WO2012053046A1 - 浸漬ヒーター - Google Patents

浸漬ヒーター Download PDF

Info

Publication number
WO2012053046A1
WO2012053046A1 PCT/JP2010/068274 JP2010068274W WO2012053046A1 WO 2012053046 A1 WO2012053046 A1 WO 2012053046A1 JP 2010068274 W JP2010068274 W JP 2010068274W WO 2012053046 A1 WO2012053046 A1 WO 2012053046A1
Authority
WO
WIPO (PCT)
Prior art keywords
immersion heater
heat
molten metal
induction heating
air
Prior art date
Application number
PCT/JP2010/068274
Other languages
English (en)
French (fr)
Inventor
福丸茂
福島典昭
柴田研一
Original Assignee
有明セラコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有明セラコ株式会社 filed Critical 有明セラコ株式会社
Priority to PCT/JP2010/068274 priority Critical patent/WO2012053046A1/ja
Publication of WO2012053046A1 publication Critical patent/WO2012053046A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/22Furnaces without an endless core
    • H05B6/24Crucible furnaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/42Cooling of coils

Definitions

  • the present invention relates to an immersion heater that is immersed in a high-temperature molten metal such as a molten aluminum stored in a holding furnace to heat and / or keep the molten metal.
  • a high-temperature molten metal such as a molten aluminum stored in a holding furnace to heat and / or keep the molten metal.
  • Patent Document 3 An immersion heater in which a heating wire is disposed in a heat-resistant protective frame made of insulating ceramics having high insulation resistance at high temperatures.
  • Patent Documents 4 and 5 many methods using induction heating have been proposed as means for melting metal in a melting furnace or the like.
  • the molten metal stored at a high temperature of 700 ° C. or higher In the case of an immersion heater having a structure in which a heating wire is arranged in a heat-resistant protective frame that has been proposed in the past, it is necessary to keep the molten metal stored at a high temperature of 700 ° C. or higher.
  • the temperature of the heating means may be as high as 1000 ° C.
  • the temperature of the connection terminal constituting the connection portion with the heating wire may be as high as about 400 ° C.
  • the present invention is an immersion heater that is immersed in a high-temperature molten metal such as a molten aluminum stored in a holding furnace to heat and / or keep the molten metal, and is connected to the heating means.
  • the purpose is to propose an immersion heater that does not require the connection terminal part to be exposed to a high temperature and can prolong the product life.
  • An immersion heater that is immersed in a stored molten metal to heat and / or keep the molten metal
  • An induction heating coil for heating and / or keeping warm the molten metal by inducing an eddy current in the molten metal is disposed inside a heat-resistant protective frame body in which a heat insulating layer is provided. It is an immersion heater.
  • the invention according to claim 2 2.
  • the heat-resistant protective frame has an air discharge hole on the upper end side, and the cooling means is arranged in an internal space formed inside the heat-resistant protective frame, and is used for cooling in the internal space.
  • the immersion heater according to claim 2 comprising an interior body having a plurality of air ejection holes for ejecting air.
  • the invention according to claim 4 The interior body is disposed in the induction heating coil, and the plurality of air ejection holes are air ejection holes for ejecting cooling air toward the induction heating coil side. It is the described immersion heater.
  • the invention according to claim 5 5.
  • the invention described in claim 6 The immersion heater according to claim 1, wherein the heat insulating layer is made of a vacuum heat insulating material.
  • the heat generating means is connected to this. It is not necessary to expose the connection terminal portion to high temperature, and the product life can be extended.
  • FIG. 1 is a plan view of the immersion heater shown in FIG. 1
  • (b) is an end view taken along the line AA of the immersion heater shown in FIG.
  • the side view which abbreviate
  • FIG. 1 is a schematic cross-sectional view for explaining the internal structure of an example of the immersion heater of the present invention.
  • FIG. 5 shows the immersion heater 1 of the present invention shown in FIG. 1 in the molten metal stored in the holding furnace 30. It is a schematic block diagram explaining an example of the state immersed.
  • a bottomed heat-resistant protective cylinder 2 (full length: 825 mm, outer diameter: 132 mm, inner diameter: 105 mm) was molded from ceramics excellent in thermal shock resistance.
  • the heat-resistant protective cylinder 2 is made of silicon nitride so as to be resistant to a molten metal such as a molten aluminum which can reach a high temperature exceeding 700 ° C.
  • the heat insulating material layer 3 having a thickness of 10 mm was formed inside the heat-resistant protective cylinder 2.
  • the heat insulating material layer 3 was formed using a vacuum heat insulating material.
  • the air-cooled cylinder 4 (FIG. 4 (a) outer diameter: 50 mm, inner diameter: 30 mm), which is an interior body arranged in the internal space of the cylinder prepared as described above, was inserted into the heat-resistant protective cylinder 2.
  • the air-cooled cylinder 4 is a cylindrical body molded using silicon nitride, and a plurality of air ejection holes 6 are formed on the lower end side as shown in FIG.
  • the air ejection holes 6 are provided at four locations spaced in the circumferential direction of the air-cooled cylinder 4.
  • a plurality are formed at intervals of 50 mm in the vertical direction.
  • the air-cooled cylinder 4 includes a large-diameter flange 5 at the lower end, and the flange 5 is brought into contact with the inner peripheral wall of the heat insulating material layer 3 as shown in FIG. It is stably placed inside.
  • a lid 16 having four air discharge holes 13 is formed at the upper end opening of the heat-resistant protective cylinder 2, and the fixtures 10, 11 are attached to the large-diameter flange 9 formed at the upper end of the heat-resistant protective cylinder 2. It comes to be installed via.
  • a blower port 12 a of the blower pipe 12 extending through the lid body 16 faces.
  • the proximal end side of the blower pipe 12 extends to the immersion heater control device 32 arranged outside the holding furnace 30 and is connected to a cooling fan (not shown) arranged in the immersion heater control device 32.
  • An induction heating coil 8 having a diameter of 70 mm is disposed in the space 7 existing between the outer peripheral wall of the air-cooled cylinder 4 and the inner peripheral wall of the heat insulating material layer 3.
  • the electric wires 8 a and 8 b forming the induction heating coil 8 extend through the blower pipe 12 to the immersion heater control device 32 and are arranged in the immersion heater control device 32 (not shown). It is connected to an induction heating drive (IH drive) (200V ⁇ 10%, 3 phase, 50/60 Hz).
  • IH drive induction heating drive
  • the immersion heater 1 of the present invention is used as follows.
  • the immersion heater 1 of the present invention described with reference to FIGS. 1 to 4 is immersed in the molten aluminum 31 stored in the holding furnace 30.
  • a cooling fan (not shown) is operated, and the outside air sucked from the air duct 35 as indicated by an arrow 40 is pumped into the immersion heater 1 as indicated by an arrow 41, and indicated by an arrow 42 from the blower opening 12a into the air-cooled cylinder 4. To force it in.
  • the outside air thus forcibly supplied into the internal space 4 b of the air-cooled cylinder 4 is directed to the air ejection hole 6 as shown by an arrow 43 (FIG. 1), and as shown by an arrow 44 through the plurality of air ejection holes 6. Then, the air is blown out into the space 7 existing between the outer peripheral wall of the air-cooled cylinder 4 and the inner peripheral wall of the heat insulating material layer 3 as cooling air (FIG. 2B).
  • the cooling air ejected from the plurality of air ejection holes 6 faces the induction heating coil 8 side, collides with the induction heating coil 8 to cool the induction heating coil 8, and then the outer peripheral wall of the air-cooled cylinder 4. And rises in the space 7 existing between the inner wall of the heat insulating material layer 3 and is discharged to the outside as indicated by an arrow 45 through the air discharge hole 13 formed in the lid body 16. Go.
  • the IH drive (not shown) operates, and an alternating current flows through the induction heating coil 8.
  • lines of magnetic force with varying strength are generated around the induction heating coil 8
  • eddy currents are generated in the molten aluminum 31, the molten aluminum 31 is heated by Joule heat, and the high temperature is maintained.
  • the temperature of the molten aluminum 31 at the time when 1 hour has passed after the operation 700 ° C.
  • the temperature of the induction heating coil 8 200 ° C.
  • the outer peripheral wall of the air-cooled cylinder 4 and the heat insulating material layer 3
  • the temperature on the upper side in FIG. 1 of the space portion 7 existing between the inner peripheral wall and the inner peripheral wall was 100 ° C.
  • the temperature sensor 36 is provided in the holding furnace 30, and the output of the induction heating drive (not shown) and the cooling fan is controlled according to the temperature of the molten aluminum 31 detected thereby,
  • the temperatures of the induction heating coil 8 and the space 7 can be controlled within a predetermined set range.
  • the induction heating coil 8 the internal parts of the lid body 16, the upper part of the lid body 16, while being an immersion heater that is immersed in a high-temperature molten metal to heat the molten metal and keep it at a high temperature, It was confirmed that the fixtures 10, 11 and the like were not exposed to a high temperature exceeding 400 ° C. and could withstand long-term stable use.
