WO2012050084A1 - 光熱変換再生デシカントシート、並びに該シートを用いたデシカント素子およびデシカントローター、並びに該素子または該ローターを用いた空調システム - Google Patents
光熱変換再生デシカントシート、並びに該シートを用いたデシカント素子およびデシカントローター、並びに該素子または該ローターを用いた空調システム Download PDFInfo
- Publication number
- WO2012050084A1 WO2012050084A1 PCT/JP2011/073328 JP2011073328W WO2012050084A1 WO 2012050084 A1 WO2012050084 A1 WO 2012050084A1 JP 2011073328 W JP2011073328 W JP 2011073328W WO 2012050084 A1 WO2012050084 A1 WO 2012050084A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- photothermal conversion
- desiccant
- moisture
- air
- sheet
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F5/00—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
- F24F5/0007—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
- F24F5/0014—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using absorption or desorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
- B01D53/0407—Constructional details of adsorbing systems
- B01D53/0438—Cooling or heating systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/06—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/26—Drying gases or vapours
- B01D53/261—Drying gases or vapours by adsorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/06—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/103—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/223—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/265—Synthetic macromolecular compounds modified or post-treated polymers
- B01J20/267—Cross-linked polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/2803—Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28033—Membrane, sheet, cloth, pad, lamellar or mat
- B01J20/2804—Sheets with a specific shape, e.g. corrugated, folded, pleated, helical
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/34—Regenerating or reactivating
- B01J20/3425—Regenerating or reactivating of sorbents or filter aids comprising organic materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/34—Regenerating or reactivating
- B01J20/345—Regenerating or reactivating using a particular desorbing compound or mixture
- B01J20/3458—Regenerating or reactivating using a particular desorbing compound or mixture in the gas phase
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F12/00—Use of energy recovery systems in air conditioning, ventilation or screening
- F24F12/001—Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
- F24F12/006—Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an air-to-air heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
- F24F3/1411—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
- F24F3/1423—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/30—Alkali metal compounds
- B01D2251/302—Alkali metal compounds of lithium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/40—Alkaline earth metal or magnesium compounds
- B01D2251/404—Alkaline earth metal or magnesium compounds of calcium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/60—Inorganic bases or salts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/104—Alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/106—Silica or silicates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/106—Silica or silicates
- B01D2253/108—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/112—Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/20—Organic adsorbents
- B01D2253/202—Polymeric adsorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/80—Water
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/06—Polluted air
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/40083—Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
- B01D2259/40088—Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
- B01D2259/40098—Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating with other heating means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/26—Drying gases or vapours
- B01D53/28—Selection of materials for use as drying agents
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F5/00—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
- F24F5/0046—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
- F24F2005/0064—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using solar energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/56—Heat recovery units
Definitions
- the present invention relates to a photothermal conversion regenerated desiccant material capable of allowing thermal energy converted from light energy such as sunlight to directly and efficiently act on a moisture absorbing / releasing material, that is, a desiccant regeneration process, and the desiccant.
- the present invention relates to a desiccant air-conditioning system that is friendly to the global environment and enables air conditioning such as dehumidification, humidification, cooling, and heating utilizing natural energy such as sunlight, and air quality improvement.
- the desiccant air-conditioning system is an air-conditioning system that can control the humidity with a moisture absorbing / releasing agent and perform air conditioning and dehumidification with less energy.
- a desiccant air conditioning system does not require the use of a refrigerant represented by chlorofluorocarbon, which causes problems such as global warming and the generation of ozone holes, as in general air conditioning using a heat pump. Since it can be regenerated at a relatively low temperature, the discarded heat energy such as exhaust heat can be used as the regeneration energy of the moisture absorbing / releasing agent. For this reason, the desiccant air conditioning system is attracting attention as an environment-friendly and energy-saving air conditioning technology. In recent years, a system using natural energy such as sunlight as regenerative energy has been studied and proposed.
- Patent Document 1 it is possible to obtain dry air by directly irradiating a particulate moisture absorbent such as silica gel filled between meshes with sunlight, regenerating the particulate moisture absorbent, and passing air through the dried moisture absorbent.
- a particulate moisture absorbent such as silica gel filled between meshes with sunlight
- regenerating the particulate moisture absorbent and passing air through the dried moisture absorbent.
- a method of obtaining dry air continuously by repeating is proposed.
- the thickness of the silica gel packing layer is increased, so that sunlight does not reach the deep part where the silica gel layer thickness is thick, and the silica gel itself is easy to reflect light. There was a problem that sufficient heat energy for regeneration could not be obtained.
- Patent Document 2 collects sunlight with a solar heat collector, heats the heat medium, and circulates the heat medium to regenerate the hygroscopic agent such as activated alumina, silica gel, and zeolite.
- a system is proposed.
- As a solar heat collector in the system it is said that a temperature increase of 3 times that without a reflecting mirror can be expected by using a reflecting mirror that collects parallel light.
- an apparatus for handling a heat medium is required, and the apparatus is complicated, so that there are problems in terms of cost and practical use.
- Non-Patent Document 1 the result of a test in which the sunlight is collected by a condensing lens to obtain high heat flux light energy and directly irradiates the desiccant rotor to reduce loss with high efficiency. It has been reported. As a result of the report, although dehumidification with sunlight is possible, sufficient dehumidification performance for practical use has not been obtained. It is stated that this is because the concentrated solar energy was not efficiently used for regeneration, and the low-temperature regeneration capability of silica gel as a dehumidifying agent was insufficient.
- Patent Document 3 Another method of efficiently converting sunlight into heat and using it to regenerate the moisture absorbent is proposed in Patent Document 3. It consists of a metal cylinder whose outer surface is painted or surface-treated in a dark color like black or brown, and is filled with a dehumidifying agent such as silica gel. Is heated and this heat energy is used to regenerate the dehumidifier inside.
- a dehumidifying agent such as silica gel.
- An object of the present invention is to provide a desiccant sheet that can efficiently absorb and release moisture by efficiently using thermal energy obtained from light energy such as sunlight, and further, a desiccant element using the sheet, and It is an object of the present invention to provide a desiccant rotor and a desiccant air conditioning system using such an element or rotor.
- a photothermal conversion regeneration desiccant element which is a three-dimensional structure having the gas through-passage, comprising the photothermal conversion regeneration desiccant sheet according to any one of [1] to [9].
- a photothermal conversion regeneration desiccant rotor comprising the photothermal conversion regeneration desiccant element according to [10].
- the photothermal conversion regeneration desiccant rotor according to [11] is used, and A photothermal conversion regeneration desiccant air conditioning system characterized in that electromagnetic waves are blocked when moisture is adsorbed to the rotor and electromagnetic waves are irradiated when moisture is desorbed.
- the desiccant element comprising the photothermal conversion regeneration desiccant sheet of the present invention can efficiently regenerate the desiccant by using electromagnetic waves, particularly sunlight which is natural energy.
- electromagnetic waves particularly sunlight which is natural energy.
- an air conditioning system using the desiccant element of the present invention, it is possible to effectively use sunlight for air conditioning such as dehumidification, humidification, heating, and cooling, and provide an environment-friendly energy-saving air conditioning system. be able to.
- the photothermal conversion regenerated desiccant sheet of the present invention contains a hygroscopic material having hygroscopic properties and a hygroscopic property and a photothermal conversion material that converts electromagnetic waves into heat as essential components.
- the moisture-absorbing / releasing material used in the present invention a material having a characteristic that moisture desorption occurs at a low temperature, that is, a low-temperature regeneration capability is preferable.
- light energy used for photothermal conversion sunlight, which is natural energy, is the main one.
- the heat energy converted from light to heat by the photothermal conversion material described later is not so large, and the temperature obtained when a special operation such as condensing is not performed is only 40 ° C. to 70 ° C. . Since this is lower than the temperature of a conventionally used regeneration heat source, it is desirable that the moisture absorbing / releasing material has an excellent low temperature regeneration capability in order to obtain high dehumidification / humidification performance.
- the hygroscopic material used in the present invention preferably has a regeneration rate calculated by the method shown in the below-mentioned Examples section of 70% or more, more preferably 75% or more, and still more preferably 80% or more. Things are desirable.
- the regeneration rate defined in the present invention is the low temperature regeneration of how much moisture can be released from the moisture absorbed when a low temperature heat source is used. It is an indicator of ability. It can be said that the higher the regeneration rate, the moisture absorbing / releasing material that can effectively use a low-temperature heat source such as heat converted from light by the photothermal conversion material as the regeneration heat source. Conversely, moisture-absorbing / releasing materials with a regeneration rate of less than 70% cannot be moisture-released with a low-temperature heat source. Even if a photothermal conversion material is used in combination, the heat generated by photothermal conversion cannot be used as a regeneration heat source. A desiccant sheet that can use natural energy such as
- the saturated moisture absorption at 20 ° C. ⁇ 95% RH is 50% by weight or more, preferably 60% by weight or more, more preferably 70% by weight or more.
- RH means relative humidity.
- 20 ° C. ⁇ 95% RH indicates that the atmosphere is at a temperature of 20 ° C. and a relative humidity of 95%.
- the saturated moisture absorption is 50% by weight or more, sufficient dehumidification / dehumidification can be achieved without increasing the proportion of the moisture absorbing / releasing material in the desiccant sheet so that the moisture absorption / desorption of the moisture absorbing / releasing material becomes a problem. Humidification performance can be obtained.
- the saturated moisture absorption rate of 20 ° C. ⁇ 95% RH is 140% by weight or less, preferably 120% by weight or less.
- the difference in saturated moisture absorption between 20 ° C. ⁇ 45% RH and 20 ° C. ⁇ 95% RH is 20 percentage points or more, preferably 40 percentage points or more.
- the difference in saturated moisture absorption between 20 ° C. ⁇ 45% RH and 20 ° C. ⁇ 95% RH is an indicator of the difference in saturated moisture absorption between the low humidity state and the high humidity state. In a desiccant air-conditioning system that repeatedly absorbs and desorbs moisture-absorbing / releasing materials, this difference greatly affects dehumidifying and humidifying performance.
- the difference is less than 20 percentage points, it is necessary to increase the proportion of the moisture-absorbing / releasing material in the desiccant sheet. In some cases, problems such as falling off of the moisture-absorbing / releasing material and deformation associated with moisture-absorbing / releasing may become apparent. On the other hand, in the case of 40 percentage points or more, it is possible to construct a more practical desiccant air conditioning system because a large amount of dehumidification and humidification can be obtained even with regeneration at a relatively low temperature that is generated by photothermal conversion. Become.
- a hygroscopic substance As a hygroscopic material that can be used in the present invention, a hygroscopic substance is a typical example.
- Such hygroscopic substances include inorganic porous materials such as silica gel, zeolite and activated alumina, inorganic salts such as lithium chloride and calcium chloride, or polyacrylic acid and salts thereof, polymethacrylic acid and salts thereof, polysulfonic acid And organic macromolecular compounds having hydrophilic functional groups such as salts thereof, polyphosphoric acid and salts thereof, polyglutamic acid and salts thereof, and polyacrylamide. These may be used alone or in combination of two or more. Further, synthetic fibers and natural fibers containing these hygroscopic substances, resin films, rubbers, and the like can also be used as the hygroscopic material of the present invention.
- organic polymer compounds in which the organic polymer main chain having a hydrophilic polar group in the molecule is three-dimensionally structured by a crosslinked structure are suitable.
- Such an organic polymer compound sorbs a large amount of water vapor based on a sorption phenomenon.
- such a material is referred to as an organic polymer sorbent.
- the sorption phenomenon is a phenomenon in which the gas concentration in the solid phase is higher than that in the gas phase at the interface between the gas and the solid in a system where the gas and the solid are in contact with each other.
- absorption The phenomenon of entering the solid through the solid surface layer is called absorption, but this adsorption and absorption occur simultaneously.
- water vapor which is a gaseous water molecule
- the organic polymer sorbent acts on the organic polymer sorbent, the water molecule is adsorbed by the highly hydrophilic polar group of the sorbent, and further enters the sorbent and is absorbed. go.
- the three-dimensional structure due to the crosslinked structure has moderate flexibility, so that when water is absorbed, it swells as water molecules are absorbed and a large amount of water molecules are absorbed into the sorbent. It can be taken up, and when moisture is released, it can shrink and return to its original structure as water molecules are released. That is, the organic polymer sorbent has both a high moisture absorption rate and excellent durability against repeated moisture absorption and desorption, and is a moisture absorption and desorption material suitable for a desiccant air conditioning system.
- the salt of polyacrylic acid having a cross-linked structure is desirable in that the desiccant of the present invention is capable of obtaining desirable characteristics regarding the above-described saturated moisture absorption, difference in saturated moisture absorption and low-temperature regeneration characteristics.
- the present invention can be particularly suitably used for an element and a desiccant air conditioning system using the element.
- the polyacrylic acid salt having such a crosslinked structure is also referred to as a crosslinked polyacrylate polymer compound.
- a carboxyl group which is a hydrophilic polar group and a cation constitute a salt.
- the cation constituting the salt is not particularly limited, and examples thereof include alkali metals such as Li, Na, K, Rb, and Cs, alkaline earth metals such as Be, Mg, Ca, Sr, and Ba, Cu, Zn, and Al. Other metals such as Mn, Ag, Fe, Co, and Ni, organic cations such as NH 4 and amine, and the like, and two or more of these cations may be used simultaneously. Among them, it is more preferable to select K as the cation because it is particularly effective in improving the moisture absorption / release rate.
- a carboxyl group constituting a salt with a cation that is, a salt-type carboxyl group is a highly hydrophilic polar group suitable for developing hygroscopicity, and is high
- a salt-type carboxyl group is a highly hydrophilic polar group suitable for developing hygroscopicity, and is high
- the amount of the salt-type carboxyl group of the crosslinked polyacrylate polymer compound exceeds 10.0 mmol / g, the ratio of the crosslinked structure that can be introduced is too small, which is close to a so-called superabsorbent resin. In some cases, the moisture absorption performance is lowered, the form stability is inferior, sufficient durability cannot be obtained, and the adhesiveness becomes sticky.
- the amount of the salt-type carboxyl group that gives more preferable results from the above viewpoint is 9.5 mmol / g or less.
- the amount of the salt-type carboxyl group when the amount of the salt-type carboxyl group is small, the moisture absorption performance decreases, and particularly when it is lower than 1.0 mmol / g, the saturated moisture absorption rate of 20 ° C. ⁇ 65% RH or 20 ° C. ⁇ 45% RH described above. A difference in saturated moisture absorption with 20 ° C. ⁇ 95% RH may not be obtained.
- the amount of the salt-type carboxyl group is 3.0 mmol / g or more, the superiority of the hygroscopic performance is remarkable as compared with other existing hygroscopic materials, and a more preferable result is given.
- a method of obtaining a polymer by copolymerizing with a monomer (first method), a method of obtaining a polymer having a carboxyl group and then changing to a salt form (second method), can be induced to a carboxyl group.
- a monomer having a certain functional group is polymerized, and the functional group of the obtained polymer is converted into a carboxyl group by chemical modification and further converted into a salt form (third method), or the above three methods by graft polymerization. And the like.
- a method for polymerizing a monomer having a salt-type carboxyl group in the first method for example, correspondence of a monomer containing a carboxyl group such as acrylic acid, methacrylic acid, maleic acid, itaconic acid, vinylpropionic acid, etc.
- a monomer containing a carboxyl group such as acrylic acid, methacrylic acid, maleic acid, itaconic acid, vinylpropionic acid, etc.
- Polymerizing a single salt-type monomer, or two or more of these monomers, or a mixture of the same type but a carboxylic acid type and a corresponding salt type, and further these monomers And a method of copolymerizing with another monomer copolymerizable with the monomer.
- the method of converting to a salt form after obtaining a polymer having a carboxyl group in the second method is, for example, a homopolymer of an acid type monomer containing a carboxyl group as described above, or This is a method in which a copolymer comprising two or more monomers or a copolymer with another copolymerizable monomer is obtained by polymerization and then converted into a salt form.
- the method for converting the carboxyl group into a salt form and the obtained acid type polymer has an alkali metal ion such as Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, etc.
- Ion exchange is performed by the action of alkaline earth metal ions, other metal ions such as Cu, Zn, Al, Mn, Ag, Fe, Co, Ni, and organic cations such as NH 4 and amine compounds. It can be converted by a method such as performing.
- Examples of the method of introducing a carboxyl group by the third chemical modification method include, for example, a homopolymer of a monomer having a functional group that can be modified to a carboxyl group by a chemical modification treatment, or a copolymer comprising two or more types, Alternatively, there is a method in which a copolymer with another copolymerizable monomer is polymerized, and the resulting polymer is modified to a carboxyl group by hydrolysis. The above-described method for forming a salt form is applied to the carboxyl group formed.
- Monomers that can take such a method include monomers having nitrile groups such as acrylonitrile and methacrylonitrile; carboxylic acid groups such as acrylic acid, methacrylic acid, maleic acid, itaconic acid, and vinyl propionic acid. Examples thereof include anhydrides, ester derivatives, amide derivatives, and ester derivatives having crosslinkability.
- anhydride of the monomer having a carboxylic acid group examples include maleic anhydride, acrylic anhydride, methacrylic anhydride, itaconic anhydride, phthalic anhydride, N-phenylmaleimide, N-cyclomaleimide and the like.
- ester derivative of a monomer having a carboxylic acid group examples include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, lauryl, pentadecyl, cetyl, stearyl, behenyl, 2-ethylhexyl, isodecyl, isoamyl and the like.
- Ester derivatives methoxyethylene glycol, ethoxyethylene glycol, methoxy polyethylene glycol, ethoxy polyethylene glycol, polyethylene glycol, methoxypropylene glycol, propylene glycol, methoxy polypropylene glycol, polypropylene glycol, methoxy polytetraethylene glycol, polytetraethylene glycol, polyethylene glycol Polypropylene glycol, polyethylene glycol-polytetraethylene Alkyl ether ester derivatives such as glycol, polyethylene glycol-polypropylene glycol, polypropylene glycol-polytetraethylene glycol, butoxyethyl; cyclohexyl, tetrahydrofurfuryl, benzyl, phenoxyethyl, phenoxypolyethylene glycol, isobornyl, neopentyl glycol benzoate, etc.
- Cyclic compound ester derivatives hydroxyalkyl ester derivatives such as hydroxyethyl, hydroxypropyl, hydroxybutyl, hydroxyphenoxypropyl, hydroxypropylphthaloylethyl, chloro-hydroxypropyl; aminoalkyl esters such as dimethylaminoethyl, diethylaminoethyl, and trimethylaminoethyl Derivatives; (meth) acryloyloxyethylco Carboxylic acid alkyl ester derivatives such as succinic acid and (meth) acryloyloxyethyl hexahydrophthalic acid; phosphoric acid groups or phosphoric acid such as (meth) acryloyloxyethyl acid phosphate and (meth) acryloyloxyethyl acid phosphate Alkyl ester derivatives containing ester groups;
- Ethylene glycol di (meth) acrylate polyethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,6-hexanediol (meth) Acrylate, 1,9-nonanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, glycerin dimethacrylate, 2-hydroxy-3-acryl Leuoxypropyl (meth) acrylate, di (meth) acrylate of bisphenol A ethylene oxide adduct, di (meth) acrylate of propylene oxide adduct of bisphenol A, neopentyl glycol di Crosslinkable alkyl esters such as
- Examples of the amide derivative of a monomer having a carboxylic acid group include amide compounds such as (meth) acrylamide, dimethyl (meth) acrylamide, monoethyl (meth) acrylamide, and normal t-butyl (meth) acrylamide.
- Other methods for introducing a carboxyl group by chemical modification include oxidation of alkenes, alkyl halides, alcohols, aldehydes, and the like.
- the method for introducing a salt-type carboxyl group by the hydrolysis reaction of the polymer in the third method is not particularly limited, and known hydrolysis conditions can be used.
- a salt-type carboxyl group is introduced into a crosslinked polymer obtained by polymerizing the above monomers using a basic aqueous solution of an alkali metal hydroxide such as sodium hydroxide, lithium hydroxide, potassium hydroxide or ammonia.
- Method or reaction with mineral acids such as nitric acid, sulfuric acid, hydrochloric acid or organic acids such as formic acid, acetic acid, etc. to form carboxylic acid groups, and then mixed with alkali metal salts to introduce salt-type carboxyl groups by ion exchange The method of doing is mentioned.
- a hydrolysis method using potassium hydroxide is preferred, in which a potassium salt-type carboxyl group having an excellent moisture absorption rate can be easily obtained.
- the conditions for 1.0 to 10.0 mmol / g are determined by clarifying experimentally the relationship between reaction factors such as reaction temperature, concentration, and time and the amount of salt-type carboxyl groups introduced. be able to.
- the crosslinked structure of the organic polymer sorbent in the present invention is not particularly limited as long as it does not affect the moisture absorption / release performance targeted by the present invention and the performance of the product utilizing the performance, and is based on a covalent bond. Any structure such as cross-linking, ionic cross-linking, interaction between polymer molecules or cross-linking by crystal structure may be used. There is no particular limitation on the method for introducing the cross-linking, and the cross-linking introduction method by copolymerizing the cross-linking monomer in the polymerization step of the monomer to be used, or the monomer is first polymerized, and then the chemical And post-crosslinking methods such as introduction of a cross-linked structure by mechanical reaction or physical energy.
- the monomer having a carboxyl group described above or capable of being modified to a carboxyl group A cross-linked polymer having a cross-linked structure based on a covalent bond can be obtained by performing copolymerization using a cross-linkable monomer that can be copolymerized.
- crosslinkable monomer that can be used in the method of using a crosslinkable monomer in the polymerization stage of the monomer is not particularly limited.
- glycidyl methacrylate, N-methylolacrylamide, triallyl isocyanurate, triallyl cyanurate, divinyl Listed are crosslinkable vinyl compounds such as benzene, hydroxyethyl methacrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and methylenebisacrylamide.
- the cross-linked structure by isocyanurate, triallyl cyanurate, divinylbenzene, and methylene bisacrylamide is used for hydrolysis to introduce carboxyl groups applied to the cross-linked polymer containing them. Desirable since it is chemically stable.
- the method by post-crosslinking is not particularly limited.
- a nitrile group contained in a nitrile polymer having a nitrile group-containing vinyl monomer content of 50% by weight or more is reacted with a hydrazine compound or formaldehyde.
- a post-crosslinking method can be mentioned.
- the cross-linked structure introduced by the hydrazine compound is stable to acids and alkalis, and the formed cross-linked structure itself is hydrophilic so that it can contribute to the improvement of hygroscopicity. It is extremely excellent in that it can introduce a strong crosslink that can maintain a porous form.
- the detail is not identified regarding the crosslinked structure obtained by this reaction, it is estimated that it is based on a triazole ring structure or a tetrazole ring structure.
- the vinyl monomer having a nitrile group herein is not particularly limited as long as it has a nitrile group, and specifically, acrylonitrile, methacrylonitrile, ethacrylonitrile, ⁇ -chloroacrylonitrile, ⁇ -fluoroacrylonitrile, cyanide are used. And vinylidene chloride. Among them, acrylonitrile is most preferable because it is advantageous in terms of cost and has a large amount of nitrile groups per unit weight.
- the method for introducing the crosslinking by reaction with the hydrazine compound is not particularly limited as long as the desired crosslinked structure is obtained.
- the concentration of the nitrile polymer and the hydrazine compound during the reaction, the solvent to be used, the reaction Time, reaction temperature, etc. can be suitably selected as necessary.
- a preferable reaction temperature is 50 to 150 ° C., more preferably 80 to 120 ° C.
- the part of the nitrile polymer made to react with a hydrazine type compound can select suitably according to the use and the form of this polymer.
- the reaction can be appropriately selected such as reacting only on the surface of the polymer, reacting to the entire core, or reacting with a specific portion limited.
- the hydrazine compounds used herein include hydrazine salts such as hydrazine hydrate, hydrazine sulfate, hydrazine hydrochloride, hydrazine nitrate, hydrazine hydrobromide, hydrazine carbonate, and ethylenediamine, guanidine sulfate, guanidine hydrochloride, guanidine nitrate. And hydrazine derivatives such as guanidine phosphate and melamine.
- hydrazine salts such as hydrazine hydrate, hydrazine sulfate, hydrazine hydrochloride, hydrazine nitrate, hydrazine hydrobromide, hydrazine carbonate, and ethylenediamine, guanidine sulfate, guanidine hydrochloride, guanidine nitrate.
- hydrazine derivatives such as guanidine phosphat
- moisture absorbing / releasing material employed in the present invention a material having the following characteristics in addition to the above-described low temperature regeneration characteristics and saturation moisture absorption difference gives preferable results.
- desiccant elements and desiccant rotors which are the main usage forms of the photothermal conversion regeneration desiccant sheet of the present invention, repeatedly absorb and release moisture over a long period of time. It is desirable that stable moisture absorption performance can be maintained even when moisture release is repeated. If the hygroscopic performance maintenance rate in a high humidity atmosphere and a low humidity atmosphere by an evaluation method described later is preferably 80% or more, more preferably 90% or more, when used for a desiccant element or a desiccant rotor, It becomes easy to maintain stable performance.
- the moisture absorption performance maintenance rate may exceed 100%, and if it exceeds 110%, the moisture absorbing / releasing material is greatly deteriorated, and it is sticky when moisture absorption / release is repeated as a desiccant sheet. Or it may be easy to drop off, so be careful.
- the morphological change accompanying moisture absorption / release is small. Specifically, pulverization is unlikely to occur, and it is preferable that the volume increase rate at the time of water absorption is 2 times or less compared to the volume in an absolutely dry state.
- the moisture absorbing / releasing material is easily pulverized, the moisture absorbing / releasing material falls off and the moisture absorbing / releasing performance as a desiccant sheet deteriorates. This problem tends to occur in the case of inorganic materials such as silica gel.
- the hygroscopic material when the hygroscopic material is too large in the volume increase rate at the time of water absorption, the volume increase rate is large even at the time of moisture absorption, resulting in deformation of the form of the desiccant element itself, and the hygroscopic material peels off, The problem of dropping off occurs. In addition, a large amount of water is sucked by condensation and the volume changes greatly, which may cause a problem with the desiccant air conditioning system itself.
- the third is preferably a material that does not easily accumulate odorous components other than water vapor.
- the odorous substance accumulates in the hygroscopic material while the moisture absorption and desorption cycle is repeated, and once accumulated, the substance accumulated at the time of restart, sudden change in temperature, humidity, etc. This causes the problem of odors being released.
- Porous materials such as silica gel, zeolite, activated carbon and the like have micropores with a diameter of less than 2 nm, and odorous substances accumulate in these micropores, and this problem often occurs.
- the above-mentioned crosslinked polyacrylate polymer compound can be mentioned.
- the cross-linked polyacrylate polymer compound has a low-temperature regeneration capability that can be easily regenerated, a high saturated moisture absorption rate, and a large saturated moisture absorption rate difference even at a temperature from room temperature to about 70 ° C.
- the volume change accompanying moisture absorption and desorption and the degree of swelling when immersed in water are low, and since it does not have micropores, the ability to reproduce at low temperatures is difficult to decrease even after repeated moisture absorption and desorption, and there is no accumulation of odorous components. It has characteristics and is the most preferred moisture-absorbing / releasing material for achieving the object of the present invention.
- Examples of the form of the hygroscopic material used in the present invention include fine particles, fibers, films, and the like, and those appropriately selected according to the intended use can be selected. Particularly favorable results can be obtained when.
- the particulate hygroscopic material is a fine particle, its specific surface area is large and the speed of moisture absorption and desorption can be improved.
- the moisture-absorbing layer where fine particles are laminated a slight gap is generated at the particle-laminated part, but the volume change such as swelling and shrinkage of the sorbent accompanying moisture absorption and moisture release can be absorbed in the gap. Contributes to the improvement of sex.
- this gap facilitates the movement of water vapor, improves the moisture absorption / moisture release rate, allows water vapor to reach the deep part of the moisture absorption layer, and uses the moisture absorption layer without waste. There is a merit that it can be done.
- Such a gap is much larger than the above-mentioned micropores and is a macropore level pore having a diameter of 50 nm or more, and is not involved in the accumulation of odorous substances.
- the particle diameter in the case of a particulate hygroscopic material is not particularly limited as long as it can be processed as a desiccant sheet and the desired performance can be obtained.
- the average primary particle diameter of the fine particles is preferably 5 ⁇ m or less from the viewpoint of increasing the speed of moisture absorption and moisture release and enhancing the durability as a moisture absorption layer. More preferably, the specific surface area is extremely large, and the moisture absorption / moisture release rate is remarkably improved to 0.2 ⁇ m or less.
- the average primary particle size referred to here means a state where fine particles are not associated or aggregated, that is, the average particle size of primary particles.
- the fine particles are finely dispersed or present in the form of an emulsion in a solvent such as water
- a value measured as an average particle diameter after being completely dispersed in a solvent such as water is used.
- the primary particles are aggregated, they are enlarged and observed with an electron microscope or the like, and the sizes of the individual primary particles forming a lump are measured and averaged.
- this particle diameter is larger than 5 ⁇ m, (1) the specific surface area becomes small, the amount of surface adsorption that contributes most to the improvement of the moisture absorption rate decreases, and (2) the radius increases, so water up to the center of the particle The movement time of the molecule becomes longer. For this reason, in a very short time, water molecules cannot move to the center of the particle, the center does not contribute to the moisture absorption rate, and the inherent moisture absorption capacity may not be sufficiently developed.
- the shape of the particle is not particularly limited, and any shape such as a spherical shape, an indeterminate shape, a flat plate shape, a dice shape, a spindle shape, or a cylindrical shape can be used. Further, the form thereof is not particularly limited, and those having a smooth surface, those having irregularities on the surface, porous materials, aggregates of primary particles, and the like can be appropriately selected and used.
- the hygroscopic material when in the form of a fiber, it can be easily processed into a sheet such as paper, non-woven fabric, woven fabric, and knitted fabric, so that it can be applied to various uses.
- a sheet such as paper it can be directly used for processing corrugates, honeycombs, etc., and is useful for applications such as filters.
- the photothermal conversion material employed in the present invention is not particularly limited as long as it is a material that can absorb electromagnetic waves such as sunlight, ultraviolet rays, visible rays, infrared rays, white rays, etc., and convert them into heat, for example, inorganic substances, Photothermal conversion substances such as pigments, dyes, infrared absorbers and the like can be mentioned.
- examples of inorganic substances include carbides, oxides, sulfides, and carbon allotropes.
- the carbide include titanium carbide, zirconium carbide, hafnium carbide, silicon carbide, boron carbide, and tantalum carbide.
- the oxide include titanium oxide, silicon oxide, chromium oxide, zirconium oxide, iron oxide, copper oxide, and oxide. Silver, chromium oxide, lead oxide, etc. are mentioned.
- sulfides include titanium sulfide, silicon sulfide, chromium sulfide, zirconium sulfide, iron sulfide, copper sulfide, silver sulfide, chromium sulfide, and lead sulfide.
- Carbon allotropes include graphite, carbon graphite, and carbon nanotube. , Furnace black, acetylene black and the like. In addition to these, mica, calcite, blackened silver, iron powder and the like can be cited as inorganic substances.
- examples of the pigment include natural pigments, fluorescent pigments, organic pigments such as inorganic pigments, azo pigments, and polycyclic pigments.
- examples of the inorganic pigment include carbon black and titanium black.
- examples of azo pigments include insoluble azo pigments, azo lake pigments, condensed azo pigments, chelate azo pigments, and polycyclic pigments include phthalocyanine pigments, perylene and perinone pigments, thioindigo pigments, and quinacridone pigments. Examples thereof include pigments, dioxazine pigments, isoindolinone pigments, and quinophthalone pigments.
- dyed lake pigments, azine pigments, nitroso pigments, nitro pigments and the like are also included as pigments.
- the dye examples include azo dyes, metal complex azo dyes, pyrazolone azo dyes, anthraquinone dyes, naphthalocyanine dyes, phthalocyanine dyes, carbonium dyes, quinoneimine dyes, methine dyes, indolenine dyes, cyanine dyes, naphthoquinone dyes, and the like. Can do.
- Infrared absorbers include pyrylium compounds, arylbenzo (thio) pyrylium salt compounds, trimethine thiapyrylium salts, pentamethine thiopyrylium salts, cyanine dyes, squarylium dyes, croconium dyes, polymethine dyes, azurenium dyes Naphthoquinone dyes, anthraquinone pigments, dithiol nickel complexes, metal thiolate complexes, nickel thiolates, and the like.
- synthetic fibers and natural fibers containing the above-described light-to-heat conversion substance, resin film, rubber, or the like can also be used as the light-to-heat conversion material of the present invention.
- an average value of spectral reflectance with respect to light in the visible to near-infrared region is preferably 50% or less, more preferably 30% or less.
- a carbon allotrope or an inorganic compound which is a black material having a high absorption rate over all wavelengths of sunlight and excellent in light resistance is preferably used.
- blackened silver, graphite, carbon black, carbon graphite, carbon nanotube, furnace black, acetylene black, iron oxide, and the like are preferable photothermal conversion materials.
- the form of the photothermal conversion material used in the present invention includes fine particles, fibers, films, etc., as in the case of the moisture absorbing / releasing material described above. Can be selected.
- the particle diameter is preferably 0.01 to 20 ⁇ m, more preferably 0.05 to 5 ⁇ m.
- the photothermal conversion regenerated desiccant sheet of the present invention is a sheet containing the above-described hygroscopic material and photothermal conversion material as essential components, and may be composed only of the hygroscopic material and the photothermal conversion material, or these It may contain other constituents.
- both the hygroscopic material and the photothermal conversion material are in the form of fibers or films, only these materials or other components are added to form a sheet-like material such as paper, non-woven fabric, film, etc. It can be used as a desiccant sheet of the invention.
- a sheet-like material such as paper, non-woven fabric, or film is formed by adding only the material or other components, and the sheet.
- the desiccant sheet of the present invention can be obtained by supporting or impregnating the other material on the material.
- the desiccant sheet of the present invention can be obtained by molding into a fiber or film from a resin to which a hygroscopic material and a photothermal conversion material are added.
- a resin to which a hygroscopic material and a photothermal conversion material are added it becomes possible to efficiently use the moisture absorbing / releasing material and light-to-heat conversion material in the inner layer part of the fiber and film by making the fiber and film have a porous structure or using a highly permeable and transparent resin. It is possible to improve the dehumidifying / humidifying performance and the low-temperature regeneration capability.
- the mode in which the moisture absorbing / releasing material and the photothermal conversion material are fixed to the sheet-like base material is a mode in which application and development are easy in terms of strength, durability, dimensional stability, molding processability, and the like.
- the sheet-like substrate that can be employed is not particularly limited, and examples thereof include sheet-like substrates such as plastic sheets, metal sheets, glass sheets, resin-coated paper, paper, nonwoven fabrics, various composites, and the like.
- plastic sheet examples include a polyethylene terephthalate sheet, a polycarbonate sheet, a polyethylene sheet, a polyvinyl chloride sheet, a polyvinylidene chloride sheet, a polystyrene sheet, a styrene-acrylonitrile sheet, and a polyester sheet.
- the paper examples include inorganic fiber paper made of glass fiber and the like, general paper mainly composed of pulp, synthetic fiber paper containing synthetic fibers, and composite paper of these.
- inorganic fiber paper mainly composed of inorganic fibers such as glass fiber is preferable from the viewpoint of light resistance, durability, dimensional stability, etc., and in the case of a composite inorganic fiber paper composed of inorganic fibers and organic fibers in particular, it is flexible. Since the properties are added, post-processing such as winding, cutting, and bending becomes easy.
- a binder may be used if necessary for fixing the moisture absorbing / releasing material and the photothermal conversion material, which are essential components, to the sheet substrate.
- the binder is not particularly limited as long as the essential component can exhibit the required function.
- acrylic resins such as polymethyl methacrylate, polycarbonate, polystyrene, vinyl chloride / vinyl acetate copolymers
- vinyl resins such as polyvinyl alcohol, polyvinyl butyral, polyester, polyvinyl chloride, polyamide Polyimide, polyetherimide, polysulfone, polyethersulfone, aramid, polyurethane, epoxy resin, urea / melamine resin, and the like
- inorganic type include colloidal silica, water glass, and aluminum phosphate.
- water-soluble organic binder since the moisture-absorbing / releasing material is highly hydrophilic, it often gives good results when using a water-soluble organic binder.
- water-soluble organic binders include polyvinyl alcohol, polyvinyl acetal, polyvinyl pyrrolidone, nylon, polyacrylamide, polyalkylene oxide, gelatin, casein, methyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, hydroxyethyl starch, gum arabic, sucrose octaacetate, Examples thereof include ammonium alginate, sodium alginate, polyvinylamine, polyethylene oxide, polyacrylic acid and the like. Furthermore, it is preferable to use these in combination with a crosslinkable compound because better durability and water resistance can be obtained.
- the crosslinkable compound is not particularly limited, and examples thereof include polyepoxy compounds such as diglycidyl ether, glycerol diglycidyl ether, glycerol triglycidyl ether, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, and polyethylene glycol diglycidyl ether; Glycol compounds such as ethylene glycol, propylene glycol, polyethylene glycol, glycerol; hydroxyl group-containing compounds such as glycidyl alcohol, trimethylolpropane, polyvinyl alcohol, pentaerythritol; ethanolamine, ethylenediamine, propylenediamine, trimethylolmelamine, polyethyleneimine, urea, Oxazoline-based reactive polymer, blocked polyisocyanate Things, polyaziridine compounds, polyoxazoline group-containing compounds, titanium chelate compounds, and the like zirconia compound.
- polyepoxy compounds such
- any of the crosslinkable compounds of the group consisting of a polyepoxy compound, a blocked polyisocyanate compound, a polyaziridine compound, a polyoxazoline group-containing compound, a titanium chelate compound, and a zirconia compound it has excellent durability. Since it becomes possible, it is preferable to use these.
- additives other than the binder does not depart from the present invention.
- a thixotropic agent, an antihalation agent, a matting agent, a diluent, a filler, a reinforcing agent, a thermoplastic resin and the like can be appropriately selected and used.
- metal powder or metal fiber such as aluminum and copper having excellent heat conductivity is added to the binder, the heat conduction becomes more efficient and may be effective in enhancing the effect of the present invention.
- the state of the configuration of the photothermal conversion regeneration desiccant sheet of the present invention will be described.
- the photothermal conversion regeneration desiccant sheet of the present invention light energy is converted into thermal energy by the photothermal conversion material, and this thermal energy is used as energy for regenerating, that is, dehumidifying, the moisture absorbing / releasing material. Therefore, it is desirable in terms of the dehumidifying / humidifying characteristics and low-temperature regeneration characteristics of the sheet that heat energy generated from the photothermal conversion material in the sheet can be efficiently conducted to the moisture absorbing / releasing material.
- the distance between the hygroscopic material and the light-to-heat conversion material is small, and there is no low thermal conductivity such as an air layer, that is, these materials are in direct contact with each other at least in part. It is preferably in a state or a state of being close to each other through a resin.
- the ratio of the weight of the resin to the total weight of the hygroscopic material and the photothermal conversion material can be used as an index. That is, the smaller the ratio, the smaller the amount of resin, and the shorter the distance between the hygroscopic material and the photothermal conversion material.
- the resin is preferably 100 parts by weight or less, more preferably 60 parts by weight or less, and still more preferably Is 30 parts by weight or less, most preferably 10 parts by weight or less.
- the state of direct contact include a state in which the photothermal conversion material is dispersed with the hygroscopic material itself as a continuous phase, and the photothermal conversion material is dispersed or coated on the continuous phase of the hygroscopic material itself.
- a state of direct contact is also possible.
- the resin in the state of being in close proximity through the resin is not particularly limited, and examples thereof include natural resins such as natural rubber and synthetic resins such as thermosetting resins and thermoplastic resins.
- the binder mentioned above is mentioned. Specific examples of the state of being close to each other include (1) a state where the hygroscopic material and the photothermal conversion material are dispersed with the binder as the continuous phase, and (2) the hygroscopic material is dispersed with the binder as the continuous phase.
- Examples of the state where the photothermal conversion material is dispersed or coated, or the states (2) and (3) include a state where the hygroscopic material and the photothermal conversion material are interchanged.
- a state in which the state of being in direct contact and the state of being in close proximity through resin is mixed is also preferable.
- the hygroscopic material and the binder are both continuous phases, and the photothermal conversion material is dispersed in these continuous phases.
- the continuous phase of the hygroscopic material and the continuous phase of the binder are entangled in a three-dimensional spread, and the photothermal conversion material is dispersed in any continuous phase. Yes.
- Examples of such a state include an example in which a water-dispersed crosslinked polyacrylic acid polymer compound is used as the hygroscopic material.
- the hygroscopic material tends to be a continuous phase.
- the sheet-like substrate when a sheet-like substrate is used, the sheet-like substrate is not limited to the above-described state formed, and such a state is formed on a part of the sheet-like substrate.
- the content ratio of the moisture absorbing / releasing material and the light-to-heat conversion material is not particularly limited as long as the required function is expressed depending on the required application.
- the preferred content of each material is the moisture absorption / release property.
- 70 to 99.5 parts by weight of the moisture-releasing material 0.5 to 30 parts by weight of one photothermal conversion material, more preferably 90 to 99.5 parts by weight of the hygroscopic material, and one photothermal conversion material is 0.5 to 10 parts by weight.
- the amount of the binder is such that the moisture absorbing / releasing material is covered with the binder and the dehumidifying / humidifying performance is not lowered, or the moisture absorbing / releasing material and the photothermal conversion material are brought close to each other. From the viewpoint, it is desirable to reduce the amount of the binder.
- the binder is preferably 100 parts by weight or less, more preferably 60 parts by weight or less. More preferably, it is 30 parts by weight or less, and most preferably 10 parts by weight or less.
- the lower limit of the amount of binder in the case of using a binder is preferably 1 part by weight or more, more preferably 3 parts by weight or more with respect to 100 parts by weight of the total weight of the hygroscopic material and the photothermal conversion material. It is desirable to make it.
- the content ratio of such additives may be appropriately set in consideration of the intended dehumidifying / humidifying performance and low-temperature regeneration capability.
- the total amount of additives including the binder is preferably 0 to 400 parts by weight, more preferably 0 to 100 parts by weight with respect to 100 parts by weight of the total weight of the hygroscopic material and the photothermal conversion material. In this way, good results are often obtained.
- the sheet-like substrate is preferably 10 to 100 weights with respect to a total weight of 100 parts by weight of the hygroscopic material, the photothermal conversion material and the additive containing the binder. Parts, more preferably 20 to 70 parts by weight.
- the thickness of the photothermal conversion regenerated desiccant sheet of the present invention is not particularly limited as long as the desired characteristics can be obtained. However, if the thickness is too large, light transmission is inhibited and the photothermal conversion effect is reduced, or processing into a desiccant element, which will be described later, becomes difficult. Therefore, it is 2 mm or less, preferably 0.5 mm or less. Is desirable. Further, if it is too thin, problems of strength and durability occur, so it is desirable that the thickness is 10 ⁇ m or more, preferably 50 ⁇ m or more.
- the difference of the moisture absorption amount in a low-humidity atmosphere and a high-humidity atmosphere is large.
- regeneration in a low-humidity atmosphere and moisture absorption in a high-humidity atmosphere are repeated, so the large difference in moisture absorption between the low-humidity atmosphere and the high-humidity atmosphere of the desiccant sheet is significant.
- This is advantageous in obtaining a dehumidifying amount or a humidifying amount. From this viewpoint, it is desirable that the difference in saturated moisture absorption by the evaluation method described later is 5 g / m 2 or more, preferably 20 g / m 2 or more, more preferably 25 g / m 2 or more.
- the saturated moisture absorption at 20 ° C. ⁇ 65% of the photothermal conversion regenerated desiccant sheet of the present invention is 5 g or more per 1 m 2 , preferably 15 g or more, more preferably 25 g or more, which is used as a member of the desiccant air conditioning system. This is desirable.
- the photothermal conversion regeneration desiccant sheet of the present invention described above can efficiently regenerate a desiccant using electromagnetic waves, particularly sunlight as a natural energy source.
- a desiccant sheet of the present invention can be used as it is, but if this is formed three-dimensionally to form a desiccant element, and a desiccant air conditioning system is configured using such a desiccant element, natural energy can be utilized and energy can be saved. It is possible to realize an air conditioning system.
- the photothermal conversion regenerative desiccant element of the present invention is a three-dimensional structure comprising the above-described photothermal conversion regenerative desiccant sheet of the present invention and having a gas through path.
- a three-dimensional structure in order to efficiently use the moisture-absorbing / releasing material and the photothermal conversion material on the sheet, a structure that can make the area of the sheet in contact with the air and the electromagnetic wave to be irradiated as wide as possible can be obtained. Is desirable. Specific examples include what is called a honeycomb structure, and examples thereof include a hexagonal type, an OX type, a flex type, a bisecting type, and a feather type (hereinafter referred to as a corrugated type).
- a corrugated type that is easy to process, has a high processing speed, and is advantageous in terms of cost is preferable. Further, characteristics such as the size and length of the gas penetration path can be appropriately selected according to required performance such as pressure loss (air resistance).
- the external shape of the desiccant element can also be set freely according to the application.
- the photothermal conversion regeneration desiccant rotor of the present invention is constructed by using the above-described photothermal conversion regeneration desiccant element as a rotor. By rotating, moisture adsorption by a moisture absorption / release material and moisture absorption / release by heat generated by photothermal conversion are performed. The material can be regenerated continuously and repeatedly.
- the diameter, thickness, etc. of the rotor are not particularly specified and can be appropriately selected according to the required performance. Further, such a rotor may be composed of the photothermal conversion regeneration desiccant element itself, or may be processed such as surrounded by a metal frame, a plastic frame or the like for reinforcement.
- the three-dimensional structure having the gas penetration path is finally included, which is composed of the photothermal conversion / regeneration desiccant sheet of the present invention.
- the method of creating it there are no particular limitations on the method of creating it.
- a method of creating a desiccant element or a desiccant rotor using the photothermal conversion regenerated desiccant sheet of the present invention prepared in advance, a moisture absorbing / releasing material or a photothermal conversion material after creating an element or rotor using a sheet-like substrate a method of forming a desiccant element or a desiccant rotor using the photothermal conversion regenerated desiccant sheet of the present invention.
- the photothermal conversion regeneration desiccant air conditioning system of the present invention is a desiccant air conditioning system that performs air conditioning by repeating the adsorption of moisture in the air and the desorption of moisture into the air by the hygroscopic material, and the photothermal conversion regeneration of the present invention described above.
- a rotor composed of a desiccant element or a photothermal conversion regeneration desiccant element of the present invention is used, and the element or the rotor is shielded from electromagnetic waves when moisture is adsorbed and irradiated with electromagnetic waves when moisture is desorbed. This is an air conditioning system with a basic configuration.
- such a system allows a desiccant element or desiccant rotor that has absorbed moisture to pass through air having a low relative humidity, and irradiates electromagnetic waves such as sunlight to generate thermal energy by the photothermal conversion action of the photothermal conversion material, so that the desiccant
- the process of absorbing moisture by passing air having a high relative humidity is repeated alternately.
- air can be dehumidified or humidified, and moisture is vaporized using dry air obtained by moisture absorption, and cooling is performed using the heat of vaporization generated at this time.
- air can be dehumidified or humidified, and moisture is vaporized using dry air obtained by moisture absorption, and cooling is performed using the heat of vaporization generated at this time.
- FIG. 1 is a view showing a photothermal conversion regeneration desiccant air conditioning system that can perform humidification using the photothermal conversion regeneration desiccant rotor of the present invention.
- Exhaust air 302a from the air-conditioned space 202 passes through the sensible heat exchange device 102 and exchanges sensible heat with the return air 301b.
- the air 302b subjected to sensible heat exchange passes through the photothermal conversion regeneration desiccant rotor 101 of the present invention.
- the air passage surface is shielded by the light shielding plate 103 and has a lower temperature than the light receiving side, the air 302 b is dehumidified and the moisture is adsorbed by the desiccant rotor 101.
- the portion that has adsorbed moisture is moved to the light receiving side by the rotation of the desiccant rotor 101, and the photothermal conversion material generates heat by receiving electromagnetic wave irradiation, thereby heating the rotor.
- moisture adsorbed on the rotor is desorbed.
- the introduced air 301a passing through the rotor is humidified by the desorbed moisture.
- the sensible heat is exchanged by the sensible heat exchange device 102, and the return air 301b is returned to the conditioned space 202.
- the sensible heat of the air-conditioned space 202 returns to the air-conditioned space 202 again by sensible heat exchange, and the moisture of the air-conditioned space 202, that is, the latent heat, is also exchanged into the desiccant rotor 101 by latent heat exchange of adsorption and desorption. It is a cycle to return to.
- the moisture inherent in the introduced air 301a that is, latent heat
- the conditioned space 202 is humidified as a result.
- FIG. 2 is a view showing a photothermal conversion regeneration desiccant air conditioning system that can perform dehumidification using the photothermal conversion regeneration desiccant rotor of the present invention.
- the introduced air 303a passes through the photothermal conversion regeneration desiccant rotor 101.
- the air passage surface is shielded by the light shielding plate 103 and has a lower temperature than the light receiving side, moisture in the introduced air 303a is removed by adsorption, that is, dehumidified, and at the same time, the temperature rises due to heat of adsorption.
- the sensible heat exchange device 102 by passing through the sensible heat exchange device 102, sensible heat is exchanged with the air 304a discharged from the conditioned space 202 to cool it to a temperature close to the temperature of the conditioned space 202, and is introduced into the conditioned space 202 as low humidity air 303b.
- the exhausted air 304a from the air-conditioned space 202 is returned to the low-humidity air 303b by the sensible heat exchange device 102.
- the air 304 b heated by the sensible heat exchange passes through the light receiving side of the desiccant rotor 101. A portion where moisture in the introduced air 303a is adsorbed by the rotation of the rotor is moved to the light receiving side.
- the light-to-heat conversion material generates heat by receiving electromagnetic wave irradiation and the rotor is heated, and the moisture adsorbed on the rotor is desorbed by the air 304b heated and heated to increase the temperature and decrease the relative humidity. It moves to the air 304b and is discharged. In this series of flows, the air from which moisture has been removed is introduced and the moisture in the conditioned space 202 is discharged, resulting in dehumidification of the conditioned space 202.
- FIG. 3 is a view showing a photothermal conversion regeneration desiccant air conditioning system which can perform dehumidification cooling or cooling using the photothermal conversion regeneration desiccant rotor of the present invention.
- the introduced air 303a passes through the photothermal conversion regeneration desiccant rotor 101.
- the air passage surface is shielded by the light shielding plate 101 and has a lower temperature than the light receiving side, moisture in the introduced air 303a is removed by adsorption, that is, dehumidified, and at the same time, the temperature rises due to adsorption heat.
- the sensible heat exchange device 102 by passing through the sensible heat exchange device 102, sensible heat is exchanged with the air 304a discharged from the conditioned space 202, and the air is cooled to a temperature close to the temperature of the conditioned space 202 to become low humidity air 303b. Thereafter, the low-humidity air 303b passes through the evaporative cooling device 105, and as a result of the evaporative cooling effect by the dry air, is cooled to air having a temperature lower than the temperature of the conditioned space 202 and introduced into the conditioned space 202. On the other hand, the exhaust air 304a from the air-conditioned space 202 is returned to the low-humidity air 303b by the sensible heat exchange device 102, and becomes the heated air 304b.
- the air 304 b passes through the light receiving side of the desiccant rotor 101.
- a portion where moisture in the introduced air 303a is adsorbed by the rotation of the rotor is moved to the light receiving side.
- the photothermal conversion material generates heat and the rotor is heated, and the moisture adsorbed on the rotor is desorbed by the air 304b heated and heated to reduce the relative humidity, and the air 304b.
- moisture is removed and cooled air is introduced, and moisture and heat in the air-conditioned space 202 are discharged, and as a result, the air-conditioned space 202 is dehumidified and cooled.
- FIG. 4 is a diagram showing a photothermal conversion regeneration desiccant air conditioning system that can perform heating or heating and humidification using the photothermal conversion regeneration desiccant rotor of the present invention.
- Exhaust air 305 a from the conditioned space 202 passes through the photothermal conversion regeneration desiccant rotor 101.
- moisture in the exhaust air 305a is adsorbed and the temperature rises due to heat of adsorption.
- This dried and heated air passes through the sensible heat exchange device 102 and exchanges sensible heat with the introduced air 306a.
- the introduced air 306a is heated by sensible heat exchange and passes through the light receiving side of the rotor 101. A portion where moisture in the introduced air 305a is adsorbed by the rotation of the rotor is moved to the light receiving side.
- the photothermal conversion material generates heat, the rotor is heated, and the adsorbed moisture is desorbed.
- the introduced air 306 a becomes heated and humidified air 306 b and is introduced into the conditioned space 202.
- the latent heat that is, moisture in the air-conditioned space 202 is returned to the air-conditioned space 202 by the latent heat exchange by the photothermal conversion regeneration desiccant rotor 101, and the moisture originally contained in the introduced air 306a also enters the air-conditioned space 202. be introduced.
- sensible heat in addition to the sensible heat of the air-conditioned space 202, adsorption heat generated during moisture adsorption to the photothermal conversion regeneration desiccant rotor and heat generated by the photothermal conversion material are introduced by the sensible heat exchange device. Moved to air. As a result, the air-conditioned space 202 is humidified and heated.
- FIG. 5 and 6 are diagrams of a dehumidification system using the photothermal conversion regenerating desiccant element of the present invention as a stationary type.
- the introduced air 307a passes through the photothermal conversion regeneration desiccant element 106a.
- the desiccant element 106a since the desiccant element 106a is shielded by the light shielding plate and has a lower temperature than the desiccant element 106b on the light receiving side, the desiccant element 106a absorbs moisture from the introduced air 307a and generates heat of adsorption, thereby dehumidifying and heating. Generated air 307b is generated.
- the air 307b passes through the sensible heat exchange device 102 and exchanges sensible heat with the exhausted air 308a from the conditioned space 202, thereby being introduced into the conditioned space 202 as dry air 307c having a temperature close to room temperature.
- the exhaust air 308a becomes air 308b heated by sensible heat exchange and passes through the desiccant element 106b.
- the desiccant element 106b receives light and generates heat by photothermal conversion, and moisture is released from the desiccant element 106b by this heat and heat of the heated air 308b, and the desiccant element 106b is regenerated.
- the air 308b is exhausted as air 308c together with the released moisture.
- FIG. 6 shows an operating state in which the light shielding plate 103 in FIG. 5 is moved from the desiccant element 106a side to the desiccant element 106b side and the air flow is reversed.
- the introduced air is dehumidified by the desiccant element and guided to the conditioned space 202, and the exhaust air from the conditioned space 202 regenerates the desiccant element and exhausts it. Is done.
- the desiccant element 106a that has absorbed moisture in FIG. 5 is regenerated in FIG. 6, and the desiccant element 106b regenerated in FIG. That is, the dehumidification system of FIGS. 5 and 6 is a dehumidification system that can send dehumidified air into the conditioned space in a batch manner by alternately repeating the operation of FIG. 5 and the operation of FIG. 6.
- any electromagnetic wave can be used as long as the photothermal conversion material can exhibit the photothermal conversion function.
- electromagnetic waves are sunlight or derived from sunlight, it is particularly preferable because it is a natural energy source and is environmentally friendly and an energy saving system.
- a consumption amount (V1 [mL]) of an aqueous solution of sodium hydroxide consumed by the H-type carboxyl group is determined from the titration curve, and the total amount of carboxyl groups contained in the sample is calculated by the following equation.
- Total amount of carboxyl groups [mmol / g] 0.1 ⁇ V1 / W5
- Average particle size of hygroscopic materials A, B, and C Using a laser diffraction particle size distribution analyzer (SALD-2000, manufactured by Shimadzu Corporation), the results of measurement using water as a dispersion medium are expressed on a volume basis. The median diameter is taken as the average particle diameter.
- SALD-2000 laser diffraction particle size distribution analyzer
- Weight reduction rate (W6-W7) / W6
- the ratio is calculated by dividing the calculated weight reduction rate of the sheet containing the photothermal conversion material by the weight reduction rate of the sheet not containing the photothermal conversion material.
- the greater the ratio the greater the effect of the photothermal conversion material in the regeneration of the desiccant sheet. Unless the ratio is greater than at least 1, the photothermal conversion regenerated desiccant sheet of the present invention cannot be said.
- the ratio is desirably 1.3 or more, more preferably 1.5 or more.
- Sheets that do not contain a light-to-heat conversion material are not added to the light-to-heat conversion material, and the amount per unit area of the moisture-absorbing / releasing material or binder is the same as the method for producing the sheet containing the light-to-heat conversion material. It was created by adjusting the amount of adhesion so that.
- the hygroscopic material A is obtained by drying an ion exchange resin (Amberlite IR120B manufactured by Organo Corporation) made of an organic polymer having a sulfonic acid group of 4.4 mmol / g and a crosslinked structure, and then pulverizing it with an airflow pulverizer. Got. Table 1 shows the results of evaluation of the properties of the hygroscopic material A.
- ion exchange resin Amberlite IR120B manufactured by Organo Corporation
- the polymer emulsion thus obtained had a solid content of 21% and an average particle size of 0.03 ⁇ m.
- a solution obtained by dissolving 45 parts of potassium hydroxide in 475 parts of water was added to 480 parts of the obtained polymer emulsion, and a hydrolysis reaction was performed at 95 ° C. for 48 hours and further under reflux conditions for 8 hours.
- the hydrolyzed mixed solution was dialyzed and desalted in running water using a cellulose semipermeable membrane to obtain a water-dispersed moisture-absorbing / releasing material B.
- the obtained aqueous dispersion had a solid content of 12%.
- Table 1 shows the results of evaluation of the characteristics of the hygroscopic material B.
- Hydrazine was added to the aqueous dispersion so that the concentration in the bath was 35%, and a crosslinking treatment was performed at 102 ° C. for 2.5 hours. Subsequently, sodium hydroxide is added so that the concentration in the bath becomes 10%, and after hydrolyzing at 102 ° C. for 5 hours, dialysis and desalting are performed in running water using a cellulose semipermeable membrane. Dispersed hygroscopic material C was obtained. The obtained aqueous dispersion had a solid content of 15%. Table 1 shows the results of evaluation of the properties of the hygroscopic material C.
- the hygroscopic materials B and C which are crosslinked polyacrylate polymer compounds are excellent in saturated moisture absorption, saturated moisture absorption difference, regeneration rate, and regeneration rate after repeated moisture absorption and desorption. It is particularly suitable as a moisture-releasing material.
- the hygroscopic material A and the A-type silica gel which are organic polymers having a sulfonic acid group instead of a carboxyl group, have a relatively small difference between the saturated moisture absorption rate and the saturated moisture absorption rate.
- B-type silica gel has a low moisture absorption performance maintenance rate.
- Example 1 80 parts hygroscopic material A, 20 parts carbon black (Mitsubishi Chemical Corporation Mitsubishi Carbon Black # 20, average primary particle size 50 nm) and 47.5 parts acrylic resin emulsion as binder (solid content 40%) Mix. The obtained mixture was applied to 30 g / m 2 of glass fiber paper (paper made of 70% glass fiber, 20% vinylon, and 10% acrylic binder) so that the solid content of the mixture was 50 g / m 2. Apply to and dry. The obtained sheet has a structure in which the moisture-absorbing / releasing material B and carbon black are dispersed using a binder as a continuous phase. Table 2 shows the evaluation results of the sheet.
- Example 2 667 parts water-dispersed hygroscopic material B (solid content 12%), 20 parts carbon black (Mitsubishi Chemical Corporation Mitsubishi Carbon Black # 20), and 13.3 parts acrylic resin emulsion (Binder) 40% solids). The obtained mixture was applied to 30 g / m 2 of glass fiber paper (made of 70% glass fiber, 20% vinylon, and 10% acrylic binder) so that the solid content of the mixture was 50 g / m 2. Impregnate and dry. The obtained sheet has a structure in which carbon black is dispersed with the hygroscopic material B and a binder as a continuous phase. The properties of the sheet are shown in Table 2.
- Example 3 A sheet was obtained in the same manner as in Example 2, except that 533 parts of water-dispersed hygroscopic material C (solid content 15%) was used in place of the water-dispersed hygroscopic material B in Example 2. Create The obtained sheet has a structure in which carbon black is dispersed with the hygroscopic material C and a binder as a continuous phase. The properties of the sheet are shown in Table 2.
- Example 4 instead of the hygroscopic material A in Example 1, a sheet was prepared in the same manner as in Example 1 except that A-type silica gel (Silicia 730 manufactured by Fuji Silysia Chemical Ltd., average particle diameter 3 ⁇ m) shown in Table 1 was used. create. The obtained sheet has a structure in which A-type silica gel and carbon black are dispersed using a binder as a continuous phase. The properties of the sheet are shown in Table 2.
- A-type silica gel Silicia 730 manufactured by Fuji Silysia Chemical Ltd., average particle diameter 3 ⁇ m
- Example 5 Instead of the hygroscopic material A in Example 1, B-type silica gel (Silicia 430 manufactured by Fuji Silysia Chemical Co., Ltd., average particle size 2.5 ⁇ m) shown in Table 1 was used in the same manner as in Example 1. Create a sheet. The obtained sheet has a structure in which B-type silica gel and carbon black are dispersed with a binder as a continuous phase. The properties of the sheet are shown in Table 2.
- Example 6 A sheet is prepared in the same manner as in Example 2 except that black iron oxide particles (BL-100 manufactured by Titanium Industry Co., Ltd., average particle size 0.4 ⁇ m) are used instead of carbon black in Example 2.
- the obtained sheet has a structure in which black iron oxide particles are dispersed with the hygroscopic material B and the binder as a continuous phase. The properties of the sheet are shown in Table 2.
- Example 7 In Example 2, a sheet is prepared in the same manner as in Example 2 except that 750 parts of the moisture-absorbing and releasing material B in the form of an aqueous dispersion and 10 parts of carbon black are used. The obtained sheet has a structure in which carbon black is dispersed with the hygroscopic material B and a binder as a continuous phase. The properties of the sheet are shown in Table 2.
- Example 8 In Example 2, a sheet was prepared in the same manner as in Example 2 except that 825 parts of water-dispersed hygroscopic material B and 1 part of carbon black were used. The obtained sheet has a structure in which carbon black is dispersed with the hygroscopic material B and a binder as a continuous phase. The evaluation result characteristics of the obtained sheet are shown in Table 2.
- Example 9 In Example 2, a sheet is prepared in the same manner as in Example 2 except that 433 parts of the water-absorbing hygroscopic material B and 48 parts of carbon black are used. The obtained sheet has a structure in which the hygroscopic material B and carbon black are dispersed using a binder as a continuous phase. The properties of the sheet are shown in Table 2.
- Example 10 667 parts of water-dispersed hygroscopic material B (solid content 12%) and 10 parts of acrylic resin emulsion (solid content 40%) as a binder are mixed. The obtained mixture is applied to 30 g / m 2 of glass fiber paper (paper made of 70% glass fiber, 20% vinylon, 10% acrylic binder) so that the solid content of the mixture is 40 g / m 2. Impregnate and dry. Next, 20 parts of carbon black (Mitsubishi Chemical Corporation Mitsubishi Carbon Black # 20) and 3.3 parts of an acrylic resin emulsion (solid content 40%) as a binder are mixed, and this is the moisture absorbing / releasing material described above.
- glass fiber paper paper made of 70% glass fiber, 20% vinylon, 10% acrylic binder
- the glass fiber paper impregnated with B is applied to 10 g / m 2 and dried.
- the obtained sheet has a structure in which a layer in which a photothermal conversion material is dispersed in a binder as a continuous phase is laminated on a layer in which a hygroscopic material is dispersed with the binder as a continuous phase.
- the properties of the sheet are shown in Table 2.
- Example 1 A sheet is prepared in the same manner as in Example 2 except that glass beads (UB-02NH manufactured by Unitika Ltd., particle size 0 to 45 ⁇ m) are used instead of carbon black in Example 2.
- the resulting sheet has a structure in which the moisture-absorbing / releasing material B and glass beads are dispersed using a binder as a continuous phase. Table 2 shows the evaluation results of the obtained sheet.
- the desiccant sheets of Examples 1 to 10 were all capable of obtaining the effect of a photothermal conversion material upon regeneration with sunlight. Among them, in the desiccant sheet using the hygroscopic material B or C having a high regeneration rate, the ratio of the weight reduction rate is high, and the thermal energy converted by the photothermal conversion material can be used more efficiently as a regeneration heat source. On the other hand, in the desiccant sheet of Example 4 using silica gel A which is an inorganic hygroscopic material, the effect of the photothermal conversion material was not obtained as much as the desiccant sheet using the organic polymer sorbent.
- Example 5 using B-type silica gel, the heat energy converted by the photothermal conversion material as in the hygroscopic materials B and C can be used more efficiently as a regeneration heat source. Since the hygroscopic performance maintenance ratio is low, it is considered that the hygroscopic materials B and C are more suitable for desiccant rotor applications and the like.
- the ratio of the weight reduction rate is large because of the large use ratio of the photothermal conversion material, but the amount of moisture absorbing / releasing material is small and the difference in saturated moisture absorption is small.
- the glass beads added instead of the light-to-heat conversion material reflect light, so it is considered that the ratio of the weight reduction rate is smaller than that of the additive-free sheet.
- Photothermal conversion regeneration desiccant rotor 102 .. Sensible heat exchange device 103 .. Light shielding plate 104 .. Blower 105 .. Evaporative cooling device 106 .. Static photothermal conversion regeneration desiccant element 201 .. Electromagnetic wave 202 such as sunlight 202 ⁇ ⁇ Room air 301 ⁇ ⁇ Dehumidified air 302 ⁇ ⁇ Regenerative air
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Drying Of Gases (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Central Air Conditioning (AREA)
Abstract
従来の太陽光等の光エネルギーを利用したデシカント空調システムは、効率や再生温度に課題を有しており、性能面でも十分満足できるものではない。本発明の目的は、太陽光等の光エネルギーより得られる熱エネルギーを効率よく利用し、吸放湿を行うことができるデシカントシートを提供することにあり、さらには該シートを活用したデシカント素子並びにデシカントローター、およびかかる素子あるいはローターを用いたデシカント空調システムを提供することにある。 かかる本発明の目的は、デシカントシートにおいて、吸放湿性材料と光熱変換材料とを必須成分として含有させることによって達成される。ここで、前記吸放湿性材料と前記光熱変換材料とは、少なくともその一部において直接接している、あるいは樹脂を介して近接している状態であることが好ましい。
Description
本発明は、太陽光等の光エネルギーから変換された熱エネルギーを、直接的に効率良く吸放湿材、即ちデシカントの再生過程に作用させることを可能とする光熱変換再生デシカント材料、および該デシカント材料を用いることにより太陽光等の自然エネルギーを活用した除湿、加湿、冷房、暖房といった空調、空気質の改善を可能とする、地球環境に優しいデシカント空調システムに関する。
デシカント空調システムは、吸放湿剤により湿度を制御して、少ないエネルギーで冷暖房や除加湿を行うことのできる空調システムである。かかるデシカント空調システムは、ヒートポンプによる一般的な空調のように、地球温暖化やオゾンホールの発生等の問題を引き起こしているフロンを代表とする冷媒を用いる必要がなく、また、吸放湿剤は比較的低温で再生可能であることから、排熱等の捨てられていた熱エネルギーを吸放湿剤の再生エネルギーとして使用することができる。このためデシカント空調システムは、環境に優しい、省エネルギー型の空調技術として注目されており、近年では、太陽光等の自然エネルギーを再生エネルギーとして利用するシステムが研究、提案されている。
特許文献1では、網状体間に充填保持されたシリカゲル等の粒状吸湿剤に太陽光を直接照射させ、粒状吸湿剤を再生し、乾燥した吸湿剤に空気を通じることにより乾燥空気を得ることを繰り返すことにより、連続して乾燥空気を得る方法が提案されている。しかし、この方式ではシリカゲル充填層の厚みが厚くなるため太陽光がシリカゲル層厚みの厚い深部までは届かないこと、またシリカゲル自体が光を反射し易いことなどから有効に太陽光を活用できず、十分な再生のための熱エネルギーが得られないという問題があった。
このような問題を解決するため、特許文献2では、太陽光を太陽熱集熱器で集め熱媒体を加熱し、熱媒体を循環させることにより活性アルミナ、シリカゲル、ゼオライト等の吸湿剤を再生するというシステムを提案している。該システムにおける太陽熱集熱器としては、平行光を集光する反射鏡を用いることにより反射鏡がない場合の3倍の温度上昇が期待できるとされている。しかし該システムの場合、熱媒体を扱う装置が必要となり、装置としても複雑となるため、コスト的にも実用的にも課題があった。
また非特許文献1では、太陽光を集光レンズにより集め、高熱流束の光エネルギーとし、それを直接デシカントローターに照射させることで、損失を小さく高効率に再生をおこなう方式での試験結果が報告されている。該報告の結果では、太陽光による除湿はできるものの、実用化に対しては十分な除湿性能が得られていない。これは、集光した太陽エネルギーが効率良く再生に使われなかったこと、および除湿剤であるシリカゲルでの低温再生能力が十分でなかったことが原因であると述べられている。
太陽光を効率よく熱に変換し、吸湿剤の再生に利用するという別の方法が、特許文献3に提案されている。外側表面を黒色あるいは褐色のごとく暗色に塗装または表面処理された金属円筒の内部に、シリカゲル等の除湿剤を充填した構成よりなっており、該金属円筒内に太陽光が照射することにより金属円筒が加熱され、この熱エネルギーが内部にある除湿剤の再生に使用されるものである。この方式では、金属円筒の光熱変換は行われ、熱は発生するものの、金属円筒と除湿剤との間の空気が熱移動を妨げる、および円筒内部の空気の循環が起こり難いため全体を効率良く再生することは難しい。またこの方式では連続的に乾燥した空気を得ることも困難という問題がある。
「日本機械学会第15回環境工学総合シンポジウム2005講演論文集」、p.359-362
上述のように、従来の太陽光等の光エネルギーを利用したシステムは、効率や再生温度に課題を有しており、性能面でも十分満足できるものではない。本発明の目的は、太陽光等の光エネルギーより得られる熱エネルギーを効率よく利用し、吸放湿を行うことができるデシカントシートを提供することにあり、さらには該シートを活用したデシカント素子並びにデシカントローター、およびかかる素子あるいはローターを用いたデシカント空調システムを提供することにある。
本発明の上記目的は、以下の手段により達成される。すなわち、
[1] 吸放湿性材料と光熱変換材料とを必須成分として含有する光熱変換再生デシカントシート。
[2] 吸放湿性材料と光熱変換材料とが、少なくともその一部において直接接している、あるいは樹脂を介して近接していることを特徴とする[1]に記載の光熱変換再生デシカントシート。
[1] 吸放湿性材料と光熱変換材料とを必須成分として含有する光熱変換再生デシカントシート。
[2] 吸放湿性材料と光熱変換材料とが、少なくともその一部において直接接している、あるいは樹脂を介して近接していることを特徴とする[1]に記載の光熱変換再生デシカントシート。
[3] 吸放湿性材料が、下記に示す方法で算出される再生率として70%以上を有するものであることを特徴とする[1]または[2]に記載の光熱変換再生デシカントシート。
(再生率の算出方法)
20℃×95%RH雰囲気下で24時間放置した試料について、熱重量測定を昇温速度1℃/分で行って求めた60℃における重量減少量を、該試料の20℃×95%RHにおける飽和吸湿量で除し、100を乗じて算出する。
[4] 吸放湿性材料が、20℃×95%RHにおいて50重量%以上の飽和吸湿率を有するものであることを特徴とする[1]から[3]のいずれかに記載の光熱変換再生デシカントシート。
[5] 吸放湿性材料が、下記に示す方法で算出される吸湿性能維持率として80%以上を有するものであることを特徴とする[1]から[4]のいずれかに記載の光熱変換再生デシカントシート。
(吸湿性能維持率の算出方法)
20℃×50%RHでの24時間の放湿と40℃×90%RHでの24時間の吸湿を15サイクル繰り返した時の15サイクル目の40℃×90%RHにおける飽和吸湿率を、かかる吸湿・放湿の繰り返し前の40℃×90%RHにおける飽和吸湿率で除し、100を乗じて算出する。
[6] 吸放湿性材料が、架橋ポリアクリル酸塩系高分子化合物よりなることを特徴とする[1]から[5]のいずれかに記載の光熱変換再生デシカントシート。
(再生率の算出方法)
20℃×95%RH雰囲気下で24時間放置した試料について、熱重量測定を昇温速度1℃/分で行って求めた60℃における重量減少量を、該試料の20℃×95%RHにおける飽和吸湿量で除し、100を乗じて算出する。
[4] 吸放湿性材料が、20℃×95%RHにおいて50重量%以上の飽和吸湿率を有するものであることを特徴とする[1]から[3]のいずれかに記載の光熱変換再生デシカントシート。
[5] 吸放湿性材料が、下記に示す方法で算出される吸湿性能維持率として80%以上を有するものであることを特徴とする[1]から[4]のいずれかに記載の光熱変換再生デシカントシート。
(吸湿性能維持率の算出方法)
20℃×50%RHでの24時間の放湿と40℃×90%RHでの24時間の吸湿を15サイクル繰り返した時の15サイクル目の40℃×90%RHにおける飽和吸湿率を、かかる吸湿・放湿の繰り返し前の40℃×90%RHにおける飽和吸湿率で除し、100を乗じて算出する。
[6] 吸放湿性材料が、架橋ポリアクリル酸塩系高分子化合物よりなることを特徴とする[1]から[5]のいずれかに記載の光熱変換再生デシカントシート。
[7] 吸放湿性材料およびバインダーを連続相として光熱変換材料が分散していることを特徴とする[1]から[6]のいずれかに記載の光熱変換再生デシカントシート。
[8] バインダーを連続相として吸放湿性材料が分散している層とバインダーを連続相として光熱変換材料が分散している層とが積層していることを特徴とする[1]から[6]のいずれかに記載の光熱変換再生デシカントシート。
[9] バインダーを連続相として吸放湿性材料と光熱変換材料が分散していることを特徴とする[1]から[6]のいずれかに記載の光熱変換再生デシカントシート。
[8] バインダーを連続相として吸放湿性材料が分散している層とバインダーを連続相として光熱変換材料が分散している層とが積層していることを特徴とする[1]から[6]のいずれかに記載の光熱変換再生デシカントシート。
[9] バインダーを連続相として吸放湿性材料と光熱変換材料が分散していることを特徴とする[1]から[6]のいずれかに記載の光熱変換再生デシカントシート。
[10] [1]から[9]のいずれかに記載の光熱変換再生デシカントシートからなり、気体貫通路を有する立体構造体である光熱変換再生デシカント素子。
[11] [10]の光熱変換再生デシカント素子からなる光熱変換再生デシカントローター。
[11] [10]の光熱変換再生デシカント素子からなる光熱変換再生デシカントローター。
[12] 吸放湿性材料による空気中の水分の吸着と空気中への水分の脱着を繰り返すことにより空調を行うデシカント空調システムにおいて、[10]に記載の光熱変換再生デシカント素子を用い、かつ、該素子に対して、水分の吸着時には電磁波遮断を行い、水分の脱着時には電磁波照射を行うようにしたことを特徴とする光熱変換再生デシカント空調システム。
[13] 吸放湿性材料による空気中の水分の吸着と空気中への水分の脱着を繰り返すことにより空調を行うデシカント空調システムにおいて、[11]に記載の光熱変換再生デシカントローターを用い、かつ、該ローターに対して、水分の吸着時には電磁波遮断を行い、水分の脱着時には電磁波照射を行うようにしたことを特徴とする光熱変換再生デシカント空調システム。
[14] 光熱変換に用いられる電磁波が太陽光であることを特徴とする[12]または[13]に記載の光熱変換再生デシカント空調システム。
[13] 吸放湿性材料による空気中の水分の吸着と空気中への水分の脱着を繰り返すことにより空調を行うデシカント空調システムにおいて、[11]に記載の光熱変換再生デシカントローターを用い、かつ、該ローターに対して、水分の吸着時には電磁波遮断を行い、水分の脱着時には電磁波照射を行うようにしたことを特徴とする光熱変換再生デシカント空調システム。
[14] 光熱変換に用いられる電磁波が太陽光であることを特徴とする[12]または[13]に記載の光熱変換再生デシカント空調システム。
本発明の光熱変換再生デシカントシートからなるデシカント素子は電磁波、特に、自然エネルギーである太陽光を利用して効率的にデシカントの再生を行うことができる。かかる本発明のデシカント素子を用いて空調システムを構築することにより、除湿、加湿、暖房、冷房等の空調に太陽光を有効に活用することができ、環境にやさしい省エネルギー型の空調システムを提供することができる。
本発明の光熱変換再生デシカントシートは、吸湿性および放湿性を有する吸放湿性材料と、電磁波を熱に変換する光熱変換材料とを必須成分として含有する。吸放湿性材料と光熱変換材料を共存させることにより、自然エネルギーである太陽光などを効率的に熱エネルギーに変換し、吸放湿性材料の再生に有効に利用することができる。
本発明に用いる吸放湿性材料としては、放湿が低温で起こる特性、すなわち低温再生の能力が高いものが好ましい。光熱変換に用いられる光エネルギーとしては、自然エネルギーである太陽光がその主なものとなる。このため、後述する光熱変換材料によって光から熱に変換される熱エネルギーはそれほど大きなものではなく、集光等の特別な操作を行わない場合に得られる温度としては40℃~70℃にすぎない。これは従来用いられてきた再生熱源の温度に比べて低いものであるため、高い除湿・加湿性能を得るには吸放湿性材料の低温再生能力が優れていることが望ましい。
具体的には、本発明に用いる吸放湿性材料は、後述の実施例項において示す方法で算出した再生率が好ましくは70%以上、より好ましくは75%以上、さらに好ましくは80%以上であるものが望ましい。
かかる再生率の算出方法から理解されるように、本発明に定義する再生率は、低温熱源を用いた場合に、吸湿した湿分のうち、どの程度の湿分を放湿できるかという低温再生能力の指標となるものである。この再生率が高いほど、光熱変換材料によって光から変換される熱のような低温熱源を再生熱源として有効に利用できる吸放湿性材料であると言える。逆に再生率が70%に満たない吸放湿性材料は低温熱源ではあまり放湿ができないということであり、光熱変換材料を併用しても光熱変換による熱を再生熱源として利用できず、太陽光などの自然エネルギーを利用できるデシカントシートが得られない場合がある。
また、吸放湿性材料としては、20℃×95%RHの飽和吸湿率が50重量%以上、好ましくは60重量%以上、より好ましくは70重量%以上であることが望ましい。ここで、「RH」とは相対湿度を意味しており、例えば「20℃×95%RH」とは、雰囲気が温度20℃かつ相対湿度95%である状態を示す。
かかる飽和吸湿率が低くなると吸放湿性材料の吸湿量が少なくなるため、空調システムを構築したときに十分な除湿・加湿性能を得るには、デシカントシート中の吸放湿性材料の割合を高める必要が出てくる。しかし、デシカントシート中の吸放湿性材料の割合を高めると吸放湿性材料の脱落や吸放湿に伴う変形などの問題が顕在化してくる場合がある。かかる飽和吸湿率が50重量%以上であれば、吸放湿性材料の脱落や吸放湿に伴う変形が問題となるほど、デシカントシート中の吸放湿性材料の割合を高めなくても十分な除湿・加湿性能を得ることができる。
一方、該飽和吸湿率が高くなりすぎると、吸放湿性材料の使用量を抑制しても上記の脱落や変形の問題が顕在化する場合がある。このため、20℃×95%RHの飽和吸湿率は140重量%以下、好ましくは120重量%以下であることが望ましい。
さらに、吸放湿性材料としては、20℃×45%RHと20℃×95%RHとの飽和吸湿率の差が20パーセントポイント以上、好ましくは40パーセントポイント以上であるものが望ましい。20℃×45%RHと20℃×95%RHとの飽和吸湿率の差は低湿度状態と高湿度状態との飽和吸湿率の差の指標である。吸放湿性材料を繰り返し吸湿、放湿させるデシカント空調システムにおいて、この差は除湿性能、加湿性能に大きく影響し、20パーセントポイント未満である場合はデシカントシート中の吸放湿性材料の割合を高める必要が出てきて、吸放湿性材料の脱落や吸放湿に伴う変形などの問題が顕在化してくる場合がある。一方、40パーセントポイント以上の場合、光熱変換によって発生する程度の比較的低い温度の熱による再生でも大きな除湿量、加湿量が得られるため、より実用的なデシカント空調システムを構築することが可能となる。
本発明に用いることができる吸放湿性材料としては、吸放湿性物質が代表的な例である。かかる吸放湿性物質としては、シリカゲル、ゼオライト、活性アルミナなどの無機系多孔質材料、塩化リチウム、塩化カルシウムなどの無機塩類、あるいは、ポリアクリル酸およびその塩、ポリメタクリル酸およびその塩、ポリスルホン酸およびその塩、ポリリン酸およびその塩、ポリグルタミン酸およびその塩、ポリアクリルアミド等の親水性官能基を有する有機系高分子化合物を挙げることができる。これらは単独で使用してもよいし、複数種を組み合わせて使用しても構わない。また、これらの吸放湿性物質を含有させた合成繊維や天然繊維、あるいは、樹脂フィルムやゴムなども本発明の吸放湿性材料として採用しうる。
上記吸放湿性材料の中でも、分子中に親水性極性基を有する有機高分子主鎖を架橋構造により三次元構造化した有機系高分子化合物が好適である。かかる有機系高分子化合物は収着現象に基づき水蒸気を多量に収着するものであり、本発明ではかかる材料を有機高分子系収着剤と呼ぶこととする。ここで、収着現象とは、気体と固体が接している系において両者の界面で固相中の気体濃度が気相中よりも高くなる現象は吸着と呼ばれ、一方、吸着した気体分子が固体表面層を通り固体内部へ入り込んでいく現象は吸収と呼ばれるが、この吸着と吸収とが同時に起こる現象である。即ち、気体状水分子である水蒸気が有機高分子系収着剤に作用した場合、該収着剤の有する高い親水性極性基により水分子は吸着され、さらに収着剤に入り込んで吸収されてゆく。
かかる有機高分子系収着剤においては、架橋構造により三次元化した構造に適度の柔軟さがあるため、吸湿時には水分子が吸収されるに従い膨らんで多量の水分子を収着剤の中に取り込むことができ、また放湿時には水分子が放出されるに従い収縮し元の構造に戻ることができる。すなわち、有機高分子系収着剤は高吸湿率と吸放湿の繰り返しに対する優れた耐久性を両立するものであり、デシカント空調システムに適した吸放湿性材料なのである。
かかる有機高分子系収着剤の中でも、架橋構造を有するポリアクリル酸の塩は、上述した飽和吸湿率、飽和吸湿率の差や低温再生特性について望ましい特性を得られやすい点から本発明のデシカント素子や該素子を用いるデシカント空調システムに特に好適に採用できるものである。なお、本発明においては、かかる架橋構造を有するポリアクリル酸の塩のことを架橋ポリアクリル酸塩系高分子化合物とも言う。
架橋ポリアクリル酸塩系高分子化合物においては、親水性極性基であるカルボキシル基とカチオンが塩を構成している。かかる塩を構成するカチオンとしては、特に限定はなく、例えばLi、Na、K、Rb、Cs等のアルカリ金属、Be、Mg、Ca、Sr、Ba等のアルカリ土類金属、Cu、Zn、Al、Mn、Ag、Fe、Co、Ni等のその他の金属、NH4、アミン等の有機のカチオン等を挙げることかでき、これらのカチオンを2種以上同時に用いてもよい。中でも、カチオンとしてKを選択すれば吸放湿速度の向上に特に効果があるのでより好ましい。
また、架橋ポリアクリル酸塩系高分子化合物において、カチオンと塩を構成しているカルボキシル基、すなわち塩型カルボキシル基は、吸湿性を発現させるために好適な親水性の高い極性基であり、高い吸放湿性能を得ようとする場合、できるだけ多くの塩型カルボキシル基を含有することが好ましい。しかし、吸湿量と同時に、耐久性あるいは吸湿速度の速いものとするためには、架橋構造との割合において適当なバランスをとることが必要である。
すなわち、架橋ポリアクリル酸塩系高分子化合物の塩型カルボキシル基量が10.0mmol/gを超える場合、導入できる架橋構造の割合が少なくなりすぎ、いわゆる高吸水性樹脂に近いものとなってしまい、吸湿性能が低くなる、形態安定性が劣ったものとなり十分な耐久性が得られない、粘着性を帯びてくるといった問題が生じる場合がある。以上のような観点からより好ましい結果を与える塩型カルボキシル基量は、9.5mmol/g以下である。
一方、塩型カルボキシル基量が少ない場合、吸湿性能は低下してゆき、特に1.0mmol/gより低い場合では、上述した20℃×65%RHの飽和吸湿率あるいは20℃×45%RHと20℃×95%RHとの飽和吸湿率の差が得られないことがある。塩型カルボキシル基量が3.0mmol/g以上の場合、現存する他の吸湿性の素材に比べてその吸湿性能の優位性が顕著となり、より好ましい結果を与える。
かかる架橋ポリアクリル酸塩系高分子化合物における塩型カルボキシル基の場合の導入の方法としては、特に限定は無く、例えば、塩型カルボキシル基を有する単量体を単独重合又は共重合可能な他の単量体と共重合することによって重合体を得る方法(第1法)、カルボキシル基を有する重合体を得た後に塩型に変える方法(第2法)、カルボキシル基に誘導することが可能である官能基を有した単量体を重合し、得られた重合体の該官能基を化学変性によりカルボキシル基に変換しさらに塩型に変える方法(第3法)、あるいはグラフト重合により前記3法を実施する方法等が挙げられる。
上記第1法の塩型カルボキシル基を有する単量体を重合する方法としては、例えば、アクリル酸、メタクリル酸、マレイン酸、イタコン酸、ビニルプロピオン酸等のカルボキシル基を含有する単量体の対応する塩型単量体を単独で、又はこれらの単量体の2種以上を、あるいは同一種であるがカルボン酸型と対応する塩型との混合物を重合する、さらにはこれらの単量体と共重合可能な他の単量体とを共重合する等の方法が挙げられる。
また、第2法に言うカルボキシル基を有する重合体を得た後に塩型に変える方法とは、例えば、先に述べたようなカルボキシル基を含有する酸型単量体の単独重合体、あるいは該単量体の2種以上からなる共重合体、または、共重合可能な他の単量体との共重合体を重合により得た後、塩型に変える方法である。カルボキシル基を塩型に変換する方法としては特に限定はなく、得られた前記酸型重合体にLi、Na、K、Rb、Cs等のアルカリ金属イオン、Be、Mg、Ca、Sr、Ba等のアルカリ土類金属イオン、Cu、Zn、Al、Mn、Ag、Fe、Co、Ni等の他の金属イオン、NH4、アミン化合物等の有機の陽イオンを含む溶液を作用させてイオン交換を行う等の方法により変換することができる。
第3法の化学変性法によりカルボキシル基を導入する方法としては、例えば化学変性処理によりカルボキシル基に変性可能な官能基を有する単量体の単独重合体、あるいは2種以上からなる共重合体、または、共重合可能な他の単量体との共重合体を重合し、得られた重合体を加水分解によってカルボキシル基に変性する方法があり、得られた状態が塩型でない場合は、変性されたカルボキシル基に上記の塩型にする方法が適用される。このような方法をとることのできる単量体としてはアクリロニトリル、メタクリロニトリル等のニトリル基を有する単量体;アクリル酸、メタクリル酸、マレイン酸、イタコン酸、ビニルプロピオン酸等のカルボン酸基を有する単量体の無水物やエステル誘導体、アミド誘導体、架橋性を有するエステル誘導体等を上げることができる。
カルボン酸基を有する単量体の無水物としては、無水マレイン酸、無水アクリル酸、無水メタクリル酸、無水イタコン酸、無水フタル酸、N-フェニルマレイミド、N-シクロマレイミド等をあげることができる。
カルボン酸基を有する単量体のエステル誘導体としては、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ラウリル、ペンタデシル、セチル、ステアリル、ベヘニル、2-エチルヘキシル、イソデシル、イソアミル等のアルキルエステル誘導体;メトキシエチレングリコール、エトキシエチレングリコール、メトキシポリエチレングリコール、エトキシポリエチレングリコール、ポリエチレングリコール、メトキシプロピレングリコール、プロピレングリコール、メトキシポリプロピレングリコール、ポリプロピレングリコール、メトキシポリテトラエチレングリコール、ポリテトラエチレングリコール、ポリエチレングリコールーポリプロピレングリコール、ポリエチレングリコールーポリテトラエチレングリコール、ポリエチレングリコールーポリプロピレングリコール、ポリプロピレングリコールーポリテトラエチレングリコール、ブトキシエチル等のアルキルエーテルエステル誘導体;シクロヘキシル、テトラヒドロフルフリル、ベンジル、フェノキシエチル、フェノキシポリエチレングリコール、イソボニル、ネオペンチルグリコールペンゾエート等の環状化合物エステル誘導体;ヒドロキシエチル、ヒドロキシプロピル、ヒドロキシブチル、ヒドロキシフェノキシプロピル、ヒドロキシプロピルフタロイルエチル、クロローヒドロキシプロピル等のヒドロキシアルキルエステル誘導体;ジメチルアミノエチル、ジエチルアミノエチル、トリメチルアミノエチル等のアミノアルキルエステル誘導体;(メタ)アクリロイロキシエチルコハク酸、(メタ)アクリロイロキシエチルヘキサヒドロフタル酸等のカルボン酸アルキルエステル誘導体;(メタ)アクリロイロキシエチルアシッドホスフェート、(メタ)アクリロイロキシエチルアシッドホフフェート等のリン酸基またはリン酸エステル基を含むアルキルエステル誘導体;
エチレングリコールジ(メタ)アクリレート、ポリエチレングルコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオール(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、グリセリンジメタクリレート、2-ヒドロキシー3-アクリロイロキシプロピル(メタ)アクリレート、ビスフェノールAのエチレンオキシド付加物ジ(メタ)アクリレート、ビスフェノールAのプロピレンオキシド付加物ジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリル、ジメチロールトリシクロデカンジ(メタ)アクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート等の架橋性アルキルエステル類;トリフロロエチル、テトラフロロプロピル、ヘキサフロロブチル、パーフロロオクチルエチル等のフッ化アルキルエステル誘導体をあげることができる。
カルボン酸基を有する単量体のアミド誘導体としては、(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、モノエチル(メタ)アクリルアミド、ノルマルーt一ブチル(メタ)アクリルアミド等のアミド化合物等が例示できる。化学変性によりカルボキシル基を導入する他の方法として、アルケン、ハロゲン化アルキル、アルコール、アルデヒド等の酸化等も挙げることができる。
上記第3法における重合体の加水分解反応により塩型カルボキシル基を導入する方法についても特に限定はなく、既知の加水分解条件を利用することができる。例えば、上記単量体を重合し架橋された重合体にアルカリ金属水酸化物、例えば、水酸化ナトリウム、水酸化リチウム、水酸化カリウムやアンモニア等の塩基性水溶液を用い塩型カルボキシル基を導入する方法、或いは硝酸、硫酸、塩酸等の鉱酸または、蟻酸、酢酸等の有機酸と反応させ、カルボン酸基とした後、アルカリ金属塩類と混合することにより、イオン交換により塩型カルボキシル基を導入する方法が挙げられる。なかでも吸湿速度に優れるカリウム塩型カルボキシル基が簡単に得られる水酸化カリウムによる加水分解法が好ましい。なお、1.0~10.0mmol/gとなる条件については、反応の温度、濃度、時間等の反応因子と導入される塩型カルボキシル基量の関係を実験で明らかにすることにより、決定することができる。
本発明における有機高分子系収着剤の架橋構造は、本発明の目的とする吸放湿性能および該性能を生かした製品の性能に影響を及ぼさない限りにおいては特に限定はなく、共有結合による架橋、イオン架橋、ポリマー分子間相互作用または結晶構造による架橋等いずれの構造のものでもよい。また、架橋を導入する方法においても特に限定はなく、使用する単量体の重合段階において架橋性単量体を共重合させることによる架橋導入方法、あるいは単量体をまず重合し、その後、化学的反応あるいは物理的なエネルギーによる架橋構造の導入といった後架橋法等を挙げることができる。中でも、単量体の重合段階で架橋性単量体を用いる方法、あるいは重合体を得たあとの化学的な後架橋による方法では、共有結合による強固な架橋を導入することが可能であり、吸湿、放湿に伴う物理的、化学的変性を受け難いという点で好ましい。
単量体の重合段階で架橋性単量体を用いる方法では、特に上述した架橋ポリアクリル酸塩系高分子化合物の場合、既述のカルボキシル基を有する、あるいはカルボキシル基に変性できる単量体と共重合することのできる架橋性単量体を用い、共重合を行なうことにより共有結合に基づく架橋構造を有する架橋重合体を得ることができる。しかし、この場合、単量体であるアクリル酸などが示す酸性条件、あるいは重合体でのカルボキシル基への変性を行う際の化学的な影響(例えば加水分解など)を受けない、あるいは受けにくい架橋性単量体である必要がある。
単量体の重合段階で架橋性単量体を用いる方法に使用できる架橋性単量体としては特に限定はなく、例えばグリシジルメタクリレート、N-メチロールアクリルアミド、トリアリルイソシアヌレート、トリアリルシアヌレート、ジビニルベンゼン、ヒドロキシエチルメタクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、メチレンビスアクリルアミド等の架橋性ビニル化合物を挙げることができ、なかでもトリアリルイソシアヌレート、トリアリルシアヌレート、ジビニルベンゼン、メチレンビスアクリルアミドによる架橋構造は、それらを含有してなる架橋重合体に施すカルボキシル基を導入するための加水分解等の際にも化学的に安定であるので望ましい。
また、後架橋による方法としても特に限定はなく、例えば、ニトリル基を有するビニルモノマーの含有量が50重量%以上よりなるニトリル系重合体の含有するニトリル基と、ヒドラジン系化合物またはホルムアルデヒドを反応させる後架橋法を挙げることができる。なかでもヒドラジン系化合物により導入された架橋構造は、酸、アルカリに対しても安定で、しかも形成される架橋構造自体が親水性であるので吸湿性の向上に寄与でき、また、重合体に付与した多孔質等の形態を保持することができる強固な架橋を導入できるといった点で極めて優れている。なお、該反応により得られる架橋構造に関しては、その詳細は同定されていないが、トリアゾール環あるいはテトラゾール環構造に基づくものと推定されている。
ここでいうニトリル基を有するビニルモノマーとしては、ニトリル基を有する限りにおいては特に限定はなく、具体的には、アクリロニトリル、メタクリロニトリル、エタクリロニトリル、α-クロロアクリロニトリル、α-フルオロアクリロニトリル、シアン化ビニリデン等が挙げられる。なかでも、コスト的に有利であり、また、単位重量あたりのニトリル基量が多いアクリロニトリルが最も好ましい。
ヒドラジン系化合物との反応により架橋を導入する方法としては、目的とする架橋構造が得られる限りにおいては特に制限はなく、反応時のニトリル系重合体とヒドラジン系化合物の濃度、使用する溶媒、反応時間、反応温度など必要に応じて適宜選定することができる。このうち反応温度については、あまり低温である場合は反応速度が遅くなり反応時間が長くなりすぎること、また、あまり高温である場合はニトリル系重合体の可塑化などが起り、重合体に付与されていた形態が破壊されるという問題が生じる場合がある。従って、好ましい反応温度としては、50~150℃、さらに好ましくは80℃~120℃である。また、ヒドラジン系化合物と反応させるニトリル系重合体の部分についても特に限定はなく、その用途、該重合体の形態に応じて適宜選択することができる。具体的には、該重合体の表面のみに反応させる、または、全体にわたり芯部まで反応させる、特定の部分を限定して反応させる等適宜選択できる。なお、ここに使用するヒドラジン系化合物としては、水加ヒドラジン、硫酸ヒドラジン、塩酸ヒドラジン、硝酸ヒドラジン、臭化水素酸ヒドラジン、ヒドラジンカーボネート等のヒドラジンの塩類、およびエチレンジアミン、硫酸グアニジン、塩酸グアニジン、硝酸グアニジン、リン酸グアニジン、メラミン等のヒドラジン誘導体である。
本発明に採用する吸放湿性材料としては、上述した低温再生特性および飽和吸湿率差のほかに、下記特性を有するものが好ましい結果を与える。
1つには、本発明の光熱変換再生デシカントシートの主な使用形態であるデシカント素子やデシカントローターなどにおいては、長期間にわたって吸放湿が繰り返されることになるので、吸放湿性材料としては吸放湿が繰り返されても、安定した吸湿性能を維持できるものであることが望ましい。後述する評価法による高湿度雰囲気下および低湿度雰囲気下での吸湿性能維持率が好ましくは80%以上、より好ましくは90%以上であれば、デシカント素子やデシカントローターに用いた場合に、長期にわたって安定した性能を維持しやすくなる。なお、吸湿性能維持率が100%を超えることもありえ、110%を超えるような場合には、吸放湿性材料の変質が大きく、デシカントシートとして吸放湿を繰り返した場合に、粘着性を帯びたり、脱落しやすくなったりする恐れがあるので注意が必要である。
2つめとしては、吸放湿に伴う形態変化が小さいことが望ましい。具体的には、粉末化が起きにくく、絶乾状態の体積に比べ、吸水時の体積増加率が2倍以下であることが好ましい。吸湿、放湿を長期にわたって繰り返す場合、吸放湿性材料が粉末化が起こしやすいものであると、吸放湿性材料が脱落してデシカントシートとしての吸放湿性能が低下するという問題が発生する。シリカゲルなどの無機系材料の場合にかかる問題が発生しやすい。また、吸放湿性材料が、吸水時の体積増加率の大きすぎるものである場合、吸湿時においても体積増加率が大きく、デシカント素子自体の形態の変形を生じ、吸放湿性材料が剥がれたり、脱落したりするという問題が発生する。さらに、結露により多量の水を吸って体積が大きく変化し、デシカント空調システム自体への問題が生じる恐れもある。
3つめとしては、水蒸気以外の臭い成分の蓄積が起きにくい材料が望ましい。臭い成分を蓄積する材料の場合、吸湿放湿サイクルを繰り返すうち、臭いを有する物質が吸放湿性材料に蓄積し、再起動時、あるいは急な温度、湿度の変化時等に蓄積した物質が一度に放出され臭いが発生するという問題を生じる。シリカゲル、ゼオライト、活性炭等の多孔質物質は直径2nm未満のミクロ細孔を有しておりこのミクロ細孔に臭い物質が蓄積するためこのような問題が発生する場合が多い。
上記3つの望ましい特性を有するものとしては、前記の架橋ポリアクリル酸塩系高分子化合物が挙げられる。架橋ポリアクリル酸塩系高分子化合物は、室温から70℃程度の温度であっても、容易に再生できる低温再生能力と高い飽和吸湿率、大きな飽和吸湿率差を有しており、加えて、吸湿放湿に伴う体積変化や水浸漬時の膨潤度が低く、またミクロ細孔を有していないため、吸放湿を繰り返しても低温再生能力が低下しにくく、臭い成分の蓄積がないといった特徴があり、本発明の目的を達成するためには最も好ましい吸放湿性材料である。
本発明に用いられる吸放湿性材料の形態としては、微粒子状、繊維状、フィルム状のものなどが挙げられ、使用される用途に応じたものを適宜選定することができるが、微粒子状のものであるとき特に好ましい結果を得ることができる。特に微粒子状の吸放湿性材料は、微粒子であるためその比表面積が大きく吸湿・放湿の速度を向上することができる。また微粒子の積層した吸湿層においては、粒子積層部位にわずかなすき間が発生するが、吸湿・放湿に伴う収着剤の膨潤・収縮という体積変化をそのすき間で吸収することができるため、耐久性の向上に寄与する。また、このすき間があることにより、水蒸気の移動が起こり易くなり、吸湿・放湿速度を向上することができるとともに、水蒸気を吸湿層の深い部分まで到達させることができ、吸湿層をムダなく使用することができるといったメリットがある。なお、かかるすき間は上記のミクロ細孔よりもはるかに大きく、直径50nm以上のマクロ細孔レベルの孔であって、臭い物質の蓄積には関与しない。
微粒子状の吸放湿性材料の場合の粒子径については、デシカントシートとして加工することが可能で、目的とする性能が得られる限りにおいては、特に限定が無い。ただ、吸湿・放湿の速度を高くすることや吸湿層としての耐久性を高めるといった観点から該微粒子の平均1次粒子径は5μm以下であることが好ましい。さらに好ましくは比表面積が極めて大きくなり、吸湿・放湿速度が著しく向上する0.2μm以下の場合である。ここで言う平均1次粒子径とは、微粒子が、会合または凝集が起こっていない状態、すなわち1次粒子での粒子径を平均したものを言う。該微粒子が水等の溶媒中に微分散、あるいはエマルジョン状で存在する場合は、水等の溶媒中に完全に分散させその平均粒子径として測定した値を用いる。また、1次粒子が凝集したものである場合、電子顕微鏡等で拡大観察し、塊となっている個々の1次粒子の大きさを測定し、平均した値である。
この粒子径が、5μmより大きい場合、(1)比表面積が小さくなり、最も吸湿速度の向上に寄与する表面吸着量が低下する、(2)半径が大きくなるため、粒子の中心部までの水分子の移動時間が長くなる。このため極短時間では、水分子が粒子の中心部まで移動することができず、中心部は吸湿速度には寄与せず、本来持っている吸湿能力が十分発現できない場合がある。
粒子の形状についても特に限定はなく、球状、不定形、平板状、サイコロ状、紡錘型、円柱状等いずれの形のものでも使用することができる。また、その形態についても特に限定はなく、表面が平滑なもの、表面に凹凸があるもの、多孔質のもの、1次粒子の凝集体状のもの等を適宜選定して使用することができる。
また、吸放湿性材料の形態が繊維状である場合には、紙、不織布、織物、編み物等のシート状に加工が容易であるため、様々な用途へ応用が可能となる。また紙等のシートの場合、直接コルゲート、ハニカム等の加工に供することができフィルターなどの用途に有用である。
本発明の光熱変換再生デシカントシートにおけるもう1つの必須構成要素は光熱変換材料である。本発明に採用する光熱変換材料としては、太陽光、紫外線、可視光線、赤外線、白色光線等の電磁波を吸収して熱に変換しうる材料である限り特に限定されず、例えば、無機系物質、顔料、染料、赤外線吸収剤などの光熱変換物質が挙げられる。
かかる光熱変換物質のうち、無機系物質としては炭化物、酸化物、硫化物、炭素同素体などが挙げられる。炭化物としては、炭化チタン、炭化ジルコニウム、炭化ハフニウム、炭化ケイ素、炭化ホウ素、炭化タンタルなどが挙げられ、酸化物としては、酸化チタン、酸化ケイ素、酸化クロム、酸化ジルコニウム、酸化鉄、酸化銅、酸化銀、酸化クロム、酸化鉛などが挙げられる。また、硫化物としては、硫化チタン、硫化ケイ素、硫化クロム、硫化ジルコニウム、硫化鉄、硫化銅、硫化銀、硫化クロム、硫化鉛などが挙げられ、炭素同素体としては、黒鉛、カーボングラファイト、カーボンナノチューブ、ファーネスブラック、アセチレンブラックなどが挙げられる。この他に、雲母、方解石、黒化銀、鉄粉なども無機系物質として挙げられる。
また、顔料としては、天然顔料、蛍光顔料、無機顔料やアゾ系顔料、多環式系顔料などの有機顔料などが挙げられる。このうち、無機顔料としては、カーボンブラックやチタンブラックなどが挙げられる。また、アゾ系顔料としては、不溶性アゾ顔料、アゾレーキ顔料、縮合アゾ顔料、キレートアゾ顔料などが挙げられ、多環式系顔料としては、フタロシアニン系顔料、ペリレン及びペリノン系顔料、チオインジゴ系顔料、キナクリドン系顔料、ジオキサジン系顔料、イソインドリノン系顔料、キノフタロン系顔料などが挙げられる。この他に、染付けレーキ顔料、アジン顔料、ニトロソ顔料、ニトロ顔料なども顔料として挙げられる。
また、染料としては、アゾ染料、金属錯塩アゾ染料、ピラゾロンアゾ染料、アントラキノン染料、ナフタロシアニン染料、フタロシアニン染料、カルボニウム染料、キノンイミン染料、メチン染料、インドレニン染料、シアニン染料、ナフトキノン染料などを挙げることができる。赤外線吸収剤としては、ピリリウム系化合物、アリールベンゾ(チオ)ピリリウム塩系化合物、トリメチンチアピリリウム塩、ペンタメチンチオピリリウム塩、シアニン色素、スクワリリウム色素、クロコニウム系色素、ポリメチン系色素、アズレニウム系色素、ナフトキノン系色素、アントラキノン系顔料、ジチオールニッケル錯体、金属チオレート錯体、ニッケルチオレートなどを挙げることができる。
さらに、上述の光熱変換物質を含有させた合成繊維や天然繊維、あるいは、樹脂フィルムやゴムなども本発明の光熱変換材料として採用しうる。
以上に説明した光熱変換材料のなかでも、可視光線から近赤外線の領域(波長380~2500nm)の光に対する分光反射率の平均値が、好ましくは50%以下、より好ましくは30%以下であるものが望ましく、とりわけ、太陽光の全波長にわたって高い吸収率を有する黒色系材料であり、かつ耐光性に優れた炭素同素体または無機化合物が好ましく用いられる。具体的には、黒化銀、黒鉛、カーボンブラック、カーボングラファイト、カーボンナノチューブ、ファーネスブラック、アセチレンブラック、酸化鉄などが好ましい光熱変換材料として挙げられる。また、本発明に用いられる光熱変換材料の形態としては、前述の吸放湿性物質と同様に、微粒子状、繊維状、フィルム状のものなどが挙げられ、使用される用途に応じたものを適宜選定することができる。
また、光熱変換材料の大きさとしては、より小さいほうが接触界面が増えて熱エネルギー伝導が向上し好ましいが、あまりに小さいと電磁波を吸収しにくくなり発熱量が小さくなる。微粒子状の光熱変換材料の場合であれば、粒子径として、好ましくは0.01μm~20μm、より好ましくは0.05~5μmであることが望ましい。
次に、本発明の光熱変換再生デシカントシートについて説明する。本発明の光熱変換再生デシカントシートは上述した吸放湿性材料と光熱変換材料を必須成分として含有するシートであって、吸放湿性材料と光熱変換材料のみよりなるものであってもよいし、これら以外の構成成分を含むものであってもよい。
例えば、吸放湿性材料と光熱変換材料の両方が繊維状あるいはフィルム状である場合には、これらの材料のみあるいは他の成分を加えて紙、不織布、フィルム等のシート状物を形成し、本発明のデシカントシートとして用いることができる。また、吸放湿性材料と光熱変換材料の一方が繊維状あるいはフィルム状である場合には、該材料のみあるいは他の成分を加えて紙、不織布、フィルム等のシート状物を形成し、かかるシート状物に他方の材料を担持させたり、含浸させたりすることによって本発明のデシカントシートを得ることができる。また、吸放湿性材料と光熱変換材料を添加した樹脂から繊維やフィルムに成型し、本発明のデシカントシートを得ることもできる。この場合、繊維やフィルムを多孔質構造としたり、透湿性や透明性の高い樹脂を用いたりすることで、繊維やフィルム内層部の吸放湿性材料や光熱変換材料を効率よく利用できるようになり、除湿・加湿性能や低温再生能力の向上を図ることができる。
また、シート状基材を用い、これに吸放湿性材料と光熱変換材料を固定する態様は、強度、耐久性、寸法安定性、成型加工性などの点から応用展開しやすい態様である。採用できるシート状基材としては、特に限定はなく、プラスチックシート、金属シート、ガラスシート、樹脂コート紙、紙、不織布及び各種複合体等のようなシート状の基材が挙げられる。プラスチックシートの例としては、ポリエチレンテレフタレートシート、ポリカーボネートシート、ポリエチレンシート、ポリ塩化ビニルシート、ポリ塩化ビニリデンシート、ポリスチレンシート、スチレン-アクリロニトリルシート、ポリエステルシート等を挙げることができる。紙としては、ガラス繊維等よりなる無機繊維紙、パルプを主体とする一般紙、合成繊維が含まれる合成繊維紙、あるいはこれらの複合化された紙等を挙げることができる。中でも、耐光性、耐久性、寸法安定性、等の点よりガラス繊維等の無機繊維を主体とする無機繊維紙が好ましく、特に無機繊維と有機繊維からなる複合無機繊維紙の場合、柔軟性の特性が加わるため、巻き取り、切断、折り曲げなどの後加工も容易となる。
また、シート状基材を用いる態様においては、必須成分である吸放湿性材料と光熱変換材料をシート基材に固定するために必要であればバインダーを用いてもよい。該バインダーとしては該必須成分が要求される機能を発現できる限りにおいて何ら限定はない。
具体的には、有機系ではポリメタクリル酸メチル等のアクリル酸系樹脂、ポリカーボネート、ポリスチレン、塩化ビニル/酢酸ビニル共重合体、ポリビニルアルコール等のビニル系樹脂、ポリビニルブチラール、ポリエステル、ポリ塩化ビニル、ポリアミド、ポリイミド、ポリエーテルイミド、ポリスルホン、ポリエーテルスルホン、アラミド、ポリウレタン、エポキシ樹脂、尿素/メラミン樹脂等が、無機系ではコロイダルシリカ、水ガラス、リン酸アルミニウム等が挙げられる。
また、吸放湿性材料は親水性が高いため、水溶性有機バインダーを用いる場合に良好な結果を与えることが多い。かかる水溶性有機バインダーとしては、ポリビニルアルコール、ポリビニルアセタール、ポリビニルピロリドン、ナイロン、ポリアクリルアミド、ポリアルキレンオキサイド、ゼラチン、カゼイン、メチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ヒドロキシエチル澱粉、アラビアゴム、サクローズオクタアセテート、アルギン酸アンモニウム、アルギン酸ナトリウム、ポリビニルアミン、ポリエチレンオキシド、ポリアクリル酸等が挙げられる。さらに、これらと架橋性化合物を併用するとより良い耐久性、耐水性を得ることができ好ましい。
ここで架橋性化合物としては特に限定はなく、例えばジグリシジルエーテル、グリセロールジグリシジルエーテル、グリセロールトリグリシジルエーテル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル等のポリエポキシ化合物;エチレングリコール、プロピレングリコール、ポリエチレングリコール、グリセロール等のグリコール化合物;グリシジルアルコール、トリメチロールプロパン、ポリビニルアルコール、ペンタエリスリトール等の水酸基含有化合物;エタノールアミン、エチレンジアミン、プロピレンジアミン、トリメチロールメラミン、ポリエチレンイミン、尿素、オキサゾリン系反応性ポリマー、ブロック化ポリイソシアネート化合物、ポリアジリジン化合物、ポリオキサゾリン基含有化合物、チタンキレート化合物、ジルコニア化合物などを挙げることができる。中でも、ポリエポキシ化合物、ブロック化ポリイソシアネート化合物、ポリアジリジン化合物、ポリオキサゾリン基含有化合物、チタンキレート化合物、ジルコニア化合物よりなる群のいずれかの架橋性化合物を用いることで、耐久性に優れた固着が可能となることからこれらを使用することが好ましい。
また、バインダー以外の添加剤を含有することも本発明を何ら逸脱するものでなく、例えば、抗菌剤、抗カビ剤、レベリング剤、各種熱重合抑制剤、レベリング剤、増粘剤、減粘剤、チキソトロピー付与剤、ハレーション防止剤、艶消し剤、希釈剤、フィラ-、強化剤、熱可塑性樹脂等を適宜選択し使用することができる。また、バインダー中に伝熱性に優れるアルミニウム、銅などの金属粉あるいは金属繊維等を添加すれば、熱伝導がより効率的となり本発明の効果を高める上で有効となる場合がある。
次に、本発明の光熱変換再生デシカントシートの構成の状態について述べる。本発明の光熱変換再生デシカントシートにおいては、光熱変換材料により光エネルギーが熱エネルギーに変換され、この熱エネルギーを吸放湿性材料を再生すなわち放湿させるためのエネルギーとして利用する。従って、シート内において光熱変換材料から生じる熱エネルギーを吸放湿性材料に効率よく伝導できるようにすることが、シートの除湿・加湿特性や低温再生特性の面から望ましい。
このためには、吸放湿性材料と光熱変換材料との距離が小さく、かつ空気層などの熱伝導率の低いものが介在しない状態、すなわち、これらの材料が少なくともその一部において直接接している状態あるいは樹脂を介して近接している状態にあることが好ましい。ここで、吸放湿性材料と光熱変換材料との距離について、これを直接測定することは容易でないが、吸放湿性材料と光熱変換材料の合計重量に対する樹脂の重量の割合が指標にできる。すなわち、かかる割合が小さいほど樹脂量が少なく、吸放湿性材料と光熱変換材料との間の距離が近いことになる。樹脂を介して近接している状態としては、吸放湿性材料と光熱変換材料の合計重量を100重量部とした場合、樹脂が好ましくは100重量部以下、より好ましくは60重量部以下、さらに好ましくは30重量部以下、最も好ましくは10重量部以下である状態である。
直接接している状態の具体的な例としては、吸放湿性材料そのものを連続相として光熱変換材料が分散している状態、吸放湿性材料そのものによる連続相上に光熱変換材料が分散あるいは被覆している状態、光熱変換材料そのものを連続相として吸放湿性材料が分散している状態、光熱変換材料そのものによる連続相上に吸放湿性材料が分散あるいは被覆している状態などを挙げることができる。
また、繊維状の光熱変換材料やフィルム状の光熱変換材料などからなる基材に吸放湿性材料を含浸あるいは被覆させた状態、あるいは、これら2種類の状態について、吸放湿性材料と光熱変換材料を入れ換えた状態なども直接接している状態の例として挙げることができる。
一方、樹脂を介して近接している状態における樹脂としては、特に限定はないが、天然ゴムなどの天然樹脂や熱硬化性樹脂や熱可塑性樹脂などの合成樹脂が挙げられ、より具体的には上述したバインダーが挙げられる。近接している状態の具体的な例としては、(1)バインダーを連続相として吸放湿性材料と光熱変換材料が分散している状態、(2)バインダーを連続相として吸放湿性材料が分散している層とバインダーを連続相として光熱変換材料が分散している層とが積層している状態、(3)バインダーを連続相として吸放湿性材料が分散しており、該連続相上に光熱変換材料が分散あるいは被覆している状態、あるいは、(2)、(3)の状態について、吸放湿性材料と光熱変換材料を入れ換えた状態などを挙げることができる。
上記(2)あるいは(3)の状態においては、上側層あるいは被覆の厚みが厚すぎる場合、下側層あるいは被覆される側の材料の機能を阻害する、あるいは脱落し易くなる等の問題が発生する場合がある。具体的には上側層あるいは被覆の厚みとしては0.3mm以下である場合が良好な結果を得られる場合が多い。
また、直接接している状態と樹脂を介して近接している状態が混在する状態も好ましい。具体的な例としては、吸放湿性材料とバインダーがともに連続相となっており、これらの連続相中に光熱変換材料が分散している状態が挙げられる。この例では、吸放湿性材料の連続相とバインダーの連続相が三次元的な広がりの中で絡んでいるような状態となっており、光熱変換材料はいずれの連続相中にも分散している。なお、かかる状態とするには、吸放湿性材料として水分散体状の架橋ポリアクリル酸系高分子化合物を用いる例が挙げられる。この場合、該化合物、光熱変換材料、バインダー、およびその他の添加剤の合計重量を100重量部として、該化合物を70重量部以上用いると吸放湿性材料が連続相となりやすい。
なお、本発明のデシカントシートにおいては、シート状基材を用いる場合、シート状基材の全体に上述した状態を形成させたものに限らず、かかる状態をシート状基材の一部に形成させたものも採用できる。後者の例としては、シート状基材に上述した状態を島状に形成させたものや、一旦シート状基材の全体に上述した状態を形成させた後、一部を取り除いたものなどが挙げられる。
次に、本発明のデシカントシートを構成する各成分の含有割合について述べる。吸放湿性材料と光熱変換材料の含有割合については、必要とされる用途に応じ要求される機能が発現される限りにおいては特に限定はない。ただ、光熱変換材料の変換した熱エネルギーを吸放湿性材料の再生に有効に利用しつつ、吸湿量が少なくなりすぎないようにする観点から、それぞれの材料の好ましい含有量としては、吸放湿性材料と光熱変換材料の合計重量を100重量部とした場合、吸放湿性材料が50~99.5重量部、一方の光熱変換材料が0.5~50重量部であり、より好ましくは、吸放湿性材料が70~99.5重量部、一方の光熱変換材料が0.5~30重量部であり、さらに好ましくは吸放湿性材料が90~99.5重量部、一方の光熱変換材料が0.5~10重量部である。
また、バインダーを用いる場合におけるバインダー量としては、吸放湿性材料がバインダーに覆われて除湿・加湿性能が低下することを避ける観点や吸放湿性材料と光熱変換材料とを近接させた状態とする観点からバインダー量を少なくすることが望ましく、上述のように吸放湿性材料と光熱変換材料の合計重量を100重量部とした場合、バインダーが好ましくは100重量部以下、より好ましくは60重量部以下、さらに好ましくは30重量部以下、最も好ましくは10重量部以下とすることが望ましい。しかし、バインダー量が少なすぎると吸放湿性材料あるいは光熱変換材料を基材に十分に固定できず、これらの材料が脱落する等の問題が生じる。このため、バインダーを用いる場合におけるバインダー量の下限としては、吸放湿性材料と光熱変換材料の合計重量100重量部に対して、好ましくは1重量部以上、より好ましくは3重量部以上となるようにするのが望ましい。
また、バインダー以外の上述のような添加剤を用いる場合、かかる添加剤の含有割合は、目的とする除湿・加湿性能や低温再生能力を勘案して適宜設定すればよい。一般的には、吸放湿性材料と光熱変換材料の合計重量100重量部に対して、バインダーも含めた添加剤の総量を好ましくは0~400重量部、より好ましくは0~100重量部となるように設定すれば良好な結果が得られることが多い。
また、シート状基材を用いるパターンでは、デシカントシート全体に占める吸放湿性材料および光熱変換材料の割合があまりに少ないと十分な除湿・加湿性能が得られなくなる。一方、強度、耐久性などの特性を十分に発現できるようにする観点からシート状基材の割合があまり少ない場合も好ましくない。このようなことから、シート状基材を用いるパターンでは、吸放湿性材料、光熱変換材料およびバインダーを含む添加剤の合計重量100重量部に対して、シート状基材を好ましくは10~100重量部、より好ましくは20~70重量部とするのが望ましい。
本発明の光熱変換再生デシカントシートの厚みについても、目的とされる特性が得られる限りにおいては特に限定はない。ただあまり厚みが厚すぎると光の透過が阻害されて光熱変換効果が低下したり、あるいは後述するデシカント素子への加工が難しくなったりするといった問題が生じるため、2mm以下、好ましくは0.5mm以下とすることが望ましい。またあまり薄すぎる場合は強度、耐久性の問題が生じるため、10μm以上、好ましくは50μm以上とすることが望ましい。
また、本発明の光熱変換再生デシカントシートは、デシカント素子やデシカントローターに用いる場合、低湿度雰囲気下と高湿度雰囲気下での吸湿量の差が大きいことが望ましい。デシカント空調システムにおいては、低湿度雰囲気下での再生と高湿度雰囲気下での吸湿を繰り返し行うため、デシカントシートの低湿度雰囲気下と高湿度雰囲気下での吸湿量の差が大きいことは、大きな除湿量あるいは加湿量を得るうえで有利となる。かかる観点から、後述する評価方法による飽和吸湿量差として5g/m2以上、好ましくは20g/m2以上、より好ましくは25g/m2以上とすることが望ましい。
さらに、本発明の光熱変換再生デシカントシートの20℃×65%における飽和吸湿量としては1m2あたり5g以上、好ましくは15g以上、より好ましくは25g以上であることが、デシカント空調システムの部材として利用する上で望ましい。
上述してきた本発明の光熱変換再生デシカントシートは、電磁波、特に、太陽光を自然エネルギー源として効率的にデシカントの再生を行うことができる。かかる本発明のデシカントシートはそのままの形状でも使用できるが、これを立体的に成型してデシカント素子となし、かかるデシカント素子を用いてデシカント空調システムを構成すれば、自然エネルギーを活用し、かつ省エネルギーである空調システムを実現することができる。
本発明の光熱変換再生デシカント素子は、上述した本発明の光熱変換再生デシカントシートからなり、気体貫通路を有する立体構造体である。立体構造としては、シート上の吸放湿性材料および光熱変換材料を効率よく利用するために、通過する空気および照射される電磁波に対して、これらに接するシートの面積をできるだけ広くできる構造とすることが望ましい。具体例として、ハニカム構造と呼ばれるものがあり、例えば六角型、OX型、フレックス型、バイセクト型、フェザー型(以下コルゲート型という)等を挙げることができる。中でも、加工が容易で、加工速度が早く、コスト的にも有利なコルゲート型のものが好ましい。また、気体貫通路の大きさや長さ等の特性については、圧力損失(空気抵抗)などの求められる性能に応じて適宜選定することができる。デシカント素子の外観形状としても、用途に合わせて自由に設定できる。
本発明の光熱変換再生デシカントローターは上述した光熱変換再生デシカント素子をローターとして構成したものであり、回転することにより、吸放湿性材料による水分の吸着と、光熱変換により発生する熱による吸放湿性材料の再生を連続的に繰り返し行うことができるようにしたものである。ローターの直径、厚み等については特に規定はなく、求められる性能に応じて適宜選定することができる。また、かかるローターは光熱変換再生デシカント素子そのものよりなるものであっても、また補強のために金属枠、プラスチック枠等で囲む等の加工が施されているものでも構わない。
なお、上述した本発明の光熱変換再生デシカント素子や光熱変換再生デシカントローターの作成にあたっては、最終的に本発明の光熱変換再生デシカントシートからなり、気体貫通路を有する立体構造体が含まれるようになる限り、その作成方法に特に限定はない。例えば、予め作成した本発明の光熱変換再生デシカントシートを用いてデシカント素子やデシカントローターを作成する方法や、シート状基材を用いて素子やローターを作成した後に、吸放湿性材料や光熱変換材料を含有させて、本発明の光熱変換再生デシカントシートを用いてデシカント素子やデシカントローターとする方法などが挙げられる。
本発明の光熱変換再生デシカント空調システムは、吸放湿性材料による空気中の水分の吸着と空気中への水分の脱着を繰り返すことにより空調を行うデシカント空調システムにおいて、上述した本発明の光熱変換再生デシカント素子、あるいは、本発明の光熱変換再生デシカント素子よりなるローターを用い、かつ、該素子あるいは該ローターに対して、水分の吸着時には電磁波遮断を行い、水分の脱着時には電磁波照射を行うようにすることを基本的な構成とする空調システムである。
すなわち、かかるシステムは、吸湿したデシカント素子あるいはデシカントローターに対して相対湿度の低い空気を通過させるとともに、太陽光などの電磁波を照射して光熱変換材料の光熱変換作用により熱エネルギー発生させて、デシカント素子あるいはデシカントローター上の吸放湿性材料を再生させるプロセスと、再生されたデシカント素子あるいはデシカントローターに対して、電磁波を遮断して光熱変換材料の光熱変換作用による熱エネルギーを発生させないようにして、相対湿度の高い空気を通過させて吸湿するプロセスを交互に繰り返すものである。
かかる本発明の光熱変換再生デシカント空調システムにおいては、空気の除湿または加湿を行うことができるほか、吸湿により得られた乾燥空気を用いて水分の気化を行い、この際生じる気化熱を用いて冷却または冷房を行ったり、光熱変換再生の際に発生した熱を用いて加熱または暖房を行ったりするなどの機能を持たせることが可能である。以下に具体例を挙げて説明する。
図1は本発明の光熱変換再生デシカントローターを利用して加湿を行えるようにした光熱変換再生デシカント空調システムを示す図である。空調空間202からの排出空気302aは顕熱交換装置102を通過することにより、戻り空気301bと顕熱交換する。顕熱交換された空気302bは、本発明の光熱変換再生デシカントローター101を通過する。この際、空気通過面は遮光板103により遮光されており、受光側に比較し温度が低いため、空気302bは除湿され、湿分はデシカントローター101に吸着される。湿分を吸着した部分はデシカントローター101の回転により受光側に移り、電磁波照射を受けることにより光熱変換材料が発熱してローターが加熱される。この作用によりローターに吸着していた湿分は脱着される。この際、ローターを通過している導入空気301aが脱着した湿分によって加湿される。その後上記の通り顕熱交換装置102で顕熱交換され、戻り空気301bとなって空調空間202に戻される。この一連の流れで、空調空間202の顕熱は顕熱交換により再び空調空間202へ戻り、また空調空間202の湿分、すなわち潜熱もデシカントローター101への吸着と脱着という潜熱交換により空調空間202へ戻るというサイクルとなっている。加えて導入空気301aが本来持っている湿分すなわち潜熱も同時に空調空間202へ導かれるため結果として空調空間202の加湿が行われる。
図2は本発明の光熱変換再生デシカントローターを利用して除湿を行えるようにした光熱変換再生デシカント空調システムを示す図である。導入空気303aは、光熱変換再生デシカントローター101を通過する。この際、空気通過面は遮光板103により遮光されており、受光側に比較し温度が低いため、導入空気303a中の湿分を吸着除去すなわち除湿され、同時に吸着熱により温度が上昇する。次いで、顕熱交換装置102を通過することにより空調空間202から排出される空気304aと顕熱交換して空調空間202の温度に近い温度まで冷却され、低湿度空気303bとして空調空間202に導入される。一方、空調空間202からの排出空気304aは顕熱交換装置102により冷たい顕熱を低湿度空気303bに戻される。顕熱交換により加熱された空気304bは、デシカントローター101の受光側を通過する。この受光側にはローターの回転により導入空気303a中の湿分を吸着した部分が移動してきている。ここで電磁波照射を受けることにより光熱変換材料が発熱してローターが加熱され、この熱と加熱されて温度上昇し相対湿度の低下した空気304bにより、ローターに吸着されている湿分が脱着されて空気304bに移動し排出される。この一連の流れで、湿分の除去された空気が導入されるとともに空調空間202にあった湿分が排出され、結果として空調空間202が除湿される。
図3は本発明の光熱変換再生デシカントローターを利用して除湿冷却または冷房を行えるようにした光熱変換再生デシカント空調システムを示す図である。導入空気303aは、光熱変換再生デシカントローター101を通過する。この際、空気通過面は遮光板101により遮光されており、受光側に比較し温度が低いため、導入空気303a中の湿分が吸着除去すなわち除湿され、同時に吸着熱により温度が上昇する。次いで、顕熱交換装置102を通過することにより空調空間202から排出される空気304aと顕熱交換して空調空間202の温度に近い温度まで冷却され、低湿度空気303bとなる。この後、低湿度空気303bは、気化冷却装置105を通ることにより、乾燥空気による気化冷却効果の結果、空調空間202の温度より低温の空気にまで冷却され空調空間202に導入される。一方、空調空間202からの排出空気304aは顕熱交換装置102により冷たい顕熱を低湿度空気303bに戻され、加熱された空気304bとなる。次に空気304bは、デシカントローター101の受光側を通過する。この受光側にはローターの回転により導入空気303a中の湿分を吸着した部分が移動してきている。ここで電磁波照射を受けることにより光熱変換材料が発熱してローターが加熱され、この熱と加熱されて温度上昇し相対湿度の低下した空気304bによりローターに吸着された湿分が脱着されて空気304bに移動し排出される。この一連の流れで、湿分を除去され、冷却された空気が導入されるとともに空調空間202にあった湿分と熱が排出され、結果として空調空間202が除湿冷却される。
図4は本発明の光熱変換再生デシカントローターを利用して加熱または暖房と加湿を行えるようにした光熱変換再生デシカント空調システムを示す図である。空調空間202からの排出空気305aは光熱変換再生デシカントローター101を通過する。この際、空気通過面は遮光板103により遮光されており、受光側に比較し温度が低いため、排出空気305a中の湿分が吸着されるとともに吸着熱により温度が上昇する。この乾燥し温度の高くなった空気は顕熱交換装置102を通過し、導入空気306aと顕熱交換を行う。導入空気306aは顕熱交換により加熱され、ローター101の受光側を通過する。この受光側にはローターの回転により導入空気305a中の湿分を吸着した部分が移動してきている。ここで電磁波照射を受けることにより光熱変換材料が発熱してローターが加熱され、吸着されていた湿分が脱着する。この結果、導入空気306aは加熱加湿された空気306bとなって、空調空間202に導入される。この一連の流れで、空調空間202の潜熱すなわち湿分は、光熱変換再生デシカントローター101により潜熱交換されて再び空調空間202に戻るとともに、導入空気306aが元々持っていた湿分も空調空間202に導入される。さらに、顕熱については、空調空間202の顕熱に加えて、光熱変換再生デシカントローターへの湿分吸着の際に発生する吸着熱および光熱変換材料の発生する熱が、顕熱交換装置により導入空気に移される。これらの結果、空調空間202が加湿暖房される。
図5および図6は本発明の光熱変換再生デシカント素子を静置型として利用した除湿システムの図である。まずは図5において導入空気307aは光熱変換再生デシカント素子106aを通過する。この際、デシカント素子106aは遮光板により遮光されており、受光側のデシカント素子106bに比較して温度が低いため、導入空気307aから湿分を吸着するとともに吸着熱を発生して、除湿加温された空気307bを生成する。この空気307bは顕熱交換装置102を通り、空調空間202からの排出空気308aと顕熱交換を行うことにより、室温に近い温度の乾燥した空気307cとして空調空間202に導入される。一方、排出空気308aは顕熱交換により加熱された空気308bとなってデシカント素子106bを通過する。この際デシカント素子106bは光を受け光熱変換により発熱しており、この熱と加熱された空気308bの熱によりデシカント素子106bから湿分が放出されて、デシカント素子106bは再生される。同時に、空気308bは放出された湿分とともに空気308cとして排気される。
図6は、図5において遮光板103をデシカント素子106a側からデシカント素子106b側に移動させ、かつ空気の流れを逆向きとした運転状態である。図6の運転状態においても、図5の運転状態の場合と同様に、導入空気がデシカント素子によって除湿されて空調空間202に導かれ、空調空間202からの排出空気がデシカント素子を再生して排気される。ただし、図5で吸湿していたデシカント素子106aは図6では再生され、図5で再生されたデシカント素子106bは図6では吸湿するというように吸湿と再生が入れ替わる。すなわち、図5、6の除湿システムは、図5の運転と図6の運転を交互に繰り返すことによりバッチ方式で、除湿空気を空調空間に送り込むことができる除湿システムである。
また、かかる静置型の光熱変換再生デシカント素子を用いたバッチ方式においても、前述の光熱変換再生デシカントローターを用いた方式と同様に加湿、加湿暖房、除湿冷却などの空調システムを構築することが可能である。
上述した本発明の光熱変換再生デシカント空調システムにおいて光熱変換に用いられる電磁波としては、光熱変換材料が光熱変換機能を発揮することができる電磁波であれば利用することができる。かかる電磁波が太陽光あるいは太陽光由来のものである場合、自然エネルギー源であり環境にやさしく、また省エネルギーのシステムとなるため特に好ましい。
以下実施例により本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例中の部及び百分率は、断りのない限り重量基準で示す。まず、各特性の評価方法および評価結果の表記方法について説明する。
(1)飽和吸湿率および飽和吸湿率差
吸放湿性材料試料約1.0gを熱風乾燥機で105℃、16時間乾燥し重量を測定する(W1[g])。次にかかる試料を20℃×95%RHまたは20℃×45%RHに調整された恒温恒湿器に24時間放置し重量を測定する(W2[g])。これらの測定値から、各雰囲気下における飽和吸湿率を次式により算出する。
飽和吸湿率[%]={(W2-W1)/W1}×100
算出された数値から20℃×45%RHと20℃×95%RHとの飽和吸湿率差[パーセントポイント]を求める。
吸放湿性材料試料約1.0gを熱風乾燥機で105℃、16時間乾燥し重量を測定する(W1[g])。次にかかる試料を20℃×95%RHまたは20℃×45%RHに調整された恒温恒湿器に24時間放置し重量を測定する(W2[g])。これらの測定値から、各雰囲気下における飽和吸湿率を次式により算出する。
飽和吸湿率[%]={(W2-W1)/W1}×100
算出された数値から20℃×45%RHと20℃×95%RHとの飽和吸湿率差[パーセントポイント]を求める。
(2)再生率
吸放湿性材料試料を20℃×95%RHに調整された恒温恒湿器に24時間放置した後、10mg前後の量を測り採り(W3[mg])、熱重量測定装置(株式会社島津製作所製DTG-60)にセットする。室温から昇温速度1℃/分として熱重量測定を行い、60℃時点での重量減少量を求める(W4[mg])。これらの値と上述の20℃×95%RHにおける飽和吸湿率[%]とから下記式により再生率を算出する。
再生率[%]=W4/[W3×{ 飽和吸湿率 /(100+ 飽和吸湿率 )]×100
吸放湿性材料試料を20℃×95%RHに調整された恒温恒湿器に24時間放置した後、10mg前後の量を測り採り(W3[mg])、熱重量測定装置(株式会社島津製作所製DTG-60)にセットする。室温から昇温速度1℃/分として熱重量測定を行い、60℃時点での重量減少量を求める(W4[mg])。これらの値と上述の20℃×95%RHにおける飽和吸湿率[%]とから下記式により再生率を算出する。
再生率[%]=W4/[W3×{ 飽和吸湿率 /(100+ 飽和吸湿率 )]×100
(3)吸湿性能維持率
上記(1)の飽和吸湿率の測定と同様にして吸放湿性材料の40℃×90%RHにおける飽和吸湿率を求める。次に、該吸放湿性材料に対して、20℃×50%RH下での24時間の放湿と40℃×90%RH下での24時間の吸湿を15サイクル繰り返した後、15サイクル目の40℃×90%RHにおける飽和吸湿率を求める。かかる繰り返し吸放湿後の飽和吸湿率を、繰り返し吸放湿前の飽和吸湿率で除して、100を乗じたものを高湿度雰囲気下での吸湿性能維持率とする。また、上記吸放湿サイクルにおいて、15サイクル目の20℃×50%RHにおける飽和吸湿率を1サイクル目の20℃×50%RHにおける飽和吸湿率で除して、100を乗じたものを低湿度雰囲気下での吸湿性能維持率とする。
上記(1)の飽和吸湿率の測定と同様にして吸放湿性材料の40℃×90%RHにおける飽和吸湿率を求める。次に、該吸放湿性材料に対して、20℃×50%RH下での24時間の放湿と40℃×90%RH下での24時間の吸湿を15サイクル繰り返した後、15サイクル目の40℃×90%RHにおける飽和吸湿率を求める。かかる繰り返し吸放湿後の飽和吸湿率を、繰り返し吸放湿前の飽和吸湿率で除して、100を乗じたものを高湿度雰囲気下での吸湿性能維持率とする。また、上記吸放湿サイクルにおいて、15サイクル目の20℃×50%RHにおける飽和吸湿率を1サイクル目の20℃×50%RHにおける飽和吸湿率で除して、100を乗じたものを低湿度雰囲気下での吸湿性能維持率とする。
(4)塩型カルボキシル基量
十分乾燥した試料約1gを精秤し(W5[g])、これに200mLの水を加えた後、50℃に加温しながら1mol/Lの塩酸水溶液を添加してpH2とすることで、試料に含まれるカルボキシル基を全てH型カルボキシル基とする。次いで0.1mol/Lの水酸化ナトリウム水溶液で常法に従って滴定曲線を求める。該滴定曲線からH型カルボキシル基に消費された水酸化ナトリウム水溶液消費量(V1[mL])を求め、次式によって試料中に含まれる全カルボキシル基量を算出する。
全カルボキシル基量[mmol/g]=0.1×V1/W5
別途、上述の全カルボキシル基量測定操作中の1mol/Lの塩酸水溶液添加によるpH2への調整をすることなく同様に滴定曲線を求め、試料中に含まれるH型カルボキシル基量を求める。これらの結果から次式により塩型カルボキシル基量を算出する。
塩型カルボキシル基量[mmol/g]= 全カルボキシル基量 - H型カルボキシル基量
十分乾燥した試料約1gを精秤し(W5[g])、これに200mLの水を加えた後、50℃に加温しながら1mol/Lの塩酸水溶液を添加してpH2とすることで、試料に含まれるカルボキシル基を全てH型カルボキシル基とする。次いで0.1mol/Lの水酸化ナトリウム水溶液で常法に従って滴定曲線を求める。該滴定曲線からH型カルボキシル基に消費された水酸化ナトリウム水溶液消費量(V1[mL])を求め、次式によって試料中に含まれる全カルボキシル基量を算出する。
全カルボキシル基量[mmol/g]=0.1×V1/W5
別途、上述の全カルボキシル基量測定操作中の1mol/Lの塩酸水溶液添加によるpH2への調整をすることなく同様に滴定曲線を求め、試料中に含まれるH型カルボキシル基量を求める。これらの結果から次式により塩型カルボキシル基量を算出する。
塩型カルボキシル基量[mmol/g]= 全カルボキシル基量 - H型カルボキシル基量
(5)吸放湿性材料A、B、Cの平均粒子径
レーザー回折式粒度分布測定装置(株式会社島津製作所製SALD-2000)を使用し、水を分散媒として測定した結果を体積基準で表し、そのメディアン径をもって平均粒子径とする。
レーザー回折式粒度分布測定装置(株式会社島津製作所製SALD-2000)を使用し、水を分散媒として測定した結果を体積基準で表し、そのメディアン径をもって平均粒子径とする。
(6)デシカントシートの再生における光熱変換材料の効果
光熱変換材料を含有するシートと光熱変換材料を含有しないこと以外は該シートと同様のシートを20℃×90%RHに調整された恒温恒湿器に24時間放置した後、それぞれのシートについて重量を測定する(W6[g])。これらのシートを直ちに太陽光下(30℃×43%RH)に置き10分経過後、重量を測定する(W7[g])。これらの測定値から、次式により各シートの重量減少率を算出する。
重量減少率=(W6-W7)/W6
次に、算出された光熱変換材料を含有するシートの重量減少率を、光熱変換材料を含有しないシートの重量減少率で除して比率を算出する。かかる比率が大きいほどデシカントシートの再生における光熱変換材料の効果が大きく、少なくとも1よりも大きくなければ本発明の光熱変換再生デシカントシートとは言えない。また、デシカント素子やデシカントローターに加工した場合、立体形状により電磁波を受けにくくなる部分があることから、かかる比率が1.3以上、より好ましくは1.5以上であることが実用上望ましい。逆にかかる比率が1以下となる場合には光熱変換材料の効果がほとんど得られていないと言える。なお、光熱変換材料を含有しないシートは当該光熱変換材料を含有するシートの作成方法に対して、光熱変換材料については添加せず、吸放湿性材料やバインダーについては単位面積当たりの量が同じになるように付着量を調整して作成したものである。
光熱変換材料を含有するシートと光熱変換材料を含有しないこと以外は該シートと同様のシートを20℃×90%RHに調整された恒温恒湿器に24時間放置した後、それぞれのシートについて重量を測定する(W6[g])。これらのシートを直ちに太陽光下(30℃×43%RH)に置き10分経過後、重量を測定する(W7[g])。これらの測定値から、次式により各シートの重量減少率を算出する。
重量減少率=(W6-W7)/W6
次に、算出された光熱変換材料を含有するシートの重量減少率を、光熱変換材料を含有しないシートの重量減少率で除して比率を算出する。かかる比率が大きいほどデシカントシートの再生における光熱変換材料の効果が大きく、少なくとも1よりも大きくなければ本発明の光熱変換再生デシカントシートとは言えない。また、デシカント素子やデシカントローターに加工した場合、立体形状により電磁波を受けにくくなる部分があることから、かかる比率が1.3以上、より好ましくは1.5以上であることが実用上望ましい。逆にかかる比率が1以下となる場合には光熱変換材料の効果がほとんど得られていないと言える。なお、光熱変換材料を含有しないシートは当該光熱変換材料を含有するシートの作成方法に対して、光熱変換材料については添加せず、吸放湿性材料やバインダーについては単位面積当たりの量が同じになるように付着量を調整して作成したものである。
(7)デシカントシートの飽和吸湿量差
10cm×10cmのデシカントシート試料を熱風乾燥機で105℃、16時間乾燥し重量を測定する(W1[g])。次にかかる試料を20℃×45%RHまたは20℃×95%RHに調整された恒温恒湿器に24時間放置し重量を測定する(W2[g])。これらの測定値から、各雰囲気下における飽和吸湿量を次式により算出する。
飽和吸湿量[g/m2]=(W2-W1)/0.01
算出された数値から20℃×45%RHと20℃×95%RHとの飽和吸湿量差を求める。
10cm×10cmのデシカントシート試料を熱風乾燥機で105℃、16時間乾燥し重量を測定する(W1[g])。次にかかる試料を20℃×45%RHまたは20℃×95%RHに調整された恒温恒湿器に24時間放置し重量を測定する(W2[g])。これらの測定値から、各雰囲気下における飽和吸湿量を次式により算出する。
飽和吸湿量[g/m2]=(W2-W1)/0.01
算出された数値から20℃×45%RHと20℃×95%RHとの飽和吸湿量差を求める。
[吸放湿性材料の製造例1]
4.4mmol/gのスルホン酸基および架橋構造を有する有機高分子よりなるイオン交換樹脂(オルガノ株式会社製アンバーライトIR120B)を乾燥し、次に気流粉砕機により粉砕することにより吸放湿性材料Aを得た。吸放湿性材料Aの特性を評価した結果を表1に示す。
4.4mmol/gのスルホン酸基および架橋構造を有する有機高分子よりなるイオン交換樹脂(オルガノ株式会社製アンバーライトIR120B)を乾燥し、次に気流粉砕機により粉砕することにより吸放湿性材料Aを得た。吸放湿性材料Aの特性を評価した結果を表1に示す。
[吸放湿性材料の製造例2]
反応槽にラウリル硫酸ナトリウム1部、過硫酸アンモニウム3部および水350部を仕込む。次にこの反応槽を温度70℃まで昇温し、70℃に保ち攪拌しながら反応槽内にメチルアクリレート35部、ブチルアクリレート45部、ジビニルベンゼン15部、p-スチレンスルホン酸ナトリウム8部および水50部を滴下して重合を開始する。これら単量体類の滴下は30分間で終了する様に滴下速度を調整する。滴下終了後2時間同一条件に保って重合を行う。かくして得られた重合体エマルジョンは、固形分21%、平均粒子径は0.03μmであった。得られた重合体エマルジョン480部に、水酸化カリウム45部を水475部に溶解した溶液を添加し、95℃で48時間さらにリフラックス条件で8時間加水分解反応を行った。加水分解後の混合溶液は、セルロース半透膜を用いて流水中で透析・脱塩することにより、水分散体状の吸放湿性材料Bを得た。得られた水分散体の固形分は12%であった。吸放湿性材料Bの特性を評価した結果を表1に示す。
反応槽にラウリル硫酸ナトリウム1部、過硫酸アンモニウム3部および水350部を仕込む。次にこの反応槽を温度70℃まで昇温し、70℃に保ち攪拌しながら反応槽内にメチルアクリレート35部、ブチルアクリレート45部、ジビニルベンゼン15部、p-スチレンスルホン酸ナトリウム8部および水50部を滴下して重合を開始する。これら単量体類の滴下は30分間で終了する様に滴下速度を調整する。滴下終了後2時間同一条件に保って重合を行う。かくして得られた重合体エマルジョンは、固形分21%、平均粒子径は0.03μmであった。得られた重合体エマルジョン480部に、水酸化カリウム45部を水475部に溶解した溶液を添加し、95℃で48時間さらにリフラックス条件で8時間加水分解反応を行った。加水分解後の混合溶液は、セルロース半透膜を用いて流水中で透析・脱塩することにより、水分散体状の吸放湿性材料Bを得た。得られた水分散体の固形分は12%であった。吸放湿性材料Bの特性を評価した結果を表1に示す。
[吸放湿性材料の製造例3]
アクリロニトリル490部、p-スチレンスルホン酸ソーダ16部及び水1181部を2L容量のオートクレイブ内に仕込み、更に重合開始剤としてジ-tert-ブチルパーオキサイドを単量体全量に対して0.5%添加した後、密閉し、撹拌しながら150℃で23分間重合反応させた。反応終了後、撹拌を継続しながら約90℃まで冷却し、平均粒子径0.2μmの微粒子の水分散体を得た。かかる水分散体に、浴中濃度が35%となるようにヒドラジンを加え、102℃で2.5時間架橋処理を行った。続いて浴中濃度が10%となるように水酸化ナトリウムを加え、102℃で5時間加水分解処理を行った後、セルロース半透膜を用いて流水中で透析・脱塩することにより、水分散体状の吸放湿性材料Cを得た。得られた水分散体の固形分は15%であった。吸放湿性材料Cの特性を評価した結果を表1に示す。
アクリロニトリル490部、p-スチレンスルホン酸ソーダ16部及び水1181部を2L容量のオートクレイブ内に仕込み、更に重合開始剤としてジ-tert-ブチルパーオキサイドを単量体全量に対して0.5%添加した後、密閉し、撹拌しながら150℃で23分間重合反応させた。反応終了後、撹拌を継続しながら約90℃まで冷却し、平均粒子径0.2μmの微粒子の水分散体を得た。かかる水分散体に、浴中濃度が35%となるようにヒドラジンを加え、102℃で2.5時間架橋処理を行った。続いて浴中濃度が10%となるように水酸化ナトリウムを加え、102℃で5時間加水分解処理を行った後、セルロース半透膜を用いて流水中で透析・脱塩することにより、水分散体状の吸放湿性材料Cを得た。得られた水分散体の固形分は15%であった。吸放湿性材料Cの特性を評価した結果を表1に示す。
架橋ポリアクリル酸塩系高分子化合物である吸放湿性材料BおよびCは飽和吸湿率、飽和吸湿率差、再生率、吸放湿繰り返し後の再生率のいずれも優れており、本発明の吸放湿性材料として特に適したものである。これに対して、カルボキシル基ではなくスルホン酸基を有する有機高分子である吸放湿性材料AとA型シリカゲルは、飽和吸湿率、飽和吸湿率差が比較的小さいものである。また、B型シリカゲルは、吸湿性能維持率が低いものである。
[実施例1]
80部の吸放湿性材料A、20部のカーボンブラック(三菱化学株式会社製 三菱カーボンブラック#20、平均一次粒子径50nm)およびバインダーとして47.5部のアクリル系樹脂エマルジョン(固形分40%)を混合する。得られた混合物を30g/m2のガラス繊維紙(ガラス繊維70%、ビニロン20%、アクリルバインダー10%を抄紙したもの)に、該混合物の固形分の付着量が50g/m2となるように塗布し、乾燥させる。得られるシートはバインダーを連続相として吸放湿性材料Bとカーボンブラックが分散している構造を有するものである。該シートの評価結果を表2に示す。
80部の吸放湿性材料A、20部のカーボンブラック(三菱化学株式会社製 三菱カーボンブラック#20、平均一次粒子径50nm)およびバインダーとして47.5部のアクリル系樹脂エマルジョン(固形分40%)を混合する。得られた混合物を30g/m2のガラス繊維紙(ガラス繊維70%、ビニロン20%、アクリルバインダー10%を抄紙したもの)に、該混合物の固形分の付着量が50g/m2となるように塗布し、乾燥させる。得られるシートはバインダーを連続相として吸放湿性材料Bとカーボンブラックが分散している構造を有するものである。該シートの評価結果を表2に示す。
[実施例2]
667部の水分散体状の吸放湿性材料B(固形分12%)、20部のカーボンブラック(三菱化学株式会社製 三菱カーボンブラック#20)およびバインダーとして13.3部のアクリル系樹脂エマルジョン(固形分40%)を混合する。得られる混合物を30g/m2のガラス繊維紙(ガラス繊維70%、ビニロン20%、アクリルバインダー10%を抄紙したもの)に、該混合物の固形分の付着量が50g/m2となるように含浸させ、乾燥させる。得られるシートは吸放湿性材料Bとバインダーを連続相としてカーボンブラックが分散している構造を有するものである。該シートの特性を表2に示す。
667部の水分散体状の吸放湿性材料B(固形分12%)、20部のカーボンブラック(三菱化学株式会社製 三菱カーボンブラック#20)およびバインダーとして13.3部のアクリル系樹脂エマルジョン(固形分40%)を混合する。得られる混合物を30g/m2のガラス繊維紙(ガラス繊維70%、ビニロン20%、アクリルバインダー10%を抄紙したもの)に、該混合物の固形分の付着量が50g/m2となるように含浸させ、乾燥させる。得られるシートは吸放湿性材料Bとバインダーを連続相としてカーボンブラックが分散している構造を有するものである。該シートの特性を表2に示す。
[実施例3]
実施例2における水分散体状の吸放湿性材料Bの代わりに、水分散体状の吸放湿性材料C(固形分15%)を533部用いること以外は、実施例2と同様にしてシートを作成する。得られるシートは吸放湿性材料Cとバインダーを連続相としてカーボンブラックが分散している構造を有するものである。該シートの特性を表2に示す。
実施例2における水分散体状の吸放湿性材料Bの代わりに、水分散体状の吸放湿性材料C(固形分15%)を533部用いること以外は、実施例2と同様にしてシートを作成する。得られるシートは吸放湿性材料Cとバインダーを連続相としてカーボンブラックが分散している構造を有するものである。該シートの特性を表2に示す。
[実施例4]
実施例1における吸放湿性材料Aの代わりに、表1に示すA型シリカゲル(富士シリシア化学株式会社製サイリシア730、平均粒子径3μm)を用いること以外は、実施例1と同様にしてシートを作成する。得られるシートはバインダーを連続相としてA型シリカゲルとカーボンブラックが分散している構造を有するものである。該シートの特性を表2に示す。
実施例1における吸放湿性材料Aの代わりに、表1に示すA型シリカゲル(富士シリシア化学株式会社製サイリシア730、平均粒子径3μm)を用いること以外は、実施例1と同様にしてシートを作成する。得られるシートはバインダーを連続相としてA型シリカゲルとカーボンブラックが分散している構造を有するものである。該シートの特性を表2に示す。
[実施例5]
実施例1における吸放湿性材料Aの代わりに、表1に示すB型シリカゲル(富士シリシア化学株式会社製サイリシア430、平均粒子径2.5μm)を用いること以外は、実施例1と同様にしてシートを作成する。得られるシートはバインダーを連続相としてB型シリカゲルとカーボンブラックが分散している構造を有するものである。該シートの特性を表2に示す。
実施例1における吸放湿性材料Aの代わりに、表1に示すB型シリカゲル(富士シリシア化学株式会社製サイリシア430、平均粒子径2.5μm)を用いること以外は、実施例1と同様にしてシートを作成する。得られるシートはバインダーを連続相としてB型シリカゲルとカーボンブラックが分散している構造を有するものである。該シートの特性を表2に示す。
[実施例6]
実施例2におけるカーボンブラックの代わりに黒色酸化鉄粒子(チタン工業株式会社製BL-100、平均粒子径0.4μm)を用いること以外は、実施例2と同様にしてシートを作成する。得られるシートは吸放湿性材料Bとバインダーを連続相として黒色酸化鉄粒子が分散している構造を有するものである。該シートの特性を表2に示す。
実施例2におけるカーボンブラックの代わりに黒色酸化鉄粒子(チタン工業株式会社製BL-100、平均粒子径0.4μm)を用いること以外は、実施例2と同様にしてシートを作成する。得られるシートは吸放湿性材料Bとバインダーを連続相として黒色酸化鉄粒子が分散している構造を有するものである。該シートの特性を表2に示す。
[実施例7]
実施例2において、水分散体状の吸放湿性材料Bを750部、カーボンブラックを10部用いること以外は、実施例2と同様にしてシートを作成する。得られるシートは吸放湿性材料Bとバインダーを連続相としてカーボンブラックが分散している構造を有するものである。該シートの特性を表2に示す。
実施例2において、水分散体状の吸放湿性材料Bを750部、カーボンブラックを10部用いること以外は、実施例2と同様にしてシートを作成する。得られるシートは吸放湿性材料Bとバインダーを連続相としてカーボンブラックが分散している構造を有するものである。該シートの特性を表2に示す。
[実施例8]
実施例2において、水分散体状の吸放湿性材料Bを825部、カーボンブラックを1部用いること以外は、実施例2と同様にしてシートを作成したする。得られるシートは吸放湿性材料Bとバインダーを連続相としてカーボンブラックが分散している構造を有するものである。得られた該シートの評価結果特性を表2に示す。
実施例2において、水分散体状の吸放湿性材料Bを825部、カーボンブラックを1部用いること以外は、実施例2と同様にしてシートを作成したする。得られるシートは吸放湿性材料Bとバインダーを連続相としてカーボンブラックが分散している構造を有するものである。得られた該シートの評価結果特性を表2に示す。
[実施例9]
実施例2において、水分散体状の吸放湿性材料Bを433部、カーボンブラックを48部用いること以外は、実施例2と同様にしてシートを作成する。得られたシートはバインダーを連続相として吸放湿性材料Bとカーボンブラックが分散している構造を有するものである。該シートの特性を表2に示す。
実施例2において、水分散体状の吸放湿性材料Bを433部、カーボンブラックを48部用いること以外は、実施例2と同様にしてシートを作成する。得られたシートはバインダーを連続相として吸放湿性材料Bとカーボンブラックが分散している構造を有するものである。該シートの特性を表2に示す。
[実施例10]
667部の水分散体状の吸放湿性材料B(固形分12%)およびバインダーとして10部のアクリル系樹脂エマルジョン(固形分40%)を混合する。得られる混合物を30g/m2のガラス繊維紙(ガラス繊維70%、ビニロン20%、アクリルバインダー10%を抄紙したもの)に、該混合物の固形分の付着量が40g/m2となるように含浸させ、乾燥させる。次に、20部のカーボンブラック(三菱化学株式会社製 三菱カーボンブラック#20)およびバインダーとして3.3部のアクリル系樹脂エマルジョン(固形分40%)を混合し、これを上記した吸放湿性物質Bを含浸させたガラス繊維紙上に10g/m2となるように塗布し、乾燥させる。得られるシートは、バインダーを連続相として吸放湿性材料が分散している層上にバインダーを連続相として光熱変換材料が分散している層が積層している構造を有するものである。該シートの特性を表2に示す。
667部の水分散体状の吸放湿性材料B(固形分12%)およびバインダーとして10部のアクリル系樹脂エマルジョン(固形分40%)を混合する。得られる混合物を30g/m2のガラス繊維紙(ガラス繊維70%、ビニロン20%、アクリルバインダー10%を抄紙したもの)に、該混合物の固形分の付着量が40g/m2となるように含浸させ、乾燥させる。次に、20部のカーボンブラック(三菱化学株式会社製 三菱カーボンブラック#20)およびバインダーとして3.3部のアクリル系樹脂エマルジョン(固形分40%)を混合し、これを上記した吸放湿性物質Bを含浸させたガラス繊維紙上に10g/m2となるように塗布し、乾燥させる。得られるシートは、バインダーを連続相として吸放湿性材料が分散している層上にバインダーを連続相として光熱変換材料が分散している層が積層している構造を有するものである。該シートの特性を表2に示す。
[比較例1]
実施例2におけるカーボンブラックの代わりに、ガラスビーズ(ユニチカ株式会社製UB-02NH、粒径0~45μm)を用いること以外は実施例2と同様にしてシートを作成する。得られるシートはバインダーを連続相として吸放湿性材料Bとガラスビーズが分散した構造を有するものである。得られたシートの評価結果を表2に示す。
実施例2におけるカーボンブラックの代わりに、ガラスビーズ(ユニチカ株式会社製UB-02NH、粒径0~45μm)を用いること以外は実施例2と同様にしてシートを作成する。得られるシートはバインダーを連続相として吸放湿性材料Bとガラスビーズが分散した構造を有するものである。得られたシートの評価結果を表2に示す。
実施例1~10のデシカントシートはいずれも太陽光による再生において光熱変換材料の効果が得られるものであった。中でも、再生率の高い吸放湿性材料BあるいはCを用いたデシカントシートにおいては、重量減少率の比率が高く、光熱変換材料により変換された熱エネルギーを再生熱源としてより効率よく利用できている。一方、無機系の吸放湿性材料であるシリカゲルAを用いた実施例4のデシカントシートでは、有機高分子系収着剤を用いたデシカントシートほどには光熱変換材料の効果が得られなかった。これは、A型シリカゲルの再生温度が有機高分子系収着剤よりも高いことによると考えられる。B型シリカゲルを用いた実施例5では吸放湿性材料BやCと同様に光熱変換材料により変換された熱エネルギーを再生熱源としてより効率よく利用できているが、上述のようにB型シリカゲルの吸湿性能維持率は低いため、デシカントローター用途などには吸放湿性材料BやCのほうが適すると考えられる。実施例9では、光熱変換材料の使用割合が多いため重量減少率の比率が大きいが、その分吸放湿性材料が少なく飽和吸湿量差が小さくなっている。また、比較例1においては光熱変換材料の代わりに添加したガラスビーズが光を反射するため、無添加のシートよりも重量減少率の比率が小さくなったものと考えられる。
101・・光熱変換再生デシカントローター
102・・顕熱交換装置
103・・遮光板
104・・ブロアー
105・・気化式冷却装置
106・・静置型光熱変換再生デシカント素子
201・・太陽光等の電磁波
202・・室内空気
301・・除湿空気
302・・再生空気
102・・顕熱交換装置
103・・遮光板
104・・ブロアー
105・・気化式冷却装置
106・・静置型光熱変換再生デシカント素子
201・・太陽光等の電磁波
202・・室内空気
301・・除湿空気
302・・再生空気
Claims (14)
- 吸放湿性材料と光熱変換材料とを必須成分として含有する光熱変換再生デシカントシート。
- 吸放湿性材料と光熱変換材料とが、少なくともその一部において直接接している、あるいは樹脂を介して近接していることを特徴とする請求項1に記載の光熱変換再生デシカントシート。
- 吸放湿性材料が、下記に示す方法で算出される再生率として70%以上を有するものであることを特徴とする請求項1または2に記載の光熱変換再生デシカントシート。
(再生率の算出方法)
20℃×95%RH雰囲気下で24時間放置した試料について、熱重量測定を昇温速度1℃/分で行って求めた60℃における重量減少量を、該試料の20℃×95%RHにおける飽和吸湿量で除し、100を乗じて算出する。 - 吸放湿性材料が、20℃×95%RHにおいて50重量%以上の飽和吸湿率を有するものであることを特徴とする請求項1から3のいずれかに記載の光熱変換再生デシカントシート。
- 吸放湿性材料が、下記に示す方法で算出される吸湿性能維持率として80%以上を有するものであることを特徴とする請求項1から4のいずれかに記載の光熱変換再生デシカントシート。
(吸湿性能維持率の算出方法)
20℃×50%RHでの24時間の放湿と40℃×90%RHでの24時間の吸湿を15サイクル繰り返した時の15サイクル目の40℃×90%RHにおける飽和吸湿率を、かかる吸湿・放湿の繰り返し前の40℃×90%RHにおける飽和吸湿率で除し、100を乗じて算出する。 - 吸放湿性材料が、架橋ポリアクリル酸塩系高分子化合物よりなることを特徴とする請求項1から5のいずれかに記載の光熱変換再生デシカントシート。
- 吸放湿性材料およびバインダーを連続相として光熱変換材料が分散していることを特徴とする請求項1から6のいずれかに記載の光熱変換再生デシカントシート。
- バインダーを連続相として吸放湿性材料が分散している層とバインダーを連続相として光熱変換材料が分散している層とが積層していることを特徴とする請求項1から6のいずれかに記載の光熱変換再生デシカントシート。
- バインダーを連続相として吸放湿性材料と光熱変換材料が分散していることを特徴とする請求項1から6のいずれかに記載の光熱変換再生デシカントシート。
- 請求項1から9のいずれかに記載の光熱変換再生デシカントシートからなり、気体貫通路を有する立体構造体である光熱変換再生デシカント素子。
- 請求項10の光熱変換再生デシカント素子からなる光熱変換再生デシカントローター。
- 吸放湿性材料による空気中の水分の吸着と空気中への水分の脱着を繰り返すことにより空調を行うデシカント空調システムにおいて、請求項10に記載の光熱変換再生デシカント素子を用い、かつ、該素子に対して、水分の吸着時には電磁波遮断を行い、水分の脱着時には電磁波照射を行うようにしたことを特徴とする光熱変換再生デシカント空調システム。
- 吸放湿性材料による空気中の水分の吸着と空気中への水分の脱着を繰り返すことにより空調を行うデシカント空調システムにおいて、請求項11に記載の光熱変換再生デシカントローターを用い、かつ、該ローターに対して、水分の吸着時には電磁波遮断を行い、水分の脱着時には電磁波照射を行うようにしたことを特徴とする光熱変換再生デシカント空調システム。
- 光熱変換に用いられる電磁波が太陽光であることを特徴とする請求項12または13に記載の光熱変換再生デシカント空調システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012538679A JP5962917B2 (ja) | 2010-10-15 | 2011-10-11 | 光熱変換再生デシカントシート、並びに該シートを用いたデシカント素子およびデシカントローター、並びに該素子または該ローターを用いた空調システム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010232097 | 2010-10-15 | ||
JP2010-232097 | 2010-10-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012050084A1 true WO2012050084A1 (ja) | 2012-04-19 |
Family
ID=45938313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/073328 WO2012050084A1 (ja) | 2010-10-15 | 2011-10-11 | 光熱変換再生デシカントシート、並びに該シートを用いたデシカント素子およびデシカントローター、並びに該素子または該ローターを用いた空調システム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5962917B2 (ja) |
WO (1) | WO2012050084A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015021670A (ja) * | 2013-07-19 | 2015-02-02 | 日本エクスラン工業株式会社 | 潜熱交換素子 |
WO2016035403A1 (ja) * | 2014-09-03 | 2016-03-10 | シャープ株式会社 | 調湿装置 |
JP2017013031A (ja) * | 2015-07-06 | 2017-01-19 | 大阪瓦斯株式会社 | 調湿素子 |
JP2017013032A (ja) * | 2015-07-06 | 2017-01-19 | 大阪瓦斯株式会社 | 調湿素子の製造方法 |
WO2017160151A1 (en) * | 2016-03-18 | 2017-09-21 | Oxycom Beheer B.V. | Dehumidifier using a stimulus responsive polymer |
WO2019043977A1 (ja) * | 2017-09-01 | 2019-03-07 | シャープ株式会社 | 吸湿材 |
WO2019131090A1 (ja) * | 2017-12-26 | 2019-07-04 | 矢崎エナジーシステム株式会社 | デシカント建具 |
WO2022097643A1 (ja) * | 2020-11-06 | 2022-05-12 | 株式会社ジェイテクト | 断熱体 |
CN115920602A (zh) * | 2022-12-13 | 2023-04-07 | 成都理工大学 | 一种光驱动高吸湿性复合大气集水材料、其制备方法和应用 |
CN116693928A (zh) * | 2023-05-17 | 2023-09-05 | 中国科学院宁波材料技术与工程研究所 | 一种光热吸湿聚合物凝胶及其制备方法与应用 |
EP3752042B1 (en) * | 2018-02-13 | 2024-07-10 | Cool Vapor Solutions | Compositions for humidification and cooling of gas streams |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5758429U (ja) * | 1980-09-22 | 1982-04-06 | ||
JPH10286460A (ja) * | 1997-04-15 | 1998-10-27 | Mayekawa Mfg Co Ltd | 成形用吸着剤と、一体成形構造の吸着熱交換器 |
JP2002346333A (ja) * | 2001-05-28 | 2002-12-03 | Fumakilla Ltd | 除湿材 |
JP2004232998A (ja) * | 2003-01-31 | 2004-08-19 | Fuji Silysia Chemical Ltd | 水捕集装置 |
JP2006207872A (ja) * | 2005-01-26 | 2006-08-10 | Toko Kogyo:Kk | 除湿空調システム |
JP2007132614A (ja) * | 2005-11-11 | 2007-05-31 | Japan Exlan Co Ltd | 収着式熱交換モジュールおよびその製法 |
JP2007237140A (ja) * | 2006-03-13 | 2007-09-20 | Matsushita Electric Ind Co Ltd | 淡水化装置 |
JP2008249311A (ja) * | 2007-03-30 | 2008-10-16 | Nichias Corp | 乾燥空気供給装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5726331A (en) * | 1980-07-24 | 1982-02-12 | Toyobo Co Ltd | Air cooling system and air conditioning system using activated carbon fiber |
JPS5995919A (ja) * | 1982-11-25 | 1984-06-02 | Yoshikazu Saito | 太陽光直射再生式吸湿装置を使用した乾燥空気連続生成方法 |
US4645519A (en) * | 1984-06-06 | 1987-02-24 | The United States Of America As Represented By The United States Department Of Energy | Composite desiccant structure |
-
2011
- 2011-10-11 JP JP2012538679A patent/JP5962917B2/ja active Active
- 2011-10-11 WO PCT/JP2011/073328 patent/WO2012050084A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5758429U (ja) * | 1980-09-22 | 1982-04-06 | ||
JPH10286460A (ja) * | 1997-04-15 | 1998-10-27 | Mayekawa Mfg Co Ltd | 成形用吸着剤と、一体成形構造の吸着熱交換器 |
JP2002346333A (ja) * | 2001-05-28 | 2002-12-03 | Fumakilla Ltd | 除湿材 |
JP2004232998A (ja) * | 2003-01-31 | 2004-08-19 | Fuji Silysia Chemical Ltd | 水捕集装置 |
JP2006207872A (ja) * | 2005-01-26 | 2006-08-10 | Toko Kogyo:Kk | 除湿空調システム |
JP2007132614A (ja) * | 2005-11-11 | 2007-05-31 | Japan Exlan Co Ltd | 収着式熱交換モジュールおよびその製法 |
JP2007237140A (ja) * | 2006-03-13 | 2007-09-20 | Matsushita Electric Ind Co Ltd | 淡水化装置 |
JP2008249311A (ja) * | 2007-03-30 | 2008-10-16 | Nichias Corp | 乾燥空気供給装置 |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015021670A (ja) * | 2013-07-19 | 2015-02-02 | 日本エクスラン工業株式会社 | 潜熱交換素子 |
US10086328B2 (en) | 2014-09-03 | 2018-10-02 | Sharp Kabushiki Kaisha | Humidity controlling apparatus |
WO2016035403A1 (ja) * | 2014-09-03 | 2016-03-10 | シャープ株式会社 | 調湿装置 |
CN106061582A (zh) * | 2014-09-03 | 2016-10-26 | 夏普株式会社 | 调湿装置 |
JPWO2016035403A1 (ja) * | 2014-09-03 | 2017-04-27 | シャープ株式会社 | 調湿装置 |
CN106061582B (zh) * | 2014-09-03 | 2019-11-08 | 夏普株式会社 | 调湿装置 |
JP2017013031A (ja) * | 2015-07-06 | 2017-01-19 | 大阪瓦斯株式会社 | 調湿素子 |
JP2017013032A (ja) * | 2015-07-06 | 2017-01-19 | 大阪瓦斯株式会社 | 調湿素子の製造方法 |
US10898849B2 (en) | 2016-03-18 | 2021-01-26 | Oxycom Beheer B.V. | Smart dehumidifier |
WO2017160151A1 (en) * | 2016-03-18 | 2017-09-21 | Oxycom Beheer B.V. | Dehumidifier using a stimulus responsive polymer |
NL2016458B1 (en) * | 2016-03-18 | 2017-10-04 | Oxycom Beheer Bv | Smart dehumidifier. |
CN111050883A (zh) * | 2017-09-01 | 2020-04-21 | 夏普株式会社 | 吸湿材料 |
JPWO2019043977A1 (ja) * | 2017-09-01 | 2020-08-13 | シャープ株式会社 | 吸湿材 |
WO2019043977A1 (ja) * | 2017-09-01 | 2019-03-07 | シャープ株式会社 | 吸湿材 |
JP7460066B2 (ja) | 2017-09-01 | 2024-04-02 | シャープ株式会社 | 吸湿材 |
JP2019112889A (ja) * | 2017-12-26 | 2019-07-11 | 矢崎エナジーシステム株式会社 | デシカント建具 |
WO2019131090A1 (ja) * | 2017-12-26 | 2019-07-04 | 矢崎エナジーシステム株式会社 | デシカント建具 |
EP3734012A4 (en) * | 2017-12-26 | 2021-03-03 | Yazaki Energy System Corporation | DEHYDRATING ACCESSORY |
EP3752042B1 (en) * | 2018-02-13 | 2024-07-10 | Cool Vapor Solutions | Compositions for humidification and cooling of gas streams |
WO2022097643A1 (ja) * | 2020-11-06 | 2022-05-12 | 株式会社ジェイテクト | 断熱体 |
JP7561370B2 (ja) | 2020-11-06 | 2024-10-04 | 株式会社ジェイテクト | 断熱体 |
CN115920602A (zh) * | 2022-12-13 | 2023-04-07 | 成都理工大学 | 一种光驱动高吸湿性复合大气集水材料、其制备方法和应用 |
CN116693928A (zh) * | 2023-05-17 | 2023-09-05 | 中国科学院宁波材料技术与工程研究所 | 一种光热吸湿聚合物凝胶及其制备方法与应用 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2012050084A1 (ja) | 2014-02-24 |
JP5962917B2 (ja) | 2016-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5962917B2 (ja) | 光熱変換再生デシカントシート、並びに該シートを用いたデシカント素子およびデシカントローター、並びに該素子または該ローターを用いた空調システム | |
JP4975970B2 (ja) | 収着式熱交換モジュールおよびその製法 | |
TWI381001B (zh) | 吸放濕性超微粒子及使用該超微粒子之製品 | |
JP6349556B2 (ja) | 吸湿材およびこれを用いた除湿機 | |
JP4840685B2 (ja) | 収着式熱交換モジュールおよびその製法 | |
US7326363B2 (en) | Dehumidifying element and manufacturing method for the same | |
JPH0118335B2 (ja) | ||
TW200532072A (en) | Moisture transferring paper and process for producing the same | |
JP6528687B2 (ja) | 吸湿性ポリマー粒子、ならびに、該粒子を有するシート、素子および全熱交換器 | |
JP2008281281A (ja) | 収着モジュールおよびその製造方法 | |
KR101359698B1 (ko) | 흡착제가 코팅된 알루미늄 스트립 | |
JP5737587B2 (ja) | 動力発生装置 | |
JP2009189900A (ja) | 抗菌、防黴性に優れた全熱交換素子 | |
JP7344474B2 (ja) | 高速吸放湿性重合体、ならびに該重合体を含有する繊維構造物、樹脂成型物、空調用素子、収着式熱交換モジュールおよび吸着式ヒートサイクル | |
Bai et al. | Performance evaluation of PVA/PEO/LiCl composite as coated heat exchangers desiccants | |
JP6833121B1 (ja) | 除湿素子、この除湿素子を備えた除湿装置および除湿素子の製造方法 | |
JP2011202950A (ja) | 収着式熱交換モジュールおよびその製法 | |
JP2019031633A (ja) | 繊維構造体およびその製造方法 | |
JP7545108B2 (ja) | 収着剤担持部材の製造方法および収着剤担持部材 | |
JPH0115780B2 (ja) | ||
JP2021031635A (ja) | 多孔質吸放湿性重合体粒子、該重合体粒子の製造方法、ならびに該重合体粒子を含有する吸放湿性シート、積層体、空調用素子、収着式熱交換モジュールおよび吸着式ヒートサイクル | |
WO2024143408A1 (ja) | 収着剤粒子が担持された伝熱フィン、該伝熱フィンを有する収着式熱交換モジュールおよびそれらの製造方法 | |
JP5649024B2 (ja) | 除湿フィルター、これを用いたデシカント空調装置 | |
JP2022158649A (ja) | 吸脱着素子及び調湿装置 | |
JP2000084408A (ja) | 吸着シートおよび吸着素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11832519 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012538679 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11832519 Country of ref document: EP Kind code of ref document: A1 |