酸化物ナノ粒子反応生成物の高温時の弾性率が向上し、シリコーン組成物が低粘度化し、硬化物の耐クラック性が向上するため好ましい。
 酸化物ナノ粒子の平均二次粒径は、2nm以上250nm以下であることが好ましく、2nm以上80nm以下であることがより好ましい。上記平均二次粒子径が2nm以上である場合、粒子の表面積が減少するため粘度が低下する点で好ましく、250nm以下である場合、硬化物の透明性が向上するため好ましい。
 一次粒径とは、粉末を構成する最も小さい粒子(一次粒子)の直径のことであり、上記平均一次粒径は、BETの比表面積から求められる値である。二次粒径とは、一次粒子が凝集したもの(二次粒子)の直径のことであり、平均二次粒径は、動的光散乱光度計で測定される値である。
 酸化物ナノ粒子(B)の形状は、球状、棒状、板状若しくは繊維状又はこれらの2種類以上が合体した形状であることができるが、酸化物ナノ粒子反応生成物が低粘度化できるため、球状が好ましい。尚、ここでいう球状とは、真球状の他、回転楕円体や卵形等の略球状をも含む。
 酸化物ナノ粒子(B)の比表面積は、酸化物ナノ粒子反応生成物の粘度の点から、BET比表面積で、1,000m2/g以下であることが好ましく、800m2/g以下であることがより好ましい。
 酸化物ナノ粒子(B)としては、上記要件に適合するものである限り特に制限は無く、市販品を使用することもできる。
 市販品としては、湿式シリカとして、例えば、LEVASILシリーズ(H.C.Starck(株)製)、メタノールシリカゾルIPA-ST、同MEK-ST、同NBA-ST、同XBA-ST、同DMAC-ST、同ST-UP、同ST-OUP、同ST-20、同ST-40、同ST-C、同ST-N、同ST-O、同ST-50、同ST-OL(以上、日産化学工業(株)製)、クオートロンP Lシリーズ(扶桑化学(株)製)、OSCALシリーズ(触媒化成工業(株)製)等;ヒュームドシリカとして、例えばアエロジル130、同300、同380、同TT600、同OX50(以上、日本アエロジル(株)製)、シルデックスH31、同H32、同H51、同H52、同H121、同H122(以上、旭硝子(株)製)、E220A、E220(以上、日本シリカ工業(株)製)、SYLYSIA470(富士シリシア(株)製)、SGフレーク(日本板硝子(株)製)等;粉体状のシリカ粒子として、例えばアエロジル130、同300、同380、同TT600、同OX50(以上、日本アエロジル(株)製)、シルデックスH31、同H32、同H51、同H52、同H121、同H122(以上、旭硝子(株)製)、E220A、E220(以上、日本シリカ工業(株)製)、SYLYSIA470(富士シリシア(株)製)、SGフレーク(日本板硝子(株)製)などが、それぞれ挙げられる。
<シラノール基封止剤(C)>
 本発明に使用されるシラノール基封止剤(C)は、酸化物ナノ粒子の分散性を阻害しない限りにおいて制約は無いが、特に好ましいものとして、下記式(2):
n2 3-nSiY
{式中、Xは、アルケニル基又は水素原子であり、R2は、飽和非置換又は置換の一価の炭化水素基であり、Yは、ハロゲン原子であり、そしてnは、0~3の整数である。}が例示される。
 前記オルガノポリシロキサンと、前記酸化物ナノ粒子との反応により共有結合が形成されている、本発明に係る酸化物ナノ粒子反応生成物は、下記式(5):
 Xn2 3-nSiO1/2
{式中、Xは、アルケニル基又は水素原子であり、R2は、飽和非置換又は置換の一価の炭化水素基であり、そしてnは、1又は2の整数である。}で表される単位構造を有していることを特徴とする。(A)と(B)との反応に加えて、さらに前記シラノール基封止剤(C)とを反応させ、共有結合を形成し、シラノール基量を調節することが、硬化物の耐クラック性の向上のみならず、低粘度化とシリカナノ粒子反応生成物の粘度の長期安定性の面からも好ましい。
 前記式(5)で表される単位構造を含むことにより、樹脂組成物のヒドロシリル化による硬化反応の反応性が向上するため、硬化物の分子量が増大し、より高硬度の硬化物が得られる。
 前記式(5)で表される単位構造の導入の仕方に特に制約はないが、例えば、オルガノポリシロキサン(A)と酸化物ナノ粒子(B)とを反応させ共有結合を形成させて得た酸化物ナノ粒子反応生成物にシラノール基封止剤(C)をさらに反応させ共有結合を形成させることにより導入されることができる。
 本発明のオルガノポリシロキサンは、予備重合して得られたものであることが好ましい。予備重合とは、例えば、ポリオルガノシロキサン(A)の原料となるアルコキシシランを、酸化物ナノ粒子(B)との反応に先立って重合することであり、こうすることによって、ポリオルガノシロキサンの重合度が制御されたものとなり、硬化物の耐クラック性が向上する傾向になる。
 但し、下記式(5):
 Xn2 3-nSiO1/2
{式中、Xは、アルケニル基又は水素原子であり、R2は、飽和非置換又は置換の一価の炭化水素基であり、そしてnは、1又は2の整数である。}で表される単位構造の導入の順番は特に限定されず、予め上記式(5)で表される単位構造をオルガノポリシロキサン(A)又は酸化物ナノ粒子(B)に導入し、次いでこれらを反応させてもよい。
 あるいは、前記式(5)で表される単位構造は、以下の<オルガノポリシロキサン(A)を得る工程(I)>で説明するように、下記式(1):
1 mSiO(4-m)/2
{式中、R1は、非置換若しくは置換の一価の炭化水素基、アルコキシ基、水酸基又は水素原子であり、そしてmは、0~3の整数である。}で表される単位構造を有するオルガノポリシロキサン(A)に由来するものであることもできる。
 尚、上記式(5)で表される単位構造は、ケイ素原子と一つの酸素原子が結合していることからM単位と一般的に呼ばれている。本明細書中、理解の容易のために上記式(5)で表される単位構造を、単に「M単位」ともいう。
 酸化物ナノ粒子反応生成物が、上記式(5)で表される単位構造を有すると、硬化反応の反応効率が向上する点で好ましい。上記式(5)中、Xは、アルケニル基又は水素原子であり、アルケニル基として、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、シクロヘキセニル基、シクロヘキセニルエチル基、ノルボルネニルエチル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、スチレニル基などが挙げられる。透明性、反応性の点で、Xは、アリル基、ビニル基又は水素原子であることが好ましく、ビニル基又は水素原子であることがより好ましい。
 上記式(5)中、R2は、不飽和結合を有しない非置換又は置換の一価の炭化水素基、すなわち、飽和非置換又は置換の一価の炭化水素基であり、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、tert-ブチル基、シクロヘキシル基などのアルキル基;γ‐グリシドキシプロピル基、β‐(3,4-エポキシシクロヘキシル)エチル基などのエポキシ基含有炭化水素基などが挙げられ、透明性、耐クラック性、入手容易性の点で、メチル基、エチル基、γ‐グリシドキシプロピル基、β‐(3,4-エポキシシクロヘキシル)エチル基であることが好ましく、メチル基であることがより好ましい。
 上記式(5)中、nは、1又は2の整数であり、反応性、耐クラック性の点で、nは1であることが好ましい。
 本発明に係る酸化物ナノ粒子反応生成物に含まれる下記式(6):
7 3SiO1/2
{式中、R7は、飽和非置換又は置換の一価の炭化水素基である。}で表される単位構造に対する前記式(5)で表される単位構造のモル比、[Xn2 3-nSiO1/2]/[R7 3SiO1/2]は、0.2~5.0であることが好ましく、0.4~3.0であることがより好ましく、0.6~2.5であることが更に好ましい。0.2以上の場合は高硬度化するため好ましく、5.0以下の場合は耐クラック性、透過率、低粘度化の向上の観点から好ましい。
 本発明に係る酸化物ナノ粒子反応生成物は、下記式(7):
6 3SiO1/2
{式中、R6は、非置換若しくは置換の一価の炭化水素基又は水素原子である。}で表される単位構造(M単位)、及び下記式(8):
4SiO3/2
{式中、R4は、非置換若しくは置換の一価の炭化水素基又は水素原子である。}で表される単位構造(T単位)を含むことが、硬化物の耐クラック性、硬化物の高硬度化、シリコーン組成物の低粘度化の点で好ましい。
 上記式(7)R6 3SiO1/2で表される単位構造は、ケイ素原子と一つの酸素原子が結合していることからM単位である。このM単位である式(7)R6 3SiO1/2で表される単位構造は、オルガノポリシロキサン(A)に由来することができ、また前記したように、シラノール基封止剤(C)との反応により導入された前記式(5)Xn2 3-nSiO1/2に由来することもでき、酸化物ナノ粒子(B)に含有される場合には、それに由来することもでき、あるいは別途添加される場合には、それに由来することもできる。
 一方、上記式(8)R4SiO3/2で表される単位構造は、ケイ素原子と三つの酸素原子が結合していることからT単位とも言われるが、これもM単位の場合と同様に、オルガノポリシロキサン(A)に由来することも、酸化物ナノ粒子(B)に含有される場合には、それに由来することもでき、さらに別途添加された場合には、それに由来することもできる。
 上記式(8)中のR4としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、tert-ブチル基、シクロヘキシル基などのアルキル基;フェニル基などのアリール基;ビニル基、アリル基などのアルケニル基;γ‐グリシドキシプロピル基、β‐(3,4-エポキシシクロヘキシル)エチル基などのエポキシ基置換炭化水素基;水素原子などが挙げられ、合成容易性、入手容易性の点から、メチル基、エチル基、フェニル基、ビニル基、水素原子が好ましく、メチル基、ビニル基、水素原子がより好ましい。
 上記式(7)中のR6として、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、tert-ブチル基、シクロヘキシル基などのアルキル基;フェニル基などのアリール基;ビニル基、アリル基などのアルケニル基;γ‐グリシドキシプロピル基、β‐(3,4-エポキシシクロヘキシル)エチル基などのエポキシ基置換炭化水素基;水素原子などが挙げられ、合成容易性、入手容易性の点から、メチル基、エチル基、フェニル基、ビニル基、水素原子が好ましく、メチル基、ビニル基、水素原子がより好ましい。
 本発明に係る酸化物ナノ粒子反応生成物は、オルガノポリシロキサン(A)と酸化物ナノ粒子(B)とが共有結合で結合されていることを特徴とする。
 オルガノポリシロキサン(A)と酸化物ナノ粒子(B)との間の共有結合としては、例えば、オルガノポリシロキサン(A)中又は(存在する場合には)酸化物ナノ粒子(B)中のアルケニル基と、他方の中のケイ素原子に直接結合した水素原子とを付加反応させることにより形成される共有結合;オルガノポリシロキサン(A)又は酸化物ナノ粒子(B)中のシラノール基と、他方の中のケイ素原子に直接結合したアルコキシ基(シリカナノ粒子(B)中に存在する場合)とを脱アルコール縮合反応させることにより形成される共有結合;オルガノポリシロキサン(A)又は酸化物ナノ粒子(B)中のシラノール基と、他方の中のシラノール基とを脱水縮合反応させることにより形成される共有結合などが挙げられる。粒子分散性、合成容易性、透明性の点で、オルガノポリシロキサン(A)又は酸化物ナノ粒子(B)中のシラノール基と、他方の中のケイ素原子に直接結合したアルコキシ基(酸化物ナノ粒子(B)中に存在する場合)とを脱アルコール縮合反応させることにより形成される共有結合;オルガノポリシロキサン(A)又は酸化物ナノ粒子(B)中のシラノール基と、他方の中のシラノール基とを脱水縮合反応させることにより形成される共有結合が好ましい。
 前記酸化物ナノ粒子反応生成物は、前記式(7)で表されるM単位、及び、前記式(8)で表されるT単位を含み、オルガノポリシロキサン(A)中においてそれらの成分の和が50重量%超であることが好ましく、80重量%以上であることがより好ましく、95重量%以上であることが更に好ましい。オルガノポリシロキサン(A)中のM単位とT単位の成分の和が50重量%超である場合、耐クラック性が向上し、熱硬化時の揮発成分が低減する点で好ましい。
 前記式(8)で表される単位構造に対する前記式(7)で表される単位構造のモル比、[R6 3SiO1/2]/[R4SiO3/2](M単位/T単位)は、0.05~1.00であることが好ましく、0.2~0.7であることがより好ましく、0.3~0.6であることがさらに好ましい。[R6 3SiO1/2]/[R4 1SiO3/2]が0.05以上である場合、組成物が低粘度化し、硬化物が高耐クラック性化するため好ましい。[R6 3SiO1/2]/[R4 1SiO3/2]が1.00以下である場合、硬化物が高硬度化し、熱硬化時の揮発性成分が低減するため好ましい。該モル比がこの範囲にあると、架橋密度が最適となり、酸化物ナノ粒子反応生成物は高粘度化・ゲル化し難い。そのため、3次元架橋を形成する式(8)R6 1SiO3/2で表される単位構造(T単位)に対する分子末端となる式(7)R6 3SiO1/2で表される単位構造(M単位)の比[R6 3SiO1/2]/[R4 1SiO3/2](M単位/T単位)を調整することにより、分子量及び架橋密度を最適化することが好ましい。
 酸化物ナノ粒子反応生成物において、酸化物ナノ粒子(B)がシリカナノ粒子である場合、該シリカナノ粒子由来のSiO4/2で表される単位構造(Q単位)を除いた、R6 3SiO1/2(M単位)と、R4SiO3/2(T単位)及びSiO4/2(Q単位)とのモル比、[R6 3SiO1/2]/([R4 1SiO3/2]+[SiO4/2]){M単位/(T単位+Q単位)}は、0.05~1.00であることが好ましく、0.2~0.7であることがより好ましく、0.3~0.6であることがさらに好ましい。該モル比が0.05以上の場合、低粘度化するため好ましく、1.00以下の場合、硬化物が高硬度化するため好ましい。
 本発明に係る酸化物ナノ粒子反応生成物は、オルガノポリシロキサン(A)と、酸化物ナノ粒子(B)と、シラノール基封止剤(C)との反応に加え、両末端にシラノール基、アルコキシ基、及びハロゲン原子からなる群から選ばれる反応性置換基をもつ下記式(9):
8 2SiO2/2
{式中、R8は、非置換若しくは置換の一価の炭化水素基又は水素原子である。}で表される単位構造が連続した直鎖状ポリシロキサン(D)をさらに反応させることにより共有結合が形成されていることが硬化物に柔軟性を持たせ、熱膨張によりかかる応力を緩和するため、また、耐クラック性の点から好ましい。なお、式(9)R8 2SiO2/2で表される単位構造は、ケイ素原子と二つの酸素原子が結合していることからD単位とも言われる。
 酸化物ナノ粒子反応生成物の有する全単位構造から前記酸化物ナノ粒子(B)由来のSiO2で表される単位構造を差し引いた残余の単位構造に対する、前記式(9)で表される単位構造(D単位)のモルパーセントは、5~40mol%であることが好ましく、5~20mol%がより好ましい。5mol%以上の場合は、硬化物の柔軟性が向上し耐クラック性の点から好ましく、40mol%以下の場合は硬化物の高硬度化の点から好ましい。
 前記式(9)で表される単位構造が少なくとも5単位連続した直鎖状ユニット構造をもつことが好ましく、より好ましくは10~200単位連続した直鎖状ユニット構造が好ましい。5単位以上では、硬化物の柔軟性が向上し耐クラック性の点から好ましく、200単位以下ではナノ粒子縮合物と直鎖状セグメントが相溶しやすいため、組成物・硬化物の高透明化するため好ましい。
 前記直鎖状ポリシロキサン(D)の重量平均分子量は、500~20,000であることが好ましく、500~10,000がより好ましく、1,000~8,000がさらに好ましい。500以上では、硬化物の柔軟性が向上し耐クラック性の点から好ましく、20,000以下ではナノ粒子縮合物と直鎖状セグメントが相溶しやすいため、組成物・硬化物の高透明化するため好ましい。
 本発明において、シリカナノ粒子反応生成物中のシラノール基濃度は、0~1.5mmol/gであることが好ましく、0~1.0mmol/gであることがより好ましく、0.25~0.8であることがさらに好ましい。シラノール基同士の脱水縮合反応による水の発生の抑制、耐クラック性、シリコーン組成物の低粘度化及び保存安定性の点で1.5mmol/g以下であることが好ましく、耐クラック性向上の点で0.25mmol/g以上であることが好ましい。シリカナノ粒子反応生成物が、0.25mmol/g以上のシラノール基を含有する場合に耐クラック性が向上する理由は必ずしも明確ではないが、、シラノール基同士の水素結合により、ポリマー分子同士の相互作用が高まるためではないかと考えられる。
 本明細書中、シラノール基とは、ケイ素原子に直接結合した水酸基(OH基)をいう。
 シラノール基濃度は、29SiNMRにより求められる。
 酸化物ナノ粒子反応生成物は、一分子中に少なくとも2個アルケニル基、及び/又はケイ素原子に直接結合した水素原子を含有することが、硬化性の点で好ましい。
 本発明の酸化物ナノ粒子反応生成物を100重量部とするとき、酸化物ナノ粒子の含有量について制約があるわけではないが、酸化物ナノ粒子(B)は1~60重量部を占めることが好ましく、5~40重量部含まれることがより好ましい。酸化物ナノ粒子(B)が1重量部以上であると硬化物が高硬度化、高温時の高弾性の点で好ましく、60重量部以下であると低粘度化する点で好ましい。高温時に高弾性である酸化物ナノ粒子(B)を1重量部以上含有することで、酸化物ナノ粒子反応生成物の高温時の弾性率が向上する。
 本発明の酸化物ナノ粒子反応生成物中の、アルケニル基、及び/又はケイ素原子に直接結合した水素原子の濃度は、0.5~7.0mmol/gであることが好ましく、1.0~3.0mmol/gであることがより好ましい。アルケニル基、及び/又はケイ素原子に直接結合した水素原子は、架橋基として用いることができ、それらの濃度が0.5mmol/g以上であると、硬化物が高硬度化する点で好ましく、7.0mmol/g以下であると、硬化物のクラック性の点で好ましい。アルケニル基、及び/又はケイ素原子に直接結合した水素原子の濃度は、例えば、1HNMR分析で測定することができる。
 本発明において、酸化物ナノ粒子反応生成物は、アルコキシ基:OR3{式中、R3は、炭素原子数1~6のアルキル基である。}で表される有機基を有することが好ましい。本発明で使用するオルガノポリシロキサン(A)は、下記式(10):
1 mSi(OR34-m
{式中、R1は、非置換若しくは置換の一価の炭化水素基、アルコキシ基、水酸基又は水素原子であり、R3は、炭素原子数1~6のアルキル基であり、そしてmは、0~3の整数である。}で表される化合物を加水分解及び縮合して得ることもできるが、該アルコキシ基:OR3は上記式(10)中の:OR3又はアルコール系溶媒に由来するものである。
 一般に、このOR3は、加水分解及び縮合反応の過程でアルコールとなり減っていが、酸化物ナノ粒子反応生成物中にあえて残存させることが、接着性の点で好ましい。
 R3としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、tert-ブチル基などが挙げられ、R3は、透明性、入手容易性の点から、メチル基、エチル基、イソプロピル基、ブチル基、tert-ブチル基であることが好ましく、メチル基であることがより好ましい。
 本発明の酸化物ナノ粒子反応生成物中の-OR3{式中、R3は、炭素原子数1~6のアルキル基である。}で表される置換基の濃度は、0.01~1.0mmol/gであることが好ましく、0.05~1.0mmol/gであることがより好ましく、0.10~0.5mmol/gであることがさらに好ましい。0.01mmol/g以上であると、接着性の点で好ましく、1.0mmol/g以下であると、耐クラック性、高温時の揮発成分抑制の点で好ましい。
 本発明において、酸化物ナノ粒子反応生成物に含まれるケイ素原子に結合した置換基全体の80mol%以上が脂肪族炭化水素基、脂環式炭化水素基、アルコキシ基、水酸基又は水素原子のいずれかであることが、透明性の点で好ましく、90mol%以上が脂肪族炭化水素基、脂環式炭化水素基、アルコキシ基、水酸基又は水素原子であることがより好ましく、95mol%以上が脂肪族炭化水素基、脂環式炭化水素基、アルコキシ基、水酸基又は水素原子であることがより好ましい。本発明においては、酸化物ナノ粒子反応生成物に含まれるケイ素原子に結合した全置換基が、フェニル基を除く、脂肪族炭化水素基、脂環式炭化水素基、アルコキシ基、水酸基又は水素原子であることが好ましい。特に好ましいのは、95mol%以上が直鎖脂肪族炭化水素基、アルコキシ基、水酸基又は水素原子である場合であり、なかでもメチル基、アルコキシ基、水酸基又は水素原子であることが特に好ましい。
 本発明における酸化物ナノ粒子反応生成物のゲルパーミエーションクロマトグラフィ(GPC)による標準PMMA換算での重量平均分子量は、500~30,000であることが好ましく、1000~25,000であることがより好ましい。重量平均分子量が500以上の場合、高温時の揮発成分抑制の点で好ましく、重量平均分子量が30,000以下の場合、低粘度化する点で好ましい。
 本発明に係る酸化物ナノ粒子反応生成物の粘度に制約は無く、目的に応じて適宜調整すればよいが、23℃で0.01~400P・sであることが好ましく、0.1~250Pa・sであることがより好ましく、操作性の容易さから0.5~150Pa・sであることが更に好ましい。
 本発明の酸化物ナノ粒子反応生成物の好ましい製造方法としては、次の2通りの例を例示できる。
(i)(I)下記式(10):
1 mSi(OR34-m
{式中、R1は、非置換若しくは置換の一価の炭化水素基、アルコキシ基、水酸基又は水素原子であり、R3は、炭素原子数1~6のアルキル基であり、そしてmは、0~3の整数である。}で表される化合物を加水分解及び縮合して、下記式(1):
1 mSiO(4-m)/2
{式中、R1は、非置換若しくは置換の一価の炭化水素基、アルコキシ基、水酸基又は水素原子であり、そしてmは、0~3の整数である。}で表される単位構造を有するオルガノポリシロキサン(A)を得る工程;
 (II)工程(I)で得たオルガノポリシロキサン(A)を酸化物ナノ粒子(B)と反応させて、酸化物ナノ粒子反応生成物を得る工程からなる。
(ii-1)(I)下記式(10):
1 mSi(OR34-m
{式中、R1は、非置換若しくは置換の一価の炭化水素基、アルコキシ基、水酸基又は水素原子であり、R3は、炭素原子数1~6のアルキル基であり、そしてmは、0~3の整数である。}で表される化合物を加水分解及び縮合して、下記式(1):
1 mSiO(4-m)/2
{式中、R1は、非置換若しくは置換の一価の炭化水素基、アルコキシ基、水酸基又は水素原子であり、そしてmは、0~3の整数である。}で表される単位構造を有するオルガノポリシロキサン(A)を得る工程;
 (II)工程(I)で得たオルガノポリシロキサン(A)を酸化物ナノ粒子(B)と反応させて、酸化物ナノ粒子反応生成物を得る工程;及び
 (III)工程(II)で得た酸化物ナノ粒子反応生成物のシラノール基を、下記式(2):
n2 3-nSiY
{式中、Xは、アルケニル基又は水素原子であり、R2は、飽和非置換又は置換の一価の炭化水素基であり、Yは、ハロゲン原子であり、そしてnは、1又は2である。}からなるシラノール基封止剤(C)により封止して、酸化物ナノ粒子反応生成物を得る工程からなる。
(ii-2)(I)下記式(10):
1 mSi(OR34-m
{式中、R1は、非置換若しくは置換の一価の炭化水素基、アルコキシ基、水酸基又は水素原子であり、R3は、炭素原子数1~6のアルキル基であり、そしてmは、0~3の整数である。}で表される化合物を加水分解及び縮合して、下記式(1):
1 mSiO(4-m)/2
{式中、R1は、非置換若しくは置換の一価の炭化水素基、アルコキシ基、水酸基又は水素原子であり、そしてmは、0~3の整数である。}で表される単位構造を有するオルガノポリシロキサン(A)を得る工程;
 (II)工程(I)で得たオルガノポリシロキサン(A)を酸化物ナノ粒子(B)と反応させて、酸化物ナノ粒子反応生成物を得る工程;
 (II’)工程(II)で得た酸化物ナノ粒子反応生成物を、両末端にシラノール基、アルコキシ基、及びハロゲン原子からなる群から選ばれる反応性置換基をもつ下記式(9):
8 2SiO2/2
{式中、R8は、非置換若しくは置換の一価の炭化水素基又は水素原子である。}で表される単位構造が連続した直鎖状ポリシロキサン(D)と、反応させる工程;及び
 (III)工程(II’)で得た酸化物ナノ粒子反応生成物と直鎖状ポリシロキサン(D)との反応生成物のシラノール基を、下記式(2):
n2 3-nSiY
{式中、Xは、アルケニル基又は水素原子であり、R2は、飽和非置換又は置換の一価の炭化水素基であり、Yは、ハロゲン原子であり、そしてnは、1又は2である。}からなるシラノール基封止剤(C)により封止して、酸化物ナノ粒子反応生成物を得る工程からなる。
<オルガノポリシロキサン(A)を得る工程(I)>
 下記式(1):
1 mSiO(4-m)/2
{式中、R1は、非置換若しくは置換の一価の炭化水素基、アルコキシ基、水酸基又は水素原子であり、そしてmは、0~3の整数である。}で表される単位構造を有するオルガノポリシロキサン(A)は、下記式(10):
1 mSi(OR34-m
{式中、R1は、非置換若しくは置換の一価の炭化水素基、アルコキシ基、水酸基又は水素原子であり、R3は、炭素原子数1~6のアルキル基であり、そしてmは、0~3の整数である。}で表される化合物を加水分解及び縮合して得られる。
 水の添加量としては、式(10)中のOR3で表される置換基に対して、モル比で0.1~10倍であることが好ましく、0.4~8倍であることがより好ましく、0.8~5倍であることがさらに好ましい。水の添加量が0.1倍以上であると、オルガノポリシロキサン(A)の分子量が高くなるため好ましく、10倍以下であることは、コストの点で好ましい。
 オルガノポリシロキサン(A)を、触媒の存在下で、加水分解及び縮合により製造することが、加水分解及び縮合の反応速度を調節できる点で好ましい。
 触媒の種類としては、酸触媒と塩基触媒が挙げられる。例えば、酸触媒としては、無機酸及び有機酸が挙げられる。無機酸としては、例えば、塩酸、硝酸、硫酸、フッ酸、リン酸、ホウ酸等が挙げられる。有機酸としては、例えば、酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、シュウ酸、マレイン酸、メチルマロン酸、安息香酸、p-アミノ安息香酸、p-トルエンスルホン酸、ベンゼンスルホン酸、トリフルオロ酢酸、ギ酸、マロン酸、スルホン酸、フタル酸、フマル酸、クエン酸、酒石酸、シトラコン酸、リンゴ酸、グルタル酸等が挙げられる。塩基触媒としては、無機塩基及び有機塩基が挙げられる。無機塩基としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ金属水酸化物、水酸化カルシウム等のアルカリ土類金属水酸化物、炭酸リチウム、炭酸カリウム、炭酸ナトリウム等のアルカリ又はアルカリ土類金属炭酸塩、炭酸水素カリウム、炭酸水素ナトリウム等の金属炭酸水素塩が挙げられる。有機塩基としては、トリエチルアミン、エチルジイソプロピルアミン等のトリアルキルアミン;N,N-ジメチルアニリン、N,N-ジエチルアニリン等の炭素数1~4のN,N-ジアルキルアニリン誘導体;ピリジン、2,6-ルチジン等の、炭素数1~4のアルキル置換基を有していてもよいピリジン誘導体などが挙げられる。
 これらの触媒は、1種で又は2種以上を混合して用いることができる。オルガノポリシロキサン(A)製造時に、反応系のpHを0.01~6.0の範囲になる量の触媒を加えることが、オルガノポリシロキサン(A)の反応効率の点で好ましい。
 オルガノポリシロキサン(A)を製造するための加水分解及び縮合は、有機溶媒中で行うことができる。縮合反応に使用できる有機溶媒としては、例えば、アルコール、エステル、ケトン、エーテル、脂肪族炭化水素化合物、芳香族炭化水素化合物、アミド化合物等が挙げられる。
 上記アルコール類としては、例えば、メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコールのような一価アルコール、エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリン、トリメチロールプロパン、ヘキサントリオールのような多価アルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテルのような多価アルコールのモノエーテル類等が挙げられる。
 上記エステル類としては、例えば、酢酸メチル、酢酸エチル、酢酸ブチル、γ-ブチロラクトン等が挙げられる。ケトン類としては、例えば、アセトン、メチルエチルケトン、メチルイソアミルケトン等が挙げられる。
 上記エーテル類としては、上記の多価アルコールのモノエーテル類の他に、例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジエチルエーテルのような多価アルコールの水酸基の全てをアルキルエーテル化した多価アルコールエーテル類、テトラヒドロフラン、1,4-ジオキサン、アニソール等が挙げられる。
 上記脂肪族炭化水素化合物としては、例えば、ヘキサン、ヘプタン、オクタン、ノナン、デカン等が挙げられる。
 上記芳香族炭化水素化合物としては、例えば、ベンゼン、トルエン、キシレン等が挙げられる。
 上記アミド化合物としては、例えば、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等が挙げられる。
 以上の溶媒の中でも、メタノール、エタノール、イソプロパノール、ブタノール等のアルコール系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、エチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のエーテル系溶媒、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等が水と混合しやすい点で好ましい。
 これらの溶媒は単独で使用してもよいし、複数の溶媒を組み合わせて使用してもよい。また、上記溶媒を用いずにバルク中で反応を行ってもよい。
 オルガノポリシロキサン(A)を製造する際の反応温度は特に制限は無いが、-50~200℃が好ましく、0~150℃がより好ましい。反応温度が-50℃以上であることは、加水分解及び縮合反応の反応速度を上げる点で好ましく、反応温度が200℃以下であることは、オルガノポリシロキサン(A)のゲル化を抑制する点で好ましい。
 オルガノポリシロキサン(A)を製造する際の反応時間は特に制限は無いが、30分~24時間が好ましく、1~6時間がより好ましい。反応時間が30分以上であることは、アルコキシ基の加水分解が充分に進行させるために好ましく、反応温度が24時間以下であることは、オルガノポリシロキサン(A)のゲル化を抑制する点で好ましい。
<オルガノポリシロキサン(A)と酸化物ナノ粒子(B)との反応(II)>
 本発明における酸化物ナノ粒子反応生成物は、オルガノポリシロキサン(A)と酸化物ナノ粒子(B)とが共有結合で結ばれていることを特徴とする。オルガノポリシロキサン(A)と酸化物ナノ粒子(B)とを共有結合させる工程として、例えば、オルガノポリシロキサン(A)又は(存在する場合には)酸化物ナノ粒子(B)中のアルケニル基と、他方中のケイ素原子に直接結合した水素原子とを付加反応させる工程、オルガノポリシロキサン(A)又は酸化物ナノ粒子(B)中のシラノール基と、他方中のケイ素原子に直接結合したアルコキシ基(酸化物ナノ粒子(B)中に存在する場合)とを脱アルコール縮合反応させる工程、オルガノポリシロキサン(A)又は酸化物ナノ粒子(B)中のシラノール基と、他方の中のシラノール基とを脱水縮合反応させる工程などが挙げられる。粒子分散性、合成容易性の点で、オルガノポリシロキサン(A)又は酸化物ナノ粒子(B)中のシラノール基と、他方中のケイ素原子に直接結合したアルコキシ基(酸化物ナノ粒子(B)中に存在する場合)とを脱アルコール縮合反応させる工程、オルガノポリシロキサン(A)又は酸化物ナノ粒子(B)中のシラノール基と、他方中のシラノール基とを脱水縮合反応させる工程が好ましく、オルガノポリシロキサン(A)又は酸化物ナノ粒子(B)中のシラノール基と、他方中のシラノール基とを脱水縮合反応させる工程がより好ましい。
 オルガノポリシロキサン(A)又は酸化物ナノ粒子(B)中のシラノール基と、他方中のシラノール基とを脱水縮合反応させる工程には、溶媒を使用することができる。溶媒として、オルガノポリシロキサン(A)の製造に使用した溶剤をそのまま使用してもよく、その他の溶剤を用いてもよく、オルガノポリシロキサン(A)の製造に使用した溶剤とその他の溶剤を混合して使用してもよい。使用できる溶剤として、例えば、水、有機溶媒又はこれらの混合溶媒を使用することができる。有機溶媒として、例えば、メタノール、エタノール、n-プロパノール、2-プロパノール、n-ブタノール、メトキシエタノール、エトキシエタノール、メトキシエタン、アセトン、メチルエチルケトン、メチルイソブチルケトン、酢酸メチル、酢酸エチル、酢酸プロピル、ギ酸エチル、ギ酸プロピル、γ-ブチロラクトンなどが挙げられる。
 酸化物ナノ粒子(B)とオルガノポリシロキサン(A)との縮合反応は、触媒存在下で行われることが好ましい。触媒として、オルガノポリシロキサン(A)の製造に用いるものと同じ触媒を挙げることができる。
 また、酸化物ナノ粒子(B)とオルガノポリシロキサン(A)とを触媒存在下で縮合反応させた後、さらに縮合を進めるために、塩基触媒を添加してもよい。塩基触媒としては、無機塩基及び有機塩基が挙げられる。無機塩基としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ金属水酸化物、水酸化カルシウム等のアルカリ土類金属水酸化物、炭酸リチウム、炭酸カリウム、炭酸ナトリウム等のアルカリ又はアルカリ土類金属炭酸塩、炭酸水素カリウム、炭酸水素ナトリウム等の金属炭酸水素塩が挙げられる。有機塩基としては、トリエチルアミン、エチルジイソプロピルアミン等のトリアルキルアミン;N,N-ジメチルアニリン、N,N-ジエチルアニリン等の炭素数1~4のN,N-ジアルキルアニリン誘導体;ピリジン、2,6-ルチジン等の、炭素数1~4のアルキル置換基を有していてもよいピリジン誘導体などが挙げられる。
 オルガノポリシロキサン(A)又は酸化物ナノ粒子(B)中のシラノール基と、他方中のシラノール基とを脱水縮合反応させる工程の反応温度は、-50~200℃が好ましく、0~150℃がより好ましい。反応温度が-50℃以上であることは、加水分解及び縮合反応の反応速度を上げる点で好ましく、反応温度が200℃以下であることは、オルガノポリシロキサン(A)のゲル化を抑制する点で好ましい。
 また、工程(II)で得た酸化物ナノ粒子反応生成物を、両末端にシラノール基、アルコキシ基、及びハロゲン原子からなる群から選ばれる反応性置換基をもつ下記式(9):
8 2SiO2/2
{式中、R8は、非置換若しくは置換の一価の炭化水素基又は水素原子である。}で表される単位構造が連続した直鎖状ポリシロキサン(D)と、さらに反応させるせることで、R8 2SiO2/2の単位構造が連続した直鎖状ポリシロキサン(D)をさらに導入することができる(工程(II’))。
 ここで、オルガノポリシロキサン(A)、酸化物ナノ粒子(B)、及び直鎖状ポリシロキサン(D)を反応させる順序は特に制限がなく、(A)、(B)及び(D)のうちいずれか2種を先に反応させてから、残りの1種を反応させる方法、又は(A)、(B)、及び(D)の全てを同時に反応させる方法が挙げられる。
 反応中における粒子のゲル化を防ぐという観点から、(A)と(B)を先に反応させた後に(D)を反応させる方法、(A)と(D)を先に反応させた後に(B)を反応させる方法、及び(A)、(B)、及び(D)を同時に反応させる方法が好ましい。(B)の近傍に(D)を導入させる方が脆さの原因となるシリカナノ粒子(B)の近傍に柔軟性成分を付与でき、耐クラック性に優れるという点から、(A)と(B)を先に反応させた後に(D)を反応させる方法、(A)、(B)、及び(D)を同時に反応させる方法がより好ましい。応力緩和による耐クラック性の効果がより増大する点で(A)と(B)を先に反応させた後に(D)を反応させる方法がさらに望ましい。
 R8 2SiO2/2で表される単位構造が連続した直鎖状ポリシロキサン(D)の反応性置換基とは、シラノールやアルコキシシランとの縮合反応でシロキサン結合を形成するものであり、具体的には、シラノール基、アルコキシ基、ハロゲン原子が挙げられる。入手や取り扱いの容易さの点から、シラノール基、アルコキシ基、クロロ基がより好ましく、シラノール基がさらに好ましい。
 R8 2SiO2/2で表される単位構造が連続した直鎖状ポリシロキサン(D)は、溶媒で希釈して添加してもよいし、そのままバルクで添加してもよい。
 直鎖状ポリシロキサン(D)を脱水縮合反応させる工程の反応温度は、-50℃~200℃が好ましく、0℃~150℃がより好ましい。反応温度が-50℃以上であることは、加水分解及び縮合反応の反応速度を上げる点で好ましく、反応温度が200℃以下であることは、オルガノポリシロキサン(A)のゲル化を抑制する点で好ましい。
 直鎖状ポリシロキサン(D)を、酸化物ナノ粒子(B)とポリシロキサン化合物(A)との縮合物と脱水縮合反応させる工程の反応時間は、30分~12時間が好ましく、1時間~7時間がより好ましい。反応時間が30分以上であることは、加水分解及び縮合反応が進行し、分子量が大きくなるため高耐クラック性の点で好ましく、反応時間が12時間以下であることは、オルガノポリシロキサン(A)のゲル化を抑制する点で好ましい。
<シラノール封止剤(C)により封止する反応(III)(オルガノシリル化処理する反応(III)>
 本発明において、シラノール基をオルガノシリル化処理することによりシラノール基を封止することができる。
 工程(II)で得たシリカナノ粒子反応生成物のシラノール基、又は工程(II’)で得たシリカナノ粒子反応生成物と直鎖状ポリシロキサン(D)との反応生成物のシラノール基を、下記式(2):
n2 3-nSiY
{式中、Xは、アルケニル基又は水素原子であり、R2は、飽和非置換又は置換の一価の炭化水素基であり、Yは、ハロゲン原子であり、そしてnは、1又は2である。}からなるシラノール基封止剤(C)により封止して、酸化物ナノ粒子反応生成物を得ることができる。上記シラノール封止剤のうち、特に好ましいのは、n=1~3の整数の場合である。
 本発明において、シラノール基をオルガノシリル化処理することによりシラノール基を封止する際、使用するシラノール基封止剤(C)の量を変化させることにより、酸化物ナノ粒子反応生成物中のシラノール基濃度を調整することができる。
 上記式(2)で表される化合物の添加量は、シラノール基量を調整するために適宜調整すればよく特に制限は無いが、例えば、クロロシランを用いる場合の添加量は、シラノール基に対して、モル比で0.2~1.1程度である。
 シラノール基量を調整するために、トリメチルクロロシランなどのアルケニル基又は水素原子を有さないシラノール基封止材を併用することもできる。
 本発明において、シラノール基をオルガノシリル化処理することによりシラノール基を封止する際、溶剤を用いてもよい。溶剤として、例えば、エステル類、エーテル類、脂肪族炭化水素化合物、方向族炭化水素化合物などが挙げられる。
 上記エステル類としては、例えば、酢酸メチル、酢酸エチル、酢酸ブチル等が挙げられる。ケトン類としては、例えば、アセトン、メチルエチルケトン、メチルイソアミルケトン等が挙げられる。
 上記エーテル類としては、上記の多価アルコールのモノエーテル類の他に、例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジエチルエーテルのような多価アルコールの水酸基の全てをアルキルエーテル化した多価アルコールエーテル類、及び、テトラヒドロフラン、1,4-ジオキサン、アニソール等が挙げられる。
 上記脂肪族炭化水素化合物としては、例えば、ヘキサン、ヘプタン、オクタン、ノナン、デカン等が挙げられる。
 上記芳香族炭化水素化合物としては、例えば、ベンゼン、トルエン、キシレン等が挙げられる。
 本発明において、シラノール基をオルガノシリル化処理することによりシラノール基を封止する際、クロロシラン類を用いることが、高反応性の点で好ましい。クロロシラン類として、トリメチルクロロシラン、ジメチルビニルクロロシラン、ジメチルクロロシランなどの一塩素置換(モノクロロ)シランなどを挙げることができる。また、前記一塩素置換(モノクロロ)シランを用いると、低粘度化する点で好ましい。
 本発明において、クロロシラン類を用いてシラノール基をオルガノシリル化処理することによりシラノール基を封止する際、発生する酸を、ルイス塩基により中和することが好ましい。ルイス塩基として、例えば、ピリジン、ピペリジン、トリエチルアミンなどが挙げられる。
 本発明において、クロロシラン類を用いてシラノール基をオルガノシリル化処理することによりシラノール基を封止する際、反応温度は、20~150℃が好ましく、20~50℃がより好ましい。反応温度が20℃以上であると、反応速度の点で好ましく、反応温度が150℃以下であると、コストの点で好ましい。