  • a temperature sensor is disposed in the vicinity of the induction heating coil 8 in the space portion 7 and in the upper portion of the space portion 7 in FIG. The temperature in these regions is also detected, the output of an induction heating drive (not shown) and a cooling fan is controlled, and the temperatures of the molten aluminum 31, the induction heating coil 8, and the space portion 7 are controlled within predetermined set ranges, respectively. You can also.
  • FIGS. 4B to 4D show another embodiment of the air-cooled cylinder 4.
  • the air cooling cylinder 4 shown in FIG. 4B is provided with a ferrite rod 15 extending in the vertical direction (that is, the direction connecting the upper end side and the lower end side of the heat-resistant protection cylinder 2). This is different from the cylinder 4 and the other points are the same.
  • the magnetic flux generated by the induction heating coil 8 when an alternating current is passed through the coil is in the vertical direction in FIG. That is, in the structure shown in FIG. 4B, the air-cooled cylinder 4 includes the ferrite rod 15 extending in the direction of the magnetic flux generated by the induction heating coil 8.
  • the ferrite rod 15 extending in the direction of the magnetic flux generated by the induction heating coil 8 is formed at the upper end of the induction heating coil 8 when the immersion heater 1 of the present invention is formed as shown in FIG. It has a length extending over a region corresponding from the side to the lower end side.
  • FIGS. 4C and 4D show another example of the cooling cylinder 4 provided with the ferrite rod 15 extending in the direction of the magnetic flux generated by the induction heating coil 8.
  • the cooling cylinder 4 shown in FIG. 4 (c) is shown in FIG. 4 (b) only in that a plurality of ferrite rods 15 are arranged at a predetermined interval in the circumferential direction of the air cooling cylinder 4 shown in FIG. 4 (a). And the other points are the same. 4B and 4C, the ferrite rod 15 has a diameter of 4 mm and a length of 250 mm.
  • the cooling cylinder 4 shown in FIG. 4D is provided with two ferrite rods 15a and 15b having a length in the vertical direction exceeding 1/2 of the ferrite rod 15, so that a total of FIG. ) A vertical region corresponding to the vertical length of the ferrite rod 15 provided in the illustrated cooling cylinder 4 is covered.
  • the induction heating coil 8 when the cooling cylinder 4 including the ferrite rods 15, 15a, 15b extending in the direction of the magnetic flux generated by the induction heating coil 8 is used, the induction heating coil 8 There is an advantage that the diameter can be made smaller and a compact structure can be obtained.
  • the ferrite rod 15 can also employ a structure embedded in the cooling cylinder 4 without being exposed on the outer peripheral surface of the cooling cylinder 4 as shown in the figure.
  • the heat-resistant protective cylinder 1 and the air-cooled cylinder 4 are cylindrical bodies having a circular cross section and a bottomed structure.
  • the structure is a bottomed structure having a polygonal cross section such as a rectangular cross section. You can also.
  • the electric wires 8a and 8b forming the induction heating coil 8 extend to the immersion heater control device 32 through the blower pipe 12, but instead of passing through the blower pipe 12, the blower pipe 12 may extend to the outside through the lid body 16 through a separate path from the lid 12 and be connected to an induction heating drive (not shown) provided in the immersion heater control device 32.
  • the heat insulating material layer 3 is formed using a vacuum heat insulating material
  • the said immersion heater 1 of this invention is immersed in a high temperature molten metal, the said molten metal is heated, and it hold
  • the heat insulating material layer 3 can be configured in another way as long as the induction heating coil 8 and the like can be prevented from being exposed to a high temperature exceeding 400 ° C.
  • a high-temperature heat insulating paint or a heat insulating material layer 3 in which a heat reflecting coating is used can be employed.
  • the heat-resistant protective cylinder 1 and the air-cooled cylinder 4 are both made of silicon nitride in consideration of heat resistance.
  • the heat-resistant protective cylinder 1 and the air-cooled cylinder 4 having a desired shape and structure using an amorphous refractory known in this technical field, such as alumina, silica, silicon carbide, and composites thereof. Can be molded.
  • the air ejection hole 6 extends horizontally from the radially inner side to the radially outer side of the air-cooling cylinder 4, but the cooling air ejected from the air ejection hole 6 is an induction heating coil.
  • the space portion 7 is lifted and discharged to the outside, the spirally upward flow is generated in the space portion 7 from the inside in the radial direction.
  • a hole formed in a spiral shape in a diagonally upward direction toward the radially outer side may also be used.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

 保持炉などに貯留されているアルミニウム溶湯などの高温の金属溶湯内に浸漬されて当該金属溶湯を加熱及び/又は保温する浸漬ヒーターにおいて、発熱手段や、これに接続される接続端子部などを高温に曝す必要が無く、製品寿命を長くできる。 貯留されている金属溶湯内に浸漬されて当該金属溶湯を加熱及び/又は保温する浸漬ヒーターであって、前記金属溶湯内に渦電流を誘導することによって前記金属溶湯を加熱する誘導加熱用コイルが、断熱層が内装されている耐熱保護枠体の内部に配備されている浸漬ヒーター。

Description

浸漬ヒーター
 この発明は、保持炉などに貯留されているアルミニウム溶湯などの高温の金属溶湯内に浸漬されて当該金属溶湯を加熱及び/又は保温する浸漬ヒーターに関する。
 保持炉などに貯留されているアルミニウム溶湯などの高温の金属溶湯内に浸漬されて当該金属溶湯を加熱及び/又は保温する浸漬ヒーターに関しては従来から種々の提案が行われている(例えば、特許文献1、2)。
 本願出願人も高温で絶縁抵抗の高い絶縁セラミックス製の耐熱保護枠体内に電熱線を配置した浸漬ヒーターを提案している(特許文献3)
 一方、従来から、溶解炉などにおいて金属を溶解させるための手段として誘導加熱を用いる方式が多数提案されている(例えば、特許文献4、5)。
特開平8-14760号公報 特開2008-269808号公報 特開平11-176564号公報 特開2003-320445号公報 特開2004-205112号公報
 従来から提案されている耐熱性の保護枠体内に電熱線を配置した構造の浸漬ヒーターの場合、貯留されている金属溶湯は700℃以上というような高温に保持する必要があるため、電熱線などの発熱手段の温度が1000℃等の高温になることがあり、電熱線との接続部を構成する接続端子の温度も400℃程度の高温になることがあった。このような従来の浸漬ヒーターの場合、前述した高温に耐え得る構造に設計する必要があり、また、繰返されるこれらの高温に耐え得る製品寿命にする必要があった。
 この発明は、保持炉などに貯留されているアルミニウム溶湯などの高温の金属溶湯内に浸漬されて当該金属溶湯を加熱及び/又は保温する浸漬ヒーターであって、発熱手段や、これに接続される接続端子部などを高温に曝す必要が無く、製品寿命を長くできる浸漬ヒーターを提案することを目的にしている。
 前記目的を達成する本願の請求項1記載の発明は、
 貯留されている金属溶湯内に浸漬されて当該金属溶湯を加熱及び/又は保温する浸漬ヒーターであって、
 前記金属溶湯内に渦電流を誘導することによって前記金属溶湯を加熱及び/又は保温する誘導加熱用コイルが、断熱層が内装されている耐熱保護枠体の内部に配備されている
 ことを特徴とする浸漬ヒーターである。
 請求項2記載の発明は、
 耐熱保護枠体の内部に形成されている内部空間を冷却する冷却手段が配備されていることを特徴とする請求項1記載の浸漬ヒーターである。
 請求項3記載の発明は、
 前記耐熱保護枠体は上端側に空気排出孔を備えており、前記冷却手段は、前記耐熱保護枠体の内部に形成されている内部空間内に配備されていて、前記内部空間内に冷却用空気を噴き出す複数の空気噴出孔を備えている内装体からなることを特徴とする請求項2記載の浸漬ヒーターである。
 請求項4記載の発明は、
 前記内装体は前記誘導加熱用コイル内に配備されていて、前記複数の空気噴出孔は前記誘導加熱用コイル側に向けて冷却用空気を噴き出す空気噴出孔であることを特徴とする請求項3記載の浸漬ヒーターである。
 請求項5記載の発明は、
 前記内装体は前記誘導加熱用コイルによって発生する磁束の方向に延びるフェライト棒を備えていることを特徴とする請求項1乃至4のいずれか一項記載の浸漬ヒーターである。
 請求項6記載の発明は、
 前記断熱層は真空断熱材からなることを特徴とする請求項1乃至5のいずれか一項記載の浸漬ヒーターである。
 請求項7記載の発明は、
 前記断熱層は高温断熱塗料を用いていることを特徴とする請求項1乃至5のいずれか一項記載の浸漬ヒーターである。
 請求項8記載の発明は、
 前記断熱層は熱反射被膜を用いていることを特徴とする請求項1乃至5のいずれか一項記載の浸漬ヒーターである。
 本発明によれば、保持炉などに貯留されているアルミニウム溶湯などの高温の金属溶湯内に浸漬されて当該金属溶湯を加熱及び/又は保温する浸漬ヒーターにおいて、発熱手段や、これに接続される接続端子部などを高温に曝す必要が無くなり、製品寿命を長くすることができる。
本発明の浸漬ヒーターの一例の内部構造を説明する概略断面図。 (a)は図1図示の浸漬ヒーターの平面図、(b)は図1図示の浸漬ヒーターのA-A線端面図。 図1図示の浸漬ヒーターにおける誘導加熱用コイルと、内装体との配置関係を説明する一部を省略した側面図。 図1図示の浸漬ヒーターに配備されるいくつかの冷却筒の例を表す図であって、(a)はフェライト棒が配備されていない冷却筒の一部を省略した側面図、(b)、(c)、(d)はフェライト棒が配備されている冷却筒の一部を省略した側面図。 本発明の浸漬ヒーターが配備されている保持炉の一例を説明する概略構成図。
 以下、添付図面に基づいて本発明の好ましい実施形態を説明する。
 図1~図4を用いて本発明の浸漬ヒーターの一例を説明する。図1は本発明の浸漬ヒーターの一例の内部構造を説明する概略断面図であり、図5は、保持炉30内に貯留されている金属溶湯内に図1図示の本発明の浸漬ヒーター1が浸漬されている状態の一例を説明する概略構成図である。
 耐熱衝撃性に優れたセラミックスにより有底の耐熱保護筒2(全長:825mm、外径:132mm、内径:105mm)を成型した。耐熱保護筒2はアルミニウム溶湯などの700℃を越える高温になることがある金属溶湯に対して耐性を有するように窒化ケイ素製とした。
 この耐熱保護筒2の内側に10mmの肉厚で断熱材層3を形成した。この実施例では真空断熱材を用いて断熱材層3を形成した。
 前記のように準備した筒体の内部空間内に配置される内装体である空冷筒4(図4(a)外径:50mm、内径:30mm)を耐熱保護筒2内に装入した。空冷筒4は窒化ケイ素を用いて成型した筒状体であり、図4(a)に示すように、下端側に複数の空気噴出孔6が形成されている。
 図示の実施形態では、図2(b)、図3、図4(a)に表されているように、空気噴出孔6は、空冷筒4の円周方向に所定の間隔を空けた4箇所において、上下方向にそれぞれ50mmの間隔を空けて複数形成されている。
 空冷筒4は下端に大径の鍔部5を備えており、鍔部5を図1図示のように断熱材層3の内周壁に当接させて空冷筒4を耐熱保護筒2の内部空間内に安定的に配置している。
 耐熱保護筒2の上端開口部には4個の空気排出孔13を備えている蓋体16が、耐熱保護筒2の上端に形成されている大径の鍔部9に取付具10、11を介して装着されるようになっている。
 空冷筒4の上端開口4a内には、蓋体16内を通って延びてきた送風管12の送風口12aが臨んでいる。送風管12の基端側は保持炉30の外部に配備されている浸漬ヒーター制御装置32まで延び、浸漬ヒーター制御装置32内に配備されている不図示の冷却ファンに接続されている。
 空冷筒4の外周壁と、断熱材層3の内周壁との間に存在する空間部7には直径70mmの誘導加熱用コイル8が配置されている。誘導加熱用コイル8を形成する電線8a、8bは、図1図示のように、送風管12内を通って浸漬ヒーター制御装置32まで延び、浸漬ヒーター制御装置32内に配備されている不図示の誘導加熱ドライブ(IHドライブ)(200V±10%、3相、50/60Hz)に接続されている。
 本発明の浸漬ヒーター1は次のようにして使用される。
 図1~図4を用いて説明した本発明の浸漬ヒーター1を、保持炉30内に貯留されているアルミニウム溶湯31内に浸漬する。
 不図示の冷却ファンを作動させ、空気ダクト35から矢印40で示すように吸引した外気を矢印41で示すように浸漬ヒーター1内に圧送し、送風口12aから空冷筒4内に矢印42で示すように強制的に送り込む。
 こうして空冷筒4の内部空間4b内に強制的に供給された外気は、矢印43で示すように空気噴出孔6に向かい(図1)、複数の空気噴出孔6を介して矢印44で示すように、冷却用空気として空冷筒4の外周壁と断熱材層3の内周壁との間に存在する空間部7内に噴き出される(図2(b))。
 複数の空気噴出孔6から噴き出された冷却用空気は、誘導加熱用コイル8側に向かい、誘導加熱用コイル8に衝突して誘導加熱用コイル8を冷却した後、空冷筒4の外周壁と断熱材層3の内周壁との間に存在する空間部7内を上昇し、蓋体16に形成されている空気排出孔13を介して、矢印45で示すように、外部に放出されていく。
 一方、電源盤33(出力:5kW)からの電力供給を受けて、不図示のIHドライブが動作し、誘導加熱用コイル8に交流電流が流される。これによって誘導加熱用コイル8の周囲に強度が変化する磁力線が発生し、アルミニウム溶湯31内に渦電流が生じ、ジュール熱によってアルミニウム溶湯31が発熱し、高温が維持される。
 前記の設定条件で稼動したところ、稼動後1時間経過した時点でのアルミニウム溶湯31の温度:700℃、誘導加熱用コイル8の温度:200℃、空冷筒4の外周壁と断熱材層3の内周壁との間に存在する空間部7の図1中、上部側における温度:100℃であった。
 この実施例では、保持炉30に温度センサー36を配備しておき、これで検知したアルミニウム溶湯31の温度に応じて不図示の誘導加熱ドライブ、冷却ファンの出力を制御して、アルミニウム溶湯31、誘導加熱用コイル8、空間部7の温度をそれぞれ所定の設定範囲に制御することができる。
 そこで、高温の金属溶湯の中に浸漬されて、当該金属溶湯を加熱し、高温に保持する浸漬ヒーターでありながら、誘導加熱用コイル8や、蓋体16の内部部品、蓋体16の上部、取付具10、11などが400℃を越えるような高温に曝されることが無く、長期間の安定的な使用に耐え得ることを確認できた。
 なお、空間部7の誘導加熱用コイル8近傍や、空間部7の図1中、上部側などにそれぞれ温度センサーを配置し、上述した温度センサー36で検知したアルミニウム溶湯31の温度の他に、これらの領域における温度も検知して、不図示の誘導加熱ドライブ、冷却ファンの出力を制御し、アルミニウム溶湯31、誘導加熱用コイル8、空間部7の温度をそれぞれ所定の設定範囲に制御することもできる。
 図4(b)~(d)は空冷筒4の他の実施例を表すものである。図4(b)図示の空冷筒4は上下方向(すなわち、耐熱保護筒2の上端側と下端側とを結ぶ方向)に延びるフェライト棒15を備えている点のみ図4(a)図示の空冷筒4と相違しており、その他の点は同一である。図示の実施形態のような螺旋状の誘導加熱用コイル8の場合、これに交流電流が流されることによって誘導加熱用コイル8によって発生する磁束は図4(b)中、上下方向になる。すなわち、図4(b)図示の構造では、空冷筒4が誘導加熱用コイル8によって発生する磁束の方向に延びるフェライト棒15を備えていることになる。図示の実施形態では、誘導加熱用コイル8によって発生する磁束の方向に延びるフェライト棒15は、図1図示のように本発明の浸漬ヒーター1が形成されたときに、誘導加熱用コイル8の上端側から下端側までに対応する領域に渡って延びる長さを有している。
 図4(c)、(d)は、誘導加熱用コイル8によって発生する磁束の方向に延びるフェライト棒15を備えている冷却筒4の他の例を表すものである。
 図4(c)図示の冷却筒4は、図4(a)図示の空冷筒4の周方向に所定の間隔を空けてフェライト棒15が複数本配備されている点のみ図4(b)図示の空冷筒4と相違しており、その他の点は同一である。図4(b)、(c)図示の実施形態ではフェライト棒15は、直径:4mm、長さ:250mmである。
 図4(d)図示の冷却筒4は、フェライト棒15の1/2を越える上下方向長さを有する2本のフェライト棒15a、15bが配備されていることによって、トータルで、図4(b)図示の冷却筒4に配備されているフェライト棒15の上下方向長さに相当する上下方向の領域がカバーされるものである。
 図4(b)~(d)図示のように誘導加熱用コイル8によって発生する磁束の方向に延びるフェライト棒15、15a、15bを備えている冷却筒4を用いると、誘導加熱用コイル8の径をより小さくしてコンパクトな構造にすることが可能になる、等の利点がある。なお、このフェライト棒15は、図示のように冷却筒4の外周表面に露出させず、冷却筒4内に埋設されている構造を採用することもできる。
 以上、添付図面を参照して本発明の好ましい実施形態・実施例を説明したが、本発明はこれらの実施形態・実施例に限られるものではなく、特許請求の範囲の記載から把握される技術的範囲において種々に変更可能である。
 例えば、上記の実施例では、耐熱保護筒1、空冷筒4は断面が円形で有底の筒状体としたが、断面が長方形状などの断面多角形形状で有底の構造物にすることもできる。
 また、上記の実施例では、誘導加熱用コイル8を形成する電線8a、8bは送風管12内を通って浸漬ヒーター制御装置32まで延びていたが、送風管12内を通らずに、送風管12とは別個の経路で蓋体16内を通って外部へ延び、浸漬ヒーター制御装置32内に配備されている不図示の誘導加熱ドライブに接続される構造にすることもできる。
 前記実施例では、真空断熱材を用いて断熱材層3を形成しているが、高温の金属溶湯の中に本発明の浸漬ヒーター1を浸漬して当該金属溶湯を加熱し、高温に保持しているときに、誘導加熱用コイル8などが400℃を越えるような高温に曝されることを防止できるものであれば断熱材層3を他の構成にすることができる。例えば、高温断熱塗料や、熱反射被膜が使用されている断熱材層3を採用することができる。
 前記実施例では、耐熱保護筒1、空冷筒4は、いずれも、耐熱性を考慮して窒化ケイ素製としたが、アルミニウム溶湯などの700℃を越える高温になることがある金属溶湯に対して耐性を有するものであれば、アルミナ、シリカ、炭化ケイ素、並びにこれらの複合物など、この技術分野で公知の不定形耐火物を用いて、所望の形状、構造の耐熱保護筒1、空冷筒4を成型することができる。
 図示の実施形態では、空気噴出孔6は、空冷筒4の径方向内側から径方向外側に向かって水平に延びているが、空気噴出孔6から噴き出された冷却用空気は誘導加熱用コイル8に衝突した後、空間部7内を上昇して外部に放出されていくことを考慮し、空間部7内で螺旋状の上昇流が生起されるように、空冷筒4の径方向内側から径方向外側に向かって斜め上向かい方向に螺旋状に形成されている孔にすることもできる。
1  浸漬ヒーター
2  耐熱保護筒
3  断熱材層
4  空冷筒
6  空気噴出孔
7  空間部
8  誘導加熱用コイル
8a、8b 電線
12 送風管
12a 送風口
13 空気排出孔
15、15a、15b フェライト棒
16 蓋体
30 保持炉
31 アルミニウム溶湯
32 浸漬ヒーター制御装置
33 電源盤
35 空気ダクト
36 温度センサー

Claims (8)

  1.  貯留されている金属溶湯内に浸漬されて当該金属溶湯を加熱及び/又は保温する浸漬ヒーターであって、
     前記金属溶湯内に渦電流を誘導することによって前記金属溶湯を加熱及び/又は保温する誘導加熱用コイルが、断熱層が内装されている耐熱保護枠体の内部に配備されている
     ことを特徴とする浸漬ヒーター。
  2.  耐熱保護枠体の内部に形成されている内部空間を冷却する冷却手段が配備されていることを特徴とする請求項1記載の浸漬ヒーター。
  3.  前記耐熱保護枠体は上端側に空気排出孔を備えており、前記冷却手段は、前記耐熱保護枠体の内部に形成されている内部空間内に配備されていて、前記内部空間内に冷却用空気を噴き出す複数の空気噴出孔を備えている内装体からなることを特徴とする請求項2記載の浸漬ヒーター。
  4.  前記内装体は前記誘導加熱用コイル内に配備されていて、前記複数の空気噴出孔は前記誘導加熱用コイル側に向けて冷却用空気を噴き出す空気噴出孔であることを特徴とする請求項3記載の浸漬ヒーター。
  5.  前記内装体は前記誘導加熱用コイルによって発生する磁束の方向に延びるフェライト棒を備えていることを特徴とする請求項1乃至4のいずれか一項記載の浸漬ヒーター。
  6.  前記断熱層は真空断熱材からなることを特徴とする請求項1乃至5のいずれか一項記載の浸漬ヒーター。
  7.  前記断熱層は高温断熱塗料を用いていることを特徴とする請求項1乃至5のいずれか一項記載の浸漬ヒーター。
  8.  前記断熱層は熱反射被膜を用いていることを特徴とする請求項1乃至5のいずれか一項記載の浸漬ヒーター。
PCT/JP2010/068274 2010-10-18 2010-10-18 浸漬ヒーター WO2012053046A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/068274 WO2012053046A1 (ja) 2010-10-18 2010-10-18 浸漬ヒーター

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/068274 WO2012053046A1 (ja) 2010-10-18 2010-10-18 浸漬ヒーター

Publications (1)

Publication Number Publication Date
WO2012053046A1 true WO2012053046A1 (ja) 2012-04-26

Family

ID=45974784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068274 WO2012053046A1 (ja) 2010-10-18 2010-10-18 浸漬ヒーター

Country Status (1)

Country Link
WO (1) WO2012053046A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104690262A (zh) * 2013-12-03 2015-06-10 三井金属矿业株式会社 金属熔液用部件及其制造方法、以及金属熔液保持炉

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127658U (ja) * 1988-02-10 1989-08-31
JPH03125898A (ja) * 1989-10-11 1991-05-29 Kiden Syst:Kk 鋳造加工に於ける誘導加熱装置
JPH0412350U (ja) * 1990-05-10 1992-01-31
JP2000275996A (ja) * 1999-03-25 2000-10-06 Ricoh Co Ltd 誘導発熱型定着装置
JP2001312164A (ja) * 2000-04-28 2001-11-09 Kyocera Mita Corp 画像形成装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127658U (ja) * 1988-02-10 1989-08-31
JPH03125898A (ja) * 1989-10-11 1991-05-29 Kiden Syst:Kk 鋳造加工に於ける誘導加熱装置
JPH0412350U (ja) * 1990-05-10 1992-01-31
JP2000275996A (ja) * 1999-03-25 2000-10-06 Ricoh Co Ltd 誘導発熱型定着装置
JP2001312164A (ja) * 2000-04-28 2001-11-09 Kyocera Mita Corp 画像形成装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104690262A (zh) * 2013-12-03 2015-06-10 三井金属矿业株式会社 金属熔液用部件及其制造方法、以及金属熔液保持炉

Similar Documents

Publication Publication Date Title
TWI401728B (zh) Heat treatment furnace and vertical heat treatment device
US7424045B2 (en) Method and apparatus for heating a workpiece in an inert atmosphere or in vacuum
JP4585606B2 (ja) 連続鋳造方法及びノズル加熱装置
JP4914945B1 (ja) 浸漬ヒーター
US6303908B1 (en) Heat treatment apparatus
JP2009002616A (ja) 誘導加熱給湯装置
KR100827469B1 (ko) 고주파유도가열방식의 전기온풍기
WO2015037408A1 (ja) 誘導加熱炉用坩堝
WO2012053046A1 (ja) 浸漬ヒーター
JP5877920B1 (ja) 急速昇降温熱処理炉
JP5832588B2 (ja) 取鍋加熱装置
KR200441974Y1 (ko) 와이어 형태의 발열체로 이루어진 히터 및 이를 이용한소둔로용 히팅파이프
JP5555860B2 (ja) 浸漬ヒーター及び浸漬ヒーターの使用方法
JP5114748B2 (ja) 鋳造用ノズルの予熱方法
CN102802293A (zh) 具有不需要冷却的感应线圈
CN102788499A (zh) 感应加热熔炼炉炉膛的结构
JP6588316B2 (ja) 電磁撹拌装置および電磁撹拌装置を設けた溶融金属槽
CN110749193A (zh) 一种用于熔炼铝的封闭式加热炉
JP2008256233A (ja) 誘導加熱コイルおよび誘導溶解炉
KR101714017B1 (ko) 질소가스히터
JP6314080B2 (ja) 溶融金属給湯装置
JP2001182912A (ja) 三重管式シングルエンド型ラジアントチューブ、及びこれを用いた加熱方法
JP2012141081A (ja) 誘導加熱式アルミニウム溶解・保持炉
JP3024884U (ja) ラジアントチューブヒータ
JP5500802B2 (ja) 熱間等方圧加圧装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP