WO2012048494A1 - 用于三氯硅烷合成塔的氯化氢气体喷出构件及其使用方法 - Google Patents

用于三氯硅烷合成塔的氯化氢气体喷出构件及其使用方法 Download PDF

Info

Publication number
WO2012048494A1
WO2012048494A1 PCT/CN2010/079587 CN2010079587W WO2012048494A1 WO 2012048494 A1 WO2012048494 A1 WO 2012048494A1 CN 2010079587 W CN2010079587 W CN 2010079587W WO 2012048494 A1 WO2012048494 A1 WO 2012048494A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen chloride
chloride gas
gas
trichlorosilane
gas ejecting
Prior art date
Application number
PCT/CN2010/079587
Other languages
English (en)
French (fr)
Inventor
吴卫星
浦全富
李海军
张春林
徐立军
刘军
陈艳梅
陈国奇
潘伦桃
Original Assignee
宁夏阳光硅业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁夏阳光硅业有限公司 filed Critical 宁夏阳光硅业有限公司
Publication of WO2012048494A1 publication Critical patent/WO2012048494A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • C01B33/1071Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof
    • C01B33/10742Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof prepared by hydrochlorination of silicon or of a silicon-containing material
    • C01B33/10757Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof prepared by hydrochlorination of silicon or of a silicon-containing material with the preferential formation of trichlorosilane
    • C01B33/10763Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof prepared by hydrochlorination of silicon or of a silicon-containing material with the preferential formation of trichlorosilane from silicon

Definitions

  • the present invention relates to chemical synthesis techniques, and more particularly to a trichlorosilane synthesis column hydrogen chloride gas injection member and a trichlorosilane synthesis method.
  • the polycrystalline silicon used in solar cells is mainly made of trichlorosilane (S H3 3 - TCS) and hydrogen as raw materials.
  • the mixed gas is introduced into the reaction furnace and contacted with hot silicon rods.
  • hydrogen reduction and heat of trichlorosilane It is obtained by decomposing and depositing silicon on the surface of the above-mentioned silicon rod. Therefore, trichlorosilane is an important raw material for the production of polycrystalline silicon.
  • Trichlorosilane is synthesized mainly by reacting metal silicon powder with hydrogen chloride gas at 280 ° C to 320 ° C according to the following formula:
  • Fig. 4 is a schematic diagram of a synthesis tower of trichlorosilane.
  • industrial grade silicon powder is fed from above the synthesis tower, and the hydrogen chloride gas is taken from the lower part by a gas introduction mechanism.
  • the introduction is carried out from a member for discharging hydrogen chloride gas, and an upward gas stream is formed in contact with the metal silicon powder to cause a reaction, and a trichlorosilane-based gas generated by the reaction is taken out from the top.
  • the angle between the gas jet hole and the upward axis line is designed to be 90 degrees or more, such as Chinese patent CN101417805A; Chinese patent CN201258255Y discloses a new type of In the synthesis furnace of trichlorosilane which reacts hydrogen chloride with silica, the outlet angle of the gas injection hole is inclined downward, so that there is a problem that the hydrogen chloride gas is in poor contact with the silicon powder, and the gas injection hole is clogged.
  • Existing equipment has some jet holes blocked during continuous operation for 10 days. When the components of the hydrogen chloride gas jet hole are blocked, it is necessary to stop the furnace for repair and maintenance, which affects the yield and product quality.
  • such a member is also disadvantageous in that the hydrogen chloride gas is sufficiently contacted with the metal silicon powder.
  • An object of the present invention is to overcome the drawbacks of the prior art member technology for hydrogen chloride discharge, to provide a member for hydrogen chloride gas ejection, and to provide a trichlorosilane for using the hydrogen chloride gas ejection member of the present invention.
  • the method of synthesis is to overcome the drawbacks of the prior art member technology for hydrogen chloride discharge, to provide a member for hydrogen chloride gas ejection, and to provide a trichlorosilane for using the hydrogen chloride gas ejection member of the present invention.
  • a hydrogen chloride gas ejecting member includes a shaft portion, a head portion that is in contact with the shaft portion, and an end cap portion that is in contact with the head portion;
  • the shaft portion has a male thread on the outer surface, and a central air supply hole having the same axis line as the shaft portion is disposed at the center, the air supply hole extends into the head portion; the outer diameter of the head portion is larger than the outer diameter of the shaft portion The outer diameter of the end cap portion is greater than the maximum outer diameter of the head;
  • the head portion is provided with a plurality of air injection holes which are open to communicate with the air supply opening from the outer surface of the head, and the angle between the air injection hole and the upward axis line is 90 degrees to 40 degrees;
  • the outer diameter of the end cap is greater than the maximum outer diameter of the head 3- 6rmi
  • the present invention provides a hydrogen chloride gas ejection member which can be made of a mixed ceramic of stainless steel, aluminum oxide, silicon nitride, aluminum oxide and silicon nitride or a tantalum tungsten alloy;
  • a method for synthesizing trichlorosilane wherein any one of the above-mentioned hydrogen chloride gas ejecting members is detachably mounted on a bottom plate of a trichlorosilane synthesis column, wherein a lower end of the gas supply hole is connected to a hydrogen chloride gas buffer chamber, The discharge hole of the head is above the bottom plate, and the hydrogen chloride gas ejected enters the synthesis tower.
  • the hydrogen chloride gas ejecting member of the present invention has a good jetting effect, is not easily clogged, and has a long service life.
  • the method of the present invention has high efficiency in synthesizing trichlorosilane and high productivity.
  • Figs. 1a, 1b, 2a, 2b, 3a, 3b are a front view and a bottom view, respectively, of three different forms of hydrogen chloride gas ejecting members of the present invention.
  • Fig. 4 is a schematic explanatory view showing a trichlorosilane synthesis column using the hydrogen chloride gas discharge member of the present invention.
  • Fig. 5 is a view showing the distribution of the bottom plate mounting holes of the synthesis tower in which a plurality of hydrogen chloride discharge members are arranged in the present invention.
  • Fig. 6 is an explanatory view showing a state in which a member for discharging hydrogen chloride gas is attached according to the present invention.
  • synthesis tower 11 furnace 12 top cover 13 gas outlet 14 metal silicon powder feed port 15 carrier gas pipeline 16 bottom plate 16A upper flange 16b lower flange 16c mounting hole 16-1 outer ring line 16-2 inner ring line 17 buffer chamber 18 for Gas pipe 19 Metal silicon powder inlet port 20 Feed hopper 30 Cyclone separator 31 Extraction gas pipe 50 Hydrogen chloride gas injection member 51 Shaft portion 52 Head portion 53 End cap portion 54 Air supply holes 55, 56 Stomata.
  • the hydrogen chloride gas ejecting member 50 includes a shaft portion 51, a head portion 52 that is in contact with the shaft portion 51, and an end cap portion 53 that is in contact with the head portion 52.
  • An air supply hole 54 parallel to the axial direction opens from the lower end of the shaft portion 51 and flows into the inside of the head 52; the outer diameter of the head 52 is larger than the outer diameter of the shaft portion 51 so as to be placed on the bottom plate of the synthesis tower As shown in Fig.
  • a plurality of gas jet holes 55 and 56 which are radiated outward from the air supply hole 54 and open at the outer surface of the head are formed in the head, and the height of the opening is such that the gas to be ejected is not blocked by the end cap portion.
  • the angle ⁇ between the gas injection hole and the upward axis is 90 to 40 degrees, and the number of the gas injection holes is at least 4, preferably 6, more preferably 8; in the same hydrogen chloride gas is ejected
  • the angle between the plurality of gas jet holes, the gas jet hole and the upward axis line may be the same or different.
  • the gas jet hole it may be a combination of any several different angles of the gas jet hole.
  • staggered distribution as shown in Figure 1a, there are 4 horizontal jet holes 90 degrees from the axis of the shaft, 4 obliquely upwardly directed air holes at an angle of 40 degrees to the upward axis; the head 52 may be a cylinder, and in order to facilitate loading and unloading with the bottom of the synthesis tower, two planes parallel to the axis are formed on the cylindrical surface of the cylinder.
  • the outer diameter of the end cap portion is larger than the maximum outer diameter of the head portion,
  • the maximum outer diameter described here such as the outer diameter of the cylinder, the diagonal length of the hexagonal column and the square column, in order to prevent the falling metal silicon powder from blocking the gas injection hole, the outer end cap outer diameter is generally larger than the maximum outer diameter of the head 3 ⁇ 6m m, less than 3mm, the effect is not good, more than 6mm, the space occupied is larger, the cost is higher;
  • the thickness of the edge of the end cap is generally l ⁇ 2 mm ;
  • the shape of the top surface of the end cap is not particularly limited, it can be Plane, conical or spherical, but in order to avoid sinking the metal silicon powder at the top, the top surface is preferably a conical surface or a spherical surface, where
  • 2a and 2b are a front view and a bottom view, respectively, of a hydrogen chloride gas ejecting member having oblique upward air-injecting holes at 45 degrees to the upward axis.
  • Figs. 3a and 3b are a front view and a bottom view, respectively, of a hydrogen chloride gas ejecting member having a horizontal gas injection hole at 90 degrees to the axial line.
  • the present invention provides a hydrogen chloride gas ejecting member which can be made of stainless steel, alumina, silicon nitride, aluminum oxide and silicon nitride mixed ceramic or tantalum tungsten alloy, and the material is not particularly limited.
  • Fig. 4 is a schematic view of a trichlorosilane synthesis column 10 using the hydrogen chloride gas discharge member of the present invention.
  • the trichlorosilane synthesis column comprises a cylindrical furnace 11 and a top cover 12, and the top cover 12 is provided with a gas take-out port 13 for taking away a reaction product mainly composed of trichlorosilane, and the taken-out gas enters the cyclone through the pipe 31.
  • the separator 30 performs separation to recover and reuse unreacted silicon powder, and the gas enters a subsequent process for separation and purification; the metal silicon powder is fed from the feed port 19 to the feed hopper 20, and after preheating, passes through the carrier gas pipe 15 through the metal silicon.
  • the powder feeding port 14 is supplied to the synthesis tower furnace 11; at the bottom is a bottom plate 16, below which is a hydrogen chloride gas buffer chamber 17, and hydrogen chloride gas enters the hydrogen chloride gas buffer chamber 17 from the gas supply pipe 18, and a plurality of The hydrogen chloride gas ejecting member 50 is mounted on the bottom plate 16, and the bottom plate 16 is fixed by a flange 16a that is in contact with the upper furnace and a flange 16b that is in contact with the buffer chamber, such that the discharge hole 55 and On the bottom plate 16, the opening of the hydrogen chloride gas supply hole 54 is connected to the hydrogen chloride gas buffer chamber 17, and hydrogen chloride gas enters from the gas supply hole 54 and is injected into the synthesis column from the gas injection holes 55 and 56.
  • Fig. 5 shows a synthetic base plate 16 on which 152 mounting holes 16C for a hydrogen chloride discharge member are mounted.
  • the mounting hole 16C has a female screw hole that matches the hydrogen chloride gas ejecting member 50, and the mounting hole 16C has a lattice shape. Hook distribution.
  • the same or different forms of the hydrogen chloride ejecting member of the present invention can be attached to the same base plate 16. It is considered that if all of the discharge holes shown in Figs.
  • the hydrogen chloride gas ejecting member; the central region within the dotted inner ring line 16-2 of the bottom plate 16 is mounted as shown in Figs. 2a, 2b with an oblique angle of 40-80 degrees from the upward axis.
  • the hydrogen chloride gas ejecting member of the ejection hole; the intermediate portion between the dotted outer ring line 16-1 and the inner ring line 16-2 of the bottom plate 16 is mounted as shown in Figs. 1a, 1b and has a line with the upward axis 40-80 degree angle oblique upward jet hole, part with The horizontal axis of the jet hole 90 of the hydrogen chloride gas ejection member.
  • any hole that falls on the outer line 16-1 of the broken line and the inner ring line 16-2 can be attached to any of the hydrogen chloride gas ejecting members in the adjacent region.
  • the diameter of the outer ring line 16-1 and the inner ring line 16-2 is not particularly limited, and it is preferable that at least one-fifth of the hydrogen chloride gas ejecting members are mounted in each of the three regions in which the bottom plate is divided.
  • Fig. 6 is a view showing a state in which the hydrogen chloride gas ejecting member 50 is fixed to the synthesis tower bottom plate 16,
  • the bottom plate 16 has a mounting hole 16G.
  • the shaft portion 51 of the hydrogen chloride gas ejecting member 50 is mounted on the bottom plate 16 of the synthesis tower with a wrench or a professional tool so that the head 52 of the gas injection hole 55 and/or 56 is on the bottom plate 13.
  • the air supply hole 54 and the buffer chamber 17 are opened; and a gasket is optionally provided between the head portion 52 of the hydrogen chloride gas discharge member 50 and the upper surface of the bottom plate 16.
  • 152 hydrogen chloride discharging members each having eight horizontal direction gas injection holes as shown in Figs. 3a and 3b are attached to the synthesis column bottom plate 16.
  • the metal silicon powder is fed from the feed hopper 20 through the pipe 15 from the feed port 14 to the synthesis tower furnace 11 through a pipe 15, and the hydrogen chloride gas is supplied from the gas supply by the heated carrier gas.
  • the pipe 18 enters the gas buffer chamber 17, and the hydrogen chloride gas enters the gas supply hole 54 of the hydrogen chloride gas ejecting member 50, and is ejected from the gas injection hole 55 on the upper surface of the bottom plate to form an upward gas flow in contact with the metal silicon powder to make the metal silicon powder and the hydrogen chloride gas.
  • the reaction is carried out at a predetermined temperature to form a trichlorosilane gas.
  • the produced trichlorosilane gas and unreacted metal silicon powder are discharged from the gas take-out port 13, and are subjected to gas-solid separation by a cyclone and a filter in a subsequent step, and the recovered metal silicon powder is reused.
  • the trichlorosilane gas is sent to a subsequent process for separation and purification.
  • the synthesis of the trichlorosilane was carried out continuously, and it was continuously used for 30 days by the present invention, and the phenomenon that the gas injection holes of the components for hydrogen chloride ejection were blocked was not observed.
  • the reaction temperature in the synthesis column can be effectively controlled, the conversion ratio of the trichlorosilane in the product tail gas from the original 18° 1 to 21% S H3 3 is increased from 80° 1 to 83%.
  • the hydrogen chloride discharge member having the different angles of the gas injection holes is mounted on the bottom plate 16 of the synthesis tower, and 152 of each of the 152 as shown in Figs. 1a and 1b are connected to the upward axis.
  • a hydrogen chloride discharge member having a 90 degree horizontal discharge hole and a 40 degree oblique upward air injection hole is mounted on the bottom plate 16.
  • the metal silicon powder is fed from the feed hopper 20 through the pipe 15 from the feed port 14 to the synthesis tower furnace 11 through a pipe 15, and the hydrogen chloride gas is supplied from the gas supply by the heated carrier gas.
  • the pipe 18 enters the gas buffer chamber 17, and the hydrogen chloride gas enters the gas supply hole 54 of the hydrogen chloride gas ejecting member 50, and is ejected from the gas injection holes 55 and 56 on the upper surface of the bottom plate to form an upward gas flow in contact with the metal silicon powder to make the metal silicon powder and
  • the hydrogen chloride gas is reacted at a predetermined temperature to form a trichlorosilane gas.
  • the produced trichlorosilane gas and unreacted metal silicon powder are discharged from the gas take-out port 13, and are subjected to gas-solid separation by a cyclone and a filter in a subsequent step, and the recovered metal silicon powder is reused.
  • the trichlorosilane gas is sent to a subsequent process for separation and purification.
  • the synthesis of the trichlorosilane is carried out continuously, and the invention is continuously used for 30 days without The phenomenon that the gas injection hole of the component for hydrogen chloride discharge is blocked is now blocked.
  • trichlorosilane is synthesized. Since the reaction temperature in the synthesis column can be effectively controlled, the trichlorosilane content in the product tail gas is from 18° 1 to 28%.
  • the conversion rate of S H3 3 is higher than the original 80° 1 . To 86%
  • 152 hydrogen chloride discharge members each having eight oblique upward gas injection holes and 45 degrees upward toward the upper axis as shown in Fig. 2 are mounted on the synthesis column bottom plate 16.
  • the metal silicon powder is fed from the feed hopper 20 through the pipe 15 through the pipe 15 to the synthesis tower furnace 11 through the pipe 15, and the hydrogen chloride gas is supplied from the gas supply by the heated carrier gas.
  • the pipe 18 enters the gas buffer chamber 17, and the hydrogen chloride gas enters the gas supply hole 54 of the hydrogen chloride gas ejecting member 50, and is ejected from the gas injection hole 56 on the upper surface of the bottom plate to form an upward gas flow in contact with the metal silicon powder to cause the metal silicon powder and the hydrogen chloride gas.
  • the reaction is carried out at a predetermined temperature to form a trichlorosilane gas.
  • the produced trichlorosilane gas and unreacted metal silicon powder are discharged from the gas take-out port 13, and are subjected to gas-solid separation by a cyclone and a filter in a subsequent step, and the recovered metal silicon powder is reused.
  • the trichlorosilane gas is sent to a subsequent process for separation and purification.
  • the synthesis of the trichlorosilane was carried out continuously, and it was continuously used for 30 days by the present invention, and the phenomenon that the gas injection holes of the components for hydrogen chloride ejection were blocked was not observed.
  • trichlorosilane is synthesized. Since the reaction temperature in the synthesis column can be effectively controlled, the trichlorosilane content in the product tail gas is from 18° 1 to 30%.
  • the conversion rate of S H3 3 is higher than the original 80° 1 . To 89%
  • a screw hole for the outer ring of the outer ring other than the dotted outer ring line 16-1 of the bottom plate 16 is mounted with a hydrogen chloride gas ejecting member having a horizontal gas jet hole at 90 degrees to the upward axis as shown in Figs. 3a and 3b;
  • the intermediate zone between 16-1 and the dashed inner ring line 16-2 is installed as shown in Figures 1a and 1b.
  • the angled portion is 90 degrees horizontally with the upward axis, and the part is 40 ⁇ 80 degrees obliquely upward.
  • the hydrogen chloride gas ejecting member of the ejection hole; the central region within the dotted inner ring line 16-2 is mounted as shown in Figs.
  • the hydrogen chloride gas ejecting member for ejecting the hole; the hole through which the broken line passes may be a member for discharging one type of hydrogen chloride gas on both sides of the broken line.
  • the metal silicon powder is fed from the feed hopper 20 through the pipe 15 from the feed port 14 to the synthesis tower furnace 11 through a pipe 15, and the hydrogen chloride gas is supplied from the gas supply by the heated carrier gas.
  • the pipe 18 enters the gas buffer chamber 17, and the hydrogen chloride gas enters the gas supply hole 54 of the hydrogen chloride gas ejecting member 50, and is ejected from the gas injection holes 55, 56 on the upper surface of the bottom plate 16 to form an upward gas flow in contact with the metal silicon powder to make the metal silicon powder.
  • the hydrogen gas is reacted at a predetermined temperature to form a trichlorosilane gas.
  • the produced trichlorosilane gas and unreacted metal silicon powder are discharged from the gas take-out port 13, and are subjected to gas-solid separation by a cyclone and a filter in a subsequent step, and the recovered metal silicon powder is reused.
  • the trichlorosilane gas is sent to a subsequent process for separation and purification.
  • the synthesis of the trichlorosilane was carried out continuously, and the apparatus of the present invention was continuously used for 30 days, and the phenomenon that the gas injection holes of the components for hydrogen chloride discharge were blocked was not observed.
  • trichlorosilane is synthesized. Since the reaction temperature in the synthesis column can be effectively controlled, the trichlorosilane content in the product tail gas is from 18° 1 to 33%.
  • the conversion rate of S H3 3 is higher than the original 80° 1 . Up to 93%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Description

用于三氯硅烷合成塔的氯化氢气体喷出构件及其使用方法
技术领域:
本发明涉及化学合成技术,特别是一种三氯硅烷合成塔氯化氢气体喷出用构 件及三氯硅烷合成方法。
背景技术:
太阳能电池所使用的多晶硅主要是用三氯硅烷(S H3 3— TCS)和氢为原料, 将混合气体导入反应炉中与炽热的硅棒接触,在高温下,三氯硅烷的氢还原及热 分解而使硅在上述硅棒表面析出而制得的。所以,三氯硅烷是制造多晶硅的重要 原料。
三氯硅烷主要是通过用金属硅粉与氯化氢气体在 280°C〜320°C按照下式发 生反应而合成的:
S + 3H3 - - - - S H3 3 + H + 50kcal
工业生产的合成反应是在合成塔里进行的,图 4是三氯硅烷合成塔的概略示 意图,在合成塔里, 工业级硅粉从合成塔上面投入, 同时用气体导入机构将氯化 氢气体从下部导入, 从氯化氢气体喷出用构件喷出, 形成向上的气流与金属硅粉 接触而发生反应, 反应生成的以三氯硅烷为主的气体从顶部取出。为了防止落下 的金属硅粉堵塞喷气孔, 在现有技术中, 喷气孔和向上轴心线的夹角设计为 90 度或大于 90度, 如中国专利 CN101417805A; 中国专利 CN201258255Y公示了一 种新型的氯化氢与二氧化硅反应的三氯氢硅的合成炉,其喷气孔的出口角度向下 倾斜,这样有氯化氢气体与硅粉接触不良的问题, 并且还会出现喷气孔被堵塞现 象。 现有的设备在连续运行 10天就有一些喷气孔被堵塞。 氯化氢气体喷气孔用 构件一当被堵塞, 就要停炉更换检修, 影响产量和产品质量。 并且, 这样的构件 也不利于氯化氢气体与金属硅粉末充分接触反应。
发明内容:
本发明的目的是克服现有的氯化氢喷出用构件技术存在的缺陷,提供一种氯 化氢气体喷出用构件,及提供一种用本发明氯化氢气体喷出用构件进行三氯硅烷 合成的方法。
本发明按照下述技术方案实现:
一种氯化氢气体喷出用构件, 包括轴部、 与所述轴部相接的头部和与所述头 部相接的端帽部;
所述轴部外表有阳螺纹, 中心设有和轴部相同轴心线的圆柱形供气孔, 所述 供气孔延伸到所述头部内; 所述头部外径大于所述轴部外径; 所述端帽部外径大 于所述头部的最大外径;
所述头部上设有多个和所述供气孔交叉相通从头部外表面开口的喷气孔, 所 述的喷气孔与向上的轴心线的夹角为 90度〜 40度;
所述端帽部外径大于所述头部的最大外径 3- 6rmi
本发明提供一种氯化氢气体喷出用构件, 可以用不锈钢、 氧化铝、 氮化硅、 氧化铝和氮化硅的混合陶瓷或铌钨合金制造;
一种合成三氯硅烷的方法, 将以上所述的任一种氯化氢气体喷出用构件被可 装卸地安装在三氯硅烷合成塔的底板上,其中供气孔的下端与氯化氢气体缓冲室 相连, 头部的喷出孔在底板的上方, 喷出的氯化氢气体进入合成塔内。
本发明氯化氢气体喷出用构件, 喷气效果好, 不易被堵塞, 使用寿命长; 本 发明方法合成三氯硅烷效率高, 生产率高。
附图说明:
图 1a、 1 b、 2a、 2b、 3a、 3b、 分别是本发明的 3种不同形式的氯化氢气体 喷出用构件的主视图和仰视图。
图 4是使用本发明氯化氢气体喷出用构件的三氯硅烷合成塔的概略说明图。 图 5是表示本发明排列多个氯化氢喷出用构件的合成塔底板安装孔分布图。 图 6是本发明一种安装氯化氢气体喷出用构件状态说明图。
附图标记说明
10合成塔 11 炉膛 12顶盖 13气体取出口 14金属硅粉末加 料口 15载气管道 16底板 16A上法兰 16b下法兰 16c 安装孔 16- 1外环线 16- 2内环线 17缓冲室 18供气管道 19金属硅粉加 入口 20进料斗 30旋风分离器 31 取出气体管道 50氯化氢气体 喷出用构件 51 轴部 52头部 53端帽部 54供气孔 55、 56喷 气孔。
具体实施方式:
参照图 1a, 氯化氢气体喷出用构件 50包括轴部 51、 与所述轴部 51相接的 的头部 52和与所述头部 52相接的端帽部 53; 其中轴部中心设有和轴向平行的 供气孔 54, 从轴部 51的下端开口, 一直通入头部 52内部; 所述头部 52外径大 于所述轴部 51 外径, 以便将其安置到合成塔的底板上; 如图 1 b,在头部形成多 个从供气孔 54向外辐射,在头部外表面开口的喷气孔 55和 56, 开口的高度以喷 出的气体不会受端帽部的阻挡为宜; 根据本发明, 喷气孔与向上轴心线的夹角 α 为 90〜40度, 喷气孔的数量至少为 4个, 优选为 6个, 更优选为 8个; 在同一 氯化氢气体喷出用构件中,多个喷气孔,喷气孔和向上轴心线的夹角可以是相同, 也可以是不同, 如有两种以上角度的喷气孔,可以是任意几种不同角度的喷气孔 的组合, 交错分布, 如图 1a中, 有 4个与轴心线成 90度的水平喷气孔, 有 4 个与向上的轴心线成 40度夹角斜向上喷气孔; 所述头部 52可以是圆柱体, 为了 便于与合成塔底板装卸,在圆柱体的圆柱面形成两个与轴线平行的平面, 也可以 是六方柱形或四方柱形, 没有特别的限制, 只要便于用扳手之类的工具将其与合 成塔底板装卸; 其中端帽部的外径大于所述头部的最大外径,这里所述的最大外 径, 如圆柱体的外径, 六方柱、 四方柱的对角线长,为了防止落下的金属硅粉末 堵塞喷气孔,一般端帽部外径大于头部最大外径 3〜6m m,小于 3mm效果欠佳, 大于 6mm 所占的空间较大, 成本较高; 端帽部的边沿厚度一般为 l〜 2 m m ; 对端帽部的顶面形状没有特别限制, 可以是平面、 圆锥面或球面,但是为了避免 在顶部集沉金属硅粉末,优选顶面为圆锥面或球面,其中圆锥面的锥高与锥底直 径之比优选为 1 : 6〜1 : 2; 球面的高度与球底面直径之比优选为 1 : 4〜1 : 2。
图 2a、 2b分别是有与向上轴心线成 45度的斜向上喷气孔的氯化氢气体喷出 用构件的主视图和仰视图。
图 3a和 3b分别是有与轴心线成 90度的水平喷气孔的氯化氢气体喷出用构 件的主视图和仰视图。
本发明提供一种氯化氢气体喷出用构件, 可以用不锈钢、 氧化铝、 氮化硅、 氧化铝和氮化硅混合陶瓷或铌钨合金制造, 对材质没有特别的限制。
图 4是使用本发明的氯化氢气体喷出用构件的三氯硅烷合成塔 10的概略图。 三氯硅烷合成塔包括圆筒状炉膛 11, 顶盖 12,所述顶盖 12上设有将主要是三氯 硅烷的反应生成物取走的气体取出口 13,取出的气体经管道 31 进入旋风分离器 30进行分离, 使未反应的硅粉回收再利用, 气体进入后续工序进行分离提纯; 金属硅粉末从进料口 19加入到进料斗 20, 预热后经载气管道 15通过金属硅粉 末加料口 14向所述合成塔炉膛 11供给; 在底部有底板 16, 所述底板 16下面是 氯化氢气体缓冲室 17, 氯化氢气体从供气管道 18进入到所述氯化氢气体缓冲室 17, 多个氯化氢气体喷出用构件 50被安装在底板 16上面, 底板 16是由与上面 的炉膛相接的法兰 16a和下面与缓冲室相接的法兰 16b固定,使得其所述喷出孔 55和 56在底板 16上面, 所述氯化氢气体供给孔 54开口和所述的氯化氢气体缓 冲室 17相连, 氯化氢气体从供气孔 54进入, 从喷气孔 55和 56喷入合成塔内。
图 5是钻有 152个安装氯化氢喷出用构件用安装孔 16C的合成塔底板 16,所 述的安装孔 16C有与氯化氢气体喷出用构件 50相配的阴螺纹孔, 安装孔 16C呈 格子状均勾分布。 根据本发明, 在同一块底板 16上可以安装本发明的相同或不 同形式的氯化氢喷出用构件。 考虑到如果全部安装如图 3a、 3b所示的喷出孔与 向上轴心线成 90度的氯化氢气体喷出用构件,那么在底板 16的虚线内环线 16- 2 之内的中心区可能造成硅粉沉降; 如果全部安装如图 2a、 2b所示的都是与向上 轴心线成 40- 80度夹角的氯化氢气体喷出用构件, 在底板 16的虚线外环线 16- 1 之外的外围区可能造成硅粉堆积, 所以优选地, 在底板 16 的虚线外环线 16- 1 之外的外围区安装如图 3a、 3b所示的具有与向上轴心线成 90度的水平喷出孔的 氯化氢气体喷出用构件; 在底板 16的虚线内环线 16- 2之内的中心区安装如图 2a、 2b所示的具有与向上轴心线成夹角部分为 40- 80度的斜向上喷出孔的氯化 氢气体喷出用构件; 在底板 16的虚线外环线 16- 1和内环线 16- 2之间的中间区 安装如图 1a、 1 b所示的部分具有与向上轴心线成 40- 80度夹角斜向上喷气孔, 部分具有与向上轴心线成 90度的水平喷气孔的氯化氢气体喷出用构件。 凡是落 在虚线外环线 16- 1、 内环线 16- 2上的孔, 可以安装和其相邻区域的任一种氯化 氢气体喷出用构件。 对于外环线 16- 1、 内环线 16- 2的直径没有特别的限制, 优 选其将底板分成的三个区域各区域至少安装有五分之一以上的氯化氢气体喷出 用构件。
图 6是氯化氢气体喷出用构件 50被固定在合成塔底板 16上的状态示意图, 底板 16上有安装孔 16G用扳手或专业工具将氯化氢气体喷出用构件 50的轴部 51安装在合成塔底板 16上, 使其有喷气孔 55和 /或 56的头部 52在底板 13的 上面的合成塔的炉膛 11里, 供气孔 54和缓冲室 17开口; 任选地在氯化氢气体 喷出用构件 50的头部 52与底板 16的上面之间设有垫片。
实施例 1
在合成三氯硅烷的实施例中, 合成塔底板 16上安装着 152个如图 3a、 3b所 示的各有 8个水平方向的喷气孔的氯化氢喷出用构件。如图 4所示, 运行时, 将 金属硅粉末用加热的载气从进料斗 20经过管道 15从进料口 14送入合成塔炉膛 11里, 用加热的载气将氯化氢气体从供气管道 18进入气体缓冲室 17, 氯化氢气 体进入氯化氢气体喷出用构件 50的供气孔 54, 从底板上面的喷气孔 55喷出, 形成向上的气流与金属硅粉末接触,使金属硅粉末与氯化氢气体在预定的温度下 反应, 生成三氯硅烷气体。生成的三氯硅烷气体和未反应的金属硅粉末从气体取 出口 13排出, 用后续工序的旋风分离器和过滤器进行气固分离, 回收的金属硅 粉末再利用。三氯硅烷气体被输送到后续工序进行分离提纯。所述三氯硅烷的合 成是连续进行的, 用本发明连续使用 30天, 没有出现氯化氢喷出用构件喷气孔 被堵塞的现象。本发明由于能够有效地控制合成塔内反应温度, 生成物尾气中三 氯硅烷含量由原来的 18° 1高到 21% S H3 3的转换率由原来的 80° 1高到 83% 实施例 2
在合成三氯硅烷的实施例中, 合成塔底板 16上安装着有不同角度喷气孔的 氯化氢喷出用构件, 将 152个如图 1a、 1 b所示的各有 4个与向上轴心线成 90 度水平喷出孔和 40度的斜向上喷气孔的氯化氢喷出用构件被安装在底板 16上。 如图 4所示,运行时,将金属硅粉末用加热的载气从进料斗 20经过管道 15从进 料口 14送入合成塔炉膛 11里, 用加热的载气将氯化氢气体从供气管道 18进入 气体缓冲室 17, 氯化氢气体进入氯化氢气体喷出用构件 50的供气孔 54, 从底板 上面的喷气孔 55和 56喷出, 形成向上的气流与金属硅粉末接触,使金属硅粉末 与氯化氢气体在预定的温度下反应, 生成三氯硅烷气体。生成的三氯硅烷气体和 未反应的金属硅粉末从气体取出口 13排出, 用后续工序的旋风分离器和过滤器 进行气固分离, 回收的金属硅粉末再利用。三氯硅烷气体被输送到后续工序进行 分离提纯。 所述三氯硅烷的合成是连续进行的, 用发明连续使用 30天, 没有出 现氯化氢喷出用构件喷气孔被堵塞的现象。按照上述方法合成三氯硅烷, 由于能 够有效地控制合成塔内反应温度, 生成物尾气中三氯硅烷含量由原来的 18° 1高 到 28% S H3 3的转换率由原来的 80° 1高到 86%
实施例 3
在合成三氯硅烷的实施例中, 合成塔底板 16上安装着 152个如图 2所示的 各有 8个和向上轴心线成 45度的斜向上喷气孔的氯化氢喷出用构件。 如图 4 所示, 运行时, 将金属硅粉末用加热的载气从进料斗 20经过管道 15从进料口 14送入合成塔炉膛 11里, 用加热的载气将氯化氢气体从供气管道 18进入气体 缓冲室 17, 氯化氢气体进入氯化氢气体喷出用构件 50的供气孔 54, 从底板上面 的喷气孔 56喷出, 形成向上的气流与金属硅粉末接触, 使金属硅粉末与氯化氢 气体在预定的温度下反应, 生成三氯硅烷气体。生成的三氯硅烷气体和未反应的 金属硅粉末从气体取出口 13排出, 用后续工序的旋风分离器和过滤器进行气固 分离,回收的金属硅粉末再利用。三氯硅烷气体被输送到后续工序进行分离提纯。 所述三氯硅烷的合成是连续进行的, 用本发明连续使用 30天, 没有出现氯化氢 喷出用构件喷气孔被堵塞的现象。按照上述方法合成三氯硅烷, 由于能够有效地 控制合成塔内反应温度, 生成物尾气中三氯硅烷含量由原来的 18° 1高到 30% S H3 3的转换率由原来的 80° 1高到 89%
实施例 4
在底板 16的虚线外环线 16- 1 以外的外圈螺纹孔安装如图 3a、 3b所示的具 有与向上轴心线成 90度的水平喷气孔的氯化氢气体喷出用构件; 在虚线外环线 16- 1和虚线内环线 16- 2之间的中间区安装如图 1a、 1 b所示的与向上轴心线成 夹角部分为 90度水平喷出孔, 部分为 40~80度斜向上喷出孔的氯化氢气体喷出 用构件; 虚线内环线 16- 2之内的中央区域安装如图 2a、 2b所示的都是具有与向 上轴心线成 40度 - 80度夹角的斜向上喷出孔的氯化氢气体喷出用构件; 被虚线 穿过的孔安装虚线两侧那一种类型的氯化氢气体喷出用构件都可以。 如图 4所 示, 运行时, 将金属硅粉末用加热的载气从进料斗 20经过管道 15从进料口 14 送入合成塔炉膛 11里,用加热的载气将氯化氢气体从供气管道 18进入气体缓冲 室 17, 氯化氢气体进入氯化氢气体喷出用构件 50的供气孔 54, 从底板 16上面 的喷气孔 55、 56喷出, 形成向上的气流与金属硅粉末接触, 使金属硅粉末与氯 化氢气体在预定的温度下反应, 生成三氯硅烷气体。生成的三氯硅烷气体和未反 应的金属硅粉末从气体取出口 13排出, 用后续工序的旋风分离器和过滤器进行 气固分离, 回收的金属硅粉末再利用。三氯硅烷气体被输送到后续工序进行分离 提纯。 所述三氯硅烷的合成是连续进行的, 用本发明装置连续使用 30天, 没有 出现氯化氢喷出用构件喷气孔被堵塞的现象。按照上述方法合成三氯硅烷, 由于 能够有效地控制合成塔内反应温度, 生成物尾气中三氯硅烷含量由原来的 18° 1 高到 33% S H3 3的转换率由原来的 80° 1高到 93%

Claims

权 利 要 求 书
、 一种氯化氢气体喷出用构件, 其特征在于所述氯化氢气体喷出用构件包括轴部、 与所述轴部相接的的头部和与所述头部相接的端帽部。
、 权利要求 1所述的氯化氢气体喷出用构件,其特征在于所述轴部外表有螺纹, 中 心设有和轴部相同轴心线的圆柱形供气孔,所述供气孔延伸到所述头部内;所述 头部外径大于所述轴部外径; 端帽部外径大于所述头部最大外径。
、 权利要求 1所述的氯化氢气体喷出用构件,其特征在于所述头部上设有多个和所 述供气孔交叉相通从头部外表面开口的喷气孔,喷气孔与向上的轴心线的夹角为 90度〜 40度。
、 权利要求 1所述的氯化氢气体喷出用构件,其特征在于端帽部外径大于头部最大 夕卜径 3- 6nm
、 权利要求 1- 4任一项所述的氯化氢气体喷出用构件,其特征在于是用不锈钢制造 的。
、 权利要求 1- 4任一项所述的氯化氢气体喷出用构件, 其特征在于是用氧化铝陶 瓷、 氮化硅陶瓷或氧化铝 -氮化硅混合陶瓷制造的。
、 权利要求 1- 4任一项所述的氯化氢气体喷出用构件,其特征在于是用铌钨合金制 造的。
、 一种采用权利要求 1- 6任一项所述的氯化氢气体喷出用构件合成三氯硅烷的方 法,其特征在于所述的氯化氢气体喷出用构件被可装卸地安装在三氯硅烷合成塔 的底板上,其中供气孔的下端与氯化氢气体供给管相连,头部的喷出孔在合成塔 底板的上方, 喷出的氯化氢气体进入合成塔内。
1
PCT/CN2010/079587 2010-10-13 2010-12-09 用于三氯硅烷合成塔的氯化氢气体喷出构件及其使用方法 WO2012048494A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010504512.3 2010-10-13
CN 201010504512 CN101962189A (zh) 2010-10-13 2010-10-13 三氯硅烷合成塔氯化氢气体喷出构件及三氯硅烷合成方法

Publications (1)

Publication Number Publication Date
WO2012048494A1 true WO2012048494A1 (zh) 2012-04-19

Family

ID=43515281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079587 WO2012048494A1 (zh) 2010-10-13 2010-12-09 用于三氯硅烷合成塔的氯化氢气体喷出构件及其使用方法

Country Status (2)

Country Link
CN (1) CN101962189A (zh)
WO (1) WO2012048494A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02145413A (ja) * 1988-11-29 1990-06-04 Koujiyundo Silicon Kk トリクロロシラン製造用流動反応装置
CN101418012A (zh) * 2007-10-25 2009-04-29 三菱麻铁里亚尔株式会社 三氯硅烷制造用反应装置及三氯硅烷制造方法
CN101417805A (zh) * 2007-10-25 2009-04-29 三菱麻铁里亚尔株式会社 氯化氢气体喷出用构件及三氯硅烷制造用反应装置和方法
CN201258255Y (zh) * 2008-08-12 2009-06-17 应城市东诚有机硅有限公司 新型三氯氢硅合成炉
JP2010184846A (ja) * 2009-02-13 2010-08-26 Mitsubishi Materials Corp トリクロロシラン製造装置
CN201857273U (zh) * 2010-10-13 2011-06-08 宁夏阳光硅业有限公司 一种具有水平喷气孔的氯化氢气体喷出用构件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2841476A (en) * 1953-07-16 1958-07-01 Dorr Oliver Inc Apparatus for contacting solids with gases
CN2360163Y (zh) * 1999-03-10 2000-01-26 冯刚礼 水油两用喷头
CN2619149Y (zh) * 2003-05-30 2004-06-02 东南大学 气力输送用底饲喷嘴

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02145413A (ja) * 1988-11-29 1990-06-04 Koujiyundo Silicon Kk トリクロロシラン製造用流動反応装置
CN101418012A (zh) * 2007-10-25 2009-04-29 三菱麻铁里亚尔株式会社 三氯硅烷制造用反应装置及三氯硅烷制造方法
CN101417805A (zh) * 2007-10-25 2009-04-29 三菱麻铁里亚尔株式会社 氯化氢气体喷出用构件及三氯硅烷制造用反应装置和方法
CN201258255Y (zh) * 2008-08-12 2009-06-17 应城市东诚有机硅有限公司 新型三氯氢硅合成炉
JP2010184846A (ja) * 2009-02-13 2010-08-26 Mitsubishi Materials Corp トリクロロシラン製造装置
CN201857273U (zh) * 2010-10-13 2011-06-08 宁夏阳光硅业有限公司 一种具有水平喷气孔的氯化氢气体喷出用构件

Also Published As

Publication number Publication date
CN101962189A (zh) 2011-02-02

Similar Documents

Publication Publication Date Title
KR101830856B1 (ko) 고순도의 입상 실리콘을 제조하기 위한 방법
JP6448816B2 (ja) 流動床反応器システム用ガス分配装置、前記ガス分配装置を含む流動床反応器システム、および前記流動床反応器システムを利用した粒子状ポリシリコンの製造方法
TWI386526B (zh) 高純度多結晶矽的製造方法及製造裝置
CN107285287A (zh) 一种β相氮化硅的生产方法及β相氮化硅
CN104860317A (zh) 一种冷氢化法制备三氯氢硅的设备
WO2012048494A1 (zh) 用于三氯硅烷合成塔的氯化氢气体喷出构件及其使用方法
TW201545980A (zh) 用於在流化床反應器中生產多晶矽顆粒的矽晶種粒子
CN1141671A (zh) 干燥液体中固体物料用的方法和设备
CN103449442B (zh) 一种流化床多晶硅颗粒的制备系统及利用该系统制备多晶硅的工艺
RU2486954C2 (ru) Эжекторная форсунка для газа хлористого водорода, реакционное устройство для получения трихлорсилана и способ получения трихлорсилана
CN109696079B (zh) 对置式固体颗粒喷射分布器在线清焦装置
CN103495366A (zh) 颗粒状多晶硅流化床反应器
CN203484138U (zh) 一种多晶硅流化床反应器
WO2005104718A2 (en) Process and apparatus for the producton of alumina
CN101928001A (zh) 一种制备粒状多晶硅的新型流化床反应装置
KR20090042169A (ko) 염화수소 가스 분출용 부재 및 트리클로로실란 제조용 반응장치 및 트리클로로실란 제조 방법
CN216936050U (zh) 氯化法制备钛白粉工艺中的AlCl3制备装置
CN201857273U (zh) 一种具有水平喷气孔的氯化氢气体喷出用构件
WO2011009390A1 (zh) 硅气转化的反应器和方法
CN103058154A (zh) 用晶体硅加工废砂浆回收硅粉制备氮化硅粉体的气流床反应器
CN116943808B (zh) 一种氧化镁生产装置及其工艺
CN105905939B (zh) 一种含钛高炉渣碳化后直接粒化‑氯化的装置和方法
CN217016504U (zh) 用于宝珠砂喷吹制成球的装置
JPH0557201B2 (zh)
CN105110306B (zh) 一种连续生产五氧化二磷的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858326

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858326

Country of ref document: EP

Kind code of ref document: A1