 本発明の酸化物ナノ粒子反応生成物の製造方法において、得られる生成物のアルケニル基又は水素基の反応性の視点で最も好ましいのは、工程(I)においてはその生成物中にアルケニル基または水素基を含まず、工程(III)においてアルケニル基又は水素基を導入することが好ましい。
<シリコーン組成物>
 本発明に係る酸化物ナノ粒子反応生成物を用いてシリコーン組成物を得ることができる。このとき、酸化物ナノ粒子反応生成物として、2種類(下記i及び下記ii)の酸化物ナノ粒子反応生成物を共に含有するものが好ましい。具体的には、i:アルケニル基を含有する酸化物ナノ粒子反応物(上記式(2)においてXがアルケニル基であるものに相当)及びii:ケイ素原子に直接結合した水素原子を含有する酸化物ナノ粒子反応物(上記式(2)においてXが水素原子であるものに相当)を含むことが好ましい。これら2種の酸化物ナノ粒子反応物を共に含有することによって、シリコーン組成物中に酸化物ナノ粒子が均一に分散することから、耐クラック性、硬度の点で好ましく、かつ各々の酸化物ナノ粒子反応物同士が硬化反応した後に熱光的に安定な架橋基を形成することができることから、透明性に優れる点で好ましい。
 本発明の酸化物ナノ粒子反応生成物(a)を含むシリコーン組成物は、ヒドロシリル化触媒(b)を含有することが好ましい。ヒドロシリル化触媒(b)とは、不飽和炭化水素基における不飽和炭化水素と、SiH基における珪素原子に直接結合した水素原子との付加反応を促進するための触媒であり、周知のヒドロシリル化触媒を使用できる。ヒドロシリル化触媒として、例えば、白金(白金黒を含む)、ロジウム、パラジウム等の白金族金属単体;H2PtCl4・nH2O、H2PtCl6・nH2O、NaHPtCl6・nH2O、KHPtCl6・nH2O、Na2PtCl6・nH2O、K2PtCl4・nH2O、PtCl4・nH2O、PtCl2、Na2HPtCl4・nH2O{式中、nは0~6の整数であり、好ましくは0又は6である。}等の塩化白金、塩化白金酸及び塩化白金酸塩;アルコール変性塩化白金酸;塩化白金酸とオレフィンとのコンプレックス;白金黒、パラジウム等の白金族金属をアルミナ、シリカ、カーボン等の担体に担持させたもの;ロジウム-オレフィンコンプレックス;クロロトリス(トリフェニルフォスフィン)ロジウム(ウィルキンソン触媒);塩化白金、塩化白金酸又は塩化白金酸塩とビニル基含有シロキサン、ジビニルテトラメチルジシロキサン白金錯体、ビニル基含有環状シロキサンとのコンプレックスなどが挙げられる。これらのヒドロシリル化触媒は、1種類で用いてもよいし、2種以上のヒドロシリル化触媒を混合して用いてもよい。ヒドロシリル化触媒(b)は、シリコーン組成物中に、白金族金属の重量換算で、0.01~1000ppm含まれることが好ましく、0.2~100ppm含まれることがより好ましい。0.01ppm以上であることが反応効率の点で好ましく、1000ppm以下であることが、硬化物の透明性点で好ましい。
 本発明の酸化物ナノ粒子反応生成物(a)を含むシリコーン組成物は、接着性付与剤(c)を含有することが、各種材料との接着性の点で好ましい。接着性付与剤(c)として、例えば、エポキシ官能性基含有化合物、アルコキシシランなどが挙げられる。好ましい接着助剤は、エポキシ基及び/又はアルコキシ基含有オルガノハイドロジェンポリシロキサン化合物であり、特に好ましい接着助剤は、エポキシ基含有オルガノハイドロジェンポリシロキサン化合物である。
 上記接着性付与剤(c)の添加量は、シリコーン組成物100質量部に対して、0.01質量部以上20質量部以下が好ましい。0.01質量部以上添加することが、接着性の点で好ましく、20質量部以下であることが、透明性、耐クラック性の点で好ましい。
 本発明のシリコーン組成物は、無機フィラーを含有してもよい。無機フィラーは、光透過性への悪影響を避けるため、目的の用途において使用する波長以下の平均一次粒子径を有するものが好ましく、平均一次粒子径は、より好ましくは100nm以下である。無機フィラーは、樹脂において、例えば機械的物性を改善する場合及び熱伝導性を向上させる場合がある。無機フィラーの平均一次粒子径の下限は特に限定はないが、樹脂組成物の粘度が低く良好な成形性を有するため、0.1nm以上であることが好ましい。なお上記平均一次粒子径は、BETの比表面積から計算で求められる値である。無機フィラーの添加量は、目的に応じて選択できるが、樹脂組成物100質量部に対して、例えば1~60質量部、より好ましくは5~60質量部、さらに好ましくは5~40質量部であることができる。
 本発明のシリコーン組成物は、発光波長の色を変換させる目的で、蛍光体又は燐光体を含有してもよい。これらの材料は公知の方法、例えば、遠心分離等を用いて樹脂組成物及び任意の他の成分と混合することが好ましい。得られた混合物を真空脱泡等で泡抜きしてもよい。
 本発明のシリコーン組成物において、該ワニスにおける該酸化物ナノ粒子反応生成物の平均二次粒径が5~100nmであることが好ましい。また、酸化物ナノ粒子の二次粒径の最大値は200nm以下であることが好ましい。酸化物ナノ粒子とポリオルガノシロキサンとが共有結合で結ばれていることにより、酸化物ナノ粒子が凝集して二次粒径が大きくなることを抑えることができる。これによって、光の散乱を最小限に抑えることができるので、高い透明性を達成することができると推定される。さらに、酸化物ナノ粒子がポリオルガノシロキサンのネットワークの中において架橋点として機能することで、高温時における弾性率の低下を最小限に抑えることが可能になっているのではないかと推定される。
 ワニスにおける酸化物ナノ粒子反応生成物の平均二次粒径とは、硬化前の酸化物ナノ粒子反応生成物の平均二次粒径のことであり、レーザー光源を用いる粒度分布測定装置によって測定することが可能である。ワニスにおける酸化物ナノ粒子反応生成物の平均二次粒径が上記範囲であることにより、硬化物の高い透明性と高温時の高い弾性率とを両立できる。また、弾性率と透明性との両立の点から、該平均二次粒径は、特に、25~75nmであることが好ましい。この範囲に該平均二次粒径が制御されていることにより、酸化物ナノ粒子反応生成物のもつ架橋基が空間的に好ましく広がるため、シリコーン硬化物の透明性を維持しながら、高温時の高い弾性率が得られるものと推定される。
 また、ワニス中の揮発性成分量(すなわち、ワニスの質量を100質量%としたときの揮発性成分量)は1質量%未満であることが好ましい。本明細書において、ワニスの揮発性成分量とは、該ワニスを室温から100℃まで10℃/分で昇温し、次いで1時間ホールドし、次いで150℃まで10℃/分で昇温し、次いで1時間ホールドする間の重量減少量を熱分析装置によって測定したときの値を意味する。上記測定により得られる揮発性成分量は、ワニスからシリコーン硬化物への硬化過程において揮発する揮発性成分の量を想定した値である。ワニス中の揮発性成分としては、溶剤、低分子ケイ素化合物等が例示される。ワニス中の揮発性成分量が1質量%未満であることは、透明性と高温時での高い弾性率とを両立するという点に加えて、発光チップのダイアタッチ層としての使用の際に、発光チップを汚染する懸念が低減できるという点で好ましい。ワニス中の揮発性成分量は、より好ましくは0.8質量%以下、さらに好ましくは0.6質量%以下である。
 本発明のシリコーン組成物は公知の方法を用いて硬化させることができる。具体的には、加熱によって硬化させる方法、及び紫外線(UV)を照射することによって硬化させる方法が挙げられる。加熱により硬化させる際の温度は、20~200℃の範囲が好ましい。
 前記の硬化反応は、窒素、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、炭酸ガス等の不活性ガス、又は低級飽和炭化水素系ガス若しくは空気等の雰囲気下、減圧下又は加圧下で行うことができる。これらのガスは、1種又は2種以上の混合ガスとして用いることができる。
<シリコーン硬化物>
 本発明に係るシリコーン硬化物は、前記したポリオルガノシロキサンと酸化物ナノ粒子とを含有するシリコーン硬化物であって、該ポリオルガノシロキサンが、炭化水素基を有しかつ該炭化水素基とケイ素原子との結合による架橋構造を形成しており、該酸化物ナノ粒子が、平均一次粒径1~30nmを有し、かつ平均二次粒径5~100nmを有することを特徴とする。シリコーン硬化物中の酸化物ナノ粒子の平均一次粒径及び平均二次粒径を上記範囲に調整することによって、高い透明性と高温時の高い弾性率とが両立できる。高い透明性と高温時の高い熱時弾性率とが両立できることの理由は必ずしも明確ではないが、酸化物ナノ粒子の粒径をコントロールすることによって、光の散乱を最小限に抑えながら、酸化物ナノ粒子がポリオルガノシロキサンのネットワークの中において、ポリオルガノシロキサンとの共有結合による架橋構造を形成しうる架橋点として機能することでポリオルガノシロキサンが酸化物ナノ粒子を介して3次元架橋することができ、高温時におけるシリコーン硬化物の弾性率の低下を最小限に抑えることが可能になっているのではないかと推定される。ここで、高温時の高い弾性率とは、LEDのオペレーション温度の上限である150℃での弾性率が70MPaを超えるものを指す。
 高透明性及び高温時の高弾性率をより良好に達成する観点から、上記平均一次粒径は5~25nmであることが好ましく、上記平均二次粒径は20~65nmであることが特に好ましい。
 尚、一次粒径とは、粉末を構成する最も小さい粒子(一次粒子)の直径のことであり、二次粒径とは、一次粒子が凝集したもの(二次粒子)の直径のことである。これらの粒径はシリコーン硬化物の断面TEM(透過型電子顕微鏡)写真を観察することによって見積もることが可能である。酸化物ナノ粒子の密度はポリオルガノシロキサンの密度に対して通常大きく、TEM写真においては酸化物ナノ粒子が黒色の粒状に観察される。硬化物中の酸化物ナノ粒子の平均一次粒径及び平均二次粒径とは、高倍率(例えば、5万倍)のTEM写真から酸化物ナノ粒子の一次粒径及び二次粒径を測定し、各々平均をとったものである。
 本発明のシリコーン硬化物は、ポリオルガノシロキサンが炭化水素基とケイ素原子との結合による架橋構造を有するという特徴を有する。ポリオルガノシロキサンが炭化水素基とケイ素原子との結合による架橋構造を有するとは、ポリオルガノシロキサン中に、ケイ素原子間が炭化水素基によって結ばれている構造が存在することを指す。炭化水素基の構造としては、環状構造、直鎖構造、分岐構造等が例示できる。シリコーン硬化物の耐熱性の観点から好ましい炭化水素基の構造は-(CH2n-等で表される直鎖構造であり、このとき架橋構造は、Si-(CH2n-Siと表される。ここでnは1以上の整数であり、好ましくはnは10以下、より好ましくは2以下である。シリコーン硬化物中に上記架橋構造が存在することは、NMR分析等の方法によって確認できる。
 炭化水素基による架橋構造の形成方法については特に制限はなく、その形成方法としては縮合反応、付加反応等が例示できる。Si-(CH22-Si構造はシリコーン硬化物の耐熱性の点において特に好ましい。この構造は、例えば、ケイ素原子に直接結合するエテニル基と、ケイ素原子に直接結合する水素原子とを例えば白金触媒によってヒドロシリル化反応させることで得ることが可能である。
 シリコーン硬化物における、ポリオルガノシロキサンと酸化物ナノ粒子との好ましい構成比は、質量基準で、95:5~50:50であり、特に好ましくは90:10~60:40である。なお上記構成比とは、シリコーン硬化物中に存在するポリオルガノシロキサンと酸化物ナノ粒子との比であり、それぞれの原料の質量を元に計算で導き出すことができる。ポリオルガノシロキサンの質量は、それを構成するモノマーの合計質量から縮合等で減量する量を差し引くことで見積もることができる。高硬度、高熱伝導、及び高温時の高い弾性率を得るためには、ポリオルガノシロキサンと酸化物ナノ粒子との合計に対する酸化物ナノ粒子の構成比が5質量%以上となることが好ましく、また、高い透明性および取り扱い容易な粘度であるためには、ポリオルガノシロキサンと酸化物ナノ粒子との合計に対する酸化物ナノ粒子の構成比は50質量%以下となることが好ましい。
 酸化物ナノ粒子の二次粒径の最大値は200nm以下であることが好ましい。この範囲で二次粒径を制御することによって、シリコーン硬化物の透明性と高温時の高い弾性率とを両立できるからである。ここで言う「二次粒径の最大値」とは、TEM写真上で観察される二次粒径の、平均値ではなく最大値のことである。また、上記二次粒径の最大値は、好ましくは5nm以上である。
 本発明のシリコーン硬化物は、厚みが好ましくは1μm以上5mm以下、さらに好ましくは11μm以上3mm以下、特に好ましくは3μm以上2mm以下の膜であることができる。上記厚みが5mm以下であるとシリコーン硬化物にクラックが入りにくいので好ましく、また、1μm以上であると被着面との接着性が要求される場合に良好な接着性が確保される傾向にあるので好ましい。
<シリコーン硬化物の用途>
 本発明に係るシリコーン硬化物は、光半導体パッケージに好適に用いられる。
 以下、本発明の光半導体パッケージについて説明する。
 本発明の光半導体パッケージは、前記したオルガノポリシロキサン(A)と酸化物ナノ粒子(B)とを含有するシリコーン硬化物を含む光半導体パッケージであって、該シリコーン硬化物中における酸化物ナノ粒子が、平均一次粒径1~30nmを有し、かつ、平均二次粒径5~100nmを有する前記光半導体パッケージである。
 シリコーン硬化物中の酸化物ナノ粒子の平均一次粒径及び平均二次粒径を上記範囲に調整することによって、光半導体パッケージの高い透明性、高温時の高い弾性率、及び高い熱伝導性とを両立することができる。高い透明性、高温時の高い弾性率、及び高い熱伝導性とが両立できる理由は必ずしも明確ではないが、酸化物ナノ粒子の粒径をコントロールすることによって、光の散乱を最小限に抑えながら、酸化物ナノ粒子がポリオルガノシロキサンのネットワーク中に均一に分散することでナノコンポジット構造となり、高温時におけるシリコーン硬化物の弾性率の低下を最小限に抑え、かつ、粒子間の距離が短くなって熱伝導が向上することが可能になっているのではないかと推定される。ここで、本明細書中、高温時の高い弾性率とは、LEDのオペレーション温度の上限である150℃での弾性率が70MPaを超えるものを指す。また、高い熱伝導性とは、熱伝導率が0.25W/(m・K)以上のものを指す。
 高い透明性、高温時の高い弾性率、及び高い熱伝導性をより良好に達成する観点から、上記平均一次粒径は5~25nmであることが好ましく、上記平均二次粒径は20~65nmであることが好ましい。
 本発明の光半導体パッケージにおいては、酸化物ナノ粒子(B)の二次粒径の最大値は200nm以下であることが好ましい。この範囲に二次粒径を制御することによって、シリコーン硬化物の透明性、高温時の高い弾性率、及び高い熱伝導性を両立することができるからである。ここで、「二次粒径の最大値」とは、TEM写真上で観察される二次粒径の、平均値ではなく最大値のことである。また、上記二次粒径の最大値は、好ましくは5nm以上である。
 尚、一次粒径とは、粉末を構成する最も小さい粒子(一次粒子)の直径のことであり、二次粒径とは、一次粒子が凝集したもの(二次粒子)の直径のことである。これらの粒径はシリコーン硬化物の断面TEM(透過型電子顕微鏡)写真を観察することによって測定することができる。酸化物ナノ粒子(B)の密度は、オルガノポリシロキサン(A)の密度に対して通常大きく、TEM写真においては酸化物ナノ粒子が黒色の粒状に観察される。硬化物中の酸化物ナノ粒子の平均一次粒径及び平均二次粒径とは、高倍率(例えば、5万倍)のTEM写真から酸化物ナノ粒子の一次粒径及び二次粒径を測定した値を平均したものである。
 また、本発明の半導体パッケージにおいては、シリコーン硬化物中の酸化物ナノ粒子(B)の含有量は5質量%以上であることが好ましく、一方、シリコーン硬化物の靭性を保つ観点から、80質量%以下であることが好ましい。
 本発明の光半導体パッケージにおいては、前記オルガノポリシロキサン(A)は、炭化水素基を有し、かつ、該炭化水素基とケイ素原子との結合による架橋構造を形成しているものであることが好ましい。 ここで、オルガノポリシロキサンが炭化水素基とケイ素原子との結合による架橋構造を有するとは、オルガノポリシロキサン中に、ケイ素原子間が炭化水素基によって結ばれている構造が存在することを意味する。炭化水素基の構造としては、環状構造、直鎖構造、分岐構造等が例示できる。シリコーン硬化物の耐熱性の観点から、好ましい炭化水素基の構造は-(CH2n-等で表される直鎖構造であり、このとき架橋構造は、Si-(CH2n-Siと表される。ここで、nは、1以上の整数であり、好ましくは10以下、より好ましくは2以下である。シリコーン硬化物中に上記架橋構造が存在することは、NMR分析等の方法によって確認できる。
 本発明の光半導体パッケージにおいて、炭化水素基による架橋構造の形成方法については特に制限はなく、その形成方法としては縮合反応、付加反応等が例示できる。Si-(CH22-Si構造は、シリコーン硬化物の耐熱性の観点から好ましい。この構造は、例えば、ケイ素原子に直接結合するエテニル基と、ケイ素原子に直接結合する水素原子とを、例えば白金触媒によってヒドロシリル化反応させることで得ることができる。本発明の光半導体パッケージにおいて使用するシリコーン硬化物は、ケイ素原子に直接結合したアルケニル基及び/又はケイ素原子に直接結合した水素原子を有するオルガノポリシロキサンと酸化物ナノ粒子とが共有結合した酸化物ナノ粒子反応生成物を含有するワニスを硬化させて得られるものであることが好ましい。
 本発明の光半導体パッケージに使用するシリコーン硬化物の厚みは、好ましくは1μm以上5mm以下、より好ましくは1μm以上3mm以下、さらに好ましくは1μm以上2mm以下である。上記厚みが5mm以下であるとシリコーン硬化物にクラックが入り難く、一方、1μm以上であると被着面との接着性が要求される場合に良好な接着性が確保される傾向にある。
 本発明の光半導体パッケージに使用するシリコーン硬化物の断面TEM解析によって得られる像を画像解析して2値化した際の、粒子部分の面積の割合は10%以上超であることが好ましい。TEM写真を解析して得られる上記物性を上記範囲に調整することによって、高温時の高い弾性率、及び高い熱伝導性を達成することができる。該割合は、高い弾性率と高い熱伝導率を達成する観点から、より好ましくは20%以上であり、さらに好ましくは50%以上である。
 本発明の光半導体パッケージに使用するシリコーン硬化物の断面TEM解析によって得られる像を画像解析して2値化した粒子においては、最近接粒子間を結ぶ距離の分散度は0.4未満であることが好ましい。TEM写真を解析して得られる上記物性を上記範囲に調整することによって、高温時の高い弾性率、及び高い熱伝導性を達成することができる。
 本発明の光半導体パッケージに使用するシリコーン硬化物の断面TEM解析によって得られる像を画像解析して2値化した粒子においては、最近接粒子間を結ぶ平均距離は100nm未満であることが好ましい。TEM写真を解析して得られる上記物性を上記範囲に調整することによって、高温時の高い弾性率、及び高い熱伝導性を両立することができる。該距離は、より好ましくは50nm未満であり、また、高い透明性との両立の観点からは、30nm以上であることが好ましい。
 また、本発明のシリコーン硬化物は、発光チップを支持基板上に接着するためのダイアタッチ層としての又はダイボンディング材としての使用に特に好適に適用できる。本発明のシリコーン硬化物は高温時の弾性率が高く、室温から高温までの動作を繰り返す発光チップの長期使用時において、チップと支持基板との間の接合面に生じるストレスが小さいので長期信頼性が良いという特徴がある。また、ダイアタッチ層としての構成に特に制約は無いが、例えば、下面には銀メッキ処理した銅材が配置され、上面にはLEDチップが配置される構成が例示できる。その形成方法としては、銀メッキ処理した銅材上にディスペンサー等でシリコーン硬化物の前駆体であるワニスを塗布した後発光チップを搭載し、ワニスを硬化させる方法を例示できる。
 上記理由と同様の理由により、発光チップをフリップチップ法にて電極上に接合配置する方式においても、本発明のシリコーン硬化物は好適に使用できる。すなわち本発明のシリコーン硬化物は、発光チップを支持基板上に配置する際のアンダーフィル層としての使用に好適に適用できる。アンダーフィル層としての構成に特に制約は無いが、Auめっき処理した電極にAuバンプを有する発光チップを圧着処理した後に、シリコーン硬化物の前駆体であるワニスを流し込んで硬化させることでアンダーフィル層を形成する方法等が例示できる。
<他のシリコーン組成物>
 本発明は、以下のシリコーン組成物にも関する。
 本発明のシリコーン組成物は、前記した酸化物ナノ粒子反応生成物、及び遊離のオルガノポリシロキサン(A’)を含有するシリコーン組成物であることができる。
<オルガノポリシロキサン(A’)>
 オルガノポリシロキサン(A’)は、好ましくは、下記式(7´):
3SiO1/2
{式中、Rは、非置換又は置換の一価の炭化水素基又は水素原子である。}で表される単位構造(M単位´)、及び下記式(8´):
SiO3/2
{式中、Rは、非置換又は置換の一価の炭化水素基又は水素原子である。}で表される単位構造(T単位´)を含み、オルガノポリシロキサン中においてそれらの成分の和が50重量%超であることが好ましく、また、
該単位構造のモル比、[R 3SiO1/2]/[RSiO3/2](M単位´/T単位´)が、0.05~1.00であることが好ましい。
 酸化物ナノ粒子と結ばれていないオルガノポリシロキサン(A’)にM体を含むことによって、オルガノポリシロキサン(A’)の分子量を低下させることとなり、シリコーン組成物の低粘度化を達成することができ、好ましくはヒドロシリル化反応に関与する架橋基がM体のケイ素に結合していることによって、ヒドロシリル化を高効率に進行することとなり、硬化物の高硬度化を達成できる。また、酸化物ナノ粒子と結ばれていない(遊離の)オルガノポリシロキサン(A’)にT体を含むことによって、オルガノポリシロキサン(A’)のシロキサン結合密度を最適化することとなり、硬化物の高硬度化、シリコーン組成物の低粘度化を達成することができる。
 上記式(8´)中のRとしては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、tert-ブチル基、シクロヘキシル基などのアルキル基;フェニル基などのアリール基;ビニル基、アリル基などのアルケニル基;γ‐グリシドキシプロピル基、β‐(3,4-エポキシシクロヘキシル)エチル基などのエポキシ基置換炭化水素基;水素原子などが挙げられ、合成容易性、入手容易性の点から、メチル基、エチル基、フェニル基、ビニル基、水素原子が好ましく、メチル基、ビニル基、水素原子がより好ましい。
 上記式(7´)中のRとして、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、tert-ブチル基、シクロヘキシル基などのアルキル基;フェニル基などのアリール基;ビニル基、アリル基などのアルケニル基;γ‐グリシドキシプロピル基、β‐(3,4-エポキシシクロヘキシル)エチル基などのエポキシ基置換炭化水素基;水素原子などが挙げられ、合成容易性、入手容易性の点から、メチル基、エチル基、フェニル基、ビニル基、水素原子が好ましく、メチル基、ビニル基、水素原子がより好ましい。
 前記酸化物ナノ粒子反応生成物は、前記式(7´)で表されるM単位´、及び、前記式(8´)で表されるT単位´を含み、オルガノポリシロキサン(A’)中においてそれらの成分の和が50重量%超であることが好ましく、80重量%以上であることがより好ましく、95重量%以上であることが更に好ましい。オルガノポリシロキサン(A’)中のM単位´とT単位´の成分の和が50重量%超である場合、耐クラック性が向上し、熱硬化時の揮発成分が低減する点で好ましい。
 前記式(8´)で表される単位構造に対する前記式(7´)で表される単位構造のモル比、[R 3SiO1/2]/[RSiO3/2](M単位´/T単位´)は、0.05~1.00であることが特徴である。3次元架橋を形成する式(8´)R 1SiO3/2で表される単位構造(T単位´)に対する分子末端となる式(7´)R 3SiO1/2で表される単位構造(M単位´)の比[R 3SiO1/2]/[R 1SiO3/2](M単位´/T単位´)を調整することにより、分子量及び架橋密度を最適化することで、硬化物が高硬度化・高耐クラック性を達成することができる。0.05以上であることにより、硬化物が高耐クラック化しシリコーン組成物が低粘度化し、1以下であることにより硬化物が高硬度化し、熱硬化時の揮発性成分が低減する。また、さらに硬度、耐クラック性を向上させるという点から0.2~0.7であることがより好ましく、0.3~0.6であることがさらに好ましい。
 本発明に係るオルガノポリシロキサン(A’)は、下記式(5´):
 X´n 3-nSiO1/2
{式中、X´は、アルケニル基又は水素原子であり、Rは、飽和非置換又は置換の一価の炭化水素基であり、そしてnは、1~3の整数である。}で表される単位構造を有していることが好ましい。
 前記式(5´)で表される単位構造を含むことにより、シリコーン組成物のヒドロシリル化による硬化反応の反応性が向上するため、硬化物の分子量が増大し、より高硬度の硬化物が得られる。
 上記式(5´)中、X´は、アルケニル基又は水素原子であり、アルケニル基として、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、シクロヘキセニル基、シクロヘキセニルエチル基、ノルボルネニルエチル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、スチレニル基などが挙げられる。透明性、反応性の点で、X´は、アリル基、ビニル基又は水素原子であることが好ましく、ビニル基又は水素原子であることがより好ましい。
 上記式(5´)中、Rは、不飽和結合を有しない非置換又は置換の一価の炭化水素基、すなわち、飽和非置換又は置換の一価の炭化水素基であり、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、tert-ブチル基、シクロヘキシル基などのアルキル基;γ‐グリシドキシプロピル基、β‐(3,4-エポキシシクロヘキシル)エチル基などのエポキシ基含有炭化水素基などが挙げられ、透明性、耐クラック性、入手容易性の点で、メチル基、エチル基、γ‐グリシドキシプロピル基、β‐(3,4-エポキシシクロヘキシル)エチル基であることが好ましく、メチル基であることがより好ましい。
 上記式(5´)中、nは、1~3の整数であり、反応性、耐クラック性の点で、nは1であることが好ましい。
 本発明に係るオルガノポリシロキサン(A’)は、下記式(6´)で表される単位構造を含むことが好ましい。:
3SiO1/2
{式中、Rは、飽和非置換又は置換の一価の炭化水素基である。}
また、上記単位構造である式(6´)に対する前記式(5´)で表される単位構造のモル比は、[X´n 3-nSiO1/2]/[R 3SiO1/2]は、0.2~5.0であることが好ましく、0.4~3.0であることがより好ましく、0.6~2.5であることが更に好ましい。0.2以上の場合は高硬度化するため好ましく、5.0以下の場合は低粘度化、高耐クラック化および透過率の向上の観点から好ましい。
 オルガノポリシロキサン(A’)は、一分子中に少なくとも2個アルケニル基、及び/又はケイ素原子に直接結合した水素原子を含有することが、硬化性の点で好ましく、高硬度化の点から、アルケニル基と、ケイ素原子に直接結合した水素原子のいずれか一方のみを有することがより好ましい。
 本発明において、オルガノポリシロキサン(A’)に含まれるケイ素原子に結合した置換基全体の80mol%以上が脂肪族炭化水素基、脂環式炭化水素基、アルコキシ基、水酸基又は水素原子のいずれかであることが、透明性の点で好ましく、90mol%以上が脂肪族炭化水素基、脂環式炭化水素基、アルコキシ基、水酸基又は水素原子であることがより好ましく、95mol%以上が脂肪族炭化水素基、脂環式炭化水素基、アルコキシ基、水酸基又は水素原子であることがより好ましい。本発明においては、シリカナノ粒子反応生成物に含まれるケイ素原子に結合した全置換基が、フェニル基を除く、脂肪族炭化水素基、脂環式炭化水素基、アルコキシ基、水酸基又は水素原子であることが好ましい。
 本発明におけるオルガノポリシロキサン(A’)のゲルパーミエーションクロマトグラフィ(GPC)による標準PMMA換算での重量平均分子量は、500~30,000であることが好ましく、500~25,000であることがより好ましい。重量平均分子量が500以上の場合、高温時の揮発成分抑制の点で好ましく、重量平均分子量が30,000以下の場合、低粘度化する点で好ましい。
 本発明に係る酸化物ナノ粒子反応生成物と、前記遊離のオルガノポリシロキサン(A’)との重量比、[酸化物ナノ粒子反応生成物の重量]/[遊離のオルガノポリシロキサン(A’)](以下、単に「(A+B)/A’」ともいう)は、0.05~2.3であることが好ましく、0.05~1.1であることがさらに好ましい。[酸化物ナノ粒子反応生成物の重量]/[遊離のオルガノポリシロキサン(A’)]が、0.05以上であると、高硬度・高耐クラック性の点で好ましく、[酸化物ナノ粒子反応生成物の重量]/[遊離のオルガノポリシロキサン(A’)]が、2.3以下であると、低粘度化の点で好ましい。尚、上記重量比は、液相クロマトグラフィーを用いて分取し、乾燥後の重量を測定することで求められる。重量比の測定は、例えば、SHIMAZU製の液相クロマトグラフィー(LC-VP)、カラム(Imtakt、Prest FT-C18[4.6mmI.D.×30mm])、検出部(ESLD Evap120℃、Neb 50℃、Gas1.20)、流速(0.5mL/分)、移動層(以下の表1に示すグラジエントをかける)を使用し、10mgのサンプルを1mLのTHFで希釈した溶液を10μL注入することで、取り分けることができ、サンプル量が少ない場合にはこの作業を繰り返し行うことで充分なサンプル量を得ることもできる。
 本発明に係るオルガノポリシロキサン(A)と酸化物ナノ粒子(B)との化学結合体及び/又はオルガノポリシロキサン(A’)を用いてシリコーン組成物を得ることができる。このとき、オルガノポリシロキサン(A)と酸化物ナノ粒子(B)との化学結合体及び/又はオルガノポリシロキサン(A’)として、2種類(下記i及び下記ii)のオルガノポリシロキサン(A)と酸化物ナノ粒子(B)との化学結合体及び/又はオルガノポリシロキサン(A’)を含有するものが好ましい。具体的には、i:アルケニル基を含有するオルガノポリシロキサン(A)と酸化物ナノ粒子(B)との化学結合体及び/又はオルガノポリシロキサン(A’)(上記式(5)においてXがアルケニル基であるものに相当)、及びii:ケイ素原子に直接結合した水素原子を含有するオルガノポリシロキサン(A)と酸化物ナノ粒子(B)との化学結合体及び/又はオルガノポリシロキサン(A’)(上記式(5)においてXが水素原子であるものに相当)を含むことが好ましい。これら2種のオルガノポリシロキサン(A)と酸化物ナノ粒子(B)との化学結合体及び/又はオルガノポリシロキサン(A’)を含有することによって、シリコーン組成物中にシリカナノ粒子が均一に分散することから、耐クラック性、硬度の点で好ましく、かつ各々のオルガノポリシロキサン(A)と酸化物ナノ粒子(B)との化学結合体及び/又はオルガノポリシロキサン(A’)同士が硬化反応した後に熱光的に安定な架橋基を形成することができることから、透明性に優れる点で好ましい。
 本発明において、前記遊離のオルガノポリシロキサン(A’)は、前記酸化物ナノ粒子反応生成物の製造と同時に製造されたものであることが好ましい。オルガノポリシロキサン(A)と酸化物ナノ粒子(B)との反応生成物と、オルガノポリシロキサン(A’)とが同時に製造されたものであることによって、ナノ粒子反応物の分散性が向上して透明性が向上し、また、ナノ粒子反応生成物の局所的な凝集による耐クラック性の悪化も抑止でき、また、明確な理由は不明だが、熱硬化時の揮発性成分量を低減することができる。
 以下、実施例及び比較例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 以下の合成例1~44にて合成したシリカナノ粒子反応生成物及び/又はオルガノポリシロキサン(A’)について、以下の(1)、(2)及び(3)に従って測定を行った。
(1)[オルガノポリシロキサン(A)と酸化物ナノ粒子(B)との化学結合体の重量]/[オルガノポリシロキサン(A’)の重量](A+B/A’)の測定
 SHIMAZU製の液相クロマトグラフィー(LC-VP)、カラム(Imtakt、Prest FT-C18[4.6mmI.D.×30mm])、検出部(ESLD Evap120℃、Neb 50℃、Gas1.20)、流速(0.5mL/分)、移動層(表2の通りグラジエントをかける)を使用し、10mgのサンプルを1mLのTHFで希釈した溶液を10μL注入し、分取することを充分な回数繰り返した後、溶剤を乾燥してそれぞれの重量を比較した。
(2)ビニル基・SiH基濃度(架橋基濃度)及び・アルコキシ基濃度の測定
 合成例1~44にて合成したシリカナノ粒子反応生成物及び/又はオルガノポリシロキサン(A’)について必要に応じて上記液相クロマトグラフィーを用いて分取した後、下記の方法にて1HNMRを測定し、シリカナノ粒子反応生成物(以下「ポリマー」ともいう)1gに対するビニル基量(mmol)、SiH基量(mmol)、及びアルコキシ基(mmol)を算出した。
 サンプル調製:各ポリマーを秤量し、トルエンを10wt%となるように秤量した。さらに1%テトラメチルシラン含有重クロロホルムで、ポリマー濃度が1質量%となるように希釈した。
 調製したサンプル溶液の1HNMR測定結果から、ビニル基の水素原子のピーク面積(3H)、SiH基の水素原子のピーク面積(1H)、メトキシ基のメチル基のピーク面積(3H)、エトキシ基のメチル基のピーク面積(3H)、イソプロポキシ基のメチル基のピーク面積(6H)を、トルエンのメチル基のピーク面積(3H)との比より、ポリマー1g当りのビニル基、SiH基、及びアルコキシ基(アルコキシ基はメトキシ基、エトキシ基、イソプロポキシ基の総称とする)の濃度を算出した。
 1HNMR測定:日本電子製のNMR(核磁気共鳴)装置 GSX400を使用し、パルス幅を0.5秒、待ち時間を2秒、積算回数を16回として積算を行った。
(3)M単位/T単位、M単位´/T単位´、M単位+T単位、M単位´+T単位´、M単位/(T単位+Q単位)、[Xn23-nSiO1/2]/[R23SiO1/2]、及び[X´n 3-nSiO1/2]/[R 3SiO1/2]、シラノール基濃度の測定
 合成例1~43にて合成したシリカナノ粒子反応生成物及び/又はオルガノポリシロキサン(A’)について必要に応じて上記液相クロマトグラフィーを用いて分取した後、下記の方法にて29SiNMRを測定し、シリカナノ粒子反応生成物(以下「ポリマー」ともいう)1gに対するM単位/T単位及びM単位´/T単位´及び[Xn23-nSiO1/2]/[R23SiO1/2]、シラノール基濃度を算出した。また、必要に応じて先述のアルコキシ基濃度を除することにより、シラノール基濃度を算出した。
 サンプル調製:各ポリマーを秤量し、1wt%トリス(2,4-ペンタンジオナト)クロム(III)含有重クロロホルムで、ポリマー濃度が1質量%となるように希釈した。
 調製したサンプル溶液の29SiNMR測定結果から、それぞれのピーク面積比より、M単位/T単位、M単位´/T単位´、M単位+T単位、M単位´+T単位´、M単位/(T単位+Q単位)、[Xn23-nSiO1/2]/[R23SiO1/2]、及び[X´n 3-nSiO1/2]/[R 3SiO1/2]、シラノール基濃度を算出した。
 29SiNMR測定:日本電子製のNMR(核磁気共鳴)装置 GSX400を使用し、積算回数を4096回として積算を行った。
[シリカナノ粒子反応生成物及び/又はオルガノポリシロキサン(A’)の調製]
[合成例1]
 メチルトリメトキシシラン254重量部、エトキシトリメチルシラン56.2重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水215重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)186重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー1)を得た。
 このポリマー1にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルビニルシラン101重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー1)を得た。
 また、同様に合成したポリマー1にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルシラン79.4重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー1)を得た。
[合成例2]
 メチルトリメトキシシラン254重量部、エトキシトリメチルシラン56.2重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水215重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下し、混合溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)186重量部、2-プロパノール188重量部を投入し、混合した。次いで、前記混合溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー2)を得た。
 このポリマー2にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルビニルシラン101重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー2)を得た。
 また、同様に合成したポリマー2にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルシラン79.4重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー2)を得た。
[合成例3]
 メチルトリメトキシシラン245重量部、ジメトキシジメチルシラン6.69重量部、エトキシトリメチルシラン45.6重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水212重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)186重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー3)を得た。
 このポリマー3にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルビニルシラン101重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー3)を得た。
 また、同様に合成したポリマー3にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルシラン79.4重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー3)を得た。
[合成例4]
 メチルトリメトキシシラン226重量部、ジメトキシジメチルシラン22.2重量部、エトキシトリメチルシラン44.2重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水206重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)186重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー4)を得た。
 このポリマー4にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルビニルシラン101重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー4)を得た。
 また、同様に合成したポリマー4にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルシラン79.4重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー4)を得た。
[合成例5]
 メチルトリメトキシシラン207重量部、ジメトキシジメチルシラン37.4重量部、エトキシトリメチルシラン42.8重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水199重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)186重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー5)を得た。
 このポリマー5にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルビニルシラン101重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー5)を得た。
 また、同様に合成したポリマー5にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルシラン79.4重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー5)を得た。
[合成例6]
 メチルトリメトキシシラン191重量部、ジメトキシジメチルシラン50.3重量部、エトキシトリメチルシラン41.7重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水194重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)186重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー6)を得た。
 このポリマー6にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルビニルシラン101重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー6)を得た。
 また、同様に合成したポリマー6にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルシラン79.4重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー6)を得た。
[合成例7]
 メチルトリメトキシシラン118重量部、ジメトキシジメチルシラン108重量部、エトキシトリメチルシラン36.4重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水170重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)186重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー7)を得た。
 このポリマー7にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルビニルシラン101重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー7)を得た。
 また、同様に合成したポリマー7にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルシラン79.4重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー7)を得た。
[合成例8]
 メチルトリメトキシシラン83.1重量部、ジメトキシジメチルシラン136重量部、エトキシトリメチルシラン33.9重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水158重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)186重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー8)を得た。
 このポリマー8にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルビニルシラン101重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー8)を得た。
 また、同様に合成したポリマー8にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルシラン79.4重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー8)を得た。
[合成例9]
 メチルトリメトキシシラン296重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水158重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、80℃で1時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)81重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で80℃2時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー9)を得た。
 このポリマー9にPGMEA324重量部、ピリジン68.0重量部を加え混合した後、クロロジメチルビニルシラン66.9重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー9)を得た。
 また、同様に合成したポリマー9にPGMEA324重量部、ピリジン68.0重量部を加え混合した後、クロロジメチルシラン53.5重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー9)を得た。
[合成例10]
 メチルトリメトキシシラン296重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水158重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、80℃で1時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)81重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で80℃2時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー10)を得た。
 このポリマー10にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルビニルシラン101重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー10)を得た。
 また、同様に合成したポリマー10にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルシラン79.4重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー10)を得た。
[合成例11]
 メチルトリメトキシシラン167重量部、ジメトキシジメチルシラン69.3重量部、エトキシトリメチルシラン40.0重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水186重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)186重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー11)を得た。
 このポリマー11にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルビニルシラン101重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー11)を得た。
 また、同様に合成したポリマー11にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルシラン79.4重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー11)を得た。
[合成例12]
 メチルトリメトキシシラン231重量部、エトキシトリメチルシラン44.6重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水208重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)186重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃1時間還流させた。
 還流後、両末端シラノール型ポリオルガノシロキサンDMS-S15(Gelest社製、分子量2000-3500)11.0重量部を2-プロパノール20.0重量部に溶かした溶液を、上記反応液に添加した。さらに100℃で、3時間還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー12)を得た。
 このポリマー12にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルビニルシラン101重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー12)を得た。
 また、同様に合成したポリマー12にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルシラン79.4重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー12)を得た。
[合成例13]
 メチルトリメトキシシラン254重量部、エトキシトリメチルシラン56.2重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水215重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)186重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー13)を得た。
 このポリマー13にPGMEA324重量部、ピリジン71.3重量部を加え混合した後、クロロジメチルビニルシラン70.8重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー13)を得た。
 また、同様に合成したポリマー13にPGMEA324重量部、ピリジン71.3重量部を加え混合した後、クロロジメチルシラン56.6重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー13)を得た。
[合成例14]
 メチルトリメトキシシラン254重量部、エトキシトリメチルシラン56.2重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水215重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)186重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー14)を得た。
 このポリマー14にPGMEA324重量部、ピリジン68.9重量部を加え混合した後、クロロジメチルビニルシラン68.4重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー14)を得た。
 また、同様に合成したポリマー14にPGMEA324重量部、ピリジン68.9重量部を加え混合した後、クロロジメチルシラン54.6重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー14)を得た。
[合成例15]
 メチルトリメトキシシラン254重量部、エトキシトリメチルシラン56.2重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水215重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)186重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー15)を得た。
 このポリマー15にPGMEA324重量部、ピリジン59.2重量部を加え混合した後、クロロジメチルビニルシラン58.8重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー15)を得た。
 また、同様に合成したポリマー15にPGMEA324重量部、ピリジン59.2重量部を加え混合した後、クロロジメチルシラン46.2重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー15)を得た。
[合成例16]
 メチルトリメトキシシラン254重量部、エトキシトリメチルシラン56.2重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水215重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)186重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー16)を得た。
 このポリマー16にPGMEA324重量部、ピリジン54.3重量部を加え混合した後、クロロジメチルビニルシラン54.0重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー16)を得た。
 また、同様に合成したポリマー16にPGMEA324重量部、ピリジン54.3重量部を加え混合した後、クロロジメチルシラン42.1重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー16)を得た。
[合成例17]
 メチルトリメトキシシラン254重量部、エトキシトリメチルシラン56.2重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水215重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)186重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー17)を得た。
 このポリマー17にPGMEA324重量部、ピリジン37.3重量部を加え混合した後、クロロジメチルビニルシラン37.2重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー17)を得た。
 また、同様に合成したポリマー17にPGMEA324重量部、ピリジン37.3重量部を加え混合した後、クロロジメチルシラン27.5重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー17)を得た。
[合成例18]
 メチルトリメトキシシラン254重量部、エトキシトリメチルシラン56.2重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水215重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-06L(扶桑化学工業製、固形分濃度6.3質量%、平均一次粒子径6nm)438重量部、2-プロパノール388重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー18)を得た。
 このポリマー18にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルビニルシラン101重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー18)を得た。
 また、同様に合成したポリマー18にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルシラン79.4重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー18)を得た。
[合成例19]
 メチルトリメトキシシラン254重量部、エトキシトリメチルシラン56.2重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水215重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-3(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径35nm)186重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー19)を得た。
 このポリマー19にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルビニルシラン101重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー19)を得た。
 また、同様に合成したポリマー19にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルシラン79.4重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー19)を得た。
[合成例20]
 メチルトリメトキシシラン254重量部、エトキシトリメチルシラン56.2重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水215重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-7(扶桑化学工業製、固形分濃度23.0質量%、平均一次粒子径75nm)162重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー20)を得た。
 このポリマー20にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルビニルシラン101重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー20)を得た。
 また、同様に合成したポリマー20にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルシラン79.4重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー20)を得た。
[合成例21]
 メチルトリメトキシシラン313重量部、エトキシトリメチルシラン57.0重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水265重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)40.5重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー21)を得た。
 このポリマー21にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルビニルシラン101重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー21)を得た。
 また、同様に合成したポリマー21にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルシラン79.4重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー21)を得た。
[合成例22]
 メチルトリメトキシシラン289重量部、エトキシトリメチルシラン52.8重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水246重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)97.2重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー22)を得た。
 このポリマー22にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルビニルシラン101重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー22)を得た。
 また、同様に合成したポリマー22にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルシラン79.4重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー22)を得た。
[合成例23]
 メチルトリメトキシシラン289重量部、エトキシトリメチルシラン52.8重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水246重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)97.2重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー23)を得た。
 このポリマー23にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルビニルシラン101重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー23)を得た。
 また、同様に合成したポリマー23にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルシラン79.4重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー23)を得た。
[合成例24]
 メチルトリメトキシシラン181重量部、エトキシトリメチルシラン33.0重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水154重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、70℃で1時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)365重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で70℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー24)を得た。
 このポリマー24にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルビニルシラン101重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー24)を得た。
 また、同様に合成したポリマー24にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルシラン79.4重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー24)を得た。
[合成例25]
 メチルトリメトキシシラン148重量部、エトキシトリメチルシラン27.0重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水126重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、70℃で1時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)446重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で70℃1時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー25)を得た。
 このポリマー25にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルビニルシラン101重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー25)を得た。
 また、同様に合成したポリマー25にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルシラン79.4重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー25)を得た。
[合成例26]
 メチルトリメトキシシラン254重量部、エトキシトリメチルシラン56.2重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水215重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)186重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃10分間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー26)を得た。
 このポリマー26にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルビニルシラン101重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー26)を得た。
 また、同様に合成したポリマー26にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルシラン79.4重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー26)を得た。
[合成例27]
 メチルトリメトキシシラン254重量部、エトキシトリメチルシラン56.2重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水215重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)186重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃5時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー27)を得た。
 このポリマー27にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルビニルシラン101重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー27)を得た。
 また、同様に合成したポリマー27にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルシラン79.4重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー27)を得た。
[合成例28]
 メチルトリメトキシシラン254重量部、エトキシトリメチルシラン56.2重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水215重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)186重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃7時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー28)を得た。
 このポリマー28にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルビニルシラン101重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー28)を得た。
 また、同様に合成したポリマー28にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルシラン79.4重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー28)を得た。
[シリカナノ粒子反応生成物及び/又はオルガノポリシロキサン(A’)の調製]
[合成例29]
 メチルトリメトキシシラン186重量部、トリメトキシビニルシラン51.0重量部、エトキシトリメチルシラン40.3重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水188重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)186重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー29-1)を得た。
 このポリマー29-1にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルビニルシラン10.1重量部、クロロトリメチルシラン81.9重量部の混合溶液を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー29)を得た。
 メチルトリメトキシシラン186重量部、トリメトキシシラン41.4重量部、エトキシトリメチルシラン40.3重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水188重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)186重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー29-2)を得た。
 このポリマー29-2にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルシラン7.94重量部、クロロトリメチルシラン81.9重量部の混合溶液を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー29)を得た。
[合成例30]
 メチルトリメトキシシラン195重量部、トリメトキシビニルシラン44.4重量部、エトキシトリメチルシラン41.1重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水191重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)186重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー30-1)を得た。
 このポリマー30-1にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルビニルシラン22.0重量部、クロロトリメチルシラン71.2重量部の混合溶液を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー30)を得た。
 メチルトリメトキシシラン195重量部、トリメトキシシラン36.1重量部、エトキシトリメチルシラン41.1重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水191重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)186重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー30-2)を得た。
 このポリマー30-2にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルシラン17.2重量部、クロロトリメチルシラン71.2重量部の混合溶液を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー30)を得た。
[合成例31]
 メチルトリメトキシシラン222重量部、トリメトキシビニルシラン23.9重量部、エトキシトリメチルシラン43.5重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水202重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)186重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー31-1)を得た。
 このポリマー31-1にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルビニルシラン57.1重量部、クロロトリメチルシラン40.0重量部の混合溶液を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー31)を得た。
 メチルトリメトキシシラン222重量部、トリメトキシシラン19.4重量部、エトキシトリメチルシラン43.5重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水202重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)186重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー31-2)を得た。
 このポリマー31-2にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルシラン44.6重量部、クロロトリメチルシラン40.0重量部の混合溶液を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー31)を得た。
[合成例32]
 メチルトリメトキシシラン234重量部、トリメトキシビニルシラン14.5重量部、エトキシトリメチルシラン44.5重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水207重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)186重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー32-1)を得た。
 このポリマー32-1にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルビニルシラン74.7重量部、クロロトリメチルシラン23.7重量部の混合溶液を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー32)を得た。
 メチルトリメトキシシラン234重量部、トリメトキシシラン11.8重量部、エトキシトリメチルシラン44.5重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水207重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)186重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー32-2)を得た。
 このポリマー32-2にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルシラン58.4重量部、クロロトリメチルシラン23.7重量部の混合溶液を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー32)を得た。
[合成例33]
 メチルトリメトキシシラン254重量部、エトキシトリメチルシラン26.4重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水209重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)186重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー33)を得た。
 このポリマー33にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルビニルシラン101重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー33)を得た。
 また、同様に合成したポリマー33にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルシラン79.4重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー33)を得た。
[合成例34]
 メチルトリメトキシシラン254重量部、エトキシトリメチルシラン19.8重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水207重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)186重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー34)を得た。
 このポリマー34にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルビニルシラン101重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー34)を得た。
 また、同様に合成したポリマー34にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルシラン79.4重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー34)を得た。
[合成例35]
 メチルトリメトキシシラン277重量部、エトキシトリメチルシラン14.4重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水224重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)130重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー35)を得た。
 このポリマー35にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルビニルシラン101重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー35)を得た。
 また、同様に合成したポリマー35にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルシラン79.4重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー35)を得た。
[合成例36]
 メチルトリメトキシシラン277重量部、エトキシトリメチルシラン14.4重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水224重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)130重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー36)を得た。
 このポリマー36にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルビニルシラン101重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー36)を得た。
 また、同様に合成したポリマー36にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルシラン79.4重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー36)を得た。
[合成例37]
 メチルトリメトキシシラン38.4重量部、エトキシトリメチルシラン7重量部、2-プロパノール31.5重量部を仕込み、混合した。別途容器に蒸留水32.6重量部、37%濃塩酸0.0013重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、100℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-06L(扶桑化学工業製、固形分濃度6.3質量%、平均一次粒子径6nm)100重量部、2-プロパノール100重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃1時間還流させた。
 還流後、両末端シラノール型ポリオルガノシロキサンDMS-S15(Gelest社製、分子量2000-3500)3重量部を2-プロパノール10.1重量部に溶かした溶液を、上記反応液に添加した。さらに100℃で、3時間還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以下、PGMEAと表す)63重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー37)を得た。
 このポリマー37にPGMEA65.5重量部、ピリジン16.3重量部を加え混合した後、クロロジメチルビニルシラン20.7重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン100重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー37)を得た。
 また、同様に合成したポリマー37にPGMEA65.5重量部、ピリジン16.3重量部を加え混合した後、クロロジメチルシランを16.2重量部滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン100重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー37)を得た。
[合成例38]
 メチルトリメトキシシラン130重量部、エトキシトリメチルシラン24.0重量部、2-プロパノール100重量部を仕込み、混合した。別途容器に蒸留水110重量部、37%濃塩酸0.004重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、100℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)80重量部、2-プロパノール100重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)160重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー38)を得た。
 このポリマー38にPGMEA160重量部、ピリジン38.9重量部を加え混合した後、クロロジメチルビニルシラン38.6重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン200重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー38)を得た。
 また、同様に合成したポリマー38にPGMEA160重量部、ピリジン38.9重量部を加え混合した後、クロロジメチルシランを30.3重量部滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン200重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiHVi-ポリマー38)を得た。
[実施例39]
 メチルトリメトキシシラン122質量部、エトキシトリメチルシラン22.2質量部、2-プロパノール100質量部を仕込み、混合した。別途容器に蒸留水104質量部、37%濃塩酸0.0040質量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管及びオイルバスを用いて窒素気流下で、100℃で1.5時間還流し、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)を得た。
 別に、水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20質量%)100質量部、2-プロパノール100質量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を用い、窒素気流下で100℃にて3時間還流させた。反応液を室温まで冷却し、PGMEA100質量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー39)を得た。
 このポリマー39にPGMEA160質量部、ピリジン45.1質量部を加え混合した後、クロロジメチルビニルシラン57.0質量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン100質量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー39)を得た。
 また、同様に合成したポリマー39にPGMEA160質量部、ピリジン45.1質量部を加え混合した後、クロロジメチルシランを44.9質量部滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン100質量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー39)を得た。
[合成例40]
 メチルトリメトキシシラン192重量部、トリメトキシビニルシラン58.9重量部、エトキシトリメチルシラン46.2重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水197重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)146重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー40-1)を得た。
 このポリマー40-1にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルビニルシラン91.0重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー40)を得た。
 また、メチルトリメトキシシラン192重量部、トリメトキシシラン48.2重量部、エトキシトリメチルシラン46.2重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水197重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)146重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー40-2)を得た。
 このポリマー40-2にPGMEA324重量部、ピリジン102重量部を加え混合した後、クロロジメチルビニルシラン91.0重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー40)を得た。
[合成例41]
 メチルトリメトキシシラン192重量部、トリメトキシビニルシラン58.9重量部、エトキシトリメチルシラン46.2重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水197重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)146重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー41)を得た。
 また、メチルトリメトキシシラン192重量部、トリメトキシシラン48.2重量部、エトキシトリメチルシラン46.2重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水197重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)146重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー41)を得た。
[合成例42]
 メチルトリメトキシシラン254重量部、エトキシトリメチルシラン46.2重量部、エタノール188重量部を仕込み、混合した。別途容器に蒸留水215重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、100℃で6時間還流し、還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するオルガノポリシロキサン(A’)(Vi-ポリマー42)を得た。
 このポリマー42にPGMEA324重量部、ピリジン306重量部を加え混合した後、クロロジメチルビニルシラン212重量部とクロロトリメチルシラン81.7重量部とを予め混合した溶液を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、オルガノポリシロキサン(A’)(Vi-ポリマー42)を得た。
 また、同様に合成したポリマー42にPGMEA324重量部、ピリジン306重量部を加え混合した後、クロロジメチルシラン167重量部とクロロトリメチルシラン81.7重量部とを予め混合した溶液を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、オルガノポリシロキサン(A’)(SiH-ポリマー42)を得た。
[合成例43]
 WO2010-059710号公報[0075]記載の通り製造し、SiO2単位を55重量%含有するオルガノポリシロキサン(A)と酸化物ナノ粒子(B)との化学結合体及び/又はオルガノポリシロキサン(A’)(Vi-ポリマー43)を得た。
 実施例1~39、比較例1~4に用いた接着性付与剤(化合物A)は以下の手順で合成した。
[接着性付与剤の合成]
 100mLのナスフラスコに2,4,6,8,10-ペンタメチルシクロペンタシロキサン100重量部、アリルグリシジルエーテル38.6重量部、及びシクロヘキサン138.6重量部を投入し、混合した。次いで、ジビニルテトラメチルジシロキサン白金錯体(Gelest社製、Pt錯体で2.1重量%のキシレン溶液)0.040重量部を均一に混合し、80℃で2時間反応させた。減圧下、80℃で溶媒を除去し、1時間の減圧乾燥を行い、化合物Aを得た。1HNMRでアリルグリシジルエーテルが定量的に反応していることを確認した。
[合成例44]
 メチルトリメトキシシラン254重量部、エトキシトリメチルシラン56.2重量部、2-プロパノール188重量部を仕込み、混合した。別途容器に蒸留水215重量部、3.7%濃塩酸0.075重量部を取り、混合した後、10分かけて滴下した。滴下終了後、還流冷却管を備え、オイルバスを用いて窒素気流下で、110℃で1.5時間還流し、ポリオルガノシロキサン溶液を得た。
 別に水分散型ナノシリカ分散液PL-2L(扶桑化学工業製、固形分濃度20.0質量%、平均一次粒子径16nm)186重量部、2-プロパノール188重量部を投入し、混合した。次いで、室温まで冷却した前記ポリオルガノシロキサン溶液を、10分かけて滴下し、室温で10分攪拌した。攪拌後、還流冷却管を備え、窒素気流下で100℃3時間還流させた。
 還流後、室温まで冷却し、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以後、PGMEAと表す)324重量部を投入し、エバポレーターを用いて溶媒を除去し、多量のシラノール基を含有するシリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(ポリマー44)を得た。
 このポリマー14にPGMEA324重量部、ピリジン64.4重量部を加え混合した後、クロロジメチルビニルシラン63.6重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(Vi-ポリマー14)を得た。
 また、同様に合成したポリマー14にPGMEA324重量部、ピリジン64.4重量部を加え混合した後、クロロジメチルシラン50.4重量部を滴下し、室温で1時間反応させた。得られた反応液にシクロヘキサン400重量部を加え、イオン交換水で生成したピリジン塩酸塩を取り除く操作を3回繰り返し、70℃、減圧下で溶媒を除去し、さらに140℃、減圧下で1時間ポリマーを乾燥させ、シリカナノ粒子反応生成物及びオルガノポリシロキサン(A’)(SiH-ポリマー44)を得た。
 実施例1~40、比較例1~4について得られた樹脂を用いた組成物、並びに硬化物について下記(4)~(10)の評価を行った。結果を以下の表1に示す。
(4)硬度測定
 10mm×10mm×5mmの型に、調製した組成物を満たし、オーブンを用いて80℃×30分、100℃×30分、150℃×1時間で加熱硬化させた。硬化物を室温まで冷却し、型から取り出した後、株式会社テクロック製 GS-702N TYPE D(テクロック・デュロメータ)を用いて、硬度を測定した。測定値がShoreD 63以上のサンプルを◎、55~63のサンプルを○、40~55のサンプルを△、40未満のものを×と評価した。
(5)耐クラック性
 シリコンウエハー上に30mm×50mm×zmmで、組成物を満たし、オーブンを用いて80℃×30分、100℃×30分、150℃×1時間で加熱硬化させた。z=0.20の時、硬化物を室温まで冷却した際に目視でクラックが見られなかったものを★(黒星印)、z=0.13の時、硬化物を室温まで冷却した際に目視でクラックが見られなかったものを◎、z=0.10の時、硬化物を室温まで冷却した際に目視でクラックが見られなかったものを○、z=0.05の時、硬化物を室温まで冷却した際に目視でクラックが見られなかったものを△、z=0.05の時、硬化物を室温まで冷却した際に目視でクラックが見られたものを×と評価した。
(6)硬化物の透明性(透過率)
 50mm×50mm×1mmの型に、調製した組成物を満たし、オーブンを用いて80℃×30分、100℃×30分、150℃×1時間で加熱硬化させた。加熱硬化後の硬化物を、200℃のオーブン内に空気中で10日間放置し、波長が350nmの光の透過率が、85%以上のものを○、55%以上のものを△、55%未満のものを×と評価した。
(7)粘度測定
 東機産業株式会社製のRE80型粘度計を用いて、調製した組成物についての粘度測定を行った。30Pa・s以下の組成物を◎、30~100Pa・sの組成物を○、100~200Pa・sの組成物を△、200Pa・sより粘度が高い組成物を×として評価した。
(8)熱伝導率
 オーブンを用いて80℃×30分、100℃×30分、150℃×1時間で加熱硬化させた硬化物を、レーザーフラッシュ法により熱拡散率を、DSC法により比熱を、サンプルの大きさと重量から密度をそれぞれ求め、熱伝導率を算出した。熱拡散率測定には、厚み1mmのサンプルを用い、アルバック理工製定数測定装置TC-9000型で測定した。DSC測定には、パーキンエルマー製示差走査熱量計DSC-7型を用いた。硬化物の熱伝導率が0.25W/(m・K)以上の組成物を◎、0.2~0.25W/(m・K)の組成物を○、0.2W/(m・K)未満の組成物を×として評価した。
(9)揮発性成分量
 TG-DTA装置にて上記ワニスを、100℃/1時間、150℃/2時間加熱硬化した際の、硬化前に対する硬化後の重量減少量を測定した。重量減少量が、0.0~0.6%を◎、0.6~0.8%を○、0.8~1.0を△、1.0%以上を×として評価した。
(10)高温時の弾性率(熱時弾性率)
 JISK7244-4の引張貯蔵弾性率の算出方法に従い、150℃での硬化物の弾性率を評価した。150℃の弾性率が>100MPa以上のものを◎、70MPa以上100MPa未満の物を○、70MPa未満のものを×とする。
(11)シリコーン硬化物における酸化物ナノ粒子の粒径の測定
 シリコーン硬化物の断面のTEM写真を5万倍の倍率で撮影し、ナノ粒子の平均一次粒径と平均二次粒径とを観察した。TEM写真は、日立製TEM(H-7100)を用いて撮影した。尚、シリコーン硬化物のTEM写真を撮影するに際して、硬化物から超薄膜片(厚み50nm)を採取し、これを撮影し、加速電圧を125kVとした。
 観察は下記の通りに行った。視野の中から、粒子のコントラストが明瞭な個所を3ヶ所選択して写真を撮影した後、像をプリントアウトした。各々の写真から、最も多く存在する粒子を3点選択し、その一次粒径と二次粒径とを物差しで測り、倍率を乗じて一次粒径と二次粒径とを算出した。これらの値の平均値を平均一次粒径及び平均二次粒径とした。結果を以下の表3に示す。
(12)TEM写真の画像解析(面積率、平均距離、分散度の測定)
 画像解析装置(IP-1000、旭化成製)を用いて粒子構造の抽出と二値化処理を行った。原画像はグレーレベル256階調であり、粒子部分を抽出する二値化に際して、ノイズの少ない階調を選択した。二値化したデータを用いて、画像の中で粒子が占有する面積率と、粒子の重心間距離(平均距離及び分散度)とを求めた。分散度は、重心間距離の標準偏差を平均距離で除して求めた(分散度=標準偏差/平均距離)。結果を以下の表3に示す。
[組成物の調製]
[実施例1]
 Vi-ポリマー1を53質量部、SiH-ポリマー1を44質量部、4-エチル-1-オクチン-3-オール(反応抑制剤1)を0.14重量部、接着性付与剤として化合物Aを2重量部を混合し、ジビニルテトラメチルジシロキサン白金錯体(Gelest社製、Pt錯体で2.1重量%のキシレン溶液)(白金触媒)0.01重量部を均一に混合した。混合後、真空脱泡し、組成物を調製した。この組成物を、オーブンを用いて80℃×30分、100℃×30分、150℃×1時間で加熱硬化させた。
[実施例2~40、比較例1~4]
 Vi-ポリマー1~44、SiH-ポリマー1~42、44、ジビニルテトラメチルジシロキサン白金錯体を、以下の表1に示す比率で配合し、さらに、接着性付与剤として化合物Aについては、実施例2~36、実施例40、比較例1~4においては、2重量部、実施例37及び39においては、4重量部、実施例38においては、3.6重量部用い、反応抑制剤1については、実施例2~36、実施例40、比較例1~4においては、0.14重量部、実施例37及び39においては、23重量部、実施例38においては、21重量部用い、ヒドロシリル化触媒として、白金触媒については、実施例2~40、比較例1~4においては、0.01重量部を用いたこと以外は実施例1と同様に、組成物を調製し、硬化物を得た。
[比較例5]
 シリカ粒子を4wt%含む市販のシリコーン樹脂を購入し、100℃×1h+150℃×2hの条件で硬化させた。硬化物の断面TEM写真を解析した結果を図3に示す。比較例5で得られた硬化物は熱時弾性率、熱伝導性ともに低いレベルであった。結果を以下の表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明のシリカナノ粒子反応生成物及びシリコーン組成物は、発光ダイオード素子その他の光学デバイス用又は光学部品用の材料として有用であり、具体的には、発光素子上の保護膜や素子から得られる光の波長を変更・調製する光学レンズ、リード端子又はパッケージに固定するダイボンディング材、アンダーフィル、蛍光体のバインダー材料、基板材料等に好適に利用可能である。

Claims (46)

  1.  下記式(1):
    1 mSiO(4-m)/2
    {式中、R1は、非置換若しくは置換の一価の炭化水素基、アルコキシ基、水酸基又は水素原子であり、そしてmは、0~3の整数である。}で表される単位構造を有するオルガノポリシロキサン(A)と酸化物ナノ粒子(B)とが共有結合で結合された酸化物ナノ粒子反応生成物であって、かつ、該酸化物ナノ粒子反応生成物は、下記式(5):
    n2 3-nSiO1/2
    {式中、Xは、アルケニル基又は水素原子であり、R2は、飽和非置換又は置換の一価の炭化水素基であり、そしてnは、1又は2である。}で表される単位構造を有していることを特徴とする前記酸化物ナノ粒子反応生成物。
  2.  下記式(1):
    1 mSiO(4-m)/2
    {式中、R1は、非置換若しくは置換の一価の炭化水素基、アルコキシ基、水酸基又は水素原子であり、そしてmは、0~3の整数である。}で表される単位構造を有するオルガノポリシロキサン(A)と、酸化物ナノ粒子(B)と、シラノール基封止剤(C)との反応により形成された共有結合を有する酸化物ナノ粒子反応生成物であって、該シラノール基封止剤(C)は、下記式(2):
    n2 3-nSiY
    {式中、Xは、アルケニル基又は水素原子であり、R2は、飽和非置換又は置換の一価の炭化水素基であり、Yは、ハロゲン原子であり、そしてnは、1又は2である。}で表される、請求項1に記載の酸化物ナノ粒子反応生成物。
  3.  前記オルガノポリシロキサン(A)は、予備重合して得られたものである、請求項1又は2に記載の酸化物ナノ粒子反応生成物。
  4.  前記酸化物ナノ粒子反応生成物は、下記式(7):
    6 3SiO1/2
    {式中、R6は、非置換若しくは置換の一価の炭化水素基又は水素原子である。}で表される単位構造(M単位)、及び下記式(8):
    4SiO3/2
    {式中、R4は、非置換若しくは置換の一価の炭化水素基又は水素原子である。}で表される単位構造(T単位)を含む、請求項1~3のいずれか1項に記載の酸化物ナノ粒子反応生成物。
  5.  前記酸化物ナノ粒子反応生成物は、前記式(7)で表されるM単位、及び、前記式(8)で表されるT単位を含み、オルガノポリシロキサン中においてそれらの成分の和が50重量%以上であることを特徴とする、請求項4に記載の酸化物ナノ粒子反応生成物。
  6.  前記式(8)で表される単位構造に対する前記式(7)で表される単位構造のモル比、[R6 3SiO1/2]/[R4SiO3/2](M単位/T単位)が、0.05~1.00である、請求項4又は5に記載の酸化物ナノ粒子反応生成物。
  7.  前記オルガノポリシロキサン(A)と、酸化物ナノ粒子(B)と、シラノール基封止剤(C)との反応に加え、両末端にシラノール基、アルコキシ基、及びハロゲン原子からなる群から選ばれる反応性置換基をもつ下記式(9):
    8 2SiO2/2
    {式中、R8は、非置換若しくは置換の一価の炭化水素基又は水素原子である。}で表される単位構造が連続した直鎖状ポリシロキサン(D)をさらに反応させることにより共有結合が形成されている、請求項2~6のいずれか1項に記載の酸化物ナノ粒子反応生成物。
  8.  前記酸化物ナノ粒子反応生成物におけるシラノール基濃度が0~1.5mmol/gである、請求項1~7のいずれか1項に記載の酸化物ナノ粒子反応生成物。
  9.  前記酸化物ナノ粒子反応生成物におけるシラノール基濃度が0~1.0mmol/gである、請求項8に記載の酸化物ナノ粒子反応生成物。
  10.  前記シラノール基濃度が、0.25~0.8mmol/gである、請求項9に記載の酸化物ナノ粒子反応生成物。
  11.  前記酸化物ナノ粒子(B)は、シリカナノ粒子である、請求項1~10のいずれか1項に記載の酸化物ナノ粒子反応生成物。
  12.  前記シリカナノ粒子は、湿式シリカである、請求項11に記載の酸化物ナノ粒子反応生成物。
  13.  前記酸化物ナノ粒子(B)の平均一次粒径が、1~50nmである、請求項1~12のいずれか1項に記載の酸化物ナノ粒子反応生成物。
  14.  前記酸化物ナノ粒子反応生成物中の-OR3{式中、R3は、炭素原子数1~6のアルキル基である。}で表される置換基の濃度が、0.01~1.0mmol/gである、請求項1~13のいずれか1項に記載の酸化物ナノ粒子反応生成物。
  15.  前記酸化物ナノ粒子反応生成物に含まれるケイ素原子に結合した置換基全体の80mol%以上が、脂肪族炭化水素基、脂環式炭化水素基、アルコキシ基、水酸基又は水素原子のいずれかである、請求項1~14のいずれか1項に記載の酸化物ナノ粒子反応生成物。
  16.  以下の工程:
     (I)下記式(10):
    1 mSi(OR34-m
    {式中、R1は、非置換若しくは置換の一価の炭化水素基、アルコキシ基、水酸基又は水素原子であり、R3は、炭素原子数1~6のアルキル基であり、そしてmは、0~3の整数である。}で表される化合物を加水分解及び縮合して、下記式(1):
    1 mSiO(4-m)/2
    {式中、R1は、非置換若しくは置換の一価の炭化水素基、アルコキシ基、水酸基又は水素原子であり、そしてmは、0~3の整数である。}で表される単位構造を有するオルガノポリシロキサン(A)を得る工程;
     (II)工程(I)で得たオルガノポリシロキサン(A)を酸化物ナノ粒子(B)と反応させて、酸化物ナノ粒子反応生成物を得る工程;
    を含む、請求項1~6及び8~15のいずれか1項に記載の酸化物ナノ粒子反応生成物の製造方法。
  17.  以下の工程:
     (I)下記式(10):
    1 mSi(OR34-m
    {式中、R1は、非置換若しくは置換の一価の炭化水素基、アルコキシ基、水酸基又は水素原子であり、R3は、炭素原子数1~6のアルキル基であり、そしてmは、0~3の整数である。}で表される化合物を加水分解及び縮合して、下記式(1):
    1 mSiO(4-m)/2
    {式中、R1は、非置換若しくは置換の一価の炭化水素基、アルコキシ基、水酸基又は水素原子であり、そしてmは、0~3の整数である。}で表される単位構造を有するオルガノポリシロキサン(A)を得る工程;
     (II)工程(I)で得たオルガノポリシロキサン(A)を酸化物ナノ粒子(B)と反応させて、酸化物ナノ粒子反応生成物前駆体を得る工程;及び
     (III)工程(II)で得た酸化物ナノ粒子反応生成物前駆体のシラノール基を、下記式(2):
    n2 3-nSiY
    {式中、Xは、アルケニル基又は水素原子であり、R2は、飽和非置換又は置換の一価の炭化水素基であり、Yは、ハロゲン原子であり、そしてnは、1又は2である。}で表されるシラノール基封止剤(C)により封止して、酸化物ナノ粒子反応生成物を得る工程;
    を含む、請求項1~6及び8~15のいずれか1項に記載の酸化物ナノ粒子反応生成物の製造方法。
  18.  以下の工程:
     (I)下記式(10):
    1 mSi(OR34-m
    {式中、R1は、非置換若しくは置換の一価の炭化水素基、アルコキシ基、水酸基又は水素原子であり、R3は、炭素原子数1~6のアルキル基であり、そしてmは、0~3の整数である。}で表される化合物を加水分解及び縮合して、下記式(1):
    1 mSiO(4-m)/2
    {式中、R1は、非置換若しくは置換の一価の炭化水素基、アルコキシ基、水酸基又は水素原子であり、そしてmは、0~3の整数である。}で表される単位構造を有するオルガノポリシロキサン(A)を得る工程;
     (II)工程(I)で得たオルガノポリシロキサン(A)を酸化物ナノ粒子(B)と反応させて、酸化物ナノ粒子反応生成物を得る工程;
     (II’)工程(II)で得た酸化物ナノ粒子反応生成物を、両末端にシラノール基、アルコキシ基、及びハロゲン原子からなる群から選ばれる反応性置換基をもつ下記式(9):
    8 2SiO2/2
    {式中、R8は、非置換若しくは置換の一価の炭化水素基又は水素原子である。}で表される単位構造が連続した直鎖状ポリシロキサン(D)と、反応させる工程;及び
     (III)工程(II’)で得た酸化物ナノ粒子反応生成物と直鎖状ポリシロキサン(D)との反応生成物のシラノール基を、下記式(2):
    n2 3-nSiY
    {式中、Xは、アルケニル基又は水素原子であり、R2は、飽和非置換又は置換の一価の炭化水素基であり、Yは、ハロゲン原子であり、そしてnは、1又は2である。}で表されるシラノール基封止剤(C)により封止して、酸化物ナノ粒子反応生成物を得る工程;
    を含む、請求項7に記載の酸化物ナノ粒子反応生成物の製造方法。
  19.  請求項1~15のいずれか1項に記載の酸化物ナノ粒子反応生成物(a)を含むシリコーン組成物。
  20.  前記酸化物ナノ粒子反応生成物の平均二次粒径が、5~100nmである、請求項19に記載のシリコーン組成物。
  21.  前記酸化物ナノ粒子反応生成物の二次粒径の最大値が200nm以下である、請求項19又は20に記載のシリコーン組成物。
  22.  前記シリコーン組成物は、該シリコーン組成物を室温から100℃まで10℃/分で昇温し、次いで1時間ホールドし、次いで150℃まで10℃/分で昇温し、次いで1時間ホールドする間の重量減少量を熱分析装置によって測定したときの揮発性成分量1質量%未満の揮発性成分を含有する、請求項19~21のいずれか1項に記載のシリコーン組成物。
  23.  前記酸化物ナノ粒子反応生成物(a)として、請求項1~15のいずれか1項に記載の、アルケニル基を有する酸化物ナノ粒子反応生成物、及びケイ素原子に直接結合した水素原子を有する酸化物ナノ粒子反応生成物の両者を含む、請求項19~22のいずれか1項に記載のシリコーン組成物。
  24.  ヒドロシリル化触媒(b)をさらに含む、請求項19~23のいずれか1項に記載のシリコーン組成物。
  25.  接着性付与剤(c)をさらに含む、請求項19~24のいずれか1項に記載のシリコーン組成物。
  26.  前記接着性付与剤(c)が、エポキシ基及び/又はアルコキシ基含有オルガノハイドロジェンポリシロキサン化合物である、請求項25に記載のシリコーン組成物。
  27.  請求項1~15のいずれか1項に記載の酸化物ナノ粒子反応生成物、及び遊離のオルガノポリシロキサン(A’)を含有するシリコーン組成物。
  28.  前記遊離のオルガノポリシロキサン(A’)は、
    n2 3-nSiO1/2
    {式中、Xは、アルケニル基又は水素原子であり、R2は、飽和非置換又は置換の一価の炭化水素基であり、そしてnは、1又は2である。}で表される単位構造を有する、請求項27に記載のシリコーン組成物。
  29.  前記遊離のオルガノポリシロキサン(A’)は、
    1 mSiO(4-m)/2
    {式中、R1は、非置換若しくは置換の一価の炭化水素基、アルコキシ基、水酸基又は水素原子であり、そしてmは、0~3の整数である。}で表される単位構造を有するオルガノポリシロキサン(A)と、シラノール基封止剤(C)との反応により形成された共有結合を有し、該シラノール基封止剤(C)は、下記式(2):
    n2 3-nSiY
    {式中、Xは、アルケニル基又は水素原子であり、R2は、飽和非置換又は置換の一価の炭化水素基であり、Yは、ハロゲン原子であり、そしてnは、1又は2である。}で表される、請求項27又は28に記載のシリコーン組成物。
  30.  前記遊離のオルガノポリシロキサン(A’)は、下記式(7’):
    6’ 3SiO1/2
    {式中、R6’は、非置換若しくは置換の一価の炭化水素基又は水素原子である。}で表される単位構造(M単位’)、及び下記式(8’):
    4’SiO3/2
    {式中、R4’は、非置換若しくは置換の一価の炭化水素基又は水素原子である。}で表される単位構造(T単位’)を含む、請求項27~29のいずれか1項に記載のシリコーン組成物。
  31.  オルガノポリシロキサン中において前記式(7’)で表されるM単位´、及び、前記式(8’)で表されるT単位´の成分の和が50重量%超である、請求項27~29のいずれか1項に記載のシリコーン組成物。
  32.  前記式(8´)で表される単位構造に対する前記式(7´)で表される単位構造のモル比、[R6’ 3SiO1/2]/[R4’SiO3/2](M単位 ´/T単位 ´)が、0.05~1.00である、請求項27~29のいずれか1項に記載のシリコーン組成物。
  33.  前記[酸化物ナノ粒子反応生成物の重量]/[遊離のオルガノポリシロキサン(A’)が0.05~2.3である、請求項27~30のいずれか1項に記載のシリコーン組成物。
  34.  前記遊離のオルガノポリシロキサン(A’)は、前記酸化物ナノ粒子反応生成物の製造と同時に製造されたものである、請求項27~31のいずれか1項に記載のシリコーン組成物。
  35.  前記オルガノポリシロキサンA’に含まれるケイ素原子に結合した置換基全体の80mol%以上が、脂肪族炭化水素基、脂環式炭化水素基、アルコキシ基、水酸基又は水素原子のいずれかである、請求項27~31のいずれか1項に記載のシリコーン組成物。
  36.  請求項19~35のいずれか1項に記載のシリコーン組成物を硬化して得たシリコーン硬化物である封止樹脂。
  37.  請求項19~35のいずれか1項に記載のシリコーン組成物を硬化して得たシリコーン硬化物であるダイボンディング材。
  38.  硬化物中におけるオルガノポリシロキサン(A)と酸化物ナノ粒子(B)の構成比が質量基準で95:5~50:50である、請求項36又は37に記載のシリコーン硬化物。
  39.  オルガノポリシロキサン(A)と酸化物ナノ粒子(B)とを含有するシリコーン硬化物を含む光半導体パッケージであって、該シリコーン硬化物中における酸化物ナノ粒子(B)が、平均一次粒径1~30nmを有し、かつ、平均二次粒径5~100nmを有する、前記光半導体パッケージ。
  40.  前記酸化物ナノ粒子(B)の二次粒径の最大値が200nm以下である、請求項39に記載の光半導体パッケージ。
  41.  前記酸化物ナノ粒子(B)の含有量は、該硬化物全体の質量基準で、5質量%以上である、請求項39又は40に記載の光半導体パッケージ。
  42.  前記硬化物中におけるオルガノポリシロキサン(A)が、炭化水素基を有し、かつ、該炭化水素基とケイ素原子との結合による架橋構造を形成している、請求項39~41のいずれか1項に記載の光半導体パッケージ。
  43.  前記シリコーン硬化物は、ケイ素原子に直接結合したアルケニル基及び/又はケイ素原子に直接結合した水素原子を有するポリオルガノシロキサンと酸化物ナノ粒子とが共有結合した酸化物ナノ粒子反応生成物を含有するワニスを硬化させて得られたものである、請求項39~42のいずれか1項に記載の光半導体パッケージ。
  44.  オルガノポリシロキサン(A)と酸化物ナノ粒子(B)とを含有するシリコーン硬化物を含む光半導体パッケージであって、シリコーン硬化物の断面TEM解析によって得られる像を画像解析して2値化した際の、前記酸化物ナノ粒子(B)部分の面積の割合は、10%以上である、前記光半導体パッケージ。
  45.  オルガノポリシロキサン(A)と酸化物ナノ粒子(B)とを含有するシリコーン硬化物を含む光半導体パッケージであって、シリコーン硬化物の断面TEM解析によって得られる像を画像解析して2値化した粒子において、最近接粒子間を結ぶ距離の分散度は、0.4未満である、前記光半導体パッケージ。
  46.  オルガノポリシロキサン(A)と酸化物ナノ粒子(B)とを含有するシリコーン硬化物を含む光半導体パッケージであって、シリコーン硬化物の断面TEM解析によって得られる像を画像解析して2値化した粒子において、最近接粒子間を結ぶ平均距離は、100nm未満である、前記光半導体パッケージ。
PCT/JP2011/073972 2010-10-20 2011-10-18 酸化物ナノ粒子反応生成物及びシリコーン組成物 WO2012053526A1 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2010-235435 2010-10-20
JP2010235435 2010-10-20
JP2010235352 2010-10-20
JP2010-235352 2010-10-20
JP2010241292 2010-10-27
JP2010-241292 2010-10-27
JP2011-133328 2011-06-15
JP2011133328 2011-06-15

Publications (1)

Publication Number Publication Date
WO2012053526A1 true WO2012053526A1 (ja) 2012-04-26

Family

ID=45975237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073972 WO2012053526A1 (ja) 2010-10-20 2011-10-18 酸化物ナノ粒子反応生成物及びシリコーン組成物

Country Status (2)

Country Link
TW (1) TW201229094A (ja)
WO (1) WO2012053526A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129710A (ja) * 1997-07-10 1999-02-02 Toray Dow Corning Silicone Co Ltd 電気・電子部品封止・充填用シリコーンゲル組成物およびシリコーンゲル
JP2006131734A (ja) * 2004-11-05 2006-05-25 Teijin Chem Ltd オルガノシロキサン樹脂塗料の調製方法
JP2006291018A (ja) * 2005-04-08 2006-10-26 Shin Etsu Chem Co Ltd Led素子封止用硬化性樹脂組成物
JP2007224146A (ja) * 2006-02-23 2007-09-06 Dow Corning Toray Co Ltd 半導体装置の製造方法および半導体装置
JP2008013719A (ja) * 2006-07-10 2008-01-24 Shin Etsu Chem Co Ltd 硬化性オルガノポリシロキサン組成物、それを含むフラットパネルディスプレイ用シール剤、及びフラットパネルディスプレイ素子
JP2008045005A (ja) * 2006-08-11 2008-02-28 Kaneka Corp シリコーン系重合体粒子を含有するシリコーン系組成物
JP2009073957A (ja) * 2007-09-21 2009-04-09 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129710A (ja) * 1997-07-10 1999-02-02 Toray Dow Corning Silicone Co Ltd 電気・電子部品封止・充填用シリコーンゲル組成物およびシリコーンゲル
JP2006131734A (ja) * 2004-11-05 2006-05-25 Teijin Chem Ltd オルガノシロキサン樹脂塗料の調製方法
JP2006291018A (ja) * 2005-04-08 2006-10-26 Shin Etsu Chem Co Ltd Led素子封止用硬化性樹脂組成物
JP2007224146A (ja) * 2006-02-23 2007-09-06 Dow Corning Toray Co Ltd 半導体装置の製造方法および半導体装置
JP2008013719A (ja) * 2006-07-10 2008-01-24 Shin Etsu Chem Co Ltd 硬化性オルガノポリシロキサン組成物、それを含むフラットパネルディスプレイ用シール剤、及びフラットパネルディスプレイ素子
JP2008045005A (ja) * 2006-08-11 2008-02-28 Kaneka Corp シリコーン系重合体粒子を含有するシリコーン系組成物
JP2009073957A (ja) * 2007-09-21 2009-04-09 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物

Also Published As

Publication number Publication date
TW201229094A (en) 2012-07-16

Similar Documents

Publication Publication Date Title
JP6082267B2 (ja) 分岐状ポリシロキサンおよびこれらの使用
JP6043292B2 (ja) 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード
WO2011125753A1 (ja) 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード
JP5682257B2 (ja) 半導体発光装置用樹脂組成物
JP5877081B2 (ja) 多面体構造ポリシロキサン変性体、該変性体を含有する組成物、該組成物を用いてなる封止剤、および光学デバイス
WO2014092196A1 (ja) 透明性に優れた高屈折率熱伝導性組成物、それからなる熱伝導性グリース、熱伝導性硬化物、熱軟化性熱伝導性組成物およびその用途
US8906153B2 (en) Product of polysiloxane condensation
JP6024839B2 (ja) オルガノポリシロキサン化合物及びその製造方法並びに付加硬化型シリコーン組成物
WO2016043082A1 (ja) 硬化性シリコーン樹脂組成物及びその硬化物
KR102255081B1 (ko) 경화성 실리콘 조성물
JP2012064928A (ja) 半導体発光装置用樹脂成形体用材料及び樹脂成形体
JP5491159B2 (ja) シリカ粒子含有縮合反応物、樹脂組成物、封止樹脂、レンズ及びアンダーフィル材
JP6670046B2 (ja) 硬化性樹脂組成物、樹脂硬化物、および半導体装置
JP6467125B2 (ja) 硬化性樹脂組成物、該組成物を硬化させてなる硬化物
JP6022885B2 (ja) 表面修飾複合金属酸化物を含有する樹脂組成物
JP2012136559A (ja) ポリシロキサン縮合反応物ワニスの製造方法
JP6027841B2 (ja) 複合金属酸化物含有硬化性樹脂組成物
JP7042125B2 (ja) 硬化性樹脂組成物並びに該樹脂組成物を用いた硬化物、封止剤及び光半導体装置
JP2007191697A (ja) エポキシ・シリコーン混成樹脂組成物及び光半導体装置
WO2012053526A1 (ja) 酸化物ナノ粒子反応生成物及びシリコーン組成物
JP6329423B2 (ja) 多面体構造ポリシロキサン骨格を有する変性体、その変性体を添加した硬化性組成物、硬化物および半導体発光装置
JP2017183506A (ja) 樹脂成形体用材料
JP6239948B2 (ja) 多面体構造ポリシロキサンを添加した硬化性組成物、硬化物および半導体発光装置、半導体発光装置の製造方法
JP6335036B2 (ja) 硬化性組成物および半導体発光装置、半導体発光装置の製造方法
JP7360910B2 (ja) 硬化性組成物及び該組成物を封止剤として用いた半導体装置。

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11834365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP