WO2012046557A1 - リチウム二次電池の正極活物質用の板状粒子 - Google Patents

リチウム二次電池の正極活物質用の板状粒子 Download PDF

Info

Publication number
WO2012046557A1
WO2012046557A1 PCT/JP2011/071085 JP2011071085W WO2012046557A1 WO 2012046557 A1 WO2012046557 A1 WO 2012046557A1 JP 2011071085 W JP2011071085 W JP 2011071085W WO 2012046557 A1 WO2012046557 A1 WO 2012046557A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
positive electrode
particles
active material
electrode active
Prior art date
Application number
PCT/JP2011/071085
Other languages
English (en)
French (fr)
Inventor
昌平 横山
小林 伸行
七瀧 努
浩一 近藤
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011028150A external-priority patent/JP5623306B2/ja
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Publication of WO2012046557A1 publication Critical patent/WO2012046557A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a plate-like particle for a positive electrode active material of a lithium secondary battery having a layered rock salt structure.
  • lithium ions (Li + ) are present on crystal planes other than the (003) plane (for example, (101) plane or (104) plane: hereinafter referred to as “lithium ion entrance / exit plane”). In and out. The charging / discharging operation is performed by the entry and exit of the lithium ions.
  • the “plate-like particles for the positive electrode active material of a lithium secondary battery” (hereinafter simply referred to as “plate-like particles” or “positive electrode active material particles” as necessary) which are symmetrical to the present invention are layered rock salts. It is formed as a polycrystal with a large number of primary crystal grains having a structure.
  • the “layered rock salt structure” means that the lithium layer and the transition metal layer other than lithium are alternately sandwiched between the oxygen layers.
  • the stacked crystal structure that is, a crystal structure in which transition metal ion layers and lithium single layers are alternately stacked via oxide ions (typically ⁇ -NaFeO 2 type structure: cubic rock salt structure [111 ] A structure in which transition metals and lithium are regularly arranged in the axial direction.
  • the “primary crystal particle” means a crystal particle having the above-mentioned layered rock salt structure and containing no crystal grain boundary inside.
  • the feature of the present invention is that the positive electrode active material particles have the following characteristics. T ⁇ 30 ⁇ m, d / t ⁇ 2, -Lithium entrance / exit oriented particles are arranged in a dispersed state in an aggregate of a large number of (003) plane oriented particles, The peak intensity ratio [003] / [104] is 10 or more and 100 or less.
  • t is the thickness of the positive electrode active material particles
  • d is the particle size (dimension in the plate surface direction (direction perpendicular to the thickness direction)
  • d / t is the aspect ratio.
  • Platinum-like particles refer to particles having an aspect ratio of 2 or more. From the viewpoint of the handling properties of the positive electrode active material particles (such as the shape stability of the particles when formed into a slurry to form a film), the aspect ratio is preferably 2 to 5, and preferably 3 to 5. Further preferred.
  • the lithium entrance / exit oriented particles are oriented so that the (003) plane of the primary crystal particles intersects the plate surface of the plate-like particles. Further, the (003) plane oriented particles are those in which the (003) plane is parallel to the plate surface of the plate-like particles among the primary crystal grains.
  • the “thickness direction” is a direction that defines the “thickness” t of the positive electrode active material particles.
  • the plate-like positive electrode active material particles are stably placed on a horizontal plane. In the state, it refers to the direction parallel to the vertical direction.
  • the “thickness” is a dimension of the positive electrode active material particles in the “thickness direction”.
  • the “plate surface” refers to the surface of the positive electrode active material particles that is substantially orthogonal to the “thickness direction”. Since this “plate surface” is the widest surface of the positive electrode active material particles, it may be referred to as “principal surface”.
  • the “plate surface direction” refers to a direction parallel to the “plate surface” (that is, an in-plane direction).
  • the surface exposed so as to be substantially orthogonal to the “plate surface” at the outer edge in the plate surface direction of the positive electrode active material particles is referred to as “end surface”.
  • the “thickness” of the positive electrode active material particles is the shortest distance between two substantially parallel “plate surfaces” having normal vectors in substantially opposite directions. Specifically, the thickness t is obtained, for example, by measuring the distance between the plate surfaces observed substantially in parallel when the cross section of the positive electrode active material particles is observed with an SEM (scanning electron microscope). .
  • the above-mentioned “thickness direction” is a direction that defines the shortest distance between the two “plate surfaces”.
  • the peak intensity ratio [003] / [104] is a parameter indicating the degree of orientation in the positive electrode active material particles, and specifically, (003) with respect to the diffraction intensity by the (104) plane in X-ray diffraction. It is the ratio of the diffraction intensity by the surface.
  • the positive electrode active material particles of the present invention have the (003) plane exposed on the majority of the plate surface, and the (104) plane.
  • the lithium ion entrance / exit surface is configured to be exposed to a part of the plate surface (in a dispersed state).
  • the dispersion state of the lithium entrance / exit oriented particles is as follows:
  • EBSD backscatter electron diffraction
  • the standard deviation of the ratio when measuring 10 fields of view is 15 or less (more preferably 10 or less) It is preferable that
  • the dispersion state of the lithium entrance / exit oriented particles in the cross-sectional direction of the positive electrode active material particles is determined by the above-described EBSD device in the field of view of 100 to 200 primary crystal particles and the plate surface of the plate-like particles.
  • the standard deviation of the ratio when measuring 10 fields of view is 15 or less (more preferably 10 or less) It is preferable that
  • the particle diameter of the primary crystal particles is t / 100 or more. And it is preferable that it is 5 micrometers or less.
  • the particle diameter of the primary crystal particles is t / 100 or more. And it is preferably 10 ⁇ m or less.
  • the particle size of the primary crystal particles is more preferably 0.8 ⁇ m or more, and even more preferably 1 ⁇ m or more.
  • the lithium secondary battery using the positive electrode active material particles includes a positive electrode including a positive electrode active material layer formed by dispersing the positive electrode active material particles in a predetermined binder, and a carbonaceous material or a lithium storage material as a negative electrode.
  • the positive electrode is configured by superimposing the positive electrode active material layer and a predetermined positive electrode current collector.
  • the (003) plane (a plane that does not become the lithium ion entrance / exit plane) is exposed in many portions of the plate surface, and a part of the plate surface (the above-mentioned
  • the lithium ion entrance / exit surface is exposed to the outside (that is, the electrolyte) at the end surface and the portion where the lithium entrance / exit oriented particles are exposed to the outside on the plate surface. That is, on the plate surface, the lithium ion entrance / exit surface is distributed corresponding to the dispersed state of the lithium entrance / exit oriented particles.
  • the lithium entrance / exit oriented particles exposed on the plate surface function as a lithium ion path between the (003) plane oriented particles and the electrolyte that are adjacent to each other along the plate surface direction.
  • the lithium entrance / exit surface oriented particles present inside the particles release lithium ions from the (003) face oriented particles adjacent to the lithium entrance / exit surface oriented particles along the plate surface direction toward the external electrolyte. It functions as a lithium ion path when performing the reverse operation.
  • the positive electrode active material particles of the present invention good durability (cycle characteristics) is secured by exposing a physically and chemically stable (003) surface in many parts of the plate surface.
  • Favorable charge / discharge characteristics (rate characteristics) are realized by exposing the lithium ion entrance / exit surface to the outside (that is, the electrolyte).
  • FIG. 1A is a cross-sectional view showing a schematic configuration of an example of a lithium secondary battery to which an embodiment of the present invention is applied.
  • FIG. 1B is a perspective view showing a schematic configuration of another example of a lithium secondary battery to which the embodiment of the present invention is applied.
  • 2A is an enlarged cross-sectional view of the positive electrode plate shown in FIGS. 1A and 1B.
  • FIG. 2B is an enlarged cross-sectional view of the positive electrode active material particles shown in FIG. 2A and the positive electrode active material particles of the comparative example.
  • FIG. 1A is a cross-sectional view showing a schematic configuration of an example of a lithium secondary battery 1 to which an embodiment of the present invention is applied.
  • the lithium secondary battery 1 is a so-called liquid type, and includes a positive electrode plate 2, a negative electrode plate 3, a separator 4, a positive electrode tab 5, and a negative electrode tab 6. Yes.
  • a separator 4 is provided between the positive electrode plate 2 and the negative electrode plate 3. That is, the positive electrode plate 2, the separator 4, and the negative electrode plate 3 are laminated in this order.
  • a positive electrode tab 5 is electrically connected to the positive electrode plate 2.
  • the negative electrode tab 6 is electrically connected to the negative electrode plate 3.
  • a lithium secondary battery 1 shown in FIG. 1A includes a laminate of a positive electrode plate 2, a separator 4, and a negative electrode plate 3, and an electrolyte containing a lithium compound as an electrolyte, in a predetermined battery case (not shown). It is configured by being sealed in a liquid-tight manner.
  • FIG. 1B is a perspective view showing a schematic configuration of another example of the lithium secondary battery 1 to which the embodiment of the present invention is applied.
  • this lithium secondary battery 1 is also a so-called liquid type, and includes a positive electrode plate 2, a negative electrode plate 3, a separator 4, a positive electrode tab 5, a negative electrode tab 6, and a core 7. And.
  • a lithium secondary battery 1 shown in FIG. 1B includes an internal electrode body formed by winding a laminate of a positive electrode plate 2, a separator 4, and a negative electrode plate 3 around a core 7, and the above-described electrolyte solution.
  • the liquid is sealed in a predetermined battery case (not shown).
  • FIG. 2A is an enlarged cross-sectional view of the positive electrode plate 2 shown in FIGS. 1A and 1B.
  • the positive electrode plate 2 includes a positive electrode current collector 21 and a positive electrode layer 22.
  • the positive electrode layer 22 is configured by dispersing positive electrode active material particles 22a in a binder 22b.
  • the positive electrode active material particles 22a are lithium nickelate plate-like particles having a composition represented by the following general formula and having a layered rock salt structure, having a thickness of 30 ⁇ m or less and an aspect ratio. The ratio is 3 or more.
  • FIG. 2B is an enlarged cross-sectional view of the positive electrode active material particles 22a shown in FIG. 2A and the positive electrode active material particles 22a 'of the comparative example.
  • the positive electrode active material particles 22a of the present embodiment include a large number of primary crystal particles ((003) plane oriented particles 22a1 and lithium entrance / exit plane oriented particles 22a2 having a layered rock salt structure. ) To form a polycrystal.
  • the positive electrode active material particles 22a of the present embodiment are in a state in which the lithium entrance / exit oriented particles 22a2 are well dispersed and arranged in an aggregate of a large number of (003) oriented particles 22a1, and have a peak intensity. It is formed so that the ratio [003] / [104] is 10 or more and 100 or less.
  • the (003) plane oriented particles 22a1 are such that the (003) plane (indicated by a thick solid line on the plate surface) is parallel to the plate surface TF of the positive electrode active material particles 22a.
  • the primary crystal grains are oriented (that is, (003) plane oriented).
  • the lithium entrance / exit surface oriented particles 22a2 are primary crystal particles oriented such that the (003) plane intersects the plate surface TF of the positive electrode active material particles 22a (for example, (104) oriented).
  • the primary crystal particles ((003) plane oriented particles 22a1 and lithium entrance / exit plane oriented particles 22a2) have a particle size of (1) 0.6 ⁇ x ⁇ When 0.8, 0.01 ⁇ y ⁇ 0.4 and 0 ⁇ z ⁇ 0.3, the thickness is 1/100 or more and 5 ⁇ m or less of the thickness of the positive electrode active material particle 22a, and (2) In the general formula, when 0.8 ⁇ x ⁇ 0.95, 0.01 ⁇ y ⁇ 0.2, 0 ⁇ z ⁇ 0.2, it is formed so as to be t / 100 or more and 10 ⁇ m or less. ing.
  • the positive electrode active material particles 22a of the present embodiment are moderately (003) -oriented so that the lithium ion entrance / exit surface is appropriately exposed on the surface (including the plate surface TF and the end surface), and the aspect ratio is 2.
  • the plate-like particles are as described above.
  • the (003) plane is physically and chemically stable (high strength and low reactivity with the electrolyte). Therefore, the positive electrode active material particle 22a of the present embodiment has a high strength against collision between particles and reaction with the electrolytic solution while appropriately having a lithium ion entrance / exit surface on the surface.
  • the lithium in / out surface oriented particles 22a2 exposed on the plate surface TF are adjacent to the (003) plane oriented particles 22a1 along the plate surface direction. It functions as a lithium ion path between the electrolyte and the electrolyte.
  • the lithium entrance / exit oriented particle 22a2 present inside the particle releases lithium ions from the (003) plane oriented particle 22a1 adjacent to the lithium entrance / exit surface oriented particle 22a1 along the plate surface direction, or vice versa. It functions as a lithium ion path for operation.
  • the positive electrode active material particles 22a of the present embodiment good durability (cycle characteristics) is ensured by exposing the physically and chemically stable (003) surface in many parts of the plate surface TF.
  • good charge / discharge characteristics (rate characteristics) can be realized by exposing the lithium ion entrance / exit surfaces to the outside (that is, the electrolyte).
  • the (003) plane orientation is too high, and there is a region in which lithium ions do not easily enter and exit. (Refer to the dashed ellipse in the figure). In such particles, good cycle characteristics are obtained, but good rate characteristics are not realized.
  • both the cycle characteristics and the rate characteristics that conventionally have a trade-off relationship as described above can be improved.
  • the positive electrode active material particles 22a of the present embodiment are formed in a plate shape having a predetermined thickness and aspect ratio so that the lithium ion diffusion distance is as short as possible, and the diffusion of lithium ions.
  • the primary particle diameter (the size of the primary crystal particles described above) is optimized so that the number of crystal grain boundaries serving as resistance is reduced as much as possible. Thereby, the cycle characteristics can be improved without deteriorating the rate characteristics.
  • the degree of orientation if the peak intensity ratio [003] / [104] is too high (specifically, more than 100), the exposure of the lithium ion entrance / exit surface on the surface of the positive electrode active material particles is too little, so the rate characteristics. Decreases. On the contrary, if the peak intensity ratio [003] / [104] is too low (specifically, less than 10), the exposure of the physically and chemically stable (003) plane is too small. ) The effect of improving the cycle characteristics by increasing the degree of plane orientation (the effect of relaxing the internal stress accompanying the suppression of the collision between the positive electrode active material particles and the effect of suppressing the reaction with the electrolytic solution) is diminished.
  • the mixture was defoamed by stirring under reduced pressure, and the viscosity was adjusted to 3000 to 4000 cP (the viscosity was measured with a Brookfield LVT viscometer).
  • the fired ceramic sheet was placed on a sieve (mesh) with an opening diameter of 50 ⁇ m and crushed by passing through the mesh while pressing lightly with a spatula to obtain a powder of positive electrode active material plate-like particles .
  • Particle shape (primary particle diameter, thickness, aspect ratio)
  • the length in the vertical direction is obtained, and the same evaluation is performed on ten different positive electrode active material plate-like particles, and the average value is calculated.
  • the thickness of the positive electrode active material plate-like particles was used. A value obtained by dividing the diameter of the positive electrode active material plate-like particle in the longitudinal direction by the thickness was defined as an aspect ratio.
  • an XRD (X-ray diffraction) profile was measured when the surface of the positive electrode active material plate-like particles was irradiated with X-rays (104)
  • the ratio [003] / [104] of the diffraction intensity (peak height) of the (003) plane to the diffraction intensity (peak height) of the plane was determined.
  • the plate surface of the positive electrode active material plate-like particles is in surface contact with the glass substrate surface, and the particle plate surface and the glass substrate surface are parallel to each other.
  • a diffraction profile can be obtained by a crystal plane parallel to the crystal plane of the grain plate surface, that is, a crystal plane oriented in the grain plane direction of the grain.
  • the positive electrode active material plate-like particles are arranged so that they do not overlap as much as possible, and the crystal surface and the glass substrate surface are parallel to each other.
  • the material copied on the tape was filled with resin and polished so that the plate surface or cross-section polished surface of the positive electrode active material plate-like particles could be observed.
  • polishing in the case of plate surface observation, polishing was performed with a vibration type rotary polishing machine using colloidal silica (0.05 ⁇ m) as an abrasive, and in the case of cross-sectional observation, polishing was performed with a cross section polisher (CP).
  • the crystal orientation analysis of each particle is performed by electron backscatter diffraction imaging (EBSD), and the plate of positive electrode active material plate-like particles is obtained.
  • EBSD electron backscatter diffraction imaging
  • the ratio of particles with (003) tilted 10 degrees or more with respect to the plane direction was determined. This was done in 10 different fields of view and the standard deviation was calculated. The smaller the standard deviation value, the more uniformly the lithium entrance / exit surface oriented particles 22a2 are dispersed.
  • Li 1.0 (Ni 0.75 Co 0.2 Al 0.05 ) O 2 particles, acetylene black, and polyvinylidene fluoride (PVDF) were mixed at a mass ratio of 75: 20: 5.
  • PVDF polyvinylidene fluoride
  • the produced positive electrode, negative electrode made of a lithium metal plate, stainless steel current collector plate, and separator are arranged in the order of current collector plate-positive electrode-separator-negative electrode-current collector plate, and the coin cell is filled with the electrolyte.
  • the electrolytic solution was prepared by dissolving LiPF 6 in an organic solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at an equal volume ratio to a concentration of 1 mol / L.
  • rate characteristics rate capacity retention ratio
  • cycle characteristics cycle capacity retention ratio
  • the current value at the time of charging was fixed at the 0.1 C rate, and the discharge current value was repeated for two cycles at the 1 C rate, and the measured value of the discharge capacity at the second cycle was defined as “discharge capacity at the 1 C rate”.
  • a rate characteristic index a value obtained by dividing “discharge capacity at 1 C rate” by “discharge capacity at 0.1 C rate” (actually, “rate capacity maintenance ratio (%)” expressed as a percentage) was used. .
  • Cycle characteristics With respect to the manufactured battery, the test temperature was set to 25 ° C., (1) 1C rate constant current—constant voltage up to 4.3V, and (2) 1C rate constant current. Cyclic charge / discharge was repeated to discharge to 0V. As an indicator of cycle characteristics, the value obtained by dividing the discharge capacity of the battery after the end of 100 cycles of charge / discharge by the discharge capacity of the first battery (actually, "cycle capacity maintenance rate (%)" expressed as a percentage) was used.
  • Li / M is a molar ratio of lithium to other transition metal element in the mixing of the lithium compound and other transition metal compound in the slurry preparation step of the above-described example. is there. That is, when “Li / M” is 1.1, the lithium compound and the other transition metal so as to have a composition ratio of Li 1.1 (Ni 0.75 Co 0.2 Al 0.05 ) O 2. This means that the compound was mixed (see the above examples).
  • the “pulverization / mixing time” is the processing time by the ball mill of the mixture of the lithium compound and the other transition metal compound in the slurry preparation step of the above-described embodiment.
  • the “forming speed” is the “feeding speed” in the sheet forming process of the above-described embodiment.
  • “mesh” is a mesh opening diameter in the crushing process of the above-described embodiment (the aspect ratio can be controlled by changing this).
  • the “lithium introduction temperature” is a heat treatment temperature in the heat treatment step of the above-described embodiment.
  • the primary particle diameter was changed by adjusting / M and the heat treatment temperature (lithium introduction temperature)
  • Comparative Example 3 having the smallest primary particle size, the rate characteristics were slightly lowered. The reason for this is thought to be that when the primary particle size is reduced, the crystal grain boundaries inside the positive electrode active material particles are increased, and the diffusion of lithium ions is inhibited.
  • the primary particle diameter (0.08 ⁇ m) is less than 1/100 of the thickness (10 ⁇ m) of the positive electrode active material particles.
  • Comparative Example 4 (7 ⁇ m) having the largest primary particle size with the composition of Li 1.0 (Ni 0.75 Co 0.2 Al 0.05 ) O 2 , the rate characteristics and the cycle characteristics were slightly lowered. The reason for this is that the primary particle size is increased, so that the effect of improving the cycle characteristics due to relaxation of the internal stress as described above is slightly diminished, and the interval between the lithium entrance / exit oriented particles 22a2 (see FIG. 2B) is reduced. It is considered that the diffusibility of lithium ions is slightly inhibited by being too far away.
  • the rate characteristic is good when the standard deviation is 15 or less, more preferably 10 or less. It became. The reason for this is thought to be that lithium ion entrance / exit on the surface of the positive electrode active material particles is more favorably promoted by more uniformly dispersing the lithium entrance / exit surface oriented particles 22a2.
  • the thickness and aspect ratio of the positive electrode active material particles are appropriately changed in the manufacturing conditions such as the molding conditions (thickness after drying) in the above-described sheet molding process and the crushing conditions (mesh opening diameter) in the crushing process. Therefore, it is possible to easily control (refer to Experimental Examples 6 to 8 for an aspect ratio of 2.8).
  • the plate-like particle for positive electrode active material of the present invention is not limited to the above composition as long as it has a layered rock salt structure.
  • the plate-like particle for positive electrode active material of the present invention may have the following composition: lithium nickelate, lithium manganate, nickel / lithium manganate, nickel / lithium cobaltate, cobalt / nickel / manganese Lithium acid, cobalt / lithium manganate, etc.
  • these materials include Mg, Al, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Ga, Ge, Sr, Y, Zr, Nb, Mo, Ag, Sn, Sb, Te, Ba. , Bi and the like may contain one or more elements.
  • a gel polymer electrolyte can be used as the electrolyte.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明は、層状岩塩構造を有する、リチウム二次電池の正極活物質用の板状粒子であって、リチウム出入面配向粒子((003)面が当該板状粒子の板面と交差するように配向した一次結晶粒子)が、多数の(003)面配向粒子((003)面が当該板状粒子の板面と平行となるように配向した一次結晶粒子)の集合体内に、分散状態で配置されている。

Description

リチウム二次電池の正極活物質用の板状粒子
 本発明は、層状岩塩構造を有する、リチウム二次電池の正極活物質用の板状粒子に関する。
 リチウム二次電池(リチウムイオン二次電池と称されることもある)の正極材料として、いわゆるα-NaFeO2型の層状岩塩構造を有しているものが広く知られている(例えば、特開平9-22693号公報、特開2003-168434号公報、等参照。)。この種の正極活物質においては、(003)面以外の結晶面(例えば(101)面や(104)面:以下「リチウムイオン出入面」と称する。)にて、リチウムイオン(Li)の出入りが生じる。かかるリチウムイオンの出入りによって、充放電動作が行われる。
 この種の電池の特性を向上するためには、正極活物質にてリチウムイオンの出入りがより良好に行われるようにする必要がある。本発明は、かかる課題を解決するためになされたものである。
-構成-
 本発明の対称となる「リチウム二次電池の正極活物質用の板状粒子」(以下、必要に応じて単に「板状粒子」あるいは「正極活物質粒子」と略称する。)は、層状岩塩構造を有する多数の一次結晶粒子による多結晶体として形成されている。例えば、前記正極活物質粒子は、下記一般式
 Li(Ni,Co,M)O
[上記一般式中、MはAl、Mn及びMgからなる群より選択された少なくとも1種であり、0.9≦p≦1.3,x+y+z=1]
 で表される組成を有している。
 ここで、本発明の「リチウム二次電池の正極活物質用の板状粒子」における、「層状岩塩構造」とは、リチウム層とリチウム以外の遷移金属層とが酸素の層を挟んで交互に積層された結晶構造、すなわち、酸化物イオンを介して遷移金属イオン層とリチウム単独層とが交互に積層した結晶構造(典型的にはα-NaFeO型構造:立方晶岩塩型構造の[111]軸方向に遷移金属とリチウムとが規則配列した構造)をいう。また、「一次結晶粒子」とは、上述の層状岩塩構造を有する結晶粒子であって、内部に結晶粒界を含まないものをいう。
 本発明の特徴は、前記正極活物質粒子が、以下の特性を備えたことにある。
・t≦30μm、d/t≧2であり、
・リチウム出入面配向粒子が、多数の(003)面配向粒子の集合体内に、分散状態で配置され、
・ピーク強度比[003]/[104]が、10以上100以下である。
 ここで、tは前記正極活物質粒子の厚さであり、dは粒径(板面方向(厚さ方向と直交する方向)における寸法)であり、d/tはアスペクト比である。「板状粒子」とは、このアスペクト比が2以上の粒子をいう。前記正極活物質粒子のハンドリング性(スラリー化して膜形成する際の粒子の形状安定性等)の観点からは、アスペクト比が2~5であることが好適であり、3~5であることがさらに好適である。
 また、前記リチウム出入面配向粒子とは、前記一次結晶粒子のうち、(003)面が当該板状粒子の板面と交差するように配向したものである。さらに、前記(003)面配向粒子とは、前記一次結晶粒子のうち、(003)面が当該板状粒子の板面と平行となるように配向したものである。
 「厚さ方向」とは、前記正極活物質粒子の「厚さ」tを規定する方向であって、典型的には、板状の前記正極活物質粒子を水平面上に安定的に載置した状態における、鉛直方向と平行な方向をいう。そして、「厚さ」は、かかる「厚さ方向」における、当該正極活物質粒子の寸法である。
 また、「板面」とは、前記正極活物質粒子の、「厚さ方向」と略直交する表面をいう。この「板面」は、当該正極活物質粒子における最も広い表面であるため、「主面(principal surface)」と称されることもある。「板面方向」とは、この「板面」と平行な方向(すなわち面内方向)をいう。これに対し、前記正極活物質粒子の板面方向における外端縁にて、「板面」と略直交するように露出する面を、「端面」という。
 したがって、前記正極活物質粒子の「厚さ」は、互いに略反対方向の法線ベクトルを有する略平行な2つの「板面」間の最短距離となる。具体的には、厚さtは、例えば、前記正極活物質粒子の断面をSEM(走査電子顕微鏡)によって観察した場合における、略平行に観察される板面間の距離を測定することで得られる。また、上述の「厚さ方向」は、2つの「板面」の最短距離を規定する方向となる。
 ピーク強度比[003]/[104]とは、前記正極活物質粒子における配向度を示すパラメータであって、具体的には、X線回折における、(104)面による回折強度に対する、(003)面による回折強度の比率である。かかる定義及び上述の特徴事項の記載から明らかなように、本発明の前記正極活物質粒子は、その板面の大部分に(003)面が露出するとともに、(104)面に代表される前記リチウムイオン出入面が板面の一部に(分散状態で)露出するように構成されている。
 前記正極活物質粒子の板面方向における、前記リチウム出入面配向粒子の分散状態は、
 後方散乱電子線回折(EBSD:electron backscatter diffraction)装置によって、前記一次結晶粒子が100~200個存在する視野にて、当該板状粒子の板面における前記リチウム出入面配向粒子の割合を測定した場合に、
 10視野測定したときの当該割合の標準偏差が15以下(より好ましくは10以下)
 であることが好適である。
 前記正極活物質粒子の断面方向における、前記リチウム出入面配向粒子の分散状態は、上述のEBSD装置によって、前記一次結晶粒子が100~200個存在する視野にて、当該板状粒子の板面と直交する断面における前記リチウム出入面配向粒子の割合を測定した場合に、
 10視野測定したときの当該割合の標準偏差が15以下(より好ましくは10以下)
 であることが好適である。
 上記一般式中0.6<x<0.8,0.01<y≦0.4,0≦z≦0.3である場合、前記一次結晶粒子の粒径は、t/100以上であって且つ5μm以下であることが好適である。あるいは、上記一般式中0.8≦x≦0.95,0.01<y≦0.2,0≦z≦0.2である場合、前記一次結晶粒子の粒径は、t/100以上であって且つ10μm以下であることが好適である。なお、いずれの系においても、前記一次結晶粒子の粒径は、0.8μm以上であることがより好適であり、1μm以上であることがさらにいっそう好適である。
 前記正極活物質粒子を用いたリチウム二次電池は、前記正極活物質粒子を所定のバインダー中に分散することで形成された正極活物質層を含む正極と、炭素質材料又はリチウム吸蔵物質を負極活物質として含む負極と、前記正極と前記負極との間に介在するように設けられた電解質と、を備えている。具体的には、例えば、前記正極は、前記正極活物質層と所定の正極集電体とが重ね合わせられることによって構成されている。
-効果-
 かかる構成を有する本発明の前記正極活物質粒子においては、板面における多くの部分にて(003)面(前記リチウムイオン出入面とはならない面)が露出するとともに、板面の一部(前記リチウム出入面配向粒子が板面にて外部に露出している部分)及び端面にて、前記リチウムイオン出入面が外部(すなわち前記電解質)に露出する。すなわち、板面においては、前記リチウム出入面配向粒子の分散状態に対応して、前記リチウムイオン出入面が分布する。
 また、板面に露出した前記リチウム出入面配向粒子は、これと前記板面方向に沿って隣り合う前記(003)面配向粒子と前記電解質との間の、リチウムイオンのパスとして機能する。同様に、粒子内部に存在する前記リチウム出入面配向粒子は、これと前記板面方向に沿って隣り合う前記(003)面配向粒子から外部の前記電解質に向かってリチウムイオンを放出したり、その逆の動作をしたりする際の、リチウムイオンのパスとして機能する。
 よって、本発明の前記正極活物質粒子においては、板面における多くの部分にて物理的及び化学的に安定な(003)面を露出させることで良好な耐久性(サイクル特性)が確保されつつ、前記リチウムイオン出入面を外部(すなわち前記電解質)に良好に露出させることで良好な充放電特性(レート特性)が実現される。
図1Aは、本発明の一実施形態の適用対象であるリチウム二次電池の一例の概略構成を示す断面図である。 図1Bは、本発明の一実施形態の適用対象であるリチウム二次電池の他の一例の概略構成を示す斜視図である。 図2Aは、図1A及び図1Bに示されている正極板の拡大断面図である。 図2Bは、図2Aに示されている正極活物質粒子及び比較例の正極活物質粒子の拡大断面図である。
 以下、本発明の好適な実施形態を、実施例及び比較例を用いつつ説明する。なお、以下の実施形態に関する記載は、法令で要求されている明細書の記載要件(記述要件・実施可能要件)を満たすために、本発明の具体化の単なる一例を、可能な範囲で具体的に記述しているものにすぎない。
 よって、後述するように、本発明が、以下に説明する実施形態や実施例の具体的構成に何ら限定されるものではないことは、全く当然である。本実施形態や実施例に対して施され得る各種の変更(modification)の例示は、当該実施形態の説明中に挿入されると、一貫した実施形態の説明の理解が妨げられるので、可能な限り末尾にまとめて記載されている。
1.リチウム二次電池の概略構成
 図1Aは、本発明の一実施形態の適用対象であるリチウム二次電池1の一例の概略構成を示す断面図である。図1Aを参照すると、このリチウム二次電池1は、いわゆる液体型であって、正極板2と、負極板3と、セパレータ4と、正極用タブ5と、負極用タブ6と、を備えている。
 正極板2と負極板3との間には、セパレータ4が設けられている。すなわち、正極板2と、セパレータ4と、負極板3とは、この順に積層されている。正極板2には、正極用タブ5が電気的に接続されている。同様に、負極板3には、負極用タブ6が電気的に接続されている。
 図1Aに示されているリチウム二次電池1は、正極板2、セパレータ4、及び負極板3の積層体と、リチウム化合物を電解質として含む電解液とを、所定の電池ケース(図示せず)内に液密的に封入することによって構成されている。
 図1Bは、本発明の一実施形態の適用対象であるリチウム二次電池1の他の一例の概略構成を示す斜視図である。図1Aを参照すると、このリチウム二次電池1も、いわゆる液体型であって、正極板2と、負極板3と、セパレータ4と、正極用タブ5と、負極用タブ6と、巻芯7と、を備えている。
 図1Bに示されているリチウム二次電池1は、巻芯7を中心として正極板2、セパレータ4、及び負極板3の積層体を捲回してなる内部電極体と、上述の電解液とを、所定の電池ケース(図示せず)内に液密的に封入することによって構成されている。
 図2Aは、図1A及び図1Bに示されている正極板2の拡大断面図である。図2Aを参照すると、正極板2は、正極集電体21と、正極層22と、を備えている。正極層22は、正極活物質粒子22aを結着材22b中に分散することによって構成されている。
2.正極活物質粒子の構成の詳細
 正極活物質粒子22aは、以下の一般式で示される組成を有し且つ層状岩塩構造を有するニッケル酸リチウムの板状粒子であって、厚さが30μm以下且つアスペクト比が3以上に形成されている。
 Li(Ni,Co,M)O
[上記一般式中、MはAl、Mn及びMgからなる群より選択された少なくとも1種であり、0.9≦p≦1.3,x+y+z=1]
 図2Bは、図2Aに示されている正極活物質粒子22a及び比較例の正極活物質粒子22a’の拡大断面図である。図2Bにおける(i)に示されているように、本実施形態の正極活物質粒子22aは、層状岩塩構造を有する多数の一次結晶粒子((003)面配向粒子22a1及びリチウム出入面配向粒子22a2)による多結晶体として形成されている。特に、本実施形態の正極活物質粒子22aは、リチウム出入面配向粒子22a2が多数の(003)面配向粒子22a1の集合体内に良好に分散して配置されたような状態であって、ピーク強度比[003]/[104]が10以上100以下となるように形成されている。
 ここで、(003)面配向粒子22a1とは、(003)面(図中、板面にて太い実線で示されている。)が正極活物質粒子22aの板面TFと平行となるように配向した(すなわち(003)面配向した)一次結晶粒子である。リチウム出入面配向粒子22a2とは、(003)面が正極活物質粒子22aの板面TFと交差するように配向した(例えば(104)配向した)一次結晶粒子である。
 また、本実施形態の正極活物質粒子22aは、一次結晶粒子((003)面配向粒子22a1及びリチウム出入面配向粒子22a2)の粒径が、(1)上記一般式中0.6<x<0.8,0.01<y≦0.4,0≦z≦0.3である場合、正極活物質粒子22aの厚さの1/100以上であって且つ5μm以下となり、(2)上記一般式中0.8≦x≦0.95,0.01<y≦0.2,0≦z≦0.2である場合、t/100以上であって且つ10μm以下となるように形成されている。
3.実施形態の正極活物質粒子の構成による効果
 図2Bにおける(i)に示されているように、本実施形態の正極活物質粒子22aにおいては、板面TFにおける多くの部分にて(003)面が露出するとともに、板面TFの一部(リチウム出入面配向粒子22a2が板面TFにて外部に露出している部分)及び端面にて、リチウムイオン出入面が外部(すなわち電解質)に露出する。すなわち、板面TFにおいては、リチウム出入面配向粒子22a2の分散状態に対応して、リチウムイオン出入面が分布する。
 このように、本実施形態の正極活物質粒子22aは、表面(板面TF及び端面を含む)に適度にリチウムイオン出入面が露出するように適度に(003)面配向した、アスペクト比が2以上である板状粒子となる。ここで、(003)面は、物理的及び化学的に安定(強度が高く電解液との反応性が低い)である。よって、本実施形態の正極活物質粒子22aは、リチウムイオン出入面をその表面にて適度に有しつつ、粒子同士の衝突や電解液との反応に対する強度が高いものとなる。
 また、図2Bにおける(i)にて矢印で示されているように、板面TFに露出したリチウム出入面配向粒子22a2は、これと板面方向に沿って隣り合う(003)面配向粒子22a1と電解質との間の、リチウムイオンのパスとして機能する。同様に、粒子内部に存在するリチウム出入面配向粒子22a2は、これと板面方向に沿って隣り合う(003)面配向粒子22a1から外部の電解質に向かってリチウムイオンを放出したり、その逆の動作をしたりする際の、リチウムイオンのパスとして機能する。
 よって、本実施形態の正極活物質粒子22aにおいては、板面TFにおける多くの部分にて物理的及び化学的に安定な(003)面を露出させることで良好な耐久性(サイクル特性)が確保されつつ、リチウムイオン出入面を外部(すなわち電解質)に良好に露出させることで良好な充放電特性(レート特性)が実現される。
 この点、図2Bにおける(ii)に示されているような正極活物質粒子22a’においては、(003)面配向性が高すぎて、その内部にリチウムイオンの出入りが生じにくい領域が生じてしまう(図中破線の楕円参照)。このような粒子においては、良好なサイクル特性が得られる一方、良好なレート特性は実現されない。これに対し、本実施形態の正極活物質粒子22aによれば、従来は上述のようにトレードオフの関係にあったサイクル特性とレート特性とを、ともに向上させることができる。
 また、本実施形態の正極活物質粒子22aにおいては、リチウムイオンの拡散距離が可及的に短くなるように所定の厚さ及びアスペクト比を有する板状に形成されているとともに、リチウムイオンの拡散抵抗となる結晶粒界が可及的に少なくなるように一次粒子径(上述の一次結晶粒子の大きさ)が適正化されている。これにより、レート特性を低下させることなくサイクル特性を向上させることができる。
 なお、図2Bにおける(ii)に示されているように、正極活物質粒子の厚さが大き過ぎると(具体的には30μmより厚いと)、リチウムイオンの拡散距離が長くなり、レート特性が低下する。また、かかる厚さ条件でアスペクト比が小さ過ぎると(具体的には2未満となると)、(003)面の露出割合が小さくなるため、電解液との反応によるサイクル特性の低下も生じやすくなる。
 配向度に関しては、ピーク強度比[003]/[104]が高過ぎると(具体的には100を超えると)、正極活物質粒子の表面におけるリチウムイオン出入面の露出が少な過ぎるため、レート特性が低下する。逆に、ピーク強度比[003]/[104]が低過ぎると(具体的には10未満であると)、物理的及び化学的に安定な(003)面の露出が少な過ぎるため、(003)面配向度を上げることによるサイクル特性向上効果(正極活物質粒子同士の衝突の抑制に伴う内部応力の緩和の効果や、電解液との反応の抑制の効果)が減殺される。
4.実施形態の正極活物質粒子の具体例
 以下、本実施形態の正極活物質粒子22aの製造方法の具体例、及びその評価結果について説明する。
4-1.製造方法の具体例
(1)スラリー調製
 混合物の組成比がLi1.1(Ni0.75Co0.2Al0.05)Oの組成比となるように、Ni(OH)粉末(株式会社高純度化学研究所製)、Co(OH)粉末(株式会社高純度化学研究所製)、Al・HO(SASOL社製)、及びLiOH・HO粉末(和光純薬工業株式会社製)をボールミルにより16時間粉砕・混合した原料粉末100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)10重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部と、を混合した。
 さらにこの混合物を、減圧下で撹拌することで脱泡するとともに、粘度を3000~4000cPに調整した(粘度は、ブルックフィールド社製LVT型粘度計で測定した。)。
(2)シート成形
 上述のようにして調製されたスラリーを、ドクターブレード法によって、PETフィルムの上に、送り速度1m/sで、乾燥後の厚さが12μmとなるように、シート状に成形した。
(3)熱処理
 PETフィルムから剥がしたシート状の成形体を、ジルコニア製セッターの中央に載置し、酸素雰囲気中(酸素分圧0.1MPa)にて775℃で24時間加熱処理することで、「独立した」シート状の正極活物質層用Li1.0(Ni0.75Co0.2Al0.05)Oセラミックスシートを得た。
(4)解砕
 焼成後のセラミックスシートを、開口径50μmのふるい(メッシュ)に載せ、ヘラで軽く押し付けながらメッシュを通過させて解砕することで、正極活物質板状粒子の粉末を得た。
4-2.評価方法
 上述の実施例における製造条件を適宜変更することで得られた実験例1~8及び比較例1~5(後述の表1参照:上述の実施例は「実験例2」に相当する。)の評価方法について、以下説明する。
(1)粒子形状(一次粒子径・厚さ・アスペクト比)
 正極活物質板状粒子(二次粒子)の板面と平行な表面のSEM像において、一次粒子が視野内に10個以上入る倍率を選択して、それぞれの一次粒子内に内接円を描いたときの直径を求め、これらの平均値を一次粒子径とした。さらに、正極活物質板状粒子(二次粒子)が視野内に10個以上入る倍率を選択して、同様の方法により、正極活物質板状粒子の長手方向の径を求めた。次に、正極活物質板状粒子の板面と垂直な断面のSEM像において、垂直方向の長さを求め、同様の評価を異なる10個の正極活物質板状粒子について行い、その平均値を正極活物質板状粒子の厚さとした。正極活物質板状粒子の長手方向の径を厚さで除した値を、アスペクト比とした。
(2)配向度
 エタノール2gに正極活物質板状粒子0.1gを加えたものを超音波分散機(超音波洗浄機)で30分間分散させ、これを25mm×50mmのガラス基板に2000rpmでスピンコートし、正極活物質板状粒子同士ができるだけ重ならないように、且つ結晶面とガラス基板面とが平行となる状態に配置した。
 X線回折装置(株式会社リガク製 ガイガーフレックスRAD-IB)を用い、正極活物質板状粒子の表面に対してX線を照射したときのXRD(X線回折)プロファイルを測定し、(104)面による回折強度(ピーク高さ)に対する(003)面による回折強度(ピーク高さ)の比率[003]/[104]を求めた。かかる方法においては、正極活物質板状粒子の板面がガラス基板面と面接触し、粒子板面とガラス基板面とが平行になる。このため、かかる方法によれば、粒子板面の結晶面に平行に存在する結晶面、すなわち、粒子の板面方向に配向する結晶面による回折プロファイルが得られる。
(3)分散状態
 上記のXRD測定と同様の方法により、正極活物質板状粒子同士ができるだけ重ならないように、且つ結晶面とガラス基板面とが平行となる状態に配置し、この粒子を粘着テープに写し取ったものを樹脂埋めし、正極活物質板状粒子の板面あるいは断面研磨面が観察できるように研磨した。仕上げ研磨として、板面観察の場合はコロイダルシリカ(0.05μm)を研磨剤として振動型回転研磨機にて研磨を行い、断面観察の場合はクロスセクションポリッシャ(CP)により研磨を行った。
 このようにして作成したサンプルに対し、一次粒子が100~200個見られる視野において、各粒子の結晶方位解析を、電子後方散乱回折像法(EBSD)により行い、正極活物質板状粒子の板面方向に対して(003)が10度以上傾いた粒子の割合を求めた。これを異なる10視野において行い、その標準偏差を計算した。この標準偏差の値が小さいほど、リチウム出入面配向粒子22a2がより均一に分散していることになる。
(4)電池特性
 電池特性の評価のために、以下のようにして電池を作成した。
 得られたLi1.0(Ni0.75Co0.2Al0.05)O粒子、アセチレンブラック、及びポリフッ化ビニリデン(PVDF)を、質量比で75:20:5となるように混合して、正極材料を調製した。調製した正極材料0.02gを、300kg/cmの圧力で直径20mmの円板状にプレス成形することで、正極を作製した。
 作製した正極、リチウム金属板からなる負極、ステンレス集電板、及びセパレータを、集電板-正極-セパレータ-負極-集電板の順に配置し、この集積体を電解液で満たすことでコインセルを作製した。電解液は、エチレンカーボネート(EC)及びジエチルカーボネート(DEC)を等体積比で混合した有機溶媒に、LiPFを1mol/Lの濃度となるように溶解することで調製した。
 上述のようにして作製した電池(コインセル)を用いて、レート特性(レート容量維持率)およびサイクル特性(サイクル容量維持率)の評価を行った。
(4-1)レート特性
 作製した電池について、0.1Cレートの電流値で電池電圧が4.3Vとなるまで定電流充電し、その後電池電圧を4.3Vに維持する電流条件で、その電流値が1/20に低下するまで定電圧充電した後10分間休止し、続いて0.1Cレートの電流値で電池電圧が3.0Vになるまで定電流放電した後10分間休止する、という充放電操作を1サイクルとし、25℃の条件下で合計2サイクル繰り返し、2サイクル目の放電容量の測定値を「0.1Cレートにおける放電容量」とした。
 引き続き、充電時の電流値を0.1Cレートに固定し、放電電流値を1Cレートで2サイクル放電を繰り返し、2サイクル目の放電容量の測定値を「1Cレートにおける放電容量」とした。レート特性の指標として、「1Cレートにおける放電容量」を「0.1Cレートの放電容量」で除した値(実際にはこれを百分率で表した「レート容量維持率(%)」)を用いた。
(4-2)サイクル特性
 作製した電池について、試験温度を25℃として、(1)1Cレートの定電流-定電圧で4.3Vまでの充電、及び(2)1Cレートの定電流で3.0Vまでの放電、を繰り返すサイクル充放電を行った。サイクル特性の指標として、100回のサイクル充放電終了後の電池の放電容量を初回の電池の放電容量で除した値(実際にはこれを百分率で表した「サイクル容量維持率(%)」)を用いた。
4-3.評価結果
 下記の表1のように製造条件を適宜変更することで得られた実験例1~5及び比較例1~5の評価結果について、以下説明する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 なお、表1中、「Li/M」は、上述の実施例のスラリー調製工程における、リチウム化合物とその他の遷移金属化合物との混合の際の、リチウムとその他の遷移金属元素とのモル比である。すなわち、「Li/M」が1.1である場合、Li1.1(Ni0.75Co0.2Al0.05)Oの組成比となるように、リチウム化合物とその他の遷移金属化合物とを混合したことになる(上述の実施例参照)。
 また、「粉砕・混合時間」は、上述の実施例のスラリー調製工程における、リチウム化合物とその他の遷移金属化合物との混合物のボールミルによる処理時間である。また、「成形速度」は、上述の実施例のシート成形工程における「送り速度」である。また、「メッシュ」は、上述の実施例の解砕工程におけるメッシュの開口径である(これを変更することによりアスペクト比を制御することが可能である)。さらに、「リチウム導入温度」は、上述の実施例の熱処理工程における、熱処理温度である。
 表2中、「配向度」は、ピーク強度比[003]/[104]の値である。また、「分散状態」は、それぞれ、板面観察及び断面観察における上述の標準偏差の値である。
 以下表1~表3を参照すると、粉砕・混合時間及び成形速度を調整することで配向度を変更したところ(実験例1~3及び比較例1~2)、ピーク強度比[003]/[104]が低過ぎる比較例1ではサイクル特性が低下し、ピーク強度比[003]/[104]が高過ぎる比較例2ではレート特性が低下した。これに対し、配向度が所定範囲の実験例1~3においては、レート特性もサイクル特性も良好であった。
 また、Li1.0(Ni0.75Co0.2Al0.05)Oの組成を有する上述の実施例において、スラリー調製工程におけるリチウム化合物とその他の遷移金属化合物との混合モル比Li/Mと、熱処理温度(リチウム導入温度)と、を調整することで、一次粒子径を変更したところ、以下のような結果が得られた。
 一次粒子径が最も小さい比較例3においては、レート特性が若干低くなった。この理由は、一次粒子径が小さくなることで、正極活物質粒子の内部の結晶粒界が増加し、リチウムイオンの拡散が阻害されることである、と考えられる。なお、この比較例3においては、一次粒子径(0.08μm)は、正極活物質粒子の厚さ(10μm)の1/100未満である。
 Li1.0(Ni0.75Co0.2Al0.05)Oの組成で一次粒子径が最も大きい比較例4(7μm)においては、レート特性及びサイクル特性が若干低くなった。この理由は、一次粒子径が大きくなることで、上述のような内部応力の緩和によるサイクル特性の向上の効果が若干減殺されるとともに、リチウム出入面配向粒子22a2(図2B参照)同士の間隔が離れ過ぎることによりリチウムイオンの拡散性が若干阻害されることである、と考えられる。
 さらに、粉砕・混合時間を調整することで、リチウム出入面配向粒子22a2(図2B参照)の分散性を変更したところ、標準偏差が15以下、より好ましくは10以下であると、レート特性が良好となった。この理由は、リチウム出入面配向粒子22a2がより均一に分散されることで、正極活物質粒子の表面におけるリチウムイオンの出入りがより良好に促進されることである、と考えられる。
 なお、正極活物質粒子における厚さやアスペクト比は、上述のシート成形工程における成形条件(乾燥後の厚さ)や、解砕工程における解砕条件(メッシュ開口径)等の製造条件を適宜変更することによって、容易に制御することが可能である(アスペクト比2.8のものについては実験例6~8参照)。
 さらに、Li1.0(Ni0.85Co0.1Al0.05)Oの組成を有する例についても、上述と同様に評価を行った。その結果を表4~6に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表4~6に示されている通り、Li1.0(Ni0.85Co0.1Al0.05)Oの組成においても、上述のLi1.0(Ni0.75Co0.2Al0.05)Oの組成と同様の結果が得られた。特に、いずれの系においても、アスペクト比2~5(略3~5)の範囲で、良好な特性とハンドリング性が得られた。但し、Li1.0(Ni0.85Co0.1Al0.05)Oの組成については、一次粒子径が9μmの実験例13においてレート特性及びサイクル特性がともに良好であった一方で、一次粒子径が11μmの比較例9においてレート特性が若干低下した。組成のNi比率が増加すると一次粒子径の適正範囲が大粒径側へ広くなる理由については、鋭意研究中であるが、現在のところ、組成のNi比率が増加することで粒子内のリチウムイオンの拡散性が良好になるためであると考えられる。
5.変形例の例示列挙
 なお、上述の実施形態や具体例は、上述した通り、出願人が取り敢えず本願の出願時点において最良であると考えた本発明の具現化の一例を単に示したものにすぎないのであって、本発明はもとより上述の実施形態や具体例によって何ら限定されるべきものではない。よって、上述の実施形態や具体例に対して、本発明の本質的部分を変更しない範囲内において、種々の変形が施され得ることは、当然である。
 以下、変形例について幾つか例示する。以下の変形例の説明において、上述の実施形態における各構成要素と同様の構成・機能を有する構成要素については、本変形例においても同一の名称及び同一の符号が付されているものとする。そして、当該構成要素の説明については、上述の実施形態における説明が、矛盾しない範囲で適宜援用され得るものとする。
 もっとも、変形例とて、下記のものに限定されるものではないことは、いうまでもない。本発明を、上述の実施形態や下記変形例の記載に基づいて限定解釈することは、(特に先願主義の下で出願を急ぐ)出願人の利益を不当に害する反面、模倣者を不当に利するものであって、許されない。
 また、上述の実施形態の構成、及び下記の各変形例に記載された構成の全部又は一部が、技術的に矛盾しない範囲において、適宜複合して適用され得ることも、いうまでもない。
 本発明の正極活物質用板状粒子は、層状岩塩構造を有する限り、上述の組成に限定されない。例えば、本発明の正極活物質用板状粒子は、以下の組成を有していてもよい:ニッケル酸リチウム、マンガン酸リチウム、ニッケル・マンガン酸リチウム、ニッケル・コバルト酸リチウム、コバルト・ニッケル・マンガン酸リチウム、コバルト・マンガン酸リチウム、等。さらに、これらの材料に、Mg,Al,Si,Ca,Ti,V,Cr,Fe,Cu,Zn,Ga,Ge,Sr,Y,Zr,Nb,Mo,Ag,Sn,Sb,Te,Ba,Biなどの元素が1種以上含まれていてもよい。
 電解質としては、ゲルポリマー電解質が用いられ得る。
 その他、特段に言及されていない変形例についても、本発明の本質的部分を変更しない範囲内において、本発明の技術的範囲に含まれることは当然である。
 また、本発明の課題を解決するための手段を構成する各要素における、作用・機能的に表現されている要素は、上述の実施形態や変形例にて開示されている具体的構造の他、当該作用・機能を実現可能ないかなる構造をも含む。さらに、本明細書にて引用した先行出願や各公報の内容(明細書及び図面を含む)は、本明細書の一部を構成するものとして適宜援用され得る。

Claims (6)

  1.  層状岩塩構造を有する多数の一次結晶粒子による多結晶体として形成された、リチウム二次電池の正極活物質用の板状粒子であって、
     厚さをt、当該厚さtを規定する厚さ方向と直交する方向における寸法である粒径をd、アスペクト比をd/tとすると、t≦30μm、d/t≧2であり、
     (003)面が当該板状粒子の板面と交差するように配向した前記一次結晶粒子であるリチウム出入面配向粒子が、(003)面が当該板状粒子の板面と平行となるように配向した前記一次結晶粒子である多数の(003)面配向粒子の集合体内に、分散状態で配置され、
     X線回折における、(104)面による回折強度に対する(003)面による回折強度の比率であるピーク強度比[003]/[104]が、10以上100以下である
     ことを特徴とする、リチウム二次電池の正極活物質用の板状粒子。
  2.  請求項1に記載の、リチウム二次電池の正極活物質用の板状粒子であって、
     後方散乱電子線回折装置によって、前記一次結晶粒子が100~200個存在する視野にて、当該板状粒子の板面における前記リチウム出入面配向粒子の割合を測定した場合に、
     10視野測定したときの当該割合の標準偏差が15以下
     であることを特徴とする、リチウム二次電池の正極活物質用の板状粒子。
  3.  請求項1又は請求項2に記載の、リチウム二次電池の正極活物質用の板状粒子であって、
     後方散乱電子線回折装置によって、前記一次結晶粒子が100~200個存在する視野にて、当該板状粒子の板面と直交する断面における前記リチウム出入面配向粒子の割合を測定した場合に、
     10視野測定したときの当該割合の標準偏差が15以下
     であることを特徴とする、リチウム二次電池の正極活物質用の板状粒子。
  4.  請求項1~請求項3のうちのいずれか1項に記載の、リチウム二次電池の正極活物質用の板状粒子であって、
     下記一般式
     Li(Ni,Co,M)O
    [上記一般式中、MはAl、Mn及びMgからなる群より選択された少なくとも1種であり、0.9≦p≦1.3,0.6<x<0.8,0.01<y≦0.4,0≦z≦0.3,x+y+z=1]
     で表される組成を有し
     前記一次結晶粒子の粒径が、t/100以上であって且つ5μm以下であることを特徴とする、リチウム二次電池の正極活物質用の板状粒子。
  5.  請求項1~請求項3のうちのいずれか1項に記載の、リチウム二次電池の正極活物質用の板状粒子であって、
     下記一般式
     Li(Ni,Co,M)O
    [上記一般式中、MはAl、Mn及びMgからなる群より選択された少なくとも1種であり、0.9≦p≦1.3,0.8≦x≦0.95,0.01<y≦0.2,0≦z≦0.2,x+y+z=1]
     で表される組成を有し
     前記一次結晶粒子の粒径が、t/100以上であって且つ10μm以下であることを特徴とする、リチウム二次電池の正極活物質用の板状粒子。
  6.  請求項4又は請求項5に記載の、リチウム二次電池の正極活物質用の板状粒子であって、
     上記一般式中のMがAlであることを特徴とする、リチウム二次電池の正極活物質用の板状粒子。
PCT/JP2011/071085 2010-10-08 2011-09-15 リチウム二次電池の正極活物質用の板状粒子 WO2012046557A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US39112410P 2010-10-08 2010-10-08
US61/391124 2010-10-08
JP2011028150A JP5623306B2 (ja) 2010-10-08 2011-02-14 リチウム二次電池の正極活物質用の板状粒子
JP2011-028150 2011-02-14

Publications (1)

Publication Number Publication Date
WO2012046557A1 true WO2012046557A1 (ja) 2012-04-12

Family

ID=45924414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071085 WO2012046557A1 (ja) 2010-10-08 2011-09-15 リチウム二次電池の正極活物質用の板状粒子

Country Status (2)

Country Link
US (1) US8728342B2 (ja)
WO (1) WO2012046557A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061399A1 (ja) 2012-10-15 2014-04-24 日本碍子株式会社 リチウム二次電池用正極活物質及びそれを用いた正極
JP5880426B2 (ja) * 2012-12-28 2016-03-09 住友金属鉱山株式会社 ニッケル複合水酸化物及びその製造方法、並びに正極活物質の製造方法
KR102617727B1 (ko) * 2016-04-22 2023-12-26 삼성에스디아이 주식회사 유기전해액 및 이를 포함하는 리튬전지
WO2018147387A1 (ja) * 2017-02-13 2018-08-16 日本碍子株式会社 リチウム複合酸化物焼結体板
WO2018147248A1 (ja) * 2017-02-13 2018-08-16 日本碍子株式会社 リチウム複合酸化物焼結体板及びリチウム二次電池
US11777075B2 (en) 2017-12-04 2023-10-03 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
WO2019112279A2 (ko) 2017-12-04 2019-06-13 삼성에스디아이 주식회사 리튬이차전지용 양극활물질, 그 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
US11670754B2 (en) 2017-12-04 2023-06-06 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
KR102424398B1 (ko) 2020-09-24 2022-07-21 삼성에스디아이 주식회사 리튬 이차 전지용 양극, 그 제조 방법, 및 이를 포함한 리튬 이차 전지
US11522189B2 (en) * 2017-12-04 2022-12-06 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery, preparing method thereof, and rechargeable lithium battery comprising positive electrode
US20210075013A1 (en) * 2018-04-03 2021-03-11 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001167761A (ja) * 1999-12-07 2001-06-22 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウム遷移金属複合酸化物およびその製造方法
JP2010219064A (ja) * 2010-06-18 2010-09-30 Ngk Insulators Ltd リチウム二次電池の正極活物質の製造方法
JP2010219068A (ja) * 2010-06-23 2010-09-30 Ngk Insulators Ltd リチウム二次電池の正極活物質用の板状粒子の製造方法
JP2010219069A (ja) * 2010-06-23 2010-09-30 Ngk Insulators Ltd リチウム二次電池の正極活物質用の板状粒子の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503930A (en) * 1994-03-07 1996-04-02 Tdk Corporation Layer structure oxide
JP3362564B2 (ja) 1995-07-04 2003-01-07 松下電器産業株式会社 非水電解液二次電池およびその正極活物質と正極板の製造方法
JP4163410B2 (ja) 2001-12-03 2008-10-08 株式会社東芝 非水電解液二次電池用正極およびそれを用いた非水電解液二次電池
US20040191161A1 (en) * 2002-11-19 2004-09-30 Chuanfu Wang Compounds of lithium nickel cobalt metal oxide and the methods of their fabrication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001167761A (ja) * 1999-12-07 2001-06-22 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウム遷移金属複合酸化物およびその製造方法
JP2010219064A (ja) * 2010-06-18 2010-09-30 Ngk Insulators Ltd リチウム二次電池の正極活物質の製造方法
JP2010219068A (ja) * 2010-06-23 2010-09-30 Ngk Insulators Ltd リチウム二次電池の正極活物質用の板状粒子の製造方法
JP2010219069A (ja) * 2010-06-23 2010-09-30 Ngk Insulators Ltd リチウム二次電池の正極活物質用の板状粒子の製造方法

Also Published As

Publication number Publication date
US8728342B2 (en) 2014-05-20
US20120085967A1 (en) 2012-04-12

Similar Documents

Publication Publication Date Title
WO2012046557A1 (ja) リチウム二次電池の正極活物質用の板状粒子
JP5623306B2 (ja) リチウム二次電池の正極活物質用の板状粒子
JP5701378B2 (ja) リチウム二次電池及びその正極活物質
KR101637412B1 (ko) 리튬 금속 복합 산화물 분체
JP4745463B2 (ja) リチウム二次電池の正極活物質用の板状粒子、及び同物質膜、並びにリチウム二次電池
TWI619300B (zh) 鋰離子電池用之富含鋰的鎳錳鈷陰極粉末
WO2012137533A1 (ja) 正極活物質前駆体粒子及びその製造方法、並びにリチウム二次電池の正極活物質粒子の製造方法
US20140087265A1 (en) Cathode active material for a lithium ion secondary battery and a lithium ion secondary battery
WO2012137535A1 (ja) 正極活物質前駆体粒子、リチウム二次電池の正極活物質粒子、及びリチウム二次電池
JP5986573B2 (ja) リチウム二次電池の正極活物質の製造方法
JP6129853B2 (ja) リチウム二次電池用正極活物質
JP5631993B2 (ja) リチウム二次電池の正極活物質用の板状粒子、リチウム二次電池の正極、及びリチウム二次電池
JP5824461B2 (ja) リチウム二次電池の正極
JP5824460B2 (ja) リチウム二次電池の正極
US20130108928A1 (en) Lithium-titanium complex oxide and manufacturing method thereof, as well as battery electrode and lithium ion secondary battery using same
JP7194703B2 (ja) 全固体リチウムイオン電池用正極活物質、電極および全固体リチウムイオン電池
JP5711608B2 (ja) リチウム二次電池及びその正極活物質粒子
US20110311436A1 (en) Method for producing spinel-type lithium manganate
JP5631992B2 (ja) リチウム二次電池の正極活物質用の板状粒子、リチウム二次電池の正極、及びリチウム二次電池
WO2023013494A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2018147248A1 (ja) リチウム複合酸化物焼結体板及びリチウム二次電池
JP2010219068A (ja) リチウム二次電池の正極活物質用の板状粒子の製造方法
WO2022265016A1 (ja) リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
US20240044040A1 (en) Preparation of single-crystal layered cathode materials for lithium- and sodium-ion batteries
JP2023131852A (ja) 正極活物質、正極およびその製造方法、リチウムイオン電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11830490

Country of ref document: EP

Kind code of ref document: A1